
Real-time Recognition of Shadow from Deep Edge
Detection

by

Sepideh Hosseinzadeh Heydarabad

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Sepideh Hosseinzadeh Heydarabad, 2017



Abstract

In this work we address the problem of fast shadow detection from single im-

ages of natural scenes. Different from traditional methods that employ expen-

sive optimization methods, we propose a fast semantic-aware Convolutional

Neural Network learning framework which trains on different kinds of patches,

while integrating semantic shadow information. We primarily cluster pixels

based on their material similarities, then in addition to considering individual

regions separately, we exploit a higher level interactions between the neigh-

bouring regions. We process the shadow edge pixels between the segments,

and relate the regions together.

Keywords: fast shadow detection, deep learning, shadow semantic informa-

tion.

ii



Acknowledgements

First and foremost I would like to thank my supervisor, Prof. Hong Zhang,

for his assistance and feedback during the past few months. I also would like

to thank Mr. Shakeri, for his beneficial feedback during this project.

iii



Contents

1 Introduction 1
1.1 Lighting and Shading Concepts . . . . . . . . . . . . . . . . . 1

1.1.1 What is Shadow? . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Ambient Illumination . . . . . . . . . . . . . . . . . . . 1
1.1.3 Lambertian (Diffuse) Reflection . . . . . . . . . . . . . 2
1.1.4 Specular Reflection . . . . . . . . . . . . . . . . . . . . 3

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions of this Work . . . . . . . . . . . . . . . . . . . . 5
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Physical Modelling of Illumination and Color . . . . . . 7
1.4.2 Statistical Learning Approaches . . . . . . . . . . . . . 7
1.4.3 Data-driven Learning Approaches . . . . . . . . . . . . 7
1.4.4 Deep Learning Frameworks . . . . . . . . . . . . . . . 8

1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Training a Patch-Wise CNN with 4D Channel Input 11
2.1 Training of the Patch-Wise CNN Algorithm . . . . . . . . . . 11
2.2 Image Level Shadow Prior Map . . . . . . . . . . . . . . . . . 12

2.2.1 Producing an Image Level Shadow Prior Map Algorithm 13
2.2.2 Image Segmentation . . . . . . . . . . . . . . . . . . . 14

2.2.2.1 Introduction to Mean Shift Algorithm . . . . 14
2.2.2.2 Introduction to Kernel Functions . . . . . . . 15
2.2.2.3 Kernel Density Estimation . . . . . . . . . . . 15
2.2.2.4 Gradient Ascent of Mean Shift . . . . . . . . 15
2.2.2.5 Mean Shift . . . . . . . . . . . . . . . . . . . 15
2.2.2.6 Mean Shift Segmentation . . . . . . . . . . . 16

2.2.3 Color Representation . . . . . . . . . . . . . . . . . . . 17
2.2.4 Texture Representation . . . . . . . . . . . . . . . . . . 17
2.2.5 Support Vector Machine (SVM) Classifier . . . . . . . 19

2.3 Convolutional Neural Network (CNN) . . . . . . . . . . . . . . 19
2.3.1 Layers to Build a CNN . . . . . . . . . . . . . . . . . . 20
2.3.2 Convolutional Layer . . . . . . . . . . . . . . . . . . . 21
2.3.3 Local Connectivity of CNN . . . . . . . . . . . . . . . 21
2.3.4 Spatial Arrangement in CNN . . . . . . . . . . . . . . 22
2.3.5 Sharing Parameters in CNN . . . . . . . . . . . . . . . 23
2.3.6 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.7 ReLU Layer . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.8 Fully Connected Layer . . . . . . . . . . . . . . . . . . 25
2.3.9 Loss Layer . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Selection of Training Patches . . . . . . . . . . . . . . . . . . . 25
2.4.1 Canny-Edge Detection . . . . . . . . . . . . . . . . . . 26

2.4.1.1 Canny-Edge Detection Algorithm . . . . . . . 27

iv



2.4.1.2 Gaussian Filter . . . . . . . . . . . . . . . . . 27
2.4.1.3 Intensity Gradient of an Image . . . . . . . . 27
2.4.1.4 Non-Maximum Suppression Technique . . . . 28
2.4.1.5 Double Thresholding in Canny-Edge Method 28

2.5 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . 28

3 Recognition of Shadow from Deep Edge Detection 30
3.1 Shadow Prediction Algorithm . . . . . . . . . . . . . . . . . . 30
3.2 Shadow Region Detection . . . . . . . . . . . . . . . . . . . . 31
3.3 Deep Shadow Edge Detection . . . . . . . . . . . . . . . . . . 31

4 Experiments 33
4.1 Methods of Evaluation . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Quantitative and Qualitative Results . . . . . . . . . . . . . . 35
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Further Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

v



List of Tables

4.1 Evaluation of shadow detection methods on combined dataset 35
4.2 Time complexity of shadow detection methods on combined

dataset, using GPU . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Time complexity of shadow detection methods on combined

dataset, using CPU . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Evaluation of shadow detection methods on UCF dataset . . . 36
4.5 Time complexity of shadow detection methods on UCF dataset,

using GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Evaluation of shadow detection methods on UIUC dataset . . 36
4.7 Time complexity of shadow detection methods on UIUC dataset,

using GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 Evaluation of shadow detection methods on SBU dataset . . . 37
4.9 Time complexity of shadow detection methods on SBU dataset,

using GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



List of Figures

1.1 Shadow types . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Lambertian (Diffuse) Reflection . . . . . . . . . . . . . . . . . 2
1.3 Specular Reflection . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Shadows cause complications in road detection application . . 5
1.5 Our shadow detection method pipeline . . . . . . . . . . . . . 6

2.1 Training Framework . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Mean Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Clusters of similar points, after Mean Shift segmentation . . . 16
2.4 The CIELAB color space representation . . . . . . . . . . . . 17
2.5 The filter bank applied to each pixel, universal textons, and

texton map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Patch-wise CNN structure . . . . . . . . . . . . . . . . . . . . 20
2.7 Convolutional layer architecture . . . . . . . . . . . . . . . . . 21
2.8 Convolutional layer’s neuron model . . . . . . . . . . . . . . . 21
2.9 Pooling layer and max pooling . . . . . . . . . . . . . . . . . . 24
2.10 Different kind of training patches . . . . . . . . . . . . . . . . 26

3.1 Testing Framework . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



Chapter 1

Introduction

1.1 Lighting and Shading Concepts

In this section, we are going to review lighting and shading concepts.

In real scenes, there is a variation of shading over object surfaces caused

by surface material properties,orientation of surfaces, nature and direction of

light sources, view direction and shadows.

1.1.1 What is Shadow?

Shadow occurs when an object totally or partially blocks light directly from

the light source. Shadows can be divided into two categories: cast and self

(Figure 1.1). A cast shadow is projected by the object in the direction of the

light source; a self shadow is the part of the object which is not illuminated by

direct light. The part of a cast shadow where direct light is completely blocked

by its object is called umbra, while the part where direct light is partially

blocked is called penumbra. Self and cast shadows produce different brightness

values. Self shadows usually have a higher brightness than cast shadows since

they receive more secondary lighting from surrounding illuminated objects.

Cast shadows can, however, cause a significant reduction in spectral variation

thereby causing correlation failure.

1.1.2 Ambient Illumination

The simplest kind of shading is that from ambient illumination, that is, light

that comes uniformly from all directions. The radiated light intensity I at a

1



Figure 1.1: Shadow types

point on a surface depends on the intensity of the illumination Ia, and on the

reflectivity ka (or albedo) of the surfacethe fraction of the incoming light which

the object reflects, near zero for black objects, near one for white objects. Thus

we have I = Iaka.

Ambient illumination is mathematically an extended form of Lambertian

reflection, integrating contributions from an infinite number of infinitesimal

point light sources in all directions, instead of a single point light source.

1.1.3 Lambertian (Diffuse) Reflection

Figure 1.2: Lamber-
tian (Diffuse) Reflec-
tion

When a ray of light hits a surface, some fraction of

it penetrates some way into the body of the object,

where it is scattered (and may interact with coloured

pigment particles). Eventually, some of the light is

reradiated more or less uniformly in all directions. For

a given surface, the brightness depends only on the

angle θ between the direction L̄ to the light source

and the surface normal N̄ (Figure 1.2). In this model,

the brightness depends only on the angle θ between

the direction L̄ to the light source and the surface normal N̄ . This model is

called Lambertian reflection (it is also called matte, diffuse or body reflection).

The intensity of light re-radiated from a small patch of surface depends on

the intensity Ip of the incoming light from the point light source, on how much

of this light is intercepted by the surface patch, and on the reflectivity kd (or

albedo) of the surface.

If the surface patch is facing full on to the light source, then it will intercept

2



the maximum amount of light. As the patch turns away from the light, it

will intercept less of the light, following a cosine law, cos θ, where θ is the

angle between the local surface normal, and the direction to the light source.

Therefore, the diffuse (or Lambertian) illumination equation is:

I = Ipkdcosθ

This cosine can be expressed as a scalar product, thus the Lambertian contri-

bution to the total intensity is:

I = IpkdN̄ .L̄

Where L̄ and N̄ are unit vectors in the directions, respectively, of the light

source and of the surface normal.

1.1.4 Specular Reflection

Figure 1.3: Specular
Reflection

When a ray of light hits a surface, some fraction of it

is also reflected immediately at the outer boundary of

the surface. This is the specular reflection and leads

to highlights and glossiness.

If the surface were a perfect mirror, then the reflec-

tion would follow the law of perfect reflection: For an

incident ray of light from the light source, the emer-

gent reflected ray would lie in the plane defined by

the incident ray and the surface normal, and make

the same angle with the surface normal as the incident ray. For most glossy

surfaces, however, the reflected light is spread out (e.g. scratches in steel of

texture in plastic), to a greater or lesser degree, from the direction of perfect

reflection. This is caused by microscopic unevenness of the surface: there are

a lot of little reflecting facets, whose normals vary from the overall surface

normal. The reflection is strongest in the direction of perfect reflection, and

becomes weaker for directions away from this.

This spread of reflection is modelled by looking at the angle α between the

direction of perfect reflection and the viewer direction, and modify the reflected

3



intensity by the factor (cosα)n (Figure 1.3). (cosα)n is at its maximum, 1,

when the viewer direction coincides with the direction of perfect reflection,

and becomes less for directions away from this. The exponent n is the specular

reflection exponent and controls the degree of spread. High values of n lead

to a rapid fall-off and sharp highlights, corresponding to a very glossy surface,

almost like a mirror.

1.2 Introduction

Shadow detection is important in analyzing the nature scenes. Recently,

shadow information is used in tasks related to object shape, size, movement,

number of light sources and illumination conditions, etc. However, beside its

useful information, shadows are a great concern in many computer vision and

robotic applications such as object tracking, image segmentation, object recog-

nition, and road detection (Figure 1.4). Moreover, being able to detect the

shadow and remove it, can help augmented reality, image editing, and com-

putational photography. Despite the fact that shadow detection is studied for

a long time and its importance, it remains a challenging problem. Complex

interactions of geometry, albedo, and illumination in nature scenes make the

detection difficult. We cannot distinguish between a dark surface due to shad-

ing and a dark surface due to albedo. To detect the shadow region, we should

consider the color, intensity, and texture of the pixels.

Since shadow is a stochastic phenomenon due to complex interplay of ge-

ometry, albedo, and illumination, finding a unified approach for shadow detec-

tion is difficult. Recent approaches motivated by this observation, and exploit

learning techniques for this task [21, 61, 29, 19, 16, 25]. These methods work

in a patch-wise way, and compute the likelihood that center pixel of the patch

is on the edge of a shadow. One of the limitations of these approaches is

that they make local prediction for each pixel independently, despite of high

dependency of shadow edges in local patches. So, these predictions combined

using CRF, GBP or MRF.

As most of the researches are inspired by structure of human body, we need

4



Figure 1.4: Shadows cause complications in road detection application. We
can use shadow information, or detect and remove it from road images.

to equip machines with the same visual comprehension abilities. Inspired

by the hierarchical architecture of the human visual cortex, recently, many

tasks are using deep learning representations. We are motivated by recent

success of these methods in various computer vision methods, and used a deep

representation architecture [25, 51, 55].

Presence of shadow does not have any schema. Thus, there is no sim-

ple unified learning model that can indicate shadow. This observation brings

the idea of using different representations beside RGB images, to improve the

detection of shadow. Recently, Vicente et al. [55] used Fully Convolutional

Neural Network (FCN) probability map beside RGB image, and train a Con-

volutional Neural Network (CNN) for detecting shadow patches in images.

Disadvantages of this method are first, using FCN probability map which is

a really poor map due to the fact that its prediction is based on each pixel’s

color. However, the material of the pixel such as texture is also an important

factor in shadow detection [16]. Moreover, this method is processing all the

pixels over and over, and the time complexity of producing the results is high

and non-applicable.

1.3 Contributions of this Work

Our goal is to detect shadows of an image in a real-time manner. Previous

works used optimization frameworks to refine the shadow detection results,

5



Figure 1.5: Our shadow detection method pipeline

which result in using and optimizing many parameters [51, 16, 25]. We utilize

a CNN framework which is designed to capture the local structure information

of shadow edges and automatically learn the most relevant features.

Shadow is a haphazard phenomenon, so learning frameworks need extra

information for learning it. We employ an intelligent image level shadow prior

map beside RGB image. The prior map is a segmented probability map which

similar pixels clustered with respect to their color and texture differences.

The procedure for detecting shadow is as follows (Figure 1.5). First, we

produced a shadow prior map and attached it to RGB image. Second, since

pixels with the same material (color and texture) probably have the same pre-

diction of shadiness, we first group the pixels with the same material together,

and treat similarly each pixel in the same region. In the next step, we specify

each region’s confidence to be a shadow region by CNN (region-based predic-

tion). At last, predictions made by the CNN are local and we need to utilize a

higher level interactions between the neighbouring region pixels. We process

the edge pixels between the segments by CNN (edge-based prediction).

Our main contributions are as follows:

1. A new real-time framework for robust shadow detection integrating both

regional and across-boundary learned features.

2. Automatic learning of the most relevant feature representations from

6



RGB images and shadow prior map using CNN framework.

Beside our contributions, we performed a vast quantitative evaluation to

prove that the proposed method is fast and applicable, and it is also robust

and generalisable among various kinds of scenes.

1.4 Related Work

Related works in shadow detection can be categorized into four groups: (1)

physical modelling of illumination and color, (2) statistical learning based

approaches, (3) data-driven learning approaches are proposed for single-image,

and (4) Deep learning frameworks.

1.4.1 Physical Modelling of Illumination and Color

Early methods proposed with a focus on physical modelling of illumination

and color [30, 47, 13, 39, 14]. For example, Finlayson et al. [13] compare

edges in the original image to edges in its illumination-invariant image. The

problem of this approach is necessity of high-quality images [29].

1.4.2 Statistical Learning Approaches

To adapt the environment changes, statistical learning based approaches [45,

36, 21, 18] are proposed. They learn shadow model parameters at each pixel

from a video. Some methods use shadow-variant and shadow-invariant texture

and color related cues to capture the statistical properties of shadows [61, 29,

20, 16, 48]. The extracted features model the color, texture [61, 29, 16, 48]

and illumination [20, 44]. Their weakness are requirement of a video, and their

high time-complexity of optimizing parameters.

1.4.3 Data-driven Learning Approaches

To improve robustness, and get rid of need for videos, recently, some data-

driven learning approaches are proposed for single-image shadow detection,

learning to detect shadows based on training images. They use hand-crafted

features as an input. Lalonde et al. [29] detected cast shadow edges on the

7



ground with a classifier trained on local hand-crafted features. [61] proposed

a similar approach for monochromatic images. Every pixel is classified as

shadow or non-shadow. This method’s constraint is that the pixel-wise out-

puts are noisy with poor-quality contour sequence. To address this issue, the

predictions combined using CRF, GBP or MRF. Guo et al. [16] modelled

long-range interaction between pairs of regions of the same material, with two

types of pairwise classifiers, same/different illumination condition. Then, they

incorporated the pairwise classifier and a shadow region classifier into a CRF

graph-cut optimization. Similarly, Vicente et al. [56] modelled unary and

pair-wise region classifier and a shadow boundary classifier, then used MRF

to combine the classifiers. Regardless of good accuracy of these approaches,

their limitation is requirement of extensive ground-truth annotation.

1.4.4 Deep Learning Frameworks

At last but not least, deep learning frameworks are proposed to learn the

most relevant features for shadow detection automatically, and outperformed

all other methods that use hand-crafted features. The first deep method for

detecting shadows was proposed by Khan et al. [25]. They combined a CNN

for shadow patches and a CNN for shadow boundaries with a CRF. Vicente

et al. [57] optimized a multi-kernel model for shadow detection based on

leave-one-out estimates. Shen et al. [51] proposed a CNN for structured

shadow edge prediction. One of the constraints of these approaches is that

they use optimization of shadow and illumination models which make the

time complexity high, and non-applicable.

1.5 Applications

Aerial images are contaminated with shadow caused by buildings, trees and

bridges, etc. As one of the features in aerial image, shadow can provide geo-

metric and semantic clues about the shape and height of its casting object and

the position of the light source. On the other hand, shadow can be treated

as a special kind of image degradation. Shadow information used in tasks re-

8



lated to object shape [38, 43], size, movement [24], number of light sources and

illumination conditions [49], and camera parameters and geo-location [23].

Shadow is one of the major problems in remotely sensed imagery which

decreases the accuracy of information extraction and change detection. Hi-

royuki et al [41] eliminated shadow areas in an earthquake zone for earthquake

damage assessment. Cloud-free remotely sensed images acquired from earth

orbiting satellites. Therefore, Song et al [54] detected clouds and shadows in

order to reduce them in images. In another study, Dozier [12] discriminated

snow from other materials in shadow. Shettigara et al [52] thresholded SPOT

(System for Earth Observation) images to extract shadows of extended ob-

jects (i.e. buildings and trees) for determining their heights. Cheng et al [8]

delimited the building heights in a city from the shadow in SPOT images.

Chen et al. [7] recovered shadow information in urban areas from very high

resolution satellite imagery. Zhu et al [62] presented cloud shadow detection

in Landsat imagery. [59, 33] methods proposed for shadow detection of urban

aerial images.

Foreground detection is an important early vision task in visual surveillance

systems. The presence of moving cast shadows on the background makes it

difficult to estimate shape or behavior of moving objects in surveillance videos.

Csaba et al [2] detected shadow in surveillance videos. Schreer et al [50] pro-

posed a method for shadow detection in videoconference applications. Bevilac-

qua [4] proposed an algorithm to detect moving shadows in the context of an

outdoor traffic scene. [32, 11, 60] proposed a shadow elimination approach in

video-surveillance. [26, 40, 27, 10] methods proposed for traffic flow analysis.

Shadows are a big concern in object detection application. Researchers

approach this problem in two different ways. First, detecting the shadow and

remove/suppress it from images [11, 17, 58]. Second, formulating the object

and its casted shadow together, to localize the object [42].

In other studies, Kumar et al [28] proposed a gesture-based input interface

system that utilizes shadow detection and is capable of providing robust, real-

time operation in a low-cost manner. Shoaib et al. [53] presented a moving

human cast shadow detection technique.

9



In conclusion, shadow information is used in numerous applications, on the

other hand, shadows cause complications in other applications, so detecting

and removing them from images can be helpful.

1.6 Outline

Our method consists of two parts, training and testing. The training part

(chapter 2) consist of: (1) outline of the algorithm, (2) image level semantic

information (prior probability map) we used beside the image to train the

CNN, (3) structure of the utilized CNN, and (4) more information on patches

for training.

The testing part (chapter 3) includes: (1) outline of algorithm, (2) region-

based prediction, and (3) edge-based prediction.

At last, we show our experiments (chapter 4): (1) methods of evaluation,

(2) datasets, (3) quantitative results, (4) conclusions, and (5) further work.

10



Chapter 2

Training a Patch-Wise CNN
with 4D Channel Input

In this chapter, we will talk about: (1) how we produced the image level

shadow prior map, (2) used CNN architecture, and (3) the way we selected

the training patches. Each subsection is described in detail with literature

review.

2.1 Training of the Patch-Wise CNN Algo-

rithm

Figure 2.1: Training
framework.

In this section we illustrate the steps of the training

of the patch-wise CNN algorithm. The input of the

algorithm is a RGB train image, and the output is

a Convolutional Neural Network (CNN) trained on

shadow/non-shadow patches of the image, which is

capable of predicting the probability of being shadow

for each pixel of the patch image. Steps of the algo-

rithm are as follows:

1. Predict an image level shadow prior map.

2. The predicted map is attached to the RGB im-

age as an additional channel. (shadow prior

channel P).

11



3. Training a CNN on RGBP patches to predict

local shadow and non-shadow pixels (patch-wise-CNN).

2.2 Image Level Shadow Prior Map

In this section, we will explain about the way we produce the image level

shadow prior map which is used beside RGB image to detect the shadows.

This section includes (1) outline of the algorithm, (2) algorithm of segment-

ing the image, (3) how we represent the colors, and (4) texture of the image

as features to train (5) the SVM classifier, in order to predict the confidence

of shadiness for each segment.

As human visual system considers not only the appearance of a local region

but also that of its neighboring regions to determine whether the local region

is overshadowed, we inspired from human visual system, and performed in the

same way [16]. When a region is covered by shadow, it becomes darker and

less textured than their surrounding regions with similar material (texture

and chromaticity) [61]. In more detail, if two regions have similar material

and intensity, then they probably have a similar label (shadow/non-shadow).

However, if two regions have the same material and different intensity, the

region with darker intensity probably should be labeled as shadow, and the

other region non-shadow.

The first step to utilize this idea to detect shadows, is to group the pixels

with similar material, and compare the neighboring regions together. There-

fore, we segment the image using Mean Shift algorithm [9]. Then, we estimate

the confidence of each region for being in shadow, using a trained classifier.

We utilize such a shadow prior map due to necessity of producing a prior

map in real-time manner. Therefore, using segmentation or super-pixel (clus-

ters of similar pixels) which a simple classification algorithm applied on each

cluster, can be a fast solution.

12



2.2.1 Producing an Image Level Shadow Prior Map Al-
gorithm

The goal of this section is illustrating the steps of producing an image level

shadow prior map algorithm. The input of the algorithm is a RGB image, and

the output is an image level shadow prior map which the value of each pixel

is confidence of being shadiness of that pixel. Steps of the algorithm are as

follows:

1. Segmentation of the image.

2. Representation of color with a histogram in L*a*b color space represen-

tation (Section 2.2.3), with 21 bins per channel.

3. Representation of texture with the texton histogram, with 128 textons

(Section 2.2.4).

4. Training our classifier from manually labeled regions using a SVM (Sec-

tion 2.2.5).

5. Definition of confidence of region i, as the output of this classifier times

the pixel area of the region i.

13



2.2.2 Image Segmentation

The aim of this section is explaining about how we segment the image. We

segment the image using Mean Shift algorithm [9]. Based on a recent research

that compares different segmentation algorithms [34], Mean Shift has several

properties that make it popular. First, it preserve the boundaries better than

other methods. Second, its speed has been improved significantly in recent

years. Third, there are fewer parameters to tune. At last, it does not require

the number of clusters to be selected, but it has its own parameters that also

control the number of and sizes of the regions.

2.2.2.1 Introduction to Mean Shift Algorithm

Figure 2.2: Mean
Shift

Mean Shift algorithm considers feature space as an

empirical probability density function. If the input is

a set of points, then Mean Shift algorithm considers

them as sampled from the underlying probability den-

sity function. If dense regions (or clusters) are present

in the feature space, then they correspond to the mode

(or local maxima) of the probability density function.

We can also identify clusters associated with the given

mode using Mean Shift.

For each data point, Mean Shift associates it with the nearby peak of

the dataset’s probability density function. For each data point, Mean Shift

defines a window around it and computes the mean of the data point. Then,

it shifts the center of the window to the mean and repeats the algorithm until

it converges. After each iteration, we can consider that the window shifts to a

more denser region of the dataset.

At the high level, we can specify Mean Shift algorithm as follows (Fig-

ure 2.2):

1. Fix a window around each data point.

2. Compute the mean of data within the window.

14



3. Shift the window to the mean and repeat until convergence.

2.2.2.2 Introduction to Kernel Functions

Mean Shift is a kernel based algorithm. A kernel is a function that satisfies

the two requirements including
∫
Rd
φ(x) = 1 and φ(x) ≥ 0. Some popular

examples of kernels are Epanechnikov: φ(x) =

{
3
4
(1− x2) if |x| ≤ 1

0 Otherwise
and

Gaussian: φ(x) = e−
x2

2σ2 .

2.2.2.3 Kernel Density Estimation

Kernel density estimation is a non parametric way to estimate the density

function of a random variable. This is usually called as the Parzen window

technique. Given a kernel K, bandwidth parameter h, kernel density estimator

for a given set of d-dimensional points is

f̂(x) =
1

nhd

n∑
i=1

K(
x− xi
h

)

2.2.2.4 Gradient Ascent of Mean Shift

Mean Shift can be considered to be based on gradient ascent on the density

contour. The generic formula for gradient ascent is x1 = x0+ηf
′(x0). Applying

it to kernel density estimator,

5f̂(x) =
1

nhd

n∑
i=1

K ′(
x− xi
h

)

setting it to zero we get,

n∑
i=1

K ′(
x− xi
h

)~x =
n∑
i=1

K ′(
x− xi
h

)~xi

finally we get,

~x =

∑n
i=1K

′(x−xi
h

)~xi∑n
i=1K

′(x−xi
h

)

2.2.2.5 Mean Shift

Mean Shift treats the points of the feature space as a probability density

function. Dense regions in feature space correspond to local maxima or modes.

15



So for each data point, we perform gradient ascent on the local estimated

density until convergence. The stationary points obtained via gradient ascent

represent the modes of the density function. All points associated with the

same stationary point belong to the same cluster. Assuming g(x) = −K ′(x),

we have

m(x) =

∑n
i=1 g(x−xi

h
)xi∑n

i=1 g(x−xi
h

)
− x

The quantity m(x) is called as the Mean Shift. So Mean Shift procedure can

be summarized as:

For each point xi:

1. Compute Mean Shift vector m(xti).

2. Move the density estimation window by m(xti).

3. Repeat until convergence.

For every kernel function used in Mean Shift algorithm, convergence occurs

when the function satisfies the condition m(xt+1
i ) ≥ m(xti).

2.2.2.6 Mean Shift Segmentation

Figure 2.3: Clusters
of similar points, after
Mean Shift segmenta-
tion

The Mean Shift segmentation algorithm is as follows:

Let xi and zi, i = 1, ..., n, be the d-dimensional input

and filtered image pixels in the joint spatial-range do-

main and Li the label of ith pixel in the segmented

image.

1. Run the Mean Shift filtering procedure for the

image and store all the information about the

d-dimensional convergence point in zi, i.e., zi =

yi,c.

2. Delineate in the joint domain the clusters {Cp}p=1,...,m

by grouping together all zi which are closer than

hs in the spatial domain and hr in the range do-

main, i.e., concatenate the basins of attraction

of the corresponding convergence points.

16



3. For each i = 1, ..., n, assign Li = {p|zi ∈ Cp}.

4. (Optional) Eliminate spatial regions containing

less than M pixels.

In this algorithm, hs is spatial resolution parameter which affects the smooth-

ing, connectivity of segments. It is chosen depending on the size of the image

and objects. hr is range resolution parameter which affects the number of seg-

ments. It should be kept low if contrast is low. At last, M is size of smallest

segment. It should be chosen based on size of noisy patches.

2.2.3 Color Representation

Figure 2.4: The
CIELAB color space
representation2

In this section, we describe the way we represent color

of each pixel of the image, as a feature to input into

SVM classifier to classify regions of the image.

We used The CIELAB (LAB or L*a*b) color space

representation (Figure 2.4). Color space defined by

the CIE, based on one channel for Luminance (light-

ness) (L) and two color channels (a and b). In this

model, the color differences are related to colorimetric

measurement. The a axis from green (-a) to red (+a)

and the b axis from blue (-b) to yellow (+b) develops.

The Luminance (L) brighten from the bottom to the top of this 3D model.

After representing the color in CIELAB space, we use histogram of them with

21 bins per channel.

2.2.4 Texture Representation

In this section, we illustrate how we represent texture of the image, as a feature

to input into SVM classifier to classify regions of the image.

Based on [35], the spectral histogram consists of marginal distributions

of responses of a bank of filters and encodes implicitly the local structure of

2www.linocolor.com

17



Figure 2.5: (a) The 13-element filter bank which is applied on each pixel,
it is used for computing textons. (b) Instance universal textons produced
from 200 images.(c) Image. (d) Texton map. For each pixel, a 13-element
filter responses are produced, and they are clustered with k-means. In this
example, with 200 images k=64 results in 64 universal textons. Each pixel is
assigned to the nearest texton. Each texton has a different color.

images through the filtering stage and the global appearance through the his-

togram stage. They reveal that the spectral histogram representation provides

a robust feature statistic for textures and generalizes well.

We illustrate texture with the texton histogram, with 128 universal textons

provided by Martin et al. [37]. These universal textons are computed using a

large and diverse image dataset.

For producing the textons, a gradient-based model is used by Martin et

al. [37]. It is for indicating local changes of texture. At location (x, y), a

circle with radius r is drawn, and is divided into half along the diameter with

orientation θ. The gradient function G(x, y, r, θ) compares the two halves of

this circle. G measures the degree to which texture of scale r differs at point

(x, y) of the image in direction θ. High difference means dissimilarity along

the diameter in the image. The gradient of texture is computed in 8 directions

and 3 half-octave scales at each pixel.

For comparing two halves of the circle, first the pixels of each half should

be convolved with different orientations of a bank of filters. Next, we compute

histograms of vector quantized bank filter responses for each pixel. At last,

for comparing two histograms of each half circle, with χ2 histogram difference

operator introduced by Puzicha et al. [46]:

χ2(g, h) =
1

2

∑ (gi − hi)2

gi + hi
(2.1)

Figure 2.5 shows the filter bank used in producing the textons. It includes

18



six pairs of oriented filters, and a center-surround filter. The oriented filters

are Gaussian second derivative which is an even symmetric filter, and Hilbert

Transform which is an odd symmetric filter. The center-surround filter is

a difference of Gaussian (DoG). Each filter is applied to each pixel, and it

produces a 13 elements length vector. Therefore, each pixel has a 13 elements

length vector associated with it.

Each half of the circle contains several filter response vectors. These vectors

are clustered using k-means algorithm. Cluster centers are Textons, which are

linear combination of the filters.

After defining the textons, each pixel is assigned to its nearest texton. The

texture differences are computed by difference of histograms of two halves of

the circle using formula 2.1.

2.2.5 Support Vector Machine (SVM) Classifier

The reason why we use SVM to classify segments of the image is the require-

ment for classifying regions in real-time manner. SVM is the simplest known

classifier that meets our requirement.

We train our classifier from manually labeled regions using an SVM with

a χ2 kernel and slack parameter C = 1 [6]. We define the confidence of being

shadow of each region, as the log likelihood output of this trained classifier

times the pixel area of the region.

2.3 Convolutional Neural Network (CNN)

In this section, we describe the CNN architecture. The reason why we use

CNN framework is the need for a basic structure for training that is capable

of learning shadow/non-shadow pixels in image patches. Our aim is being as

fast as possible to detect shadow in the images. We used ConvNet patch wise

on the patches of edges in the image, because we need to refine information

on the edges of the image. We used a basic ConvNet structure which has

six Convolutional layers, two Pooling layers, and one Fully connected layer

(Figure 2.6). The size of the input (patch size) is 32×32 which is an optimum

19



Figure 2.6: Patch-wise CNN with structured output. The input is a 32 × 32
RGBP (RGB image and Image level shadow prior map) image, and the output
is a 32× 32 shadow probability map.

size for learning information from image.

Convolutional neural networks are similar to ordinary neural networks.

They are made of neurons that have learnable weights and biases. Each neuron

gets some inputs, performs a dot product and optionally non-linearities. The

whole network performs as a differentiable score function, such that the input

is the raw image pixels, and the output is class scores. They have a loss

function (e.g. SVM/Softmax) on the last (fully-connected) layer.

In ConvNet architectures, it is assumed that the inputs are images, which

allow to encode certain attributes into its structure, to make the forward func-

tion more efficient to implement, and significantly reduce the number of pa-

rameters.

LeNet was one of the very first convolutional neural networks which helped

introducing the field of Deep Learning. This pioneering work by Yann LeCun

was named LeNet5 after many previous successful iterations since the year

1988 [31]. At that time the LeNet architecture was used mainly for character

recognition tasks.

2.3.1 Layers to Build a CNN

There are three main types of layers to build ConvNet architectures: Convo-

lutional Layer, Pooling Layer, and Fully-Connected Layer.

20



2.3.2 Convolutional Layer

Figure 2.7: Convolu-
tional layer architecture.
Each neuron in the con-
volutional layer is con-
nected only to a local
region in the input vol-
ume spatially, to the full
depth. There are mul-
tiple neurons along the
depth, all looking at the
same region in the input.

The convolutional layer is the core element of CNN

structure. The layer’s parameters include a set of

learnable filters (or kernels), which have a small re-

ceptive field extended through the whole depth of

the input volume. During the forward pass, each

filter is convolved across the width and height of the

input volume, computing the dot product between

the entries of the filter and the input, and produc-

ing a 2-dimensional activation map of that filter.

Therefore, the network learns filters that are acti-

vated when they detect some specific type of fea-

ture at some spatial position in the input. Stacking

the activation maps for all filters along the depth

dimension forms the full output volume of the con-

volution layer. Every entry in the output volume, is an output of a neuron

that looks at a small region in the input and shares parameters with neurons

in the same activation map.

2.3.3 Local Connectivity of CNN

Figure 2.8: Convolutional
layer’s neuron model. The
neurons compute a dot
product of their weights
with the input followed by a
non-linearity. Their connec-
tivity is now restricted to be
local spatially.

When dealing with high-dimensional inputs such

as images, it is practical to connect the neurons

to the neurons in the previous volume that have

spatial local patterns, because the network needs

to learn specific important information, not all

the information.

Spatially local correlations in CNN structure,

employing a local connectivity patterns between

neurons of adjacent layers. Each neuron is con-

nected to only a small region of the input vol-

ume. The extent of this connectivity is a hyper-

21



parameter called the receptive field of the neu-

ron. Thus, learnt filters are sensitive to spatially local input patterns, and

response strongly to these kind of patterns. Stacking many such layers leads

to have non-linear filters that are more global and responsive to a larger region

of pixels. This allows CNN to first build proper representations of small re-

gions of the input. Then, assemble representations of larger areas from them.

This characteristic allows CNNs to achieve a better generalization.

2.3.4 Spatial Arrangement in CNN

Three hyperparameters control the size of the output volume of the convolu-

tional layer: the depth, stride and zero-padding.

• Depth of the output volume controls the number of neurons in the

layer that connect to the same region of the input volume. All of these

neurons will learn to activate for different features in the input. For

example, if the first convolutional layer takes the raw image as input,

then different neurons along the depth dimension may activate in the

presence of various oriented edges, or blobs of color.

• Stride controls how depth columns around the spatial dimensions (width

and height) are allocated. When the stride is s then we move the filters s

pixel at a time. This leads to heavily overlapping receptive fields between

the columns, and also to large output volumes. When stride gets larger,

the receptive fields will overlap less and the resulting output volume will

have smaller dimensions spatially.

• Size of zero-padding is the third hyperparameter. Sometimes it is

convenient to pad the input with zeros on the border of the input volume.

Zero padding provides control of spatial size of the output volume. In

particular, sometimes it is desirable to exactly preserve the spatial size

of the input volume.

The spatial size of the output volume can be computed by the formula

(W − K + 2P )/S + 1. In this formula, W is input volume size, K is the

22



kernel field size of the convolutional layer neurons, S is the stride, and P is

the amount of zero padding used on the border. If this number is not an

integer, then the strides are set incorrectly, and the neurons cannot be tiled

to fit across the input volume in a symmetric way. In general, setting zero

padding to be P = (K − 1)/2 when the stride S = 1, ensures that the input

volume and output volume will have the same size spatially. Although, it is

generally not necessary to use all of the neurons of the previous layer.

2.3.5 Sharing Parameters in CNN

Sharing parameters is used in convolutional layers to control the number of

parameters being learnt. It significantly reduces the number of them, thus,

decreasing the memory usage, and therefore training of a larger and more

powerful network.

In CNN, each filter is replicated across the entire architecture, because

when one patch feature is useful to compute at a specific spatial position, then

it should also be useful to compute at a different position. These replicated

units share the same parameters (weights and bias) to build a feature map. In

other words, all the neurons in a given convolutional layer detect exactly the

same feature. Replicating units allows the CNN to detect features regardless

of the position in the visual field, thus the structure is translation invariance.

Since all neurons in a single depth slice are sharing the same parameters,

then the forward pass in each depth slice of the convolutional layer can be

computed as a convolution of the neuron’s weights with the input volume.

Therefore, it is common to refer to the sets of weights as a filter (or a kernel).

It is noteworthy that sometimes the parameter sharing assumption may

not be reasonable. One case is when the input images have specific centered

structures, which we should learn different features at different spatial loca-

tions. In this case it is common to relax the parameter sharing scheme, and

instead simply call the layer a locally connected layer.

23



Figure 2.9: Pooling layer downsamples the volume spatially, independently in
each depth slice of the input volume. In the left side, the input volume of size
[224 × 224 × 64] is pooled with filter size 2, stride 2 into output volume of
size [112 × 112 × 64]. The volume depth is preserved. In the right side, max
pooling is shown with a stride of 2. Each max is taken over 4 numbers (2× 2
squares).

2.3.6 Pooling Layer

One other important structural element of CNN is pooling layers, which is a

form of non-linear down-sampling. There are various kinds of pooling such

as average pooling or L2-norm pooling, and max pooling. Among them max

pooling is the most common. It partitions the input image into some non-

overlapping rectangles, for each one, outputs the maximum amount of the

region. The assumption is that the exact location of the feature is less im-

portant than its rough location, compare to other features. Thus, it provides

a form of translation invariance to CNN. It is common to insert sometimes

a pooling layer between successive convolutional layers in a CNN structure

to reduce the spatial size of the representation, number of parameters, and

amount of computation in CNNs, and therefore to control overfitting.

Due to the aggressive reduction in the size of the representation, the current

trend is towards using smaller filters or discarding the pooling layer altogether.

Region of Interest pooling (RoI pooling) is a variant of max pooling layer,

in which output size is fixed and input rectangle is a parameter. This layer is

an important component of convolutional neural networks for object detection

based on Fast R-CNN architecture [15].

24



2.3.7 ReLU Layer

ReLU (Rectified Linear Units) is a layer of neurons that applies the non-

saturating activation function f(x) = max(0, x). It increases the nonlinear

properties of the decision function and of the overall network without affecting

the receptive fields of the convolution layer.

Other functions are also used to increase nonlinearity, for instance, the

saturating hyperbolic tangent f(x) = tanh(x), f(x) = | tanh(x)|, and the

sigmoid function f(x) = (1 + e−x)−1. Among them, ReLU is more common to

use, because it results the training be faster, without making any significant

difference to generalisation accuracy.

2.3.8 Fully Connected Layer

At last, after several convolutional and max pooling layers, Fully Connected

Layers are employed to reason about the input in a high-level and globally.

Neurons in a Fully Connected Layer have full connections to all activations in

the previous layer.

2.3.9 Loss Layer

The Loss Layer apears in the last layer of CNN. It specifies how the network

training assess the error between the predicted and true labels. Different loss

functions proper for different tasks may be used. Softmax loss is used for

predicting a single class of several mutually exclusive classes. Sigmoid cross-

entropy loss is used for predicting several independent probability values in

[0, 1]. Euclidean loss is used for regressing to real-valued labels (−∞,∞).

2.4 Selection of Training Patches

In this section, we describe the choices of training patches of the images for

training the patch-wise CNN.

We should select patches in a way that the structured CNN learns to de-

tect shadows on the edges of the image. The reason is that after performing

region-based shadow detection (Section 3.2), predictions made by the CNN are

25



Figure 2.10: The training patches: (1) black patch: on random non-shadow
location, (2) blue patch: on Canny-edges between shadow and non-shadow
regions, (3) red patch: shadow locations.

local and we therefore need to exploit a higher level interactions between the

neighbouring region pixels, therefore we process the edge pixels between the

segments by CNN. Additionally, the way of selection should guarantee that

CNN learn various types of material. Thus, we selected the training patches

in the following ways: (1) On random non-shadow location, to include patches

of various textures and colors. (2) On Canny-edges between shadow and non-

shadow regions, to include hard-to-classify boundaries. (3) Shadow locations,

to guarantee a minimum number of positive instances (Figure 2.10).

2.4.1 Canny-Edge Detection

We include patches on edges between shadow and non-shadow regions to

train the CNN. For detecting edges, we utilize Canny-edge detector algorithm.

Therefore, in this section we explain about Canny-edge detector method.

Based on a recent research, Juneja et al. [22] compared performance eval-

uation of edge detection techniques for images in spatial domain, and showed

that on visual perception, it can be shown clearly that the Sobel, Prewitt, and

Roberts edge detectors provide low quality edge maps relative to the others. A

representation of the image can be obtained through the Canny and Laplacian

of Gaussian methods. Among the various methods investigated, the Canny

method is able to detect both strong and weak edges, and seems to be more

suitable than the Laplacian of Gaussian [22].

26



The Canny edge detector is an edge detection operator that uses a multi-

stage algorithm to detect a wide range of edges in images. It was developed

by John F. Canny in 1986 [5].

2.4.1.1 Canny-Edge Detection Algorithm

The steps are as follows:

1. Apply Gaussian filter to smooth the image in order to remove the noise.

2. Find the intensity gradients of the image.

3. Apply non-maximum suppression to get rid of spurious response to edge

detection.

4. Apply double threshold to determine potential edges.

5. Finalize the detection of edges by suppressing all the other edges that

are weak and not connected to strong edges.

2.4.1.2 Gaussian Filter

In order to reduce noise and unwanted details and textures, we should smooth

the image with a Gaussian filter.

g(m,n) = Gσ(m,n) ∗ f(m,n)

where g is the smooth version of f the image, and Gσ is:

Gσ =
1√

2πσ2
exp(−m

2 + n2

2σ2
)

2.4.1.3 Intensity Gradient of an Image

An edge in an image may point in a variety of directions, so the Canny al-

gorithm uses four filters to detect horizontal, vertical and diagonal edges in

the blurred image. The edge detection operator (such as Roberts, Prewitt, or

Sobel) returns a value for the first derivative in the horizontal direction (Gx)

and the vertical direction (Gy). From this the edge gradient and direction can

be determined:

G =
√
G2
x +G2

y

27



θ = tan−1 [
Gy

Gx

]

The edge direction angle is rounded to one of four angles representing vertical,

horizontal and the two diagonals (0°, 45°, 90°, and 135°).

2.4.1.4 Non-Maximum Suppression Technique

Non-maximum suppression is an edge thinning technique. It is applied to

“thin” the edge. In other words, it can help to suppress all the gradient

values to 0, except the local maximum value which indicates the location of

the sharpest change of intensity value. The algorithm for each pixel in the

gradient image is:

1. Compare the edge strength of the current pixel with the edge strength

of the pixel in the positive and negative gradient directions.

2. If the edge strength of the current pixel is the largest compared to the

other pixels in the mask with the same direction (i.e., the pixel that is

pointing in the y direction, it will be compared to the pixel above and

below it in the vertical axis), the value will be preserved. Otherwise, the

value will be suppressed.

2.4.1.5 Double Thresholding in Canny-Edge Method

Canny does use two thresholds upper and lower (Hysteresis): (a) If a pixel

gradient is higher than the upper threshold, the pixel is accepted as an edge.

(b) If a pixel gradient value is below the lower threshold, then it is rejected.

(c) If the pixel gradient is between the two thresholds, then it will be accepted

only if it is connected to a 8-connected neighborhood pixel that is above the

upper threshold.

2.5 Summary of the Chapter

In this chapter, we described about how we produce image level shadow prior

map, and used it beside image to train patch-wise CNN. As prerequisites to

understand completely the algorithm of training the CNN, we explained about

28



Mean Shift segmentation algorithm, color and texture representations, SVM

classifier, CNN architecture, and Canny-edge detector algorithm.

In order to produce an image level shadow prior map, we performed the

following steps: (1) segmented the image using Mean Shift algorithm, (2)

represented the color of the image with a histogram in L*a*b space, with 21

bins per channel, (3) represented the texture of the image with the texton

histogram, with 128 textons, (4) trained our classifier from manually labeled

regions using a SVM, (5) defined confidence of each region (segment), as the

output of this classifier times the pixel area of the region.

We selected 3 kinds of patches from images to train the CNN: (1) on random

non-shadow locations, to include patches of various textures and colors, (2)

on Canny-edges between shadow and non-shadow regions, to include hard-to-

classify boundaries, and (3) shadow locations, to guarantee minimum number

of positive instances.

29



Chapter 3

Recognition of Shadow from
Deep Edge Detection

In this chapter, we will talk about the way we detect the shadows and produce

shadow confidence for each pixel of the test image. There are three subsec-

tions: (1) the algorithm outline, (2) description of region-based detection of

shadows, (3) explaining about how we relate these regions together, and refine

the detection results in the edge pixels.

3.1 Shadow Prediction Algorithm

In this section we illustrate the steps of the shadow detection algorithm. Our

main goal is processing as less pixels as possible, to have a fast algorithm. The

input of the algorithm is a RGB image, and the output is shadow prediction

for each pixel of the image.

The algorithm steps are as follows (Figure 3.1):

1. Computing the image level shadow prior map (explained in Section 2.2).

2. Shadow Region Detection: predicting for each region the confidence to

be a shadow region.

3. Deep Shadow Edge Detection: relating each region to its neighbor re-

gions, and predicting higher level of interaction among regions.

30



3.2 Shadow Region Detection

Figure 3.1: Testing
framework.

In this section, we explain about the second step of the

shadow detection algorithm which is a region based

shadow detection.

Primarily, in order to use the trained patch-wise

CNN, we generate an image level shadow prior map,

and attach it beside the RGB image. Thus, we have

the segmented image, and know the clusters of similar

pixels (explained in Section 2.2.2).

Secondly, we made a reasonable assumption that

pixels in a same region probably have the same predic-

tion of shadiness. We specify each region’s confidence

to be a shadow region using CNN. Considering the

middle point c of each segment, we pass a 32 × 32

window patch with center c to CNN, and obtain the

predictions for the patch pixels. Then, we compute

the mean of this predictions. At last, we set the value

of each pixel of the segment to be this mean value.

The reason why we use segmentation of the image is that it produces

clusters of similar pixels that can be treated in a same way. Thus, we selected

one pixel (middle pixel of each segment), and decide the confidence of being

shadow for the whole segment. Therefore, number of processed pixels is one

pixel for each segment.

3.3 Deep Shadow Edge Detection

The aim of this section is explaining about the third step of the shadow de-

tection algorithm which is deep shadow edge detection.

Predictions made by the CNN are local and we need to utilize higher level

interactions between the neighbouring region pixels. So, we process the edge

pixels between the neighboring segments by CNN.

31



We start from the first row and column, and continue to the last one. We

select a row and a column at a time, and refine the edge pixels by CNN, then

continue to perform the same to all other rows and columns (if we have n rows

and m columns, we run the CNN for edge patches at most minimum of n and

m times). Because all the pixels in a segment have the same value, edge pixels

are the ones that their value are different from their right or below neighbors.

We refine the edge pixels and their neighbors as follows. When an edge

pixel is recognized, a window patch with size 32 × 32 around it is passed to

the CNN to get predictions, then we set the edge pixel and its 8 neighbors’

values to be mean value of these 9 pixels.

It is noteworthy that we process each pixel on the edge at most once. In

addition, we know that shadow pixels are much less than non-shadow pixels,

therefore we can assume that if the maximum confidence of being shadow is δ,

we should process the pixel of the edge, if its confidence is more than at least

20% of δ.

It should be mentioned that we could extract all the edge patches at once,

then input all to get predictions and refine edges at once. But, this way of

refinement producing new edge pixels. The reason why processing edge pixels

in our way (row-column way) does not produce new edge pixels is that we

have three predictions for each pixels and mean of them is final prediction.

32



Chapter 4

Experiments

In this chapter, we illustrate our experiments. We evaluate our method both

quantitatively and qualitatively on main publicly available datasets for single

image shadow detection. Our approach assessed on various types of scenes such

as aerial images, road scenes, buildings, forests, and beaches. The databases

include shadows under significant illumination changes such as sunny, dark,

and cloudy weather. It also contain scenes occupied with objects that make

the shadow detection more challenging.

Training detail: We employ data augmentation for training images. We

downsample the images by six factors 1 to 0.5 with step 0.1, and apply left to

right flip. Rotation and flip on patches is performed randomly. We implement

the CNN using Theano [1, 3].

4.1 Methods of Evaluation

In this section, we show methods of evaluation that we used to examine our

method.

• Accuracy of shadow pixels = TP
all shadow pixels

Rate of pixels that are shadows, and correctly detected.

• Accuracy of non-shadow pixels = TN
all non-shadow pixels

Rate of pixels that are non-shadows, and correctly detected.

• Accuracy of pixels = TP+TN
all pixels

Rate of pixels that are correctly detected.

33



4.2 Datasets

UCF Shadow Dataset: This dataset contains 355 images with manually

labeled region-based ground truth. Only 245 out of 355 images were used in

[16, 61]. The split of the train/test data is according to the software package

provided by [16] as the original authors did not disclose the split.

UIUC Shadow Dataset: This dataset contains 108 images (32 train images

and 76 test images) with region-based ground truth.

SBU Shadow Dataset: This new dataset contains 4,727 images (4,089 train

images and 638 test images) with region-based ground truth.

Combined Dataset: It is the combination of above datasets. It includes

5,078 images. We randomly selected 25% of the images for testing, and the

rest for training. It includes 3,808 training images, and 1,270 testing images.

34



Figure 4.1: Qualitative results on combined dataset.

4.3 Quantitative and Qualitative Results

In this section, we evaluate our method quantitatively and qualitatively, and

compare it with state-of-the-art methods. We also compare their time com-

plexities.

Table 4.1: Evaluation of shadow detection methods on combined dataset

Method Accuracy/std Shadow-
Accuracy/std

Non-shadow-
Accuracy/std

Stacked-CNN 0.9044 / 0.12 0.8614 / 0.18 0.9140 / 0.13
Unary-Pairwise 0.8835 / 0.13 0.6374 / 0.32 0.9366 / 0.11
Our method 0.9103 / 0.11 0.8527 / 0.20 0.9248 / 0.11

Table 4.2: Time complexity of shadow detection methods on combined dataset,
using GPU2

Method Testing (hours) Testing
(sec/image)

Training (hours)

Stacked-CNN 39.38 111.62 5.4+Train FCN
Unary-Pairwise 20.77 58.87 -
Our method 1.45 4.11 2.18

2Note that in our experiments, Unary-Pairwise method does not use GPU

35



Table 4.3: Time complexity of shadow detection methods on combined dataset,
using CPU

Method Testing (hours) Testing
(sec/image)

Training (hours)

Stacked-CNN 1693.33 4800.5 10+Train FCN
Unary-Pairwise 20.77 58.87 -
Our method 11.4 32.5 4

Table 4.4: Evaluation of shadow detection methods on UCF dataset

Method Accuracy Shadow-
Accuracy

Non-shadow-
Accuracy

Stacked-CNN 0.8649 0.8532 0.8681
Unary-Pairwise 0.9020 0.7330 0.9370
Our method 0.8682 0.8312 0.8719

Table 4.5: Time complexity of shadow detection methods on UCF dataset,
using GPU

Method Testing (hours) Testing
(sec/image)

Training (hours)

Stacked-CNN 2.5 39.08 0.15+Train FCN
Unary-Pairwise 1.34 40.29 -
Our method 0.11 3.3 0.08

Table 4.6: Evaluation of shadow detection methods on UIUC dataset

Method Accuracy/std Shadow-
Accuracy/std

Non-shadow-
Accuracy/std

Stacked-CNN 0.8121 / 0.20 0.4305 / 0.39 0.9399 / 0.19
Unary-Pairwise 0.8748 / 0.12 0.5735 / 0.39 0.9746 / 0.07
Our method 0.7949 / 0.20 0.3771 / 0.38 0.9394 / 0.18

Our aim is comparing our shadow detection algorithm with not only learning-

based methods, but also statistical approaches. Therefore, we select two dif-

ferent methods to compare our approach to them: (1) Stacked-CNN [55], and

(2) Unary-Pairwise [16]. The reason of our choices are that Stacked-CNN is

36



Table 4.7: Time complexity of shadow detection methods on UIUC dataset,
using GPU

Method Testing (hours) Testing
(sec/image)

Training (hours)

Stacked-CNN 2.94 139.29 0.05+Train FCN
Unary-Pairwise 0.32 15.15 -
Our method 0.07 3.62 0.03

Table 4.8: Evaluation of shadow detection methods on SBU dataset

Method Accuracy/std Shadow-
Accuracy/std

Non-shadow-
Accuracy/std

Stacked-CNN 0.8850 / 0.13 0.8609 / 0.23 0.9059 / 0.15
Unary-Pairwise 0.8639 / 0.14 0.5636 / 0.35 0.9357 / 0.12
Our method 0.8664 / 0.14 0.8987 / 0.20 0.8773 / 0.15

Table 4.9: Time complexity of shadow detection methods on SBU dataset,
using GPU

Method Testing (hours) Testing
(sec/image)

Training (hours)

Stacked-CNN 35.56 200.65 68.9+Train FCN
Unary-Pairwise 9.13 51.56 -
Our method 1.02 5.8 8.7

state-of-the-art method that uses a shadow prior map beside RGB images like

our method, and is a deep learning based method. Unary-Pairwise is state-of-

the-art approach that is a statistical method.

Results of evaluation for selected methods and our approach on Combined

dataset, are illustrated in Table 4.1. The accuracy of our method is higher than

others, which shows that our method generally performs better than others.

The standard deviation of our method is lower than others, which clear the

fact that our method is more robust. Our shadow accuracy and non-shadow

accuracy is about 1% lower than state-of-the-art methods, which is a trade-off

for lower time complexity. Time complexity results of the methods are shown

37



in Table 4.2 and Table 4.3. These tables show that our method is much faster

than other methods. Our method not only is extremely fast and real-time

using GPU memory, it is also fast using only CPU memory. Other methods

are not applicable using only CPU memory.

Moreover, we evaluate our method and compare it to other methods on

UCF, UIUC, and SBU shadow datasets (Tables 4.4 to 4.9). The results show

that with an accuracy close to the state-of-the-art methods, our method is

extremely faster. In Table 4.4, our method’s general accuracy is almost similar

to Stacked-CNN method which is a deep learning based approach. Unary-

pairwise method’s accuracy is higher than other methods. In Table 4.6, Unary-

pairwise method outperforms other methods. Because, UCF dataset’s training

images are only 120 images, and UIUC dataset’s training images are only

32 images, and learning based methods’ performance depends on number of

training images. The more the training images are, the better the performance

is. In Table 4.8, our shadow accuracy is higher, and the standard deviation

is lower than other methods, which shows the stability and robustness of our

method.

Please note that we adjusted threshold to maximize accuracy in binary

segmentation. In all experiments, we used one threshold value for binarizing

the results.

Qualitative results are shown in Figure 4.1. As you can see in this figure,

in image number 1, our method can detect the ground as non-shadow region

successfully, in contrast of Stacked-CNN method. The reason is not only using

color features, but also using texture features in shadow prior map. Unary-

Pairwise approach can not even detect the shadow correctly. In image number

6, Stacked-CNN detect the road as shadow wrongly, but our method did not.

Unary-Pairwise can not detect the shadow on the road in image number 6

and 7, because their color is similar to shadow color. In image number 8, our

method and Stacked-CNN detect the ground as shadow falsely, but Unary-

Pairwise approach detect it truly as non-shadow.

We also try a deeper CNN, in such a way that we replicate the CNN

structure twice. First CNN’s input is shadow prior map attached beside the

38



RGB image, the output is shadow probability map (P1). The second CNN’s

input is P1 attached to the RGB image, the output is final shadow probability

map result.

By applying this change, our accuracy decreases from 0.9103 to 0.9011,

shadow accuracy increases from 0.8527 to 0.8965, and non-shadow accuracy

decreases from 0.9248 to 0.9042. Thus, we can say that making the CNN

deeper in this way, make the general accuracy worse.

We also quantify how much the final step of our shadow detection ap-

proach Deep Shadow Edge Detection (Section 3.3) helps, and how much the

time complexity would be without this step. We did experiment on Combined

dataset. The accuracy decreases from 0.9103 to 0.8894, shadow accuracy de-

creases from 0.8527 to 0.7157, and non-shadow accuracy decreases from 0.9248

to 0.9163. Time of processing for the whole dataset decreases from 1.45 hours

(4.11 sec/image) to 0.42 hours (1.2 sec/image).

4.4 Conclusions

We proposed a real-time and novel method for shadow detection from single

images. Our deep learning architecture performs at the local patch level, and

it can make use of image level semantic information beside RGB images. This

method is real-time, and applicable for many robotic applications such as road

detection for autonomous cars.

In this work, we utilize a CNN framework which is designed to capture the

local structure information of shadow edges and automatically learn the most

relevant features.

Shadow is a haphazard phenomenon, so learning frameworks need extra

information for learning it. We employ an intelligent image level shadow prior

map beside RGB image. The prior map is a segmented probability map which

similar pixels clustered with respect to their color features and texture differ-

ences. The procedure of producing shadow prior map, and training the CNN

patch-wise, is described in Chapter 2.

The procedure for detecting shadow is explained in Chapter 3. In nutshell,

39



the procedure is as follows. First, since pixels with the same material (color

and texture) probably have the same prediction of shadiness, we first group

the pixels with the same material together, and treat similarly each pixel in

the same region. In the next step, we specify each region’s confidence to be

a shadow region by CNN (Section 3.2). At last, predictions made by the

CNN are local and we need to utilize higher level interactions between the

neighbouring region pixels. We process the edge pixels between the segments

by CNN (Section 3.3).

Our main contributions are as follows:

1. A new real-time framework for robust shadow detection integrating both

regional and across-boundary learned features.

2. Automatic learning of the most relevant feature representations from

RGB images and shadow prior map using CNN framework.

4.5 Further Works

One question that needs more research is how we can use a deeper framework

instead of CNN to gain accuracy while keeping the time complexity low. We

tried a deeper CNN, but the results got worse. We need to use a different

deep structure other than CNN, or make the CNN deeper in a different way,

to make the method more accurate.

40



Bibliography

[1] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian
Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley,
and Yoshua Bengio. Theano: new features and speed improvements.
arXiv preprint arXiv:1211.5590, 2012.

[2] Csaba Benedek and Tamás Szirányi. Bayesian foreground and shadow
detection in uncertain frame rate surveillance videos. IEEE Transactions
on Image Processing, 17(4):608–621, 2008.

[3] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Raz-
van Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley,
and Yoshua Bengio. Theano: A cpu and gpu math compiler in python.
In Proc. 9th Python in Science Conf, pages 1–7, 2010.

[4] Alessandro Bevilacqua. Effective shadow detection in traffic monitoring
applications. 2003.

[5] John Canny. A computational approach to edge detection. IEEE Trans-
actions on pattern analysis and machine intelligence, (6):679–698, 1986.

[6] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support
vector machines. ACM transactions on intelligent systems and technology
(TIST), 2(3):27, 2011.

[7] Y Chen, D Wen, L Jing, and P Shi. Shadow information recovery in urban
areas from very high resolution satellite imagery. International Journal
of Remote Sensing, 28(15):3249–3254, 2007.

[8] F Cheng and K-H Thiel. Delimiting the building heights in a city from the
shadow in a panchromatic spot-imagepart 1. test of forty-two buildings.
Remote Sensing, 16(3):409–415, 1995.

[9] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach to-
ward feature space analysis. IEEE Transactions on pattern analysis and
machine intelligence, 24(5):603–619, 2002.

[10] Rita Cucchiara, C Grana, Metal Piccardi, and A Prati. Statistic and
knowledge-based moving object detection in traffic scenes. In Intelli-
gent Transportation Systems, 2000. Proceedings. 2000 IEEE, pages 27–32.
IEEE, 2000.

[11] Rita Cucchiara, Costantino Grana, Massimo Piccardi, Andrea Prati, and
Stefano Sirotti. Improving shadow suppression in moving object detection
with hsv color information. In Intelligent Transportation Systems, 2001.
Proceedings. 2001 IEEE, pages 334–339. IEEE, 2001.

41



[12] Jeff Dozier. Spectral signature of alpine snow cover from the landsat
thematic mapper. Remote sensing of environment, 28:9–22, 1989.

[13] GD Finlayson, SD Hordley, and Drew Cheng Lu. Ms, on the removal of
shadows from images, pattern analysis and machine intelligence. IEEE
Transactions on, 2006.

[14] Graham D Finlayson, Mark S Drew, and Cheng Lu. Entropy minimization
for shadow removal. International Journal of Computer Vision, 85(1):35–
57, 2009.

[15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1440–1448, 2015.

[16] Ruiqi Guo, Qieyun Dai, and Derek Hoiem. Single-image shadow detec-
tion and removal using paired regions. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 2033–2040. IEEE,
2011.

[17] Jun-Wei Hsieh, Wen-Fong Hu, Chia-Jung Chang, and Yung-Sheng Chen.
Shadow elimination for effective moving object detection by gaussian
shadow modeling. Image and Vision Computing, 21(6):505–516, 2003.

[18] Jia-Bin Huang and Chu-Song Chen. Moving cast shadow detection using
physics-based features. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 2310–2317. IEEE, 2009.

[19] Xiang Huang, Gang Hua, Jack Tumblin, and Lance Williams. What
characterizes a shadow boundary under the sun and sky? In Computer
Vision (ICCV), 2011 IEEE International Conference on, pages 898–905.
IEEE, 2011.

[20] Xiaoyue Jiang, Andrew J Schofield, and Jeremy L Wyatt. Shadow detec-
tion based on colour segmentation and estimated illumination. In BMVC,
pages 1–11, 2011.

[21] Ajay J Joshi and Nikos P Papanikolopoulos. Learning to detect mov-
ing shadows in dynamic environments. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(11):2055–2063, 2008.

[22] Mamta Juneja and Parvinder Singh Sandhu. Performance evaluation of
edge detection techniques for images in spatial domain. international
journal of computer theory and Engineering, 1(5):614, 2009.

[23] Imran Junejo and Hassan Foroosh. Estimating geo-temporal location of
stationary cameras using shadow trajectories. Computer Vision–ECCV
2008, pages 318–331, 2008.

[24] Daniel Kersten, David C Knill, Pascal Mamassian, and Isabelle Bülthoff.
Illusory motion from shadows. Nature, 379(6560):31–31, 1996.

[25] Salman Hameed Khan, Mohammed Bennamoun, Ferdous Sohel, and
Roberto Togneri. Automatic feature learning for robust shadow detec-
tion. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 1939–1946. IEEE, 2014.

42



[26] Michael Kilger. A shadow handler in a video-based real-time traffic mon-
itoring system. In Applications of Computer Vision, Proceedings, 1992.,
IEEE Workshop on, pages 11–18. IEEE, 1992.

[27] Dieter Koller, Kostas Daniilidis, and Hans-Hellmut Nagel. Model-based
object tracking in monocular image sequences of road traffic scenes. In-
ternational Journal of Computer 11263on, 10(3):257–281, 1993.

[28] Senthil Kumar and Jakub Segen. Gesture-based input interface system
with shadow detection, September 23 2003. US Patent 6,624,833.

[29] Jean-François Lalonde, Alexei Efros, and Srinivasa Narasimhan. Detect-
ing ground shadows in outdoor consumer photographs. Computer Vision–
ECCV 2010, pages 322–335, 2010.

[30] Edwin H Land and John J McCann. Lightness and retinex theory. Josa,
61(1):1–11, 1971.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[32] Alessandro Leone, Cosimo Distante, and Francesco Buccolieri. A shadow
elimination approach in video-surveillance context. Pattern Recognition
Letters, 27(5):345–355, 2006.

[33] Yan Li, Tadashi Sasagawa, and Peng Gong. A system of the shadow
detection and shadow removal for high resolution city aerial photo. Proc.
ISPRS Congr, Comm, 35:802–807, 2004.

[34] Dingding Liu, Bilge Soran, Gregg Petrie, and Linda Shapiro. A review of
computer vision segmentation algorithms. Lecture notes, 53, 2012.

[35] Xiuwen Liu and DeLiang Wang. Texture classification using spectral
histograms. IEEE transactions on image processing, 12(6):661–670, 2003.

[36] Zhou Liu, Kaiqi Huang, Tieniu Tan, and Liangsheng Wang. Cast shadow
removal combining local and global features. In Computer Vision and
Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8.
IEEE, 2007.

[37] David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning to
detect natural image boundaries using local brightness, color, and texture
cues. IEEE transactions on pattern analysis and machine intelligence,
26(5):530–549, 2004.

[38] Yasuyuki Matsushita, Ko Nishino, Katsushi Ikeuchi, and Masao Sakauchi.
Illumination normalization with time-dependent intrinsic images for video
surveillance. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 26(10):1336–1347, 2004.

[39] Bruce A Maxwell, Richard M Friedhoff, and Casey A Smith. A bi-
illuminant dichromatic reflection model for understanding images. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Con-
ference on, pages 1–8. IEEE, 2008.

43



[40] Ivana Mikic, Pamela C Cosman, Greg T Kogut, and Mohan M Trivedi.
Moving shadow and object detection in traffic scenes. In Pattern Recog-
nition, 2000. Proceedings. 15th International Conference on, volume 1,
pages 321–324. IEEE, 2000.

[41] Hiroyuki Miura and Saburoh Midorikawa. Updating gis building inven-
tory data using high-resolution satellite images for earthquake damage
assessment: Application to metro manila, philippines. Earthquake spec-
tra, 22(1):151–168, 2006.

[42] Sohail Nadimi and Bir Bhanu. Physical models for moving shadow and
object detection in video. IEEE transactions on pattern analysis and
machine intelligence, 26(8):1079–1087, 2004.

[43] Takahiro Okabe, Imari Sato, and Yoichi Sato. Attached shadow coding:
Estimating surface normals from shadows under unknown reflectance and
lighting conditions. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 1693–1700. IEEE, 2009.

[44] Alexandros Panagopoulos, Chaohui Wang, Dimitris Samaras, and Nikos
Paragios. Estimating shadows with the bright channel cue. In European
Conference on Computer Vision, pages 1–12. Springer, 2010.

[45] Fatih Porikli and Jay Thornton. Shadow flow: A recursive method to
learn moving cast shadows. In Computer Vision, 2005. ICCV 2005. Tenth
IEEE International Conference on, volume 1, pages 891–898. IEEE, 2005.

[46] Jan Puzicha, Joachim M Buhmann, Yossi Rubner, and Carlo Tomasi.
Empirical evaluation of dissimilarity measures for color and texture. In
Computer Vision, 1999. The Proceedings of the Seventh IEEE Interna-
tional Conference on, volume 2, pages 1165–1172. IEEE, 1999.

[47] Visvanathan Ramesh et al. A class of photometric invariants: Separat-
ing material from shape and illumination. In Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, pages 1387–1394.
IEEE, 2003.

[48] Elena Salvador, Andrea Cavallaro, and Touradj Ebrahimi. Cast shadow
segmentation using invariant color features. Computer vision and image
understanding, 95(2):238–259, 2004.

[49] Imari Sato, Yoichi Sato, and Katsushi Ikeuchi. Illumination from shad-
ows. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(3):290–300, 2003.

[50] Oliver Schreer, Ingo Feldmann, Ulrich Golz, and Peter Kauff. Fast and
robust shadow detection in videoconference applications. In Video/Image
Processing and Multimedia Communications 4th EURASIP-IEEE Region
8 International Symposium on VIPromCom, pages 371–375. IEEE, 2002.

[51] Li Shen, Teck Wee Chua, and Karianto Leman. Shadow optimization from
structured deep edge detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2067–2074, 2015.

[52] VK Shettigara and GM Sumerling. Height determination of extended
objects using shadows in spot images. Photogrammetric Engineering and
Remote Sensing, 64(1):35–43, 1998.

44



[53] Muhammad Shoaib, Ralf Dragon, and Jorn Ostermann. Shadow detec-
tion for moving humans using gradient-based background subtraction.
In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on, pages 773–776. IEEE, 2009.

[54] Mingjun Song and Daniel L Civco. A knowledge-based approach for re-
ducing cloud and shadow. In Proc. of, pages 22–26, 2002.

[55] Tomás F Yago Vicente, Le Hou, Chen-Ping Yu, Minh Hoai, and Dimitris
Samaras. Large-scale training of shadow detectors with noisily-annotated
shadow examples. In European Conference on Computer Vision, pages
816–832. Springer, 2016.

[56] Tomás F Yago Vicente, Chen-Ping Yu, and Dimitris Samaras. Single
image shadow detection using multiple cues in a supermodular mrf. In
BMVC, 2013.

[57] Yago Vicente, F Tomas, Minh Hoai, and Dimitris Samaras. Leave-one-
out kernel optimization for shadow detection. In Proceedings of the IEEE
International Conference on Computer Vision, pages 3388–3396, 2015.

[58] Yang Wang. Real-time moving vehicle detection with cast shadow removal
in video based on conditional random field. IEEE transactions on circuits
and systems for video technology, 19(3):437–441, 2009.

[59] Yue Wang and Shugen Wang. Shadow detection of urban color aerial
images based on partial differential equations. The international archives
of the photogrammetry, remote sensing and spatial information sciences,
37:B2, 2008.

[60] Mei Xiao, Chong-Zhao Han, and Lei Zhang. Moving shadow detection
and removal for traffic sequences. International Journal of Automation
and Computing, 4(1):38–46, 2007.

[61] Jiejie Zhu, Kegan GG Samuel, Syed Z Masood, and Marshall F Tap-
pen. Learning to recognize shadows in monochromatic natural images. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 223–230. IEEE, 2010.

[62] Zhe Zhu and Curtis E Woodcock. Object-based cloud and cloud shadow
detection in landsat imagery. Remote Sensing of Environment, 118:83–94,
2012.

45


