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Abstract

The high level language schema = is a partialldy specified,

machfi ne - i ndependent migrgp}agraﬁﬁiﬁg language which is used
B - ‘

as a tool in the deve lopment of machine-dependent languages. _

5+ is instantiated into S*(M1), for a particula; g
microprogrammable machine M1, by completing the language
specification based on the architectural features of M1. The
use of S= is introduced in the context of the family of
architectural design and implementation languages [S=],
using as an example the development of a language directed
architecture.

A high level language $«(QM-1) for nanoprogramming the
Nanodata QM-1 is instantiated to determine the usefulness
and viability of S* based on actual exper iences. During this
instantiation we also focused our attention on the
specification and underlying philosophy of S* and
investigated the process of instantiation. "

We conclude that S*, with several minor-changes and
additions, is indeed a valuable tool for the development of
high level microprogramming languages. The parallel and
sequential flow of control constructs play an especially
important role in ensuring correct programs in S=(QM-1). The
adoption of a new construct pérbegin is recommended for /use
in specifying a series of data independent statements which
may be executed in any order allowing for the most efficient

production of code possible.
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/ Chapter - 1
Introduct ion

The development of a computer architecture from its
inception to final implementation is an intellectually
diFFWCulti time consuming and arduous task. To meet these
challenges and produce a result which is correct,
acceptable, and on time, the designer must rely on as many
tools as possible. In the initial planning stages an overall
design methodology should be selected which encourages
cofmunication and employs a hierarchical top-down approach
with smooth transitions from the specification phase through
progressively more complex levels. Dﬁe such methodology.
presently under development, is the family of design and
implementation languages, [5*] [DASGS1a}f

One member of the [S*] family is the high level
microprogramming language schema, S*, which is to be the
focus of this thesis. 5* was First.gPESEﬂted by Dasgupta

[DASG78] and:

is a partially specified (and therefore,
partially machine f ndependent ) ianguagé such that
for a given host machine M1, a particular language
S+(M1) obtains when M1‘s properties are used to
complete the specif ications of S*. We say that S+ Is

i~

(
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instantiated into S*(M1) with respect to M!.'

As the above quote intimates S* is not a panacea presenting
us with the long awaited universal microprogramming Ténguage
but attacks the problem of language development from a
different direction.

In [DASG78] three ground rules are established upon

which a microprogramming language should be based:

a. The ability to construct control structures for

designating clearly, and without ambiguity, both
. sequent lal and parallel flow of control.

b. The ability to describe and name arbitrarily,
microprogrammable data objects or parts of such
data objects.

c. The ability to construct microprograms whose
structure and correctness can be determined and
understood without reference to any control

. : -
store 8rganizations.

Qith these p@%ﬁts in mind S* provides essentially a
framework employing many programming constructs found in the
high level block structured language PASCAL. These
constructs have been added to, and tailored to ﬁeet the
needs and requirements of the horizontal microprogramming
environment where timing, daté dependencies and resource
! Subrafgjbasgupﬁa; "Some Implications of Programming

Methodology for Mi;rapﬁggrammiﬁg Language Design”,
Microprogramming, Firmware and Restructurable Hardware, ed.

G. Chroust ‘and J. Mulbacker, (Amsterdam: N-H, 1980}, p!-zddi'




canfli;is‘p1ay a significant role.

. Since its inception the language 'schema S* has, except
for a partial example instantiation for the VARIAN 75
[DASGT78], remaiﬁed Qntrieé*and untested. The objective of
this thesis is the evaluation of 5% using arthreef@1d

approach:

1. T- examinme the specification and underlying philosophy .
of the high level microprogramming language schema S5*.
2. To investigate the process of instantiation and tools

which may aid in this procedure.

o

To draw conclusions® about the usefulness and viability

of $* based upon experiences gained from per forming an
i .

actual instantiation.

The Nanodata QM-1 [NANO739] was chosen as the .
experimental vehicle because it is widely recognized, with
its 360-bit wide horizontal instruction word and use of
residual control, to be one of the most difficult
user-microprogrammable machines to .program. wWith the
successful development of an ipstantiated language S*(QM-1),
it would be reasonable to expect that the graeess of
instantiation would be no harder for most other machines.

In addition, the benefit of a high level language for
algorithm design and implementation would be invaluable for
users of the QM-1 who up to this time have had-to program in
a low level nanocassembler language. The difficulty of

learning and using this iagguagéig@es a long way in



explaining why only one major project [DEMC76] has been
completed since the QM-1 was purchased in 1973 by the
Department of Cdmputing Science at the University of
Alberta.

To solve the problems invoived with the development of
a high level nanoprogramming language a QM-1 Architecture
Group headed by Dasgupta? was established in September 1980.
Two avenues of attack were chosen one of which was the
design of a language and compiler. The other tackled the
thorny problem of microcode compaction [RIDE81a] which deals
with the detection of parallelism bet@een microoperations
which are then packed in the fewest number of horizontal
words while at the same time remaining conflict free. Both
endeavors have been progressing relatively autonomously with
the only interaction being the development of an

intermediate tuple-oriented language.

1.1 Thesis Organization

A review of high level microprogramming languages is
- presented to provide the reader with a perspective of the
language schema S* with respect to related work in this
field. The second chapter introduces S* by placing it in the
context of the family of design languages [S*] and
illustrates its use in the overall design and implementation

of an application-directed architecture. This is followed by

20ther members included Steven: Sutphen, Marius Olafsson,
Douglas Rideout, and the author.



an examination of the process of instantiation to shed light
on the general approach to langgage design based on 5+ Next =
the description of S* constructs is considered and based. on
this review and our experience with S*(QM-1) some initial
recommendat}ons for changes in S* are made.

Chapter three ihtroduces the QM-1 and supplies the
necessary architectural background so that language design
decisions involving the instantiation of S=(QM-1) may be
understood. The more important factors affecting the
instantiation are presented in the fifth chapter. S* is
expanded by adding several new constructs and a language
which is solely procedure oriented is obtained, supporting
f%e designer’s objective for the QM-1 érchitecture. A ‘
complete description of the syntax and sémantics of S*(QM-1)
is included in Appendix 1. Chapter six details the design of
a compi]e; and associated preprocessor, and discusses the
communication between the parsing and semantic analysis
phase, and the compaction phase.

The final chapter discusses conclusions and
.recommendations about S*, the process of instaﬁtiation;_
S*(QM-1) and the QM-1. The QM-1 is included to show how
slight modifications in its design could provide more

flexibility in its use.



1.2 Background

The adaptation of high-level language constructs,
structured programming and related concepts for microprogram
development have been under active investigation since 1970.
The motive behind this work is clear--these constructs and
programming methods reduce the chance of errors through well
s{ru:tured programs which are easier to understand and
modify. The programmer is freed from the more intricate
details of coding., allowing a less écmplex transformation of
algorithms into programs, resulting in a more reliable
product.

Most researchers have been CDﬁ%Eﬂt to use constructs
and methods employed in existing languages such as PL/ 1,
ALGOL 60, and PASCAL. With the exception of S*, little
attention has been paid to implementing new constructs
specific to microprogramming to supplement those in existing
languages. Rather, researchers use these languages as a
ready-made vehicle to support more complex fields of study.
Three broad categories can be identified: detection of
parallelism and optimization of mic:éﬁcde (efficiency),
machine independence of microprograms (portability), and
formal verification of microprograms (correctness). We shall
briefly review five languages found in the literature and
show how they have contributed to this field of study.

_ Therfirst attempt at a high level language for »

microprogramming was MPL by Eckhouse [ECKH71]. The language

was designed around PL/1 and addressed the problem of

&



machine independent programs for compilation into a vertical
microinstruction format. It employed procedures with local
and global variables based on six data types from register
(one dimensional arrays) through events (machine, testable
conditions) to constants. A limited set of
constructs--if.. . then.. (else), goto and assignment--are
used. looping is accomplished using a conditional statement.
The language is now of historical interest only as the
difficulties associated with horizontal microinstructions,
with several microoperations executing concurrently, soon
became the center of attention. |

SIMPL [RAMA74] was the first language to address
horizontal microinstruction formats with the objective of
statement specification. A single identity principle based
on the mu1tipracessin§ concept of the single assignment
property was developed which ignored the ordering of
statements and relied solely on data dependencies to peréarh
microcode Qétimizatioﬁi Constructs found in ALGOL 60 were
used: if...then.. .else, while... do, for...do, and case
statements for multiway branching. The controversy
surrounding the goto was avoided by not including it in the
language. No data structuring was available, variables were
fixed.

Three languages, two of which emerged from doctoral

theses, followed the introduction of SIMPL. One, STRUM



[PATT768), was devised to provide a method for the formal
VEfifiﬁatiéﬁ éfnwell structured microprograms. The language
was machine :dependent and implemented &~ the Burroughs
D-Machine. é rich set of constructs derived from PASCAL were
used: if. .then. . .else, case, select, while...do,
ngaat...unti13 for...do, loop...pool, macros and
procedures. Arithmetic operations were limited to those that
could be accomplished in one pass through an ALU or shifter.
The designer concluded that formal verification coupled with
well structured programming was a realistic method for
providing reliable, efficient microprograms. .

The final two. EMPL - [DEWI76a, DEWI76b] and S*, address
the question of efficiency and portability. Both
investigators developed algorithms for the detection of
parallelism from a sequential specification and proposed
methods to handle portability.

EMPL' s approach to portability is via the extensibility
concept, such as is found in ALGOL 68, where a completely
specified core language is extended by a programmer to
customize it for use with a particular target machine. New
data types, and operations which may be performed on them,
are created to take advantage of particular
micro-operations, such as a hardware instruction decoding
unit, not directly supported by the core language.
Portability was assured by compilers, for machines without
this diféﬁt'suppcrti by supplying code to implement the

missing feature. The core language has limited constructs



(which may not be added to! and permitted only one core
type, the integer and vectors of integers.

Dasgupta’ s approach was to implement two new parallel
constructs cobegin...coend. and dur...do...end based on his
work in developing algorithms for the detection of
parallelism [DASG76] in sequentially specified programs.
These would. for the first time, allow programmers the
ability to explicitly specify parallelism within their
programs. With these constructs in mind he developed a
 language schema, S*, using data structures (the most
power ful seen to date in microprogramming! and constructs
from PASCAL which provide a partially specified "core”
language. The language designer completes the syntactic and
semantic definition of S* for a particular machine based on
its idiosyncrasies. Thus there would be a different
language., by similar in its constructs, for each different

microprogrammable machine.

5 I e T I SR s o n g m aaom ot
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Chapter 2

S* and the Process of Instantiation

2.1 A Design Methodology
2.1.1 [S*] Family of Languages

[S*] is a family of design and implementation languages
for the description and realization of computer
architectures based on a unified top-down approach. It
presently incorporates a three tier procedure where each
lower level represents an increase in complexity with which
the designer is faced. The transition from one level to the
next is meant to be as smﬂéth and natural as possible and 1s
accomplished, in part, by having each language as.similar,
as may reasonably be expected, with the next.

Fig. 1 illustrates the ordering of the languages with
respect to their descriptive power. First, SPEC* [DASG81b]
permits the designer to formally specify the functional
aspects of the architecture under design. The architecture
is partitioned into integral parts with an input/output
criterion being associated with ea;ﬁ\cémpgnenti Each

o,

component states that for a‘giQE’ iﬁéut. a specific output

will result. Using this language/a stepwise refinement is
possible which allows the designer to begin with a global
view (one component) and gradually increase the information
content (many components) of his design.

At some stage in the architectural development the

10
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Figure 1, [s*] Family of Design Languages

designer will want to actually indicate how component in;:¥s
are transformed to the outputs. This represents an increase
in the information content (increasing complexity) from the
SPEC* description and is represented by a "program” written
in the procedural architecture description language 5*A.
Taken together SPEC* and S*A represent the design of the
architecture.

The implementation of the design is the final and most
complex of the three tiers and is based on the high Tevel
microprogramming language ‘schema S*. Simply put, this is a
partially defined microprogramming language from which the
designer constructs a language, S*(M1), for programming the
host machine, M1, upon which the architecture is going to be

implemented. -
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The S*A description is then transformed to the
implementation language, S*(M1), compiled and run on the

host resulting in the realization of the architecture under

design.

2.1.2 A Design Approach to An Applicatdion Directed
Architecture

Applying the concepts introduced in the previous
section an informal architectural design methodology for the
implementation of a language-directed architecture may now
be presented. As Fig. 2 illustrates the design begins with a
high level ltanguage L1, such as Pascal or C. The instruction
set, formats, and support systems such as the calling
mechanism and minimum number of registers are carefully laid
out. This js a complicated phase involving\tradeoffs between
such things as code density and opcode éptiﬁiiatian
[JOHN79]. A functional specification is then constructed for
its architectural representation. This is then expanded into
a procedural 5+*A description.

One of two possibilities now presents itself: either

a microprogrammable host machine such as the QM-1 will be

build the host based on the S*A description. [f an existing
host is chosen it will, of course, influence the formal
specification depending upon its inflexibilities.

In order to microprogram the host a high level language

S*=(M1) based on S5* and the host’'s capabilities are
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Figure 2. Language Directed Architecture Development

instantiated. A compiler is then developed for S*(M1) using
compiler tools, optimization and compaction techniques
[LANDBO]. The tools will save development.time and the
compaction techniques are necessary for the production of
efficient code without which the compiler would be of little
value. We are now in a position to translate, by hand, the
S*A description into an S*(M1) implementation program which
may be compiléﬁ and run on the host thus achieving the
realization of the target architecture.

The user of the target maéhine may now write programs

in the language L! and compile them into an intermediate
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language, such as an assembly language. The compiled code is
then run through a universal, or META, assembler which uses
as one of its inputs a code description file produced by the
ige(M1) compiler. This file provides the necessary
information: opcodes, mnemonics, instruction sizes, and
type of parameters, needed to perform the translation from
assembly code to machine code. This file in effect allows
the L1 compiler writer and the S*=A description implementor
to be relatively autonomous in the detailed specification of

the instruction set.

2.1.3 Users of S=(M1)

A high level microprogramming language should allow the
user freedom to express his algorithms in a clear, easy to
understand fashion. This must be balanced with his need to
exploit the machine to its fullest extent in the areas of
sequential and parallel flow of control and resource usage.
The implication of the previous two statements is that the
programmer must have the fullest access possible to the
machine which leads to the conclusion that the programmer
must be as knowledgeable (at least initially) about the
machine’'s characteristics as a microassembler p;ogrmﬁmer.

We view the S*(M1) rebresentation of algorithms to
consist mainly of sequential statements, interwoven with
parallel ones. These parallel statements are used only when
the operations must be performed in parallel to maintain the

correctness of the program. It is then up to the compiler to
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compact the resulting (basically sequentiali code into the
smallest, correctly executable machine code possible. This
sequential aspect of programming stems from the author’s
belief that programmers want to express themselves
sequEﬁtiaily and do not want to be overly burdened by the

(possibly) parallel aspects of their algorithms.

. 2.2 The Process of Instantiation -

The process of instantiation, illustrated by Fig. 3, is
considered to be evolutionary, in that several iterations
may be required before an acceptable language is obtained.
Four reia&ed phases, to be discussed in the following
sections., form a method for. the design of a language based
on S*, the host machine, and a variety of other factors. A
method of feedback is established so that experiences gained
from a particular instantiation need not be wasted.

Flexibility in angDach seems to be a Key to success
and we have found that the UNIX [KERN81] operating system
has allowed us to incorporate methods which permit changes
to be made easily and effectively without an undue loss of

time.

2.2.1 Goal Establishment

The first priority of an “instahtiéiar“ concerns the
determination of goals which will act as a guide through the
complete instantiation process. They also help to assess, in

the final analysis, if the language fulfilled its initial
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Figure 3. Process of Instantiation
L 4
objectives.
The goals established for the S*¢QM-1) instantiation

are:

1. A programmer using 5*(QM-1) must have the capability of
writing well structured programs which may exploit the
inherent parallelism of the QM-1 at the
nano-architectural level, and yet would remain
iﬁdepé%dent of the structure of nanostore and its
associated sequencing logic. »

2. The programmer, in designing programs, should be able to
'gﬁpl@y a hierarchical top down approach by which ;
algorithms caﬁ be naturally transformed into S*(QM-1).

3. A flexiblemanner of program representation should be
available so that features such as residual control can

be fully exploited.
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34‘ Finally, RQQE ams must be easier to read and understand

than programs written in nanoassembler code.

2.2.2 Arbitration Phase

Having established the language design goals we are now
in a position to begin the instantiation itself. first,
study the constructs and program structuring provided by S$=.
Then couple this informatiqQn with the micro-architecture of
M1 trying to overlay the concepts supplied by $S* onto the
capabilities of the machine. M1 should also be considered
from the assembly programs that have been written (how it
was used), and how it was originally designed to be used.

| S* constructs should now be mapped onto M1 with machine
dependent constructs and statements added to complete ihe-\
language specification. We take the view that initially the
compiler should not retain any decision making duties, i.e.
which ALU to use or which data path to select. Once
experience has been gained a decision may be made relax this
restriction allowing the compiler to perform certain
decision activities, although with the understanding that no
limitations should be imposed on the programmer.

Support tools now come into play, the advantages of
which must be closely weighed against any restrictions they
may impose. For example, in the instantiation of S*(QM-1)
the UNIX tools LEX [LESK79] and YACC [JOHN80] have been
selected to aid in the construction éf a parser and lexical
apalyser. The only restriction imposed was S*(QM-1) had to

be in the class of LR(1) grammars [AHO79], which was not



18

considered to be a major drawback.

The compaction and optimization techniques which are
going to be employed in the compiler should also be
considered, since the language may not allow enough
programmer control, i.e. it is too general, for effective

compaction or optimization to be performed.

2.2.3 The Testing Phase

The testing phase is important as the instantiator may,
by this point in time, be locked into a mental set and feel
that the language is quite acceptable when in fact it is
not. The first step is to write correct programs and check
them syntactically against the definition of the language.
The compiler tools allowed the grammar to be built up in a
manner (similar to a BNF definition) which could be used as
an input specification for YACC and LEX so that the
generated parser could perform syntactic analysis, at the
same time as the language was being developed. The parser
was modified to give better diagnostics of its actions,
allowing errors in design and implementation to be quickly
identified and changed.
instantiation. If the language does not meet the original
design ggaYs then either the goals are too broad or the
language is not acceptable. It may also turn out that the
goals were not broad enough and should be expanded to meet

the instantiated language.
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2i2:4 Feedback Phase

After having gained experience using the language
schema, support tools and microprogrammable machine we feel
it is the user’'s responsibility to provide feedback to the
origimators. This involves such things as additional
constructs for $* resulting from new architectures or
technological changes, or suggested changes to the
microprogrammable computer which the original manufacturer

did not envisage.

2.3 S* Constructs and Some Recommended Changes

The objective of“this section is to review Sx as it
been presented in three papers by Dasgupta (see references)
entitled: “"Towards a Microprogramming Language
Schema” (1978), "Some Implications of Programming Methodology
for Microprogramming Language Desigﬁ“(1§80)i and " Some
Aspects of High Level Microprogramming” (1980). Based on this
review we will conclude with some recommended changes f@ S=
which have have been incorporated into S*(QM-1), the syntax
and semantics of which may be found in Appendix 1. In order
to be concise and accurate and to aid in clarity, quotes in
this section will be referred to directly, based solely on
the page number provided.

S= hasrbeen presented to the public in a semi-complete
format with many formal syntactic and semantic definitions.
On one hand this is a sensible approach as it allows some

experience to be gained before s» is formally ‘cast in



20

stone’ . On the other hand, without a formal syntactic and
semant ic document (schema definition) the potential
instantiator is left with sé&e discrepancies due to the
construct and definition changes between the earlier paper
(1978) and the later ones (1980). We shall discuss these
points in detail and attempt to present a balanced and clear
view of 5=*. | -

The approach taken is top-down, beginning with a
program definition, the basic form of which is prog {name};
(declaration-block>; (also Known as <dec1n-block>)
<executiaﬁ-bl@%k> Eﬁﬂ. |

\

2.3.1 The Declaration Block

The declaration block is defined variously as ‘a
sequence of one or more data-ob ject/synonym/procedure
declarations”"(151), or "is a sequence of declarations" (317).
This block functions as a means of describing the resources
of the machine to which the programmer will be referring
within his program, that is "a microprogrammer must declare
all data-objects before referencing them" (313). A resource
is referred to as a variable data-object and is defined in
terms of a data type. Data types, which are built up from
the primitive data type--a bit (0,1), may be structured in
terms of sequences of bits, arrays and associative arrays of
more primitive types, stacks which permit only the top
element of the resource to bé accessed, and finally

tuples(as in PASCAL records) which are resources consisting
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of two or more variables of possibly different types grouped
together under one name. An optional pointer, with ..., may

be used to specify which data objects are used to access thesga
stack or array. Also, a special class of variables called *
synchronizers is employed for synchronizing microprocesses.

Pseudovariables provide an abstraction of variable daté
objects which allow non-variable resources, such as bits in
a microinstruction control field, to be used in the same
manner as variables.

Once declared a variable data-object may be renamed by
using the synonym declaration which may only appear in the
declaration section or in a <{proc-head> (to be explained
below). Constant data objects are pre-defined, invariant and
“correspond to a machine defined literal constant located in
a read-only memory element” (146). '

A procedure has the form: proc name (<par>{,<par>});
{(proc-head)}; <proc-body> retn. The description provided
is: "Data-object names referenéed within <proc-body> must
either be parameter names or their locally defined
synonyms” { 150) or alternatively "all data-objects referenced
in <proc-body> are global objects"(317), and also
"(proc-body> is either a sequential or region

microstatement” (150). )

2.3.2 The Execution Blook
The execution block consists of "a sequence of one or

more regions, sequential microstatements or program
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blocks" {151}, or "is a sequence of executable

statements” (317). Executable statements are divided into two
groups: single microstatements, in turn divided into five
subtypes which are dependent to some degree upon the
instantiation: and composite statements consisting of
parallel microstatements, or one of four other groupings of
statements which are all fixed in S=. /

Simple statements are listed variously in “"three
classes”" (1461, or "four types"(314), and consist of
transfer, function, primitive (simple! selection, procedure
~all and goto statements. The transfer statement is
concerned with the direct data transfer from one resource to
one or more other resources, whereas the function statement
deals with data transformations determined by "primitive
machine-defined operations”"(146). We are informed that
"arimitive operators in the instantiated language are mostly
contained in the operator set defined in S*"(314) however
these operators are not given in the literature.

The primitive selection is an order-independent,
multiple if statement using single clauses, not unlike the
PASCAL case statement, in which at most one of the multiple
if condifions may be true at any one time. The action
associated with a true test is a simple statement which may
not be a primitive selection statement.

The method of procedure call varies from the earlier to
the later papers. Initially we are informed that a procedure

is invoked (called) by the "statement call “name’ where
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"name” is a procedure name” (150) and later "A procedure call
is simply denoted by a ... précedure name with or without
parameters” (315) which indicates that the reserQed word call
is no longer required.

Parallel constructs begin as the simple concurrent
microstatement cobegin ... coend, the local sequential
parallel microstatement cocycle ... end, and finally the
extended concurrent microstatement dur ... do ... end. These
were deleted, modified and expanded (without the readér
being explicit]y informed) until there now exists a cocycle

coend and stcycle ... end statement, where the cocycle
takes the place of the old cobegin and cocycle, and stcycle
replaces the dur construct. The cocycle handles the cases,
of parallel and sequential micro-operations within a single
microcycle and stcycle handles extended concurrency.

The use of 'L (a new delimiter introduced in the. 1980
paper) and ' ;' within a cocycle Dr'st;ycig indicates in the
former that for a cocycle the statements must be executed
together within a single microcycle and for the stcycle are
to begin in the same microcycle but the time to termination
is left unspecified. The '’ indicates for the cocycle that
the statements are to be executed in a strict sequential
ordering within a single microcycle, and for the stcycle the
statements must begin in the specified order within a single
microcycle but their termination is left unspecified.

The sequential microstatement begin ... end and region

end constructs are basically directives to the compiler
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that in the first case, statements within the construct
should be optimized and in the second case the statements
are order dependent and the sequential flow of control is to
remain unchanged. : {

The generalized selection statement "which is simp}y a
generalization of the primitive selection statemEﬁt"(z?zfgzs
introduced but not elaborated upon. The same holds true for
the "parentheses"(316) do ... od. Finally we have the
standard repetition statements while ... do ... and repeat

until

2.3.3 Recommended Changes to 5x
The following catalog of recommended changes to S5* is
based on the comments of the previous section and the

experience gained with S* in the instantiation of S*(QM-1).

2.3.3.1 Reserved Words

We recommend that the end reserved word be expanded
wherever possible to aid in the readability of a prégrami
for example a program should be terminated by endprog,
stcycle by stend, while by endwhile. A complete syntactic
list of reserved words used in S*(QM-1) may be found in

Appendix 1.

2.3.3.2 Pre-defined Variables
A1l types, variable data-objects and machine-dependent

constants should be designated by the instantiator (or
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compiler writer) when S* is implemented for a particular
machine. They would thus constitute a formal pre-defined
description of the machine indicating the totality of
resources to which a programmer has access. In order to aid
in the description of resources and do away with
"“host-machine defined” [ 146) synonyms an expanded method of
data-object declaration is proposed where a single resource
may be declared as a multiple grouping of type structures.
This method of description is used in the S=*(QM-1)
pre-defined data-objects to be found in Appendix 2.

To provide the reader with some idea of the nature of
declarations, and to indicate the new method of specifying
differently "perceived" register variables the structure of

a register bank called Jocal store is presented:

type 1s_register = seq [ 17..0 ] bit
type f_register seq [ 5..0 ] bit

var local_store

array [ 0..31 ] of 1s_register
with fmod, fcod, faod, fsod, feod, gspec

tuple ,
general_purpose : array [ 0..23 ] of 1s_register

index . array [ 0..3 ] of ls_register
with fmpc
general_purpose2 : array [ 0..2 | of 1s_register

instruction_reg : ls_register

. tuple
.\ c : f_register
a : f_register
b : f_register

endtup

tuple
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opcode - seq [ 6..0. ]

a parameter : seq [ 4..0 ] bit
b_parameter : seq [ 5..0
endtup

endtup

The method of referencing this type of multiple
definition is as expected. We can say local_store[2] to
directly access the array data type or local_store. index[3]
or loca;;starg.1nstru¢tianiraqib to access a tuple member.
Where there is no naming conflict the tuple header name may
be dropped as in instruction_reg.b or simply b. The with '
pointer is used as an index for entering data into an array.
Local_store(feod] assumes that F-register FEOD (to be
discussed later) has been assigned a valQ§ibetuEEﬁ zero and
thirty-one: note that it is incorrect to say
local_store.general_purpose[faod] as this pointer is not
associated with that particular portion of the variable
local_store.

The scope of these pre-defined data-objects is global
and the programmer retains the ability to rekame them as he
chooses using the synonym declaration, to aid in textual
clarity. These synonym names are global if declared in the
declaration block and local to a procedure if declared in a
procedure heaB. ;J/

The programmer should also be able to defiﬁe literal
constants in the same manner that invariant read-only memory
constants are declared by the instantiator.

A new construct should be added, declaration ... endec,

to delineate the declaration block.
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2.3.3.3 Procedures

A new reserved word endproc should be
signify a return is to be made from the called procedure.
With the incorporation of declaration ... endec construct we
recommend that procedure declarations should be made after
endec but before any executable statements. We feel that the
begin .., end construct is superfluous within the bounds of
a procedure and may be left out if desired. The method of

invoking a procedure is clarified in the next section.

2.3.3.4 Branch Statements

A new type of executable statement should be
incorporated into 5= ccﬁsisfiﬁg of the reserved words:
call, return, act and goto. The call statement (call "name’
where name is the name of a procedure) is used to call a
procedure in such a way that control is returned to the next
statement on procedure termination either through "falling
out the bottom” «andpﬁac} or after an explicit return
statement is encountered.

act is used in the same manner as call ;ﬁd serves to
activate a procedure with the understanding that control
will not be returned, and as such it is up to the procedure
to carry on the flow of control (this is essentially a goto

to a procedure). The goto may only be used to transfer
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2.3.3.5 Statement Sequencing

The last recommendation concerns statement sequencing
in relationship to the role of a compactor. We feel that the
statement separator ' ;' should be limited solely to
executable statements where its use will have a more
pronounced significance. Its normal function will be as a
weak sequential delineator indicating to the compactor that
the statements are to be compacted as well as timing, data
dependencies and resource conflicts will allow. Its use
within the region construct indicating a strict sequential
flow of control is to be maintained within the construct
since the programmer may know of some conflict which the
compactor would not be able to discover due to, possibly,
residual coﬁtrol effects.

Once several statements are bound together by a region,
stcycle, or cocycle constructs they may be compacted up into
previous statements, or have statements compacted into them
with the provision that the timing.specifications within the
construct are not be disturbed, and no other conflicts

arise. As an example consider the following partial program:

St ., S2
cocycle 7 B
$3 0 54 0O S5
coend ; ’
S6
region
S7 ; S8
cocycle .
s9 0 st10
coend ;

st1 L
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endreg ;
512

where +«the $'s represent single statements. Statements 53,.54
and S5 must execute within the same microcycle and if there
are no conflicts (data dependencies, resource contentions,
or timing consteraints) with S2, they may all be executed
together (compacted up!. S7 must complete execution before
S8 commences and $9, S10 must execute together and may not
start until S8 finishes. If no conflicts arise 57 may be
executed at the same time as S6, and similarly S12 may be
executed with $11 or even S7 if no conflicts arise with any

intervening statements.



Chapter 3
An Architectural Investigation of the OM-1
e
This chapter presents the reaée%rwith a model of the
QM-1 at the nano-architectural, or component and data-path
level as seen by a nanoprogrammer. The intention is to i
provide a global view of the QM-1 in order that the
reasoning behind certain S*(QM-1) design decisions may be
understood. Additional background material may be found in

[AGRA76, SALI76]. The QM-1 Hardware User's Manual [NANO79]

should be consulted for a more detailed account of the-QM-1.

3.1 Overview -
The QM-1 was designed as a user microprogrammab le
computer for indirect emulation of environments and existing

computers and for the implementation of higher level
Janguages, among other things [ROSI72]. As Fig. 4
demonstrates it is centered around Jocal store, thirty-two
18-bit registers; and F-store, thirty-two 6-bit registers,
which provide residual control and 6-bit temporary storage.
The 32nd local store register, R31, a1s§ acts as three
6-bit, (C, A and B) registers for communication with
F-store.

The designers felt that, when emulating a computer,
setup or residual control registers could be used to control

data transfer paths, acting solely as indexes into local or

30
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external store. Once set, these registers would remain
fairly invariant throughout the emulation, thus negating the
need to place source and destination register fields in the
nanoword [FLYN71].

The data transformers include a 6-bit ALU, two 18-bit
ALUs, a shifter capable of eighteen or 36-bit shifts and a
special local store incrementing facility. External store,

thirty-two 18-bit registers, provides interrupt addressing

and enabling, 18-bit constant storage, and an eight register
external interface.

18-bit data buses are indicated, in Fig. 4, by lines
joining components, with the data flow direction shown by an
arrow. Each of these components operate in parallel and may
send data‘to. or receive data from, local store independent
of any other.

The QM-1 employs a three level memory structure in

-

which the tar machine, with its instructions in main

store (18-bi 0 nsec memory), is defined and interpreted

by a microprog in control store (18-bit 164 nsec memory) .
Each 18-bit microinstruction, consisting of a fixed 7 bit
opcode, a 5-bit parameter and a 6-bit parameter, is in turn
defined and interpreted by one or more 360-bit nanowords

[NANO79] .

B
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3.2 Nanostore and Control Store

Nanostore contains up to 1024 360-bit nanowords,
arranged in segments of 128 word pages. tach word consists
of five 72-bit partitions: a K-vector and four T-vectors,
T1 through T4. A priority selection mechanism determines
which nanoword is to be selected for gating into the control
matrix, where it becomes the active nanoword.

when a nanoword becomes active eight 6-bit constant
fields from the K-vector, which may be considered to be
stored in registers, are activated providing two constants,
ALU and shifter control signals, and three test masks.
Alternatively, the control signal and mask registers may be
used to house constants if their primary function is not
required. The remaining twenty-four bits of the K-vector are
used for additionmal control such as for conditional branch
addressing (10 bits), and enabling interrupts.

The constant "registers” retain their contents during
the time a nanoword is active and are immediately replaced
with the values in the next nanoword when it is gated into
the control matrix. These 6-bit constants are the only means
a nanoprogrammer has of introducing constants into registers
directly from nanostore.

At any time only a single 72-bit T_vector is active and
as such its control fields (nanoprimitives), many of which
are further decoded by the control matrix, provide the logic
signals required to control the machine. A T-vector is

active for 82 nsec (this time span may be doubled if the



34

stretch bit is set in the T-vector) and on completion the
next T-vector in the sequence T1-T2-T3-T4-T1,..., becomes
active. This cyclic process continues until a new nanoword
is gated into the control matrix. A single T-vector may be
conditionally bypassed using the nanoprimitive skip, as
explained below. The skipped T-vector is still activated,
that is 82 nsec elapse before the next T-vector, but its
actions are inhibited.

On the nanoprimitive signal read ns the priority
mechanism determines the next nanoword to be read, éﬁd
places it on the nanostore output lines. The highest
priority address is the 10-bit next address field in the
active K-vector and it is chosen if the branch bit in the
K-vector is set. The next alternative caﬁéists of thirty
interrupts, arranged in descending order, the addresses of
which are held in a condensed form (6-bits) in external
store registers (22-31). To be selected the interrupt must
be latched, enabled--by previously having set a bit in an
appropriate external store register (18-19), and allowed by
having a bit set in the active K-vector. As a last resort
the nanoprogram counter, NPC, will be selected.

Once the selected nanoword is ready it may be
conditionally or unconditionally gated into the control
matriii If a conditional gate is requested the specified
maskK, a K-vector control field, is ANDed with the
appropriate test bits and a true result causes the gate to

occur making the nanoword active. If the result is false the
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nanoword is not gated and the next cyclic T-vector becomes
active. A conditional branch is obtained by setting the
branch bit and alt branch bit, which cycles the branch bit
each time a read ns is encountered. Thus a false conditional
gate test (no gate) followed by a read ns causes the NPC to
be selected as opposed to the next address field.:

The NPC may be loaded in one of three ways: from the
next address field in the active K-vector, sequentially by
adding one to itself, and from the control store output data
bus (COD). Specifying the COD causes three page pointer bits
from a special F-store register, FIDX, to be concatenated
with the seven high order bits on the COD and placed into
the NPC. The low-order eleven bits are saved in a dedicated
register for later loading into the instruction register,
local store register thirty-one, under programmer control
using the nanoprimitive Load R37.

This method of loading the NPC provides an 18-bit
parameter ized shorthand for invoking one or more nanowords
which will interpret the instruction. Therefore, it is seen
that microinstructions in control store are interpreted by
one or more 360-bit nanowords in nanostore, and that the
maximum number of different instructions obtainable, without
extraneous escapes by changing FIDX, is 128.

Extending this concept one step further, it is easily
seen that mainstore instructions may be decoded and exécuted
. by one or more control store foutinesg Limitations do not

exist concerning instruction format or size. This scheme is



36

known as indirect emulation as opposed to direct eamulation
which uses nanoprograms to directly execute mainstore
instructions. The advantage of indirect emulation is that
the programming task is broken into two more easily managed
divisions at the cost of a (possibly) slower emulation.

A nanoprimitive, write ns, is available for writing
data into nanostore. The B field of R31 specifies which of
twenty 18-bit bytes in a nanoword will receive the data
which is taken from the EOD bus. The nanoword address is
formed in the low order ten bits of the CA fields of R31.
The modified nanoword is at the same time Fead from
nanostore in a manner similar to the read ns nanoprimitive.
If an illegal byte (>19) is specified, the write operation
does not change anything and the addressed nanoword is read
from nanostore in readiness for gating into the control

matrix.

3.3 F-Store and Residual Control

The first fourteen F-store Fegisfeés ﬁrévide res idual
control over the 18-bit bussing structure of the QM-1. The
contents of an F-register indicate which local store, and in
some cases external stare}éfggister is to be connected to
the bus controlled by it. If the 18-bit register is a
source, i.e. an input data/addréss bus "ID, 1A", its
contents are available to the bus and remaﬁﬁ so until the

contents of the F-register is changed.
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If the 18-bit register acts as a Sink, i.e. from an
output data bus "0D", the data on the bus must be explicitly
gated into the register with the appropriate (one of six)
gate nanoprimitive. This gating procedure allows all data
transformers to be asynchronous, that is always in
operation, using data presently available on their input
bus{es) placing the results onto the output bus. Data
operations are controlled by the use of programmed timing
delays which allow time for the correct results to propagate
through the transformer to the output bus before it is gated
into a local store register.

There is a dis¢repaﬁc§ between the number of local
store registers, thirty-two, aﬁé range available to an
F-register, sixty-four. The following data values result
when a value greater than thirty-one is placed in the
associated F-register: the buses CID, CIA, MIX, EID, AIR,
AIL and SID each take values of all ones and the EOD bus is ~
set to zero. The F-register FMDD; controlling the mainstore
output bus MOD, is used in such a manner that the values
0-31 refer to the local store registers and the values 32-39
refer to the first eight external store registers. A value
greéter than thirty-nine results in a null operation, that
is, the data is transferred to nowhere. The remaining four
buses are useﬁ solely as inputs to local store registers and
as such ign@ré the high order bit in the controlling
F-register.

The six F-registers, 14-19, provide additional control
]
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signals such as the nanostore page pointer, the local store
register (23-27) to be used as the microprogram counter,
global status conditions and a special phantom register. TQQ
remaining eleven registers are Known as the g-registers and
provide 6-bit temporary storage. A 6-bit ALU provides
F-store with sixteen standard arithmetic operations and in
addition two single register incrementers (f+1, f-1) are
available.

Values for these registers may only be introduced via
constants in the active K-vector or through the three 6-bit

fields in R31.

3.4 Local Store and Data Transformations

For the purpose of data operations local store may be
conveniently represented as a single array of thirty;two
registers for use with the ALU and shifter. In addition it
may be viewed as twenty-eight registers, which act as sinks._
and sources for the index ALU, surrounding four register
(23-24) which are connected to the microprogram counter

incrementing unit.

3.4.1 Alu and Shifter .
The main ALU, as shown in Fig. 4, has two input buses

AIR and AIL (alu input right/left) and is continuously

per forming one of thirty-two (16 logical and 16 arithmetic)

operations determined by the value in the K-vector

"register” KALC. Four status bits: carry, sign, result and
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overflow are continuously being produced and may be t%stea
for conditional skipping or gating with the K-vector mask
KT. The local Eest bits may be transferred, under program
control, to the global test F-store register, FIST, for
later testing, if the alu status enable bit is set in the
active K-vector. FIST may be tested using the K-vector test
masK KS.

The shifter has one input bus, SID (shifter input
data), and is controlied by two K-vector "registers”, KSHC
(shifter control) and KSHA (shift amount). The shifter
opefations consist of left and right--circular, logical and
arithmetic shifts of either eighteen or 36-bits. If a double
shift (36-bit) is selected the shifter extension with data
from the ALU is used for the high-order 18-bits. The amount
of the shift is specified in KSHA with the correct modulo
value being used to suit the type of control. A shift of
zero bits simply passes the data directly through the
shifter.

Two local condition bits, SLB and SHB (the low/high
bits present on the SOD bus) are available for testing with
the mask KT. These bits may also be transferred to FIST if
the shifter status enable bit is set in the active K-vector.

A 16-bit mode is available gcr both the shifter and ALU
by setting the high-order bit in the special F-register,
FIDX. This may be overridden with a bit in the active
K-vector, force 18-bit mode. In the case of the ALU the two

high-order bits on the input buses are automatically
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replicated from their respective third high order bits, the
sign of the 16-bit value. The shifter per forms operations on
tﬁe low order sixteen or thirty-two bits of data. Also, the
local conditions: sign, result, overflow and SHB are
redefined to reflect the 16-bit mode.

Two flip-flops, CIH (carry in hold) and COH (carry out
hold) are used for carry control with the ALU and shifter
apparatus, and are controlled by a 3-bit field in the active
T-vector. Each may be set or,cleared directly. The CIH is
always used as a carry in to the ALU and may also be set
with the carry value last generated by the alu. The COH may
be loaded with the latest carry valge (it becomes the local
carry test), or loaded with the low order bit of the SID
bus., or from the shifter end bit which is the last bit

shifted out of the high end of the shifter extension.

3.4.2 MPC Unit

Fig. 5 provides a detailed model of the MPC unit and
the associated control store address mechanism. The
component is asynchronous, continuously placing on its four
output lines the local store register, as selected by the
F-store register, FMPC (mod 4), plus: one, two, the 6-bit
B field in R31 and the low order eleven bits of R31.

The single input and four autputs'may be used directly
as control store addresses, as determined by the control
store address select field in the ast%ve T-vector, along

with the data on the index ALU output data bus, the contents

-
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Figure 5. MPC Incrementing Unit

of the control store output data bus and finally the
contents of the local store register indexed by FCIA.

One of the four outputs is selecteﬁ by the low order
two bits from a 4-bft field, gspec, in the active T-vector.
The result will be gated into the local store register
indexed by FMPC if the inc mpc gate bit is also set.

3.4.3 Index Alu

The index ALU, Fig. 6, is the most complicated data
manipulator in the QM-1 as it uses one, two and sometimes
three levels of indirection to determine the inputs,
gperétiaﬁ and output data destination. Its logical and
arithmetic operations are computationally equivalent to the

ALU. Use of the A and B parameter fields in R31 makes this
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Figure 6. Operation of the Index Alu

“unit particularly attractive for quick index operations
required by control store instructions.

Four fields in the active T-vector control the
operation of the index ALU. The field aux?2 selects one of
six 6-bit inputs to a multiplexor which determines the local
store register selected as the left input. A special case is
the gbus which requires a further level of indirection
through the 4-bit gspec field. The right input is one of:
twelve external store registers (8-19), a special CPU
control register, a source of all ones and the data on

either the mainstore or control store output buses; and is’
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selected by the 6-bit contents of a register designated by
the aux3 field. The arithmetic operation to be performed is
controlled by the fsel2 field which may select thirteen
apepéticﬁs directly, or 32 operations indirectly through the
contents of one of eighteen 6-bit registers.

The local store register to receive the ALU result data
is spec;;ied by the six bits on the gbus and will be gated
if the index gate bit is set in the active T-vector. Recall,
also, that the result may be selected for use as an address

into control store.



Chapter 4

An Instantiation of S* to S=(QM-1)

4.1 Introduct fon é

In keeping with the S* objective of cenétructing and
understanding microprograms which are independent of control
store organization [DASG78] (nanoprograms in nanostore) and
the fact that the QM-1 was designed for indirect emulations
(section 3.1) we héve instantiated a language, S*(QM-1),
which is solely procedure based. As mentioned in thé
previous chapter nanostore acts as a control store
interpreter. It does so using only three types of
nanoprogram routines: control store instruction
interpreters, interrupt handlers, and subroutines which
provide support for the interpreters and handlers. For each
of these three nanoprogram types we have proposed a
different procedure which informs the compiler where to
position the nanowords within nanostore, the method of
transferring control from one nanoword to the next within
the procedure, and what, if any, auxiliary actions ﬁegé to
be performed. .

As this is the first version of S$*(QM-1) we have
developed a language in which the programmer exercises
absolute program control over the QM-1 leaving the compiler
with no decision making capabilities. v

Fig. 7 illustrates the general structure of S+(QM-1).
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: | Figure 8. A Skeleton Program .
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Fig. 8 demonstrates the basic érgaﬁizatiaﬁ of a program
written in S*(QM-1). Each of the “bi@cks“ will be explored
in the following three sections. A complete syntactic and
semantic description is included in Appendix 1. Appendix 3
provides the reader with a ;hart program example. A more
extensive example based on the mode calculations for a
PDP-11 emulator [DEMC76] may be found in the technical

report on S*(QM-1) [KLAS81].

4.2 The Declaration Block -

As Figs. 7 and 9 reveal, the declaration block consists
of four divisions which may in turn be divided into two
groups: pre-defined data objects; and synonym, constant and
case declaration The case declaration is a new construct

and will be described in a later section.

Pre-defined data objects consist of variables, var's
and pseudo variables, pvar’'s, to which the programmer has
access. They are global in scope, and are defined in terms
of bits, sequences of bits, types, arrays and tuples.
Appendix 2 provides a full listing of these data objects.

The number of psuedo variables has been limited to the
fewest number possible. They are not true variables in the
sense that they may hold a range of values or may have their
values transferred to another variable, but are in fact
abstractions of certain.Fieids within a nanoword. In the
case of ,pvar’'s the type bit indicates the pvar may be set to

one or zero, and a sequence indicates that a range of values
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Figure 9. Declaration Block

may be used. These pvar's must always be on the left hand
side (5Ink) of an assignment (transfer) statement.

A perusal of Appendix 2 shows that a variable
identifier such as Jocal_store may be used in several
different contexts depending on the bus in question. For
example:

external_store_input_data. local_store[5]
refers to the same register as -
contro]_store_address_source.register_addre;s.1@calﬁstare[5]
but in the former case the bus connects local store to
external store via the EIA bus and in the latter to the
control store address bus, CIA. As discussed in section 3.3
residual control registers may contain values exceeding the
number of local store registers in which case either the bus
is set to a value of all zeros, or all ones. This is made
clear by the tuple construct enclosing local store followed

by all_ones, or all_zeros, which effectively describes the

array directly preceding it. For example:
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var alu_input _
array [ 0..63 ) of seq [ 17..0 ] bit

wPth fair, fail
tuple

local_store : array [ 0..31 ] of Is_register
all_ones : array [ 0..31 ] of source_all_ones

endtup

Synonyms in the declaration block allow programmers to
' globally rename pre-defined data objects so that more
appropriate variable identifiers may be employed. Appendix 3
provides several examples of how the construct is used. A

range of registers may be renamed as in:

syn pdpii_register local_storel[0..7]

‘'which indicates that the first eight local store registers
may be referenced by the variable identifier pdpl1_register.
The programmer is responsible for his own bounds checKing,
as it is unreasonable, due to space restrictions, for the
compiler to include run time checking. Due to the effects of
residual control registers the lower bound must always be
zero. .

Constants and literals are the only means a programmer
has of introducing values into registers from an S$*(QM-1)
and 3.3, is that they must be encoded (by the compiler) inta_
a K-vector constant field. Thus they:may not exceed 26-1

(63), which implies that they may only be assigned to 6-bit
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registers, that is, of type f_register or k_vector_register.
The obvious exception is when literals or constants are
assigned to pvar’'s which have their own restrictions.
Constants have a bracketed decimal number associated
with them to indicate the number of bits the value is to be
encoded into, always six for var's and either one or two for
pvar's. Constant declarations and literals have a modifier:
bin, oct, dec or hex to indicateﬁthe radix of the number. If
the modifi;r for a literal is not present a decimal radix is
assumed.
Examples:

const left_and_not_right : bin (6) 10

fail := 30;, fail := bin 1101;

local_store[10] := 7654; /= incorrect */

fair := 72; /* incorrect =/

4.3 Initialization Block

when using S*(QM-1) the programmer requires a me t hod
for initializing registers before emulation begins. For
example the local store register to be used as the
microprogram counter must be established, bus control
F-registers may need to be initialized, and external store
constants for use with the index ALU may need to be setup.
To provide the programmer with this facility we have
incorporated a new construct into S*(QM-1):

intt Ce endinit

which follows the declaration blocK.
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The register initializations and interrupt procedure
specifications, which are used to setup interrupt bits and
address fields in external store, are placed in a table by
_thé compiler. The last action of the QM- 1 loader,
immediately before execution begins, is to use this table to
initialize the three register stores. Those that are not
explicitly'initialized will be set to zero.

For example:

init
fmpc := 25 /* microprogram counter =/
local_store[25] := 100 /= start address */"
external_store(8..10) := 2,4,8 /* constants =/
endinit

4.4 Execution Block

The execution block, as shown by Figs. 7 and 8, is made
up solely of pracédures. Each procedure may have as its
first statements synonym declarations which rename variable
identifiers locally for the duration of the procedure. The.
scope of a local synonym applies only to the procedure in
which it is declared and does not extend to any called
procedures. Fig. 10 illustrates the basic statement
constructs and the reserved words associated with each. The
approach in this section is to first explore assignment
statements and tests, followed by the semantics of B
procedures. Branch, conditional, repetition, and parallel

statements are then discussed followed by the new case



— trFEMEfar ————= L., 1w
f— furnction ——= Le. iE L

— tegt —————= 1€ (...) ....

— gimple ———+— branch

EXECUTABLE
STATEMENTS ——t+— label — — —— 1abwl { )

— case r - —+ cagm . of . SNICEPE

l— parallel — — — « cocycle . cosnd

— compound ———— begin ord
L— composite —=E region ————= region sndreg

repetition Tai while () do snchile

L—+ repeat wntil ( )

Figure 10. E;ecutcbie Statements

construct.

4.4.1 Assignment Statements

4;4.1.1 Transfer Statements

The transfer statement Sink source is the
simplest form of assignment and is used when there is a
direct connection between the s/nk and source via a residual
control register, 6-bit or 18-bit bus or through main or
control memory. When the Sink is a local store register and
tﬁe source is an 1B-bit bus, or a local store aﬁd external
store register, the ':=’ is simply an abstraction for the
gate nanoprimitive associated with the transfer.

The use of an array pointer--a residual control

register--indicates that no action other than the gating is
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required, otherwise the appropriate residual control
register must first be setup. This residual control setup
also applies to function statements. Thus:

local_store[fcod] := control_store_output_bus;
signifies to the compiler that the F-register FCOD already
points to the proper local store register and only the gate
cs nanoprimitive need be issued. The semantics for these
types of transfers is stﬁéightFDrwardé 1f a pointer is used
it must be the correct one (there is only one) for the bus
in question. [f the source is a local store register and the
sink is a bus only the appropriate F-register is setup as no
gating is involved.

A memory reference to either main or control store is
handled in the same manner except the memory array pointer
will specify the address. Memory reads may be placed onto
the appropriate data bus or gated directly into a local
store register. A full main store read would look like:

local_store[11] :=

ma1nstgre[ma1nst3re_s@uﬁca[1a§aiéstar§[1glll:
or if the F-registers were previously set:

local_storel fmod] := mainstorel fmix];
The main ét@ﬁe write is slightly more complex as the MIX.
input bus multiplexes both the éddress and data. The address
must first be established on the bus (controlled by the
F-register FMIX) after which the data is supplied to the
same bus by (possibly) changing the contents of FMIX to

point to the local store register containing the data. for
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example:
main_store( fmix] := local_store(10];

will leave the value 10 in the F-register FMIX which may not
have been there originally. For a full read or write
operation from memory to a local store register the compiler
will include the looping code necessary to test for memory
ready and data ready. The programmer has control over this
and may subs?itute his own code for looping if desired.

Several options are available to the programmer for
accessing control store as shown in Fig. 5. Four increment
operators: +1, +2, +b and +ab for use with the MPC unit have
been incorporated. Thus, for example, to read +b words past
the present location pointed to by the microprogram counter
the following would be used: -

local_store( fcod] := control_storelindex[ fmpc) +b]

4.4.1.2 Function Statements

Function statements represent data transformations and

have the form: sink expression where sSink is an
output data bus, 23 local store register, or an F-store
register. The expression may contain a maximum of two terms
separated by a single operator which is limited to functions
per formed with one pass through an ALU or the shifter
[SAL176]. To avoid ambiguities we have incorporated new
reserved words into S*(QM-1) to specify QM-1 related
operators.

For example, there are four distinct methods of
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directly incrementing a register, denoted by the

symbols: incl, xincT. and +1 (representing two distinct
increments, "determined by context). The operator incl
indicates that the left input of the ALU is to be
incremented while xincl causes the left input to the index
alu to be incremented. The +1 operator is used for
incrementfkg the 6-bit F-store registers and the four
special local store registers that can!serv2§as microprogram
.counters.

The effect of the residual control registers r;quires a
strict ordering in two term ALU operations. The register to
the left of the operator is the left input and the one on
the right the right input. Thus the ordering for the ALU is:

local_storel faod] := local_store(fail] <alu op>
local_store[fair]

Index ALU operations (Fig. 6) are differentiated from
the ALU by context where the sink is a local store register
pointed to by gspec as in local_store[g_store[3]] which
indicates that the third G-register (F-register 22) points
to the local store register to receive the,index ALU éutput@
Ordering of expression terms is not as important as with the
ALU, as the compiler is able to determine the inputs by
context, but are retained for consistency.

An analysis of over 17,000 lines of source
wanoassembler code (resulting in approximately 700
nanowords), taken primarily from Demco’'s PDP-11 emulator and
MULTI nancscde'[NAND751. was undertaken to choose which data
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transformation operations should be identified by reserved
words. For example, from a total of 32 different operations
.avaiiable for- the ALU's, five--addition, pass left,
increment left, pass.right, and subtraction--were used 80%
of the time, and 17 operations were never used at all. The
analysis resulted in forty reserved words being chosen from
an approximate total of 135 operations.

In the event a nonreserved word operation is required,
provision has been made for the programmer to use it at the
Expéﬁ%é of usiﬁ% a slightly lower level of programming. The
operator may be specified indirectly as a constant or as a
k_vector_register, enclosed in brackets to indicate that the
appropriate value has been previously assigned to the
K-vector field. This is also a method for introducing either
a or b parameters of a control store instruction ( through
R31) by assigning the parameter to a K_vector_register
before the operation is performed. In the case of the index
ALU only constants may be used in this fashion with the
index ALU as the operation must be encoded by the compiler
into the fsel2 field in the T-vector.

" Several pvar's are available for manipulating ALU carry
controls and setting the global condition F-register, FIST,
with the local c@nditi@;s. Global condition setting is
abstracted, by S*(QM-1), to occur after the ALU or shifter
operation is completed as in:

kalc := instruction_reg.b;

local_store(5] := local_store[fail]l (kalc)



56

local_store([5];
alu_status :=z 1;

The ALU operation is specified by (kalc) which
indicates to the compiler that the 6-bit register specifying
the ALU operation to be performed has been previously
established. This allows the programmer to perform ALU
operations indirectly, as shown in the example, or perform
operations which are not directly supported by S*(QM-1).

Shifter operations are specified in the following
order: type of shift (arithmetic, logical, and Eircular)i
direction (<< or >>), mode (double), a number representing
the shift count, and finally the shifter input. A zero shift
amount passes fhe input directly to the output. For example:

local_store[fsod] := a<<10 local_storel(10];"

Jocal_stor® 1] := c>>d 3 local_store|fsid];
The first statement shifts the contents of the tenth local
store register arithmetically left ten positions and gates
the result into the local store register pointed to by the
F-register FSOD. The second statement does a right circular
shift of three positions using the data on the shifter input
bus and the output of the alu (which forms the high order
18-bits) and gates the low order 18-bits (shifter output

data) into the first local store register.

4.4 1.3 Test Expressions
The S=(QM-1) testing facility is used with if, repeat,

and while statements. It allows programmers to test
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single-bit conditions directly, and multi-bit conditions
indirectly using either a constant, or a K-vector variable
representing a mask register. Tests may be performed on
reserved words, variaﬁie;ﬁcr expressions. The reserved
words, such as overflow, and result, represen£ single-bit
conditions which are tested against either zero or one.
Associated with each of these tests is a modifier indicating
whicﬁ of either the local, global or special conditions are
to be tested. 1f not present a local test is assumed unless
a special condition may be unambiguously determined by
compiler.

Variable and expression tests are either local or

special depending upon the context. A variable test refers

to an F-store register tested for zero (== 0) or not zero

('= 0). Two local store registers may be tested against each

other ( > !> <! == = ), which is accomplished by the
compiler using a subtraction and a local test for zero.
Expressions refer to ALU or index ALU operations (as in
function statements) which are performed without gating the
result into a local store register. Tests involving the ALU
use local conditions and have the obvious side effect of

changing the residual control registers.
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1.2.1 Instruction Procedures R
The micro assembler written_ and used (under UNIX on a
PDP-11/45) at the.University of Alberta, which assembles<
control store micrearaéfgms based on the instruction set
implemented in nanostore,. requires that a "definition” file
be available for assembling microprograms . The compiler must
build this file based on the opcode it assigns to the.
microinstruction, and pafameters in the procedure statement.

Parameters indicate the mnemonic name (op = ), which

defaults to the procedure name, and the format (fmt = ) of
the instruction. For example, an instruction procedure may

be defined in the following manner:

proc add_immediate (instruction, op=addi, fmt=r.r.c)
Ca 1 .
endproc
where the r's refer to local sté;e;regj%ters and ¢ is the
immediate 18-bit value following tﬁééiﬁﬁtFUCtiDﬁ;

Due to the layout of ﬁaﬁQSEDFé‘aﬁa the method of |
microinstruction invocation, as depicted in Fig. 11, the
first nanoword is placed in a header page defined and set by
the compiler. The subsequent words (if there are any) are
placed in a separate page and are refeffed to as the body of
the instruction.

The first word of each instruction will have a bit set

which indicates that the instruction is a legal entry point
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Figure 11. S=(QM-1) Nanostore Layout

for the invocation of a microinstruction. If an illegal

instruction is fetched it will point to a nanoword in the

instruction page which is not an entry point, causing a

program interrupt.
The first word branches directly from the header page

to the first word of the body of the instruction which is

located in one of the remaining pages allocated by the

compiler on a first-come-first-placed basis. Then the

59
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nanoprogram counter, NPC, is loaded with the address of the
next nanoword from the address field «in the present
naﬁgygrdi Control in a straight line segment (i.e. a
sequence of statements with one entry point--the first
statement, one exit point--the last sfatement. and no
branches in between) is then accomplished, by the compiler,
by sequencing the NPC.

Interrupts are permitted to occur after an iﬁstru:tigh
procedure, by setting the permission bits in the last
nanoword of the procedure. The “return” from the interrupt
routine is effected by simply using the NPC as a pointer to
the start of the next instruction. This implies that
interrupts use only the branch capability in each nanoword
and do not alter the NPC contents in any manner.
4.4.2.2 Subroutine Procedures

The QM-1 supports only one subroutine level with the
return address being held in the NPC which must remain
unaltered if the subroutine wishes to successfully return
from whence it was called. Control (generated by the
compiler) within a subroutine is passed from one word to the
next by setting the next address flield to the address of the
next word and setting the branch bit in the nanoword. The
nanoprimitive read ns will cause the word specified by the
branch address field to be read. When the gate ns
nanoprimitive is issued this word will be gated into the

control matrix.



Subroutines are defined as follows:
proc procedure_name (subroutine, allow_interrupts)
endproc

where the parameter allow_interrupts is optional and if used
indicates to the compiler, that upon completion of the
subroutine, interrupts may be taken.

The method used to conditionally return to the calling
instruction procedure requires that the branch address be
cet to the next word. The branch and alternate branch bits
must also be set to one. The word specified by the branch
address is read by a read ns nanoprimitive, and a condition
test is made to see if a gate ns should be performed. If the
next word is gated, control remains in the subroutine. On
the other hand, if the gate does not occur, the branch bit
is set to zero, and on the next read ns the NPC is used to
specify which word in nanostore should be read. This is of
course the return address. An unconditional return is
accomplished by setting the branch bit to zero and using the

NPC as the return address. * .

4.4.2.3 Interrupt Procedures
Interrupt procedures are defined in the following

!

manner : !

iy
~
p——

proc procedure_name (interrupt, level

;
endproc '
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The second parameter refers to the interrupt(s) the’
procedure is to handle. Interrupts are péﬁmitted to occur on
completion of a microinstruction after the NPC has been
loaded with the address of the next instruction. Only branch
addressing is employed by the compiler within iﬁterruét
procedures, thereby preserving the NPC for activation of the
next instruction. Interrupt addresses are Kept in external
store in a compressed form which allows the header nanowords
to appear in the first sixteen words of the first four
pages. Based on a parameter indicating which of up to 30
interrupts are to be handled, the compiler will allocate
header and body nanowords, set enabling bits, and prepare

interrupt addresses for external store in compressed form.

4.4.3 Transfer af'égﬁtrg1 Statements

' The call statemént! call <name> (where <name>
identifies a subroutine procedure), may only be used in an
instruction procedure. It invokes a subroutine with the
implication that a return will be made to the statement:
following the call. The return is either specified directly
via the return reserved word or is implied by falling
through the bottom of the subroutine procedure. The act ivate
statement, act <name>, is a non-return call whiéh is
essentially a goto from inside a procedure to the beginning.

of a subroutine or another instruction procedure.



4.4.4 Conditional Statements

A conditional if statement is of the form:
ifftest expression) ... fi

where one or more statements (the body) represented by the
ellipses ("...") are executed if the test condition is true.
The compiler ensures that sequencing within the body of an
if statement is done using the NPC. For the case where the
test condition is false the compiler generates code to cause
a branch to the statement following the if statement. |
As indicated previously a subrout ine procedure must not
alter the NPC if a successful return to the calling
procedure is to be made. This implies that a subroutine may
not call a procedure. Also, the body of the if statement may
not use the NPC for sequencing. Therefore only a return
statement which causes control to be returned to the calling
instruction procedure or 2 cocycle statement (see section
2.5.1) which uses only the skip nanoprimitive may be used.
The repeat statement, as shown in Fig. 10, is provided
as an abstraction for single nanoword loops, which take
advantage of the cycling effect of the active nanoword.
Statements within the repeat statement must be compactable
into one nanoword and therefore may only be assignment,
cocy le or region statements. The :Gmp¥1er supplies code such
that if the test expression is true-q?&cnd1t1gﬁal gate ns
occurs transferring control to the neft statement following

the repeat. A false test result causes the gate ns to not
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occur resulting in the next T-vector, T1, becoming active.
Repeat statements may be used in any of the three types of
procedures.

The while statement is a general purpose repefition
statement providing a mﬁlti-nanoword looping capability. The
body of the while statement is supplied with sequencing code
which uses the NPC. This implies that thesé statements may
only be used in instruction procedures. If the test
expression is false a branch using the next address fleld
causes confro] to be passed to the statement following

endwhile.

4.4.5 Paralliel Statements

As Fig. 10 indicates, the only parallel statement used
in S*(QM-1) is the cocycle statement. Although the QM-
employs a three-clock e\ming scheme all micro operations,
from the point of view of an S=(QM-1) programmer, may be -
considered to be executed in parallel. Thus statements
within a cocycle statement may only be separated by the '0J
symbol indicating the parallel nature of the statements.

The stcycle statement as discussed in the second
chapter i4 not applicable as there are no Hanooperations
which may begin executing at the same time but complete at a

different time.
L

4.4.6 Case Statement

The case statement is a new construct offering an order
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dependent multi-way branch facility. It takes advantage of
the fact that an illegal byte specification when writing to
nanostore causes only a read to occur (see section 3.2).
Because of the intricacies involved in setting up nanostore
to perform this multi-way branch, the programmer must
declare within the declaration block the name of the case
statement and the number of elements it will contain. This
allows the compiler to select a tase address (in the tail
word section of nanostore) and reserve the required number
of nanowords. Each of these words performs the same action
assinstructiéﬁ header words causing a branch to another
section of nanocode where the associated routine may be
completed..Since instructions and interrupts are assigned
specific header word locations in nanostore only subroutines
and label statements may be used in a case statement. The
subroutines and labels must be explicitly identified with
the case statement using a parameter: case = {case name>.
As the compiler detects these parameters it puts the header
word of the routine in the next available position in the
case block, constructs a br?nch=and places the remainder of
the routine in a free section of nanostore. These routines
are EﬁtEFed:fFDm the case statement using either call, act
or goto.

A1l the programmer needs to do is supply the offset,
which for convenience will be-in the B field of
IDcaJistg;elail (R31). The base address is supplied by the

compiler and the offset is moved to the A field completing
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the 10-bit nanostore address. The compiler supplies an
illegal byte address and the specified word is "read” from
nanostore.

Provision has been made in the case statement to allow
the programmer to make an assignment (a transfer statement
not including memory reference) to R31 after its contents
have been used for the address but before the word read is
actually gated into the control matrix. The‘fé1iawiﬁg is a
short example:

case jump_table : 4 /* in declaration block */

f

[»]

case jump_table
0 : call subroutine_one
1 : goto label_two
2 : act instructiaﬁ_thraa}
local_store(31] :z alu_output_bus
endcase;
The label and subroutine names must appear in the program in
the order ;hat they appear iﬁ>the case statement. The
integer serves to indicate the offset and must be

consecutively numbered, beginning with zero.



Chapter 5
The S*(QM-1) Compiler

The purpose of this chapter is to explore the issues
and design aspects related to the development of a compiler
(first phase) for the translation of S*{(QM-1/ programs into
a sequential intermediate language. The second phase
addresses tlle problem of compacting this intermediate
language code into efficient and correct QM-1 nano-object
code and is being studied independently [RIDE81a]. The
intermediate language and associated semantics were
developed jointly and reflect the constraints imposed on the
compactor . T

The immediate goal in the design of a compiler was to
provide support for the instantiation of 5* to S=(QM-1), as
detailed in the second chapter. We felt that a quickly
implemented parser capable of syntactic checking, error
reporting and recovery would be a definite asset. Towards
this end a preprocessor was written, and the UNIX tools LEX
and YACC were used, with support prgéramsh to produce a
working parse;, This is quite extensible and the remaining
work may easily be constructed within the framework
developed. We shall briefly consider the functions performed
by the parser and then examine the development of the
intermediate language. Finally, the design ésﬁects which the
present compiler will have to take into account to translate
S*=(QM-1) programs énto the ?Htermeéiate language will be

67
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discussed.

5.1 A Partial Compiler

LEX generates a program, lex.yy.c, to perform lexical
analysis of an input stream based on its input specificagion
langbage (rules) which are in the form of regular
expressions. From these expressions, transition tables are
constructed defining a finité automaton which is then -
interpreted by pn "included” C program.

The input stream is segmented into tokens based on the
rules such that when a string is recognized a C program
fragment associated with the regular expression s executed.
Typically the brogram lex.yy.c is used by a parsin6 §rogram
to fdentify the next token in the input stréam. The brogram ‘
fragment will then return a value associated with the token.

Once a string based on a regular expression has been
identified LEX allows the programmer to put the characters
back ivto the input stream for more analysis, if desired.
Precedence rules make the identification of reserved words a
simple matter so that they may be easily distinguished from
symbol names. |

wACC is also a program generator and takes as its input
specification language a context free grammar describing the
programmer’s desired syntax. From this it constructs several

parsing action tables which along with the included C

program yaccpar perform the task of an LR(1) parser.



- 69

The basic action is to j@@kahead one terminal symbol,
or token, from a user supplied lexical anmalyzer (in our case
lex.yy.c), scanning frap left to right, and construct a
rightmost ?erivatian in reverse. Based on the action tables
these terminal symbols are shifted onto the parsing stack
until a production rule is recognized. When this occurs user
supplied C program segments associated with the prcducticﬁ
rule are executed, typically performing such actions as
semantic checking, symbol table management, or intermediate
code generation. This action is known as syntax directed
translation.

Upon cgﬁpletian of the program segment the reduction is
carried out by popping the associated terminal symbols off
the stack. A check is made via the parsing action tables to
see if a further reduction can be made based upon the newly
exposed symbol on the stack and the nonterminal associated
with the last reduction. 1f no reduction is possible the
nonterminal symbol ie shifted onto the stack. This process
of shifting and reducing i's repeat;a until eithet an error
occurs, or the input string, the source program, is réduced
‘o the start symbol of the grammar.

when used together the two programs lex.yy.c and
y.tab.c QGmWUﬁica}e via tokens, the values of which are
determined by YACC and included by LEX irito lex.yy.cC. These
tokens are conceptually similar to the reserved words,
although several cases arise when a group af Q@erﬁtgrs,aﬁe

represented by one token.



‘ 10 U

when an error is detected by the parser it executes a
user supplied routine whigh reports the line number and file
name in which the error Occurs. The parser then attempts to
recover by discarding terminal symbols from its stack until
it enters a state where the special token error is legal. At
this point it attempts to resume its parsing action by
looking ahead for three consecutive tokens which might
legally follow the production rule with éhe error token. If
this is accomplished it considers the error recovery to be
successful and continues on as normal, otherwise it
terminates.

The included file yaccpar, which %nterﬁrets the tables
produced by YACC, was modified to increase its parsing
diagnostic reporting. 1t now provides more information on
syntax errors, either Fré% a program error or an incorrect
grammar rule, so that they %ight be found quickly and
corrected with a minimum of trouble. This is a compiler .
option under the control of the user with the use of several
compiler flags and the reserved words #debugon# and
#debugof f# .

A flexible preprocessor has been written to aid in
developing and understanding S*(QM-1) programs. The use of
the macro and file inclusion capability provides information
hiding and chunking to allow programming details to be
suppressed if desired. Macros must be declared within the
declaration block using the format:

macro <identifier> .... endmac
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The convention established is that the identifier should be
in upper case (explaining why only lower case is permitted
in S*(QM-1)). No restrictions have been imposed on the
length of either the the body of the macro or its
identifier. In order to be replaced the macro identifier
must be the first non-white character field within a line.

The #include "file name” directive causes the
preprocessor to replace the line with the file identified by
file name. Macros within the included file are entered in
the macro table or replaced as the circumstances dictate.

TJo aid in the correct incorporation of changes and the
maintenance of interrelated source and object programs (of
which the compiler is composed) a UNIX utility program, MAKE
[FELD79), was employed. It uses a programmer supplied file
dependency graph to per form actions, such as compiling or
linking, after a source file has been altered. Combined with -
these specifications are user supplied programs which ensure
that reserved word changes in e%ther the lexical analyzer or

parser are made correctly and consistently.

5.2 Translation and the Intermediate Language
It must be understood from the outset that the

translator and compactor per form two entirely unrelated

" functions communicating in only one direction via the

intermediate language. The language is designed around the
nanooperations (NO's) and related fields within the QM-1

nanoword. Each NO is represented by 2 positive integer and

-



Kmay have up to two parameters, primary ano secondary.
assigned to it. The compactor also treats these parameters
as NO's, in their own right, which have a primary field
consisting of the value the field is to contain.

For example, the NO gate ns has two parameters
representing the test specifier and the associated K-vecto
mask value. A complete list of these NO's and related
parameters may be found in the Appendix to Rideout’'s thesi
on nanocode compaction |RIDE81b].

The translator thus transforms S*{(QM-1) programs into
sequential list of NO’'s which the compactor maps [DEWI76b]
into the fewest number of nanowords possible. The compacto
maps individual portions of this sequential 1list called
straight line microcode (nanocode) segments, SLM's, into
nanowords (local E@mﬁaétisﬁ) and does not concern itself
with the interaction between SLM's (global compaction) or
optimization of the intermediate language. It attempts to
produce the most efficient code possible but will, in some
situations., sacrifice optimalit¥ of compaction to ensure
correct code. '

The translator must include with the NO's, control

72
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operators, represented by negative integers with up to two

parametersi'which partition the sequential list into SLM's.

Additional information is also supplied informing the .
compactor of the type of nanoword sequencing required and
positioning of nanowords within nanostore. Eleven control

Vo
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start of SLM

2) force new nanoword
3) force new instruction (name)

4) force new interrupt (name)

5) force new subroutine (name) (case name =)
6) label (name) (case name =)

7) start of a region
8) end of a region

9) start of a cocycle
10) end of a cocycle ’

11) end of program - '

From this list of operators it is quite evident that
the translator knows nothing about the relationships of
statements within any of the parallel or composite
statements. Its function is only in the d@ﬁaiﬁ of syntax and
semantic error checking such as determining that it is
iﬁgarrect to assign the output of the alu to ihe input of
the shifter or to transfer the contents of an F-register to
and external store register. It is unable to determine if
the statements, for example within a cocycle, are data
dependent and therefore cannot be executed in parallel, or

if the semantically correct simple statements within a

new type of error arises with compilation of S=(QM-1)
programs which depends ‘upon the compactor’s ability to map

NO’'s into nanowords depending upon timing, data dependencies



and resource conflicts. We call this a mapping error to
When a mapping error is detected the compactor is able
to inform the programmer of the fact that an error occurred
but is unable to supply any additional information except a
dump of its packed words. It is up to the programmer to
determine where the mapping error lies, and how to correct
it, based on a knowledge of the QM-1 and the areas where the
c@ﬁpactar might sacrifice optimality of compaction to ensure

correct code.

5.2.1 The Semantics of Translation

i

sequentidl list of NO's isistraightforward requiring no
decision making capabilities, such as which ALU to use or
which data path to select, on the part of the translator.
Essentially, a statement may have only one representation,
although this may be expanded if the parameters are treated
as NO's, which is obtained using a "brute force” approach. A
convention has been established for transferring constants
to F-register variables. The compactor employs a form of
version shuffling [RIDEB1a] to determine which of the
K-vector constant fields should be used for the tramsfer.
The translator passes only the F-register and the constant
values to be assigned and lets the compactor perform the
actual assignment. This is the only situation where the

programmer does not have absolute control over the QM-1. The
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advantage is that the programmer is freed from unnecessary
details which the compactor is easily and éfficiEﬂtiy able
to handle. Should the programmer wish to circumvent this he
may do so by explicitly assigning the constant to a
k_vector_register variable and then assigning that variable
to the F-register in question. |

Most of the control operators are straight forward in

[ ‘il

their usage. Whenever a procedure is declared the
appropriate operator with thé procedure name isesent

informing the compactor that it must start a new nanoword
(with sequencing and nanoword placement asArequired) which

is, of coudrse, also the start of an SLM. The compactor Keeps

track of the location of the new nanoword and procedure name.

(label) associated with it for later transfer gfgégntr@1
situations.

Labels force the start of an SLM and a new nanoword. If

either labels or subroutine procedures have a case parameter“

the first)hano&crd is entered into the appropriate case
block. Region and cocycle statements, which are not the
start of SLM's, need control operators to ensure that the
statements within are packed and executed correctly (see
section 2.3.3.5). Th; complex field EﬁcéﬂithFEﬂuiPed by an
index ALU operation requires that the translator places the
NO' s between coc}cle operators to ensure that the compactor
does not separate them.

On completion of a p%acedure the compiler includes

several NO's depending upon the semantics of the procedure.

L. L AR
oy
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For instructions the NO allow interrupts is passed unless an
act statement proceeded the endproc. [f the sequence: load
npclcs), load R31 and read cs (for instruction lookahead) is
received by the compactor it ensures that the load R31 and
read cs are executed in T-vector(s) following the load
npcics). At the end of a subroutine or interrupt procedure
an unconditional gate ns NO is used to force the use of the
NPC (unless an act statement appears before the endproc) and
the NO allow interrupts will be given, if the programmer
included the parameter in the procedure head.

A call, act or goto branch statement requires that the
NO branch (label) be given. In the case of goto a Joad npc
(kn) nanoprimitive is used to correctly sequence the NPC to
the statement that is being branched to.

I1f statements require the translation of the test
expression into a 6-bit field (field) and the determination
of which of the three K-vector masks (test specifier) is to
be used. The NO prep branch (label) and gate ns (test
specifier) (field) operators are issued which causes the NPC
to be used if the test expression is true and a branch to
label if false. The label name is generated by the
translator and refers to the statement following the fi. A
start of SLM is issued followed by the NO's of the
statements to be executed on a true expression. When the fi
is dgteéteﬂ the translator inserts a label control operator
with the name generated ébave which forces a new nanoword

and starts a new SLM.
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If the only statement in the body of an if statement is
a cocycle the skip nanooperation is used which skips over
the T-vector with the cocycle statement. The NO, skip (test
specifier) (field), is passed where the two parameters are
determined as above, such that the test specifier is the
reverse of the mask required so that a skip will take place
if the test expression is false. Recall that the NPC may not
pe used within a subroutine or interrupt procedure (it is
needed to hold the return address) so that only cocycle or
return statements may be used in the body of an if
statement. In this case no label need be generated, since a
branch will be taken to the next nanoword (handled by the
compactor) if the test expression is false.

Repeat statements must be combactable into one
. nanoword, may include only transfer, function, cocycle or
region statements, and may be used in any tyﬁe of procedure.
The translator passes the control operator force new
nanoword on detection of repeat which is followed by the
NO’'s making up the statements in the body. The test
expression is translated and gate ns (test speéifier)
(field) is given. If the test expression is true the word
last read form nanostore is gated into the control matrix,
otherwise the next T-vector in the present word in the
control matrix is activated. A

The while statement: while (test expression)
endwhile is expanded by the compiler to: ~

IPbeI : npme1



if (test expreésian)

Qoto name!
fi,
label : name2
where a branch wi%? be executed to name2 if the test
expression is false. The while sgétement may only be used in
instruction procedures due to the NPC requirement given with

if statements.



Chapter 6
Conclusions

This thesis has provided a wide ranging examination of
the high level microprogramming language schema S=. We have
introduced S* in the overall context of the family of design
languages [S*] and described an example of its use in the
development of a language directed architecture. The process
of instantiation has been discussed at length, and we have
provided the first critical survey of S* from which several
recommendations have been made. The true test of S* has
come, however, with its instantiation to S*(QM-1). We feel
that the language schema and its under lying philosophy has
met the challenge presented by the nano-architecture of the
QM-1.

Our version of $*(QM-1) is a machine dependent high
level microprogramming language which presents a novel
procedural approach to nanoprogramming the QM-1. It
functions in harmony with the nano-architecture and fulfills
the QM-1's designers’ [R0OSI179] intentions of developing
indirect emulations. We have mapped 5+ constructs
effectively onto the nano-architecture providing a high
level abstraction of the QM-1 which does not sacrifice the
' programmers control over the hardware.

The greund rules established by Dasgupta for high level
microprogramming languages have proved important in the

development of S*(QM-1). Without the parallel and sequential

L 4 79
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flow of control constructs (cocyle and region) it is
doubtful if the compactor would be able to always guarantee
the correct production of nano-object code due to the
effects of residual control and the complex encoding
frequently required within nanowords. The importance of
having S*(QM-1) programs independent of the nanostore
organization is clear when the complex flow of control
between nanowords and the method of control store
instruction interpretation are considered. Finally, the data
structuring Gaéabilities provided by S* allows the
declaration of variables which are meaningful and
representative of the architecture of the QM-1.

The question that must be answered is whether or not
S=(QM-1) is an effective and efficient tool for
nanoprogramming the QM-1. There can be no doubt -about the
advantages of a well structured high level language over
assembler, especially nanoassembler, programming. S*=(QM-1)
provides the capability of writing well structured programs
which allow the programmer to employ a hierarchical top down
design-apprcach for the implementation of his algorithms.
This was clearly established by Olafsson in the writing of
the instruction interpreter for the QMC [OLAF81] which took
less than two weeks to tran;Form from an S*A description to
an S*=(QM-1) program.

S« (QM-1) programs are, by their very nature, more
reliable than their nanoassembler counterparts as many

minute details of nanoprogramming are taken care of by the
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compiler. This was illustrated with the writing of a (
subroutine for the mode calculations [KLASB1] required for a
PDP-11 emulation based on the work by Demco [DEMC76]. In a.g
particular mode Demco had inadvertently omitted an important .
masking operation required to ensure that only a 16-bit
address was used for fetching an operand. This was a well
hidden bug which would have seldom caused any problem (it
had lain undiscovered for five years) and was not found
because of the amount of detailed code surrounding it. Its
existence became immediately apparent when the two programs
were compared and had it happened in the S=(QM-1) program it
would have stood out to a much greater extent that in the
nanoassembler program. i

The argument may be presented that an eFFectiQe
inicrapm:i;r-aming tool without efficient gsade generation is
no tool at all. Recent tests of the compactor have
demonstrated between 75-80% efficiency in its packing
compared to an assembler programmer. With an optimizer and
global compaction this figure could be substantially
improved upon. In this form the use of S=(QM-1) easily
outweighs, in terms of easétef program implementation and

improved reliability, any speedup which may be gained by

using the nanoassembler.



6.1 Racgmméhdgtiaﬁs

Sjl

1.

2.

3.

4.

The following recommendations are made in regards to
S=(QM-1) and the QM-1:

The changes éf‘SECtiDﬂ 2.3.3 should be incorporated into
S+ based on their use in S*(QM-1). These include new
reserved words, expanded method of variable declaration,
several new constructs, the grouping together of
transfer of control statements into a new executable
statement Eype=*branzh StatEWEHtS.‘EﬂGDFpGFatiDﬁ of the

act statement, and the use of ' ;' only with executable

statements.

A new construct init ... sﬁgiﬁit should be incorporated
for the initialization of machine registers before the
execution of the program begins.

A case statement éffégipg a method of multi-way
branching ihva1vingggcsitian dependent statements is
applicable and should be incorporated.

Due to the eFFecti)af residual control, situations arise
when the GGﬁﬁéEtDF‘gs forced to produce less than
optimal code to ensure its correctness. If an output
data bus is gated (into local store) prior to a
mainstore Br cgﬁtfcl store (with CIA) operation the
compactor is forced to assume that an address 1s Eeiﬁg
ggenerateﬂ with the gate and may not pack the memory
operation and gate together. In the case of an index ALU
operation following a read control store operation the

compactor must assi that COD will be the left input
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into the index ALU and will therefore not pack the gate
and index operation together.

To alleviate this problem a new construct is
proposed: N
parbegin St // $2 // S3 parend; which states thét the
statements S1, S2 and S3 are data independent and may be
compacted a% optimally as possible. With this in mind
the compactor would even be able to rearrange the order
of the statements (a form of exhaustive enumeration) to

obtain 4ke most optimal packing possible.

(0]

One of the majcr,draﬂbacks with S*(QM-1) results from
the inability to save the NPC. This prevents subroutines
calling other subroutines or the use of while statemé%ts
in subroutines. The statements allowed within an {f
stgtement and in subroutines, are also severly limited
be;ause of this restriction. These problems could be

~ .sOlved easily with an NPC stack. Pushing and popping
could be performed using an aux!]lary action
znanccaeratian and two unused ccnnaﬁd specifiers for the
special F-register FACT. New circuitry and stack
hardware would have to be added but the problem does not
seem insurmountable compared to the advantages which }

would be gained.

6.2 Future Work
S*(QM-1) has been instantiated, a compiler %ES'bEéﬁ

designed, and the compactor hasipezn implemented. The two:

compiler phases must now be brcdgﬁt tggether and a working

£
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compiler demonstrated. The development of a working
compiler, presents several practical researchﬁﬁigbiemsi A
global optimizing strategy to detect potential, concurrency
in the intermediated language code should be developed. [t
should also be able to recognize and limit the number of
residual control transfers required. In its present
implementation an S*(QM-1) programmer is well advised to set
up his F-registers as infrequently as possible to limit the
number of transfers required. This is considered to be a

be referred to, for example, as local_store(feod] or
local_store[fair]. To understand exactly which local store
register is being referred to requires the reader to
backtrack to where it was setup. A more reasonable apprgéch
would be to always specify the subscript and let the

>respective F-register should

optimizer determined when the
be allocated.

@ Once experience is gained with a working compiler
heuristics may be built into it to relieve the programmer of
always having to specify every action explicitly. For
example, a semantically reasonable statement should be
local_store[6] := local_store(7] where the data path is left
unspecified and is determined by the compiler.. Increments
and decr%ments could be treated in the same manner where it
would be the caﬁ§i1er’s responsibility to determine which
ALU is the most effective to use. These types of operations
would require a detailed data base of operations which come

i

[ N



before and after the statement in queshcﬁ With this
knowledge a decision involving the mst efficient data ﬁth
or transformer to use should be possible.

More instantiations should be performed, especially on
bit slice architectures, to provide further experimental
evidence for the use of S*. The tools that have been
developed for this research should apply to further
instantiations, aiding in the design and implementation of

instantiated languages. e
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1. ln}roduction

The purpose of this ap§Eﬁéix is to provide the syntax
and semantics of the high level microprogramming language
S»(QM-1) which is used for nanoprogramming the Nanodata QM-1

[NANO79, SALI76, AGRA76]. The language has been designed  to
sﬁpp?rt indirect emulation [ééSITEI and provides an ‘!
abstraction of the nano-architecture of the QM-1. Since
S»=(QM-1) is tied s cigse1y {D the GH*175 hérdware it is
strongly recommended that the QM%1;Hardware User’'s Manual

[NANO79)] be consulted before this appendix is studied.

»
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2 Notation, Terminology and Vocabulary
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Syntactic constructs are denoted by English words

, : | I -
enclosed betyeen the angular brackets < and >. The

metanotation {x} reférs to zero or more repetitions of the

entity x. The ﬁeta*h@tatiaﬁ

. instance of the entity y.

The basic vocabulary

<enpfy> £:=

K

Qletter> a\b‘cme'\f‘g\hli|j‘,u\1\m|n|
olplgirisitiujviwiklyiz

<digit> % 0]112]3(41516]718]89

(special symbol> :@:= [I‘] CP oy ;l! i EE|
= ‘ ' +2

. | ,
sab | > | == | < | 1> | b=
a<{+d- 1<<¢+d>» c{<{+d+
, a>>+d- 1>>+d- cr>+d+
g : prog endprog | declaration
// endec| tuple endtup | init

refers to none or one

hY

iz |
| +b |
1< |

endinit | proc | endproc | if |.

coend | begin
end | region endreg case
of | endcase repeat unt i
while | do | endwhile | type

fi | cocycle

seq | bit | var | pvar | syn

array | with | const | bin

¥

v b

oct | dec | hex | instruction
subrout ine \ interrupt | label |

goto | act

. call return |
+ X +ones

¥+ Zero

+x+notl .x+passl | +x+incl
+x+decl «x+notr | +x+passr
xor | and | nand | or | nor
special | local .| global |
overflow | carry | ms_busy |

|

ms_data | slb |.slb | “r_index |

result

Upper case letters are not used in S*(QM-1).

They have

been reserved for use with macros, which is a compiler

-

-
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(preprocessor ! implementation feature and will not be

LS

discussed here.
Throughout this appendix special symbols are .
highlighted in bold print. * !

&

93 »
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3. Identifiers and Numbers

Identifiers are the basic entities used to denote
o L I o
variables, constants. types, procedures, and labels.
. F L. R i _
Cidentifier> ::= <(letter> | Cidentifier><letter> |.
Cidentifier><digit> |
<identifier>_<identifier>

<bin digit> ::= 0 | 1 o

<oct digit> = <bin digit> | 2 | 3 | 4] 5167
{dec digit> = {digit> 7 7 -

<hex digit> ::= <digit> | A | B | C | DJ|E|F
<radix> ::= bin | oct | dec . <

-
bin <bin digit>{ <bin digit>}
oct <oct digit>{ <oct digit>} .
.decs <dec digit>{ <dec digit>}
hex <hex digit>{ <hex digit>}
<bin integer> | <oct integer> |

(dec integer> | <hex integer>

<bin integer>
<oct integer?’
{dec integer>
<hex integer>
<integer>

An identifier may be any length and must begin with a
letter. This may then be followed by any combination of
letters or digits separated by a single underscore. For
example: .

local_store
ax3py_a9 !

control_store_address_source
Except for the initialization block (to be discussed
later) integers may only be assigned to an f_register or
k_vector_register implying they must have a value less than

63 (2¢-1).
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4. Program Specification

)

(initialization block> <execution block>

endprog i * .

_<program> ::= prog ( ¢identifier> ) <declaration block>

An S+ (QM-1) program consists of a declaration block, an
iﬁitiaIizatian block, and an execution block, and is
unjquely identified by Cidentifier>. The majof component éF
the declaration block is .the pre-defined dat b jects
(Appendix 3) which are global in scope and serve to
explicitly define all data objects to which an Sx(QM-1)
programmer has access to. Any pre-defined variable data
object may be locally or globally renamed with the synonym
construct to suit the ﬁragfammeris application. Also within
Ehg dec'laration block constants may be aefin%d but must lie
within éhe %aﬁge 0 - (26-1). Case decliarations are required
for use with case statements due to the idiosyncrasies of
the QM-1 nanostore organization.

The initialization block sérves to furnish information
to the QM-1 loader so that QM-1 registers may be iﬁitiaii;ed
before emulation begins. The execution block consists of one
or more procedures each of which may contain local synonym

declarations and one or more executable statements.
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; & \x
5. Declaration Block ™

(declaration block> ::= declaration <decln list> endec

<decln list> ::z= <data object> {<declin 1list>} |
. <syn dealin> {<decln list>} 1 ' -

<const decin> {<declin list>} |
(case declIn> {<decln list>} D

QM-1 hardware resources are abstracted in terms of a;ta
objects. These data objects are pre-defined aﬁﬁ explicitly
delineate the totality of resources to which an S*(QM-1) | 7
programmer has ‘access to and the manner in which they may be A
accessed. Since theé data objects are pre-defined the
programmer does not have to write his DwﬁsgsFiarati@ns; he
only has to know how to correctly use them. i; N

Intuitively it should be understood that these data \
ob jects. represent hardware registers, memory units, and
buses (hardware data paths) which connect registers to
memory units and data transformers. It is assumed that_r the Q
reader has been introduced previously to the ha%dware (
aspects of the QM-1 through readings in [NANO79, SALITE,™

———
AGRA76]. Throughout this section it is also assumed that the
reader is referring to the pre-defined declarations found in

Appendix 2.

5.1 Data Object Declarations:

{(data object> ::= (type decin> | <variable declin> L
<{pseudovar dec%QE L ’ :

—
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. 15.1.1 Type Declaration g

<ty§e decin> ::= type <(type id> {, <(type id>} = <(type>

(identifier>

{type id> -
{type> ::= bit | <seq> | <a;ray> | <tuple> ‘*
‘<sg§} 1= seq <dimension> bit |
(diménsian> ;1= [ <dec integer> .. <(dec integer> ]
Carray> ::= array <dimension> of <type id> {<with ptr>} |
array <dimension> of <seq> {<with ptrb}

<with ptr> = with <var id> {,<var id>} '
<tup1&? iz tuple <tuple list> endtup

Ctuple -1ist> ::= <(var id> : <type list> {<tuple list>}
<typé list> ::= (typed | <type id>

5§1_f.1 Semantics °

;ff§§é\decﬂarati§ns serve to identify the basic variable
-laksifications (hardware entities) within the QM-1. The
most primitive type 'is a bit, representing the binary values
0 and 1. Individual bits may be grouped together into
SeéQEﬁéesééf bit's as in seq(5..0]bit or seq(17..0]bit. £
Intuitively a sequence of bits tould represent a hardware
regfster or data path whose value could range from 0 -
(26-1) or 0 - [218-1). In S=(QM~1] four classes of hardware
registers are declared as types: 1s_register, es_register,
f_register and kgve&targregistep=uheré the first two are
represented by 18-bit sequences (seq[17..0]bit) and the

latter by 6-bit sequences. 3
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Two tyées of memory storage elements are
declared--control_store_word and malin_stbre_word--each of
which may contain Values in the range 0 - (2'¢-1). The type
bus répresgﬁts a Uﬁi!direét%ana1 data path which is used to
effect data transfers from a data transformer (shifter, alu,
index_alu) or storage unit (main_store, control_store, or
external_store) to a variable of type /s_register. Data on a
variable of type bus may take values in the range 0 -
(2'8-1) and in the case of a storage unit, will remain
siable until a new read operation is performed
(external_store is the exception as explained below). Data
transformér values will be dealt with in a later section.

Finally two source types are declared--source_all_ones
éﬁd source_all_zeros--which represent the values 2'%-1 and

zero respectively.
5.1.2 Variable Declaration
<variable declin> ::= var <var id> {,<var id>} : /

Ctype list> { : <type list>}

{var id>"::

{identifier> 1 <identifier) <dimension> |
<identifier [ <integer> ] '
<identifier> [ <const id> ] |
Cidentifier> [ <var id> 1 |
<identifier> [ <var id> <incrop> 1] |
<var id> . <var id>

Variable data objects are declared in terms of
previously declared types, either bit (the primit{ve type),

sequences of bits, arrays of types or tuples. Tuples provide

a convenient method of grouping several variables of
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possibly different types under one identifier. Variable
identifiers may be declarded in more than one way in ordetr to .
clarify the many functions a single hardware register bank

'or bus may perform. Thus a variable may simultaneously be
declared as an array-and as a tuple.

Variables are identified in an S*=(QM-1) program in a
manner similar to variables in PASCAL programs. Take for
example the declaration of local_store (Appendix 2) where
local_store[26] and local_store.index[3] refer to the same
variable. Where no amb%guities exist the tuple reference may
be shortened, as in index[3]. ,

From the point of view of an S*(QM-1) programmer the
focu; of the QM-1 lies*ﬁ*fﬁ»the variable local_store. Simply
put it is an array [0..31] of 1s_register. As the center of
activity all 18-bit data paths lead to or radiate from
local_store. These data paths may be individually connected
to any of the th}rty-twg local_store variables under control
of the first fourteen F§S}DFE array é]%TEﬂtS (known as
residual control). Each of these f_store variables, i.e. > .
f_store.fmix or f_store.faod, acts as an index into
local_store for the particular data path it is associated
with. Thus to connect the output of the control_store to
local_store(7] we would assign seven to f_store.fcod.

The uni-directional data paths of type bus:
méin_store_output, control_store_output, alu_output,
index_alu_output and shifter_output ;}e controlled by the

f_store variables fmod, fcod, feod, faod, and fsod (with
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g;pec in thig category controlling the index_alu!
respeztiv§1yi Note that in the array declaration of
lacalist@;e that thg;e variabTles are used in conjunction
with the with construct. This indicates that these variables
act as indexes into local_store such that data is
transferred from a data path to a local_store array element.
The data on the buses must be explicitly gated into the
array element under programmer control as discussed in’
sections 7.4.1 and 7.4.2.

Data in a local_store element may-simi]ariy be placed
on a uni-directional data path acting as an input into
memory units, external_store and data transformers. The
. array elements remain connected to a particular data path
“Until such time as the f_store variable acting as a the

index pointer is altered.

The variable local_store is also declared as a tuple,
the purpose of which is twofold. Firstly it indicates that
four variables, index[0] to index[3] (local_store([24] to
local_store[27]) a%e associated via f_store.fmpc to the
microprogram counter incrementing unit. Secondly it
indicates that local_store[31], instruction_reg, is of type
_1s_r§gister but at the same time Gcgsists of three 6-bit
registers (c, a, b) and an Dpcéde ollowed by two
parameters. The former serves to indicate that
local_store[31] is also a gateway into the 6-bit domain of
f register and k_vector_register, and in the latter that a

relationship exists between instructions in control_store
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and local_store[31] (to be discussed later).

The variable external_store serves several purposes
denoted by the tuple declaration. The first eight elements
are port registers for communication with the external :
environment. The next eight elements act as the right inputs
into the index alu, which is indicated in the declaration of
the variable index_alu_x (right input). The remaining
elements act as base address and field 13ﬁgths for mainstore
protection and as interrupt addresses and hardware interrupt
enable bits.

Note that input data to external_store 55 supplied from
a local_store element denoted by the contents in
f_store.feid. Since the range of feid is 0 - (26-1) and
there are only thirty-two locaF store elements the input
data bus will be connected to a source DF}all ones in the
 cases where the value in feid is greater than thirty-one.
This is a common occurrence for a residual control f_store
variable which control data paths using a local_store
variable as input. In some instances the data path is set to
zero.

Variables of type k_vector_register may be partitioned
into three groups. The first, Ka and Kb, are general purpose
6-bit variables providing temporary storage, while the
second, Ex. ks and Kt, act as 6-bit masks in conjunction
with test expressions (section 7.4.3). The third group g’
consists of kalc, ksha, and kshc which control the operation

of the ALU and shifter (section 7.4.2). When not serving
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their primary function these 6-bit variables may be used for

temporary storage.

5 1.3 Pseudo Variahle Declaration ' 1

pvar <1dent1f1er>

{pseudovar dec1in>
{,<identifier>} : (type list>

5.1.3.1 Semantics ‘

Pseudo variables are declared in terms of bits or
sequences of bits. They are abst@agtﬁ@ns of control fields
within a nanoword and as such are not true variables, except
for the pvar sw which represents a 6-bit data input from the
front panel switches. They may only be used as the left-hand
side variable in a traﬁsfer statement (except for sw which
may only be an ass1§ﬁment source) and may anIy have
constarts or)integers assigned to them, which may only have
the decimal equivalents of 0, 1, 2 or 3. Since these pvars
represent Fielés within a haﬁgw?rﬂ ro action is. taken if the
assignment is to zero, except in the case of alu_carry_out
and alu_carry_in. The actions associated with each pvar is

as follows:

1. carry_control := 0 -- no-op
carry_control := 1 -- ALU carry transferred to COH
carry_control :=.2 -- shifter end bit transferred to COH
carry_control := 3 -- ALU carry transferred to COH and
CIH |

2. Alu_carry_out and alu_carry_in serve to set the COH and
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CIH to one or zero. .
the variable f_store.fact.

4. The rmi represents the rotate/mask/index unit used w th .
the main_store_output and is always set to zero (bypass)
unless explicitly set by the programmer. 1--use

"parameter set a, 2--use parameter set b, and 3--use

parameter set c.

5. Load_npc 1 causes the seven high @rdEf'bits on the
control_store_output variable (bus) to be transferred to
the NPC (nanoprogram counter) for use in instruction
procedure invocation. The low order eleven bits are
saved in a dedicated register for use with load_r31.

6. Load_r31! := 1 causes the eleven bits in the dedicated
register last saved usiﬁé the load_npc pvar to be
transferred to the low order eleven bits of

instruction_reg (a_parameter and b_parameter), and sets

instruction_reg.opcode to zero.

5.2 Synonym Declaration
<syn decln> :::= syn <identifier> = <var id>

5.2.1 Semantics

Synonym declarations are used to rename pre-defined
data objects to aid in the textual clarity of an S=(QM-1)
program. When declared in the declaration block they are

global in scope remaining in existence until the completion

> 4
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of a program. For example: B ( N
syn alu_operation = kalc
syn pdpli-register = local_store[0..7]
When using an array bound with the variable identifier the

la?ér bound must be zero.

5.3 Constant Declaration
. |

{const decln> const <{const id> : <radix>
(6) <digit> {<«digit>}

{const id> ::= <{identifier>

‘5i3,1 Semant ics 1
Constant declarations provide a convenient method of

identifying inter values. The number of biﬁary!dfgits
associated with the constant is denoted by (<digit>) where:
the digit must be either 6, 2, or 1. For example:

const double_left : bin (6) 11DD§

const new_mode : dec (6) 4
New_mode would thus be exﬁéndeﬂ by the compiler to the

binary value 000100.
5.4 Case Declaration
{case decln> .= case (identifier> : <{integer>

5.4.1 Semantics

A case declaration indicates to the compiler the number

ijpﬁsiti@ﬁ dependent branch statements which will be



associated with the case statement identified by
(identifier>. All case statements must be identified in the

declaration section in this manner. For example:

case jump_table : 8
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6. Initialization Block

<empty> |

- ¢initialization block> 7 )
inft <init list> endinft

¢init list> ::= <var id> := (integer> {,<integer>}
{<init Tist>}

The initialization block provides a means for
initializing register variables before éxe:uti@ﬁ of the
program begins. The variable id may include local, external
“or 'f' store register variables (or their global synonyms )
where the integer value should not exceed 63 (2¢-1) for
f_store and 2'®-1 for local and exjernal store. Thus to

establish the microprogram counter and initialize it to oct

300 use:
fmpc = 25 )
local_store[25] = oct 300
~ S o
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7. Execution Block

Cexecution block> <{procedure> {<procedure>}

7.1 Procedcure Declaration

R

<procedure>.::= proc <proc id> (<{proc param>) <syn block>
: (exec stmt> {<exec stmt>} endproc

{identifier>

{proc id>
(proc param> :@:= instruction <(inst param> |
interrupt < interrupt param > |
subrout ine {subroutine param>
L4

7.1.1 Semantics )

The execution block of an S*(QM- program consists
solely of praqcedures. Eéchﬁfocedure<i: identified by a
unique name <proc id> and has éssgciageé with it.one or more
parameters. The first parameter indicalﬁzagggsi;pe of
procedure, namely: instruction, subroutine, ér'intgrrupt.

Instruction procedures form interpreters for control
store 18-bit instructions in which the high order sevéﬁ bits
f@r@ the opcode. The opcode associated with an instruction
procedure is dependent up@néis position in a program
relative to other instruction procedures. The first
instruction procedure is assigned the opcode zero, the
second one, and so on. The number of instruction procedures
in a program is limited to 128 (27).

To invoke the next control store instruction, which has
been pre-fetched and is on the control_store_output bus the

sequence:
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e N

must be iﬁéuedi Normally these assignments will form the

local_r31

last StE{%mEﬁtS within the procedure. On cama?e;i@ﬁ of the
last StEFEﬁEﬁt iﬁ_the procedure interrupts are permitted to
occur . If no interrupts are taken the next instruction
beﬁins execution.

Subroutine procedures provide support for instructions.

They may only be called from instruction procedures and

return expiicthy via the return statement or implicitly
after the last statement in the subroutine is éxecutgg:
Subroutines may also be activated (section 7.4.4) from an
instruction with the understaﬁéiﬁg that the subroutine must

- cause the next instruction to be invoked. Interrupts will be

allowed after the last statement if the parameter allow_ints
has been spegified. Due to the QM-1 hardware swbroutines are
severly limited in their use of test statements (section
7.4.3). They may only employ a return or cocycle statement
as the body of the test statement. ’

Interrupt procedures form handlers for ome or more of

the 29 external interrupts which are é@SSibie on the QM-1.
Each interrupt has a parameter idehtifying the hardware
interrupt(s) which they are to service. The limitation
imposed on subroutines also apply to interrupts. Since
interrupts are serviced prior to GaﬂﬁEﬁGEﬁEﬂt of the next
instruction the use of the return statement will cause

control to be transferred to the First statements of the
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next instruction. FJJ/E‘gf

7.2 Local Synonym Declaration
¢syn block> ::= <empty> | <syn decin> {<syn decin>}
7.2 Local Synonym Declaration

Local synonyms identify a global synonym or pre-defined
variable for use within that procedure. The synonym is
recogn%zed within the ﬂF@CEﬂUPE.iﬂ which it was declared.
Thus, for example, synonyms do nct extend to subroutines

which are called or activated from an instruction procedure.

7.3 Executable Statements \\\ggs

<simple stmt> ; | <label stmt> |
(case stmt> ; | <parallel stmt>|
{composite stmt> : %‘

(exec stmt>

7.4 Simple Statements

¢simple stmt> ::= <transfer stmt> | <function stmt> |
) <test stmt> | <branch stmt> |
{return stmt>

7. 4.4 Transfer Statement .

(transfer Stmt> ::= <var id> {,<var id>} := <source>

<{source> <vap_id> | <const id> | <integer>

7.4.1.1 Semantics

P
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A transfer statement corresponds to the situation where

data is transferred directly from the source to the variable

with no intervening data transformations being performed. "

The following rules apply:

1.

Constants and integers, which must be less than 2¢ (64),

may only be assigned to variables of type

_k_vector_register or f_register. Pvar's may only be

assigned values of 0, 1. 2, or 3 depending upon their
declaration as described in section 5.1.3.1. For
example: |

f_store.feid := oct 54;

ka := 3;
6-bit variables are grouped into the following five

sets:

=

1 = { sw}

2 = { instruction_reg.c, a, b, ka, Kb, Kt, Kx }
3 ={ f_storel0..31] }

4 = { c, a, b, ka, kb, Kkalc, Kéha, kshc }'

5 = { f_store.g_store(0..11] }

Vvariables of sets one and two may be uséd as sauises for
transfers to variables of set three. Variables of sets
one, two and three may be used as sources for transfers.
to set four. Variables of set five may be used as
sources for transfers to sets three or four.

incNude at least ‘one reference to

18-bit transfers
either a local_store or an external_store variable. The

action taken by the compiler is to.setl a residual

|

s

!



control register (f_store variable) and issue a gate

nanoprimitive, if required. For example the statement:
local_store[ 10} := external_store[8];

is the high level equivalent of the following sequence

of lega) lower level statements:

f_store.feod := 10
f_store.feoca := 9;

local_store|feod] := external_store(feoal; ¢
where in the final statement the ':=' serves to indicate
to the compiler that only the gate es nanopr imitive need
by issued. The basic rule 1is that if an integer or
constant index is specified the associated f_store
variable (there is only one) will always be assigned the
integer index first (residual control setup). If the
f_store variable is used as the index: i.e.
local_store[fail], the setup need not be per formed as
the programmer has indicated that it has been assigned
the appropriate value previously.

A statement of the type: v

.« alu_input_right := local_store[faill;
s a null statement as the data from the local_store
element is already. assigned to the bus by virtue of the
fact that f_store.fail was previously setup.

A close perusal of the pre-defined declarations in
regards to array ... with p@%ﬁters will give the correct
residual control index for the application required.

V- 4
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7.4.2 Function Statement

¢function stmt> ::= <var id> := <(expression>

Cexpression> ::= <alu const> | <alu unary op> <var id> |
{var id> <incr op> |
¢shift op> <shift count> <var id> |
<var id> <alu op> <var id> | .
<(var id> <alu op> <const id>

<alu const> ::= :+x:+0nes | +x+zero

<const id> | +x+notl | +xsnotr |.

ix+passl | ixspassr | «xvincl |

+X+ incr
i

<alu unary op>
(incr op> ::= +1 | +2 | -1 | +b | +ab
<shift op> = aclsd+ | a>>+d¢ | e<<sde | €>>4dv |
. 1<<vdv | 1>>:de | <const id> |
(<var id>)

¢shift count> ::= <integer> | <const id> | (<var id>)
<alu op> ::= + | - | and | nand | or } nor |

L xor | <const id> | (<var id>)

7.4.2.1 Semantics

Expressions represent data transformations of at most two
terms and are limited to operations which can be per formed
in one pass through an ALU or shifter. Alu operations using
a constant expression (ones, zero) regard the right and left
inéuts in a don’t care manner as their values do not affect
the value placed on the output. Similarly unary operators
transform only one input. such,  that the other input is a
don’t care condition. Four types of data transformations
will be examined.

1. The basic format of an ALU functions statement is:

local_store(fair] (Kalc)

local_store| faod]
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local_storelfair];

uh1£h indicates that all residual control f_store

- var1ables and the ALU operation specified in the

k_vector_register var1able kalc have been prev1cusly
set. Only the transfer of data from the variable
alu_output need be performed at this stage. 1f variable
alu_output is substituted for local_storel faod] no
transfer is performed as the results of alu aperat%cns
are automatically placed on the output bus.

The right hand side of the statement may be
replaced by higher level expressions to provide a hiéhEF
level of abstraction, but these are always encoded by |
the compiler so that the above¥statement is achieved.
Only a limited number of ALU operations are directly
supported from the total éf sixteen arithmetic and
sixteen logical g@eraFiéﬁg. If ; non- suppor ted operation
is required kalc must be setup before the ALU gpeﬁatiqp
is performed. For example:

" kalc := bin 011101; /= left and not right */
local_store(5] := IacalﬂstgféTTﬁ?s{kaic)
local_store(11];
when this method is employed the assignment to kalc must
precede the éperati@h each time it is used as the
k_vector_register is volatile and no guarantee may be
made as to its contents after an alu cperat1§;1%i
Alu constants (without the preceding ' x' ) areibsgﬂ

to assign either zero or 2'%*-1 to the output variable.
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When using unary opgggdors the correct f_store residual

control variable must be used. For example:

local_store(10] notr local_storelfair];

local storelfaod] := passl local_storelfair];

/* incorrect specification »/

The. yse of fair in the latter statement is
semantically incorrect because it is incompatible with
the ALU operation. Passl and passr serve to transmit
either the left input or right input directly through
the ALU without altering their values.

; Alu binary operators (+, -, and, nand, or, nor,
xor) are provided for convenience as they represent the
binary operator used at least 80% of the time. For

- 2 i
example:

local_storel5] nand

local_store( 10]
local_store(6];

is equivalent to:

faod := 10; * \
fail := 5;

fair := 6;

kalc := bin 01000%; /* nand */

local_storel faod] local_store(faill
(kalc) local_storelfair];
Four local condition bits--result, carry, sign and
over f low--are generated with each ALU éperaticﬁi‘These
conditions may be transferred to the 6-bit variable

F‘stagegfist for later evaluation using the pvar
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\

alu_status and the assignment: alu_status := 1;. This \\

assignment is always assaciated’with the previous ALU
operation.
Index ALU transformations require several levels of

indirection to specify the inputs and operation to be

performed. The left input is a local_store array element -

which must not include index[0..3]. It is determined by
the contents of one of the following variables: a, b,
kx, Ka, Kb or gspec (where gspec représents
bazkup[01@11]. b, Ksha. kx or Ks). The local_store index
must be one of these variables; or an integer or
constant in which case one of kx, ka or/kb will be used
to encode the index value. The right ifput consists of
index_alu_x variables and associated indexes. The output
of the index ALU is encoded in one of the gspec
variables.

Thirteen operations are directly available as
denoted by an operator preceded by ‘x’' and (and, xor,
or, -, +). The 'x' is required for unary operations to
avoid any ambiguity between the ALU and index ALU. In
addition the operation, one of sixteen logical and
sixteen arithmetic transformations, may be encoded into
one of the variables: a, b, Ka, kb, fmpc, fidx, and
"backupl[0..11]. For example:
local_storelgspec.bl, := local_store(a] (baékupl?])

index_alu_x[g_input{31]1];

local_store[5] local_store[10] and

embce v o i
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operand_sourcel 3] ;
where the indexes will be correctly assigned to
variables of fhe type K_vector_register.
The operators (+1, +2, +b, +ab ) are used in conjunction
with the MPC incrementing unit. The basic format of MPC
operations is:
local_store.index|[fmpc] := index[fmpc] +b;
where the variable on the left and right-haﬁé sides of
the assignment must be the same. Thus: L‘
index[3] := index[2] +ab; /* incorrect */
is semantically incorrect.
When performing control_store read operations the
MPC may be used to provide increment values for use as &

the address. A typical read operation would be:

local_store| fcod] control_store(index[fmpc] +2 ];
which would increment the local_store register pointed
to by fmpc (modulo 4) by two and use this as the address
into control_store. The word read is assigned to the .
local_store element indexed by fcod.

A1l the variables f_store(0..31] (except for
f_store.fiph) may be‘iﬁcremEﬁted. +1, or decremented,
-1. Both variables in this type of function statement
must be the same. For example:
| f_store.fmix := f_store.fmix -1;

#» fair := fair +1;

Aluf binary expressions consist of a left and right
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input made up from sets one, two and three ( section
7.4.1.1.(2) ) where at most one term from sets one and
two may be used. The variable assigned to must be from
set three.

The ALUF operation is encoded into one of the
following variables: a, b, Kt, Kb and g_input[0..4]. If
the operator is directly specified it will be encoded
into one of the variables kt or kb. Since ALUF
operations may easily be distinguished from ALU
operations the same operator are used namely: notl, nor,
nand., zero, one, xor, passr, +, and, passi. or, -. Four
operators are not directly supported and must be encoded
by‘the programmer. For example:

fmix + fmix;

-y

5

el

b
1

ey
w
omaln:
=
"

ZEero,

d

fidx (b) fmpc;

Constants and integers may be used as one of the
variables, in which case the compiler encodes the
integer or constants into one of the 6-bit e
k_vector_register variables: Ka, kKb, Kt or kx. For

example:

fmix := fmix + oct 12;

3 + fcod;

fmp x

Shifter operations are controlled by two variables kshc¢
{shifter control) and ksha (amount of shift) in the same

manner that kalc controls the operation of the ALU. The
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most basic statement is therefore:
local_store[fsod] := (kshc) (ksha) local_storelfsid];:
Operators have been supplied to support circular
(c), arithmetic (a), and logical (1) shifts. Each of
these shifts may be in a right (>>), or left (<)
direction. The optional modifier 'd’ specifies a double
shift (36-bits) using the shifter extension (18-bits
from alu_output) as the high order 18-bits. The shift
count (amount the input is to be shifted) is specified

following the type of shift. For example:

local_store([5] := ¢>>3 local_store(7];
which performs a right circular shift of threé positions
on the contents of local_storel[7] and assigns the output
to local_store(5]:.

Two local condition bits shb (shifter high bit) and
slb (shifter low bit) may by transferred to f_store.fist
for global testing using the assignment: ‘

shifter_status :=1;.
The use of this assignment always applies to the
% .

preceding shift statement.

7.4.3 Test Statement

(test stmt> ::= {f (<(test expression>) <compound list> fi

{test expression> {test modifier> <condition test>
' <condition op> <digit> |
<condition test> <condition op>
<digit> |
.<var id> <condition op> <var id> |
( <expression> ) <condition op>



<digit>
Ctest modifier> ::= special | local | global
<condition test> ::= (<var id>) | <const id>
overfliow | carry | shb |
sib | ms_busy | ms_data |
r_index | sign | result

(condition op> ::= <const id> | > | !> | < |
1< | == | !

7.4.3.1 Semantics

Tests are conducted on one of three sets of conditions:

1. Current conditions available from the shifter and ALU
(shb. carry, sign, result, overflow and sib). Shb
represents the higher order bit in the variable
shifter_output and slb represents the low order bit on
shifter_output.

2 Global conditions previously saved in f_store.fist (same
és above) .

3. Special machine status c;nditiaﬁs (r_index, ms_busy, and
ms_data). R_index is true if the result of the last
index_alu operation involving an assignment to a
local_store variable was not zero. Ms_busy is true if a
main_store read/write operation is in progress, and
ms_data is true if data pertaining to the last read
operation is not yet available on the main_store_output.

A test modifier--local, global or special--is used to
specify which set of conditions is to be tested. This
modifier is optional and if any ambiguity exists (be tween

local and global) local conditions will be tested. Three
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Brbit k_vector_registers: Kkt (local), ks ( Qlobal) and kx

(special) act as masks for the conditions specified. If a

combination of several bits is needed to test a condition

the appropriate mask should be assigned the valued before
the test expression is specified.

Only the digits zero or one are permitted in tests,
such that a bit in a condition is tested for zero or one.
Two local_store variables may be tested, using the ALU, for
equality: == (equal) or != (not equal); or inequality: >, <,
1>, !<. Local conditions are tested with the result of the
operation being placed on alu_output. An expression
involving unary or binary operations employing the ALU may
also be used. Finally f_store variables may be tested
against zero: !=0 or ==(.

Several restrictions are placed on the contents of the
compound list by the type of procedure in which the
statement is used. The following rules apply:

1. In instruction procedures the Stat;mEﬁt may be any of
the statements listed in <compound list>. [f the first
statement is a cocycle statement it is assumed to be the
only statement within the test statement and is encoded
by the use of the skip nanoprimitive. 1f several’
statements beginning with a cocycle are required they
must be enclosed in a begin....end construct.

2. In subroutine and interrupt procedures the statements

" within the test statement may consist only of a return

statement or a cocycle statement.



7.4.4 Branch Statement

<{branch stmt> ::= goto <branch label> |
call <branch label> |
act <branch label>

<branch label> <label id> | <proc id>

7.4.4.1 Semantics

The semantics régarding branch statements is
straightforward:

1. Only an instruction procedure may call aﬁ@t%er procedure
and it may only call subroutines. The return will be
made to the statement following thé call statement. A
subroutine may explicitly return using the return
statement or it may implicitly return on completion of
the last statement in the subroutine.

2. A goto statement transfers control to the statement
following a label statement identified by <label id>. It
may be employed in any of the three types of procedures.
Transfers may only be effected to label statements in
the same procedure as the goto.

3. The act branch statement transfers control to a
procedure with the understanding that control will not
be returned to the activating procedure. Any of the
three types of procedures may be activated from any
other procedure.

It is semantically incarreét for an activated
subrout ine procedure to use a return statement as no

effort is made to save a return address. [f an act
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branch statement is the last statement in an-instruction

procedure interrupts will not be taken.

7.4.5 Return Statement
¢return stmt> ::= return
7.4.5.1 Semantics

The return statement may only be used in a subroutine
procedure to effect a transfer of control to the statement
following the calling statement. A return statement must not
be used in any subroutine which is activated by another

procedure.

7.5 Label Statement

<label stmt> ::= label : <label id> (<label param>)

<label id> ::= <(identifier>
7.5.1 Sémgntiés

Labe]l statements serve to identify, by name, a p@sit%gﬁ
in a procedure which is a target of a goto statement. The
<(label param> is an identifier which is used to associate
the label with a specific case statement, and is optional if

it is not the target within a case statement.



7.6 Case Statement

(case stmt> ::= case <(case id> of <case list>
(case transfer > endcase

<case id> ::= <identifier> <¥

<case list> ::= (integer> : <éraﬁqh stmt> {<integer>
<branch stmt>}/

(case transfer> ::= <empty> | <transfer stmt>

7.6.1 Semantics

Case statements make use of special hardware features
within the QM-1 ﬂEﬂé*EFGhitECtUFE?tG gFFe&t muitiway
branches. Each case statement must have been previously

identified in the declaration block (section 5.4). The body

of a case statement consists of branch statements af the

f&rm:
goto <label id>
or )

act <proec id>

These statements are order .dependent in that they- must
follow the order in which they appear in the program. Each
statement is identified with an integer which mus} begin
with zero and must be consecutive and mayvnét exceed the
declared number of statements (section 5.4.1). .

The variable Igggiistcreiinstructiaﬁéreg.b is used to
hold an index value representing the branch statement (as
‘fdentified by its integer) and must have been previously
assigned before the case statement is executed.



124

Case statéments are guaranteed to alter the variable
Jocal_store.instruction_reg during the initial stage of
execution so provision has been made (<case transfer>) to
assign, via a transfer statement, a value to this variable.
For example:

instruction_reg.b := 3; E‘é::é
faod := 31; |
case jump_table of
0 : goto transfer!
1 : goto transfer?2 .
2 : goto transfer3
3 : goto transferd

local_store(faod] := alu_output

label : transfer3 (jump_table) St

This will cause control to be transferred to the stateﬁent
51, with local_store(31] containing the value which was
present on the alu_output bus. The convention is that the
transfer statement must be capable of execution within a
cocycle statement. i

Instruct ion procedures may not be the target of\ an act

statement within case statements.

7.7 Parallel Statement

2 e Fmt P < ~~ 1 .
(parallel stmt> lfﬂzécgcycle stmt>



<cocycle stmt> ::= cocycle <cocycle list> coend

<simple stmt> 0 <simple stmt> |

{cocycle list> 7 ‘
: <cocycle list> 0O <simple stmt>

(B

7.7.1 Semantics

The cocycle construct specifies that the simple r

® statements (not including <test stmt>'s) separated by ‘[
_are to be executed within the same T-step (a single 72-bit
T-vector with its associated k-vector).

Thus, semantically correct individual simple statements
may be specified in a cocycle statement such that the result
will not be executable in a single T-step due to timing or
resource conflicts. We call this type of error a mapping
error. X

The compiler (caﬁactar) will inform the programmer
when a mapping error occurs but is unable to supply any
additional information.

Example:

cocycle

fail

+
—y
o
i
-

f_store.fist

11}
S
\m‘
n

O local_store|faod] := c
0 local_storel fmod]

main_store_output

coend ;

7.8 Composite Statements

<composite stmt> ::= <(compound stmt> ; Iniregiaﬁ stmt> ; |
{repetition stmt> ; -
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7.8.1 Compound Statement

<compound stmt>

T

begin <compound list> end

(simple stmt> (cocycle stmt> |
{region stmt> (compound stmt> l
<compound list> ; (simple stmt> |
<compound list> | (cocycle stmt> |

<compound list>

<compound list> <region stmt> |
<compound list> (compound stmt> |

EJ

7.8.2 Region Statement

<region stmt> region <compound list> endreg

7.8.2.1 Semantics

Statements within a region statement, i.e. simple,
cocycle and other region statements are guaranteed to
execute in stgict sequential order. For example:

region
St S2
cocycle S3 O 54 coend ;
S5
coend ;
specifies that 52 will not begin executing before S1 has
completed execution. Similarly S5 will not begin until S3

and S4 (executed in parallel) have completed.
7.8.3 Repetition Statement

<repetition stmt) repeat <compound list> until -
(¢test expression>) | =
while (<test expression>) do
(compound list> endwhile



7.8.3 Semantics

The repeat statémEﬁt specifies that the statements
within <compound list> are executed until <{test expression>
is true. <compound list> is always executed at least once.
The statements within <compound list> must be mappable into
a single nanoword.

Once again we have the situationewhere a semantical]y‘
correct statement is still unexecutable due ié the
compiler’s (compactor) inability to map the statements
ﬁithin (caompound list> into a single nanoword.

The while statement is equivalent to:

| label : start

if (<test expression>)
{compound list>
goto start
’ - i

Thus, <compound list> will not be executed when it is
first encountered unless (<test expression>) is true.
Subsequénily <compound 1list> will be executed until ((tesf;

expression>) becomes false. i o

=
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"APPENDIX 3.

A SHORT PROGRAMMING EXAMPLE
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In the example shown below, we describe a control ‘store
instruction procedure which adds the contents of the local
store register specified by the first parameter in the
instruction to the immedtate value following it (already
prefetched and 'on the control store output data bus), and
uses this as an address into control store. The 18-bit value
read from control store is placed into the local store
register l(using residual control register fcod as a pointer)
specified by the second parameter. The microprogram counter,
indicated by the value in residual control store register
fmpc, is then incremented by 2 and 2 fetch subroutine is
activated. Within a microprogram, the actual instruction
would take the form: "arel 4.5.17703;i Note the use of
synonyms within the declaration block.
prog (test)

declaration

/* included files expanded by preprocessor */
#include "gm!_dec.h’

syn immediate

control_store_output
syn index_adr '

index_alu_output

syn base_register = a_parameter

syn data_register = b_parameter

macro INCR_MPC_2 o .

index] fmpc | := index| fmpc | +2 .

endmacro ' Y
endec \
init

/*

local store register 24 set
| 25 the microprogran counter
frpc 1= 24
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proc add_relativelinstruction, op:=arel, fmt=r.r.c)

fcod := data_register;

x

region

index_alu_output := local_store| base_register ]
+ immediate;

loca1_§tore[fcod] = contfol_st@re[ihdexﬁadrli

endreg

INCR_MPC_2;

act fetch:

endproc ’
endprog

Note also, that the index ALU is used since one of its
inputs may be the data on the control store output data bus.
The result of the index ALU operation is ieft on the iﬁdéx‘
ALU bus after which it is used as an address into control
store. The region construct is used to ensuré that data

dependency conflicts do not ariée.



