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Abstract

Data analysis plays an important role in system modeling, monitoring and optimization.

Among those data analysis techniques, change point detection has been widely applied in

various areas including chemical process, climate monitoring, examination of gene expres-

sions and quality control in the manufacturing industry, etc. In this thesis, an Expectation

Maximization (EM) algorithm is proposed to detect the time instants at which data prop-

erties are subject to change. This method performs efficiently especially in missing data

problem or when directly maximizing the likelihood is difficult. The change point detection

problem is solved under various scenarios including univariate and multivariate data, known

and unknown covariance. The problem is also extended to changing covariance in the case

of multivariate data analysis. Moreover, using Bayesian inference method these problems

are solved and the results are compared with EM. The results show that in terms of com-

putation, due to some iterations involved in EM algorithm, it has higher computation but

the convergence is fast. In the presence of uncertain hyperparameters of missing variables

(in EM formulation) or priors (in Bayesian method), EM outperforms Bayesian method.

Besides, using change point models, different unknown properties of data such as mean

and covariance can be estimated in the context of EM algorithm. In this thesis, assuming

change points as missing variables, the mean vectors in every segment of data are estimated.

This estimation is extended to constrained parameter space for both linear and nonlinear

case studies. Using simulation examples, it is shown that EM performance is satisfactory

leading to accurate estimation along with fast convergence.
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Chapter 1

Introduction

Accuracy of process measurements is critical in the sense of safe and continuous operations.

To achieve this goal, timely detecting and repairing of faulty instruments plays a significant

role in terms of instrument availability and reliability. These problems along with other

factors such as a major process upset, a change in equipment performance, etc. may all

lead to change such as mean shift in which a bias is introduced in steady state operating

data.

Various techniques in literature have been developed to detect and estimate bias error

in the instruments. These include node test, measurement test, likelihood ratio test, PCA,

etc. Depending on the problem and available information of the process including models

and constraints, one may take advantage of a certain methodology.

Basically, numerous factors can lead to abnormality of data such as miscalibration or

malfunctioning of instruments, instrument biases or process leak. Thus, developing an

efficient method to identify these types of systematic errors or gross errors is of interest for

process industry. An excellent survey and review of single or multiple gross error detection

methods with their applications can be found in [1]. In all of these methods, process

constraints such as material balance, energy balance, etc. are taken into account.

On the other hand, due to problems raised in derivation of process models, data-driven

methods have been widely used in recent years. For instance, data-based approach to

detection of the time instant at which bias is introduced to measurements has received great

attention especially in applications such as hydrology, signal processing, finance, economics,

pharmacology, environmental studies, meteorology and etc [2]. In chemical engineering

applications, there are a lot of sensors or instruments which may be subject to bias or

drift. Detection of time instants where these biases or drifts are introduced is important in

instrument fault identification. Detection of instants where system operating mode changes

can be another application of change detection. These problems are often formulated as

change point detection. At these change points, the mean of data shifts. As detection

of these change points is performed, new mean and hence bias magnitude can also be

determined accordingly.
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Various methods have been developed in literature to tackle the problem of change point

detection. A good review of these methods can be found in [2] [3] [4]. One of the elementary

methods in change detection is random-size sliding window algorithm. In quality control,

these methods are called finite or infinite moving average control charts [2] in which higher

weights on recent observations and lower weights on past ones are used. Among various

approaches, probabilistic frameworks, such as Bayesian inference, have been applied in

various areas. These approaches are powerful in the sense that one can incorporate priori

knowledge in estimation of unknown parameters. In [5] and [6], a Bayesian approach is

used to detect gross errors based on process models. This method is applied sequentially

over various time periods of data by updating the priors and posteriors at the end of each

period. Computation of this method for medium to large problems is intensive despite the

modification made by the authors of [6]. In [7], a Bayesian decision rule is developed to

detect the change point in univariate data which needs selection of prior distributions for

unknown parameters and then derivation of posterior probability of shift point given the

data.

The multivariate version of Bayesian single change point detection can be found in [8]

[9] [10] [11][12][13]. In [13], an empirical Bayes stopping time is studied for detection of

a change in distribution of data when prior is not completely known. Multiple change

points detection is investigated through methods such as hypothesis testing [14], maximum

likelihood [15] and a clustering-based algorithm called product partition model (PPM)[16]

[17]. In PPM technique, the prior probabilities for a random partition are determined. As

a result, the posterior probability of the partition is of the same form. In essence, in this

method, a large amount of computations result from Markov sampling to determine the

estimates of means, derived by conditioning on the partition and summing over all possible

partitions.

In [18], the change points are determined by minimizing a penalised contrast function

which measures how the model, derived based on change point sequence, fits the observed

data.

Generally, among methods applied in change point detection, Bayesian approach has

been most widely adopted. There are two approaches proposed in literature to solve the

change point detection problem based on the Bayesian approach. One approach relies on

finding the mode of posterior probability called Maximum a Posteriori (MAP) approach

which is optimization-based. The other is to calculate means of various posterior probabili-

ties, which leads to integration calculation. Basically, these integrations are difficult to solve

analytically. As a result, Markov Chain Monte Carlo (MCMC) is often used which draws

samples from posterior distributions. The sampling from posterior distribution is performed

using various techniques such as Metropolis-Hasting or Gibbs sampler [10][19][20]. In [19],

Stochastic Approximation Monte Carlo (SAMC) is applied to multiple change point de-

tection problem and SAMC performance is compared with reversible jump Markov Chain

2



Monte Carlo approach (RJMCMC). It was shown that in change point estimation, SAMC

outperforms RJMCMC for complex Bayesian model selection problem.

On the other hand, Expectation Maximization (EM) can be viewed as an iterative

approach to find the maximum likelihood [21] [22]. EM can also be employed to detect the

changes. Some researchers have already used EM to detect change points [23] [24]. In [23],

a Sequential Monte Carlo (SMC) online EM algorithm is proposed to estimate the change

point. In [24] an EM method is presented to estimate the distribution of change point.

These traditional EM methods require complex calculation while EM algorithm proposed

in this work does not require heavy and complex computation and it is relatively easy to

implement as well due to availability of explicit solutions. This framework has the advantage

of handling improper selection of hyperparameters compared with Bayesian approach.

In this thesis, a closed form solution to the Bayesian formulation of single and multiple

change point detection problem is first considered for multivariate data and MAP is used

for the estimation of the parameters. Moreover, considering the sensitivity of the Bayesian

approach to prior selection, EM is adopted to solve both single or multiple change points

detection problem. By comparison, it is shown that EM is more powerful when priors

are highly uncertain while the Bayesian approach has its advantage of less computation

demand.

In the following, a quick review on Bayesian inference and Expectation Maximization

methods are given to provide a better insight for the following chapters.

1.1 A Review on Model-Based Bayesian Inference

In the context of parameter estimation, Bayesian interpretation of probabilities is one of

the most widely used approaches. It updates the knowledge about unknowns, parameters

based on the information observed from the data. In other words, in Bayesian inference,

one can specify one’s belief in a statement or a given evidence in terms of probability [25].

The basis for most Bayesian approaches in various applications is Bayes theorem which is

equal to

P (A|B) =
P (B|A)P (A)

P (B)
(1.1)

where A and B are two arbitrary events. Replacing B with observed data, y, A with the

parameter set, θ, yields

P (θ|y) =
P (y|θ)P (θ)

P (y)
(1.2)

where P (θ) is the prior distribution of unknown parameters before y is observed, P (y|θ) is

the likelihood of observation, y, under a model and P (θ|y) is the joint posterior distribu-

tion or full posterior distribution. It expresses the uncertainty about parameter, θ, after

3



considering the information of both prior and likelihood. The denominator of (1.2), can be

derived as

P (y) =

∫
P (y|θ)P (θ)dθ = c (1.3)

where c is a constant. It is called ”marginal likelihood” of y or the ”prior predictive distri-

bution” of y and may be set as an unknown constant, i.e. normalizing constant. Thus, by

removing c from denominator of (1.2), we can express the joint posterior distribution as

P (θ|y) ∝ P (y|θ)P (θ) (1.4)

This form is called unnormalized joint posterior distribution which can be used for inference.

On the other hand, the parameter set, θ, consists of multiple parameters as θ =

(θ1, ..., θj)
T , but not all the parameters in the vector θ are of interest. These uninter-

ested parameters are called nuisance parameters. In other words, a nuisance parameter is

one that is part of the θ in the joint posterior distribution of a model but it is not of main

interest. One way to omit these nuisance parameters is to integrate out or marginalize the

joint posterior distribution with respect to them. Define θ = (φ, ω) where φ represents

the main parameters of interest and ω indicates the nuisance parameters. The marginal

posterior of φ can be derived as

P (φ|y) =

∫
P (φ, ω|y)dω (1.5)

Thus, in Bayesian Inference, the marginal unnormalized joint posterior distribution is taken

into account for estimation of unknown parameters. For instance, one may utilize MAP

method to find the mode of marginal unnormalized joint posterior distribution to estimate

the parameters. In Chapters 2 and 3, we will use this method in Bayesian inference.

1.2 Introduction to Expectation Maximization (EM)

EM algorithm is based on maximum likelihood estimation. This method was first intro-

duced by [26] in 1977. Numerous applications in various areas can be found in literature

based on this method such as in machnine learning, computer vision, medical imaging,

mixture models, speech recognition, etc. It is effective especially when it is not easy to

find the maximum of P (parameter|data) directly [21] [22]. This algorithm consists of it-

eration between two steps: expectation-step or E-step and maximization-step or M-step.

In other words, EM can be formulated as (1) finding the conditional expectation with re-

spect to missing variables given the data and the current estimate of the parameter and

(2) maximizing the expectation derived in the previous step to estimate the parameters

[21]. Convergence of EM algorithm is guaranteed because at each iteration, the likelihood

function is non-decreasing [22]. In this framework, E-step can be formulated as

Q(θ|θ(k)) = EZ|D,θ(k){P (D,Z|θ)} (1.6)

4



where Z is the missing data or variable, D is the observed data and θ is the parameter to be

estimated. θ(k) is the current estimate of parameter. In essence, in E-step, missing data are

estimated given the observation and the current estimate of unknown parameters. In other

words, in E-step, a conditional expectation is derived, where depending on the types of

missing variables, continues or discrete variables, an integration or summation is computed.

In the M-step, the new parameter, θ(k+1), is chosen so that it maximizes Q(θ|θ(k)); that is,

Q(θ(k+1)|θ(k)) ≥ Q(θ|θ(k)),∀θ (1.7)

M-step can be expressed as

θ(k+1) = arg max
θ
Q(θ|θ(k)) (1.8)

Starting EM with initial values for the parameters, E-step and M-step are repeated until a

suitable stopping rule criterion is satisfied. EM has interesting properties such as increasing

the likelihood of observed data at each iteration but it may converge to a local maximum

of observed likelihood which makes it dependent on starting values in some problems [22].

In Chapter 3, a review of existing methods for proper initialization of EM is elaborated.

Some other properties such as selection of stopping criteria is important depending on the

parameter estimation problem.

1.3 Derivation of EM

Let X be a random vector and θ be unknown sets of parameters and assume that we wish

to find the maximum likelihood estimate of for θ. Define the log likelihood function as

L(X|θ) = lnP (X|θ) (1.9)

Since ln(x) is strictly increasing, the value of θ that maximizes p(X|θ) also increases L(θ).

EM is proceeded iteratively to maximize L(θ). Assume that the current estimate is θn, the

procedure must be in way that the updated parameter estimate of θ such that

L(θ) > L(θn) (1.10)

In problems in which there are some missing variables, EM can make the maximum likeli-

hood estimation tractable. Denote the missing variable as Z. The total probability P (X|θ)
can be expressed as

P (X|θ) =
∑
z

P (X|z, θ)P (z|θ) (1.11)

The difference between likelihood function at current estimate and updated estimate

can be written as

L(θ)− L(θn) = ln(
∑
z

P (X|z, θ)P (z|θ))− lnP (X|θn) (1.12)

5



Note that in this expression there is the logarithm of sum. One can apply Jensen’s inequality

to (1.12)

ln
n∑
i=1

λixi ≥
n∑
i=1

λiln(xi) (1.13)

Thus, we can introduce the constant P (z|X, θn) as

L(θ)− L(θn) = ln(
∑
z

P (X|z, θ)P (z|θ))− lnP (X|θn)

= ln(
∑
z

P (X|z, θ)p(z|θ).P (z|X, θn)

P (z|X, θn)
)− lnP (X|θn)

= ln(
∑
z

P (z|X, θn)
P (X|z, θ)P (z|θ)
P (z|X, θn)

)− lnP (X|θn)

≥
∑
z

P (z|X, θn)ln(
P (X|z, θ)P (z|θ)
P (z|X, θn)

)− lnP (X|θn) (1.14)

=
∑
z

P (z|X, θn)ln(
P (X|z, θ)P (z|θ)

P (z|X, θn)P (X|θn)
) (1.15)

= ∆(θ|θn) (1.16)

In equations (1.14) to (1.16), the fact that
∑

z P (z|X, θn) = 1 is used so that lnP (X|θn) =∑
z P (z|X, θn)lnP (X|θn). We can write

L(θ) ≥ L(θn) + ∆(θ|θn) (1.17)

Thus

L(θ) ≥ l(θ|θn) (1.18)

where

l(θ|θn) = L(θn) + ∆(θ|θn) (1.19)

The function l(θ|θn) is bounded above by the likelihood function L(θ). Also, we have

l(θ|θn) = L(θn) + ∆(θn|θn)

= L(θn) +
∑
z

P (z|X, θn)ln
P (X|z, θn)P (z|θn)

P (z|X, θn)P (X|θn)

= L(θn) +
∑
z

P (z|X, θn)ln
P (X, z|θn)

P (z,X, θn)

= L(θn) +
∑
z

P (z|X, θn)ln1

= L(θn) (1.20)

Thus for θ = θn, the functions l(θ|θn) and L(θ) are equal.
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The value of θ is chosen so that L(θ) is maximized. It is shown that the function l(θ|θn)

is bounded above by the likelihood function L(θ). Thus any value of θ that increases l(θ|θn)

also increases L(θ). EM algorithm finds θ such that l(θ|θn) is maximised. This value is

called updated parameter and is defined as θn+1

θn+1 = argmaxθ{l(θ|θn)}

= argmaxθ{L(θn) +
∑
z

P (z|X, θn)ln
P (X|z, θ)P (z|θ)

P (X|θn)P (z|X, θn)
}

(1.21)

If we drop the terms that do not depend on θ

= argmaxθ{
∑
z

P (z|X, θn)lnP (X|z, θ)P (z|θ)}

= argmaxθ{
∑
z

P (z|X, θn)lnP (X, z|θ)}

= argmaxθ{
∑
z

P (z|X, θn)lnP (X, z|θ)}

= argmaxθ{EZ|X,θn{lnP (X, z|θ)}} (1.22)

In (1.21), the expectation and maximisation steps are simultaneous. To sum up, EM algo-

rithm can be expressed as two steps:

E-step: Compute the conditional expectation EZ|X,θn{lnP (X, z|θ)}
M-step: Maximize this expression with respect to θ.

1.4 Rate of Convergence of EM

The rate of convergence of EM is of interest in many applications. This was first elaborated

in [26]. It was shown that the rate of convergence of EM is linear and depends on the

proportion of information of the observations. In other words, if a large proportion of

data is missing, then the convergence can be very slow. The convergence properties of EM

algorithm have been investigated in detail in [22]. Basically, EM defines a mapping θ →
M(θ) from the parameter space Θ to itself such that

θ(k+1) = M(θ(k)) (k = 0, 1, 2, ...) (1.23)

where the function M is referred to as EM mapping. This function is used for many

convergence theorems of EM algorithm. If θ(k) converges to some point θ∗ and M(θ) is

continuous, then the fixed point of EM is θ∗ which satisfies θ∗ = M(θ∗). Using Taylor series

expansion, around θ(k) = M(θ∗), we can write

θ(k+1) − θ∗ ≈ J(θ∗)(θ(k) − θ∗) (1.24)

where J(θ) is d×d Jacobian matrix of M(θ) = (M1(θ),M2(θ), ...,Md(θ))
T . These functions

are called mapping functions associated with each parameter. EM algorithm is a linear
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iteration with rate matrix as J(θ∗) [22]. This matrix is called the matrix rate of convergence.

For the parameters, θ, the global rate of convergence is defined as

r = lim
k→∞

‖θ(k+1) − θ∗‖
‖θ(k) − θ∗‖

(1.25)

where ‖.‖ is any defined norm on d-dimensional Euclidean space. The larger the global rate

of convergence, r, the slower the convergence. In addition, the global speed of convergence

is defined as s = 1− r [27]. It can be shown that at each iteration of EM, the likelihood of

observed data increases until a fixed point is reached. The stationary or fixed points of EM

are Maximum Likelihood Estimates (MLE). Furthermore, the EM sequence is convergent if

∂Q(θ|θ(k))

∂θ
|θ=θk+1 = 0 (1.26)

and also the series {θ(k)} converges to θ∗ and logP (z|y, θ) is sufficiently smooth [28] [29]. It

should be noted that there is no guarantee that EM converges to global maximum. If the

likelihood function has multiple maxima, then it may converge to local maximum which

makes it dependent on initial values, θ0. There are several methods for proper initialization

of EM algorithm which will be discussed in Chapter 3. In the presence of constrained

parameter space, Θ ⊂ Ω, [30] provides a stricter condition for convergence. This condition

assumes intersection of boundary of parameter Θ with the complement of boundary of Ω is

a subset of θ (∂Θ\∂Ω ⊆ Θ).

1.5 Stopping Criteria

There are several criteria defined in order to terminate the EM algorithm [22]. They can

be categorized in three groups:

• One criterion is based on absolute value of the likelihood change in two successive

iterations. One can employ the relative change of likelihood since the values of likeli-

hood depend on the sample size and therefore an absolute change in the order of 10−s

has different importance depending on the sample size. If L(θ(k)) is the value of the

observed likelihood in kth iteration, and tol is a small number of the form 10−s, then

we can write

|L(θ(k+1))− L(θ(k))|
|L(θ(k))|

≺ tol (1.27)

This criterion does not indicate the actual convergence [31].

• One criterion is based on the relative change of the parameters in two successive iter-

ations. The maximum over all the parameters is considered as a measure of progress.

This can be written as

maxj
|θ(k+1)
j − θ(k)

j |

|θ(k)
j |

≺ tol (1.28)
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where j is the jth element in the vector of the parameters. Similarly, this criterion

does not represent the actual convergence [31]. In [32], it was emphasized that the

aforementioned methods are measures of lack of progress but not actual convergence.

Thus, a new criterion is defined by [32] to solve the convergence problem as explained

next.

• (Aitken Acceleration Criterion): In applications where the interest is the likelihood

values rather than the sequence of estimated parameters, a new criterion is defined

based on a projected likelihood [32]. Define

Lk = L(θ(k)) (1.29)

The Aitken criterion, is expressed as

|Lk+1
A − LkA| ≺ tol (1.30)

where the projected likelihood is expressed as

Lk+1
A = Lk +

1

(1− c(k))
(Lk+1 − Lk) (1.31)

where c(k) = (Lk+1−Lk)
(Lk−Lk−1)

. According to [22], this criterion can be used for any log-

likelihood sequence which is linearly convergent.

A great number of examples can be found in literture. [22] is a comprehensive review of

EM theory and various applications of EM can be found there.

1.6 Problem Statement

As mentioned, there are many applications for change point problem in areas such as hy-

drology, DNA sequences, financial time series, signal processing, etc. Given a time series,

change points split the data into segments which are disjoint. It is assumed that the data

in every segments are independent of each other. In addition, the independence assumption

holds for data within a segment. In every segment, the data can be fitted to a model. Thus,

we can write

data = model + noise (1.32)

In a time series, various scenarios may exist [33]:

• Different segments may have different models in terms of model types and model

orders

• Different segments may have the same model structure with different parameters

• Different segments may have the same model structure with different noise levels

9



• Multivariate segments with different correlation coefficients

In this work, it is assumed that the data in every segment follow the same model structure

but with different parameters. Four possible scenarios can be considered.

• The model in which no change point exists in the data. See Figure 1.1.a

• The model in which mean shifts at multiple points but variability is constant. See

Figure 1.1.b

• The model in which mean is constant but variability changes at multiple points. See

Figure 1.1.c

• The model in which mean and variability change simultaneously at multiple points.

See Figure 1.1.d
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Figure (a) Figure (b)

Figure (d)Figure (c)

Figure 1.1: Figure (a): No change in Mean or Variability, Figure (b): Change in Mean Only,
Figure (c): Change in Variability Only, Figure (d): Change in Both Mean and Variability

These scenarios are investigated in this work. It is assumed that the time instants

where these changes occur are unknown. Thus, the main focus is derivation of a closed

form solution for change point detection under various scenarios using EM and Bayesian

methods.
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1.7 Thesis Overview

1.7.1 Thesis Contribution

Various approaches have been reviewed for gross error detection, mean shift and change

point detection. In terms of probabilistic frameworks, as mentioned earlier, there have been

various techniques developed. Most of probabilistic approaches rely on Bayesian methods.

Expectation Maximization method for change point detection was employed in [23] [24] but

those methods require complex derivations. This thesis derives closed form solutions for

the Q-functions which are critical functions in the EM algorithm and hence making the

maximization step rather straightforward. The main contributions of this thesis are:

• Derivation of closed form solution using Bayesian and Expectation Maximization

(EM) and Simplified EM (SEM) methods in mean shift detection problem in uni-

variate data in the presence of known variance.

• Derivation of closed form solution using Bayesian and Expectation Maximization

methods in mean shift detection problem in multivariate data in the presence of

known covariance.

• Derivation of closed form solution using Expectation Maximization in change point

detection problem in multivariate data in the presence of unknown and changing

covariance.

• Mean estimation in change point model in the presence of process constraints using

constrained EM method.

1.7.2 Thesis Outline

In this work, mean shift or change point detection is investigated under various scenarios.

This thesis is organized as follows. In Chapter 2, the problem is solved using Bayesian

inference as well as EM algorithm for univariate data with single change assuming known

and constant variance. A simplified version of EM is also proposed to deal with this problem.

The performance of these three methods is compared through simulated data.

In Chapter 3, the mean shift detection is solved for multivariate data using Bayesian

and EM approaches in the presence of constant and known covariance. Bayesian framework

is presented first for mean shift detection by generalizing the method employed in [7]. This

formulation is different from [7] in the sense of selection of hyperparameters of priors. In

addition, two novel EM algorithms are proposed for mean shift detection. Performance of

the proposed algorithm is evaluated using simulated and pilot-scale experiment data.

In Chapter 4, the change point detection is solved using EM approaches in the presence

of unknown covariance and then this solution is extended to the change point detection

solution in the case of unknown and simultaneous changing mean and covariance. Using
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simulated and pilot-scale experiment case studies, the performance of the proposed methods

are evaluated.

Chapter 5 covers the mean estimation in multiple change points model through EM

algorithm. In addition, mean estimation solution is derived in the presence of process

constraints using constrained EM method. The fast convergence of EM demonstrates the

efficiency of the method in parameter estimation.

Finally, in Chapter 6, the thesis conclusions and future works are presented.
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Chapter 2

Univariate Mean Shift Detection

2.1 Introduction

In this chapter, the univariate change point detection problem in the presence of known

variance is investigated and three methods based on Bayesian, Expectation Maximization

(EM) and Simplified Expectation Maximization (SEM) are derived and compared through

simulation data.

2.2 Measurement Model

In this model, it is assumed that the process is operating under steady state condition. For

each variable, say the ith variable, at time pointj, the model can therefore be written as

yij = µ1i + εij (2.1)

where µ1i is the true value of variable i, εij is the measurement noise of variable i at time j.

Moreover, the measurement noise at different time instants is assumed to be independent.

It is also assumed that for variables i 6= k, εi and εk are independent. For all j, εij ’s are

assumed to follow a normal distribution with mean zero and constant and known variance,

i.e.

εij ∼ N (0, σ2
0i) (2.2)

Suppose that at time j = m, bias, δij , occurs in variable i resulting in a change of mean

value of process variable i as µ2i. Assuming that the variance, σ2
0i, remains constant, we

have

yij = µ2i + εij , j = m+ 1,m+ 2, ..., n

µ2i = µ1i + δij (2.3)

Thus, the measurements yij before and after bias shift can be written as

yij ∼ N (µ1i, σ
2
0i) j = 1, 2, ...m

yij ∼ N (µ2i, σ
2
0i) j = m+ 1,m+ 2, ...n (2.4)
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Based on the model given in (2.1) with assumptions of (2.2), (2.3) and (2.4), the proposed

methods can be applied.

2.3 Bayesian Method

As mentioned earlier, Bayesian inference is one of the most widely used method in param-

eter estimation. Under this framework, one first assigns prior probability distribution to

unknown parameters. The unknown parameters in this problem are µ1i, µ2i and m. Con-

sider a univariate process so that the subscript i can be dropped. Thus, µ1i = µ1, µ2i = µ2

and σ2
0i = σ2

0. The priors are selected as

P (µ1) = N (µ0
1, σ

2
10)

P (µ2) = N (µ0
2, σ

2
20)

P (m) = km(Uniform Distribution) (2.5)

where km is a constant, µ0
1 and σ2

10 are the hyperparameters of µ1, and µ0
2 and σ2

20 are

the hyperparameters of µ2 and assumption of uniform distribution of m follows from [7].

For simplicity denote β0 = (µ0
1, σ

2
10, µ

0
2, σ

2
20). Unlike [7], we assume a nonzero values for µ0

1

and µ0
2. The reason is that assigning a zero mean value to prior distribution of mean is

equivalent to prior belief that the most probable value for mean of data is zero which is not

true. These priors are assumed to be mutually independent. Independence of m and the

mean values means that the time instant of change is independent of mean values before

and after the change point. Assuming independent observations at different time instants,

the likelihood function for n samples of data, Y = (y1, y2, ..., yn), is

P (Y |µ1, µ2,m, σ
2
0, β0) =

m∏
n=1

N (yi|µ1, σ
2
0, β0)×

n∏
n=m+1

N (yi|µ2, σ
2
0, β0) (2.6)

Having obtained the likelihood and priors, the next step is to find the joint posterior prob-

ability of µ1, µ2 and m. According to Bayesian theorem:

P (µ1, µ2,m|Y, σ2
0, β0) ∝ P (Y, µ1, µ2,m, σ

2
0, β0) (2.7)

Using chain rule, the joint probability distribution can be written as

P (Y, µ1, µ2,σ
2
0, β0,m)

= P (Y |µ1, µ2, σ
2
0, β0,m)P (µ1, µ2, σ

2
0, β0,m)

= P (Y |µ1, µ2, σ
2
0, β0,m)P (µ1|µ2, σ

2
0, β0,m)× P (µ2,m, σ

2
0, β0)

= P (Y |µ1, µ2, σ
2
0, β0,m)P (µ1|µ2, σ

2
0, β0,m)× P (µ2|m,σ2

0, β0)P (m)

= P (Y |µ1, µ2, σ
2
0, β0,m)P (µ1|β0)P (µ2|β0)P (m) (2.8)
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The last equation in (2.8) signifies the independent assumptions made for priors. Therefore,

the posterior probability in (2.7) is of the form

P (µ1, µ2,m|Y, σ2
0, β0) ∝ P (Y |µ1, µ2, σ

2
0i, β0,m)× P (µ1|β0)P (µ2|β0)P (m) (2.9)

Substituting (2.5) and (2.6) in (2.9), we have

P (µ1, µ2,m|Y, σ2
0, β0) ∝ exp(−

m∑
j=1

[
(yj − µ1)2

2σ2
0

]− (µ1 − µ0
1)2

2σ2
10

)×

exp(−
n∑

j=m+1

[
(yj − µ2)2

2σ2
0

]− (µ2 − µ0
2)2

2σ2
20

) (2.10)

After some algebraic manipulations such as completing the square terms with respect to µ1

and µ2, the following result is derived:

P (µ1, µ2,m|Y, σ2
0, β0) ∝ F1 × F2 (2.11)

where

F1 =exp{ −1

2σ2
0(mb)−1

[µ1 − (mb)−1(mh+
m∑
j=1

yj)]
2}×

exp{ −1

2σ2
0

[mh′ +

m∑
j=1

y2
j − (mb)−1[mh+

m∑
j=1

yj ]
2]} (2.12)

and

F2 = exp{ −1

2σ2
0(c)−1

[µ2 −
∑n

j=m+1(yj) + (n−m)p

c
]2}exp{ −1

2σ2
0

[
n∑

j=m+1

(y2
j ) + (n−m)p′−

c−1(

n∑
j=m+1

(yj) + (n−m)p)2]} (2.13)

Using notations similar to [7], we have

b = 1 +
σ2

0

mσ2
10

h =
µ0

1σ
2
0

mσ2
10

h′ = µ0
1.h (2.14)

and the parameters of F2 are

c = n−m+
σ2

0

σ2
20

p =
µ0

2σ
2
0

(n−m)σ2
20

p′ = µ0
2.p (2.15)
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In order to derive the marginal posterior P (m|Y, σ2
0, β0) based on joint posterior probability,

we can integrate out µ1 and µ2 from the joint posterior P (µ1, µ2,m|Y, σ2
0, β0). Here, since

F1 only depends on µ1 and F2 only depends on µ2, integrating F1 with respect to µ1 results

in I1 and integrating of F2 with respect to µ2 leads to I2 as

I1 = exp{ −1

2σ2
0

[mh′ +
m∑
j=1

y2
j − (mb)−1[mh+

m∑
j=1

yj ]
2]}
√

2π(mb)−1 × σ0 (2.16)

and

I2 = exp{ −1

2σ2
0

[
n∑

j=m+1

(y2
j ) + (n−m)p′ − c−1(

n∑
j=m+1

(yj) + (n−m)p)2]}
√

2πc−1 × σ0 (2.17)

The marginal posterior is derived accordingly as

P (m|Y, σ2
0, β0) ∝ I1 × I2 (2.18)

In order to find the most likely solution of m from the marginal posterior, one can maximize

the marginal posterior with respect to m as

m̂ = arg max
m

P (m|Y, σ2
0, β0) (2.19)

Finally, according to [7], if m is found to be 1, 2, ..., n − 1, then there is gross error and if

m = n, there is no gross error found.

In [7], the mean values of the priors are set as zero for both µ1 and µ2. As discussed

earlier, assigning zero as mean values of the priors can lead to false detection of change

point. The reason is that the joint distribution depends on µ0
1 and µ0

2, as evident in I1 and

I2 of (2.16) and (2.17), and poor selection of the priors will lead to deteriorated performance

and could result in false detection. In next section, we propose EM algorithm to overcome

this deficiency and to take advantage of use of improved priors based on the data.

2.3.1 Mean Shift Formulation Using EM

In this section, EM algorithm is proposed to solve single change point detection problem.

Here, µ1 and µ2 are treated as the missing or hidden variables, Y = (Y1, Y2, ..., Yn) are the

observed data and m, the change point, is the parameter of the interest to be determined.

Thus, E-step can be expressed as

Q(m|m(k)) = Eµ1,µ2|Y,m(k){p(Y, µ1, µ2|m)} (2.20)

In M-step, the maximization is performed with respect to all possible values of the param-

eter, m, as

m(k+1) = arg max
m

Q(m|m(k)) (2.21)
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In order to derive the E-step, we first write

P (Y, µ1, µ2|m) = P (Y |µ1, µ2,m)P (µ1, µ2|m)

= P (Y |µ1, µ2,m)P (µ1|µ2,m)P (µ2|m) (2.22)

Since m, the shift point, is independent of the mean values µ1 and µ2 and also these values

are independent of each other, (2.22) can be written as

P (Y, µ1, µ2|m) = P (Y |µ1, µ2,m)P (µ1)P (µ2) (2.23)

Thus, (2.20) yields

Q(m|m(k)) = Eµ1,µ2|Y,m(k){P (Y |µ1, µ2,m)P (µ1)P (µ2)}

=

∫ ∫
P (Y |µ1, µ2,m)P (µ1)P (µ2)P (µ1, µ2|Y,m(k))dµ1dµ2 (2.24)

Since µ1 and µ2 are independent, we can write

Q(m|m(k)) =

∫ ∫
P (Y |µ1, µ2,m)P (µ1)P (µ2)P (µ1|Y,m(k))P (µ2|Y,m(k))dµ1dµ2 (2.25)

In the integrand, there are two terms P (µ1|Y,m(k)) and P (µ2|Y,m(k)) which can be deter-

mined as

P (µ1|Y,m(k)) =
P (Y |µ1,m

(k))P (µ1|m(k))

p(Y |m(k))
(2.26)

=
P (y1, y2, ..., ym(k) |µ1,m

(k))P (ym(k)+1, ym(k)+2, ..., yn)P (µ1)

P (Y |m(k))
(2.27)

= k1P (y1, y2, ..., ym(k) |µ1,m
(k))P (µ1) (2.28)

In the nominator of (2.26), P (µ1|m(k)) = P (µ1) because µ1 and m(k) are independent. In

the denominator of (2.26), P (Y |m(k)) is the distribution of Y that only depends on µ1, µ2

and the variance. These parameters are independent of m(k); therefore this probability is a

constant value as

P (ym(k)+1, ym(k)+2, ..., yn)

P (Y |m(k))
= k1 (2.29)

Using the same approach for P (µ2|Y,m), we have

P (µ2|Y,m(k)) =
P (Y |µ2,m

(k))P (µ2|m(k))

p(Y |m(k))
(2.30)

=
P (ym(k)+1, ym(k)+2, ..., yn|µ2,m

(k))P (y1, y2, ..., ym(k))P (µ2)

P (Y |m(k))
(2.31)

= k2P (ym(k)+1, ym(k)+2, ..., yn|µ2,m
(k))P (µ2) (2.32)

where

P (y1, y2, ..., ym(k))

P (Y |m(k))
= k2 (2.33)
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Thus (2.25) can be rewritten as

Q(m|m(k)) = k1k2

∫ ∫
P (Y |µ1, µ2,m)P (µ1)P (µ2)×

P (y1:m(k) |µ1,m
(k))P (µ1)P (ym(k)+1:n|µ2,m

(k))P (µ2)dµ1dµ2

= k3

∫
P (y1:m|µ1,m)P (y1:m(k) |µ1,m

(k))(P (µ1))2dµ1×∫
P (ym+1:n|µ2,m)P (ym(k)+1:n|µ2,m

(k))(P (µ2))2dµ2 (2.34)

where k3 = k1k2. This integration is the product of two separable terms so that (2.34) can

be simplified as

Q(m|m(k)) = k3

∫
E1dµ1

∫
E2dµ2 (2.35)

where E1 can be written as

E1 = exp{ −1

2σ2
0

[

m∑
j=1

(yj − µ1)2 +

m(k)∑
j=1

(yj − µ1)2]− 1

σ2
10

(µ1 − µ0
1)2} (2.36)

After some algebraic simplifications to complete the square terms in E1, we have

E1 = exp{ −1

2σ2
0

[
m∑
j=1

y2
j +

m(k)∑
j=1

y2
j ]−

1

σ2
10

(µ0
1)2 +

β2

2α
}exp{−

(µ1 − β
α)2

2( 1
α)

} (2.37)

where

α =
m

σ2
0

+
m(k)

σ2
0

+
2

σ2
10

β = −
∑m

j=1 yj +
∑m(k)

j=1 yj

σ2
0

− 2µ0
1

σ2
10

(2.38)

Integration of E1 gives∫
E1dµ1 = exp{ −1

2σ2
0

(

m∑
j=1

y2
j +

m(k)∑
j=1

y2
j )−

1

σ2
10

(µ0
1)2 +

β2

2α
}
√

2πα−1 (2.39)

Following similar algebraic manipulation for E2 leads to∫
E2dµ2 = exp{ −1

2σ2
0

(
n∑

j=m+1

y2
j +

n∑
j=m(k)+1

y2
j )−

1

σ2
20

(µ0
2)2 +

γ2

2ζ
} ×

√
2πζ−1 (2.40)

where

ζ =
n−m
σ2

0

+
n−m(k)

σ2
0

+
2

σ2
20

γ = −
∑n

j=m+1 yj +
∑n

j=m(k)+1 yj

σ2
0

− 2µ0
2

σ2
20

(2.41)
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Finally, Q(m|m(k)) is derived by multiplying (2.39) by (2.40).

From (2.39) and (2.40), one can see that Q-function depends on current available es-

timate of the parameter m(k) and the decision variable m. In the next step, M-step, Q-

function is maximized with respect to unknown m. In other words, starting EM loop with

an initial value for m(0) = m0, E-step and M-step iterate until no increase is observed in

Q-function.

2.4 Simplified Expectation Maximization (EM)

In this section, a simplified EM algorithm is proposed for detecting mean shift. In this

framework, the integration is avoided by replacing the hidden variables with their expected

values given the data and current estimate of the parameters in the likelihood function. In

E-step, we have

Q(m|m(k)) = Eµ1,µ2|Y,m(k){log[p(Y, µ1, µ2|m)]} (2.42)

Using (2.20), (2.42) can be written as

Q(m|m(k)) = Eµ1,µ2|Y,m(k){log(P (Y |µ1, µ2,m)) + log(P (µ1)) + log(P (µ2))} (2.43)

In simplified version of EM, instead of conditional expectation, µ1 and µ2 are replaced by

their expected values estimated from the data. Define Q-function as

Q(m|m(k)) = log(P (Y |E(µ1), E(µ2),m)) + log(P (E(µ1)) + log(P (E(µ2))) (2.44)

where

E(µ1) = ȳ1:m(k) =

∑m(k)

j=1 yj

m(k)

E(µ2) = ȳm(k)+1:n =

∑n
j=m(k)+1 yj

n−m(k)
(2.45)

Therefore, using the likelihood and priors as in (2.5) and (2.6), Q-function in (2.42) can be

written as

Q(m|m(k)) =
−1

2σ2
0

[

m∑
j=1

(yj − E(µ1))2 +

n∑
j=m+1

(yj − E(µ2))2]

− 1

2σ2
10

(E(µ1)− µ0
1)2 − 1

2σ2
20

(E(µ2)− µ0
2)2 (2.46)

For simplicity, the priors are selected as σ10 = σ20. Here, selection of wrong values for µ0
1

and µ0
2 does not have any effects on performance of the algorithm since the hidden variables,

µ1 and µ2, are estimated from data given the current estimate m(k). Having derived Q-

function, in the next step, maximization is conducted with respect to m and the parameter

is estimated. In the next iteration, this new parameter is used to re-calculate the mean

values µ1 and µ2 embedded in Q-function. Hence, these two steps iterate until convergence.
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2.5 Simulation Results and Discussions

In literature, there are two commonly used performance measures of gross error detection.

Here, we apply those measures in mean shift detection. Thus, through simulation studies,

the performance of Bayesian and Expectation Maximization approaches is investigated.

One of those measures, defined as an indication of method’s ability in detection of biased

instrument, is overall power, OP

OP =
Number of Gross Errors Correctly Identified

Number of Gross Errors Simulated
(2.47)

The other performance measure is defined to represent the probability of false alarm as

AV TI =
Number of Gross Errors Wrongly Identified

Number of Simulation Trials Made
(2.48)

These two performance measures are widely used in gross error detection literatures [1].

In Figure 2.1, the process measurement for the case of mean shift with constant variance

is shown. The mean of variable is subject to change at an unknown time instant. In this

work, we focus on change in the mean of data at a single time point but no change in the

variance due to steady state nature of the process operation. We also assume that after

occurrence of gross error, the bias magnitude remains constant.

The simulated data are generated from a normal distribution with mean µ and standard

deviation σ0 in MATLAB. The results are obtained from Monte Carlo simulation of 1000

runs. In Table 3.1, the results of OP and AV TI are shown for three methods: Bayesian

(BM), EM and simplified EM (SEM). The simulation parameters are selected as

n = 500,m = 142, µ = 1, σ2
0 = σ2

10 = σ2
20 = 1,

δ = 3σ0, µ
0
1 = 1, µ0

2 = 2.

The EM and SEM algorithms start from an initial guess m(0) = 100 while the real

m is 142. As illustrated in Table 3.1, the results of OP and AV TI indicate that EM is

more accurate in detection of gross errors but the performance difference between BM and

EM is minor for indicated bias magnitudes. In other words, when the mean values of prior

distributions are selected to be close to true mean, both methods have approximately similar

performance and high OP is achieved in detection of biased instruments. The performance

of EM and SEM is almost the same for different magnitudes of biases. In all EM or SEM

simulations, after one or two iterations, the algorithms converge.

Next, the results are shown when the mean of priors are improperly selected as shown

in Table 2.2, i.e. far from the true mean. For 1000 simulation runs with δ = 3σ0, the

following performance is obtained: OP=0 by BM, 0.8 by EM and 0.9 by SEM, indicating

that EM and SEM are capable of correctly detecting biased instruments in the case of wrong

selection of priors. This nature of learning from the data is an advantage of EM or SEM

which makes them efficient approaches in gross error detection.
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In Table 2.3, as an example of n = 60, the effects of different bias shift points are

investigated. There is no significant difference in the values of OP and AV TI for BM and

EM, because these methods do not rely on point estimation of mean from data. However,

for the case of SEM that relies on point estimation of mean, when m or n −m decreases,

OP decreases.

Figure 2.2 shows the overall power, OP , with respect to the size of bias as a multiplier

of standard error. With small bias that is more difficult to detect, the power of EM is larger

than BM and SEM. However, with gross errors between 1.5σ0 to 2.5σ0, the power of BM

is the largest. As bias magnitude further increases, the OP ’s for three methods approach

each other.

Table 2.1: Performance Comparison for Different biases (n = 500, m = 142, µ0
1 = µ0

2 = 1)

Bias OP AV TI

BM
3σ0 0.85 0.145
4σ0 0.95 0.044
5σ0 0.98 0.015

EM
3σ0 0.86 0.140
4σ0 0.95 0.044
5σ0 0.99 0.009

SEM
3σ0 0.86 0.141
4σ0 0.95 0.042
5σ0 0.99 0.011

Table 2.2: Performance Comparison for Different Mean values for Prior Distributions(µ0
1 =

20, µ0
2 = 30, n = 500, δ = 3σ)

BM EM SEM

OP 0 0.8 0.9
AVTI 1 0.16 0.1

In the case of improper selection of µ0
1 = 20 and µ0

2 = 30, OP ’s for BM and EM are

illustrated in Figure 2.3 for different values of bias. For bias up to 4σ0, OP for BM is

zero and as bias magnitude increases, the power increases dramatically. The power for EM,

even for small size of gross errors is nonzero, demonstrating the efficiency of EM despite

of wrong priors. In Figure 2.4, the measurements along with three detection criteria using

BM, EM and SEM are illustrated for n = 300,m = 135, δ = 3σ0, µ
0
1 = 1 and µ0

2 = 2. For

all three methods, y axis is in logarithmic scale. The peak points of posterior probability

as well as that of Q-function are located where the bias shift occurs. In other words, the

global maximum is obtained at true change point. As noted earlier, the convergence of EM
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Figure 2.2: Power Curve for Three Methods: BM, EM and SEM
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Table 2.3: Performance Comparison ( δ = 3σ, n = 60, µ0
1 = 1, µ0

2 = 2)

m OP AV TI

BM

5 0.84 0.154
17 0.85 0.144
30 0.85 0.152
45 0.85 0.141

EM

5 0.85 0.152
17 0.84 0.160
30 0.85 0.141
45 0.83 0.153

SEM

5 0.83 0.161
17 0.86 0.155
30 0.85 0.140
45 0.84 0.151

and SEM is fast and at most two iterations would suffice. Comparison of EM and SEM

shows that with small m, EM has a larger OP. In the sense of complexity, EM follows a

more general framework compared with SEM while SEM is simpler in both theory and

application but with reduced power for small m.

In order to find the gross error magnitude, one can calculate the average of data for

the two segments based on the estimated change point m and finally, obtain the difference

between these calculated average values.

2.6 Conclusion

In this chapter, three methods for solving the mean shift detection problem are derived based

on Bayesian and EM approaches. The focus was on univariate data with single change. In

next chapter, this problem is solved taking into account the multivariate data with single

and multiple changes. Moreover, problems arising from prior selection and initialization of

EM are investigated.
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Chapter 3

Multivariate Mean Shift Detection

In this chapter, change point detection problem is formulated and solutions based on

Bayesian and EM methods are derived. This change detection corresponds to mean shift

detection in multivariate data.

In the following sections, a closed form solution to the Bayesian formulation of single

and multiple change point detection problem is first considered for multivariate data and

MAP is used for the estimation of the parameters. Moreover, considering the sensitivity of

the Bayesian approach to prior selection, EM is adopted to solve both single or multiple

change points detection problem. By comparison, it is shown that EM is more powerful

when priors are highly uncertain while the Bayesian approach has its advantage of less

computation demand.

3.1 Bayesian Change Point Detection

3.1.1 Problem Formulation for Single Change point

Here, a multivariate Bayesian formulation of change point detection is given where maximum

a posteriori (MAP) is applied to infer the change point detection. Throughout this work,

time instant for single change point is referred to as m and multiple time instants for

multiple change points are represented by the vector t = [t1, ..., tN ] where N is the total

number of change points. In addition, the covariance of data is assumed to be the same

before and after the change points.

Consider n observations from p variables form a p× n matrix as

D =


y11 y12 . . . y1m y1(m+1) . . . y1n

y21 y22 . . . y2m y2(m+1) . . . y2n
...

... . . .
...

... . . .
...

yp1 yp2 . . . ypm yp(m+1) . . . ypn

 = (Y1, Y2, ..., Ym, ..., Yn)

Y1, ..., Ym, ..., Yn are measurements of p variables from time instant 1 to n. Assume that at

the sampling instant m, a change occurs resulting in a shift in the mean vector. Thus, the
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whole data are split into two segments operating at two different means, µ1 and µ2, respec-

tively with the same covariance matrix Σ. This general problem formulation framework is

adopted throughout this work.

3.1.2 Existence of Change Point

If we are interested in verification of existence of change point, it is basically testing the

hypotheses of ”change” against ”no change”. In other words, two models are compared

with each other:

No change model (H0):

Yi ∼Np(µ1,Σ), i = 1, 2, ..., n

Change model (H1):

Yi ∼Np(µ1,Σ), i = 1, 2, ...,m

Yi ∼Np(µ2,Σ), i = m+ 1,m+ 2, ..., n

In order to perform the analysis, Bayes factor can be used as in[8]. It is a defined as ratio

of posterior to prior odds on H1 against H0 as

B(D) =

P (H1|D)
P (H0|D)

P (H1)
P (H0)

=
P (D|H1)

P (D|H0)

=

∫
P (D|µ1, µ2,m,Σ)P (µ1, µ2,Σ)P (m)∫

P (D|µ1,Σ)P (µ1,Σ)
(3.1)

where D is the data. In the case of unknown mean vectors and covariance, which is a general

case, the closed form of Bayes factor is derived in [8]. The decision rule for selecting one

hypothesis against the other is of the form

B(D) � l10P (H0)

l01P (H1)
(3.2)

lkj is the loss caused from deciding on Hk while Hj is true. Also there is no loss when correct

conclusions are made (lkk = ljj = 0). In determining the threshold of Bayes test, the prior

probabilities of each hypothesis along with the loss associated with every wrong decision is

considered. If one assumes equal probability for each hypothesis and also equivalent loss

for wrong decision then the threshold of Bayes factor can be written as

B(D) � 1 (3.3)

The closed form expression for Bayes factor can be derived as a function of hyperpa-

rameters of prior distributions. Having checked existence of change, in next sections, the

problem for both single and multiple change points detection is studied further.
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3.1.3 Single Change Point Detection

In this section, Bayesian solution is reviewed and a closed form solution for a single change

point problem is derived. This solution assists in solving multiple change points detection

problem. Using Bayesian analysis, the objective is to find P (m|D) which is the posterior

probability of change point given the data. According to Bayes rule, this probability is

equal to P (m,D)
P (D) . In the following, this posterior probability is derived in detail. Here, it is

assumed that observations are independent of each other and follow Gaussian distribution

as

Yi ∼Np(µ1,Σ), i = 1, 2, ...,m

Yi ∼Np(µ2,Σ), i = m+ 1,m+ 2, ..., n (3.4)

where µ1 6= µ2. The normal distribution function can be expressed as

Np(µ,Σ) = (2π)−p/2|Σ−1|1/2exp{−1

2
(y − µ)TΣ−1(y − µ)} (3.5)

The shift time, m, can occur anywhere from 1 to n− 1. The likelihood function of data, D,

is therefore of the form

P (D = (Y1, Y2, ..., Yn)|µ1, µ2,m,Σ) =

m∏
i=1

P (Yi|µ1,Σ)

n∏
i=m+1

P (Yi|µ2,Σ) (3.6)

where µ1, µ2 and m are to be determined. The priors for µ1, µ2 and m are taken as

P (µ1|µ0
1,Σ01) = Np(µ0

1,Σ01)

P (µ2|µ0
2,Σ02) = Np(µ0

1,Σ02)

P (m) = Uniform distribution (3.7)

where µ0
1,Σ10, µ

0
2,Σ20 are the hyperparameters of prior distributions and assumption of

uniform distribution of m follows from [7]. Denote β0 = (µ0
1,Σ10, µ

0
2,Σ20). Hence, the joint

distribution between observations and parameters is represented as

P (D,µ1, µ2,Σ, β0,m)

= P (D|µ1, µ2,Σ, β0,m)P (µ1, µ2,Σ, β0,m)

= P (D|µ1, µ2,Σ, β0,m)P (µ1|µ2,Σ, β0,m)P (µ2,m,Σ, β0)

= P (D|µ1, µ2,Σ, β0,m)P (µ1|µ2,Σ, β0,m)P (µ2|m,Σ, β0)P (m)

= P (D|µ1, µ2,Σ, β0,m)P (µ1|β0)P (µ2|β0)P (m) (3.8)

In derivation of (3.8), independence assumption of priors is incorporated. Moreover, the

prior distributions of µ1 and µ2 are completely determined by their hyperparameters β0. By

substituting the priors as in (3.7) and likelihood as in (3.6), into (3.8), the joint distribution

can be determined as

P (D,µ1, µ2,Σ, β0,m) = k1

m∏
i=1

P (Yi|µ1,Σ)

n∏
i=m+1

P (Yi|µ2,Σ)Np(µ0
1,Σ01)Np(µ0

2,Σ02) (3.9)
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where k1 is a constant.

With the likelihood and priors shown in (3.6) and (3.7), the joint distribution of data

and parameters has an explicit closed form expression as follows:

P (D,µ1, µ2,Σ, β0,m) = F1 × F2 (3.10)

where

F1 = C1exp{−
1

2

(
µT1 ∆−1

n µ1 − µT1 ∆−1
n Ωn − ΩT

n∆−1
n µ1 + ΩT

n∆−1
n Ωn

)
}×

exp{−1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi −BTA−1B)}

= C1exp{−
1

2
(µ1 − Ωn)′∆−1

n (µ1 − Ωn)} × exp{−1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi −BTA−1B)}

(3.11)

and

F2 = C2exp{−
1

2
(µ2 −Ψn)′ Λ−1

n (µ2 −Ψn)} × exp{−1

2
(µ0

2
T

Σ−1
02 µ

0
2 +

n∑
i=m+1

yTi Σ−1yi −DTC−1D)}

(3.12)

where C1 and C2 are constant and A,B,C and D are defined in Appendix A. The derivations

of F1 and F2 are given in Appendix A.

In order to determine the change point, first we need to integrate out µ1 and µ2 from

the joint distribution where F1 is a function of µ1 and F2 is a function of µ2. Integration of

F1 with respect to µ1 leads to∫ +∞

−∞
F1 dµ1 = C1exp{−

1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi −BTA−1B)}×∫ +∞

−∞
exp{−1

2
(µ1 − Ωn)′∆−1

n (µ1 − Ωn)} dµ1

= C1exp{−
1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi −BTA−1B)} × (2π)p/2|∆−1
n |−1/2

(3.13)

Note that the integration is with respect to µ1 which is a p-dimensional vector. Since the

integrand is a multivariate normal density function with mean Ωn and covariance ∆n, we

have used the following relation in the derivation of (3.13):∫ +∞

−∞
exp{−1

2
(µ1 − Ωn)′∆−1

n (µ1 − Ωn)} dµ1 = (2π)p/2|∆−1
n |−1/2 (3.14)

Similarly by integrating F2 with respect to µ2, we have∫ +∞

−∞
F2 dµ2 = C2exp{−

1

2
(µ0

2
T

Σ−1
02 µ

0
2 +

n∑
i=m+1

yTi Σ−1yi −DTC−1D)} × (2π)p/2|Λ−1
n |−1/2

(3.15)

28



Combining the marginal distribution of (3.13) and (3.15) yields

P (m|D) ∝
∫ ∫

P (D,µ1, µ2,Σ, β0,m)dµ1dµ2

= C1exp{−
1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi −BTA−1B)} × (2π)p/2|∆−1
n |−1/2×

C2exp{−
1

2
(µ0

2
T

Σ−1
02 µ

0
2 +

n∑
i=m+1

yTi Σ−1yi −DTC−1D)} × (2π)p/2|Λ−1
n |−1/2 (3.16)

The single change point can now be determined by maximizing (3.16) with respect to m

where m = 1, 2, ..., n− 1.

Having obtained a solution for single change point detection, one can use the results

obtained to solve the detection problem with multiple change points.

3.1.4 Problem Formulation for Multiple Change Points

In reality, the data can be subject to change at multiple time points. Consider a set of data

with length n and N possible change points. The shift points occur at t = [t1, ..., tN ]. In

other words, the data can be split into N + 1 segments: each segment has its own mean

vector. It is assumed that the covariance does not change before and after each change

point. Also, t0 = 1 and tN+1 = n. A similar problem was considered in [10] but it was

solved numerically based on MCMC method and Gibbs sampling. In this following section,

an explicit analytical solution is derived which will facilitate the optimization solution.

3.1.5 Multiple Change Points Detection

Using Bayesian methods requires a prior distribution for vector t. The change point can be

modelled by

ti+1 = ti + εi with εi ∼ P (λ) (3.17)

where εi is independently identically distributed (iid) with Poisson distribution [10]. λ is a

priori mean value of time intervals ti+1 − ti. Set λ = n
N+1 and thus

p(t|λ,N) = p(∆t|λ,N) =

N∏
i=0

P((ti+1 − ti)|λ) =

N∏
i=0

(e−λ
λ(ti+1−ti)

(ti+1 − ti)!
) (3.18)

If the data segments are represented as D = (Y0, Y1, ..., YN )T so that Yi = (y(ti + 1), y(ti +

2), ..., y(ti+1))T , then the likelihood function can be expressed as

P (D|µi, t,Σ, N) =

N∏
i=0

P (Yi|µi,Σ) (3.19)
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The prior of t is given by (3.18) and that of µi follows Gaussian distribution, i.e. P (µi) =

Np(µ0
i ,Σi0). Thus, the posterior probability can be written as

P (t, µi|D,λ,Σ, N) ∝ P (D|µi, t,Σ, N)P (t|λ,N)P (µi|N)

∝
N∏
i=0

P (Yi|µi,Σ)
N∏
i=0

[e−λ
λ(ti+1−ti)

(ti+1 − ti)!
P (µi)] (3.20)

In order to further derive the desired posterior with respect to the change point P (t|Y, λ,Σ, N),

one can integrate out (3.20) with respect to µi and obtain the marginal posterior distribu-

tion. In (3.20), the first and third terms depend on µi. Thus, following the same procedure

as in the derivation of (3.16), integrating out µi in (3.20) yields

P (t|Y, λ,Σ, N) ∝
N∏
i=0

(e−λ
λ(ti+1−ti)

(ti+1 − ti)!
)× Ckexp{−

1

2

N∑
i=0

(µ0
i
T

Σ−1
i0 µ

0
i

+

ti+1∑
j=ti+1

[yTj Σ−1yj ]−BT
i A
−1
i Bi)} × |∆−1

i |
−1/2 (3.21)

where Ck is a constant, |.| represents determinant of matrix and

Ai = (ti+1 − ti)Σ−1 + Σ−1
i0

Bi = (ti+1 − ti)Σ−1ȳ + Σ−1
i0 µ

0
i

ȳ =
1

ti+1 − ti

ti+1∑
i=ti

yi

∆i = A−1
i = ((ti+1 − ti)Σ−1 + Σ−1

i0 )−1 (3.22)

The next step is to maximize (3.21) with respect to the vector t = [t1, ..., tN ] and determine

the change points. i.e.,

t̂ = arg max
t
P (t|Y, λ,Σ, N) (3.23)

Having derived the closed form expression for marginal posterior probability, the change

points can be determined through optimization. This algorithm performs well provided

that the priors are selected appropriately. However, if selection of priors has considerable

uncertainty, an intuitive solution would be to improve the priors using available data. Using

EM algorithm, one can achieve this objective even if the priors are not chosen properly. In

next section, EM formulation of change point problem is presented.

3.2 Expectation Maximization(EM)

In chapter one, EM solution to change point detection is derived. But that solution was

limited to univariate data and single change point detection. In the following, we generalize

the solution to a broader range of problem.
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3.2.1 Multivariate EM for Single Change Point Detection

In this section, an EM algorithm is applied to solve single change point detection problem

as formulated earlier. To solve the problem, µ1 and µ2 are treated as the missing or hidden

variables, D = (Y1, Y2, ..., Yn) are the observed data and m is the parameter of the interest

to be determined. Thus, E-step can be expressed as

Q(m|m(k)) = Eµ1,µ2|Y,m(k){P (D,µ1, µ2|m)} (3.24)

In M-step, the maximization is performed with respect to the parameter, m, as

m(k+1) = arg max
m

Q(m|m(k)) (3.25)

In order to derive the Q-function in E-step, we write

P (D,µ1, µ2|m) = P (D|µ1, µ2,m)P (µ1, µ2|m)

= P (D|µ1, µ2,m)P (µ1|µ2,m)P (µ2|m) (3.26)

Since m, the shift time instant, is independent of the means, µ1 and µ2, and the two mean

vectors are also independent of each other, (3.26) can be written as

P (D,µ1, µ2|m) = P (D|µ1, µ2,m)P (µ1)P (µ2) (3.27)

By substituting (3.27) in (3.24), we have

Q(m|m(k)) = Eµ1,µ2|D,m(k){P (D|µ1, µ2,m)P (µ1)P (µ2)}

=

∫ +∞

−∞

∫ +∞

−∞
P (D|µ1, µ2,m)P (µ1)P (µ2)P (µ1, µ2|D,m(k))dµ1dµ2 (3.28)

Since µ1 and µ2 are independent, Q-function can be expressed as

Q(m|m(k)) =

∫ +∞

−∞

∫ +∞

−∞
P (D|µ1, µ2,m)P (µ1)P (µ2)P (µ1|D,m(k))P (µ2|D,m(k))dµ1dµ2

(3.29)

where P (µ1|D,m(k)) can be determined following the Bayesian rule such that

P (µ1|D,m(k)) =
P (D|µ1,m

(k))P (µ1|m(k))

p(D|m(k))

=
P (Y1, Y2, ..., Ym(k) |µ1,m

(k))P (Ym(k)+1, Ym(k)+2, ..., Yn|m(k))P (µ1)

P (D|m(k))

= k1P (Y1, Y2, ..., Ym(k) |µ1,m
(k))P (µ1) (3.30)

where k1 =
P (Y

m(k)+1
,Y
m(k)+2

,...,Yn|m(k))

P (D|m(k))
.

Similarly, P (µ2|D,m(k)) can also be derived as

P (µ2|D,m(k)) = k2P ((Ym(k)+1, Ym(k)+2, ..., Yn)|µ2,m
(k))P (µ2) (3.31)
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where k2 = P (Y1,Y2,...,Y
(k)
m |m(k))

P (D|m(k))
.

As a result, (3.29) can be rewritten as

Q(m|m(k)) = k1k2

∫ +∞

−∞

∫ +∞

−∞
P (Y |µ1, µ2,m)P (µ1)P (µ2)×

P (Y1:m(k) |µ1,m
(k))P (µ1)P (Ym(k)+1:n|µ2,m

(k))P (µ2)dµ1dµ2

= k3

∫ +∞

−∞
P (Y1:m|µ1,m)P (Y1:m(k) |µ1,m

(k))(P (µ1))2dµ1×∫ +∞

−∞
P (Ym+1:n|µ2,m)P (Ym(k)+1:n|µ2,m

(k))(P (µ2))2dµ2 (3.32)

where k3 = k1k2. Consequently, (3.32) can be simplified as

Q(m|m(k)) = k3

∫ +∞

−∞
E1dµ1

∫ +∞

−∞
E2dµ2 (3.33)

where E1 and E2 are

E1 = P (Y1:m|µ1,m)P (Y1:m(k) |µ1,m
(k))(P (µ1))2

E2 = P (Ym+1:n|µ2,m)P (Ym(k)+1:n|µ2,m
(k))(P (µ2))2 (3.34)

After some algebraic simplification, we have

Q(m|m(k)) = C1 × exp{−
1

2
(2µ0

1
T

Σ01
−1µ0

1 +
m∑
i=1

yTi Σ−1yi +
m(k)∑
i=1

yTi Σ−1yi −B1
TA1

−1B1)}×

(2π)p/2|∆nn
−1|−1/2×

C2 × exp{−
1

2
(2µ0

2
T

Σ02
−1µ0

2 +
n∑

i=m+1

yTi Σ−1yi +
n∑

i=m(k)+1

yTi Σ−1yi −D1
TG1

−1D1)}×

(2π)p/2|Λnn−1|−1/2 (3.35)

where C1 and C2 are constant and

A1 = mΣ−1 +m(k)Σ−1 + 2Σ01
−1

B1 = mΣ−1ȳ1 +m(k)Σ−1ȳ1k + 2Σ01
−1µ0

1

G1 = (n−m)Σ−1 + (n−m(k))Σ−1 + 2Σ02
−1

D1 = (n−m)Σ−1ȳ2 + (n−m(k))Σ−1ȳ2k + 2Σ02
−1µ0

2

∆nn = A1
−1,Λnn = G1

−1

ȳ1 =
1

m

m∑
i=1

yi, ȳ1k =
1

m(k)

m(k)∑
i=1

yi, ȳ2 =
1

n−m

n∑
i=m+1

yi, ȳ2k =
1

n−m(k)

n∑
i=m(k)+1

yi

(3.36)

Having derived the Q-function, the next step, the M-step, is to solve the following opti-

mization problem:

m(k+1) = arg max
m

Q(m|m(k)) (3.37)

32



where Q-function depends on both current estimate of the parameter m(k) and decision

variable m. In M-step of EM algorithm, this function is maximized with respect to m. In

other words, starting this loop with an initial value for m(0) = m0, E-step and M-step

iterate until no further change is observed in Q-function.

3.2.2 EM for Multiple Change Points Detection of Multivariate Data

Here, EM solution for single change point detection is extended in order to solve the multiple

change points detection problem as formulated in previous section. In this EM formulation,

the hidden variables are µi for i = 0, 1, ..., N . The vector t = [t1, ..., tN ] is the parameter to

be estimated. Thus, the E-step in EM can be represented by

Q(t|t(k)) = Eµ0,µ1,....,µN |D,t(k){P (Y, µ0, µ1, ...., µN |t)} (3.38)

where

P (D,µ0, µ1, ...., µN |t) =

N∏
i=0

P (Yi|µi,Σ)

N∏
i=0

P (µi) (3.39)

Thus, E-step can be formulated as

Q(t|t(k)) =

∫ +∞

−∞

∫ +∞

−∞
...

∫ +∞

−∞

N∏
i=0

P (Yi|µi,Σ)

N∏
i=0

P (µi)×

P (µ0|D, tk)P (µ1|D, tk)....P (µN |D, tk)dµ0dµ1...dµN (3.40)

In the derivation of (3.40), the independence assumption of priors are taken into account,

P (µi) = Np(µ0
i ,Σi0), for µi, i = 0, ..., N . Following the same derivation as (3.30) and (3.31)

for each P (µi|D, tk), we have

P (µi|D, tk) =
P (D|µi, tk)P (µi|tk)

P (D|tk)

=
P (Y0, Y1, ..., YN |µi, tk)P (µi)

P (D|tk)

=
P (Yi|µi, tk)P (Y0, Y1, ..., Yi−1, Yi+1, ..., YN |tk)P (µi)

P (D|tk)
= kiP (Yi|µi, tk)P (µi) (3.41)

where ki can be written as

ki =
P (Y0, Y1, ..., Yi−1, Yi+1, ..., YN |tk)
P (Y0, Y1, ..., Yi−1, Yi, Yi+1, ..., Yi|tk)

(3.42)
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Substituting (3.41) into (3.40) yields

Q(t|t(k)) = C1

∫ +∞

−∞
Np(Y0|µ0,Σ, t)Np(Y0|µ0,Σ, t

k)(Np(µ0|µ0
0,Σ00))2dµ0×∫ +∞

−∞
Np(Y1|µ1,Σ, t)Np(Y1|µ1,Σ, t

k)(Np(µ1|µ0
1,Σ10))2dµ1 × ...

....

∫ +∞

−∞
Np(YN |µ0,Σ, t)Np(Y1|µ1,Σ, t

k)(Np(µN |µ0
N ,ΣN0))2dµN (3.43)

where C1 is a constant. Using the same algebraic simplification as performed in (3.35) and

(3.36) for single change detection leads to

Q(t|t(k)) = C2

N∏
i=0

exp{−1

2
[
N∑
i=0

{2µ0
i
T

Σ−1
i0 µ

0
i +

∑
j∈[ti,ti+1]

[Y T
j Σ−1Yj ]−BiTAi−1Bi}]}(2π)p/2|∆i

−1|−1/2

(3.44)

where C2 is a constant, |.| represents determinant of matrix and

Ai = (ti+1 − ti)Σ−1 + (tki+1 − tki )Σ−1 + 2Σi0
−1

Bi = (ti+1 − ti)Σ−1ȳ + (tki+1 − tki )Σ−1ȳk + 2Σi0
−1µ0

i

ȳ =
1

ti+1 − ti

∑
j∈[ti,ti+1]

Yj

ȳk =
1

tki+1 − tki

∑
j∈[tki ,t

k
i+1]

Yj

∆i = A−1
i (3.45)

Using this Q-function, the M-step can be written as

t(k+1) = arg max
t
Q(t|t(k)) (3.46)

and consequently every change point can be determined through this optimization problem.

3.3 Discussion

In the following sections, we discuss the effects of prior in Bayesian formulation and initial

value selection in EM.

3.3.1 Prior Selection

The advantage of the Bayesian framework lies in the fact that one can combine the prior

with the observations through the likelihood. However, this advantage can also turn to

a disadvantage. Selection of prior is often subjective. In other words, converting prior

knowledge and belief into a mathematical prior distribution is not an easy task . If priors
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are improperly selected, false or misleading results could be expected and the posterior

expression may be affected by the priors significantly [21].

In this work, the prior distributions considered for mean vectors before and after the

change point have been assumed to follow a Gaussian distribution. For the change point, a

uniform prior distribution has been commonly selected for the single change point problem

[7] and a Poisson distribution for multiple change points problem [10]. The selection of

distribution for mean values has an impact on the posterior distribution. For instance, in

single change point problem, according to (3.16) one can see that selection of µ0
1 and µ0

2

can influence both B,D and consequently the final estimates. Assuming that one is not

aware of permissible range of mean value before and after the change, selection of improper

values for such hyperparameters of prior distribution can clearly lead to false detection if the

observed data are not sufficiently large. In other words, Bayesian method can be sensitive

to selection of these values as the prior. Using the EM algorithm, this problem can be

alleviated since EM works on conditional probability according to the most updated prior

based on the data and current estimation of parameters. If (3.16) and (3.35) are compared,

one can see that in (3.35), updating of parameters such as B, D and Q-function is in the

direction that leads to increase in the likelihood function and consequently converges to

an optimal value. However, EM is an optimization based algorithm and from optimization

perspective, EM algorithm has to deal with initial value which is discussed in detail in the

following section.

3.3.2 Initialization of EM Algorithm

Like other optimization techniques, EM can also be sensitive to the selection of initial value.

EM increases the likelihood at each iteration till convergence to a stationary point which

could be a local optimum. Consequently, initial value selection can play an important role.

Moreover, the rate of convergence and the number of iterations can also be dependent on

the initial values. In the context of multivariate data, it can be even worse [35]. A good

reference on properties of EM can be found in [22].

There are various strategies developed to tackle this problem. Some are based on mul-

tiple random initial values to produce multiple solutions and then select the one that leads

to the largest likelihood. Some are based on clustering methods [36][37]. Initialization of

EM using Principal Component Analysis (PCA) is another approach used in [38]. In [35],

a detailed review and a comparative study of existing methods for selection of initial values

are given.

In this work, random sets of initial values are selected and the one that maximizes the

likelihood is obtained. This method for selection of the initial value has been proven to be

effective.
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3.4 Simulation

In this section, two simple numerical examples are given first to demonstrate the proposed

algorithms, followed by a CSTR simulation example.

3.4.1 Performance Evaluation

In chapter two, two performance measures are defined to evaluate the power of algorithm.

One is overall power (OP) and the other one is probability of false alarm (AVTI). These

two performance measures are applied here to change point detection problem.

3.4.2 Single Change Point Simulation

In order to simulate the problem of multivariate data with single change point, two corre-

lated variables (p = 2) are generated. The simulation parameters are as follows:

p = 2, n = 200 , Σ =

(
1 0.5

0.5 1

)
m = 112, µ0

1 = [3, 4]T , µ0
2 = [3, 5]T

Σ01 = Σ02 = I2×2 , δ = [1, 1]T

A time instant m = 112, the bias in added to measurements. The actual mean before

the shift is µ = [1, 2]T . The magnitude of actual shift is δ = [1, 1]T which is equal to one

standard deviation of the noise added to the data. The measurements y = [y1, y2]T are

illustrated in Figure 3.1. The results of MAP solution to the Bayesian method is shown in

Figure 3.2. The mode of the marginal posterior is exactly the same as the true m which is

where the change point occurs. Figure 3.3 shows the result based on EM algorithm, where

Q−function for the last iteration is illustrated. The number of iteration to convergence

is two indicating fast convergence of EM. This function has reached its peak point at true

change point. In addition, in both Figures 3.2 and 3.3, y-axes are shown in logarithmic scale.

The results of EM for 3 different magnitudes of δ are shown in Figure 3.4. Apparently, for

larger bias, which are easy to detect, the peak is sharper.

To evaluate the repeatability of Bayesian and EM methods, a Monte Carlo simulation

of 100 runs is performed. For different bias sizes, the results of overall power, OP and

AV TI are shown in Table ??. In this table, σi represents the variance of variable i. As

we can see from Table 1, the power of EM especially for small magnitudes of bias is larger

than Bayesian approach. Obviously, as magnitude of bias increases, the power increases

and hence the rate of false detection decreases accordingly.

As mentioned earlier, improper selection of priors can affect the Bayesian method. To

illustrate this, improper values are selected for hyperparameters of prior distribution, i.e.

µ0
1 and µ0

2. In such a case, the Bayesian method gives wrong results. In other words, the

maximum of marginalized posterior occurs at a wrong location. As an example, the results

of Bayesian and EM are shown in Figure 3.5 for µ0
1 = [20; 30]T and µ0

1 = [25; 35]T . Note

that the true shift point is m = 112. Obviously, Bayesian method cannot detect the change
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point correctly while EM is able to identify it. The number of iteration for EM algorithm

is three in this case indicating fast convergence of EM.

As a comparison, both Bayesian and EM have advantages and disadvantages. EM shows

sensitivity to initial value selection while Bayesian inference is sensitive to priors. However,

EM algorithm can be alleviated from its disadvantage by randomization of the initial values.

On the other hand, due to iterative nature, EM has heavier computation than Bayesian.

In the next simulated example, multiple change point detection is investigated.
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Figure 3.1: Two Correlated Measurements, y = [y1, y2]T

3.4.3 Multiple Change Points Simulation

To evaluate the performance of Bayesian approach and the proposed EM for multiple shifts

of correlated variables, random variables with p = 3 are generated and the number of

change points is set as N = 3. The change points are denoted as t = [t1, t2, t3]. Simulation

parameters are selected as

p = 3, n = 50, N = 3, λ = 50
4 = 12.5, Σ =

 3 0.5 0.1
0.5 1 0.75
0.1 0.75 1

,

t = [t1, t2, t3] = [12, 27, 43], δ1 = [1.2, 0, 0]T , δ2 = [0, 1.3, 0]T , δ3 = [0, 0, 1.4]T Σ0i = I3×3 ,

i = 0, 1, 2, 3 µ0
0 = [2, 2, 2]T , µ0

1 = [2, 2, 2]T , µ0
2 = [3, 3, 3]T , µ0

3 = [2, 2, 2]T

The bias is added to every variable as follows: at time t = t1, the bias with magnitude

δ1 is added to measurement vector, i.e. y = [y1, y2, y3]T ; at time t = t2, the bias with

magnitude δ2 is added to y; at time t = t3, the bias of magnitude δ3 is introduced to

y. The measurements are shown in Figure 3.6. The results of simulation based on the
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Figure 3.2: Logarithmic Scale of Bayesian Joint Distribution Diagram
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Figure 3.3: Logarithmic Scale of Q−function at the Last Iteration of EM
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Figure 3.4: The Q−function at the Last iteration (3rd Iteration) for Different Magnitudes
of Bias
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Figure 3.5: The Bayesian Marginalized Joint Distribution (Upper Diagram) and Q-function
of EM (Lower Diagram)for µ0

1 = [20; 30]T and µ0
1 = [25; 35]T
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Table 3.1: Performance Comparison of Bayesian Method (BM) and EM for Different biases
(n = 200, m = 112, µ0

1 = [3; 4], µ0
2 = [3; 5])

Bias OP AV TI

BM

0.5σi 0.2 0.8
1σi 0.36 0.64

1.5σi 0.56 0.44
2σi 0.79 0.21

2.5σi 0.82 0.18
3σi 0.92 0.08

3.5σi 1 0

EM

0.5σi 0.32 0.68
1σi 0.37 0.63

1.5σi 0.59 0.41
2σi 0.77 0.23

2.5σi 0.89 0.11
3σi 1 0

3.5σi 1 0

Bayesian method using (3.21) are illustrated in Figure 3.7. Apparently, the MAP gives the

maxima at true change points for all three change points. A similar problem was considered

using MCMC method in [10] which requires a more complex computation compared with

MAP since our Bayesian algorithm has used an analytical solution as derived. As a result,

this optimization problem can be simply solved using an integer optimization that in the

simplest form, can be performed using function evaluation.

Applying similar simulation parameters as the first example, the Q-function in EM is

shown in Figure 3.8. The initial values in EM are selected using the procedure mentioned

in Section 3.3.2 The true change points are t = [t1, t2, t3] = [12, 27, 43] and the number

of samples is n = 50. In Table 3.2, for various initial values, the maximum of Q-function

at the last iteration (logarithm of Q-function) as well as the final estimates of shift points

are given. As we can see, among the randomly selected initial values, t = [20, 25, 47] is

the initial value corresponding to largest value which has also converged to true points.

The number of iteration for all initial values excluding row (1) is two. For initial values

t = [10, 25, 40], the number of iteration is three which shows the effect of selection of initial

value on the number of iteration.

Monte Carlo simulation with 100 runs is also performed for this example. The results

of overall power OP and AV TI for three different magnitudes of bias are depicted in Table

3.3 using Bayesian method (BM) and EM. The results are consistent with those in previous

example. For small sizes of bias, the power of EM is larger than the Bayesian method.

The test of improper values of hyperparameters is also performed. The hyperpa-

rameters are selected as: µ0
0 = [10; 10; 10]T , µ0

1 = [12; 12; 12]T , µ0
2 = [13; 13; 14]T and
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µ0
1 = [25; 25; 35]T . EM is capable of estimating the true shift points while Bayesian method

cannot correctly identify them.
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Figure 3.6: Three Measurement y = [y1, y2, y3] with Different Change Points

Table 3.2: Initialization of EM in Multiple Change Points Problem. True Change points
are t = [12, 27, 43]

Row t1 t2 t3 Qmax Final Solution

1 10 25 40 -166.61 t = [11, 27, 43]
2 10 20 35 -155.01 t = [19, 27, 43]
3 11 15 30 -146.25 t = [12, 14, 27]
4 13 28 45 -136.86 t = [15, 24, 43]
5 15 30 46 -134.31 t = [12, 27, 43]
6 20 25 47 -133.104 t = [12, 27, 43]
7 30 35 48 -160.92 t = [29, 32, 44]
8 15 20 38 -159.69 t = [11, 26, 42]

The next case study is selected to investigate the problem of change point detection in

a chemical engineering example.

3.4.4 Continuous Stirred Tank Reactor (CSTR)

To further test the change point determination in correlated multivariate data, a chemical

process is selected. The irreversible exothermic reaction A → B occurs inside a constant-

volume reactor cooled by a single coolant stream. The system dynamics as shown in [39]
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Figure 3.7: Bayesian Marginalised Probability Density (Logarithmic Scale) for Multiple
Change Points
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Figure 3.8: Q-function (logarithmic Scale) for Multiple Change Points
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Table 3.3: Performance Comparison of Bayesian Method (BM) and EM for Different biases
(n = 50, t = [12, 27, 43], µ0

0 = [2, 2, 2]T , µ0
1 = [2, 2, 2]T , µ0

2 = [3, 3, 3]T , µ0
3 = [2, 2, 2]T )

Bias OP AV TI

BM

0.5σi 0.33 0.67
1σi 0.42 0.58

1.5σi 0.56 0.44

EM

0.5σi 0.39 0.61
1σi 0.53 0.47

1.5σi 0.58 0.42

can be written as

CA(t)

dt
=
q(t)

V
(CA0(t)− CA(t))− k0CA(t)exp(− E

RT (t)
) (3.47)

T (t)

dt
=
q(t)

V
(T0(t)− T (t)) +

∆Hk0CA(t)

ρCp
exp(− E

RT (t)
)+

ρcCpc
ρCpV

qc(t){1− exp(
−hA

qc(t)ρCp
)}(Tc0 − T (t)) (3.48)

The parameter definition and nominal values for CSTR are illustrated in Table 3.4. The

states of the system are CA (concentration of component A) and T (the reactor tempera-

ture). The outputs are the same as states but with measurement noise. The measurement

noise added to each output is of Gaussian distribution with mean zero and standard devi-

ation 10% of the states. The input is coolant flow rate, qc, which determines the operating

points varying within the interval [97 109]. By changing the input, the operating point

changes and this affects the outputs accordingly. In this study, initially a constant input

qc = 97 is fed to the system so the system operates under the steady state condition.

In order to introduce a change to the measurement, at a certain time instant, the system

input changes from one operating point to another driving the outputs to a new condition.

The histograms of data before (with white colour) and after (with grey colour) change

point are shown in Figure 3.9. The mean values of outputs before and after the change are

close to each other. The time trend plots of measurements are also shown in Figure 3.10.

The collected data are down sampled so that the dynamics of process or transient response

can be ignored and only steady state conditions are considered. The input is changed at

time t = 159 with the magnitude of change being 2 L/min. When this occurs, the outputs

start to change after a short delay. EM and Bayesian methods are applied to determine the

time points at which the outputs have changed.

The parameters of EM and BM are: µ0
1 = [0.5; 410], µ0

2 = [0.5; 420], Σ01 = Σ02 = I2×2.

In the case of EM, the number of iterations to convergence is 2 corresponding to the initial

value m = 80. The results of Q-function with respect to time, for the two iterations of EM,

as well as Bayesian joint probability are illustrated in Figure 3.11. In both cases, y-axis is
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in logarithmic scale.

Table 3.4: Model Parameters for the CSTR

Parameters Nominal Values

production concentration of component A,CA output 1
temperature of the reactor, T output 2

feed concentration of component A,CA0 1mol/L
feed temperature, T0 350.0 K
specific heats,Cp, Cpc 1 cal/(gk)

liquid density, ρ, ρc 1× 103g/L
heat of reaction, −∆H −2× 105cal/mol

activation energy term,E/R 1× 104K
reaction rate constant, k0 7.2× 1010min−1

heat transfer term, hA 7× 105cal/(minK)
reactor volume, V 100L

inlet coolant temperature, Tc0 350K
process flow rate,q 100L/min

coolant flow rate,qc input

As shown in Figure 3.11, in the second iteration, the increase in Q-function is apparent.

From this, one can see that both methods show successful detection of change point at

t = 162.

The effects of improper selection of priors are also investigated. If hyperparameters

are µ0
1 = [0.8; 400], µ0

2 = [0.8; 410], then Bayesian method has false detection while EM

is capable of detecting the change point. Using EM, depending on initial values, the Q-

function is different. For some initial values, EM may exhibit some sorts of non-convergent

behavior.

3.5 Experimental Evaluation: Hybrid Tank System

In order to evaluate the performance of change point detection using the proposed solution,

the method is tested on real data obtained from experimental studies of a hybrid tank

system. The schematic of hybrid tank is shown in Figure 3.12. This system was considered

in the literature [40] for hybrid modelling, fault detection and reconfiguration. It consists

of three connected tanks, six on/off valves and two pumps. The valves can be manipulated

to change the flow rate to or out of these tanks. By opening or closing these valves, the

system dynamics changes accordingly.

There are two cascade loops for the left and right tanks which control the levels of these

tanks by manipulating the set point of flow controllers. Two proportional controllers are

designed to maintain the level inside the left and right tank approximately at 75% percent.

At first, the valves V 1, V 2, V 3, V 4 are closed and V 5 to V 9 are open.
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Figure 3.9: Histogram of Product Concentration (CA) and Reactor Temperature (T) Before
(white) and After Change Point(Grey)
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Figure 3.11: Q-function of EM (Upper Plot) and Integrated Joint Probability of Bayesian
(Lower Plot) for CSTR System

Three changes are considered in this experiment. As the level in both left and right

tanks reach 75%, the valves V 1 and V 3 are open imposing a change in levels of the tanks.

In order to introduce the second change, the valves V 2 and V 4 are open resulting in a

second change in the tank levels. Having reached the second steady state, the valves V 1

and V 3 are closed leading to the third change. The left and right levels as well as the valves

positions are shown in Figure 3.13. Note that logic value of 1 indicates close position and 0

indicates open position. First, by opening the valves V 1 and V 3, the level of left tank starts

to decrease but the right tank does not experience a significant change. However, opening

V 2 and V 4 in Figure 3.13 causes both levels to change. The magnitude of level change is

more significant for the right tank than the left tank. Finally, by closing V 1 and V 3, both

tanks experience a change in levels.

The hyperparameters selected for prior distributions are µ0
1 = [70; 70], µ0

2 = [71; 72],

µ0
3 = [71; 72], µ0

4 = [71; 72], Σ01 = Σ02 = Σ03 = Σ04 = I2×2. Q-function values with respect

to three variables t1, t2 and t3 are illustrated in Figure 3.14. In order to evaluate the values of

Q-function, various combinations of time instants are evaluated leading to high-dimensional

matrix of Q. This dimension increases depending on the number of samples.

The results verify successful detection of the time instants at which the system dynamics

is subject to change. Using such parameters in Bayesian method also leads to successful

detection of change points.
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Figure 3.12: Schematic of Hybrid Tank

50 100 150 200 250 300
0

1

2

Sample

Valve Status

 

 

50 100 150 200 250 300
70

72

74

76

78

80

Sample

L
e
ft
 T

a
n
k 

L
e
ve

l (
%

)

50 100 150 200 250 300
70

72

74

76

78

80

Sample

R
ig

h
t 
T

A
n
k 

L
e
ve

l (
%

)

V1& V3 
V2 & V4

1=Close,
0=Open

Figure 3.13: Valve Status( Upper Plot), left Tank Level(Middle Plot) and Right Tank
Level(Lower Plot)

47



0 50 100 150 200 250 300
−3000

−2500

−2000

−1500

−1000

t
1
 (Sample)

Q
−

fu
n

c
ti
o

n

0 50 100 150 200 250 300
−3000

−2500

−2000

−1500

−1000

t
2
 (Sample)

Q
−

fu
n

c
ti
o

n

0 50 100 150 200 250 300
−3000

−2500

−2000

−1500

−1000

t
3
 (Sample)

Q
−

fu
n

c
ti
o

n

Figure 3.14: Q−function of EM for Hybrid System

3.6 Conclusion

In this chapter, Expectation Maximization (EM) is applied to the change point detection

problem. The analytical solution of EM is derived for multivariate data for both single and

multiple change points. In addition, a closed form of posterior probability is also derived

for the Bayesian approach and MAP is used to infer the parameters. The performance of

Bayesian and EM is compared for various scenarios of priors. It is shown that Bayesian

inference is sensitive to the selection of priors but EM may show sensitivity to initial values

for the iteration. The performance of proposed algorithms is evaluated using several exam-

ples including a CSTR process, one experimental case study and two simulated examples.

The results show satisfactory performance of both Bayesian and EM methods. In the case

of small changes and improper priors, however, EM demonstrates better performance. On

the other hand, using EM approach, the challenges in selection of proper initial values and

hence tackling the problem of non-convergent behaviour or local optimum can be regarded

as its drawback. Besides, due to several numbers of iterations required in EM, it requires

more computation compared with Bayesian approach.

In next chapter, the change point detection problem is more extended to unknown

covariance and changing covariance.
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Chapter 4

Multivariate Change Detection in
the Presence of Unknown and
Changing Covariance

4.1 Introduction

In [41], the change point problem was solved for mean shift detection with known and

constant covariance. In real data, however, the covariance of data is often unknown and

varying. One way to deal with this problem is to estimate the covariance from the data. This

approach, in the presence of several changes in the mean of data may not work efficiently or

may not work at all without knowing the change instances. An alternative way to handle

this is through incorporation of prior knowledge in terms of prior distributions for this

unknown parameter. In this chapter, a Bayesian data analysis in the context of parameter

estimation is reviewed first, followed by solving the change point detection problem in the

presence of unknown covariance through EM algorithm. Then, the problem is extended to a

more general framework where both mean and covariance of data, as unknown parameters,

can change simultaneously.

As mentioned before, EM has a flexible framework through which several problems can

be tackled. For instance, EM handles improper priors more effectively than the Bayesian

method. This is one of the main advantages of using EM as noted earlier while it may be

computationally heavier. In previous chapter, this advantage was demonstrated through

several examples. In this chapter, the focus is on derivation of EM solution, as one of the

most efficient methods in solving change point detection problem.

4.2 Preliminary

Assume that in a sequence of independent and identically distributed (i.i.d) data, both mean

and covariance are unknown and the objective is to estimate the mean and covariance of the

data. A commonly used prior distribution for covariance matrix is Inverse Wishart (IW)
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distribution as

P (Σ|ν0,Ψ0) =
|Ψ0|

ν0
2 |Σ|−

ν0+p+1
2 exp(−tr(Ψ0Σ−1)

2 )

2
ν0p
2 Z(ν0, p)

(4.1)

where

Z(n, p) = πp(p−1)/4
p∏
i=1

Γ(
n+ 1− i

2
) (4.2)

and ν0 is degrees of freedom. Note that one must have ν > p − 1. Ψ0 is p × p positive

definite matrix. Also, assume a Gaussian prior distribution for the mean [21] as

P (µ|µ0,
Σ

k0
) = (2π)−p/2|Σ|−1/2exp{−k0

2
(µ− µ0)TΣ−1(µ− µ0)} (4.3)

where k0 and µ0 are the hyperparameters. From (4.3), we can see that the prior distribution

of mean depends on Σ. In this definition, a hierarchial prior structure is used to take into

account the correlated priors which provides a more general framework. In the context of

Gaussian distribution assumption for the data, the likelihood for multivariate data can be

expressed as

P (y|µ,Σ) = (2π)−np/2|Σ|−n/2
n∏
i=1

exp{−1

2
(yi − µ)TΣ−1(yi − µ)} (4.4)

= (2π)−np/2|Σ|−n/2exp{−1

2

n∑
i=1

[(yi − µ)TΣ−1(yi − µ)]} (4.5)

= (2π)−np/2|Σ|−n/2exp{−1

2
[(n− 1)s2 + n(ȳ − µ)TΣ−1ȳ − µ)]} (4.6)

where s = 1
n−1

∑n
i=1(yi − ȳ)TΣ−1(yi − ȳ). The product of priors and the likelihood results

in joint posterior as

P (µ,Σ|y) ∝ P (y|µ,Σ)× P (µ|µ0,
Σ

k0
)× P (Σ|ν0,Ψ0)

∝ (2π)−np/2|Σ|−n/2exp{−1

2

n∑
i=1

[(yi − µ)TΣ−1(yi − µ)]}×

(2π)−p/2|Σ|−1/2exp{−k0

2
(µ− µ0)TΣ−1(µ− µ0)}

|Ψ0|
ν0
2 |Σ|−

ν0+p+1
2 exp(−tr(Ψ0Σ−1)

2 )

2
ν0p
2 Z(ν0, p)

∝ |Ψ0|
ν0
2 |Σ|−1/2|Σ|−

n+ν0+p+1
2 exp[−1

2
{tr(Ψ0Σ−1) + (n− 1)s2 + n(ȳ − µ)TΣ−1ȳ − µ)+

k0(µ− µ0)TΣ−1(µ− µ0)}] (4.7)

After some algebraic simplification such as completing the square, the joint posterior is

derived as

P (µ,Σ|y) ∝ |Ψ0|
ν0
2 |Σ|−1/2|Σ|−

n+ν0+p+1
2 exp[−1

2
{tr(Ψ0Σ−1) + (n− 1)s2+

k0n

k0 + n
(ȳ − µ)TΣ−1(ȳ − µ)}]× exp[−1

2
{(k0 + n)(µ− µn)TΣ−1(µ− µn)}] (4.8)
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The following matrix properties have been used in derivation of (4.8):

xTΣ−1x = tr(xTΣ−1x) (4.9)

tr(A) + tr(B) = tr(A+B) for two square matrices A, B (4.10)

tr(AB) = tr(BA) for two square matrices A, B (4.11)

tr(xxT ) = tr(xTx) (4.12)

tr(xTσ−1x) = tr(σ−1xxT ) = tr(xxTσ−1) (4.13)

The joint posterior of (4.8) is Normal-Inverse Wishart (NIW) distribution expressed in the

form of N(µ|µn, (k0 + n)−1Σ)× IW (Σ−1|νn,Ψn) as

P (µ,Σ|y) ∝ |Ψn|
νn
2 |Σ|−

νn+p+1
2 exp[−1

2
tr(ΨnΣ−1)]

× |Σ|−1/2exp[
kn
2

(µ− µn)TΣ−1(µ− µn)] (4.14)

where νn = ν0 + n, kn = k0 + n, µn = 1
k0+n(k0µ0 + nȳ) and Ψn = Ψ0 +

∑n
i=1(yi − ȳ)(yi −

ȳ)T + k0n
k0+n(ȳ − µ0)(ȳ − µ0)T . Thus, given the data and Σ, the marginal probability of µ

can be written as

P (µ|Σ, Y ) = N(µ|µn, (kn)−1Σ) ∝ exp[kn
2

(µ− µn)Σ−1(µ− µn)] (4.15)

and the marginal probability of Σ is derived as

P (Σ|Y ) = IW (Σ−1|νn,Ψn) (4.16)

4.3 Expectation Maximization (EM) Algorithm

EM algorithm is based on maximum likelihood estimation principle. This method was

first introduced by [26] in 1977. Numerous applications in various areas can be found in

literature based on this method such as in machine learning, computer vision, medical

imaging, mixture models, speech recognition, etc. It is effective especially when it is not

easy to find the maximum of P (parameter|data) directly [21] [22]. This algorithm consists

of iteration between two steps: expectation-step or E-step and maximization-step or M-

step. In other words, EM can be formulated as (1) finding the conditional expectation with

respect to missing variables given the data and the current estimate of the parameter and

(2) maximizing the expectation derived in the previous step to estimate the parameters

[21]. Convergence of EM algorithm is guaranteed because at each iteration, the likelihood

function is non-decreasing [22]. In this framework, E-step can be formulated as

Q(θ|θ(k)) = EZ|D,θ(k){P (D,Z|θ)} (4.17)

where Z is the missing data or hidden variable, D is the observed data and θ is the parameter

to be estimated. θ(k) is the current estimate of parameter. In essence, in E-step, missing data
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are marginalized given the observation and the current estimate of unknown parameters. In

other words, in E-step, a conditional expectation is derived where, depending on the types of

missing variables, continues or discrete variables, an integration or summation is computed.

In the M-step, the new parameter, θ(k+1), is chosen so that it maximizes Q(θ|θ(k)); that is,

Q(θ(k+1)|θ(k)) ≥ Q(θ|θ(k)),∀θ (4.18)

M-step can be expressed as

θ(k+1) = arg max
θ
Q(θ|θ(k)) (4.19)

Starting EM with initial values for the parameters, E-step and M-step are repeated until a

suitable stopping rule criterion is satisfied [22].

4.4 EM in Change Detection with Unknown Mean and Co-
variance

In the following, the problem is formulated for occurrence of single change in the mean of

multivariate data.

4.4.1 Problem Formulation for Single Change Point Detection

Consider that n observations from p variables form a p× n matrix as

D =


y11 y12 . . . y1m y1(m+1) . . . y1n

y21 y22 . . . y2m y2(m+1) . . . y2n
...

... . . .
...

... . . .
...

yp1 yp2 . . . ypm yp(m+1) . . . ypn

 = (Y1, Y2, ..., Ym, ..., Yn)

Y1, ..., Ym, ..., Yn are measurements of p variables from time instant 1 to n. Assume that

at the sampling instant m, a change occurs resulting in a shift in the mean vector. As a

result, the whole data are split into two segments operating at two different means, µ1 and

µ2, respectively with the same but unknown covariance matrix Σ. Assume that the mean

of data before change is µ1 and after change is µ2. As discussed in Section 4.2, the prior

distributions for unknown parameters can be selected as

P (µ1|µ0
1,

Σ

k01
) = (2π)−p/2|Σ|−1/2exp{−k01

2
(µ1 − µ0

1)TΣ−1(µ1 − µ0
1)}

P (Σ|ν0,Ψ0) =
|Ψ0|

ν0
2 |Σ|−

ν0+p+1
2 exp(−tr(Ψ0Σ−1)

2 )

2
ν0p
2 Z(ν0, p)

(4.20)

Under the EM framework, µ1, µ2,Σ are treated as hidden variables or missing data. The

unknown parameter is the time instant at which the change occurs. Hence, E-step can be

formulated as

Q(m|m(k)) = Eµ1,µ2,Σ|Y,m(k){P (Y, µ1, µ2,Σ|m)} (4.21)

=

∫ ∫ ∫
P (Y, µ1, µ2,Σ|m)P (µ1, µ2,Σ|Y,m(k))dµ1dµ2dΣ (4.22)
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The first term in integrator of (4.22) can be written as

P (Y,µ1, µ2,Σ|m) = P (Y |µ1, µ2,Σ,m)P (µ1|Σ,m)P (µ2|Σ,m)P (Σ|m)

= P (Y1:m|µ1,Σ,m)P (Ym+1:n|µ2,Σ,m)P (µ1|Σ)P (µ2|Σ)P (Σ)

=

m∏
i=1

N (Yi|µ1,Σ)

n∏
i=m+1

N (Yi|µ2,Σ)N (µ1|µ0
1, (k01)−1Σ)N (µ2|µ0

2, (k02)−1Σ)IW (ν0,Ψ0)

(4.23)

Note that it is reasonable to assume that m is dependent of µ1, µ2 and Σ and this fact has

been used in the derivation of (4.23). The second term in (4.22) can be expressed as

P (µ1, µ2,Σ|Y,m(k)) = P (µ1|Σ, Y,m(k))P (µ2|Σ, Y,m(k))P (Σ|Y,m(k)) (4.24)

In derivation of (4.24), we have used the fact that given the change point m(k), µ1 and µ2

are conditionally independent. According to Bayesian analysis as in the previous section,

P (µ1|Σ, Y,mk) and P (µ2|Σ, Y,mk) can be derived similarly as in the derivation of (4.15).

Thus, one can write

P (µ1|Σ, Y,m(k)) ∼ N (µ1|µ1mk, (k1mk)
−1Σ)

P (µ2|Σ, Y,m(k)) ∼ N (µ2|µ2mk, (k2mk)
−1Σ) (4.25)

and since Σ is the the same for all the n observations, from (4.16) we have

P (Σ|Y,m(k)) = IW (νn,Ψn) (4.26)

where the parameters are defined as

νn = ν0 + n (4.27)

k1mk = k01 +m(k) (4.28)

k2mk = k02 + n−m(k) (4.29)

µ1mk =
1

k01 +m(k)
(k01µ

0
1 +m(k)ȳ1) (4.30)

µ2mk =
1

k02 + n−m(k)
(k02µ

0
2 + (n−m(k))ȳ2) (4.31)

Ψn = Ψ0 +

m(k)∑
i=1

(yi − ȳ1)(yi − ȳ1)T +

n∑
i=m(k)+1

(yi − ȳ2)(yi − ȳ2)T+

k01m
(k)

k01 +m(k)
(ȳ1 − µ0

1)(ȳ1 − µ0
1)T +

k02(n−m(k))

k02 + n−m(k)
(ȳ2 − µ0

2)(ȳ2 − µ0
2)T (4.32)

Thus, (4.24) yields

P (µ1, µ2,Σ|Y,m(k)) = N (µ1|µ1mk, (k1mk)
−1Σ)N (µ2|µ2mk, (k2mk)

−1Σ)IW (νn,Ψn) (4.33)
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By substituting (4.25) and (4.26) into (4.22), we have

Q(m|m(k)) =

∫
µ1

∫
µ2

∫
Σ

m∏
i=1

N (Yi|µ1,Σ)
n∏

i=m+1

N (Yi|µ2,Σ)N (µ1|µ0
1, (k01)−1Σ)

N (µ2|µ0
2, (k02)−1Σ)IW (ν0,Ψ0)N (µ1|µ1mk, (k1mk)

−1Σ)×

N (µ2|µ2mk, (k2mk)
−1Σ)IW (νn,Ψn)dµ1dµ2dΣ (4.34)

This integration can be simplified as

Q(m|m(k)) =

∫
Σ

∫
µ1

[

m∏
i=1

N (Yi|µ1,Σ)N (µ1|µ0
1, (k01)−1Σ)N (µ1|µ1mk, (k1mk)

−1Σ)]dµ1

×
∫
µ2

[

n∏
i=m+1

N (Yi|µ2,Σ)N (µ2|µ0
2, (k02)−1Σ)N (µ2|µ2mk, (k2mk)

−1Σ)]dµ2

× [IW (ν0,Ψ0)IW (νn,Ψn)]dΣ (4.35)

The first inner integration in (4.35) is with respect to µ1. Denote the first inner integration

in (4.35) as Z1. We have

Z1 =

∫
µ1

[

m∏
i=1

N (Yi|µ1,Σ)N (µ1|µ0
1, (k01)−1Σ)N (µ1|µ1mk, (k1mk)

−1Σ)]dµ1

= (2π)−mp/2|Σ|−m/2(2π)−p/2|(k01)−1Σ|−1/2(2π)−p/2|(k1mk)
−1Σ|−1/2×∫

µ1

exp{−1

2
{
m∑
i=1

[(yi − µ1)TΣ−1(yi − µ1)] + k01(µ1 − µ0
1)TΣ−1(µ1 − µ0

1)}+

k1mk(µ1 − µ1mk)
TΣ−1(µ1 − µ1mk)}}dµ1 (4.36)

After some algebraic simplification such as completing the square, one can write

Z1 =

∫
µ1

...dµ1 = (2π)−(m+1)p/2(k1mk)
p/2(k01)p/2|Σ|−m/2−1|∆m|1/2

× exp{−1

2
[
m∑
i=1

(yTi Σ−1yi) + k01µ
0
1
T

Σ−1µ0
1 + k1mkµ

T
1mkΣ

−1µ1mk −BTA−1B]} (4.37)

where

A = (k01 +m+ k1mk)Σ
−1 (4.38)

∆m = A−1 (4.39)

B = Σ−1(
m∑
i=1

yi − k01µ
0
1 − k1mkµ1mk) (4.40)

Denote the second inner integration in (4.35) as Z2. Following the same approach with

respect to µ2 as derivation of Z1 yields

Z2 =

∫
µ2

...dµ2 = (2π)−(n−m+1)p/2(k2mk)
p/2(k02)p/2|Σ|−(n−m)/2−1|Ωm|1/2

exp{−1

2
[

n∑
i=m+1

(yTi Σ−1yi) + k02µ
0
2
T

Σ−1µ0
2 + k2mkµ

T
2mkΣ

−1µ2mk −DTC−1D]} (4.41)
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where

C = (k02 + n−m+ k2mk)Σ
−1 (4.42)

Ωm = C−1 (4.43)

D = Σ−1(

n∑
i=m+1

yi − k02µ
0
2 − k2mkµ2mk) (4.44)

Multiplying (4.37) by (4.41) results in

Z1 × Z2 = (2π)−(n+2)p/2(k1mk)
p/2(k2mk)

p/2(k01)p/2(k02)p/2|Σ|−n/2−2|∆m|1/2|Ωm|1/2×

exp{−1

2
[
m∑
i=1

(yTi Σ−1yi) + k01µ
0
1
T

Σ−1µ0
1 + k1mkµ

T
1mkΣ

−1µ1mk −BTA−1B]}×

exp{−1

2
[

n∑
i=m+1

(yTi Σ−1yi) + k02µ
0
2
T

Σ−1µ0
2 + k2mkµ

T
2mkΣ

−1µ2mk −DTC−1D]}

= (2π)−(n+2)p/2(k1mk)
p/2(k2mk)

p/2(k01)p/2(k02)p/2(k01 +m+ k1mk)
−p/2×

(k02 + n−m+ k2mk)
−p/2|Σ|−n/2−1 × exp{−1

2
tr[Q0Σ−1]} (4.45)

where

Q0 =
m∑
i=1

(yiy
T
i ) + k01µ

0
1µ

0
1
T

+ k1mkµ1mkµ1mk
T +

n∑
i=m+1

(yiy
T
i ) + k02µ

0
2µ

0
2
T

+ k2mkµ2mkµ2mk
T+

(

m∑
i=1

yi − k01µ
0
1 − k1mkµ1mk)(

m∑
i=1

yi − k01µ
0
1 − k1mkµ1mk)

T+

(

n∑
i=m+1

yi − k02µ
0
2 − k2mkµ2mk)(

n∑
i=m+1

yi − k02µ
0
2 − k2mkµ2mk)

T (4.46)

In derivation of (4.45), the properties (4.9) to (4.13) have been used to simplify the expres-

sion. To integrate out Σ, (4.45) is substituted into (4.35). Consequently, we have

Q(m|m(k)) = (2π)−(n+2)p/2(k1mk)
p/2(k2mk)

p/2(k01)p/2(k02)p/2(k01 +m+ k1mk)
−p/2×

(k02 + n−m+ k2mk)
−p/2

∫
Σ

[|Σ|−n/2−1exp(−1

2
tr[Q0Σ−1])IW (ν0,Ψ0)IW (νn,Ψn)]dΣ

= h(k)

∫
Σ

[|Σ|−n/2−1exp(−1

2
tr[Q0Σ−1])IW (ν0,Ψ0)IW (νn,Ψn)]dΣ (4.47)

where

h(k) = (2π)−(n+2)p/2(k1mk)
p/2(k2mk)

p/2(k01)p/2(k02)p/2(k01 +m+ k1mk)
−p/2×

(k02 + n−m+ k2mk)
−p/2 (4.48)
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Thus, (4.47) can be expressed as

Q(m|m(k)) = h(k)
|Ψ0|

ν0
2

2
ν0p
2 Z(ν0, p)

|Ψn|
νn
2

2
νnp
2 Z(νn, p)

∫
Σ

[|Σ|−n/2−1exp(−1

2
tr(Q0Σ−1))|Σ|−

ν0+p+1
2 ×

exp(−1

2
tr(Ψ0Σ−1))|Σ|−

νn+p+1
2 exp(−1

2
tr(ΨnΣ−1))]dΣ

= h(k)
|Ψ0|

ν0
2

2
ν0p
2 Z(ν0, p)

|Ψn|
νn
2

2
νnp
2 Z(νn, p)

∫
Σ
|Σ|−

νnn+p+1
2 exp(−1

2
tr[ΨnnΣ−1])dΣ (4.49)

where Ψnn = Q0 + Ψ0 + Ψn and νnn = n+ ν0 + νn + p+ 3. Finally, the closed form solution

of (4.49) can be derived as

Q(m|m(k)) = h(k)
|Ψ0|

ν0
2

2
ν0p
2 Z(ν0, p)

|Ψn|
νn
2

2
νnp
2 Z(νn, p)

2
νnnp

2 Z(νnn, p)

|Ψnn|
νnn
2

= h(k)2(νnn−ν0−νn)p/2 |Ψ0|
ν0
2 |Ψn|

νn
2

|Ψnn|
νnn
2

Z(νnn, p)

Z(ν0, p)Z(νn, p)
(4.50)

Having derived the closed form expression for Q-function with respect to hyperparameters

and current estimate of the unknown parameter, mk, the next step, M-step, can be written

as

m(k+1) = arg max
m

Q(m|m(k)) (4.51)

In (4.51) the maximization is performed with respect to m, which can be solved relatively

easily by, for example, numerical evaluation of the Q-function over different integer value

of m. The iteration between E-step and M-step continues until no change in Q-function is

observed.

In the next section, the EM derivation for the case of single change is extended to

multiple change detection problem.

4.4.2 Problem Formulation for Multiple Change Points Detection

In real industrial process data, the measurements may be subject to mean shifts at various

time instants. In such cases, the single mean shift model with unknown covariance, derived

in previous section, does not hold and one should develop a model based on multiple change

points. The same formulation for multiple change points as [41] can be followed but the

covariance is unknown here, which introduces a significant challenge. Assume that, the

interval of length n is of interest and there are N mean shifts. The shift points are char-

acterised by vector t = [t1, ..., tN ] and hence, the data are split into N + 1 segments; each

segment has its own mean vector but the covariance is unknown and also t0 = 1, tN+1 = n.

Under EM framework, the hidden variables are µi and Σ for i = 0, 1, ..., N . The vector

t = [t1, ..., tN ] characterizes the parameters of the interest to be estimated. Therefore,

E-step can be expressed as

Q(t|t(k)) = Eµ0,µ1,....,µN ,Σ|Y,t(k){P (Y, µ0, µ1, ...., µN ,Σ|t)} (4.52)

56



Similar to previous section, P (Y, µ0, µ1, ...., µN ,Σ|t) can be represented as

P (Y, µ0, µ1, ...., µN ,Σ|t) = P (Y |µ0, µ1, ...., µN ,Σ, t)P (µ0|Σ, t)P (µ1|Σ, t)...P (µN |Σ,m)P (Σ|t)

= P (Yt0:t1 |µ0,Σ, t)P (Yt1:t2 |µ1,Σ, t)...P (YtN :tN+1 |µN ,Σ, t)×

P (µ0|Σ, t)P (µ1|Σ, t)...P (µN |Σ, t)P (Σ|t) (4.53)

Similarly, the prior for mean vector and also the covariance can be expressed as

P (µi|Σ) = (2π)−p/2|Σ|−1/2exp{−k0i

2
(µi − µ0

i )
TΣ−1(µi − µ0

i )} i = 0, 1, ..., N

P (Σ|ν0,Ψ0) =
|Ψ0|

ν0
2 |Σ|−

ν0+p+1
2 exp(−tr(Ψ0Σ−1)

2 )

2
ν0p
2 Z(ν0, p)

(4.54)

On the other hand, based on the chain rule in probability, P (µ0, µ1, ...., µN ,Σ|Y, t(k)) can

be derived as

P (µ0, µ1, ..., µN ,Σ|Y, t(k)) = P (µ0|Σ, Y, t(k))P (µ1|Σ, Y, t(k))...P (µN |Σ, Y, t(k))P (Σ|Y, t(k))
(4.55)

Again in the derivation of (4.55), we have used the fact that given the change point

t(k), µi, i = 1, . . . , N are conditionally independent. As noted before, given the data and Σ,

the posterior for µi, i = 0, 1, ..., N is of the following form:

P (µ0|Σ, Y, t(k)) ∼ N (µ0tk, (k0tk)
−1Σ) (4.56)

P (µ1|Σ, Y, t(k)) ∼ N (µ1tk, (k1tk)
−1Σ) (4.57)

.

.

.

P (µN |Σ, Y, t(k)) ∼ N (µNtk, (kNtk)
−1Σ) (4.58)

where

kitk = k0i + (t
(k)
i+1 − t

(k)
i ) i = 0, 1, ..., N (4.59)

µitk =
1

k0i + t
(k)
i+1 − t

(k)
i

(k0iµ
0
i + (t

(k)
i+1 − t

(k)
i )ȳ

t
(k)
i :t

(k)
i+1

) i = 0, 1, ..., N (4.60)

ȳ
t
(k)
i :t

(k)
i+1

=

∑t
(k)
i+1

i=t
(k)
i +1

yi

t
(k)
i+1 − t

(k)
i

i = 0, 1, ..., N (4.61)

In this derivation, µ = [µ0, µ1, ..., µN ] is the mean with respect to various segments identified

by t0 to tN . Since Σ is the same for all the n observations, we have

P (Σ|Y, t(k)) = IW (νn,Ψn) (4.62)
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where

Ψn = Ψ0 +

i=t
(k)
1∑

i=t0

(yi − ȳ0)(yi − ȳ0)T +

i=t
(k)
2∑

i=t
(k)
1 +1

(yi − ȳ1)(yi − ȳ1)T + ....

+

i=t
(k)
N+1∑

i=t
(k)
N

(yi − ȳ1)(yi − ȳ1)T +
k00(t

(k)
1 − t0)

k00 + (t
(k)
1 − t0)

(ȳ0 − µ0
0)(ȳ0 − µ0

0)T+

k01(t
(k)
2 − t

(k)
1 )

k01 + (t
(k)
2 − t

(k)
1 )

(ȳ1 − µ0
1)(ȳ1 − µ0

1)T + ...+
k0N (tN+1 − t(k)

N )

k0N + (t
(k)
N+1 − t

(k)
N )

(ȳN − µ0
N )(ȳN − µ0

N )T

(4.63)

νn = ν0 + n (4.64)

By substituting (4.56)-(4.58) and (4.62) into (4.55) and also (4.53) into (4.52), we have the

Q-function as

∫
Σ

[

∫
µ0

P (Yt0:t1 |µ0,Σ, t)P (µ0|Σ, Y, t(k))P (µ0|Σ, t)dµ0∫
µ1

P (Yt1:t2 |µ1,Σ, t)P (µ1|Σ, Y, t(k))P (µ1|Σ, t)dµ1...∫
µN

P (YtN :tN+1 |µN ,Σ, t)P (µ1|Σ, Y, t(k))P (µ1|Σ, t)dµN ]P (Σ|t)P (Σ|Y, t(k))dΣ (4.65)

Every single integration with respect to µi can be calculated using similar approach as in

the derivation of (4.37). We can write∫
µi

...dµi = (2π)−(ti+1−ti)+1)p/2(kitk)
p/2(k0i)

p/2|Σ|−(ti+1−ti)+1)/2−1|∆i|1/2

× exp{−1

2
[

ti+1∑
j=ti+1

(yTj Σ−1yj) + k0iµ
0
i
T

Σ−1µ0
i + kimkµ

T
itkΣ

−1µitk −BT
i A
−1
i Bi]} i = 0, 1, ..., N

(4.66)

where

Ai = (k0i + ti+1 − ti + kitk)Σ
−1 i = 0, 1, ..., N (4.67)

∆i = A−1
i i = 0, 1, ..., N (4.68)

Bi = Σ−1(

ti+1∑
j=ti+1

yj − k0iµ
0
i − kitkµitk) i = 0, 1, ..., N (4.69)

After some simplifications, the integration in (4.65) can be written as

Q(t|t(k)) = g(k)

∫
Σ
|Σ|−(n+(N+1)/2) × exp(−1

2

N∑
i=0

{[
ti+1∑

j=ti+1

(yTj Σ−1yj)+

k0iµ
0
i
T

Σ−1µ0
i + kimkµ

T
itkΣ

−1µitk −BT
i A
−1
i Bi]})P (Σ|t)P (Σ|Y, t(k))dΣ (4.70)
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where

g(k) = (2π)−n(N+1)p/2
N∏
i=0

[(kitk)
p/2(k0i)

p/2(k0i + ti+1 − ti + kitk)
−p/2 (4.71)

Using trace properties in matrices, (4.70) can be written as

∫
Σ
...dΣ = g1(k)

∫
Σ
|Σ|−(n+(N+1)/2+ νn+p+1

2
+
ν0+p+1

2
)exp(−1

2

N∑
i=0

{[
ti+1∑

j=ti+1

(yTj Σ−1yj)+

k0iµ
0
i
T

Σ−1µ0
i + kimkµ

T
itkΣ

−1µitk −BT
i A
−1
i Bi]})IW (ν0,Ψ0)IW (νn,Ψn)dΣ

= g1(k)

∫
Σ
|Σ|−(n+(N+1)/2+ νn+p+1

2
+
ν0+p+1

2
)exp(−1

2
tr[Q0Σ−1 + Ψ0Σ−1 + ΨnΣ−1])dΣ

= g1(k)

∫
Σ
|Σ|−

νnn+p+1
2 exp(−1

2
tr[ΨnnΣ−1])dΣ (4.72)

where Q0 can be expressed as

Q0 =
N∑
i=0

[

ti+1∑
j=ti+1

(yjy
T
j ) + k0iµ

0
iµ

0
i
T

+ kitkµitkµitk
T+

(

ti+1∑
j=ti+1

yj − k0iµ
0
i − kitkµitk)(

ti+1∑
j=ti+1

yj − k0iµ
0
i − kitkµitk)T ] (4.73)

and Ψnn = Q0 + Ψ0 + Ψn and νnn = N + 2 + 2n+ ν0 + νn + p

g1(k) = g(k)
|Ψ0|

ν0
2

2
ν0p
2 Z(ν0, p)

|Ψn|
νn
2

2
νnp
2 Z(νn, p)

(4.74)

Thus, (4.70) can be derived in a closed form as

Q(t|t(k)) = g1(k)
2
νnnp

2 Z(νnn, p)

|Ψnn|
νnn
2

(4.75)

The next step in EM is M-step which is obtained as

t(k+1) = arg max
t
Q(t|t(k)) (4.76)

which can be easily solved.

So far, the problem is solved under scenario of unknown constant covariance. In next

section, we derive the solution under the EM framework to change point detection problem

where both mean and covariance of data change simultaneously. Similarly, the problem is

solved for single change detection first and then the solution is extended to multiple change

points.
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4.5 EM in Simultaneous Mean and Covariance Change De-
tection

4.5.1 Single Mean and Covariance Change Detection

In this section, the mean change detection problem is generalised to the case that both

mean and covariance of data, which are unknown, are subject to simultaneous change at a

random point. In other words, we assume that the mean and covariance of data are first

µ1 and Σ1 and then they change to µ2 and Σ2. The assumption for prior distributions, like

previous sections, can be selected as

P (Σ1|ν01,Ψ01) =
|Ψ01|

ν01
2 |Σ1|−

ν01+p+1
2 exp(

−tr(Ψ01Σ−1
1 )

2 )

2
ν01p
2 Z(ν01, p)

(4.77)

P (µ1|µ0
1,

Σ1

k01
) = (2π)−p/2|Σ1|−1/2exp{−k01

2
(µ1 − µ0

1)TΣ−1
1 (µ1 − µ0

1)} (4.78)

P (Σ2|ν02,Ψ02) =
|Ψ02|

ν02
2 |Σ2|−

ν02+p+1
2 exp(

−tr(Ψ02Σ−1
2 )

2 )

2
ν02p
2 Z(ν02, p)

(4.79)

P (µ2|µ0
2,

Σ2

k02
) = (2π)−p/2|Σ2|−1/2exp{−k02

2
(µ2 − µ0

2)TΣ−1
2 (µ2 − µ0

2)} (4.80)

As we can see, since the number of unknown parameters has increased, the number of

priors and hence the number of hyperparameters has also increased accordingly. Similarly,

the hidden variables become µ1, µ2,Σ1,Σ2. Therefore, E-step formulation of problem has

the following form:

Q(m|m(k)) = Eµ1,µ2,Σ1,Σ2|Y,m(k){P (Y, µ1, µ2,Σ1,Σ2|m)}

=

∫
P (Y, µ1, µ2,Σ1,Σ2|m)P (µ1, µ2,Σ1,Σ2|Y,m(k))dµ1dµ2dΣ1dΣ2 (4.81)

The probabilities in integration of (4.81) can be expressed as

P (Y, µ1, µ2,Σ1,Σ2|m) = P (Y1:m|µ1,Σ1,m)P (Ym+1:n|µ2,Σ2,m)P (µ1|Σ1)P (µ2|Σ2)P (Σ1)P (Σ2)

=

m∏
i=1

N (Yi|µ1,Σ1)

n∏
i=m+1

N (Yi|µ2,Σ2)N (µ1|µ0
1, (k01)−1Σ1)×

N (µ2|µ0
2, (k02)−1Σ2)IW (ν01,Ψ01)IW (ν02,Ψ02) (4.82)

Here, it is assumed that Σ1, Σ2 and m are prior independent. It is also assumed that µ1

and µ2 are prior independent. In addition, using chain rule, one can write

P (µ1, µ2,Σ1,Σ2|Y,m(k))

= P (µ1|Σ1, Y,m
(k))P (µ2|Σ2, Y,m

(k))P (Σ1|Y,m(k))P (Σ1|Y,m(k))

= N (µ1|µ1mk, (k1mk)
−1Σ1)N (µ2|µ2mk, (k2mk)

−1Σ2)IW (ν1m,Ψ1m)IW (ν2m,Ψ2m)
(4.83)
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where

ν1m = ν01 +m(k) (4.84)

ν2m = ν02 + n−m(k) (4.85)

k1mk = k01 +m(k) (4.86)

k2mk = k02 + n−m(k) (4.87)

µ1mk =
1

k01 +m(k)
(k01µ

0
1 +m(k)ȳ1) (4.88)

µ2mk =
1

k02 + n−m(k)
(k02µ

0
2 + (n−m(k))ȳ2) (4.89)

Ψ1m = Ψ01 +
m(k)∑
i=1

(yi − ȳ1)(yi − ȳ1)T +
k01m

(k)

k01 +m(k)
(ȳ1 − µ0

1)(ȳ1 − µ0
1)T (4.90)

Ψ2m = Ψ02 +
n∑

i=m(k)+1

(yi − ȳ2)(yi − ȳ2)T +
k02(n−m(k))

k02 + n−m(k)
(ȳ2 − µ0

2)(ȳ2 − µ0
2)T (4.91)

As noted earlier, in derivation of (4.83), the fact that given the change point m(k), µ1 and

µ2 are conditionally independent is taken into account. By incorporating (4.82) and (4.83)

in (4.81), Q-function can be derived as

Q(m|m(k)) =

∫
Σ1

∫
µ1

m∏
i=1

N (Yi|µ1,Σ1)N (µ1|µ0
1, (k01)−1Σ1)N (µ1|µ1mk, (k1mk)

−1Σ1)

IW (ν01,Ψ01)IW (ν1m,Ψ1m)dµ1dΣ1 ×
∫

Σ2

∫
µ2

n∏
i=m+1

N (Yi|µ2,Σ2)N (µ2|µ0
2, (k02)−1Σ2)

×N(µ2|µ2mk, (k2mk)
−1Σ2)IW (ν02,Ψ02)IW (ν2m,Ψ2m)dµ2dΣ2 (4.92)

Integration with respect to µ1 leads to∫
µ1

...dµ1 = (2π)−(m+1)p/2(k1mk)
p/2(k01)p/2|Σ1|−m/2−1|∆1|1/2

× exp{−1

2
[

m∑
i=1

(yTi Σ−1
1 yi) + k01µ

0
1
T

Σ−1
1 µ0

1 + k1mkµ
T
1mkΣ

−1
1 µ1mk −BTA−1B]}

(4.93)

where

A = (k01 +m+ k1mk)Σ
−1
1 (4.94)

∆1 = A−1 = (k01 +m+ k1mk)
−1Σ1 (4.95)

B = Σ−1
1 (

m∑
i=1

yi − k01µ
0
1 − k1mkµ1mk) (4.96)
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By integrating out Σ1, it follows that∫
Σ1

...dΣ1 = w(k)×
∫

Σ1

|Σ1|−
νnn+p+1

2 exp(−1

2
tr[ΨnnΣ−1

1 ])dΣ1 (4.97)

where

w(k) = (2π)−(m+1)p/2(k1mk)
p/2(k01)p/2(k01 +m+ k1mk)

−p/2|Ψ01|
ν01
2 |Ψ1m|

ν1m
2 ×

1

2
ν01p
2 Z(ν01, p)2

ν1mp
2 Z(ν1m, p)

(4.98)

Ψ1nn = Q01 + Ψ01 + Ψ1m (4.99)

ν1nn = ν01 + ν1m + p+m+ 2 (4.100)

Q01 =

m∑
i=1

yiy
T
i + k01µ

0
1µ

0
1
T

+ k1mkµ1mkµ1mk
T+

(

m∑
i=1

yi − k01µ
0
1 − k1mkµ1mk)(

m∑
i=1

yi − k01µ
0
1 − k1mkµ1mk)

T (4.101)

Since the integrand in (4.97) is Inverse-Wishart distribution as IW (ν1nn,Ψ1nn), the first

integration in (4.92) can be calculated as∫
Σ1

...dΣ1 = w(k)
2
ν1nnp

2 Z(ν1nn, p)

|Ψ1nn|
ν1nn

2

(4.102)

Using similar approach, the second integration in (4.92) yields∫
Σ2

...dΣ2 = J(k)
2
ν2nnp

2 Z(ν2nn, p)

|Ψ2nn|
ν2nn

2

(4.103)

where

J(k) = (2π)−(n−m+1)p/2(k2mk)
p/2(k02)p/2(k02 + n−m+ k2mk)

−p/2|Ψ02|
ν02
2

× |Ψ2m|
ν2m
2

1

2
ν02p
2 Z(ν02, p)2

ν2mp
2 Z(ν2m, p)

(4.104)

Ψ2nn = Q02 + Ψ02 + Ψ2m (4.105)

ν2nn = ν02 + ν2m + p+ n−m+ 2 (4.106)

Q02 =

n∑
i=m+1

yiy
T
i + k02µ

0
2µ

0
2
T

+ k2mkµ2mkµ2mk
T+

(

n∑
i=m+1

yi − k02µ
0
2 − k2mkµ2mk)(

n∑
i=m+1

yi − k02µ
0
2 − k2mkµ2mk)

T (4.107)

Thus, Q-function is derived by multiplying (4.102) and (4.103):

Q(m|m(k)) = w(k)
2
ν1nnp

2 Z(ν1nn, p)

|Ψ1nn|
ν1nn

2

× J(k)
2
ν2nnp

2 Z(ν2nn, p)

|Ψ2nn|
ν2nn

2

(4.108)

Eventually, the M-step of EM is formulated as

m(k+1) = arg max
m

Q(m|m(k)) (4.109)

E-step and M-step iterate until convergence.
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4.5.2 Simultaneous Multiple Mean and Covariance Changes Detection

Having derived the Q-function in the case of single change in the mean and covariance in

Section 4.5.1, we can extend the result to multiple changes detection. For every segment of

the data, two prior distributions are defined for mean and covariance respectively. These

priors, in every segment, are assumed to be independent of each other. Therefore, E-step

can be written as

Q(t|t(k)) = Eµ0,µ1,...,µN ,Σ0,Σ1,...,ΣN |Y,t(k){P (Y, µ0, µ1, ..., µN ,Σ0,Σ1, ...,ΣN |t)}

=

∫
P (Y, µ0, µ1, ..., µN ,Σ1,Σ2, ...,ΣN |t)P (µ0, µ1, ..., µN ,Σ0,Σ1, ...,ΣN |Y, t(k))...

dµ0dµ1...dµNdΣ0dΣ1..dΣN (4.110)

By separating the probabilities and integrals, and following the same approach as in Section

4.5.1, Q-function is derived as

Q(t|t(k)) =

N∏
i=0

wi(k)
2
νinnp

2 Z(νinn, p)

|Ψinn|
νinn

2

(4.111)

where

wi(k) = (2π)−(ti+1−ti+1)p/2(kimk)
p/2(k0i)

p/2(k0i +m+ kimk)
−p/2|Ψ0i|

ν0i
2 |Ψim|

νim
2 ×

1

2
ν0ip

2 Z(ν0i, p)2
νimp

2 Z(νim, p)
(4.112)

Ψinn = Q0i + Ψ0i + Ψim (4.113)

Q0i =

ti+1∑
j=ti+1

[yjy
T
j ] + k0iµ

0
iµ

0
i
T

+ kimkµimkµimk
T+

(

ti+1∑
j=ti+1

yj − k0iµ
0
i − kimkµimk)(

ti+1∑
ij=ti+1

yj − k0iµ
0
i − kimkµimk)T (4.114)

(4.115)

and likewise, having derived the Q-function, the next step is M-step which is

t(k+1) = arg max
t
Q(t|t(k)) (4.116)

In the following, the performance of the proposed algorithms is evaluated through several

examples followed by a pilot-scale experimental study.

4.6 Simulation

4.6.1 Single Mean Change Detection with Unknown Covariance

Here, single change point detection in the presence of unknown covariance is simulated for

multivariate data, p = 3, i.e. y = [y1, y2, y3]. n = 100 samples are generated. At time
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instant m = 80, the mean of data changes. The hyperparameters of prior distributions are

selected as:

µinitial =

1
1
1

 , δ1 =

1
1
0

, n = 100,m = 80,minitial = 60 ν0 = 5,Ψ0 =

 1 0.1 0.1
0.1 1 0.1
0.1 0.1 1

,

k01 = 10, k02 = 5, µ0
1 = [2, 2, 2]T ,µ0

2 = [2, 2, 2]T

The uncertainty in prior distributions of mean values is governed by the hyperparameters

k01 or k02. The smaller these free parameters, the less prior knowledge. The reason is,

increasing these parameters results in a higher covariance and hence more uncertainties,

which is equivalent to less prior information. The variables, y = [y1, y2, y3], are illustrated

in Figure 4.1. As we can see, the change is small and not easy to detect by visualization.

Using EM formulation, in 6 iterations, the algorithm converges. The results of Q-function

at each iteration are shown in Figure 4.2.
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Figure 4.1: Three Variables y = [y1, y2, y3]

From Figure 4.2 , it is apparent that at every iteration the Q-function has increased

till convergence to the fixed point. At the last iteration, the maximum is achieved at true

change point, m = 80. As we can see, the algorithm has fast convergence in terms of the

number of iterations.

In order to quantify the performance of change point detection, two performance mea-

sures, OP and AVTI, are defined as

OP =
Number of Change Points Correctly Identified

Number of Change Points Occurred
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Figure 4.2: Q-Function at 6 Iterations Until Convergence, i.e. m=80

The other performance measure is defined to represent the probability of false alarm as

AV TI =
Number of Change Points Wrongly Identified

Number of Simulation Runs Made

These two performance measures are widely used for gross error detection in the literature

which have also been applied to change point detection [1].

Here, the OP and AV TI are calculated for 100 Monte Carlo runs of the algorithm. The

results are shown in Table 4.1. Not surprisingly, as the change magnitude increases, the

algorithm performs better. From this table, we can observe that the proposed algorithm is

capable of detecting small changes as well. The performance of the algorithm in the case of

Table 4.1: Performance Results of EM for Different Change Magnitudes

Bias OP AV TI

EM

0.5σi 0.45 0.55
0.75σi 0.75 0.25

1σi 1 0

improper hyperparameters is also evaluated. EM can be less sensitive to wrong hyperpa-

rameters [41]; however, it is sensitive to initial values of the iterations. [41] recommended

the randomization approach for initializing EM that has been adopted in this example. In

other words, random sets of initial values are selected and the one that maximizes the like-

lihood is obtained. In the following, a more realistic simulated example using Continuous

Stirred Tank Reactor (CSTR) is given for both mean and covariance change detection.
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4.6.2 Continuous Stirred Tank Reactor (CSTR)

The CSTR case study, as discussed in detail in [39], is used again to evaluate the EM algo-

rithm performance in change detection of mean and covariance. The irreversible exothermic

reaction A→ B occurs inside a constant-volume reactor cooled by a single coolant stream.

The system dynamics can be written as

˙CA(t) =
q(t)

V
(CA0(t)− CA(t))− k0CA(t)exp(− E

RT (t)
) (4.117)

˙T (t) =
q(t)

V
(T0(t)− T (t)) +

∆Hk0CA(t)

ρCp
exp(− E

RT (t)
)+

ρcCpc
ρCpV

qc(t){1− exp(
−hA

qc(t)ρCp
)}(Tc0 − T (t)) (4.118)

The parameter definition and nominal values for CSTR are given in [41]. The states of

the system are CA (concentration of component A) and T (the reactor temperature). The

outputs are the same as states but with measurement noise. Similar to [41], the change in

outputs is due to change in the input. In other words, in order to introduce a change to

the measurement, at a certain time instant, the system input changes from one operating

point to another driving the outputs to a new operating condition. Moreover, when input

changes to a new value, the variance of simulated noise also changes. In this study, initially

a constant input qc = 97 is fed to the system so the system operates under the steady state

condition. The input is changed at time t = 159 with the magnitude of change being 2

L/min. As this occurs, the outputs start to change after a short delay. The measurement

noise is also forced to increase at this time. The standard deviation of output noise is first

10 % of the states and then it increases to 15 % after the change. The histogram of outputs

along with the time trends of data are shown in Figure 4.3 and 4.4 respectively.

As we can see, the mean and covariance of data both have changed. When applying

EM algorithm, the hyperparameters are selected randomly as:

n = 248, p = 2,minitial = 100 ν01 = 7, ν02 = 6,Ψ01 =

(
1 0.1

0.1 5

)
, Ψ02 = 0.5

(
1 0.1

0.1 5

)
,

Ψ03 = 0.7

(
1 0.1

0.1 1

)
, k01 = 50, k02 = 0.9, µ0

1 = [0.1, 410]T , µ0
2 = [0.1; 410]T

The randomization approach for the selection of the initial values to start the EM

algorithm is adopted here again. Besides, in this example, the number of iterations to

convergence is two indicating fast convergence. The Q-function at the last iteration is

illustrated in Figure 4.5 with the maximum achieved at m = 162. Note that the y-axis is

in logarithmic scale.

As we can see, EM also performs satisfactorily in the case of both mean and covariance

change. In the following section, an experimental case study is also provided to further

evaluate the proposed algorithm.
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Figure 4.3: Histogram of Concentration and Temperature Before and After Change
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Figure 4.4: Time Trend Plot of Concentration (Upper) and Temperature (Lower)

67



50 100 150 200
−500

−400

−300

−200

−100

0

100

200

300

Time (Sample)

Q
−

F
u

n
c
ti
o

n

Figure 4.5: Q−function in Last Iteration of EM

4.7 Experimental Evaluation: Hybrid Tank System

The hybrid tank system used in [41], is selected to collect data but this time, the experiment

is performed in a different way. This system consists of three connected tanks, six on/off

valves and two pumps. The schematic of hybrid tank is shown in Figure 4.6. The valves

can be manipulated to change the flow rate to or out of these tanks. By opening or closing

these valves, the system dynamics changes accordingly.

There are two cascade loops for the left and right tanks which control the levels of these

tanks by manipulating the set point of flow controllers. Two proportional controllers are

designed to maintain the level inside the left and right tank approximately at 75% percent.

At first, the valves V 1, V 2, V 3, V 4 are closed and V 5 to V 9 are open.

Since the objective is to incorporate the covariance change along with the mean change,

as the valve status changes, the measurement noise changes so as to incorporate the change

in covariance of the data. In order to implement the changing covariance, a switch is

provided which changes the noise variance at those instants when a change in valves occurs.

The valves status changes in the same way as they did in [41]. There are totally three

changes. As the level in both left and right tanks reach 75%, the valves V 1 and V 3 are

open imposing a change in levels of the tanks. In order to introduce the second change,

the valves V 2 and V 4 are open resulting in the second change in the tank levels. Having

reached the second steady state condition, the valves V 1 and V 3 are closed leading to

the third change. The valves positions and the left and right levels are shown in Figures

4.7 and 4.8 respectively. As we can see, in this experiment, we have multiple change

points in both the mean and covariance of data. It is also worth mentioning that all the
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communications between Matlab and the hybrid tank system are established through OLE

for Process Control (OPC) which is a common platform in industry for data communication.

Figure 4.6: Schematic of Hybrid Tank

To detect the change points using the EM algorithm, the hyperparameters are selected

randomly as:

µinitial =

1
1
1

 , δ1 =

1
1
0

, n = 218, p = 2, tinitial = [20, 90, 150]

ν01 = 6, ν02 = 7, ν03 = 7, ν04 = 7,Ψ00 =

(
1 0.1

0.1 1

)
, Ψ01 = 0.5

(
1 0.1

0.1 1

)
,

Ψ02 = 0.6

(
1 0.1

0.1 1

)
, Ψ03 = 0.7

(
1 0.1

0.1 1

)
, k01 = 10, k02 = 10, k03 = 10, k04 = 5,

µ0
1 = [60, 60]T , µ0

2 = [60, 60]T , µ0
3 = [60, 60]T , µ0

4 = [60, 60]T

In Figure 4.9, Q-function is illustrated with respect to time samples. Note that evaluation

of Q-function with respect to all possible values of t, provided that one imposes constraints

on consecutive samples, can reduce the computation at every iteration depending on the

number of samples and also the number of change points. In evaluation of Q-function, when

t1 changes from 1 to n − 1, t2 changes from t1 + 1 to n − 2 and t3 changes from t2 + 1 to

n − 3. In this application, Q-function is derived as a 215 × 215 × 215 matrix. Figure 4.9

illustrates the trajectory of Q-function. The y axis is in logarithmic scale. As we can see,

EM is successful in detection of change points in the presence of unknown and changing

covariance.
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Figure 4.7: Valves Status in Hybrid Tank, 1=close and 0=open
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Figure 4.8: Valve Status in Hybrid Tank, 1 = close and 0 = open
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Figure 4.9: Trajectory of Q-function

4.8 Conclusion

In this chapter, a closed form solution based on EM algorithm is developed for change

point detection problem in the presence of unknown and simultaneous changing mean and

covariance. The proposed algorithm has satisfactory performance in identifying both single

and multiple change points. Moreover, in the case of small changes and improper selection

of priors, EM also performs effectively. Through several case studies, it was shown that the

algorithm can achieve efficient and satisfactory performance.
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Chapter 5

Mean Estimation in the Presence
of Process Constraints Using
Change Point Models

5.1 Mean Estimation Using EM Algorithm

As shown in previous chapters, in EM approach, depending on the selected hidden variables

and desired parameters, the structure is adequately flexible to vary. For instance, assum-

ing that the data consist of a mixture of distributions with various densities, a common

framework for parameter estimation for this kind of problems is through EM algorithm.

Depending on the model, the solution can vary. Thus, the model structure selection is a

necessary step in parameter estimation.

In previous chapters, we estimated the change point assuming some prior distributions

for certain unknown variables. One can also apply the change point formulation for mixture

density parameter estimation problem. In other words, change point detection problem can

be reformulated in order to estimate the mixture parameters. In the following section,

change point model is employed to estimate the parameters before and after the change

points.

5.1.1 Mean Estimation in Multiple Change Points Models

In this section, the objective is to estimate the parameters of mixture densities such as

mean in different segments of data given the observation and prior of time instants at

which changes occurs. Assume that N changing points exist in the multivariate data and

all observations are denoted Y = (Y0, Y1, ..., YN ) where each Yi represents the all data in

segment i. There are N+1 segments. The means of N+1 segments of data can be expressed

as µ = (µ0, µ1, ..., µN ).

Denote the hidden variables as t = [t1, t2, ..., tN ], i.e. the vector of change points and

the parameters to be estimated as µ = (µ0, µ1, ..., µN ). Again, it is assumed that t0 = 1

and tN+1 = n where n is the number of total observations. The prior information of change
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points is the same as in (3.17) and (3.18). The E-step can be written as

Q(µ|µ(k)) = Et|Y,µ(k){logP (Y, t|µ)} (5.1)

where the term P (Y, t|µ) is the complete likelihood function. It can be simplified as

P (Y, t|µ) =
P (Y, t, µ)

P (µ)

=
P (d|t, µ)P (t, µ)

P (µ)
= P (Y |t, µ)P (t) (5.2)

P (t, µ) = P (t)P (µ) since t and µ are independent. The expression in (5.1) can be rewritten

as

Q(µ|µ(k)) = Et|Y,µ(k){logP (Y, t|µ)}

= Et|Y,µ(k){log[P (Y |t, µ)P (t)]}

= Et|Y,µ(k){logP (Y |t, µ) + logP (t)} (5.3)

Since t is a discrete vector, the expectation has the following form:

Q(µ|µ(k)) =
n∑

t1=1

...
n∑

tN=1

{logP (Y |t, µ) + logP (t)}P (t|Y, µ(k)) (5.4)

Also, the conditional probability P (t|Y, µ(k)) can be expressed as

P (t|Y, µ(k)) =
P (t, Y, µ(k))

P (Y, µ(k))
=
P (Y |t, µ(k))P (t, µ(k))

P (Y |µ(k))P (µ(k))

=
P (Y |t, µ(k))P (t)

P (Y |µ(k))
(5.5)

Since µ(k) is given in each iteration, then for a given mean vector, P (Y |µ(k)) is a constant

value. As a result, the equation in (5.5) can be simplified as

P (t|Y, µ(k)) = c1P (Y |t, µ(k))P (t) (5.6)

where c1 = 1
P (Y |µ(k)) . Thus, (5.4) yields

Q(µ|µ(k)) = c1

n∑
t1=1

...

n∑
tN=1

{logP (Y |t, µ) + logP (t)}P (Y |t, µ(k))P (t)

= c1

n∑
t1=1

...

n∑
tN=1

{P (Y |t, µ(k))P (t)logP (Y |t, µ) + P (Y |t, µ(k))P (t)logP (t)}

= c1

n∑
t1=1

...
n∑

tN=1

{P (Y |t, µ(k))P (t)logP (Y |t, µ) + c1

n∑
t1=1

...
n∑

tN=1

P (Y |t, µ(k))P (t)logP (t)}

(5.7)
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In the M-step, the maximization is performed with respect to µ. To achieve this, the

derivative of Q(µ|µ(k)) is calculated. Obviously, the second term in (5.7) does not depend

on µ and hence maximization can be solved as

d

dµ
Q(µ|µ(k)) = 0

d

dµ
[c1

n∑
t1=1

...

n∑
tN=1

{P (Y |t, µ(k))P (t)logP (Y |t, µ)}] = 0 (5.8)

Since µ = (µ0, µ1, ..., µN ), we have

d

dµ
= (

d

dµ0
,
d

dµ1
, ...,

d

dµN
) (5.9)

The derivative in (5.9) essentially consists of N+1 derivatives. Consider that the derivative

is taken with respect to µi.

d

dµi
[c1

n∑
t1=1

...
n∑

tN=1

{P (Y |t, µ(k))P (t)logP (Y |t, µ)}] = 0 (5.10)

that is

c1

n∑
t1=1

...
n∑

tN=1

P (Y |t, µ(k))P (t)
d

dµi
logP (Y |t, µ) = 0 (5.11)

As a result,

c1

n∑
t1=1

...
n∑

tN=1

P (Y |t, µ(k))P (t)
d

dµi
logP (Y = (Y0, Y1, ...., YN )|t, µ = (µ0, µ1, ...µi, ..., µN )) = 0

(5.12)

Due to independent observations, we have

P (Y = (Y0, Y1, ...., YN )|t, µ = (µ0, µ1, ...µi, ..., µN )) =
N∏
i=0

Np(Yi|µi,Σ) (5.13)

where

Np(Yi|µi, ,Σ) = (2π)−p/2|Σ−1|1/2exp{−1

2
(Yi − µi)TΣ−1(Yi − µi)} (5.14)

As noted earlier, every i represents a segment of data in the interval ti+1 − ti. The data in

each segment are independent; hence they can be expressed as

Np(Yi|µi, ,Σ) = (2π)−p/2|Σ−1|1/2exp{−1

2

ti+1∑
j=ti+1

(Yij − µi)TΣ−1(Yij − µi)} (5.15)
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where Yij are the data in segment i and each j represents a single sample belonging to

interval ti+1− ti. The time instances for these data are essentially ti + 1 to ti+1. Therefore,

(5.13) yields

P (Y = (Y0, Y1, ...., YN )|t, µ = (µ0, µ1, ...µi, ..., µN )) =
N∏
i=0

(2π)−p/2|Σ−1|1/2

exp{−1

2

ti+1∑
j=ti+1

(Yij − µi)TΣ−1(Yij − µi)} (5.16)

Using the log function, (5.16) can be simplified as

logP (Y = (Y0, Y1, ...., YN )|t, µ = (µ0, µ1, ...µi, ..., µN )) =
N∑
i=0

log[(2π)−p/2|Σ−1|1/2]+

N∑
i=0

{−1

2

ti+1∑
j=ti+1

(Yij − µi)TΣ−1(Yij − µi)} (5.17)

Substituting (5.16) into (5.12) leads to

c1

n∑
t1=1

...
n∑

tN=1

P (Y |t, µ(k))P (t)
d

dµi
[
N∑
i=0

log[(2π)−p/2|Σ−1|1/2]+

N∑
i=0

{−1

2

ti+1∑
j=ti+1

(Yij − µi)TΣ−1(Yij − µi)}] = 0 (5.18)

Since the first term of (5.18) does not contain µi, the expression in (5.18) is equivalent to

c1

n∑
t1=1

...
n∑

tN=1

P (Y |t, µ(k))P (t)
d

dµi
[
N∑
i=0

{−1

2

ti+1∑
j=ti+1

(Yij − µi)TΣ−1(Yij − µi)}] = 0 (5.19)

As this derivative is with respect to the ith term, we have

c1

n∑
t1=1

...
n∑

tN=1

P (Y |t, µ(k))P (t)
d

dµi
[{−1

2

ti+1∑
j=ti+1

(Yij − µi)TΣ−1(Yij − µi)}] = 0

c1

n∑
t1=1

...
n∑

tN=1

P (Y |t, µ(k))P (t)(−1

2
)[

ti+1∑
j=ti+1

−2Σ−1(Yij − µi)] = 0

c1

n∑
t1=1

...
n∑

tN=1

P (Y |t, µ(k))P (t)Σ−1[

ti+1∑
j=ti+1

Yij −
ti+1∑

j=ti+1

µi] = 0

n∑
t1=1

...

n∑
tN=1

P (Y |t, µ(k))P (t)Σ−1

ti+1∑
j=ti+1

Yij =

n∑
t1=1

...

n∑
tN=1

P (Y |t, µ(k))P (t)Σ−1(ti+1 − ti − 1)µi

(5.20)
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By solving (5.20), µi , i = 0, 1, ..., N can be updated as

µ
(k+1)
i = {

n∑
t1=1

...

n∑
tN=1

P (Y |t, µ(k))P (t)Σ−1(ti+1 − ti − 1)}−1{
n∑

t1=1

...

n∑
tN=1

P (Y |t, µ(k))×

P (t)Σ−1

ti+1∑
j=ti+1

Yij} (5.21)

In (5.21), P (Y |t, µ(k)) can be expressed as

P (Y = (Y0, Y1, ...., YN )|t, µ(k) = (µ
(k)
0 , µ

(k)
1 , ...µ

(k)
i , ..., µ

(k)
N )) =

N∏
i=0

(2π)−p/2|Σ−1|1/2

exp{−1

2

ti+1∑
j=ti+1

(Yij − µ(k)
i )TΣ−1(Yij − µ(k)

i )} (5.22)

and P (t) is obtained using (3.18) in Chapter 3. So far, EM algorithm has been considered

for parameter estimation without any constraint on parameters. In this section, constrained

or restricted EM in the presence of change points will be reviewed first and then the above

derived solution is generalised to a case where a set of constraints are to be satisfied.

5.2 Restricted EM in the Presence of Parameter Constraints

In this section, mean estimation problem is solved in the presence of change points and

parameter constraints. Assume that in a network, the following constraints exist:

Aθ = a (5.23)

where A is a known h×p matrix defining the constraints. Rank(A)=h < p and a is a known

h× 1 vector. In the presence of restrictions, several methods exist in literature to solve the

maximum likelihood estimation problem. In [55], a restricted maximum likelihood through

a quadratic penalty function is used. On the other hand, Newton-Raphson iteration scheme

is another way to solve the restricted EM problem. Two methods based on Newton-Raphson

are proposed in [56] which are based on score function and information matrix. Lagrange

multiplier approach is another approach to tackle the constrained EM problem. Applying

Lagrange multiplier in M-step of EM results in a Lagrange function as

L(θ, λ) = Q(θ|θ(k)) + λT (a−Aθ) (5.24)

where λ = (λ1, λ2, ..., λh) are the coefficients defined for each constraint and Q-function is

derived in E-step of the EM algorithm as explained in the previous section. The updated

parameter can be obtained by finding the derivative of L(θ, λ) with respect to unknown

parameters and λ. In other words, the following equations are to be solved to estimate the

unknown parameters:

∇L(θ, λ) = 0 (5.25)
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In the following, the mean estimation problem is solved through change point model struc-

ture using EM approach.

5.3 Mean Estimation for Change Point Detection in Pres-
ence of Constraints

In Section 5.1, the mean estimation problem was solved in the case of multiple shifts.

Here, this problem is extended to constrained mean estimation problem using EM method.

The problem is considered for a single shift detection through an illustrative example. The

solution will then be extended to mean estimation in the presence of multiple change points.

5.3.1 Illustrative Example

Consider the process network shown in Figure 5.1 as in [7]. There are seven flow rates,

p = 7, yt = (y1t, y2t, y3t, y4t, y5t, y6t, y7t)
T , t = 1, ...., n which must satisfy the mass bal-

ance constraints governing this network. Assuming no change occurs, the multivariate flow

vector, yt, consisting of yit, i = 1, ..., 7 for t = 1, ..., n can be represented by

yt = µ+ εt, , t = 1, ..., n (5.26)

where µ = (µ1, ..., µ7)T and ε = (ε1, ..., ε7)T represent the multivariate mean and measure-

ment noise respectively. The mean values, µ = (µ1, ..., µ7)T , should satisfy the network

constraint as

Aµ = 0 (5.27)

where A is a constant matrix related to process information. For the network in Figure 5.1,

the mass balance constraints can be written as

µ1 + µ4 + µ6 − µ2 = 0

µ2 − µ3 = 0

µ3 − µ4 − µ5 = 0

µ5 − µ6 − µ7 = 0 (5.28)

As a result, A can be written as

A =


1 −1 0 1 0 1 0
0 1 −1 0 0 0 0
0 0 1 −1 −1 0 0
0 0 0 0 1 −1 −1


Assume that at an unknown time instant, t = m, a change occurs in the mean of data

leading to

yt = µ′ + εt, , t = m+ 1, ..., n (5.29)
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Figure 5.1: Process Network

where µ′ = (µ′1, ..., µ
′
7)T is the new mean vector which does not satisfy the constraint

in (5.44), i.e., Aµ′ 6= 0. Also, we assume that the covariance matrix of measurement

noise remains constant. Therefore, the parameters to be estimated are θ = (µ, µ′) =

(µ1, ..., µ7, µ
′
1, ..., µ

′
7) under the constraints of (5.28). The Q-function has been derived in

Section 5.1 for multiple change points. In the case of single change point, Q-function in

E-step can be simplified as

Q((µ, µ′)|(µ(k), µ′(k))) = Em|Y,µ(k),µ′(k){logP (Y,m|µ, µ′)}

(5.30)

Following similar approach as in Section 5.1 leads to a Q-function similar to (5.7) as

Q(µ, µ′|µ(k), µ′(k)) = c1

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))P (m)logP (Y |m,µ, µ′)]+

c1

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))P (m)logP (m)] (5.31)

where c1 = 1
P (Y |µ(k),µ′(k)) . Having derived the Q-function, in M-step, we can write the

lagrange multiplier for h = 4 constraints as

L(µ, µ′, λ) = L(µ1, ..., µ7, µ
′
1, ..., µ

′
7, λ1, λ2, λ3, λ4)

= Q(µ, µ′|µ(k), µ′(k)) + λ1(µ1 + µ4 + µ6 − µ2) + λ2(µ2 − µ3) + λ3(µ3 − µ4 − µ5)+

λ4(µ5 − µ6 − µ7) (5.32)
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Substituting (5.31) into (5.32) yields

L(µ, µ′, λ) = c1

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))P (m)logP (Y |m,µ, µ′)]+

c1

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))P (m)logP (m)] + λ1(µ1 + µ4 + µ6 − µ2) + λ2(µ2 − µ3)+

λ3(µ3 − µ4 − µ5) + λ4(µ5 − µ6 − µ7) (5.33)

Since the observations are assumed to be independent with Gaussian distribution,

logP (Y |m,µ, µ′) can be written as

logP (Y |m,µ, µ′) =
−np

2
log(2π)− n

2
log(|Σ|)− 1

2

m∑
j=1

[(Yj − µ)TΣ−1(Yj − µ)]−

1

2

n∑
j=m+1

[(Yj − µ′)TΣ−1(Yj − µ′)] (5.34)

Hence, we have

P (Y |m,µ(k), µ′(k)) = (2π)−np/2|Σ−1|n/2exp{−1

2

m∑
j=1

(Yj − µ(k))TΣ−1(Yj − µ(k))+

n∑
j=m+1

(Yj − µ′(k))TΣ−1(Yj − µ′(k))} (5.35)

In (5.33), P (m) is the prior distribution of the change instant. If we assume uniform

distribution for m, as in [7], one can write P (m) = c2,m = 1, 2, ..., n − 1. To find the

updated parameters, (5.25) is applied to (5.33) leading to the following sets of equations:

dL

dµ1
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ1
] + λ1 = 0 (5.36)

dL

dµ2
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ2
]− λ1 + λ2 = 0 (5.37)

dL

dµ3
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ3
]− λ2 + λ3 = 0 (5.38)

dL

dµ4
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ4
] + λ1 − λ3 = 0 (5.39)

dL

dµ5
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ5
]− λ3 + λ4 = 0 (5.40)
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dL

dµ6
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ6
] + λ1 − λ4 = 0 (5.41)

dL

dµ7
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ7
]− λ4 = 0 (5.42)

dL

dµ′1
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ′1
] = 0 (5.43)

dL

dµ′2
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ′2
] = 0 (5.44)

dL

dµ′3
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ′3
] = 0 (5.45)

dL

dµ′4
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ′4
] = 0 (5.46)

dL

dµ′5
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ′5
] = 0 (5.47)

dL

dµ′6
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ′6
] = 0 (5.48)

dL

dµ′7
= c1c2

n−1∑
m=1

[P (Y |m,µ(k), µ′(k))
dlogP (Y |m,µ, µ′)

dµ′7
] = 0 (5.49)

dL

dλ1
= µ1 + µ4 + µ6 − µ2 = 0 (5.50)

dL

dλ2
= µ2 − µ3 = 0 (5.51)

dL

dλ3
= µ3 − µ4 − µ5 = 0 (5.52)

dL

dλ4
= µ5 − µ6 − µ7 = 0 (5.53)

Thus, (5.36) to (5.42) can be written as

− c1c2

n−1∑
m=1

[mP (Y |m,µ(k), µ′(k))γ1(Ȳ1,1:m, ..., Ȳ7,1:m)T ]+

c1c2[

n−1∑
m=1

mP (Y |m,µ(k), µ′(k))γ1(µ1, ..., µ7)T ] + λ1 = 0 (5.54)

− c1c2

n−1∑
m=1

[mP (Y |m,µ(k), µ′(k))γ2(Ȳ1,1:m, ..., Ȳ7,1:m)T ]+

c1c2[

n−1∑
m=1

mP (Y |m,µ(k), µ′(k))γ2(µ1, ..., µ7)T ]− λ1 + λ2 = 0 (5.55)
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− c1c2

n−1∑
m=1

[mP (Y |m,µ(k), µ′(k))γ3(Ȳ1,1:m, ..., Ȳ7,1:m)T ]+

c1c2[

n−1∑
m=1

mP (Y |m,µ(k), µ′(k))γ3(µ1, ..., µ7)T ]− λ2 + λ3 = 0 (5.56)

− c1c2

n−1∑
m=1

[mP (Y |m,µ(k), µ′(k))γ4(Ȳ1,1:m, ..., Ȳ7,1:m)T ]+

c1c2[
n−1∑
m=1

mP (Y |m,µ(k), µ′(k))γ4(µ1, ..., µ7)T ] + λ1 − λ4 = 0 (5.57)

− c1c2

n−1∑
m=1

[mP (Y |m,µ(k), µ′(k))γ5(Ȳ1,1:m, ..., Ȳ7,1:m)T ]+

c1c2[
n−1∑
m=1

mP (Y |m,µ(k), µ′(k))γ5(µ1, ..., µ7)T ]− λ3 + λ4 = 0 (5.58)

− c1c2

n−1∑
m=1

[mP (Y |m,µ(k), µ′(k))γ6(Ȳ1,1:m, ..., Ȳ7,1:m)T ]+

c1c2[
n−1∑
m=1

mP (Y |m,µ(k), µ′(k))γ6(µ1, ..., µ7)T ] + λ1 − λ4 = 0 (5.59)

− c1c2

n−1∑
m=1

[mP (Y |m,µ(k), µ′(k))γ7(Ȳ1,1:m, ..., Ȳ7,1:m)T ]+

c1c2[

n−1∑
m=1

mP (Y |m,µ(k), µ′(k))γ7(µ1, ..., µ7)T ]− λ4 = 0 (5.60)

where γi, i = 1, ..., 7 are row vectors corresponding to the ith row in matrix Σ−1. Also

Ȳi,1:m, i = 1, ..., 7 is the mean of variable i from sample 1 to m. The equations (5.54) to

(5.60) can be simplified further as

γ1(α+ β(µ1, ..., µ7)T ) + λ1 = 0 (5.61)

γ2(α+ β(µ1, ..., µ7)T )− λ1 + λ2 = 0 (5.62)

γ3(α+ β(µ1, ..., µ7)T )− λ2 + λ3 = 0 (5.63)

γ4(α+ β(µ1, ..., µ7)T ) + λ1 − λ4 = 0 (5.64)

γ5(α+ β(µ1, ..., µ7)T )− λ3 + λ4 = 0 (5.65)

γ6(α+ β(µ1, ..., µ7)T ) + λ1 − λ4 = 0 (5.66)

γ7(α+ β(µ1, ..., µ7)T ) + λ1 − λ4 = 0 (5.67)
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where α is a constant vector and β is a constant scalar as

α = −c1c2

n−1∑
m=1

[mP (Y |m,µ(k), µ′(k))(Ȳ1,1:m, ..., Ȳ7,1:m)T ] (5.68)

β = c1c2[
n−1∑
m=1

mP (Y |m,µ(k), µ′(k))] (5.69)

Similarly, (5.43) to (5.49) can be written as

γ1(η + ζ(µ′1, ..., µ
′
7)T ) = 0 (5.70)

γ2(η + ζ(µ′1, ..., µ
′
7)T ) = 0 (5.71)

γ3(η + ζ(µ′1, ..., µ
′
7)T ) = 0 (5.72)

γ4(η + ζ(µ′1, ..., µ
′
7)T ) = 0 (5.73)

γ5(η + ζ(µ′1, ..., µ
′
7)T ) = 0 (5.74)

γ6(η + ζ(µ′1, ..., µ
′
7)T ) = 0 (5.75)

γ7(η + ζ(µ′1, ..., µ
′
7)T ) = 0 (5.76)

where η is a constant vector and ζ is a constant scalar as

η = −c1c2

n−1∑
m=1

[(n−m− 1)P (Y |m,µ(k), µ′(k))(Ȳ1,m+1:n, ..., Ȳ7,m+1:n)T ] (5.77)

ζ = c1c2[

n−1∑
m=1

(n−m− 1)P (Y |m,µ(k), µ′(k))] (5.78)

Therefore, the set of equations (5.61) to (5.67), (5.70) to (5.76) and (5.50) to (5.53), i.e.

18 equations, altogether need to be satisfied. Denote α = (α1, α2, α3, α4, α5, α6, α7)T , and

η = (η1, η2, η3, η4, η5, η6, η7)T . Every row in Σ−1 as mentioned before can be expressed as

γ1 = (γ11, γ12, ...., γ17)

γ2 = (γ21, γ22, ...., γ27)

γ3 = (γ31, γ32, ...., γ37)

.

.

γ7 = (γ71, γ72, ...., γ77) (5.79)

The solutions to equations (5.61) to (5.67), (5.70) to (5.76) and (5.50) to (5.53) give

µk+1
1 , µk+1

2 ,..., µk+1
7 , µ

′k+1
1 ,..., µ

′k+1
7 as functions of α, β, ζ and η which are functions of

current parameters estimated in the last iteration, µk1, µk2,..., µk7, µ
′k
1 ,...,µ

′k
7 . Thus, the
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equations (5.61) to (5.67) and (5.50) to (5.53) can be solved as

µ
(k+1)
1

µ
(k+1)
2

µ
(k+1)
3

µ
(k+1)
4

µ
(k+1)
5

µ
(k+1)
6

µ
(k+1)
7

λ1

λ2

λ3

λ4



=

=
1

β
×



γ11 γ12 γ13 γ14 γ15 γ16 γ17
1
β 0 0 0

γ21 γ22 γ23 γ24 γ25 γ26 γ27 − 1
β

1
β 0 0

γ31 γ32 γ33 γ34 γ35 γ36 γ37 0 − 1
β

1
β 0

γ41 γ42 γ43 γ44 γ45 γ46 γ47
1
β 0 − 1

β 0

γ51 γ52 γ53 γ54 γ55 γ56 γ57 0 0 − 1
β

1
β

γ61 γ62 γ63 γ64 γ65 γ66 γ67
1
β 0 0 − 1

β

γ71 γ72 γ73 γ74 γ75 γ76 γ77 0 0 0 − 1
β

1 −1 0 1 0 1 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0
0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 −1 0 0 0 0



−1

×



−γ11α1 − γ12α2 − γ13α3 − ...− γ17α7

−γ21α1 − γ22α2 − γ23α3 − ...− γ27α7

−γ31α1 − γ32α2 − γ33α3 − ...− γ37α7

−γ41α1 − γ42α2 − γ43α3 − ...− γ47α7

−γ51α1 − γ52α2 − γ53α3 − ...− γ57α7

−γ61α1 − γ62α2 − γ63α3 − ...− γ67α7

−γ71α1 − γ72α2 − γ73α3 − ...− γ77α7

0
0
0
0


and the equations (5.70) to (5.76) can be written as

µ
′(k+1)
1

µ
′(k+1)
2

µ
′(k+1)
3

µ
′(k+1)
4

µ
′(k+1)
5

µ
′(k+1)
6

µ
′(k+1)
7


=

1

ζ
Σ



−γ11η1 − γ12η2 − γ13η3 − ...− γ17η7

−γ21η1 − γ22η2 − γ23η3 − ...− γ27η7

−γ31η1 − γ32η2 − γ33η3 − ...− γ37η7

−γ41η1 − γ42η2 − γ43η3 − ...− γ47η7

−γ51η1 − γ52η2 − γ53η3 − ...− γ57η7

−γ61η1 − γ62η2 − γ63η3 − ...− γ67η7

−γ71η1 − γ72η2 − γ73η3 − ...− γ77η7


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Starting µk+1
1 , µk+1

2 ,..., µk+1
7 , µ

′k+1
1 ,..., µ

′k+1
7 with initial values, these update equations

repeat until no changes in the estimated parameters are observed. The results show that

the mean of data has changed at t = 22. The true mean before the change satisfies the

constraints in (5.28) and is µ = [7, 9, 9, 1, 8, 1, 7]T . After t = 22, the true mean changes to

µ′ = [7.5, 10, 9, 1, 8, 1, 7]T . A total n = 50 samples are generated with the covariance matrix

as

Σ =



1 0.05 0.02 0 0.03 0.05 0
0.05 1 0.01 0.01 0.01 0.15 0.05
0.02 0.01 0.4 0.01 0.16 0.01 0.2

0 0.01 0.01 0.8 0.01 0.01 0.2
0.03 0.01 0.16 0.01 0.5 0.01 0.01
0.05 0.15 0.01 0.01 0.01 1 0.02

0 0.05 0.2 0.2 0.01 0.02 0.5


The free parameters are chosen arbitrarily as c1 = 2, c2 = 0.5 . The estimated results

of constrained and unconstrained µ = (µ1, ..., µ7) and unconstrained µ′ = (µ′1, ..., µ
′
7) with

respect to iteration number are shown in Figures 5.2 and 5.3 respectively. As we can see,

starting with some initial values, in 10 iterations, the mean values converge to the true ones

indicating fast convergence of EM algorithm. The comparison of restricted µ values and

unrestricted parameters shows the difference at convergence. Obviously, the constraints are

satisfied before the mean shift occurs. In Table 5.1, the minimum, maximum, mean and

standard deviation of estimation error of 14 estimated parameters are given for all iterations

of EM. The estimation error is approximately of zero mean except for µ′3 which is 0.22. For

µ′3, the true value is 9 while the estimated value is 9.2. In addition, the standard deviations

of most of the parameters are smaller than 0.23 except µ′1 and µ′5 for which the standard

error is about 0.5. These standard errors compared with true values are 10% , in the worst

case.

This problem can also be generalized to the cases where covariance is unknown and

changing. All the assumptions made in Chapters 3 and 4 can be used here and the only

difference is addition of constraints to the first segment of the data, i.e before change occurs.

In the presence of unknown covariance, one can add this parameter to the lists of unknowns

and estimate the parameters at every iteration of EM.

In next section, a more realistic simulation example with nonlinear constrains is taken

into account for mean estimation.

5.4 Example 2: Mean Estimation in Presence of Nonlinear
Constraints

In this section, the mean estimation problem is extended to nonlinear constraints. The

CSTR problem is a benchmark example in chemical engineering. This system was studied

for the purpose of change point detection in previous chapters. The nonlinear dynamic
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Figure 5.2: Estimated Mean Values Before the Change Point µ = (µ1, ..., µ7) Using EM,
Unconstrained Solution (Dashed Line) and Constrained Solution (Solid Line)
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′
7) Using EM
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Table 5.1: The Estimation Error Characteristics Derived for 14 Parameters

Estimation Error Min Max Mean Std

Er(µ1) -1 0.0366 -0.0997 0.2112
Er(µ2) 0 0.2814 0.0707 0.1049
Er(µ3) 0 0.2814 0.0707 0.1049
Er(µ4) -0.0191 0.2145 0.0278 0.0930
Er(µ5) -1 0.0672 -0.0047 0.2283
Er(µ6) -0.3 0.1173 0.0807 0.0939
Er(µ7) -1 0.0366 -0.0997 0.2112
Er(µ′1) -0.1206 2.5 0.0676 0.5576
Er(µ′2) -0.2328 0 -0.0937 0.0621
Er(µ′3) 0.1290 1 0.2200 0.2049
Er(µ′4) -0.0384 0.3712 0.0365 0.1425
Er(µ′5) -2 0.6021 -0.0118 0.5044
Er(µ′6) -0.5 0.1743 -0.1628 0.1501
Er(µ′7) -0.5 0.1743 -0.1628 0.1501

equations of CSTR can be written as

˙CA(t) =
q(t)

V
(CA0(t)− CA(t))− k0CA(t)exp(− E

RT (t)
) (5.80)

˙T (t) =
q(t)

V
(T0(t)− T (t)) +

∆Hk0CA(t)

ρCp
exp(− E

RT (t)
)+

ρcCpc
ρCpV

qc(t){1− exp(
−hA

qc(t)ρCp
)}(Tc0 − T (t)) (5.81)

As discussed in previous chapters, the input is qc which drives the process to different

operating modes. In Chapter 3, the process input is changed and corresponding to that

change, the system outputs, i.e. product concentration and temperature, could change

accordingly. In this chapter, however, the objective is to estimate the mean of outputs

before and after the change point assuming that the change point is unknown. The difference

between mean estimation in this section and the one in previous section, i.e. linear process

network example, is that here the measurements must satisfy the nonlinear constraints not

only before the change but also after the change. The outputs are corrupted by measurement

noise. The measurement noise added to each output is of Gaussian distribution with mean

zero and standard deviation 10% of the states. The input is selected as qc = 97 L/min

before the change occurs and then it changes to qc = 97 L/min. The mean estimation using

EM algorithm in presence of constraints can be solved using Lagrange multiplier. Under
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the steady state condition, the constraints are of the form

f1 =
q(t)

V
(CA0(t)− CA(t))− k0CA(t)exp(− E

RT (t)
) = 0 (5.82)

f2 =
q(t)

V
(T0(t)− T (t)) +

∆Hk0CA(t)

ρCp
exp(− E

RT (t)
)+

ρcCpc
ρCpV

qc(t){1− exp(
−hA

qc(t)ρCp
)}(Tc0 − T (t)) = 0 (5.83)

Assume that before the change point we have µ = [CA, T ]T and after the change occurs,

the mean vector is µ′ = [C ′A, T
′]T . The Lagrange function can be written as

L(µ, µ′, λ) = L(CA, T, C
′
A, T

′, λ1, λ2)

= Q(µ, µ′|µ(k), µ′(k)) + λ1(f1) + λ2(f2) (5.84)

Differentiating the Lagrange function with respect to µ and setting them equal to zero, we

have

dL

dCA
=

dQ

dCA
+ λ1

df1

dCA
+ λ2

df2

dCA
= 0 (5.85)

dL

dT
=
dQ

dT
+ λ1

df1

dT
+ λ2

df2

dT
= 0 (5.86)

These equations can be further simplified as

λ1A11 + λ2A12 = −γ1(α+ β(CA, T )T ) (5.87)

λ1A13 + λ2A14 = −γ2(α+ β(CA, T )T ) (5.88)

where

dQ

dCA
= γ1(α+ β(CA, T )T ) (5.89)

dQ

dT
= γ2(α+ β(CA, T )T ) (5.90)

γ1 = (γ11, γ12) corresponds to the first row of Σ−1, the measurement covariance matrix, and

γ2 = (γ21, γ22) corresponds to the second row of Σ−1. α and β are the same as equations

(5.68) and (5.69). Also,

A11 =
df1

dCA
= −q(t)

V
− k0exp(−

E

RT (t)
)

A12 =
df1

dT
=

∆Hk0

ρCp
exp(− E

RT (t)
)

A13 =
df2

dCA
= −k0CA(t)(

E

RT 2
)exp(− E

RT (t)
)

A14 =
df2

dT
= −q(t)

V
+

∆Hk0CA(t)

ρCp
(
E

RT 2
)exp(− E

RT (t)
)− ρcCpc

ρCpV
qc(t){1− exp(

−hA
qc(t)ρCp

)}

(5.91)
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Thus, in order to find the mean vector before the change point, one needs to solve four

equations (5.82), (5.83), (5.85) and (5.86) with respect to CA, T ,λ1 and λ2 by selecting

qc = 97.

In order to find the mean vector after the change point, the same equations are solved

with respect to C ′A, T ′ and new coefficients defined as λ′1 and λ′2 but with qc = 99 as

λ′1A
′
11 + λ′2A

′
12 = −γ1(η + ζ(C ′A, T

′)T )

λ′1A
′
13 + λ′2A

′
14 = −γ2(η + ζ(C ′A, T

′)T )

f1 = 0

f2 = 0 (5.92)

where η and ζ can be derived as in (5.77) and (5.78). A′11, A′12, A′13 and A′14 are derived as

(5.91) but with qc = 99 as the input value.

As we can see, since the equations are nonlinear, at every iteration of EM, we need

to solve 8 nonlinear equations. The solutions will be nonlinear functions of α, β, η and ζ

which all contain the current mean vectors µ(k), µ′(k). Using fsolve function, these nonlinear

functions are evaluated in Matlab. In Figure 5.4, the measurements are shown. The free

parameters are chosen randomly as c1 = 2, c2 = 0.1. The initial values are set as µ(0) =

[CA, T ]T = [0.001, 700]T ,µ′(0) = [C ′A, T
′]T = [0.002, 550]T . The true mean values before

the mean shift are µ(true) = [CA, T ]T = [0.0799, 436.9345]T and after the change point, the

means are changed to µ′(true) = [C ′A, T
′]T = [0.0846, 443.4214]T . The covariance matrix can

be calculated using the measurements.

The mean estimates for concentration, CA and temperature, T before and after the

change point are illustrated in Figure 5.5 and 5.6 respectively.

As we can see, even if the initial condition is far from the true mean values, in the

second iteration, EM converges to true mean values. From these Figures, the estimated

mean before the change point is µ(∗) = [CA, T ]T = [0.0793, , 443.5109]T and the mean after

the change point is µ′(∗) = [C ′A, T
′]T = [0.0851, 441.9877]T . Apparently, the estimated

means are very close to true values as mentioned before.

Similarly, in the presence of multiple change points, we have more nonlinear equations

representing the process constraints at every operational mode. Corresponding to every

change point we need to solve additional four nonlinear equations to determine the mean.

5.4.1 Conclusion

In this chapter, the mean estimation in change point detection problem is investigated.

Through Expectation Maximization (EM) method, the means of data before and after the

change points are estimated without knowing where the change point is. This problem is also

extended to a more complex case where these mean values, i.e. unknown parameters, must

satisfy certain constraints. Using Lagrange multiplier, this problem is solved for a process
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Figure 5.4: Product Concentration (CA) and Reactor Temperature (T)
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Figure 5.5: Mean Estimation for Product Concentration (CA, Upper Plot) and Reactor
Temperature (T, Lower Plot) Before the Change Point

90



1 2 3 4 5 6 7 8 9 10 11
0

0.02

0.04

0.06

0.08

0.1

Iteration

C
A

1 2 3 4 5 6 7 8 9 10 11
440

460

480

500

520

540

560

Iteration

T

Figure 5.6: Mean Estimation for Product Concentration (CA, Upper Plot) and Reactor
Temperature (T, Lower Plot) After the Change Point

network and a more realistic problem in chemical engineering. The results demonstrate

successful estimation of unknown parameters in the presence of unknown change points.
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Chapter 6

Conclusion and Directions for
Future Work

6.1 Summary and Conclusion

This thesis is focused mostly on change point detection under various scenarios. Change

point detection can be found in different applications including hydrology, signal processing,

finance, economics, pharmacology, environmental studies, meteorology and etc. Detection

of changes can assist us in various ways; one may use these techniques in identification of bias

in instruments in the form of mean shift detection. One application of change detection

is in identification of process variability. Another application is in process abnormality

detection and also detection of mode of operation. Depending on the application, one

can take advantage of these techniques to preprocess or analyse the data. In this thesis,

EM approach is used for change point detection under various scenarios. The reason is,

EM is an alternative solution to maximum likelihood estimation. In this method, defining

new sets of variables as hidden variables, one can find their expectation using the data

and current estimate of unknown parameters and then maximize this expectation with

respect to unknown parameters. It is proved that at every iteration of EM, the likelihood

of observed data increases. It was also shown that compared with Bayesian inference, EM

is not sensitive to priors. Like other optimisation techniques, EM can be also sensitive to

initial selection of unknown parameters resulting in local maxima.

Having introduced the motivation and background for change point detection problem

in Chapter 1, in Chapter 2, this problem is solved for univariate data and single change in

the mean of data. In fact, the problem is solved using three approaches including Bayesian,

EM and SEM. The performance of these methods are compared through simulation example

and the overall power of algorithms in correct identification of change point is calculated

through Monte Carlo runs.

In Chapter 3, change point detection was solved for multivariate data in the presence of

known covariance matrix. Single and multiple changes detection problems are solved using

Bayesian and EM methods. Through simulation and experimental data, the performance
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of proposed algorithms are evaluated. EM algorithms outperforms Bayesian method in

the case of wrong priors. Convergence of EM is fast in terms of the number of iterations

required.

In Chapter 4, change point detection is further extended to unknown and changing

covariance matrix. EM solution for this problem is derived and through simulation and

experimental data, the detection performance is studied. The results show successful per-

formance of the proposed method.

In any parameter estimation, problem, there may be constraints on unknown parame-

ters. In Chapter 5, these process constraints are taken into account. The mean estimation

in multivariate data is elaborated through EM algorithm using change point models. The

update equations for parameters in multiple changes are derived. As an extension of this

derivation, the problem was also solved through EM imposing constraints such as mass

balance. The performance was evaluated using an illustrative example of process network.

The results show that in the presence of process constraints, EM convergent is fast and the

estimation is accurate.

6.2 Directions for Future Work

Throughout this thesis, we assume that the number of change point is already known as

priori. Extending EM formulation to the case where the number of change point can be

determined during iterations of EM can be regarded as future direction. The estimation of

the number of change points can be solved for different assumptions for mean and covariance

of data.

Another direction can be online detection of change points without adding much more

complexity at each sample instant compared with [23]. Derivation of EM solution to change

point detection problem where there is dependency or correlation in observations can also

be regarded as another future work.
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.1 Appendix

In Bayesian derivation, the joint probability in (3.10) is proportional to the posterior prob-
ability of change point given the data. This joint probability can be written as the product
of two terms, F1 and F2. In the following, the Bayesian solution is given. We have

P (D,µ1, µ2,Σ, β0,m) = F1 × F2 (1)

where

F1 = C1exp{−
1

2
{
m∑
i=1

[(yi − µ1)TΣ−1(yi − µ1)] + (µ1 − µ0
1)TΣ−1

01 (µ1 − µ0
1)}} (2)

F2 = C2exp{−
1

2
{

n∑
i=m+1

[(yi − µ2)TΣ−1(yi − µ2)] + (µ2 − µ0
2)TΣ−1

02 (µ2 − µ0
2)}} (3)

We can write

F1 = C1exp{−
1

2
{
m∑
i=1

[(yi − µ1)TΣ−1(yi − µ1)] + (µ1 − µ0
1)TΣ−1

01 (µ1 − µ0
1)}}

= C1exp{−
1

2

(
µT1
(
mΣ−1 + Σ−1

01

)
µ1 − µT1

(
mΣ−1ȳ + Σ−1

01 µ
0
1

)
−
(
mΣ−1ȳ + Σ−1

01 µ
0
1

)T
µ1

)
}×

exp{−1

2
{µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi}} (4)

where

ȳ =
1

m

m∑
i=1

yi (5)

In order to complete the square term, define A = mΣ−1 +Σ−1
01 and B = mΣ−1ȳ+Σ−1

01 µ
0
1.

We have

F1 = C1exp{−
1

2

(
µT1 Aµ1 − µT1 B −BTµ1

)
} ∗ exp{−1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi)} (6)

Further algebraic manipulation yields

F1 = C1exp{−
1

2

(
µT1 Aµ1 − µT1 B −BTµ1 +BTA−1B −BTA−1B

)
}×

exp{−1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi)}

= C1exp{−
1

2

(
µT1 Aµ1 − µT1 B −BTµ1 +BTA−1B

)
}∗

exp{−1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi −BTA−1B)} (7)
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Note that A is the weighted sum of two symmetric and full rank covariance matrices; thus
A is symmetric and invertible. We have I = A−1A = AA−1 and (A.7) can be further
rewritten as

F1 = C1exp{−
1

2

(
µT1 Aµ1 − µT1 AA−1B −BTA−1Aµ1 +BTA−1AA−1B

)
}×

exp{−1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi −BTA−1B)} (8)

Let ∆n = A−1 and Ωn = A−1B, then (A.8) can be written as

F1 = C1exp{−
1

2

(
µT1 ∆−1

n µ1 − µT1 ∆−1
n Ωn − ΩT

n∆−1
n µ1 + ΩT

n∆−1
n Ωn

)
}∗

exp{−1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi −BTA−1B)}

= C1exp{−
1

2
(µ1 − Ωn)′∆−1

n (µ1 − Ωn)} ∗ exp{−1

2
(µ0

1
T

Σ−1
01 µ

0
1 +

m∑
i=1

yTi Σ−1yi −BTA−1B)}

(9)

So, F1 is derived as in (A.8) where ∆n = A−1 = (mΣ−1 + Σ−1
01 )−1 and Ωn = A−1B =

(mΣ−1 + Σ−1
01 )−1(mΣ−1ȳ + Σ−1

01 µ
0
1).

Following the same procedure, F2 is derived as

F2 = C2exp{−
1

2
(µ2 −Ψn)′ Λ−1

n (µ2 −Ψn)} × exp{−1

2
(µ0

2
T

Σ−1
02 µ

0
2 +

n∑
i=m+1

yTi Σ−1yi −DTC−1D)}

(10)

where ȳ = 1
n−m

∑n
i=m+1 yi, C = (n−m)Σ−1+Σ−1

02 , D = (n−m)Σ−1ȳ+Σ−1
02 µ

0
2 , Λn = C−1 =

((n−m)Σ−1 + Σ−1
02 )−1 and Ψn = C−1D = ((n−m)Σ−1 + Σ−1

02 )−1((n−m)Σ−1ȳ + Σ−1
02 µ

0
2).

As a result, the joint probability distribution is

P (D,µ1, µ2,Σ, β0,m) = F1 × F2 (11)
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