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Abstract

Building predictive models with higher predictive performance is the common pursuit in

text classification tasks. In almost all domains of text classification problems, the current

state-of-the-art models (e.g., Bi-LSTM and BERT) are based on deep neural networks that

learn language representations with deep and sophisticated neural architectures. However,

the lack of interpretability limits the real-world applications of these deep models, espe-

cially in life-critical domains. The desire for the interpretability of neural networks that

aims to provide predictions along with explanations has been rapidly emerging. Rationale

extraction, which is one best practice of explainable artificial intelligence (XAI) in build-

ing explainable neural classifiers, learns with only instance-level supervision to identify

discriminative features as explanations for predictions; it can be applied in the medical do-

main to provide explainable disease diagnostic predictions. The scope of the dissertation

is on rationale extraction and predictive models, with a focus on detecting Crohn’s dis-

ease from CT enterography radiology reports. Specifically, the work of the dissertation: 1.

explores rationale extraction as a tool for knowledge acquisition from CT enterography re-

ports, 2. introduces IBDBERT, an inflammatory bowel disease (IBD)-specific BERT large

language model, which achieves the state-of-the-art classification accuracy in detecting

Crohn’s disease from CT enterography reports in comparison to CNN, Bi-LSTM and both

generic and domain-specific BERT models and 3. constructs the first ensemble architecture

of rationale extraction by imitating human interaction.
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Preface

Regarding the part of the dissertation related to detecting Crohn’s disease from CT en-

terography reports (i.e., Section 2.3, 2.4, Chapter 3 and Appendix A), the study protocol

was approved by the Health Research Ethics Board of University of Alberta Institutional

Review Board (Pro00093304).

The work in Section 2.3, 2.4 and Chapter 3 is part of a research collaboration with Mi-

Young Kim, Reed Sutton, Ross Mitchel, Randy Goebel and Daniel C. Baumgart, which is

targeting a journal publication. Chapter 4 of the dissertation has been published as “Inter-

active Rationale Extraction for Text Classification” in Trustworthy and Socially Responsi-

ble Machine Learning at Neural Information Processing Systems (2022) [1] (non-archival)

and Australasian Language Technology Association (2022) [2] (in proceedings) which

are separately available with the links https://openreview.net/forum?id=zaJsDuwwdlJ and

https://aclanthology.org/2022.alta-1.15.
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Chapter 1

Introduction

1.1 Background

Text classification, which is the problem of categorizing texts into predefined classes or

labels, is one of the most used and successful applications of natural language processing.

With the help of the rapidly advancing computing power and the large volume of high-

quality labeled datasets, deep neural network-based predictive models have achieved the

state-of-the-art performance in text classification tasks in various real-world domains (e.g.,

sentiment analysis, medical diagnosis, topic labeling). Compared with traditional classifi-

cation models, either linear (e.g., logistic regression, Naı̈ve Bayes, support vector machine)

or non-linear (e.g., k-nearest neighbors algorithm, decision trees), deep neural network

(DNN) models generally present higher predictive performance. With more and more so-

phisticated neural architecture designs and language representations (e.g., Bi-LSTM and

BERT [3]), their performance continues to improve over the recent years.

However, the practice of applying DNNs, especially in life-critical domains, is limited

because of their poor interpretability and explanability as black-box models. Because a

neural model might perform well in a certain dataset by exploiting some biased features,

such as genders, physician and hospital names, which can be dataset specific and may not

be truly important information for real-world decision making, it is essential for humans

to understand the reason for a neural model to make a prediction. In other words, the

interpretability of a neural model is desired such that a human decision maker can trust
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the model’s predictions. To improve the trustworthiness of DNNs, the study of explainable

artificial intelligence (XAI) has been increasingly catching attention [4].

Generally speaking, the target of the interpretability of neural network-based text clas-

sifiers is to provide not only classification predictions but also explanations which are ex-

pected to give insights on what features from input texts are discriminative or used for

the corresponding predictions. The explanations provided by current XAI methods can be

described as two types: (1) feature-level importance values and (2) rationales (i.e., sub-

sets of input tokens). Given an input text, methods that provide feature-level importance

values (e.g., LIME [5] and SHAP [6]) generate a real number value for each token of the

input text, which indicates the token’s contribution for a certain class, either in a positive

or a negative way; alternatively, methods that provide rationales, which are called rationale

extraction [7–10], select a text fragment as a rationale, which is expected to contain im-

portant features, from the original input text and then make a prediction solely based on

the rationale. Rationale extraction can be viewed as a machine learning method of building

intrinsically interpretable neural classifiers which learns to extract important features with

only instance-level supervision. This is the XAI method explored in the dissertation.

When it comes to the automated detection of Crohn’s disease (CD) from computed to-

mography (CT) enterography textual reports, the task is to build a binary text classification

model which distinguishes between the reports with CD and the reports without CD. As

a type of inflammatory bowel disease (IBD), CD has an increasing prevalence worldwide,

and it can affect the whole gastrointestinal tract and most commonly affects the terminal

ileum and colon [11]. The data used for the detection of CD is the textual reports of CT

enterography which is an imaging technique for detailed small bowel visualisation and is

often used as an accurate tool for the early diagnosis and assessment of Crohn’s disease

[12]. Considering the large volume of patients to screen, an accurate and trustworthy au-

tomated system for detecting CD is important since it will provide supportive evidence as

assistance for physicians to make efficient diagnosis.
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1.2 Objective

In the development of statistical predictive models for text classification problems, from

simple linear models relying on linear combinations of input words to complex deep neural

models optimized by gradient descent in arbitrarily high-dimensional spaces, there seems to

be tension between predictive performance and interpretability. With rationale extraction

as an example, a rationale extraction model that extracts whole input texts as rationales

provides the least interpretability, but, compared with models which only extract small

portions of input texts as rationales, it generally presents more accurate predictions by

making use of more information.

Despite the known challenges, higher predictive performance and better interpretabil-

ity are desired when building predictive models, which motivates this dissertation. More

specifically, the work of the dissertation mainly focuses on:

1. Exploring rationale extraction as a tool for knowledge acquisition for the detection

of CD from CT enterography textual reports which leads to an algorithm for auto-

matically collecting important features and building rule-based classifiers.

2. Improving the predictive performance of existing classifiers (i.e., BERT models) on

detecting Crohn’s disease from CT enterography textual reports through IBD-specific

language model augmentation which results in IBDBERT.

3. Improving the predictive performance of rationale extraction without compromising

interpretability by constructing the first ensemble architecture for rationale extraction

which imitates the interactive process of humans for problem solving.

1.3 Outline

Chapter 2 briefly discusses rationale extraction as a machine learning method for building

explainable neural classifiers and how it might align with the way humans search for im-

portant features. Then, this chapter explores rationale-based knowledge acquisition from
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CT enterography reports by extracting discriminative word or phrase-level features from

rationales and then detecting Crohn’s disease based on the discriminative features, which

presents competitive predictive performance with the original rationale extraction method

but with better interpretability.

Chapter 3 introduces an inflammatory bowel disease-specific BERT large language

model (i.e., IBDBERT), which is created by augmenting the original BERT with a cor-

pus of human experts’ knowledge on IBD and is then fine-tuned for the task of detecting

Crohn’s disease from CT enterography reports. IBDBERT confirms the effectiveness of

subject matter knowledge on augmenting a generic large language model BERT in terms

of improving its predictive performance on a related downstream task.

Chapter 4 proposes a rationale dialogue architecture called Interactive Rationale Ex-

traction for Text Classification by imitating human interaction for handling disagree-

ments, which is the first ensemble architecture of rationale extraction. The work of this

chapter argues that rationale extraction is compatible with the way humans benefit from

exchanging reasons and presents that the architecture with rationale dialogue improves the

predictive performance from base rationale extraction models, which is achieved without

compromising the interpretability and the faithfulness of the rationale-based explanations.

The theme of the dissertation is on improving the interpretability and the predictive

performance of neural network-based text classifiers. All the methods introduced in the

dissertation, except Chapter 4, are performed on CT enterography reports for the task of

detecting Crohn’s disease. Considering the very limited amount of available CT enterog-

raphy reports and the cost of human annotations for “gold” labels, the rationale dialogue

algorithm introduced in Chapter 4 is performed on general text classification datasets (i.e.,

IMDB movie reviews and 20 Newsgroups) because the algorithm is to handle the disagree-

ment cases for rationale extraction models (i.e., a small portion of all cases) and requires a

large volume of labeled testing data for effective evaluation.
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Chapter 2

Rationale Extraction

2.1 Introduction

Rationale extraction [7–10] is a machine learning method that identifies text segments as

rationales to explain classifiers’ predictions. In a rationale extraction setup with a general

architecture described in Figure 2.1, two neural networks, a generator and a classifier, work

jointly: the generator extracts a subset of text, namely a rationale, from the original input

text where the rationale is expected to cover discriminative information, and then the clas-

sifier makes a prediction solely based on the extracted information. The rationale is then

seen as the evidence or explanation for the prediction. Note that this use of rationales can

be coupled with any neural networks to build predictive classifiers.

The original selective rationale extraction model was proposed by Lei et al. [7]. Their ra-

tionale extraction model is trained with only instance-level supervision (i.e., without token

or feature-level supervision) and the model itself learns to identify discriminative features.

Their model faithfully explains a neural network-based classifier’s predictions by jointly

training a generator and a classifier with only instance-level supervision. We summarize

their work as follows. The generator g consumes the embedded tokens of the original text,

x r ygenerator classifier

Figure 2.1: The general architecture of rationale extraction. x is an input text, r is a ratio-
nale, y is a prediction.
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namely x = [x1, x2, ..., xl] where l is the number of the tokens in the text and each to-

ken xi ∈ Rd is an d dimensional embedding vector, and outputs a probability distribution

p(z|x) over the text mask z = [z1, z2, ..., zl] where each value zi ∈ {0, 1} denotes whether

the corresponding token is selected.

A rationale r is then defined as (z, x) representing the mask z over the original input x.

Subsequently, the classifier f takes (z, x) as input to make a prediction f(z, x). Given gold

label y, the loss function used to optimize both generator g and classifier f is defined as

loss(z, x, y) = ||f(z, x)− y||22 + λ1||z||+ λ2

l−1∑︂
i=1

|zi − zi+1| (2.1)

which consists of three parts respectively corresponding to predictive loss, selection loss

and contiguity loss. The predictive loss encourages the model to select better discriminative

features as rationales and improve predictions. The selection loss and the contiguity loss,

respectively fine-tuned by hyper-parameters λ1 and λ2, encourage the model to select con-

cise and contiguous rationales, which is intended to improve interpretability. An example

of how to compute the selection loss and contiguity loss given a mask can be found below

in Figure 2.2.

Figure 2.2: Given an IMDB movie review, a mask is created to apply on the original input
to produce a rationale. The selection loss is 3 (i.e., the number of 1’s in the mask) and
the contiguity loss is 6 (i.e., the number of transitions between 0 and 1 along the mask
sequence). Note that a mask is composed of discrete 0’s and 1’s only for inference and a
mask is probabilistic during the training process.

Background The original rationale extraction model proposed by Lei et al. [7] in 2016

uses hard masking by applying Bernoulli distribution (i.e., non-differentiable) on each to-
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ken for generating rationales which requires REINFORCE [13] for training. Since REIN-

FORCE does a random sampling of rationales for gradient estimation, this complicates the

training process and presents high variance and sensitivity to parameters [9]. Following the

select-predict architecture proposed by Lei et al. [7], further explored were improved meth-

ods for differentiable masking, such as Gumbel-Softmax [14] and HardKuma [8] which re-

spectively approximate the Bernoulli distribution with differentiable Gumbel-Softmax and

Hard Kumaraswamy distributions.

Advantages One advantage of rationale extraction is “full faithfulness”, which is an im-

portant characteristic of model interpretability. An explanation is faithful if the explanation

is truly the reason for the prediction [15, 16]. While LIME and SHAP, popular post-hoc

methods, and attention weights, for neural networks with attention mechanisms [17–19],

can hardly guarantee the features with high importance scores are truly the reason for the

prediction, rationale-based explanation is fully faithful since a rationale is the only input

for its prediction. Also, once a rationale extraction model is trained, producing each pair

of rationale and prediction takes only one inference, which is much more computationally

efficient compared to post-hoc processing (e.g., to explain a model’s prediction on every

single instance, LIME needs to compute a linear model to approximate the behaviour of

the model around the instance).

Limitations In the joint training process of rationale extraction proposed by Lei et al. [7],

optimizing the generator requires the supervisory signal remotely from the predictive loss

of the classifier which in turn depends on the rationale selection by the generator. The major

challenge of rationale extraction is to train a rationale provider (i.e., a generator) and a

classifier jointly with only instance-level supervision where the joint architecture of select-

predict is fundamental in order to guarantee the faithfulness of rationales as explanations

for the classifier’s predictions. Jain et al. [9] discussed the problem of the joint training

by focusing on the differentiability problem and they showed that a rationale extraction
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model’s predictive performance can be improved by breaking the joint architecture. In their

work, the task of a generator selecting tokens is done by applying simple heuristics based on

feature important scores (e.g., extracting tokens with the top k importance scores given by

any importance scoring method, such as LIME [5], attention scores [20] and input gradients

[21, 22] as mentioned in their work) and an independently trained classifier then consumes

the selected tokens for prediction. Their work keeps the select-predict architecture (i.e., to

remain faithful) and avoids training the two base models jointly.

2.2 Example: Rationale Extraction vs. A Superstitious
Hockey Fan

Day What I drink, eat, wear Game Result

1 milk sandwich yellow loss

2 juice sandwich yellow loss

3 milk burger yellow loss

4 milk sandwich blue win

Table 2.1: A superstitious hockey fan trying to help his team win by searching in his
daily routine for the “cause” of the game result. The features are {what he drinks, eats,
wears} and the corresponding options separately are {milk, juice}, {sandwich, burger}
and {yellow, blue}.

Rationale extraction is all about searching for discriminative information. Since the

search for discriminative information for prediction is common in human activities, we may

use the following example to intuitively understand rationale extraction. In the scenario of a

superstitious hockey fan (Table 2.1), the hockey fan believes the game result of his favorite

hockey team is decided by his actions and he tries to find the variable in his daily life that

causes his team to win or lose. Here the hockey fan assumes that the three features (i.e.,

what he drinks, eats and wears) are the potentially important features and only one feature

affects the game result. His strategy is to change one variable at a time and observe if the

game result changes. For example, from Day 1 to Day 2, he changes what he drinks from
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milk to juice while keeping other variables unchanged and he observes that the game result

is unchanged. By repeating the process, after four days of searching and observing, the

hockey fan believes that his team wins when he wears blue.

Rationale Extraction Hockey Fan

Original Data free texts tabular

Features for Prediction subsets of texts combinations of feature options

Prediction Model neural classifier rule: result = win if feature = x

Search Method gradient descent variable control

Supervision instance-level

Table 2.2: Comparison between rationale extraction and the superstitious hockey fan. In a
rule of the hockey fan, we have features ∈ {what he drinks, eats, wears} and x ∈ {milk,
juice} or {sandwich, burger} or {yellow, blue} corresponding to each feature (as shown in
Table 2.1). As an example rule, the hockey fan believes that his team wins if what he wears
is blue. The gradient estimation calculations for rationale extraction based on REINFORCE
[13] for hard masking and reparameterization trick for differentiable masking can both be
found in the work by Jang et al. [14].

This scenario is comparable to rationale extraction in terms of searching for important

features (Table 2.2). While, in rationale extraction, a neural network-based generator se-

lects features from free texts and a neural classifier predicts by consuming the features, the

hockey fan does variable control over the three features and makes a prediction based on

a simple rule. The hockey fan’s belief surely will fail when more games happen, which is

determined by the insufficient feature space and the wrong predictive model (i.e., his wrong

assumptions). To his defense, the problem of searching for discriminative features in re-

ality is generally difficult to tackle considering the massive amount of features to observe

and the potentially complicated interaction within features. However, the superstition and

the search attempt could be avoided if he has some knowledge about what features (i.e.,

probably not what he drinks, eats, wears) truly are potentially important for the problem of

predicting game results where knowledge can serve as feature-level supervision.

The superstition of the hockey fan can also exist with predictive models in general,
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which means what a predictive model considers to be important may not be the true cause

of a result in reality. The reason is that, during the supervised training process, a predictive

model usually only has access to a dataset with instance-level supervision, which is similar

to the features and game results that the hockey fan can observe during the four days. With

rationale extraction explicitly declaring which features are used for a prediction, a human

decision-maker can figure out if the prediction is probably a result of “superstition”.

2.3 Rationale Extraction for Crohn’s Disease Detection

Canada’s vast geographic area and low population density pose profound challenges for

access to highly specialized health care for remote and rural residents. Only 2.4% of all

specialists practice in rural and small-town Canada according to the Canadian Institute of

Health Information. Rural patients need to travel far, often > 500 km, for access to a spe-

cialist and even farther for an IBD expert [23]. An automated diagnostic prediction system

for Crohn’s disease, which is trustworthy and explainable, will provide timely diagnostic

suggestions and reduce the cost of accessing specialists, especially for patients from re-

mote areas. An automated and interpretable predictive model that detects Crohn’s disease

from CT enterography reports might provide some insights for creating such an automated

diagnostic system.

The question of interpretability of machine learned predictive classification outputs is a

very general challenge that is at the centre of all current research on XAI systems [4]. One

best practice in building an explainable classifier is natural language rationale extraction,

which can be applied to the detection of Crohn’s disease from CT enterography textual

reports to support diagnostic predictions with rationales. The schematic of rationale ex-

traction for the diagnosis of Crohn’s disease is shown in Figure 2.3.
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Figure 2.3: Schematic of rationale extraction applied to automated detection of Crohn’s dis-
ease from CT enterography reports. After receiving a CT enterography report, the generator
selects rationales (i.e., discriminative text features from the report) as evidence, which is
then consumed by the classifier to make a prediction (i.e., either Crohn’s disease or not).

2.3.1 Experimental Setups

Base neural networks and training CNN and Bi-LSTM are used as the base neural

networks for the generators and the classifiers in rationale extraction. CNN had filter sizes

of [3, 4, 5] and 100 filters were used for each filter size. Bi-LSTM had 1 hidden layer with

a dimension of 32. For both CNN and Bi-LSTM, the number of training epochs was 30; the

dropout rate was set to be 0.2; the batch size was 128; Adam [24] was used as the optimizer

with a weight decay rate of 5e-6 and a learning rate of 1e-3; GloVe [25] of 100-dimensional

word embedding was used. Note that any black box neural models can serve as a generator

and a classifier in a rationale extraction setup.

For all the rationale extraction models, the experiments were repeated five times over

five distinct random seeds (i.e., [2022, 2023, 2024, 2025, 2026]) to produce averaged val-

ues of predictive performance. In each experiment, when each training epoch of the 30

epochs finishes, the cross-entropy loss of the model on the developing dataset was com-

puted as predictive loss. In the total 30 epochs, the learning rate was halved if there was no

improvement in the predictive performance on the developing dataset after every 5 epochs.

The version of the model among the training epochs that achieved the best performance on
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the developing dataset was taken as the final version. The final version was then used for

inference on the testing dataset to obtain predictive accuracy. Details about the different

splits (i.e., training, developing and testing) of the CT enterography reports can be found

in Appendix A.

Rationale masking While a classifier outputs the probability distribution for class pre-

diction, for each input token, a generator was implemented to output the probability dis-

tribution for predicting if the token was selected or not (i.e., masking). Gumbel-Softmax

[14] was used as differentiable masking, which is for simplifying gradient estimation. For

Gumbel-Softmax, the initial temperature was set to be 1 with a decay rate of 1e-5. The

implementation of rationale extraction with Gumbel-Softmax was adopted and modified

from https://github.com/yala/text nn.

Hyper-parameters The two hyper-parameters (λ1, λ2) from the loss functions 2.1 were

set to be [(8e-6, 0), (1e-5, 0)] and [(8e-4), (1e-3, 0)] separately corresponding to rationales

lengths of [16, 20] and [17, 20] (as in Table 2.3) for CNN and Bi-LSTM-based rationale

extraction models.

2.3.2 Evaluation

In addition to predictive accuracy, we report the average numbers of words in rationales as

a proxy for their interpretability (e.g., rationales containing whole reports are least inter-

pretable). It has been reported that, for datasets of various domains (e.g., movie reviews

and news), a rationale extraction model’s predictive performance increases when its ratio-

nale length increases [1, 9], which is also observed for detecting Crohn’s disease from CT

enterography reports.

In our experiments, the two rationale extraction models that use convolutional neural

network (i.e., CNN) [26] and bi-directional long short-term memory (i.e., Bi-LSTM) [27]

present similar performance when using generated rationales of similar length. For exam-
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Base Model Predictive Accuracy Interpretability

CNN .80, .81 16, 20

Bi-LSTM .75, .81 17, 20

Table 2.3: Rationale extraction models’ predictive accuracy with corresponding rationale
lengths for the detection of Crohn’s disease from CT enterography reports.

ple, when the hyper-parameter for selection loss is tuned to generate rationales of 20 words

on average, both models have a predictive accuracy of 81% as shown in Table 2.3. How-

ever, compared with the CNN, Bi-LSTM-based rationale extraction models show a much

higher variance in terms of accuracy and rationale length. During the experimental runs of

the same hyper-parameter settings (i.e., for selection and contiguity loss), the Bi-LSTM-

based model sometimes selects very few words as rationales and shows poor prediction

performance that is close to random guessing. For example, over the 5 experiments for

the Bi-LSTM-based rationale extraction model with the hyper-parameters λ1 = 0.001 and

λ2 = 0, we obtained the averaged rationale length of [14.75, 25.57, 19.81, 24.73, 0.04] in

words with corresponding predictive accuracy of [0.83, 0.84, 0.79, 0.82, 0.48] where ra-

tionales of 0.04 words resulted in a predictive accuracy of 0.48 which is similar to random

guessing in the binary classification task of Crohn’s disease prediction.

Using human knowledge in rationales Attempts that combine human knowledge to di-

rectly augment rationales have been conducted, such as augmenting rationales with lost

negation information and adding human annotated rationales to machine rationales (i.e.,

rationales provided by a rationale extraction model) for a trained rationale extraction clas-

sifier to make predictions, which did not improve the rationale extraction model’s predictive

performance.

It has been observed that sometimes entities that are negated in the original texts are no

longer negated in the rationales provided by rationale extraction models. Intuitively, nega-

tion information is very important for semantics. For example, “no evidence of Crohn’s
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disease” has an opposite meaning towards “evidence of Crohn’s disease”. However, the

text segments considered by humans to be important for semantics may not also be impor-

tant for a classifier in a rationale extraction setup. When the evidence of Crohn’s disease

truly exists, a radiologist, instead of writing “there is evidence of Crohn’s disease”, would

use more detailed descriptions for the “evidence” (e.g., mural thickening), which means

“evidence of Crohn’s disease” almost always appears within a negation environment. In

other words, “evidence of Crohn’s disease” is as strong as “no evidence of Crohn’s dis-

ease” in terms of decision making for a rationale extraction classifier and the negation

information is not a necessity for the classifier.

The reason that augmenting rationales by direct manipulation (e.g., with negation and

human rationale annotations) may not improve the predictive performance of a rationale

extraction model ultimately lies within the training data and the training process. Because

the classifier in rationale extraction is trained with the rationales extracted from its training

data, what the classifier considers to be important is constrained by the training data. More

discussions about the relationship between what a model considers to be important and the

training process can be found in Subsection 2.2. However, it has been reported that pro-

viding human rationale annotations as token-level supervision during the training process

is helpful in terms of improving the interpretability of machine-generated rationales [28]

and might slightly improve the rationale extraction model’s predictive performance in some

tasks [29].

2.4 Rationale-based Knowledge Acquisition from CT En-
terography Reports

Compared to post-hoc processing, which searches for what a learned model considers to

be important, rationale extraction searches for important features directly from a dataset,

which is more suitable to support knowledge acquisition. The task of knowledge acquisi-

tion here is to automatically collect features that are important for detecting Crohn’s disease
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from CT Enterography textual reports (i.e., strong discriminative indicators) and then make

uses of the important features to create predictions using rules formulated from those indi-

cators.

2.4.1 Strong Indicators from Rationales

From the rationales generated by the rationale extraction model, we can furthermore dis-

cover strong phrase or word-level indicators which provide straightforward insights for

diagnostic predictions. The process of automatically discovering strong indicators is de-

scribed in Figure 2.4.

Figure 2.4: Schematic of identifying strong predictive indicators from decomposing ratio-
nales. For indicator ik, “ik → CD” refers to the rule “if ik exists in a report, then the report
is of CD”; (acc, #) = (accuracy, number of occurrences) of the rule in the training dataset.
As an example, the rule “if iron deficiency anemia exists, the report is Not CD” has a pre-
dictive accuracy of 90% in the 73 out of 1,568 training reports containing the phrase iron
deficiency anemia.

Given a rationale, we first decompose it into disjoint phrases or words which can be

viewed as potentially strong indicators. By applying the decomposition step for all the
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reports used for training, we obtain a pool of all indicators (say n of them). For each indi-

cator ik in the pool, two simple rules can be created: if ik exists in a report, the report is

Crohn’s disease; if ik exists in a report, the report is not Crohn’s disease, which gives us

a pool of rules (2n of them). The reason for constructing the second rule, which seems to

be redundant and contradicting the first rule, is that rationale extraction has been observed

to sometimes extract discriminative features for wrong classes (i.e., failing to incorporate

context). Each rule makes a diagnostic prediction based on the existence of some indica-

tor. After verifying the rules on the labeled training reports, we can measure the predictive

performances of all the rules together with their numbers of occurrences in the training

reports. We then select top indicators by applying a filter on the rules based on their per-

formances and occurrences (i.e., predictive accuracy > 80% and occurrences > 10 in our

experiments).

2.4.2 Rule-based Classifier Using Strong Indicators

In a rationale extraction model, a classifier makes predictions by consuming the rationales

extracted by its generator. So, if the generator fails to provide a good rationale that contains

important information for some specific report, the classifier may not be capable of making

a correct prediction. However, the top indicators might help in cases where a rationale

extraction model can fail because the top indicators may be verified to be working well

globally in the overall training reports.

With that motivation, we have also constructed a companion rule-based classifier by

using the automatically discovered strong indicators from the previous subsection. The

rule-based algorithm is designed to make predictions by simply comparing the numbers

of the occurrences of top indicators for CD and not CD (e.g., if a report contains more

top indicators for CD than not CD, the report is predicted as CD). Formally, given the

collections of top indicators separately for CD and not CD (say I+, I−) and an input report
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x, we have

f(x, I+, I−) =
∑︂
i∈I+

δ(i, x)−
∑︂
i∈I−

δ(i, x)

where δ(i, x) is a binary value denoting the existence of indicator i in report x (i.e., δ(i, x) =

1 if i is in x; δ(i, x) = 0 if i is not in x). The final prediction is defined by the conditional

function

pred(x, I+, I−) =

{︄
CD, f(x, I+, I−) > 0

not CD, f(x, I+, I−) < 0

In the cases where this algorithm does not apply (i.e., f(x, I+, I−) = 0), we then use the

original rationale extraction model’s predictions.

Experimental setup The CNN-based rationale extraction model was preferred for identi-

fying strong indicators since we observed that it provides more sparse rationales compared

with Bi-LSTM. This helps inform rationale decomposition, which aids the observer in un-

derstanding rationale components and their semantic relationship. With the CNN-based

model, which achieves 81% accuracy with 20-word rationales in the overall testing reports

as the rationale provider, we obtain a rationale rule-based classifier. The experiments for

the rationale-rule model were repeated five times along the five experiments for the CNN-

based rationale extraction model (i.e., the CNN-based rationale extraction model in each

experiment was used to provide rationales to be decomposed by the rationale-rule model).

The rationale extraction model details can be found in Section 2.3.1. The process of

discovering strong indicators was applied in the training data and then the testing data was

used for evaluation. The details about the dataset splits can be found in Appendix A.

Performance In the averaged 158.8 cases of the total 198 testing reports where the rules

apply, the purely rule-based algorithm achieves a predictive accuracy of 84.1%, while the

rationale extraction model’s accuracy is 84.0%. In the complete set of 198 cases, the rule-

based classifier achieves an accuracy of 81.4%, compared with the accuracy of 81.3% for

the original rationale extraction model.
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Compared with the rationale extraction model based on a black-box neural network-

based classifier, a rule-based classifier provides clearer explanations and allows human

experts to investigate and modify the rules. In the 158.8 cases where the algorithm applies,

the predictions only depend on strong indicators of 4.5 words which is much more straight-

forward than the rationales of 18.3 words. Also, the rules of the strong indicators allows

human experts to refine and enhance. For example, the term humira has been discovered as

a strong indicator for Crohn’s disease (i.e., in the 35 training reports containing the term,

the rule “humira → CD” achieves 100% predictive accuracy) and human experts might

enhance the rule by considering the real-world cases where the rule can possibly fail. In

addition, as shown in the experimental results, the rule-based classifier using the strong

indicators extracted from the rationale extraction model is competitive with the original

rationale extraction model in terms of predictive performance.

Limitations When a set of tokens is selected as a rationale by a neural generator, the

rationale is supposed to be treated as a whole which should be viewed as a contextualized

summary of the original text and can also involve the interaction among the subset tokens.

However, decomposing a rationale into independent tokens and phrases might cause a loss

of context and details of interaction. Similarly, the algorithm, which takes use of the strong

indicators through simply counting the numbers of appearances of the strong indicators for

both labels, is linear to the independent existence of the strong indicators and might also

ignore the potentially useful interaction among the indicators.
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Chapter 3

IBDBERT: An Inflammatory Bowel
Disease-specific BERT Model

3.1 Introduction

Our initial text analysis of the radiology reports on existing data have used several artificial

intelligence and machine learning (AI/ML) tools, including images-based neural models,

i.e., convolutional neural networks (CNN) [26] and bi-directional long short-term mem-

ory neural networks (Bi-LSTM), i.e. a bi-directional version of LSTM [27]. In addition

to those established neural network predictive modeling methods of CNN, Bi-LSTM, we

have also considered the large language model (LLM) BERT [3], a distilled version of

BERT, DistilBERT [30], and a domain specific variant, BioClinicalBERT [31]. All of

these are evaluated for their classification performance in comparison to our own creation

of a domain-specific LLM which we call IBDBERT.

The Bidirectional Encoder Representations from Transformers model (BERT) [3] is one

of the first large language models that uses the text encoder from the original Transformer

model [32]. A BERT model can be pre-trained on an unlabeled corpus (e.g., the original

BERT was trained on BookCorpus [33] and English Wikipedia) using a masked language

modeling for the language representation, and then fine-tuned on labeled data for a down-

stream domain-specific classification task. BERT has been widely adopted in medicine

for domain-specific pre-training (e.g., MedBERT [34], BioClinicalBERT [31] and BEHRT
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[35]) and related text classification tasks [36, 37], and has achieved the state-of-the-art

performance.

Masked language processing is implemented by providing the model with texts contain-

ing a portion of randomly masked words and then, based on how well the model predicts the

masked words, adjusting the appropriate weights within the model. The task of predicting

a masked word is implemented as a classification process over the whole BERT vocabulary

(i.e., around 30,000 words for the original BERT) and cross-entropy is used as prediction

loss to refine the BERT network. Overall, this LLM construction method provides the base

LLM called BERT.

3.2 Developing IBDBERT for Crohn’s Disease Detection

Inflammatory bowel disease-specific BERT (IBDBERT) is developed by augmenting the

original BERT with an inflammatory bowel disease-related textbook [38] and guidelines

[39–60] through a masked language modeling, which does not require any extra annota-

tions or labelling (i.e., unsupervised pre-training). IBDBERT is then fine-tuned through

supervised learning with labeled CT enterography textual reports for the binary classifica-

tion task of detecting Crohn’s disease. The overall process of developing IBDBERT and

applying IBDBERT in Crohn’s disease detection is described in Figure 3.1.

The purpose of the augmentation is to extend the original BERT model with IBD-related

language without diminishing the general language understanding captured by the original

BERT. Our development of IBDBERT is similar to the work of BioClinicalBERT, BEHRT

and MedBERT, where the training process all follows masked language modeling of the

original BERT. However, BioClinicalBERT, BEHRT and MedBERT were all trained on

data directly collected from patients (i.e., separately MIMIC-III [61], Clinical Practice Re-

search Datalink [62] and general electronic health records) while our IBDBERT was trained

on human experts’ knowledge on inflammatory bowel disease. Our corpus used for training

IBDBERT contains around 0.9 million words, which is a relatively small dataset compared
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Figure 3.1: Developing IBDBERT for Crohn’s disease diagnostic prediction: pre-training
BERT through masked language modeling with IBD corpus and fine-tuning through super-
vised learning with Crohn’s disease classification on CT enterography reports.

to 3,300 million words used for the original BERT and the extra data collected from 1.6

million and 20 million patients for BEHRT and MedBERT. But our motivation is to confirm

whether subject matter expert knowledge can be coupled with generic LLMs like BERT, to

improve predictive classification performance.

3.3 Experimental setup

3.3.1 Masked Language Modeling for IBDBERT

Since the BERT pre-training process by masked language modeling (MLM) is not fully

deterministic in distributed computing, the pre-training process given each learning rate

(LR) was repeated three times to reduce variance. The LR options experimented with were

[5e-5, 4e-5, 3e-5, 2e-5, 1e-5, 5e-6, 1e-6].

In implementation, the block size was 256 and the batch size was 8 which means every

256 tokens were in one block as input for MLM and one batch consisted of 8 blocks.

For masked language modeling, where selected words were removed from the blocks, the

probability of each word being masked was 15% which means overall 15% tokens were

masked in every block of 256 tokens. The maximum number of steps for each pre-training
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run was 5,000. All other parameters were set to their defaults. The code for MLM was

adopted from the publicly available repository from Hugging Face1.

3.3.2 Fine-tuning for Crohn’s Disease Detection

After each pre-training run of one LR option for MLM, the fine-tuning process for clas-

sification was repeated five times for an average predictive performance (i.e., a total of 3

pre-training * 5 fine-tuning = 15 classifications were performed for each pre-training LR).

The architectures of the classifiers using BERT models, including the original BERT

(bert-base-uncased) [3], DistilBERT [30] and BioClinicalBERT [31], were all their pub-

lished versions2 and the default configurations were used. When training all BERT models

as classifiers (i.e., the fine-tuning process), the batch size was 8 and Adam optimizer [24]

with default parameters was used except the learning rate being specified to be 1e-5.

3.3.3 Training Neural Classifiers

For all the neural classifiers used for the task of detecting Crohn’s disease from CT enterog-

raphy reports, including CNN, Bi-LSTM and all the BERT models including IBDBERT,

the experiments were repeated five times over five distinct random seeds (i.e., [2022, 2023,

2024, 2025, 2026]) to produce averaged values of predictive performance. The CNN and

Bi-LSTM-based classifiers followed the same training strategy (i.e., the number of training

epochs and the selection of the final model) as when they were used in rationale extraction

models (see Section 2.3.1). The BERT family models (i.e., BERT, DistilBERT, BioClini-

calBERT and IBDBERT) all used 4 training epochs and the version that achieved the lowest

cross-entropy loss in the developing data was selected for inference on the testing data. The

details about the CT enterography dataset can be found in Appendix A.

1https://github.com/huggingface/notebooks/blob/main/examples/language modeling.ipynb
2The BERT models are available by searching the model names on https://huggingface.co.
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3.4 Evaluation

During the development of IBDBERT, we observed that the learning rate (LR) for pre-

training has a significant effect on the predictive performance of its downstream classifi-

cation task of detecting CD from CT enterography reports. Intuitively, the LR controls

the rate at which training weights are changed based on classification errors, so a higher

LR means faster change across epochs of training. Among all the LR values we have ex-

perimented with (i.e., [5e-5, 4e-5, 3e-5, 2e-5, 1e-5, 5e-6, 1e-6]), IBDBERT achieves the

highest classification accuracy (i.e., 88.5%) when the pre-training LR is 1e-5. When the

LR is smaller or larger than 1e-5, the performance overall separately increases or decreases

as the LR increases (i.e., the peak performance is achieved by LR = 1e-5). The result is

reasonable as a larger LR might cause BERT to “forget” its previous general language un-

derstanding and a small LR might cause BERT to be unable to learn much from the added

IBD knowledge. The detailed performance of IBDBERT over the different values of LR is

reported in Figure 3.2.
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Figure 3.2: IBDBERT performance. We report how the predictive accuracy of IBDBERT
changes over different options of learning rate for pre-training.
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In terms of predictive performance and interpretability, we compare IBDBERT with ra-

tionale extraction models (i.e., based on CNN and Bi-LSTM) and other classifiers which

use rationale-rules (from Section 2.4.2), CNN, Bi-LSTM, the original BERT, DistilBERT

and BioClinicalBERT. Generally, under multiple LR settings, IBDBERT achieves a predic-

tive accuracy of around 88% in detecting CD; this outperforms the original BERT by 2%

and BioClinicalBERT by 3%. The summarized experimental results for all models’ perfor-

mance are reported in Table 3.1. While the rationale-rules classifier is most interpretable

due to the self-explainable nature of rules, IBDBERT achieves the highest predictive accu-

racy.

Task Model Predictive Accuracy Interpretability

Rationale Extraction
CNN .80, .81 16, 20

Bi-LSTM .75, .81 17, 20

Classification

Rationale-Rules .80, .81 Mostly self-explainable

CNN .84 N/A

Bi-LSTM .85 N/A

BERT .86 N/A

DistilBERT .86 N/A

BioClinicalBERT .85 N/A

IBDBERT .88 N/A

Table 3.1: Predictive accuracy of all methods on detecting CD from CT enterography re-
ports. Accuracy = correct predictions/total number of testing cases. For rationale extraction
methods, we report their performances corresponding to their rationale lengths. For exam-
ple, the CNN-based rationale extraction model achieves an accuracy of 81% when selecting
rationales of 20 words. The average lengths of rationales (i.e., numbers of words) are re-
ported as a proxy to rationale interpretability. The interpretability of the neural classifiers
is marked as “N/A” meaning that the models do not provide an explanation about which
part of a report is discriminative for a prediction.
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Chapter 4

Interactive Rationale Extraction for Text
Classification

4.1 Introduction

Deep neural networks show superior performance in text classification tasks, but their poor

interpretability and explainability can cause trust issues. For text classification problems,

the identification of textual sub-phrases or “rationales” is one strategy for attempting to find

the most influential portions of text, which can be conveyed as critical in making classifica-

tion decisions. Selective models for rationale extraction faithfully explain a neural classi-

fier’s predictions by training a rationale generator and a text classifier jointly: the generator

identifies rationales and the classifier predicts a category solely based on the rationales.

The selected rationales are then viewed as the explanations for the classifier’s predictions.

Through exchange of such explanations, humans interact to find more trusted explanations

and achieve higher performance in problem solving. To imitate the interactive process of

humans, we propose a simple interactive rationale extraction architecture that selects a pair

of rationales and then makes predictions from two independently trained selective models.

We show how this architecture outperforms both base models for text classification tasks

on datasets IMDB movie reviews and 20 Newsgroups in terms of predictive performance.

Selective (or select-predict) models for rationale extraction in text classification [7, 8],

0The implementation is provided on https://github.com/JiayiDai/RationaleExtraction.
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with the general structure shown in Figure 4.2a, are designed to extract a set of words,

namely a rationale [63], from an original text. For prediction purposes, the rationale is ex-

pected to be sufficient as the input for the classification model to obtain the same prediction

based on the whole text. For the purpose of interpretability, the rationale should be con-

cise and contiguous. A rationale extraction model is faithful if the extracted rationales are

truly the information used for classification [15, 16]. The problem of extracting rationales

that satisfy the criteria above is complex from a machine learning perspective and becomes

more difficult with only instance-level supervision (i.e., without token-level annotations)

[9]. One model’s identification of rationales can suffer from high variance because of the

complex training process. An ensemble of more than one model helps to reduce variance,

which leads to the exploration of how to make use of two rationale extraction models and

how to make a choice when the two models make different predictions.

Figure 4.1: A scenario of the interaction between two students solving a mathematical
proof: they disagree with each other, exchange reasons and reach a common conclusion.

When two humans have different answers to a problem (see Figure 4.1), they tend to ex-

change their reasons or explanations, after which there might be a change of mind. To show

why this interaction of humans is effective, we use the problem of proving a mathematical

conjecture as an instance: because searching for a correct mathematical proof, which then

leads to a correct claim about the conjecture, is usually much more difficult than verifying

a proof (e.g., P ⊆ NP in computation theory), often one who is not capable of finding a

good proof can tell if a proof is good when the proof is given. Considering the complex-

ity for a generator to search among all possible rationales with only remote instance-level
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supervision, the work of rationale extraction can be much more difficult than classification.

We may then consider selective models for rationale extraction to be naturally compati-

ble with the interactive pattern of humans by viewing the rationales extracted by a generator

as the proof for the decisions of its classifier, which means the interaction between two base

models can be performed by the exchange of their rationales. Subsequently, the problem

becomes how to decide if a rationale is good or not so that we know which pairs of rationale

and prediction are appropriate choices when two base models make different predictions. A

good rationale here is expected to give a correct prediction when input to a decent classifier.

Intuitively, a good rationale is supposed to contain strong indicators for the correct “gold

label” instead of insignificant words which do not contribute to classification, which leads

to two simple rules for handling base models’ disagreements:

1. A good rationale is more likely to produce consistent predictions among classifiers

(i.e., a good explanation convinces people);

2. A good rationale is more likely to produce a higher confidence level (Section 4.3) for

the prediction of one classifier (i.e., one with a good reason is often confident).

These two rules create a basis for classification, as opposed to random guessing based

on otherwise randomly selected words. Note that the two rules are based on the assumption

that the probability that base models extract strong indicators for wrong labels is very low,

which should be considered to be true for decent generators and decent classifiers (i.e.,

better than random guessing).

To imitate the interactive pattern of humans in problem solving, we introduce Interac-

tive Rationale Extraction for Text Classification to interactively connect two indepen-

dently trained selective rationale extraction models. We show that the architecture achieves

higher predictive performance than either base models with similar performance on IMDB

movie reviews and 20 Newsgroups. This is done by selecting pairs of rationale and predic-

tion from the base models using the above simple rules. In addition, because this interactive
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Figure 4.2: (a) Schematic of selective rationale extraction models where x is an embedded
text, g is a generator and f is a classifier. Generator g extracts a rationale r based on which
classifier f makes a prediction y. (b) Schematic of our interactive rationale extraction
where rationales are exchanged.

architecture makes decisions solely based on the base models’ rationales, the faithfulness

and interpretability of the base models’ rationales are not compromised.

4.2 Selective Rationale Extraction

The original selective rationale extraction model was proposed by Lei et al. [7] with an

architecture shown in Figure 4.2a. Their model faithfully explains a neural network-based

classifier’s predictions by jointly training a generator and a classifier with only instance-

level supervision. The select-predict architecture limits the features consumed by the clas-

sifier to be only the rationales extracted by the generator, which guarantees the faithfulness

of the rationale-based explanations. The more detailed training process and background

information can be found in Section 2.1.

4.3 Confidence Level

Confidence level (CL) indicates how far a neural network’s prediction is from being neu-

tral. Given a neural network’s non-probabilistic output k = [k1, k2, ..., kn] for a n-class

classification, Kumar et al. [64] defined the CL of the classification with a Softmax func-
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tion

CL(k) =
exp(max(k))∑︁n

i=1 exp(ki)
(4.1)

where max(k) is the highest value among the output nodes k = [k1, k2, ..., kn] and exp()

refers to the exponential function. The Softmax function normalizes the non-probabilistic

output into a probability distribution over prediction classes, which is used to indicate how

far the final prediction is from neutrality.

Guo et al. [65] stated that a classification network should not only have a high accuracy

but also indicate how likely each prediction is correct or incorrect for trust purposes. In

addition, their study on neural networks’ calibration [65] suggested that accuracy, even

if not nearly identical to CL for some neural networks, is generally positively correlated

to CL. This means that, when two base models with similar expected performance make

different predictions, the prediction with a higher CL is generally more likely to be correct.

Also, a good rationale that contains strong predictive indicators should be more likely to

cause a more confident prediction when compared with rationales with less discriminative

words (e.g., random words).

4.4 Rationale Dialogue Algorithm

As demonstrated in Figure 4.2b, after the interaction between two base select-predict mod-

els, a total of 4 predictions are generated: y1 = f1(r1), y′1 = f1(r2), y′2 = f2(r1) and

y2 = f2(r2) where y1 and y2 are the predictions based on their own rationales and y′1 and

y′2 are predictions based on the exchanged rationales, as shown in the table below.

r1 r2

f1 y1 y′1

f2 y′2 y2

Given an input text, when the predictions of two base models are the same, namely

y1 = y2, both rationales r1, r2 are considered as good and the final prediction is the shared

prediction. When two base models initially show a disagreement, we check if one rationale
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causes more consistent predictions. For example, in the case of two rationale extraction

models, consistency means a rationale causes the two models to produce the same predic-

tion. If r1 causes more consistent predictions, in other words, if r1 changes the prediction

of f2 to y1 when given as an input rationale (namely, y1 = y′2), but r2 does not change

the prediction of f1 to y2 when given as an input rationale (y2 ̸= y′1), then the pair (r1, y1)

is chosen as the final rationale and prediction; symmetrically, if r2 causes more consistent

predictions, the pair (r2, y2) is chosen. For the cases where no rationale causes more con-

sistent predictions, we rely on confidence levels which are real numbers between 0 and 1

as defined by Equation 4.1. If the confidence level of f1 on r1 is higher than that of f2 on

r2 (say CL(f1, r1) > CL(f2, r2) with (f1, r1) and (f2, r2) separately denoting their corre-

sponding non-probabilistic outputs), the pair (r1, y1) is chosen; otherwise, the pair (r2, y2)

is chosen. The process of selecting a rationale-prediction pair is specified in Algorithm 1.

It is worth mentioning that, in implementation, the exchange of rationales only needs to be

performed when base models have a disagreement in prediction (i.e., y1 ̸= y2). Also, even

though only two base rationale extraction models are used in the algorithm, the basis of

the two rules for handling the disagreement cases can be generally applied for an arbitrary

amount of base models.

4.5 Rationale Experiments

4.5.1 Datasets

IMDB movie reviews [66] This is a dataset of 50,000 movie reviews collected from

the Internet Movie Database (IMDB) with binary labels (i.e., positive and negative). The

dataset is originally split into two subsets: 25,000 for training and 25,000 for testing. We

randomly split the training data into 20,000 (80%) for training and 5,000 (20%) for devel-

opment. The numbers of the two labels are perfectly balanced in each subset.
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Algorithm 1 Rationale-prediction Selection after Interaction

Require: f1, f2, r1, r2, y1, y
′
1, y

′
2, y2 from Figure 4.2b, CL(f, r) for the confidence level of

f on r.
if y1 = y2 then ▷ agreement

return (r1, y1) ▷ or (r2, y2)
else ▷ disagreement

if y1 = y′2 and y2 ̸= y′1 then ▷ model 2 convinced by model 1
return (r1, y1)

else if y1 ̸= y′2 and y2 = y′1 then ▷ model 1 convinced by model 2
return (r2, y2)

else
if CL(f1, r1) > CL(f2, r2) then ▷ model 1 is more confident

return (r1, y1)
else ▷ model 2 is more confident

return (r2, y2)
end if

end if
end if

20 Newsgroups It is a publicly available dataset containing a total of 18,846 news arti-

cles, with 11,314 for training and 7,532 for testing, in 20 distinct categories of news topics.

We split the training data randomly into 9,051 (80%) for training and 2,263 (20%) for de-

velopment. The numbers of the 20 labels are not perfectly balanced and vary from 304 to

490 in the training data, from 73 to 131 in the development data and from 251 to 399 in the

testing data.

4.5.2 Setup

Training Instead of REINFORCE [13], a reparameterization heuristic Gumbel-Softmax

[14] is used to simplify gradient estimation. A convolutional neural network [26] is used

for both generators and classifiers with filter sizes of 3, 4 and 5, filter number of 100

and dropout rate of 0.5 all following the parameter settings of the original paper. Hidden

dimensions of 100 and 120 are separately used for the first and the second base model,

which is the only difference among all parameters for training two base models. Adam is

used as the optimizer with a weight decay of 5e-06 and an initial learning rate of 0.001. If
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20 Newsgroups

(λ1, λ2) (5e-3, 0) (1e-3, 1e-3)

Base Model Model 1 Model 2 Model 1 Model 2

Length 11.33 11.18 21.76 22.68

Contiguity Loss 17.12 16.84 21.92 21.45

Interaction Cases
(331, 363, 1129, 1211.5)

(4.4%, 4.8%, 15.0%, 16.1%)

(228.6, 264, 974.2, 1075.8)

(3.0%, 3.5%, 12.9%, 14.3%)

Case Accuracy (0.41, 0.43, 0.30, 0.26) (0.38, 0.44, 0.31, 0.27)

IMDB movie reviews

(λ1, λ2) (1e-3, 0) (2e-4, 2e-4)

Base Model Model 1 Model 2 Model 1 Model 2

Length 13.99 17.59 29.22 27.37

Contiguity Loss 21.84 26.45 37.14 35.48

Interaction Cases
(855.6, 946.0, 1187.4, 1250.0)

(3.4%, 3.8%, 4.7%, 5.0%)

(681.7, 665.2, 1101.8, 1295.7)

(2.7%, 2.7%, 4.4%, 5.2%)

Case Accuracy (0.66, 0.65, 0.59, 0.59) (0.66, 0.64, 0.58, 0.60)

Table 4.1: Experiment details (average values). We report the rationale length (i.e., number
of words) and contiguity loss of each base model and also numbers of interaction cases and
each case’s accuracy under each hyper-parameter setting. Four values in an interaction case
are the average numbers/percentages of the cases separately for base model 1 convinced,
base model 2 convinced, base model 1 more confident, and base model 2 more confident.
These are the four cases from handling disagreements in Algorithm 1.

no improvement is achieved in loss in development dataset from the previous best model

after 5 epochs, the learning rate is halved (i.e., 0.001, 0.0005...) and the training process

starts over from the previous best model. In total, 20 epochs are used for training. Cross-

entropy is used as the loss objective. Following the setting in the original Gumbel-Softmax

paper [14], the initial temperature is 1 with a decay rate of 1e-5. Batch size is set to be 128.

GloVe [25] of embedding dimension 300 is used for word embedding1. The maximum

1Rationale extraction experiments with batch size = 64 and embedding dimension = 100 were conducted
and did not show notable difference in base models’ predictive performance.
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text lengths are separately set to be 80 and 200 words for 20 Newsgroups and IMDB movie

reviews.

Testing For each dataset, two base models are independently trained and tested with two

settings of hyper-parameters (λ1, λ2) for the loss function 2.1. {(0.005, 0), (0.001, 0.001)}

are used for 20 Newsgroups and {(0.001, 0), (0.0002, 0.0002)} are used for IMDB movie

reviews. The four settings are chosen in a way to show the performance of the algorithm

under different rationale length and contiguity (Table 4.1). For each hyper-parameter set-

ting, both base models are trained and tested with 6 random seeds (i.e., {2022, 2023, 2024,

2025, 2026, 2027}), and the invalid cases where two base models show a significant dif-

ference in the performance in development dataset (i.e., > 3% in accuracy) are removed.

The numbers of invalid cases are separately 2, 1, 1, 0 out of 6 for the four hyper-parameter

settings.

20 Newsgroups IMDB movie reviews

(λ1, λ2) (5e-3, 0) (1e-3, 1e-3) (1e-3, 0) (2e-4, 2e-4)

Model 1 .55 (.53-.57) .58 (.56-.59) .81 (.80-.82) .82 (.81-.83)

Model 2 .54 (.52-.57) .57 (.55-.59) .81 (.80-.82) .82 (.81-.83)

Interaction .58 (.56-.60) .60 (.59-.61) .83 (.82-.84) .84 (.83-.84)

Table 4.2: Average performance (accuracy) of maximum six experiments for base (Models
1 and 2) and interactive models under each hyper-parameter setting for each dataset. The
(min, max) performance of each model is also reported to demonstrate variances.

4.5.3 Quantitative Evaluation

For quantitative evaluation, we report the predictive performance of the classifiers from the

two base models and the interactive model. In Table 4.2, the interactive model outperforms

the better base model by 2% in IMDB movie reviews and 2-3% in 20 Newsgroups and

shows a relatively smaller variance in both datasets. The improvement in predictive per-

formance and reduced variance holds for most experiments in addition to the four settings.
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We found that, in the cases of extreme hyper-parameter settings where rationales contain

almost whole texts or no words, there is no improvement. This seems reasonable as, when

base models generate rationales of whole texts or no words, the rationales are identical,

which makes the exchange of rationales meaningless. Also, in some cases where one base

model is trained well and one is not (e.g., 80% and 60% accuracy in IMDB movie reviews),

the interactive model shows a slightly lower performance than the better base model. The

reason can be that a relatively better rationale generated by the better model can not con-

vince the classifier of the poor performance model (i.e., a poor classifier may not be capable

of making a correct prediction even given a good rationale) where the first rule that a good

rationale is more likely to produce consistent predictions is not followed. If no rationale is

causing consistent predictions, the second rule about confidence level is applied but a poor

classifier can sometimes be overconfident, which causes errors.

For a binary classification task, when two base models with similar performance have a

disagreement, the expected accuracy of each base model is around 50% and the probability

of blindly choosing a prediction turning out to be correct should also be near 50% (i.e.,

random guessing). However, as shown in Table 4.1, in IMDB movie reviews, the accuracy

after interaction is between 58% and 66% for the diagreement cases, which is 8-16% higher

than random guessing (i.e., 50%).

In addition, we observed that, when the constraints on rationales are less strict (i.e., al-

lowing more words and more contiguity loss), generally the performance of base models

increases but the improvement after interaction decreases. The reason may be that, with

weaker rationale constraints, strong indicators are easier to identify causing the rationales

generated by two base models to contain more overlapped strong indicators, which in-

creases the accuracy of base models but decreases the number of cases for disagreement.

It is also worth mentioning that the performance gain of the interactive algorithm is not

achieved by having a tendency of choosing longer rationales as shown in Table 4.3.
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20 Newsgroups IMDB movie reviews

(λ1, λ2) (5e-3, 0) (1e-3, 1e-3) (1e-3, 0) (2e-4, 2e-4)

selected r (9.19, 14.15) (18.74, 19.42) (14.90, 23.39) (27.22, 36.21)

not selected r (8.85, 13.80) (19.03, 19.50) (15.12, 23.71) (27.47, 36.59)

Table 4.3: Lengths (numbers of words) and contiguity loss of rationales. We report the
average (length, contiguity loss) of rationales that are separately selected and not selected
by the interactive algorithm for handling disagreement cases under each hyper-parameter
setting.

4.5.4 Human Evaluation

For human or qualitative evaluation, we report human judgements on the rationales from

IMDB movie reviews, to demonstrate how informative the rationales are for humans. For

each of the four disagreement cases in Algorithm 1, we randomly collect 10 movie review

instances where each instance contains two rationales separately extracted by two base

models and one of the two rationales is selected by the algorithm (i.e., 10 ∗ 2 ∗ 4 = 80

rationales in total). Three human annotators have access to only the extracted rationales

(i.e., the original texts are not provided) to ensure the sufficiency of the rationales.

annotator # 1 2 3

acc selected .53 .70 .70

acc not selected .48 .70 .65

CL selected 1.20 1.38 0.75

CL not selected 1.20 1.40 0.5

Table 4.4: Human evaluation results. The averaged prediction accuracy (acc) and confi-
dence levels (CL) of each human annotator over 40 rationales selected (acc selected and
CL selected) and 40 rationales not selected by the algorithm (acc not selected and CL not
selected).

Given two rationales of one instance, for each of the two rationales, we ask each human

annotator to make a prediction (i.e., positive or negative) based on the rationale and tell

how confident the human annotator is about this prediction on a scale from 0 to 3 (i.e.,
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0 represents random guessing and 3 represents very confident). The results are shown in

Table 4.4.

The overall prediction accuracy and confidence levels of human annotators are low

which is reasonable as the 80 rationales are extracted from the cases where base models

have disagreements and may not be able to extract strong rationales (i.e., difficult cases).

Generally, human annotators do slightly better in terms of predictive performance when

given the rationales selected by the algorithm, but the difference of the results for selected

and not selected rationales is not significant.
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Chapter 5

Contributions, Conclusions and Future
Work

5.1 Contributions

In summary, this dissertation discusses rationale extraction and BERT-based large language

models, with a focus on their applications in detecting Crohn’s disease from CT enterogra-

phy reports.

Chapter 2 covers how rationale extraction, originally proposed by Lei et al. [7] in 2016,

might align with the way humans search for importance features for predictions, and also

explores rationale extraction as a tool for knowledge acquisition from textual CT enterog-

raphy radiology reports, which, compared with rationales, produces more explicit explana-

tions for Crohn’s disease detection without compromising predictive performance.

Chapter 3 introduces a large language model IBDBERT, i.e., based on BERT and spe-

cific to inflammatory bowel disease (IBD), which is created by augmenting the original

BERT with domain-specific pre-training and achieves the state-of-the-art predictive perfor-

mance on a downstream classification task of detecting Crohn’s disease from CT enterog-

raphy reports.

Chapter 4 proposes the first ensemble architecture of rationale extraction which imitates

the interactive process of humans to handle disagreements by exchanging explanations and

improves the predictive performance without compromising the interpretability and the
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faithfulness of rationale-based explanations.

5.2 Conclusions

Rationale extraction is an explainable artificial intelligence (XAI) method of constructing

neural network-based models that provide faithful explanations in text classification tasks

with only instance-level supervision. The select-predict process achieved by the generator-

classifier setup in rationale extraction guarantees the faithfulness of rationales. Rationale

extraction might align well with how humans search for discriminative features and can

also play a role in automated knowledge acquisition (e.g., for Crohn’s disease prediction

from CT enterography textual reports).

IBDBERT presents the state-of-the-art predictive performance on detecting Crohn’s dis-

ease from CT enterography reports, which is achieved by augmenting the original BERT

via masked language modeling with a relatively small-sized corpus of expert knowledge

on inflammatory bowel disease. The experimental results suggest that the predictive per-

formance of a pre-trained generic large language model (LLM) on a downstream task can

be improved by further domain-specific pre-training and also confirm the effectiveness of

subject matter knowledge in augmenting generic LLMs.

To handle the high variance of selective rationale extraction models, we proposed the

method we call Interactive Rationale Extraction for Text Classification, which selects ra-

tionales and predictions from base models based on simple rules through imitating the

interaction process between humans for handling disagreements. The experimental results

show the interactive process is effective in terms of improving performance, choosing a

better rationale and reducing variance.

5.3 Future Work

In the task of detecting Crohn’s disease from CT enterography reports, the models for ra-

tionale extraction are provided with all the medical notes from CT enterography reports
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(i.e., indication, objective findings and subjective findings). In an indication section, the

radiology notes can explicitly expose the existence of Crohn’s disease (e.g., “history of

Crohn’s disease”). By limiting the content that a rationale extraction model accesses (e.g.,

only the section of objective findings), the model would be encouraged to search for dis-

criminative medical symptoms, which can be more interesting in terms of Crohn’s disease

diagnosis. Since the CT enterography radiology reports do not follow strict formats and the

three sections are not separated with definite patterns, further engineering work is required

for separating the three sections.

In the survey of human evaluation on the rationales selected by the interactive rationale

extraction model (Section 4.5.4), because human annotators were provided with both ra-

tionales for each instance, when asked to make a classification based on one rationale, they

might also unconsciously use information from another rationale even though they were

asked not to, which is a natural flaw of comparing two rationales from one instance and can

possibly cause close results for two rationales. In future work, an alternative way of survey

should be designed such that humans can better evaluate the algorithm’s effectiveness in

selecting rationales that are in higher quality to humans.

In current XAI methods for text classification tasks, the explainability of neural network-

based models focuses on identifying the features from input texts that are discriminative for

predictions. However, the “reasoning” process that maps the discriminative features to clas-

sification predictions is still hidden in black-box neural classifiers. For example, rationale

extraction extracts discriminative features but still relies on a neural classifier to process the

extracted features to make a prediction, which is less explicit than rule or logic-based clas-

sifiers in terms of how the features are exactly used. The work in Section 2.4.2 constructs

a rule-based classifier using the rationales provided by a rationale extraction model where

the rules are static and not contextually adjusted or combined. Ideally, the most desired

classifier should be capable of achieving both high predictive performance and explicit in-

terpretability by integrating the ability of the deep neural networks contextually encoding

39



features and the discreteness of human-interpretable rules. However, there seems to be a

natural incompatibility between the required differentiability of the representations from

neural networks and the discreteness of rules or logic, which is left for future exploration.

40



References

[1] J. Dai, M.-Y. Kim, and R. Goebel, “Interactive rationale extraction for text classifi-
cation,” in Workshop on Trustworthy and Socially Responsible Machine Learning,
NeurIPS, 2022. [Online]. Available: https://openreview.net/forum?id=zaJsDuwwdlJ.

[2] J. Dai, M.-Y. Kim, and R. Goebel, “Interactive rationale extraction for text classifica-
tion,” in Proceedings of the The 20th Annual Workshop of the Australasian Language
Technology Association, Adelaide, Australia: Australasian Language Technology
Association, Dec. 2022, pp. 115–121. [Online]. Available: https : / / aclanthology.
org/2022.alta-1.15.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 4171–4186. DOI: 10.18653/v1/N19-
1423. [Online]. Available: https://aclanthology.org/N19-1423.

[4] M.-Y. Kim et al., “A multi-component framework for the analysis and design of
explainable artificial intelligence,” Machine Learning and Knowledge Extraction,
vol. 3, no. 4, pp. 900–921, 2021, ISSN: 2504-4990. DOI: 10 .3390/make3040045.
[Online]. Available: https://www.mdpi.com/2504-4990/3/4/45.

[5] M. Ribeiro, S. Singh, and C. Guestrin, ““why should I trust you?”: Explaining the
predictions of any classifier,” in Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Demonstra-
tions, San Diego, California: Association for Computational Linguistics, Jun. 2016,
pp. 97–101. DOI: 10.18653/v1/N16-3020. [Online]. Available: https://aclanthology.
org/N16-3020.

[6] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,” in Advances in Neural Information Processing Systems, I. Guyon et al., Eds.,
vol. 30, Curran Associates, Inc., 2017.

[7] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural predictions,” in Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Processing,
Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 107–117.
DOI: 10.18653/v1/D16-1011. [Online]. Available: https://aclanthology.org/D16-
1011.

41

https://openreview.net/forum?id=zaJsDuwwdlJ
https://aclanthology.org/2022.alta-1.15
https://aclanthology.org/2022.alta-1.15
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.3390/make3040045
https://www.mdpi.com/2504-4990/3/4/45
https://doi.org/10.18653/v1/N16-3020
https://aclanthology.org/N16-3020
https://aclanthology.org/N16-3020
https://doi.org/10.18653/v1/D16-1011
https://aclanthology.org/D16-1011
https://aclanthology.org/D16-1011


[8] J. Bastings, W. Aziz, and I. Titov, “Interpretable neural predictions with differen-
tiable binary variables,” in Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, Florence, Italy: Association for Computational
Linguistics, Jul. 2019, pp. 2963–2977. DOI: 10.18653/v1/P19-1284. [Online]. Avail-
able: https://aclanthology.org/P19-1284.

[9] S. Jain, S. Wiegreffe, Y. Pinter, and B. C. Wallace, “Learning to faithfully rationalize
by construction,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online: Association for Computational Linguistics, Jul.
2020, pp. 4459–4473. DOI: 10.18653/v1/2020.acl-main.409. [Online]. Available:
https://aclanthology.org/2020.acl-main.409.

[10] B. Paranjape, M. Joshi, J. Thickstun, H. Hajishirzi, and L. Zettlemoyer, “An informa-
tion bottleneck approach for controlling conciseness in rationale extraction,” in Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), Online: Association for Computational Linguistics, Nov. 2020,
pp. 1938–1952. DOI: 10 . 18653 / v1 / 2020 . emnlp - main . 153. [Online]. Available:
https://aclanthology.org/2020.emnlp-main.153.

[11] J. Torres, S. Mehandru, J.-F. Colombel, and L. Peyrin-Biroulet, “Crohn’s disease,”
The Lancet, vol. 389, no. 10080, pp. 1741–1755, 2017, ISSN: 0140-6736. DOI: https:
/ /doi .org/10.1016/S0140- 6736(16)31711- 1. [Online]. Available: https : / /www.
sciencedirect.com/science/article/pii/S0140673616317111.

[12] R. Ilangovan, D. Burling, A. George, A. Gupta, M. Marshall, and S. A. Taylor, “Ct
enterography: Review of technique and practical tips,” The British Journal of Ra-
diology, vol. 85, no. 1015, pp. 876–886, 2012, PMID: 22553291. DOI: 10 .1259 /
bjr/27973476. eprint: https://doi.org/10.1259/bjr/27973476. [Online]. Available:
https://doi.org/10.1259/bjr/27973476.

[13] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Mach. Learn., vol. 8, no. 3–4, pp. 229–256, May 1992,
ISSN: 0885-6125. DOI: 10.1007/BF00992696. [Online]. Available: https://doi.org/
10.1007/BF00992696.

[14] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,”
in International Conference on Learning Representations, 2017. [Online]. Available:
https://openreview.net/forum?id=rkE3y85ee.

[15] Z. Lipton, “The mythos of model interpretability,” Communications of the ACM,
vol. 61, Oct. 2016. DOI: 10.1145/3233231.

[16] A. Jacovi and Y. Goldberg, “Towards faithfully interpretable NLP systems: How
should we define and evaluate faithfulness?” In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online: Association for
Computational Linguistics, Jul. 2020, pp. 4198–4205. DOI: 10.18653/v1/2020.acl-
main.386. [Online]. Available: https://aclanthology.org/2020.acl-main.386.

42

https://doi.org/10.18653/v1/P19-1284
https://aclanthology.org/P19-1284
https://doi.org/10.18653/v1/2020.acl-main.409
https://aclanthology.org/2020.acl-main.409
https://doi.org/10.18653/v1/2020.emnlp-main.153
https://aclanthology.org/2020.emnlp-main.153
https://doi.org/https://doi.org/10.1016/S0140-6736(16)31711-1
https://doi.org/https://doi.org/10.1016/S0140-6736(16)31711-1
https://www.sciencedirect.com/science/article/pii/S0140673616317111
https://www.sciencedirect.com/science/article/pii/S0140673616317111
https://doi.org/10.1259/bjr/27973476
https://doi.org/10.1259/bjr/27973476
https://doi.org/10.1259/bjr/27973476
https://doi.org/10.1259/bjr/27973476
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.1145/3233231
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://aclanthology.org/2020.acl-main.386


[17] S. Jain and B. C. Wallace, “Attention is not Explanation,” in Proceedings of the
2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), Minneapolis, Minnesota: Association for Computational Linguistics, Jun.
2019, pp. 3543–3556. DOI: 10 . 18653 / v1 / N19 - 1357. [Online]. Available: https :
//aclanthology.org/N19-1357.

[18] S. Serrano and N. A. Smith, “Is attention interpretable?” In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 2931–2951. DOI:
10.18653/v1/P19-1282. [Online]. Available: https://aclanthology.org/P19-1282.

[19] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” in Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 11–
20. DOI: 10.18653/v1/D19-1002. [Online]. Available: https://aclanthology.org/D19-
1002.

[20] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y.
Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.
0473.

[21] J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and understanding neural
models in NLP,” in Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, San Diego, California: Association for Computational Linguistics, Jun.
2016, pp. 681–691. DOI: 10 . 18653 / v1 / N16 - 1082. [Online]. Available: https : / /
aclanthology.org/N16-1082.

[22] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks:
Visualising image classification models and saliency maps,” in Workshop at Inter-
national Conference on Learning Representations, 2014.

[23] E. I. Benchimol et al., “Rural and urban disparities in the care of canadian patients
with inflammatory bowel disease: A population-based study,” Clinical Epidemiol-
ogy, vol. 10, pp. 1613–1626, 2018. DOI: 10 . 2147 / CLEP. S178056. eprint: https :
/ /www. tandfonline . com/ doi / pdf / 10 . 2147 / CLEP.S178056. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.2147/CLEP.S178056.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1412.6980.

43

https://doi.org/10.18653/v1/N19-1357
https://aclanthology.org/N19-1357
https://aclanthology.org/N19-1357
https://doi.org/10.18653/v1/P19-1282
https://aclanthology.org/P19-1282
https://doi.org/10.18653/v1/D19-1002
https://aclanthology.org/D19-1002
https://aclanthology.org/D19-1002
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/N16-1082
https://aclanthology.org/N16-1082
https://aclanthology.org/N16-1082
https://doi.org/10.2147/CLEP.S178056
https://www.tandfonline.com/doi/pdf/10.2147/CLEP.S178056
https://www.tandfonline.com/doi/pdf/10.2147/CLEP.S178056
https://www.tandfonline.com/doi/abs/10.2147/CLEP.S178056
http://arxiv.org/abs/1412.6980


[25] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word repre-
sentation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar: Association for Computational Lin-
guistics, Oct. 2014, pp. 1532–1543. DOI: 10.3115/v1/D14-1162. [Online]. Available:
https://aclanthology.org/D14-1162.

[26] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing,
Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1746–1751.
DOI: 10.3115/v1/D14- 1181. [Online]. Available: https: / /aclanthology.org/D14-
1181.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, Nov. 1997, ISSN: 0899-7667. DOI: 10 . 1162 / neco .
1997.9.8.1735. [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735.

[28] J. Strout, Y. Zhang, and R. Mooney, “Do human rationales improve machine expla-
nations?” In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, Florence, Italy: Association for Computa-
tional Linguistics, Aug. 2019, pp. 56–62. DOI: 10.18653/v1/W19-4807. [Online].
Available: https://aclanthology.org/W19-4807.

[29] J. DeYoung et al., “ERASER: A benchmark to evaluate rationalized NLP mod-
els,” in Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, Online: Association for Computational Linguistics, Jul. 2020,
pp. 4443–4458. DOI: 10.18653/v1/2020.acl-main.408. [Online]. Available: https:
//aclanthology.org/2020.acl-main.408.

[30] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter,” in 5th Workshop on Energy Efficient
Machine Learning and Cognitive Computing @ NeurIPS 2019, 2019. arXiv: 1910.
01108. [Online]. Available: http://arxiv.org/abs/1910.01108.

[31] E. Alsentzer et al., “Publicly available clinical BERT embeddings,” in Proceedings
of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, Min-
nesota, USA: Association for Computational Linguistics, Jun. 2019, pp. 72–78. DOI:
10.18653/v1/W19-1909. [Online]. Available: https://aclanthology.org/W19-1909.

[32] A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information
Processing Systems, I. Guyon et al., Eds., vol. 30, Curran Associates, Inc., 2017.
[Online]. Available: https : / /proceedings .neurips . cc /paper files /paper /2017 /file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[33] Y. Zhu et al., “Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books,” in 2015 IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 19–27. DOI: 10.1109/ICCV.2015.11.

[34] L. Rasmy, Y. Xiang, Z. Xie, C. Tao, and D. Zhi, “Med-bert: Pretrained contextu-
alized embeddings on large-scale structured electronic health records for disease
prediction,” npj Digital Medicine, vol. 4, no. 86, 2021. DOI: 10.1038/s41746-021-
00455-y.

44

https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.3115/v1/D14-1181
https://aclanthology.org/D14-1181
https://aclanthology.org/D14-1181
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/W19-4807
https://aclanthology.org/W19-4807
https://doi.org/10.18653/v1/2020.acl-main.408
https://aclanthology.org/2020.acl-main.408
https://aclanthology.org/2020.acl-main.408
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/W19-1909
https://aclanthology.org/W19-1909
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1038/s41746-021-00455-y
https://doi.org/10.1038/s41746-021-00455-y


[35] Y. Li et al., “Behrt: Transformer for electronic health records,” Scientific Reports,
vol. 10, Apr. 2020. DOI: 10.1038/s41598-020-62922-y.

[36] Y. Wu, Z. Liu, L. Wu, M. Chen, and W. Tong, “Bert-based natural language pro-
cessing of drug labeling documents: A case study for classifying drug-induced liver
injury risk,” Frontiers in Artificial Intelligence, vol. 4, Dec. 2021. DOI: 10.3389/frai.
2021.729834.

[37] M. Khadhraoui, H. Bellaaj, M. B. Ammar, H. Hamam, and M. Jmaiel, “Survey of
bert-base models for scientific text classification: Covid-19 case study,” Applied
Sciences, vol. 12, no. 6, p. 2891, Mar. 2022, ISSN: 2076-3417. DOI: 10 . 3390 /
app12062891. [Online]. Available: http://dx.doi.org/10.3390/app12062891.

[38] D. Baumgart, Crohn’s Disease and Ulcerative Colitis. Jan. 2012, ISBN: 978-1-4614-
0997-7. DOI: 10.1007/978-1-4614-0998-4.

[39] A. Sturm et al., “ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part
2: IBD scores and general principles and technical aspects,” Journal of Crohn’s and
Colitis, vol. 13, no. 3, pp. 273–284, Aug. 2018, ISSN: 1873-9946. DOI: 10.1093/
ecco-jcc/jjy114. eprint: https://academic.oup.com/ecco-jcc/article-pdf/13/3/273/
28222335/jjy114.pdf. [Online]. Available: https://doi.org/10.1093/ecco-jcc/jjy114.

[40] M. Pimentel, R. J. Saad, M. D. Long, and S. S. C. Rao, “Acg clinical guideline:
Small intestinal bacterial overgrowth.,” The American journal of gastroenterology,
vol. 115, no. 2, pp. 165–178, 2020. DOI: 10.14309/ajg.0000000000000501.

[41] D. T. Rubin, A. N. Ananthakrishnan, C. A. Siegel, B. G. Sauer, and M. D. Long,
“Acg clinical guideline: Ulcerative colitis in adults,” American Journal of Gastroen-
terology, vol. 114, no. 3, pp. 384–413, Mar. 2019. DOI: https://doi.org/ggtnt9.

[42] L. L. Strate and I. M. Gralnek, “Acg clinical guideline: Management of patients
with acute lower gastrointestinal bleeding,” American Journal of Gastroenterology,
vol. 111, no. 4, pp. 459–474, Apr. 2016. DOI: 10.1038/ajg.2016.41.

[43] D. A. Johnson et al., “Optimizing adequacy of bowel cleansing for colonoscopy:
Recommendations from the us multi-society task force on colorectal cancer,” Gas-
troenterology, vol. 147, no. 4, pp. 903–924, Oct. 2014. DOI: 10.1053/j.gastro.2014.
07.002.

[44] M. Adamina et al., “ECCO Guidelines on Therapeutics in Crohn’s Disease: Surgical
Treatment,” Journal of Crohn’s and Colitis, vol. 14, no. 2, pp. 155–168, Nov. 2019,
ISSN: 1873-9946. DOI: 10 . 1093 / ecco - jcc / jjz187. eprint: https : / / academic . oup .
com/ecco - jcc / article - pdf /14 /2 /155 /32400037 / jjz187 .pdf. [Online]. Available:
https://doi.org/10.1093/ecco-jcc/jjz187.

[45] P. F. van Rheenen et al., “The Medical Management of Paediatric Crohn’s Disease:
an ECCO-ESPGHAN Guideline Update,” Journal of Crohn’s and Colitis, vol. 15,
no. 2, pp. 171–194, Oct. 2020, ISSN: 1873-9946. DOI: 10.1093/ecco- jcc/jjaa161.
eprint: https://academic.oup.com/ecco-jcc/article-pdf/15/2/171/36161267/jjaa161.
pdf. [Online]. Available: https://doi.org/10.1093/ecco-jcc/jjaa161.

45

https://doi.org/10.1038/s41598-020-62922-y
https://doi.org/10.3389/frai.2021.729834
https://doi.org/10.3389/frai.2021.729834
https://doi.org/10.3390/app12062891
https://doi.org/10.3390/app12062891
http://dx.doi.org/10.3390/app12062891
https://doi.org/10.1007/978-1-4614-0998-4
https://doi.org/10.1093/ecco-jcc/jjy114
https://doi.org/10.1093/ecco-jcc/jjy114
https://academic.oup.com/ecco-jcc/article-pdf/13/3/273/28222335/jjy114.pdf
https://academic.oup.com/ecco-jcc/article-pdf/13/3/273/28222335/jjy114.pdf
https://doi.org/10.1093/ecco-jcc/jjy114
https://doi.org/10.14309/ajg.0000000000000501
https://doi.org/https://doi.org/ggtnt9
https://doi.org/10.1038/ajg.2016.41
https://doi.org/10.1053/j.gastro.2014.07.002
https://doi.org/10.1053/j.gastro.2014.07.002
https://doi.org/10.1093/ecco-jcc/jjz187
https://academic.oup.com/ecco-jcc/article-pdf/14/2/155/32400037/jjz187.pdf
https://academic.oup.com/ecco-jcc/article-pdf/14/2/155/32400037/jjz187.pdf
https://doi.org/10.1093/ecco-jcc/jjz187
https://doi.org/10.1093/ecco-jcc/jjaa161
https://academic.oup.com/ecco-jcc/article-pdf/15/2/171/36161267/jjaa161.pdf
https://academic.oup.com/ecco-jcc/article-pdf/15/2/171/36161267/jjaa161.pdf
https://doi.org/10.1093/ecco-jcc/jjaa161


[46] T. Kucharzik et al., “ECCO Guidelines on the Prevention, Diagnosis, and Manage-
ment of Infections in Inflammatory Bowel Disease,” Journal of Crohn’s and Colitis,
vol. 15, no. 6, pp. 879–913, Mar. 2021, ISSN: 1873-9946. DOI: 10.1093/ecco- jcc/
jjab052. eprint: https://academic.oup.com/ecco-jcc/article-pdf/15/6/879/45500342/
jjab052.pdf. [Online]. Available: https://doi.org/10.1093/ecco-jcc/jjab052.

[47] T. Raine et al., “ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical
Treatment,” Journal of Crohn’s and Colitis, vol. 16, no. 1, pp. 2–17, Oct. 2021,
ISSN: 1873-9946. DOI: 10.1093/ecco- jcc/ jjab178. eprint: https : / /academic.oup.
com / ecco - jcc / article - pdf / 16 / 1 / 2 / 42324015 / jjab178 . pdf. [Online]. Available:
https://doi.org/10.1093/ecco-jcc/jjab178.

[48] A. Spinelli et al., “ECCO Guidelines on Therapeutics in Ulcerative Colitis: Surgical
Treatment,” Journal of Crohn’s and Colitis, vol. 16, no. 2, pp. 179–189, Oct. 2021,
ISSN: 1873-9946. DOI: 10.1093/ecco- jcc/ jjab177. eprint: https : / /academic.oup.
com/ecco- jcc/article- pdf/16/2/179/42580925/ jjab177.pdf. [Online]. Available:
https://doi.org/10.1093/ecco-jcc/jjab177.

[49] J. Torres et al., “ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical
Treatment,” Journal of Crohn’s and Colitis, vol. 14, no. 1, pp. 4–22, Nov. 2019,
ISSN: 1873-9946. DOI: 10 . 1093 / ecco - jcc / jjz180. eprint: https : / / academic . oup .
com/ecco-jcc/article-pdf/14/1/4/31613532/jjz180.pdf. [Online]. Available: https:
//doi.org/10.1093/ecco-jcc/jjz180.

[50] C. Maaser et al., “ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part
1: Initial diagnosis, monitoring of known IBD, detection of complications,” Journal
of Crohn’s and Colitis, vol. 13, no. 2, 144–164K, Aug. 2018, ISSN: 1873-9946. DOI:
10.1093/ecco- jcc/jjy113. eprint: https://academic.oup.com/ecco- jcc/article-pdf/
13/2/144/27790815/jjy113.pdf. [Online]. Available: https://doi.org/10.1093/ecco-
jcc/jjy113.

[51] N. Sengupta et al., “Management of patients with acute lower gastrointestinal bleed-
ing: An updated acg guideline,” American Journal of Gastroenterology, vol. 118,
no. 2, pp. 208–231, Feb. 2023. DOI: 10.14309/ajg.0000000000002130.

[52] J. Torres et al., “European Crohn’s and Colitis Guidelines on Sexuality, Fertility,
Pregnancy, and Lactation,” Journal of Crohn’s and Colitis, vol. 17, no. 1, pp. 1–
27, Aug. 2022, ISSN: 1873-9946. DOI: 10 . 1093 / ecco - jcc / jjac115. eprint: https :
//academic.oup.com/ecco-jcc/article-pdf/17/1/1/48924685/jjac115.pdf. [Online].
Available: https://doi.org/10.1093/ecco-jcc/jjac115.

[53] K. Kemp et al., “Second N-ECCO Consensus Statements on the European Nursing
Roles in Caring for Patients with Crohn’s Disease or Ulcerative Colitis,” Journal of
Crohn’s and Colitis, vol. 12, no. 7, pp. 760–776, Mar. 2018, ISSN: 1873-9946. DOI:
10.1093/ecco- jcc/jjy020. eprint: https://academic.oup.com/ecco- jcc/article-pdf/
12/7/760/25077651/jjy020.pdf. [Online]. Available: https://doi.org/10.1093/ecco-
jcc/jjy020.

46

https://doi.org/10.1093/ecco-jcc/jjab052
https://doi.org/10.1093/ecco-jcc/jjab052
https://academic.oup.com/ecco-jcc/article-pdf/15/6/879/45500342/jjab052.pdf
https://academic.oup.com/ecco-jcc/article-pdf/15/6/879/45500342/jjab052.pdf
https://doi.org/10.1093/ecco-jcc/jjab052
https://doi.org/10.1093/ecco-jcc/jjab178
https://academic.oup.com/ecco-jcc/article-pdf/16/1/2/42324015/jjab178.pdf
https://academic.oup.com/ecco-jcc/article-pdf/16/1/2/42324015/jjab178.pdf
https://doi.org/10.1093/ecco-jcc/jjab178
https://doi.org/10.1093/ecco-jcc/jjab177
https://academic.oup.com/ecco-jcc/article-pdf/16/2/179/42580925/jjab177.pdf
https://academic.oup.com/ecco-jcc/article-pdf/16/2/179/42580925/jjab177.pdf
https://doi.org/10.1093/ecco-jcc/jjab177
https://doi.org/10.1093/ecco-jcc/jjz180
https://academic.oup.com/ecco-jcc/article-pdf/14/1/4/31613532/jjz180.pdf
https://academic.oup.com/ecco-jcc/article-pdf/14/1/4/31613532/jjz180.pdf
https://doi.org/10.1093/ecco-jcc/jjz180
https://doi.org/10.1093/ecco-jcc/jjz180
https://doi.org/10.1093/ecco-jcc/jjy113
https://academic.oup.com/ecco-jcc/article-pdf/13/2/144/27790815/jjy113.pdf
https://academic.oup.com/ecco-jcc/article-pdf/13/2/144/27790815/jjy113.pdf
https://doi.org/10.1093/ecco-jcc/jjy113
https://doi.org/10.1093/ecco-jcc/jjy113
https://doi.org/10.14309/ajg.0000000000002130
https://doi.org/10.1093/ecco-jcc/jjac115
https://academic.oup.com/ecco-jcc/article-pdf/17/1/1/48924685/jjac115.pdf
https://academic.oup.com/ecco-jcc/article-pdf/17/1/1/48924685/jjac115.pdf
https://doi.org/10.1093/ecco-jcc/jjac115
https://doi.org/10.1093/ecco-jcc/jjy020
https://academic.oup.com/ecco-jcc/article-pdf/12/7/760/25077651/jjy020.pdf
https://academic.oup.com/ecco-jcc/article-pdf/12/7/760/25077651/jjy020.pdf
https://doi.org/10.1093/ecco-jcc/jjy020
https://doi.org/10.1093/ecco-jcc/jjy020


[54] T. Kucharzik et al., “ECCO-ESGAR Topical Review on Optimizing Reporting for
Cross-Sectional Imaging in Inflammatory Bowel Disease,” Journal of Crohn’s and
Colitis, vol. 16, no. 4, pp. 523–543, Oct. 2021, ISSN: 1873-9946. DOI: 10 .1093 /
ecco- jcc/ jjab180. eprint: https : / /academic.oup.com/ecco- jcc/article- pdf /16/4/
523 /43705591/ jjab180 .pdf. [Online]. Available: https : / /doi .org /10 .1093 /ecco-
jcc/jjab180.

[55] L. Brandt, P. Feuerstadt, G. Longstreth, and S. Boley, “Acg clinical guideline: Epi-
demiology, risk factors, patterns of presentation, diagnosis, and management of colon
ischemia (ci),” English (US), American Journal of Gastroenterology, vol. 110, no. 1,
pp. 18–44, Jan. 2015, ISSN: 0002-9270. DOI: 10.1038/ajg.2014.395.

[56] F. A. Farraye, G. Y. Melmed, G. R. Lichtenstein, and S. V. Kane, “Acg clinical guide-
line: Preventive care in inflammatory bowel disease,” American Journal of Gastroen-
terology, vol. 112, no. 2, pp. 241–258, Jan. 2017. DOI: 10.1038/ajg.2016.537.

[57] L. Gerson, J. Fidler, D. Cave, and J. Leighton, “Acg clinical guideline: Diagno-
sis and management of small bowel bleeding,” English (US), American Journal
of Gastroenterology, vol. 110, no. 9, pp. 1265–1287, Sep. 2015, Publisher Copy-
right: © 2015 by the American College of Gastroenterology., ISSN: 0002-9270. DOI:
10.1038/ajg.2015.246.

[58] B. E. Lacy et al., “Acg clinical guideline: Management of irritable bowel syndrome,”
American Journal of Gastroenterology, vol. 116, no. 1, pp. 17–44, Jan. 2021. DOI:
10.14309/ajg.0000000000001036.

[59] G. R. Lichtenstein, E. V. Loftus, K. L. Isaacs, M. D. Regueiro, L. B. Gerson, and
B. E. Sands, “Acg clinical guideline: Management of crohn’s disease in adults,”
American Journal of Gastroenterology, vol. 113, no. 4, pp. 481–517, 2018. DOI:
10.1038/ajg.2018.27.

[60] K. D. Lindor, K. V. Kowdley, and E. M. Harrison, “Acg clinical guideline: Pri-
mary sclerosing cholangitis,” American Journal of Gastroenterology, vol. 110, no. 5,
pp. 646–659, May 2015. DOI: 10.1038/ajg.2015.112.

[61] A. E. Johnson et al., “Mimic-iii, a freely accessible critical care database,” Scientific
Data, vol. 3, no. 160035, 2016. DOI: 10.1038/sdata.2016.35.

[62] E. Herrett et al., “Data Resource Profile: Clinical Practice Research Datalink (CPRD),”
International Journal of Epidemiology, vol. 44, no. 3, pp. 827–836, Jun. 2015, ISSN:
0300-5771. DOI: 10.1093/ije/dyv098. eprint: https://academic.oup.com/ije/article-
pdf/44/3/827/14153119/dyv098.pdf. [Online]. Available: https://doi.org/10.1093/
ije/dyv098.

[63] O. Zaidan, J. Eisner, and C. D. Piatko, “Using “annotator rationales” to improve
machine learning for text categorization,” in NAACL, 2007.

[64] A. Kumar, T. Ma, P. Liang, and A. Raghunathan, “Calibrated ensembles can miti-
gate accuracy tradeoffs under distribution shift,” in Proceedings of the Thirty-Eighth
Conference on Uncertainty in Artificial Intelligence, ser. Proceedings of Machine
Learning Research, vol. 180, PMLR, Aug. 2022, pp. 1041–1051. [Online]. Avail-
able: https://proceedings.mlr.press/v180/kumar22a.html.

47

https://doi.org/10.1093/ecco-jcc/jjab180
https://doi.org/10.1093/ecco-jcc/jjab180
https://academic.oup.com/ecco-jcc/article-pdf/16/4/523/43705591/jjab180.pdf
https://academic.oup.com/ecco-jcc/article-pdf/16/4/523/43705591/jjab180.pdf
https://doi.org/10.1093/ecco-jcc/jjab180
https://doi.org/10.1093/ecco-jcc/jjab180
https://doi.org/10.1038/ajg.2014.395
https://doi.org/10.1038/ajg.2016.537
https://doi.org/10.1038/ajg.2015.246
https://doi.org/10.14309/ajg.0000000000001036
https://doi.org/10.1038/ajg.2018.27
https://doi.org/10.1038/ajg.2015.112
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1093/ije/dyv098
https://academic.oup.com/ije/article-pdf/44/3/827/14153119/dyv098.pdf
https://academic.oup.com/ije/article-pdf/44/3/827/14153119/dyv098.pdf
https://doi.org/10.1093/ije/dyv098
https://doi.org/10.1093/ije/dyv098
https://proceedings.mlr.press/v180/kumar22a.html


[65] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural
networks,” in Proceedings of the 34th International Conference on Machine Learn-
ing, D. Precup and Y. W. Teh, Eds., ser. Proceedings of Machine Learning Research,
vol. 70, PMLR, Aug. 2017, pp. 1321–1330. [Online]. Available: https://proceedings.
mlr.press/v70/guo17a.html.

[66] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learn-
ing word vectors for sentiment analysis,” in Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technolo-
gies, Portland, Oregon, USA: Association for Computational Linguistics, Jun. 2011,
pp. 142–150. [Online]. Available: http://www.aclweb.org/anthology/P11-1015.

[67] A. Rezaie, H. Quan, R. N. Fedorak, R. Panaccione, and R. J. Hilsden, “Development
and validation of an administrative case definition for inflammatory bowel diseases,”
Canadian Journal of Gastroenterology, vol. 26, no. 10, pp. 711–717, Oct. 2012. DOI:
10.1155/2012/278495.

[68] D. Baumgart, Crohn’s Disease and Ulcerative Colitis: From Epidemiology and Im-
munobiology to a Rational Diagnostic and Therapeutic Approach. Mar. 2017, ISBN:
978-3-319-33701-2. DOI: 10.1007/978-3-319-33703-6.

48

https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v70/guo17a.html
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1155/2012/278495
https://doi.org/10.1007/978-3-319-33703-6


Appendix A: Dataset Details

A.1 CT Enterography Reports

CT enterography textual reports were used for binary classification purposes (i.e., as the

training, developing and testing data for both rationale extraction models and IBDBERT

classifier). A CT enterography report generally consists of three sections which are sepa-

rately indication, objective findings and subjective findings. More specifically, indication

covers the reasons for ordering the CT enterography examination; objective findings cover

a radiologist’s observations from the CT enterography image; subjective findings (or im-

pressions) cover a radiologist’s judgement and summary based on the objective findings.

Each report is labeled with either Crohn’s disease (CD) or not Crohn’s disease (not CD).

An example report can be found in Figure A.1.

From the initially identified 2,839 CT enterography study textual reports (i.e., 1,858

with CD and 981 without CD), a balanced dataset of 1,962 reports (i.e., 981 randomly

chosen from the 1,858 with CD and 981 without CD) was used to experiment on rationale

extraction models and IBDBERT classifier. The 1,962 reports were further split randomly

into a training dataset, a development dataset and a testing dataset of 1,568 (80%), 196

(10%) and 198 (10%) reports all with balanced numbers of labels. The 198 testing dataset

was created to contain perfectly balanced labels defined by an automated labeling tool that

is based on an administrative case definition [67], but the “gold” labels were then refined

by a human IBD expert and ended up to be not perfectly balanced (i.e., 96 for CD and 102

for not CD). Each report contains average 200 words after being pre-processed.
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Figure A.1: An example of CT enterography report with Crohn’s disease. “Reason for
Exam” refers to indication; “IMPRESSION” refers to subjective findings; the rest of the
report refers to objective findings.

Ground truth labels In the 198 testing cases, by comparing the annotations from the

IBD expert to the labels from the automated tool, a substantial amount of the labels were

mislabeled by the tool (i.e., 23 out of 198, around 11.6%). While the ground truth labels

for the testing dataset were refined by the IBD expert, the labels for the training and the

developing datasets were still from the automated tool. We might expect that around 11.6%

of the training and developing instances were mislabeled.

A.2 IBD Textbook and Guidelines

The final corpus used for training IBDBERT (i.e., augmenting BERT through pre-training

of masked language modeling) consists of textbook Crohn’s Disease and Ulcerative Colitis
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from 2012 [38] and guidelines [39–60] related to inflammatory bowel disease. Another ver-

sion of the IBD textbook from 2017 [68] was firstly used together with the above guidelines

as the pre-training corpus, but the downstream classification performance for the detection

of Crohn’s disease (Figure A.2) was slightly lower than the performance of IBDBERT

pre-trained with the final corpus (Figure 3.2).
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Figure A.2: IBDBERT performance over different learning rate options when pre-trained
with the IBD textbook from 2017.

A.3 Anonymization of CT Enterography Reports

For the purpose of protecting private information of patients, radiologists and physicians

that can be exposed in the radiology reports, an anonymization tool was developed and

applied. The anonymization process used regular expression to find and remove entities

about individuals’ names, dates of birth, addresses and any medical numbers (e.g., Personal

Health Numbers (PHN), medical record numbers (MRN), accession numbers ...). The tool

was applied on 136,236 radiology reports collected in Alberta, including the 1,859 CT

enterography reports used in the study of the dissertation.
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A.4 Pre-processing

The pre-processing process aimed to reduce the noise from the CT enterography reports.

The CT enterography reports were originally in html format, which contained lots of html

elements (e.g., “<head>”, “<body>”...) when converted to texts. The reports can also

contain large chunks of texts for addresses and personal information. All texts unrelated to

Crohn’s disease prediction were removed so that only the medical notes from radiologists

were kept (i.e., the sections for indication, objective findings and subjective findings). The

maximum amount of tokens for the texts was set to be 200 (i.e., longer texts were truncated

and the first 200 tokens were kept). Experiments showed that training classifiers with the

report texts of more tokens (i.e., 300, 400) did not improve the classification performance.
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