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Abstract 

 

The Yellow Rail (Coturnicops noveboracensis) is a small, secretive, wetland bird, which is 

apparently rare throughout most of its range. Almost nothing is known about its abundance and 

density in the wetlands of the western boreal forest. Emerging technologies have enabled us to 

effectively survey for Yellow Rail in remote wetlands by using ground-based remote sensors 

(autonomous recording units; ARUs) to conduct passive acoustic monitoring. This technique was 

employed to survey Yellow Rail populations across two large study areas: one in the taiga plains of 

the Northwest Territories, and the other in the boreal plains of Alberta, Canada. 

 

For the Edéhzhíe Indigenous Protected Area (NWT), a predictive map of Yellow Rail density 

was developed based on data obtained from a systematic avian survey conducted in 2016, using 205 

ARUs. Counts of Yellow Rail were converted to density estimates using habitat specific effective 

detection radii obtained via call-playback experiments. Generalized linear models and covariates 

from a detailed landcover classification effort were used to develop the spatial model. Yellow Rail 

appeared to breed at relatively high densities (0.07 males/ha compared to average densities of 0.04-

0.05 males/ha) in Edéhzhíe and they were strongly associated with marsh wetlands. The Mills Lake 

wetland complex was identified as an important breeding area for Yellow Rail in the Northwest 

Territories based on a population estimate of ca. 560 breeding pairs. 

 

For the Alberta Oilsands Region, a predictive map of Yellow Rail breeding abundance was 

developed using acoustic data compiled from the first five years (2013-2017) of an ongoing 

bioacoustic monitoring program. Recent developments in open-access satellite data, cloud computing 
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(Google Earth Engine), and data science were leveraged to secure large-scale, high-resolution (10 m) 

landcover data. Multiple satellite remote sensors were used to derive fifteen predictor variables: 

Sentinel-1 synthetic aperture radar, Sentinel-2 optical imagery, and Advanced Land Observation 

Satellite digital elevation maps. Gradient boosted regression was used to develop the spatial model. 

Six remote sensing predictors (DPOL, ΔVH, REIP, ARI, VH, and SWI), were identified as having 

strong predictive capacity. Several predictors had complex non-linear responses and multiple 

important interactions were identified. Approximately 1.5% of available wetland habitat in the region 

was predicted to be highly suitable for Yellow Rail. 
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Chapter 1 Introduction 

 

Accurately monitoring the status of rare species is a fundamental challenge in conservation biology. Many 

researchers avoid studying rare species because of the increased time and cost involved, and the added risk their 

project might fail (McDonald, 2004). At the core of this challenge is that a species may be perceived as ‘rare’ for 

several different reasons. The definition of rarity varies widely but most often refers to factors such as abundance, 

range size, or habitat specificity (Gaston, 1997). While a rare population is often defined by low overall numbers, 

large populations can also appear rare because they are sparsely distributed throughout a broad range or because 

the individuals are difficult to find (i.e. they are elusive). In some cases, ineffective survey methods can create an 

illusion of rarity (McDonald, 2004). Effective monitoring of rare species requires a firm understanding of why a 

species is rare, and the optimal study design for a species that is common within a specific habitat (i.e. locally 

abundant), but uses a habitat that itself is rare, is very different than for a species with small populations spread 

widely across different habitats. Similarly, if a species is elusive (i.e. difficult to detect) it has significant 

implications for how one approaches monitoring. 

   

Advances in bioacoustics methods have shown great promise for improving our ability to monitor rare 

species. A new approach to surveying bird populations is to deploy acoustic recording units (ARUs), a type of 

ground-based remote sensor, to collect large amounts of acoustic data from the same location (see: Shonfield and 

Bayne 2017). This allows for the collection of large numbers of repeat visits with only two physical visits by an 

observer (to deploy and to retrieve the unit).  To date, most work with ARUs has relied on humans to listen to the 

data generated to estimate which species are present.  By listening to data in specific subsets, humans can estimate 

calling rates within a single “visit” (e.g. sequential listening to 1-minute segments in a 3-minute period) and 

detection rates between visits (i.e. listen for species on different days or at different times of day).  These types of 
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data allow for more detailed models to be created than is possible with observers conducting repeated surveys in 

the field.  Other benefits of using ARUs in this way include the ability to repeat point counts, compare observers, 

and validate identifications for difficult species.  Automated methods for identifying birds from audio recordings 

are emerging alongside advances in the disciplines of machine learning and artificial intelligence. Automated 

song recognition can be used to determine the absolute probability of a species being present over an extended 

period. 

 

The Yellow Rail (Coturnicops noveboracensis) is a secretive wetland bird that is assumed to be very rare. 

In Canada, it is widely distributed from northeast British Columbia and the southern Northwest Territories to the 

coast of New Brunswick (Leston & Bookhout, 2015). Much of its range is in remote areas and over 50% of the 

Yellow Rail breeding population is in the boreal zone (Wells & Blancher, 2011). There is a great deal of concern 

over the conservation status of Yellow Rail and it has been listed on Schedule 1 of the federal Species at Risk Act 

(S.C. 2002, c.29; SARA) as a species of Special Concern in Canada. Several studies have identified Yellow Rail 

breeding habitat as areas of wetland dominated by graminoid vegetation like sedges with little to no standing 

water (Leston & Bookhout, 2015; Robert & Laporte, 1999; Stalheim, 1974; Stenzel, 1982). These habitat 

requirements make them very specialized. 

 

In the western boreal forest, we know very little about the state of Yellow Rail populations. Targeted 

surveys can reveal some details about the species occurrence in specific wetlands (Prescott et al., 2002), but it is 

also necessary to predict both where rails will occur, and how many there are, across broader regions. Given the 

narrow breadth of habitat conditions suitable for breeding Yellow Rail, modelling and mapping this species could 

be highly effective for identifying breeding areas. Building a spatial model for a species requires input variables 

that characterize the study area and provide an accurate description of the environment. When classified landcover 
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products are available these can be used for this purpose, but characterization of wetland ecosystems with 

Geographic Information Systems remains a challenge. Open-access satellite data is creating new opportunities for 

ecologists because large amounts of large-scale, high-resolution landcover data are now available to be freely 

used. 

 

The core objective of my thesis is to use passive acoustic monitoring datasets to improve our 

understanding of Yellow Rail populations across the western boreal forest. In chapter 2, I use new techniques for 

estimating densities from audio recordings and build a spatial model of Yellow Rail density to produce a 

predictive map for the Edéhzhíe Indigenous Protected Area, Northwest Territories. In chapter 3, I test the utility 

of satellite remote sensing covariates for predicting Yellow Rail abundance in northeast Alberta. I assess the 

performance of 15 predictors and produce a high-resolution predictive map which will aid conservation 

management. In chapter 4, I synthesize the results and ideas from the preceding chapters and provide suggestions 

for future research. 
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Chapter 2 High density populations of Yellow Rail (Coturnicops noveboracensis) revealed by 

audio recordings at the northern edge of their breeding range 

 
 

2.1 INTRODUCTION 

 

The boreal zone of North America represents one of the largest and most intact forest ecosystems on the 

planet (Brandt et al., 2013; Potapov et al., 2008).  It supports over 300 breeding bird species including an 

estimated 47 million waterbirds, making it a globally important biodiversity region (Wells & Blancher, 2011).  

However, these ecosystems are being threatened by rapid anthropogenic changes associated with agriculture, 

forestry, energy development, and climate change (Schindler & Lee, 2010).  Anthropogenic disturbances are 

concentrated in southern boreal regions where ~70% of bird species show numerical responses to cumulative 

impacts (Wells, 2011), but more data is needed for northern boreal regions. In Canada, moderate to high 

reliability monitoring data are available for 84% of waterfowl species (32/38) and 61% of shorebirds (28/46), but 

only 54% of ‘other waterbirds’ (53/98; i.e. marsh birds, inland colonial waterbirds, and seabirds), the lowest of 

any bird group (North American Bird Conservation Initiative 2012). Kushlan et al. (2002), identified “… 

developing a better understanding of populations, particularly the least abundant and most poorly understood” as 

the main priority for boreal waterbird conservation.  

 

The North American Breeding Bird Survey (BBS) currently provides the only continental long-term 

abundance data for many species during the breeding season (Pardieck, Ziolkowski, Lutmerding, & Hudson, 

2018; Sauer, Link, Fallon, Pardieck, & Ziolkowski, 2013). However, low sample sizes owing to the limited 

number of roads in northern regions result in imprecise estimates of abundance and population trends for many 
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boreal species (Pankratz, Haché, Sólymos, & Bayne, 2017; Sauer et al., 2013; Sauer, Niven, Pardieck, 

Ziolkowski, & Link, 2017). There are also biases in habitat representation implicit to road-side surveys, which 

results in wetlands being generally underrepresented (Gibbs & Melvin, 1993; Herkert, 1995; Sauer et al., 2017). 

Marsh bird monitoring programs proffer to fill this gap, but these programs do not extend into the boreal region 

(Bird Studies Canada, 2019; Tozer, Drake, & Falconer, 2016). As such, major gaps exist in our understanding of 

species’ distributions, abundances, and population sizes of boreal breeding waterbirds, which limits our ability to 

determine their status (Cumming et al., 2010).  

 

The Yellow Rail (Coturnicops noveboracensis) is a secretive marsh bird that primarily vocalizes at night 

and often breeds in remote wetlands (Leston & Bookhout, 2015). These traits make it a challenging species to 

survey. Over 50% of the Yellow Rail breeding population is in the boreal zone (Wells & Blancher, 2011), where 

it is widely distributed in Canada from northeast British Columbia and the southern Northwest Territories to the 

coast of New Brunswick (Leston & Bookhout, 2015). There is concern over the status of the Yellow Rail because  

it is assumed to have a small population size (estimated 10,000 – 25,000; Wetlands International 2019), 

compressed wintering range, ongoing threats to wetland habitats, and evidence of local population declines (i.e. 

historical sites now unoccupied; COSEWIC 2009). As a result, it is listed on Schedule 1 of the federal Species at 

Risk Act (S.C. 2002, c.29; SARA) as a Species of Special Concern in Canada. 

 

Development of effective survey techniques for Yellow Rail and other secretive marsh birds has been an 

active research topic since the 1980s (Bart et al., 1984; Bazin and Baldwin, 2007; Martin et al., 2014). The current 

standard approach, described in the North American marsh bird monitoring protocol (Conway, 2011), combines a 

passive observation period with a period of call broadcast to elicit territorial responses from individuals in order to 

improve detection probability (Conway & Nadeau, 2010; Gibbs & Melvin, 1993). This technique has been 

somewhat effective for Yellow Rail. Prescott et al. (2002) and Martin et al. (2014) detected ~20% and ~10% more 
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individuals, respectively, after employing playbacks. However, Tozer et al. (2016) reported no significant 

differences in detectability of Yellow Rail between passive listening and call broadcast survey periods. This 

protocol has additional limitations: 1) it requires human observers to be physically present at survey locations 

during the night, and 2) attracting birds using call broadcast surveys could result in a positive bias in density 

estimates or erroneous fine-scale habitat associations. An alternative survey method, passive acoustic monitoring 

(PAM), has been widely applied in avian research in recent years (reviewed by Shonfield and Bayne, 2017). This 

approach involves the deployment of audio recorders to record animal sounds, and the subsequent interpretation 

of the recordings by trained observers. Yellow Rail produce readily detectable and distinguishable sounds, which 

can be used to estimate abundance and density (K. L. Drake et al., 2016; Marques et al., 2013).  

 

Macroecological theory predicts that the average population density of a species is typically highest at the 

centre of its range and declines gradually towards the range margins, i.e. the ‘abundant-centre assumption’ 

(Brown, 1984; Guo, Taper, Schoenberger, & Brandle, 2005; Lawton, 1993). The mechanistic explanation for this 

pattern is that local population density reflects the suitability of a site, and spatial autocorrelation of favourable 

conditions results in reduced site quality at increasing distance from the centre (Brown, 1984). Environmental 

factors are often considered most important for determining the northern edge of a species range but life history 

traits, such as dispersal ability or interspecific competition, are also known to play a role. Many ecological 

hypotheses have been derived from the abundant-centre assumption (see Sagarin et al., 2006). For example, edge 

populations are often considered to be marginal and maintained only by immigration from core populations 

(Kawecki, 2008; Pulliam, 1988), and it has been speculated that edge populations may be more genetically 

distinct or have traits that make them more resistant to environmental change. Abundance data are needed from 

across a species range to test many of the predictions generated by these hypotheses (Sagarin et al., 2006). 
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Our objective was to provide density estimates of Yellow Rail within Edéhzhíe, an Indigenous Protected 

Area in the Dehcho region of the Northwest Territories, Canada. We used data collected in a systematic avian 

survey using PAM conducted by the Canadian Wildlife Survey in 2016. We converted counts to densities by 

deriving an effective detection radius for the species’ vocalizations and, subsequently, built a spatial density 

model for Yellow Rail based on generalized linear models (GLMs). We hypothesized that our covariates 

associated with wetland habitat features would be strongly associated with Yellow Rail density. Specifically, 

areas which are covered by fen or marsh classes with open vegetation and graminoids are predicted support the 

highest densities of Yellow Rail. Based on the ‘abundant-centre’ assumption, we predict low density estimates for 

Yellow Rail. They had not been observed in Edéhzhíe prior to the survey and there were fewer than 20 records 

across the entire Northwest Territories (NWT/NU Checklist, 2018).  

2.2 METHODS 

2.2.1 Study Area and Sampling Design 

  
The study was conducted in the Edéhzhíe Indigenous Protected Area situated west of Great Slave Lake in 

the Dehcho region of the Northwest Territories, Canada (Dehcho Land Use Planning Committee, 2006). It is a 

large (14,218 km²) and relatively undisturbed tract of northern boreal forest located in the Taiga Plains ecozone, 

overlapping three ecoregions: the Hay River Lowland, Horn Plateau, and Great Slave Lake Plain (Ecological 

Stratification Working Group, 1995). A prominent feature of the area is the Horn Plateau, an area of highland 

(500-825 m above sea level) rising above the surrounding lowland plains (125-300 m above sea level). A 

transition is seen from a mid-boreal climate in areas south of the plateau to a low subarctic climate on the plateau 

and to the north (Ecosystem Classification Group, 2007). Wetlands are very abundant and cover 39% of the 

overall land area. These wetlands can be divided into two broad groups with five main classes: peatlands which 

consist of bogs and fens, and mineral wetlands which consist of marshes, swamps, and shallow open water; 

AESRD 2015). Wetlands in Edéhzhíe are characterized by extensive peatlands which typically form in cool, flat, 
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low-lying areas with poorly drained soils. These contain mainly zonal boreal wetland vegetation (i.e. determined 

by climate variables) and make up 96% of the wetland area. Conversely, mineral wetlands classes (4% by area) 

have predominately azonal vegetation (i.e. determined by non-climatic variables). 

 

Throughout the study area, a systematic grid of 33 study sites spaced evenly 20 km apart was established 

in 2016. An additional eight non-systematic study sites were assigned randomly within an 800 m buffer around 

Mills Lake and Willow Lake (four study sites per lake). Each study site was comprised of five sampling stations: 

four in a 2 x 2 grid (spaced 600 m apart) and a fifth at the grid centroid. This sampling design resulted in 205 

sampling stations, but four were not surveyed due to safety considerations and data could not be retrieved from 

two additional recorders. Thus, the total number of sampling stations was 199. 

  

At each station, PAM was conducted using autonomous recording units (ARUs; model SM3 & SM4, 

Wildlife Acoustics Inc., Maynard, Massachusetts, USA) with built-in omnidirectional microphones (frequency 

response: 20–20,000 Hz). The ARUs were deployed, one per station, between May 9-15 and July 23-28 and were 

programmed to record in stereo format at 44.1 kHz (SM4 units) or 48 kHz (SM3 units) with a 16-bit resolution. 

Microphone gain was set at 48 dB for both channels. The recording schedule was ten minutes at the beginning of 

each hour starting one hour before sunset until the fifth hour after sunrise every day. Three additional ten-minute 

recordings were scheduled at sunrise, midnight, and 15:00 for a total of nine recordings daily. Recorders were 

secured to a small diameter tree (<18 cm diameter) or stand ~1.5 m above the ground.  

 

2.2.2 Audio Processing 

 

The number of Yellow Rails per sampling station was determined from a combination of automatic 

processing and human listening. A subset of recordings was processed using a standard interpretation and data 

entry protocol (Lankau, Macphail, Knaggs, & Bayne, 2017) by five experienced observers as part of a preliminary 
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analysis. Specifically, two three-minute recordings were interpreted for 152 sampling stations at sunrise (June 10 

and on a day randomly selected in June; see Haché et al. in prep), and ten three-minute recordings in June were 

interpreted for 49 sampling stations across all sites (see Bayne et al. 2017 for details). 

 

A Yellow Rail ‘recognizer’ was used to process all the audio recordings to detect vocalizing rails with the 

software program Song Scope (Wildlife Acoustics, 2011). A recognizer is a machine-learning algorithm which 

facilitates rapid processing of recordings to locate target vocalizations. The recognizer was trained on annotated 

clips of Yellow Rail calls and the settings were chosen based on the unique characteristics of the vocalization. The 

call of the Yellow Rail is a distinctive ‘ticking’ which is unique to the species (Figure 2.1). The usual rhythmic 

form of the call is: --, ---/--, ---/--, --- (Peabody, 1922). Calls detected by the recognizer were validated by a 

human observer to confirm positive identification. To derive abundance estimates from our recognizer detections, 

human observers processed eight additional recordings for each sampling station where a Yellow Rail was 

detected: 12:00 AM and 2:00 AM on four random dates (June 7, 14, 18, and 21) following the same listening 

protocol (Lankau et al. 2017). 

 

2.2.3 Effective Detection Radius 

 

To determine the area sampled by the ARUs, we estimated an effective detection radius (EDR), i.e. the 

distance from the recorder at which as many calling Yellow Rail are detected beyond the EDR as remain 

undetected within the EDR (Burnham et al., 2004; Matsuoka et al., 2012). By calculating habitat-specific EDR, 

we accounted for variation in sound transmission and did not have to assume perfect detection (Yip, Leston, 

Bayne, Sólymos, & Grover, 2017). EDR can be represented as the parameter, τ, in a half-normal detection 

function: . Following the methods presented by Yip et al. (2017), we calculated an EDR 

for Yellow Rail calling in open graminoid habitats using the equation: . A series of call playback 
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experiments (Yip et al., unpublished data) were conducted, where Yellow Rail calls were broadcast at 90 dB 

(measured 1m from source) which is similar to the ‘loudness’ (sound power measured in dB) of Yellow Rail 

vocalizations (95 dB at 30 cm from source) reported in situ by Drake et al. (2016). The detection function was 

modeled using GLMs with an intercept fixed at 0, a complementary-log-log link function, and binomial 

distribution. Models included an interaction effect between distance and the parameters (wind, temperature, 

barometric pressure) but main effects were excluded to accommodate a fixed intercept. To make distance a linear 

predictor, it was transformed x = -d2 before modelling. The EDR was estimated by summing the beta coefficients 

(β) of variables related to distance in the top-ranked model. The resulting EDR was 256 m (Lower 95 % C.I.= 204 

m and Upper 95% C.I.= 301 m). 

2.2.4 Landcover Data 

A detailed vegetation and landscape classification of Edéhzhíe was conducted between 2014 and 2016 

(JWRL Geomatics, 2017). This was achieved by photo interpretation and digital image-capture conducted 

according to Northwest Territories forest vegetation inventory standards (NWT-ENR, 2012). Wetlands were 

classified according to the 4-letter codes used by Halsey et al. (2003) consistent with the Alberta Wetland 

Classification System (AESRD, 2015). We used each of the letters in the 4-letter code as a categorical wetland 

covariate: wetland class, wetland vegetation, wetland structure, and local vegetation. The study area was classified 

into 48755 polygons and these polygons were subsampled to create 30 m pixel rasters for each wetland covariate, 

to be used for spatial modelling. 

2.2.5 Statistical Analyses 

 

We estimated densities (D) for each sampling station using the canonical density estimator:  the 

number of birds counted (n) divided by the area sampled (a) (Buckland, 2001; Marques et al., 2013). We then 
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used GLMs to fit a spatial model for Yellow Rail density using the package dismo (Hijmans & Elith, 2013) in R 

version 3.4.4 (R Core Team, 2018). We tested a series of candidate models incorporating all combinations of the 

four wetland covariates. Model selection was based on Akaike’s Information Criterion (AICc ; Burnham and 

Anderson, 2002). The top-ranked model was used to generate a predictive map. 

2.3 RESULTS 

 

Yellow Rails were detected at 21 stations by human listening, and a further ten stations by recognizers, for 

a total of 31 sampling stations (15.6%). The species was detected at 18 of the 20 sampling stations at Mills Lake 

(90%). Several other detections came from wetlands adjacent to large lakes: Willow Lake (three stations), and 

Bulmer Lake (five stations). Mean abundance per occupied sampling station was (1.3 ± 0.27 SE). Our top ranked 

model included only the wetland class covariate. Models including wetland vegetation, wetland structure, and 

local vegetation had higher AICc scores. A summary of the model outputs is shown in (Table 1). Two levels of 

wetland class were significant: fen (p < 0.01) and marsh (p < 0.001). The largest positive beta value for predicting 

variation in yellow rail density was the wetland class, marsh. Alternatively, the wetland classes bog, and swamp 

had non-significant negative beta values.  

 

2.4 DISCUSSION 

 

Yellow Rail appear to breed at relatively high densities in appropriate habitat throughout Edéhzhíe. They 

were detected at 15.5% of the sampling stations. Notably, a relatively large number of detections (n = 13) were 

made at latitudes north of 61.75˚N, which are beyond the northern limit of the most recent breeding distribution 

map for this species (Canadian Wildlife Service, 2011). In our study area, there were also multiple detections at 

the most northerly sites near Bulmer Lake at 62.72˚N. In 2018, a calling male was detected using similar survey 
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methods near Fort Good Hope (66.36˚N) approximately 500 km northwest of Bulmer Lake, but Yellow Rail 

density in this area appeared very low (Haché and Pankratz, unpublished data). This supports a growing body of 

evidence suggesting that the species is more wide-spread throughout the western boreal than previously reported 

(NWT/NU Checklist, 2018; Phinney, 2015; Prescott et al., 2002).  

 

Yellow Rail may have eluded detection in the region due to the bird’s secretive nature and the remoteness 

of the sites. Alternatively, it is possible that this represents a relatively recent breeding range expansion for the 

species. Northern range shifts have been observed in the breeding and wintering ranges of many bird species 

(Brommer, 2004; La Sorte & Thompson III, 2007; Thomas & Lennon, 1999). However, the accuracy of range 

delineations is dependent on sampling effort and the actual position of a range boundary is often underestimated 

when sampling effort is low (Shoo, Williams, & Hero, 2006). This is frequently the case for birds breeding in 

boreal ecosystems where large areas are undersampled (Barker, Cumming, & Darveau, 2014; Cumming et al., 

2010). Increased monitoring coverage for waterbirds in the boreal zone will be essential for accurately assessing 

changes to these species’ distributions in response to climate change. 

 

Our results show that Yellow Rail have a strong association with marshes that are open (non-treed) and dominated 

by graminoids (<25% shrubs). The predicted density for this combination of covariate levels was 0.07/ha. We also 

documented densities at individual survey stations as high as 0.15/ha. Across all other combinations of covariate 

levels, the highest density observed at any survey station was 0.05/ha with modelled densities ranging between 

0.0004 and 0.01/ha. Reported estimates from other areas across the species’ range are generally between 0.04 to 

0.06 males/ha (Leston & Bookhout, 2015; Robert, Jobin, Shaffer, Robillard, & Gagnon, 2004; Robert & Laporte, 

1999; H. F. Wilson, 2005). However, densities between 0.18 – 0.43/ha have been reported from Saskatchewan (K. 

Drake & Latremouille, 2016; McMaster, 2007). Drake and Latremouille (2016) used two estimates of ARU 

detection radius (175m and 200m), which were both lower than even the lower bound of our EDR 95% credible 

interval. Thus, it is unclear to what degree these high density estimates from other areas are valid or are reflecting 
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a potential bias due to a considerably smaller EDR. Robert et al. (2004) also reported high densities of 0.08/ha 

from a transect survey along James Bay in Quebec. In Alberta, observed densities from acoustic data have ranged 

from 0.05-0.19/ha, but these are considered conservative estimates because there were too many Yellow Rail to 

count at several sampling stations (McLeod et al., unpublished data).  

 

There are 549 marsh, open, and graminoid wetlands in Edéhzhíe with a total area of 14,626 ha (median 

patch size = 6.4 ha). These would support an estimated population size of ~900 breeding males (906 ± 146). More 

than half of this high-quality Yellow Rail habitat, 8,311ha, is situated in the Mills Lake wetland complex located 

at the southeastern boundary of Edéhzhíe. It is known for extensive marsh vegetation: floating sedge mats, 

emergent and submergent aquatic vegetation (Trottier & Kemper, 1974). These marsh communities, particularly 

the shallow-water areas, attract thousands of migrating waterfowl in spring and fall each year (Latour, 2003; 

Salter, 1974). It is considered a globally significant Important Bird Area (IBA, 2004) and a key terrestrial 

migratory bird habitat site (Latour et al., 2008). We detected Yellow Rail at 90% of our ARU stations within this 

complex, a total of 28 individuals, and a predicted abundance of ca. 560 breeding males. This wetland complex 

should be considered an important breeding area for Yellow Rail in the Northwest Territories. In their surveys in 

Alberta, Prescott et al. (2002) had the highest counts of Yellow Rail (21 males) at Hay-Zama lake, a large wetland 

complex in the extreme northwest of the province, which is in the same ecoregion as Mills Lake, the Hay River 

Lowlands. 

 

Our model makes a single prediction for all marsh wetlands but there might be significant variation within 

this classification not characterized by our wetland covariates. Yellow Rail have been detected in wetlands as 

small as 0.5 ha but it has been speculated that they favour large wetland complexes (Alvo & Robert, 1999). 

Smaller wetlands may become unsuitable due to interannual variation in water level while larger complexes may 

have a buffering effect on this variation. The vegetation found in the Mills Lake wetland complex is quite distinct 

from typical boreal wetlands because the plant community is adapted to the physiological demands of growing in 
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permanent standing water on rich alluvial soils (Trottier & Kemper, 1974). It is dominated by Carex atheroides, a 

robust sedge more typical of prairie wetlands (Trottier & Kemper, 1974). However, this wetland complex may 

also experience more pronounced flooding and drying events as it is adjacent to the Mackenzie River, which is a 

fast, northward-flowing, river which could create important interannual variations in the suitability of the habitat 

for Yellow Rail.  

 

Yellow Rail are known to prefer shallow (0-15 cm) wetlands (Austin & Buhl, 2013; Bookhout & Stenzel, 

1987; Robert & Laporte, 1999; Stenzel, 1982). They also nest in areas where senescent vegetation accumulates. 

However, this information was not available for our study and future work should explore how much of the 

unexplained variation in the model could be explained by variation in water depth. Moreover, our sampling 

locations were aggregated in drier margins of the wetlands, while increased depth would likely correspond with 

lower densities of rails. Thus, extrapolating density estimates from sampling locations located mainly in shallow 

portions of Mills Lake to the entire wetland complex might have produced overestimates of population sizes. 

Tozer (2007) speculated that high concentrations of rail at sites along the St. Lawrence River were the result of a 

population being concentrated in a smaller area due to flooding in the outer margins of the wetland. 

 

The core (i.e. centre of abundance) of the breeding Yellow Rail population is assumed to be located within 

the Hudson Bay and James Bay coastal wetlands (COSEWIC, 2009). It was estimated “a few thousand pairs” (ca. 

6,000-8,000) breed in that region and another roughly 2,000 pairs throughout the rest of Canada (Alvo & Robert, 

1999; COSEWIC, 2009). In this study, we estimated that between 750 and 1052 pairs might breed in Edéhzhíe 

alone. While Mills Lake may a unique area in NWT, there is no reason to believe this pattern is isolated to 

Edéhzhíe. Similar habitat areas exist beyond Edéhzhíe and throughout the taiga plains. Increasing geographic 

coverage of monitoring programs throughout the NWT could contribute to a greater understanding of distribution 

and population size for this and other species breeding in northern boreal regions.  This baseline information is 

required to inform species status assessments and set appropriate distribution and population objectives to allow 

species at risk to recover. 
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Figure 2.1: Sonogram of the Yellow Rail call. 
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Table 2.1: Beta (β) coefficients and standard error (SE) for the top-ranked model. The level withheld for contrast 

is wetland class – Fen. 

Variable β SE  

(Intercept) - Fen 0.006 0.002 ** 

Wetland class – Bog -0.004 0.003  

Wetland class – Marsh 0.062 0.005 *** 

Wetland class – Swamp -0.006 0.013  
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Figure 2.2: Predicted density (number of territorial males/ha) of Yellow Rail in Edéhzhíe, Northwest Territories, 

Canada.
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Chapter 3 Spatially explicit abundance modelling of a highly specialized wetland bird using 

satellite remote sensing 

 

3.1 INTRODUCTION 

 

Understanding patterns of species distribution and abundance is fundamental to modern wildlife biology. 

Species distribution models (SDMs), and their derivatives, are powerful and popular tools used by ecologists to 

quantitatively describe these patterns using landscape and environmental characteristics (Elith and Leathwick, 

2009; Guisan and Zimmermann, 2000). SDMs rely on spatially explicit descriptions of habitat to model species 

occurrence and can reveal which variables best predict where a species occurs (e.g. Jarnevich et al., 2016; 

McFarland et al., 2015). Geographic Information Systems (GIS) and remote sensing technologies have 

revolutionized the field in terms of the breadth and resolution of datasets available for describing habitat (Cord, 

Meentemeyer, Leitao, & Vaclavik, 2013; Gottschalk et al., 2005). Recent developments in open-access satellite 

data (Landsat, Sentinel-1, Sentinel-2), cloud computing (Google Earth Engine), and data science have made large-

scale, high-resolution landcover data available for scientists conducting applied research (Drusch et al., 2012; 

Gorelick et al., 2017; Hird et al., 2017). However, the integration of remote sensing data into ecological models 

has not yet reached its full potential. 

 

The Yellow Rail (Coturnicops noveboracensis) is a secretive marsh bird that is assumed to be very rare. It 

is widely distributed in Canada from northeast British Columbia and the southern Northwest Territories to the 

coast of New Brunswick (Leston & Bookhout, 2015). Much of its range is in remote areas and over 50% of the 

Yellow Rail breeding population is in the boreal zone (Wells & Blancher, 2011). As a result, very little is known 
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about its population status across much of its range and large populations have gone undetected until recently. 

There is significant concern over the conservation status of the Yellow Rail because of very small population size 

estimates (10,000 – 25,000; Wetlands International 2019), a compressed wintering range, ongoing threats to 

wetland habitats (e.g. due to resource development; Willier, 2017), and evidence of local population declines 

(COSEWIC, 2009). This has led to its listing on Schedule 1 of the federal Species at Risk Act (S.C. 2002, c.29; 

SARA) as a species of Special Concern in Canada. Several studies have identified its breeding habitat as areas of 

wetland dominated by graminoid vegetation, like sedges (Cyperaceae) with little to no standing water (Leston & 

Bookhout, 2015; Robert & Laporte, 1999; Stalheim, 1974; Stenzel, 1982). It has been described as the 

‘goldilocks’ of the Rallidae due to its apparent highly specific habitat associations (Austin & Buhl, 2013). Given 

this narrow breadth of suitable habitat conditions, modelling and mapping this species could be highly effective 

for conservation planning but our ability to locate suitable wetlands has been a challenge to date. 

 

Characterization of wetland ecosystems with GIS and remote sensing remains challenging because of the 

dynamic nature of some wetland types, and the influence of subsurface hydrology which cannot be measured by 

remote sensing. In Canada, there have been several efforts to map and classify wetlands. Traditionally, this is 

accomplished either through: (1) photo-interpreted or modeled, vector-based inventories (ABMI, 2018a; AESRD, 

2015; Tarnocai, Kettles, & Lacelle, 2011), or, (2) remotely sensed landcover classification (Amani et al., 2019; 

Ducks Unlimited Canada, 2015; Hird et al., 2017; Mahdianpari et al., 2018). However, these approaches have 

downsides. The accuracy of photo interpretation is limited by the quality and timing of the source imagery (e.g. 

leaf-off colour infrared photography is best for wetland mapping; Tiner, 1999), and remotely sensed landcover 

classification (e.g. using MODIS, Landsat, or Sentinel data) often ignores the underlying hydrology that drives 

wetland formation, structure, and function (Ozesmi & Bauer, 2002). Even the best wetland-mapping products 

suffer from the fact that they represent snapshots or single-state views of ecosystems which cannot account for 

dynamic changes often seen in vegetation, hydrology, short-term climate, and landscape disturbance. For this 
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reason, the predictive ability of many remote-sensing landcover classifications decreases over time and 

performance may decline after only a few years (McFarland et al., 2015).  

For an SDM to be useful, the environmental variables used in the model need to be appropriate for the 

scale of study and available with sufficient quality, coverage, and resolution. Additionally, it is advantageous if 

they can be linked as directly as possible to some known or hypothesized biological mechanism. Given that 

SDMs are, by their nature, only as good as the environmental covariates upon which they are built, ecologists 

often seek out the most accurate descriptions, with the highest resolution, of the environment available. Typically, 

this involves some form of classification using a single remote sensor. However, hybrid approaches to landcover 

mapping, that use ensembles of optical remote sensing, radar, and digital elevation model (DEM) derivatives, 

have emerged with more promising results.  For wetlands, products that rely on DEM derivatives may better 

reflect important wetland hydrological patterns than standard classifications (DeLancey et al., 2019; Difebo, 

Richardson, & Price, 2015; Dvorett, Davis, & Papeş, 2016; Hird et al., 2017; Jiang et al., 2015; Lang, McCarty, 

Oesterling, & Yeo, 2013). Many of these hybrid approaches are made possible by Google Earth Engine (GEE), 

which is a cloud-based platform that allows users to access a multi-petabyte catalogue of remote sensing satellite 

data. GEE makes these data available online through its parallel computation service and facilitates the analysis 

and processing of datasets through a built-in application programming interface (Gorelick et al., 2017). These 

capabilities have been used to develop the Advanced Landcover Prediction and Habitat Assessment (ALPHA) 

program, an active framework for wetland mapping and monitoring across Alberta (ABMI, 2019; DeLancey et 

al., 2019; Hird et al., 2017). 

  

The GEE platform and mapping products like ALPHA have enabled development of SDMs using large 

amounts of remotely sensed data, from a variety of sources, to classify species distribution and model species 

abundance of wetland birds like the Yellow Rail at both high-resolution (10 m) and large spatial extents. Using 

satellite data for building SDMs enables us to skip the landcover classification step frequently involved in 
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generating SDM inputs. This allows us to avoid building models based on prior models (landcover 

classifications), a practice which compounds error rates. By modelling directly with continuous variables derived 

from earth observation satellite data, we propose that it becomes possible to dynamically update SDMs with 

annual, or seasonal, remote sensing inputs to better reflect changes within dynamic wetland ecosystems. This 

framework for building SDMs may be very promising for conserving highly specialized species like the Yellow 

Rail. 

 

3.2 METHODS 

 

3.2.1 Study Area 

 

The study was conducted over a large region of northeastern Alberta, Canada (Figure 3.1) defined by the 

boundaries of the Athabasca oilsands area (93,260 km2) and the Cold Lake oilsands area (17,834 km2). This area 

is notable for its high resource potential, vast deposits of oil-infused sand or bitumen, and for an abundance of 

wetlands. It falls within the Boreal Plains ecozone and Boreal Forest natural region (Ecological Stratification 

Working Group, 1995; Natural Regions Committee, 2006). There are four component ecoregions: the Boreal 

Transition, Mid-boreal Uplands, Slave River Lowlands, and Wabasca Lowlands. 

   

The climate of the boreal forest natural region is characterized by short summers and long, cold winters 

(Natural Regions Committee, 2006). In our study area there is a gradual transition from a subhumid low-boreal 

climate in the Boreal Transition to a subhumid mid-boreal climate across the rest of the study area (Strong, Zoltai, 

& Ironside, 1989). Therefore, the mean summer temperature (MST) is slightly warmer and the mean annual 

precipitation (MAP) is higher in the southern portions of the study area (MST: 14˚C, MAP: 450-550 mm in the 



 

31 

 

Boreal Transition; MST: 13˚C, MAP: 300-400 mm in the Slave River lowlands). Typical vegetation communities 

include deciduous, coniferous, and mixedwood forests, interspersed with extensive wetland complexes (Natural 

Regions Committee, 2006). The primary human disturbances are forestry and extensive oil and gas development, 

especially in the areas around Fort McMurray and Fort MacKay, while agriculture is limited to the south of the 

study area in the vicinity of Cold Lake and Lac La Biche (ABMI, 2017). 

 

Wetland habitat is very abundant in the Boreal Plains where it covers 30.3% of the overall land area 

(Environment and Climate Change Canada, 2016). Wetlands are even more prominent on the landscape within 

our study area where approximately 47,864 km2 (43%) can be classified as wetland habitat (ABMI, 2019). The 

Government of Alberta recognizes five main wetland classes across the province: bog, fen, marsh, swamp, and 

shallow open water (AESRD, 2015). These can be divided into two broad groups: peatlands (bogs, fens, and some 

swamps) and mineral wetlands (marshes, swamps, and shallow open water; AESRD 2015). Wetlands in 

northeastern Alberta are characterized by extensive peatlands which typically form in cool, flat, low-lying areas 

with poorly drained soils. Due to the climate of northern Alberta, most peatlands are forested, typically with black 

spruce (Picea mariana) but in more nutrient-rich fens, with surface and groundwater flow, tamarack (Larix 

laricina) dominates (Waddington et al., 2015). Peatlands with less vegetation structure also occur and these may 

be dominated by shrubs or graminoids (AESRD, 2015; Vitt & Chee, 1990). Our sample locations were originally 

identified using the Ducks Unlimited Enhanced Wetland Classification (DU-EWC; Ducks Unlimited Canada, 

2015) which helped us to target low-structure wetland areas potentially suitable for Yellow Rail. In general, our 

surveys covered the breadth of wetland classes within our study area; however, our 2013 and 2014 surveys did 

sample from a broader range of wetland habitats than in subsequent years because program priorities shifted from 

finding new populations of Yellow Rail to trend-monitoring at known breeding sites. 
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3.2.2 Yellow Rail Abundance Data 

 

Acoustic surveys for Yellow Rail were conducted using autonomous recording units (ARUs) (Models: 

SM2+, SM3, and SM4; Wildlife Acoustics, Inc., Maynard, Massachusetts, USA). The ARUs have built-in 

omnidirectional microphones (frequency response: 20–20,000 Hz) and record in stereo format at 44.1 kHz with a 

16-bit resolution. Microphone gain was set at 48 dB for both channels. The ARUs were scheduled to record the 

first 10 min of every hour daily for the duration of their deployment. 

 

We used the data from acoustic surveys conducted over 4 years (2013 – 2016) as part of a long-term 

monitoring effort. ARUs were deployed at 1016 different sampling sites throughout the study area. Sites were 

clustered into groups of five: four ARUs in a 2 x 2 grid (spaced 600m apart) and a fifth at the grid centroid. This 

spacing was chosen to approximate the home range size of Yellow Rail reported in the literature (Leston and 

Bookhout 2015). New sites were added each year, and some previous sites where Yellow Rail were detected 

continued to be sampled in the subsequent years. ARUs were deployed and retrieved between: 09 May 2013 – 02 

August 2013 (n = 427); 24 April 2014 – 06 July 2014 (n = 365); 03 May 2015 – 30 June 2015 (n = 489); and 10 

March 2016 – 25 July 2016 (n = 259). At each sampling location, one ARU was attached to a tree or stand ~1.5m 

above the ground. Trees >18cm diameter were not used to avoid interference with the directionality of the 

microphones. Some ARUs were deployed ahead of the typical Yellow Rail breeding season and left in place until 

early June. Subsequently, ARUs were moved on an approximately bi-weekly rotation to new sample sites to 

increase the number of sites that could be sampled with a limited inventory of recorders.  

  

Counts of Yellow Rail were determined from a combination of automatic processing and human listening. 

A Yellow Rail ‘recognizer’ was used to process all the audio recordings collected to detect vocalizing rails. A 

recognizer is a machine-learning algorithm which facilitates rapid processing of recordings to locate target 
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vocalizations. The software program Song Scope (Wildlife Acoustics, 2011) uses digital signal processing 

algorithms to compare and identify target vocalizations in recordings. The recognizer was trained on annotated 

clips of Yellow Rail calls and the settings were chosen based on the unique characteristics of the vocalization. 

Calls detected from the recognizer were validated by a human observer to confirm positive identification. A 

subset of recordings was processed by human observers using standardized listening and data entry protocols 

(Lankau et al., 2017). Recordings targeted for human listening were randomly selected, spanning across the dates 

that ARUs were deployed. A minimum of four nocturnal recordings were processed at every site and the 

maximum number of individual Yellow Rail heard during an individual recording was taken as the final count. 

 

3.2.3 Effective Detection Radius 

 

To estimate the area sampled by the ARUs, we estimated an effective detection radius (EDR), i.e. the 

distance from the recorder at which the detection probability for a calling Yellow Rail reaches 50% (Burnham et 

al., 2004; Matsuoka et al., 2012). By calculating habitat-specific EDR, we accounted for variation in sound 

transmission and could relax an assumption of perfect detection (Yip et al., 2017). EDR can be represented as the 

parameter, τ, in a half-normal detection function: . Following the methods presented by 

Yip et al. (2017), we calculated an EDR for Yellow Rail calling in wetland habitats using the 

equation . A series of call playback experiments (Yip et al., unpublished data) were conducted, 

where Yellow Rail calls were broadcast at 90 dB (measured 1 m from source) which is similar to the ‘loudness’ 

(sound power measured in dB) of Yellow Rail vocalizations (95 dB at 30 cm from source) reported in situ by 

Drake et al. (2016). For subsequent modelling, landscape input values were averaged under a buffer to reflect the 

uncertainty in the point source of a detected Yellow Rail vocalization. 
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3.2.4 Remote Sensing Data 

 

Sentinel-1, Sentinel-2 (Copernicus Programme, 2016, 2017) and the Advanced Land Observing Satellite 

(ALOS) Digital Elevation Model (DEM) (JAXA, 2019) data were used as inputs to the yellow rail abundance 

model. All Sentinel and ALOS data were acquired, processed, and downloaded through GEE (Gorelick et 

al., 2017). GEE stores Sentinel-1 (Synthetic Aperture Radar – SAR – imagery) ground range detected scenes 

which have been pre-processed with the Sentinel-1 Toolbox (Sentinel Application Platform – Sentinel-1 

Toolbox). These pre-processing steps include thermal noise removal, radiometric calibration, and terrain 

correction. Dual polarization (VV VH) Sentinel-1 images were further processed in the GEE environment by 

performing an incidence angle correction (Gauthier et al., 1998) and smoothing with a 3x3 Sigma Lee filter (Lee 

et al., 2009; credit to Guido Lemoine for GEE code). Once all Sentinel-1 images were processed, a difference of 

polarization (DPOL) was calculated (see Table 1) and added to the available bands.  To generate a single 

composite image for the Sentinel-1 inputs, the per-pixel mean of the VH and DPOL bands were calculated.  A 

total of 478 Sentinel-1 images were used in the calculation of the VH and DPOL variables. ∆VH was calculated 

by taking the per-pixel mean of summer/spring images and subtracting the per pixel mean of winter images. 

 

Sentinel-2 (optical imagery) top of atmosphere data was acquired through GEE. Clouds, shadows, snow, 

and ice were removed with the QA60 band (a quality control band used to identify bad pixels) and further cloud 

masking was done using bands 1 (aerosols) and 11 (cloud). Sentinel-2 images intersecting with the study area 

during 2017-2018 leaf-on season (May 15 – August 31) were used to extract the 10m bands and generate 

vegetation indices. The merged Sentinel-2 data was generated using a median composting algorithm where the 

median time series value for each pixel was selected as the most representative pixel. A total of 3,148 Sentinel-2 
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images were used in the calculation of the 10m bands and vegetation indices. ∆NDVI was calculated by 

subtracting the median pixel leaf-off values (fall) from the median pixel of leaf-on (spring / summer) values. 

 

The ALOS DEM data was turned into a floating-point raster, then resampled to 10m resolution using 

cubic convolution and then subsequently smoothed using a 7x7 pixel mean filter.  Three topographic indices – 

SAGA Wetness Index (SWI), Topographic Position Index (TPI), and Valley Bottom Flatness (VBF) – were then 

calculated in SAGA version 5.0.0 (Conrad et al., 2015).  All the input variables can be seen in Figure 3.2 and the 

equations and description can be seen in Table 1. 

 

3.2.5 Statistical Analyses  

 

Yellow Rail are wetland obligates so it would not be meaningful to predict their abundance over upland 

areas. To narrow our sampling frame appropriately, we applied a binary wetland / upland classification with a 

threshold probability ≥ 0.35 using the ALPHA wetland probability (ABMI, 2019; DeLancey et al., 2019) data set. 

This threshold had the highest overall accuracy in cross-validation accuracy assessment (overall accuracy = 

83.4%, kappa statistic = 0.667, and AUC = 0.910; ABMI, 2019). 

 

Sampling sites which were in locations within known human footprint features, or in areas with open 

water based on spatial delineations from the ABMI Human Footprint Inventory (ABMI, 2017) and Boreal Surface 

Water Inventory (ABMI, 2018b) were removed at this stage (n = 15). For the remaining sample sites (n = 1001) a 

buffer based on our EDR’s lower 95 C.I. (204 m) was established and the values for each remote sensing input 

were averaged over this space to account for the spatial uncertainty in our aural observations.  
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SDMs based on count data can be used to predict spatial variation in abundance or density (Elith & 

Leathwick, 2009). We used boosted regression trees (BRTs) to fit SDMs for Yellow Rail abundance using the 

package dismo (Hijmans & Elith, 2013) in R version 3.4.4 (R Core Team, 2018). BRT is an ensemble method 

(i.e. combining multiple learning algorithms) that builds and averages many individual classification trees using a 

boosting algorithm (Breiman, 2001). BRTs, in general, have good predictive performance relative to other 

commonly used methods and can also model nonlinear response curves and complex interactions (Elith et al., 

2008, 2006; De'ath, 2007). Machine learning approaches have a tendency toward model overfitting and are often 

seen as a ‘black-box’ with limited model interpretability. In this regard, BRTs compare favourably to neural 

networks or support vector machines providing both excellent predictive ability and allowing ecological 

relationships to be quantified and explored (De'ath, 2007).  

 

Three model parameters are user-defined: learning rate sets the shrinkage applied to each tree (ie. the rate 

at which the contribution of subsequent trees to the overall model is decreased); tree complexity which specifies 

the number of nodes per tree thereby regulating the depth of interaction between predictors; and bag fraction 

which determines the proportion of observed data randomly selected for each tree. Parameters were generally set 

according to recommendations in Elith et al. (2008). For the models, we used a bag fraction = 0.5. We varied tree 

complexity (tc = 1,2,3,5,10) and learning rate (lr = 0.5, 0.1, 0.05, 0.01) using a grid search technique to find 

appropriate settings. The learning rate was adjusted until the optimal number of trees exceeded 1000 as calculated 

through the 10-fold cross validation procedure implemented with gbm.step in dismo. Our selected settings were: 

tree complexity = 5 and learning rate = 0.04.  
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To quantify the relationships, between the predictors and response, the relative influence (RI) of each 

predictor was calculated using the method of Friedman (2001), implemented with dismo. This is a stagewise 

approach where, each time a predictor is selected for splitting, the squared improvement on the model is summed 

and averaged across all trees. The values are then normalized so the RI scores sum to 100 where higher RI scores 

indicate more influential predictors (Elith et al., 2008). To illustrate the relationships, between the predictors and 

response, we used partial dependence plots to show the effect each predictor had on the response while the other 

predictors were held at their mean (Elith et al., 2008). Interactions were assessed using the dismo function 

gbm.interactions which tests whether interactions have been detected and modelled, and reports the relative 

strength of the interactions (Hijmans & Elith, 2013). To illustrate strong interactions, we plotted perspective plots 

showing predicted values for two selected predictors while all the other variables were held to their mean. 

  

We used the dismo function gbm.simplify to test for and remove predictors that were relatively 

uninformative in the final model (Hijmans & Elith, 2013). To illustrate our predictions, we used the base model to 

generate a predictive map. 

 

3.3 RESULTS 

 

At least one Yellow Rail was detected at 18% (185/1016) of our sample sites between 2013 and 2016. The 

year by year breakdown was 13.5% in 2013 (58/427), 12% in 2014 (43/365), 15% in 2015 (73/489), and 27% in 

2016 (70/259). The use of recognizers improved our detectability as we found 10 sample sites where Yellow Rail 

went undetected after our standard listening effort of four nocturnal 10-minute recordings. At 49 sites the 

maximum count was assessed as “Too Many to Count” and was adjusted to a value of three. At minimum, 287 
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calling Yellow Rail were detected at our sample sites. The frequency of each observed abundance before and after 

the “Too Many to Count” adjustment is shown in Figure 3.3.  

 

3.3.1 Predictive Model 

 

All variables were tested for independence. Table 2 contains the results of pairwise Spearman's correlation 

coefficients, which assess monotonic relationships. Correlation values greater than 0.7 or less than -0.7 are 

bolded. A value close to 1 or -1 indicates the variables are highly correlated. Highly correlated variables within 

our study were B2 and B3; B2 and B4; B3 and B4; B4 and ΔNDVI; B8 and NDWI; and SWI and VBF and these 

were removed from the simplified model. 

 

The optimal number of trees as determined by the 10-fold cross-validation from gbm.step was 1850 the 

deviance in the base model was 0.7706 ± 0.06. The predictor with the greatest relative influence on the model was 

difference of polarization (DPOL; RI = 26.9%). It was followed by ΔVH, the winter to summer change in VH 

SAR backscatter (ΔVH; RI = 19.17%), Red Edge Inflection Point (REIP; RI = 10.1%), Anthocyanin Reflectance 

Index (ARI; RI = 9.2%), VH SAR backscatter (VH; RI = 5.2%), and Saga Wetness Index (SWI; RI = 4.5%). Six 

predictors were retained after model simplification: DPOL, ΔVH, REIP, ARI, VH, and SWI (Table 2). The other 

nine predictors (TPI, ΔNDVI, VBF, B2, B8, B3, NDVI, B4, NDWI) all had RI > 4.3% (Table 2). The average 

change in deviance when these variables were removed did not exceed the standard error of the deviance for the 

initial model (Figure 3.4). 
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Predicted abundance ranged from 0 to 25. There were 478639589 10x10 m pixels in our study area. The 

breakdown of the abundance prediction was: 98.52% less than one, 1.09% between one and two, 0.25% between 

two and three, 0.08% between three and four, 0.03% between four and five, 0.01% between five and six, and 

0.01% greater than six.  

 

3.3.2 Variable Responses 

 

Partial dependence plots for the top 12 variables in the base model are shown (Figure 3.5). Several of the 

response curves were not smooth, indicating complex non-linear relationships. Yellow rail abundance decreased 

at higher values of DPOL (specifically > 1.6) and peaked between 1.4-1.6. Abundance tended to decrease with 

larger variations in VH polarization between winter and summer (i.e. lower ΔVH values) and positive abundance 

values were seen only at ΔVH values < -6. Abundance tended to increase with higher values of REIP and were 

positive at REIP > 722. For ARI and VH abundance increased gradually with higher values for these predictors. 

Our analysis of interaction effects revealed 11 important interactions, although most of these were 

relatively weak. The four strongest interactions are illustrated with perspective plots (Figure 3.6). Our model 

showed a particularly strong interaction between ΔVH and REIP (interaction size = 581.3), an order of magnitude 

larger than other interactions in the model. REIP values > 722 corresponded with the highest predicted 

abundances but only where ΔVH was low (< -6). Two other strong interactions included the predictor ΔVH: ΔVH 

* DPOL and ΔVH * VH. Another supported interaction in our model is between REIP and ARI. In the interaction 

plots we see a peak at REIP values ca. 721 and ARI ca. -0.1.  

 

3.4 DISCUSSION 

 



 

40 

 

3.4.1 Interpretation of Predictive Map 

 

The final product of this study was a mapping tool which shows the predicted abundance of breeding 

Yellow Rail at 10 m resolution across our study area in northeastern Alberta. Predicted abundance is on a 

continuous scale and ranges from 0 to 25. One and on-half percent of the study area had a predicted abundance of 

at least one Yellow Rail. Extreme predictions (i.e. > six) were likely the result of outlying values in the 

unprocessed input rasters, but these occur in only 0.01% of all pixels. The predicted abundance deviates from a 

prediction of the true count of individuals because the abundance of Yellow Rail was not measured accurately 

when the number of individuals exceeded three. The human interpreter of the audio indicated ‘Too Many to 

Count’ when the birds were too numerous to distinguish their vocalizations with certainty and these observations 

were adjusted to an assumed count of three, artificially constraining the upper limit of our input abundances. 

Therefore, our predicted abundances should be interpreted as an ordered ranking where higher predicted 

abundance corresponds to an increased likelihood that more individual Yellow Rails are present during breeding 

season. It can also provide information about the probability of Yellow Rail occurrence, by means of a threshold, 

although this would result in a loss of resolution (Guillera-Arroita et al., 2015). Several authors have noted that 

different thresholds can maximize variable aspects of model performance, therefore the choice of a threshold 

should be tailored to the specific application (Dalgarno et al., 2017; Lawson et al., 2014; Liu et al. , 2005).  

 

3.4.2 Important Variables for Yellow Rail Prediction 

 

The selection of suitable environmental predictor variables in SDMs is essential for ensuring high 

predictive accuracy and realistic results. We examined 15 predictors derived from multiple sources of satellite 

remote sensing. 
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Optical Predictors (Sentinel-2): 

The nine predictors from the Sentinel-2 optical imagery (Copernicus Programme, 2017) together 

accounted for 36.3% relative influence. However, individually, seven of them were not large contributors to the 

predictions. The four colour bands B2 - blue, B3 - green, B4 - red, B8 – near infra-red were all among the weakest 

predictors. This was expected since individual bands values are often a function of brightness rather than 

vegetation attributes.  Vegetation indices (as also used in this study) are generally more appropriate proxies for 

vegetation structure and productivity.  

 

NDVI and NDWI were relatively weak predictors of Yellow Rail abundance while ΔNDVI had a slightly 

greater influence. The response of ΔNDVI indicates a small peak between 0 and 0.1 reflecting a positive change 

in NDVI between winter and summer. The literature description of Yellow Rail habitat indicates they prefer 

graminoid dominated wetlands without evergreen vegetation; therefore, we would expect a pronounced change in 

NDVI between seasons. The modelled response was quite muted, however, likely due to the better fit to other 

vegetation and time-series indices (below).   

 

ARI and REIP, two derived optical predictors, were the most influential optical predicters and both were 

retained in the simplified model. The model also supported an interaction between REIP and ARI. ARI increases 

with the amount of vegetation expressing red coloured foliage from anthocyanin pigments.  Plants express 

anthocyanin for optical masking of chlorophyll to reduce risk of photo-oxidative damage to leaf cells (Feild, Lee, 

& Holbrook, 2001). This can be a seasonal change associated with vegetation senescence but also certain plants 

and mosses express anthocyanins when growing in open canopies. We can potentially link our model support to 

open canopy areas where the anthocyanin pigments would be expressed in plants due to UV stress responses 
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(Schaefer & Rolshausen, 2006). In the perspective plot of the interaction there is a peak at REIP values of 721 and 

ARI values of -0.1. This could be indicative of a specific vegetation type associated with higher Yellow Rail 

abundance. For example, peat mosses (e.g. Sphagnum magellanicum), pitcher plants (Sarracenia purpurea), and 

small bog cranberry (Vaccinium oxycoccos) express anthocyanin pigments when exposed to UV radiation, and 

these fen species occur in many of the wetlands with high predicted abundance of Yellow Rail in our study area. 

Issues of scale are well known in SDMs where predictors are only important at the correct resolution 

(Cord et al., 2013; Graham et al., 2019). This is likely important for optical predictors and therefore issues may 

have arisen from our method of aggregating the values for our predictors over a buffer to account for the 

uncertainty in the location of a detected bird.  Finer resolution information about the location of the birds on the 

landscape would likely be of great benefit (i.e. matching the resolution at which plant species are differentiable). 

 

Synthetic Aperture Radar predictors (Sentinel-1): 

 

 

The three predictors from the Sentinel-1 SAR data (Copernicus Programme, 2016) were all among the 

most important predictors. They accounted for 51.8% relative influence and all of them were retained in the 

simplified model. Yellow Rail abundance responded to the most influential predictor, DPOL, peaking at low 

values (specifically DPOL < 1.6). This predictor can be used as an indicator for surface vegetation structure, as 

well as soil moisture content and wetness. Areas that have even vegetation height and/or standing water, such as a 

lake or a grassland, have low DPOL, whereas areas with uneven vegetation height (e.g. forests) have higher 

DPOL. This predictor could be identifying relatively open wetland habitats, such as graminoid fen, which are 

preferred by Yellow Rail (Leston & Bookhout, 2015). This type of fen is also often associated with areas of low 

relief terrain (Halsey et al., 2003). 
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 Higher Yellow Rail abundances were also associated with low values of VH. VH polarization is the 

vertical polarization sending horizontal polarization receiving synthetic aperture radar backscatter. It provides an 

indication of volume scattering (e.g. vegetation cover) as opposed to direct or double bounce polarization which 

have different properties. This means either vegetation is detected (high VH) or bare ground/surface water is 

present (low VH). The relationship between this predictor and Yellow Rail abundance is very logical because VH 

should help characterize low-structure wetlands.  

 

Predicted Yellow Rail abundance also tended to decrease with larger variations in VH polarization 

between winter and summer. ΔVH roughly relates to the change in volume scatter between winter and summer, so 

areas with standing water in the summer and open canopy with snow cover in the winter would have low ΔVH, 

whereas areas with deciduous shrub or tree cover would have high ΔVH. Not only was ΔVH a strong predictor, 

our model found several strong interactions incorporating this variable. For example, the peak abundances 

predicted by REIP, DPOL, and VH were all maximized when ΔVH was low. The interaction between ΔVH and 

REIP was the most important interaction in the model and the highest Yellow Rail abundances were seen in 

wetlands that were highly productive (high REIP) and also had low VH variation between summer and winter 

(low ΔVH).  Similarly, wetlands with high VH and low DPOL values (less than 1.6; indicative of even 

vegetation), contribute most to the model when associated with low seasonal variation in VH (i.e. low ΔVH). 

Intuitively, these findings may indicate that certain wetland types, specifically productive graminoid wetlands, 

with seasonally consistent or persistent uniform vegetation, are favourable habitat for Yellow Rail, which is 

consistent with the literature (Leston & Bookhout, 2015). 

  

Digital Elevation Map derivatives (Advanced Land Observation Satellite): 
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The three predictors from the ALOS DEM accounted for 11.9% relative influence. While this contribution 

is relatively small, one variable SWI was retained in the simplified model. Topographic Position Index (TPI) is 

used to identify topographic highs and lows such as ridges and valleys. It was removed during model 

simplification but contributed 4.3% relative importance to the model when included. This variable is an important 

component of models that classify wetlands from uplands (Hird et al., 2017; Lang et al., 2013). Our approach 

involved masking out upland areas before modelling, however, so the variability seen in TPI was significantly 

reduced in our constrained sampling frame. TPI could be an important variable where topographic relief is more 

variable or if uplands are included in the analysis. Multi-resolution Valley Bottom Flatness (VBF) is an index 

used to identify depositional portions of the landscape. It provides a visual portrayal of low relief areas and 

identification of valley bottom constrictions (Gallant & Dowling, 2003). Low values indicate steep areas and high 

values are flat areas in large valleys. Larger wetland complexes tend to occur in these areas and there was a 

positive abundance response to high VBF values (up to 7); however, the relative influence of the predictor was 

low. Of the ALOS predictors SWI was the most important. It was retained after model simplification and in the 

reduced model had a relative influence of 8.7%. High SWI values roughly indicate areas with high drainage or 

connectivity where water is less likely to be stagnant. This is a feature common to marshes and fens while bogs 

are known to have less water flow. The response for this predictor suggests Yellow Rail abundance is somewhat 

higher in these wetlands which might help identify these features. 

 

3.4.3 Key Takeaways 

 

Conventional SDMs incorporate a variety of coarse multivariate environmental predictors such as 

classifications with discrete values for environmental variables or data that is measured by hand or interpreted 
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from photographs. Remotely sensed data can provide a finer and more continuous representation of geospatial 

variables. Machine learning algorithms like BRT help facilitate ecologists to quantify relationships that cannot be 

described linearly or without additional dimensionality (Cord et al., 2013; Fern & Morrison, 2017; Gottschalk et 

al., 2005). While many of the predictors we explored do not directly relate to distinct environmental features they 

indirectly capture characteristics expressed by various environmental conditions. Additionally, all the inputs used 

can be computed from the direct measurements of the satellite sensors (i.e. they do not have to be modelled 

and validated) and they can be recalculated annually or sub-annually (e.g. the repeat cycle for Sentinel-1 and 

Sentinel-2 are 12-days and 10-days, respectively). These attributes would allow you to create new models for 

a given year and predict dynamic change in a way that no static landcover product could.  

We developed this model with the intention of providing a modeling framework for predicting Yellow 

Rail breeding habitat in Northeastern Alberta, Canada. We also aimed to test a set of predictors that may be used 

in other regions, or at broader extents. Of the predictors retained in the final model, all the layers are available at a 

Canada-wide coverage south of 60N. However, using methods developed here, and given good quality satellite 

data, our approach could be applied to broader extents and to other species with strong habitat associations.  We 

strongly recommend using satellite data to create SDMs for other species, especially for species at risk which 

require accurate and highly specific habitat maps for industry. 

Our framework requires species detections with abundance, an understanding of species habitat 

associations, and accurate satellite data. There are several challenges associated with these requirements. First, it 

will be necessary to ensure that occurrence data adequately cover the geographic and environmental extent of the 

prediction area. Deriving abundance data from ARU recordings can be difficult depending on the species. 

Although we show that the model’s  predictive performance on independent data was reasonably good, model 

transferability may be an issue, especially for species that are more generalized regarding habitat use and have 

different environmental responses.
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Table 3.1: List of 15 input variables used in the yellow rail abundance model 

Variable Data 
source 

Description Equation Biological Indication 

ARI Sentinel-
2 

Anthocyanin Reflectance Index.  
An index sensitive to 
anthocyanin pigments in plant 
foliage (Gitelson, Merzlyak, & 
Chivkunova, 2001). 

 

High values indicate more 
anthocyanin (i.e. plants with 
red pigment) 

B2 Sentinel-
2 

The Sentinel-2 10m resolution 
blue band (central wavelength - 
490nm). 

- Sensitive to vegetation 
senescing, carotenoid 
pigments, browning, and soil 
background (Jaramaz, Simic, & 
Saljnikov, 2013) 

B3 Sentinel-
2 

The Sentinel-2 10m resolution 
green band (central wavelength 
- 560nm). 

- Sensitive to total chlorophyll in 
vegetation (Jaramaz et al., 
2013) 

B4 Sentinel-

2 

The Sentinel-2 10m resolution 

red band (central wavelength - 
665nm). 

- Maximum chlorophyll 

absorption (Jaramaz et al., 
2013) 

B8 Sentinel-
2 

The Sentinel-2 10m resolution 
near infrared band (central 
wavelength - 842nm). 

- Sensitive to total chlorophyll, 
biomass, and leaf area index 
(Jaramaz et al., 2013) 

NDVI Sentinel-
2 

Normalized Difference 
Vegetation Index.  Index for 
estimating photosynthetic 
activity, and leaf area (Rouse, 
Haas, Schell, & Deering, 1974). 

 

High values indicate low 
photosynthetic activity and leaf 
area 

ΔNDVI Sentinel-
2 

Winter to summer seasonal 
change in NDVI index 

 Winter - summer 
photosynthetic activity 

NDWI Sentinel-
2 

Normalized difference Water 
Index from (Mcfeeters, 1999) 

 

Low values indicate high water 
content 

DPOL Sentinel-
1 

Normalized Difference of 
Polarization. 

 

Low DPOL indicates smooth 
vegetation or surface water. 
High DPOL indicates rough or 
undulating vegetation.  

REIP Sentinel-
2 

Red Edge Inflection Point.  An 
approximation on a 
hyperspectral index for 
estimating the position (in nm) 
of the NIR/red inflection point 
in vegetation spectra 
(Herrmann et al., 2011). 

 

High REIP indicates more 
productive wetland vegetation 
 

TPI ALOS, 
SRTM 
DEMs 

Topographic Position Index 
(TPI) generated in SAGA 
(Conrad et al., 2015).  An index 
describing the relative position 
of a pixel within a valley, ridge 
top continuum calculated in a 
given window size.  TPI was 
calculated with a 500m moving 
window for this purpose (Weiss, 
2001). 

- High values indicate 
topographic highs such as a 
ridge top 

SWI ALOS, 
SRTM 
DEMs 

Saga Wetness Index.  A SAGA 
(Conrad et al., 2015) version of 
the Topographic Wetness 
Index.  Potential wetness of the 
ground based on topography 
(Böhner et al., 2002). 

- High values indicate potential 
for water pooling and low 
values indicate well drained 
areas 

VBF ALOS, 
SRTM 
DEMs 

Multi-resolution Valley Bottom 
Flatness (VBF). An index to 
identify depositional parts of 
the landscape. It provides a 

- Low values indicate steep 
areas and high values are flat 
areas in large valleys 
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visual portrayal of low relief 
areas and identification of 
valley bottom constrictions 
(Gallant & Dowling, 2003). 

VH  Sentinel-
1 

Vertical polarization sending 
horizontal polarization receiving 
SAR backscatter in decibels. 

- VH provides an indication of 
vegetation roughness 

ΔVH Sentinel-
1 

Winter to summer change in VH - High negative values represent 
high vegetation seasonality. 
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Table 3.2: Pairwise Spearman correlation coefficients (rho) for the 15 possible predictors. Strong 

correlations, rho > 0.7, are indicated in bold. 

 ARI B2 B3 B4 B8 DPOL NDVI ΔNDVI NDWI REIP SWI TPI VBF VH ΔVH 
ARI ------               

B2 0.20 ------              

B3 0.63 0.84 ------             

B4 0.35 0.89 0.84 ------            

B8 0.68 0.00 0.43 0.07 ------           

DPOL 0.01 -0.51 -0.38 -0.42 0.10 ------          

NDVI 0.21 -0.65 -0.29 -0.67 0.63 0.37 ------         

ΔNDVI 0.07 0.67 0.50 0.70 -0.21 -0.28 -0.67 ------        

NDWI -0.40 0.42 0.02 0.35 -0.86 -0.30 -0.90 0.50 ------       

REIP -0.22 0.34 0.18 0.28 -0.10 -0.43 -0.30 0.28 0.22 ------      

SWI 0.16 0.34 0.34 0.36 0.14 -0.21 -0.15 0.22 -0.01 0.07 ------     

TPI -0.08 0.27 0.16 0.23 -0.10 -0.15 -0.20 0.22 0.16 0.01 0.53 ------    

VBF 0.14 0.38 0.36 0.40 0.12 -0.24 -0.18 0.29 0.03 0.10 0.79 0.57 ------   

VH -0.28 -0.48 -0.48 -0.66 -0.06 0.07 0.50 -0.57 -0.24 -0.07 -0.24 -0.06 -0.22 ------  

ΔVH -0.20 0.05 -0.05 -0.10 -0.18 -0.32 -0.09 -0.04 0.20 0.14 -0.23 -0.06 -0.22 0.29 ------ 
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Table 3.3:  Summary of the relative contributions (%) of the 15 possible input variables in the 

boosted regression tree Yellow Rail abundance models with cross-validation on data from 1001 

sample sites. Full model included all 15 predictors and 6 were retained after model simplification. 

 

Predictor Base 

Model 

Simplified 

Model 

Drop 

Order 

DPOL 26.9 31.8 - 

ΔVH 19.7 22.5 - 

REIP 10.1 15.1 - 

ARI 9.2 13.2 - 

VH 5.2 8.7 - 

SWI 4.5 8.7 - 

TPI 4.3  7 

ΔNDVI 4.0  8 

VBF 3.1  6 

B2 3.0  9 

B8 2.5  4 

B3 2.4  3 

NDVI 2.1  5 

B4 1.6  2 

NDWI 1.4  1 
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Figure 3.1: Location of the study area and sample sites within Alberta. 
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Figure 3.2: All 15 possible input variables across the study area. 
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Figure 3.3: Histogram of the frequency of observed abundances before (left) and after adjustment for 

“Too Many to Count” (right). 
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Figure 3.4:  Plot of the optimal number of trees for the model with learning rate = 0.04, tree depth = 

5, and bag fraction = 0.5. The holdout deviance for the model is 0.74. (Left) and plot of the change in 

deviance with the step-wise removal of variables for model simplification (Right). Variables are 

dropped sequentially until the change in predictive deviance exceeds the original SE (0.06). In total 9 

variables were dropped at this threshold and 6 were retained. 
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Figure 3.5: Partial dependence plots for the top 12 predictors by relative importance from the full 

Yellow Rail abundance model. Partial dependence plots show the effect of each predictor on 

abundance with all other predictors held to their mean. Rug plots, shown along the X-axis, indicate 

the distribution of input data for each predictor. 
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A) 

 

B) 

 

C) 

 

D) 

 

Figure 3.6: Perspective plots for the four strongest pairwise interactions. Panel A) ΔVH x REIP, 

interaction size: 581.3; panel B) ΔVH x DPOL, interaction size: 48.9; panel C) ΔVH x VH, 

interaction size: 35.4; panel D) REIP x ARI, interaction size 32.0 
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Figure 3.7: An overview of the full predictive map for Yellow Rail breeding abundance with 

values generated from the final model is shown (Panel A). Four interesting wetlands are 

highlighted: the McClelland Lake wetland complex near Fort McKay (Panel B), a fen / 

meadow marsh near Philomena (Panel C), the Wabasca lakes wetland complex (Panel D), and 

the Cold Lake wetland complex (Panel E). From these enlarged areas, it was observed that the 

model had both high sensitivity and specificity in predicting Yellow Rail abundance within 

these wetland complexes. 
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Figure 3.8:  An overview of the full predictive map for Yellow Rail breeding abundance with values 

generated from the final model is shown (Panel A)with satellite views. Four interesting wetlands are 

highlighted: the McClelland Lake wetland complex near Fort McKay (Panel B), a fen / meadow 

marsh near Philomena (Panel C), the Wabasca lakes wetland complex (Panel D), and the Cold Lake 

wetland complex (Panel E). 
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Chapter 4 Conclusion 

4.1 Summary of Key Findings 

 

Yellow Rail populations have long been poorly known throughout the western boreal forest. 

Since the species had only infrequently been detected, it was assumed that it was very rare. Our 

findings strongly suggest that Yellow Rail are more common than previously thought in this region.   

 

In chapter 2, I presented the findings from a survey of the Edéhzhíe indigenous protected area 

in NWT and modelled Yellow Rail density across that study area.  

 

A surprisingly large number of Yellow Rail were detected (n = 41) and the species was 

present at 15.5% of the sampling stations. This was unexpected because the previously delineated 

range of Yellow Rail only reached the southern portion of the study area (61.75˚N) while I detected 

rails north to 62.72˚. This highlights the need for increased monitoring for waterbirds in the boreal 

zone. The best predictor for high densities of Yellow Rail was coverage by the wetland class, marsh, 

which distinguished itself as the most important habitat. In Edéhzhíe, much of the marsh habitat 

occurs within the Mills Lake wetland complex which should be recognized as a regionally significant 

breeding area assuming the 2016 numbers are representative of a typical year. 

 

In chapter 3, I presented the findings from a long-term survey program in the oilsands area of 

Northeastern Alberta and modelled Yellow Rail abundance across the study area with a novel 

approach using continuous predictors accessed from satellite remote sensors.  
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 The final product of this study was a predictive mapping tool which shows the predicted 

abundance of breeding Yellow Rail at 10m resolution across the study area. This map is a significant 

improvement over existing spatial tools because it allows us to accurately differentiate areas of 

preferred habitat within wetlands that would otherwise be seen as homogenous in a typical wetland 

classification system. Using a BRT modelling framework helped quantify relationships between our 

predictors that could not have been described with GLMs because the responses were not linear and 

we were able to test for important interactions. We identified several predictors that should be useful 

for modelling the distribution of Yellow Rail or other wetland birds in other areas. Sentinel-1 SAR 

predictors had the highest relative influence and these variables helped characterize the specific 

habitat requirements of Yellow Rail. 

 

4.2 Conservation Implications 

 

Finding large numbers of Yellow Rail within Edéhzhíe is good news for conservation 

because these populations are located within a newly established protected area. In the Northwest 

Territories, habitat is generally intact and is largely free from anthropogenic threats. However, the 

sedge meadow habitats upon which Yellow Rail rely are very sensitive. One concern for the long-

term viability of these populations is the effects of climate change. Notably, there has been a long-

term trend in the southern Northwest Territories for wetlands to become more wet. Satellite imagery 

of the area between 1986 and 2011 showed the proportion land covered by water has gone from 5.7% 

to 11% over that period (Korosi et al., 2017). This resulted in sedge meadows, especially along lake 

margins, becoming inundated with consequences for wildlife that rely on them (e.g. bison being 

displaced). These are precisely the areas our model predicts are most suitable for Yellow Rail. 
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Northern, or ‘cold-edge’ range limits are often associated with limits in the physiological 

tolerance of a species or corresponding changes in food plant communities due to climate regulation 

on the distributions of those species (Calosi et al., 2010; Gaston, 2009; Lynch et al., 2014). For 

migratory birds, another factor in determining northern range boundaries is the cost associated with 

dispersing a longer distance. These costs include increased energy expenditure and increased risk of 

mortality which may each limit a species ability to disperse beyond a certain extent. However, it has 

been shown that these costs can be compensated by lower predation risk on the breeding ground and 

increased availability of food (Mckinnon et al., 2010). Changes to the distribution of Yellow Rail 

would have significant conservation implications. Optimistically, a warming climate might ‘unlock’ 

additional suitable breeding habitat beyond their current distribution and into areas with relatively 

little human footprint. However, it is not clear, to what extent this could compensate for lost or 

degraded habitat elsewhere, or whether they have a limit to their dispersal ability. Yellow Rail are 

projected to lose 100% of their climatically suitable winter range and are among the species assessed 

as climate endangered (Langham et al., 2015). 

 

In our Alberta study area, resource development is expected to increase substantially (Alberta 

Energy Regulator, 2016) and human footprint will also continue to increase. To ensure the 

conservation of Yellow Rail in the region it will be beneficial to have a better understanding of its 

distribution and abundance on the landscape to facilitate conservation planning and mitigation of 

development impacts. Maps can provide information about areas that should be protected and can 

inform industry proponents about highly sensitive areas within their leases that should be targeted for 

mitigation efforts. High-impact developments should avoid areas with high predicted Yellow Rail 

abundance and these wetlands should have their hydrological function preserved. 
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4.3 Recommendations for Future Research 

 

The studies conducted in this thesis benefited tremendously from the application of new 

technologies. ARUs were integral to our ability to survey for Yellow Rail effectively, but 

bioacoustics methodology is still developing. 

 

Estimating density from audio recordings is an active area of research and there is likely to be 

continued improvement in methods for estimating and standardizing animal density using passive 

acoustics (Darras, Furnas, Fitriawan, Mulyani, & Tscharntke, 2018; Yip et al., 2019, 2017). It is 

inherently challenging to accurately estimate density from audio recordings and this is an important 

source of error for the studies presented in this thesis. Novel approaches using sound-level 

measurements may be useful for providing the most objective distance estimates (Yip et al., 2019). 

To address the uncertainty in the point source of a vocalization, sound localization techniques could 

be used (S. J. Wilson & Bayne, 2018). This would allow us to relate the breeding locations of the 

birds more directly to model inputs. However, the intensity of sampling, and the associated costs, 

would have to increase as arrays of recorders are required. 

 

The application of automatic song recognition tools improved our ability to detect Yellow 

Rail on audio recordings. The Yellow Rail call is relatively simple which makes it an ideal candidate 

for automated recognition. There are a number of obstacles to perfecting automated recognition but 

in the future it may be possible to derive counts automatically from audio recordings (Priyadarshani, 

Marsland, & Castro, 2018). A combination of deep learning and image processing of sonograms to 

detect peaks corresponding to the characteristic ‘tiks’ of the call could be converted to objective 

counts. 
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In chapter 3, we outlined a framework for modelling the abundance of Yellow Rail across a 

region with satellite remote sensing inputs. One of the key advantages of this approach is that 

remotely sensed data can provide a finer and more continuous representation of geospatial variables. 

Additional habitat characterization measures could be used to improve these models, such as LiDAR 

which has been shown to be very useful as a tool for measuring height and density of surface 

vegetation conditions, but such data may be prohibitively costly to acquire. All of the inputs we used 

are freely available and can be computed directly from the measurements of satellite sensors (i.e. 

they do not have to be modelled and validated) and they can be recalculated annually or sub-annually 

(e.g. the repeat cycle for Sentinel-1 and Sentinel-2 are 12-days and 10-days, respectively). These 

attributes would allow the creation of new models for a given year and predict dynamic change in a 

way that no static landcover product can. This would be a leap forward for spatial modelling of 

species because it becomes possible to update models dynamically with annual, or seasonal, inputs 

that would improve our ability to characterize changing wetland conditions. It should be a priority to 

develop and validate models that account for annual variation in Yellow Rail abundance because it 

could increase our understanding of what constitutes critical habitat for the species under different 

short-term environmental conditions (i.e. a wet season vs. a dry season).  

 

One future goal would be to create a national abundance map for the species. To achieve this, 

would require abundance data and landscape information from all parts of the Yellow Rail range 

across Canada. Earth Observation satellite data is uniquely suited to this because our data sources 

provide coverage for the whole globe (below 60˚N) and the various data streams can be used as 

predictors and correlates for environmental attributes. It will be a challenge to account for the 

increased variation that results from populations in markedly different environmental contexts (i.e. 
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coastal vs. inland wetlands) and it is expected that different predictors may be more or less influential 

regionally.
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