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Abstract

Most of industrial plants are heavily instrumented with a large number of sensors

and analyzers to provide the data needed for process control and monitoring pur-

poses. However, online and fast-rate measurements are not always available due to

restricted availability and/or reliability of measurement techniques and devices. Even

in cases where appropriate measuring devices are available, some key process vari-

ables are still determined offline by laboratory sample analysis or by means of often

unreliable online analyzers. Such methods of process data acquisition are time con-

suming, often expensive in the long run, and introduce delays and discontinuities into

their application. On top of that, the development of advanced process monitoring

and control techniques is key to achieving profitability, meeting safety requirements

and operating environmental friendly processes. This development stage requires the

operational data to be recorded for the analysis of the problem.

A popular approach to make reliable data available fast and at lower cost is

using predictive models. Predictive models are basically mathematical models of the

process which can be developed based on the history of the plant and using available

data. In some cases, if possible, adding first principles equations could better the

accuracy of the model. It is important to have relevant data that are clean to an

acceptable extent, and cover a meaningful time span of the process under study. These

circumstances might not be available perfectly. Data quality, namely availability,

accuracy, relevance, density, and frequency, is a pivotal determinant for the outcome of

a model. Some common disputable phenomena are uncertainty, high-dimensionality

in terms of the count of recorded features compared to that of sample points, outlying

observation, missing records, nonlinearity, and non-Gaussianity. In this thesis we have
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targeted a combination of the most relevant phenomenon in a chemical process record

such as uncertainty, high-dimensionality, outliers and theirnon-Gaussianity.

Probabilistic models are potent in terms of dealing with uncertainties, so are prin-

cipal component analysis (PCA) methods in handling high-dimensionality. As a re-

sult, probabilistic principal component analysis (PPCA) based models are considered

as the motif for this research. Conventionally, for probabilistic principal component

analysis based models, noise with a Gaussian distribution is assumed for both input

and output observations. This assumption makes the model to be vulnerable to large

random errors, earlier referred to as outliers. In this thesis, unlike the conventional

noise assumption, a mixture noise model with a contaminated Gaussian distribution

piece is adopted for probabilistic modeling to diminish the adverse effect of outliers,

which usually occur due to irregular process disturbances, instrumentation failures

or transmission problems. This is done by downweighing the effect of the noise com-

ponent which accounts for contamination, on the model output prediction. This

adoption is implemented in different settings: a scaled mixture noise model, a loca-

tion mixture noise model and a switching noise model to account for the dynamic

behaviour of noise, for either process noise or the measurement noise. More details

will be cracked further in the main chapters.

Finally, in comparison with the conventional PPCA based model and specific ro-

bust PPCA based models, the prediction performance of the developed robust model

is evaluated in presence of data contamination. To further appraise the model validity

and practicality, two case studies were carried out for each development. A simulated

set of data with predefined characteristics to highlight the presence of outliers was

used to demonstrate the robustness of the model. The advantages of this robust

model are further illustrated via a set of real process data set from our industrial

partners.
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This thesis is an original work conducted by Anahita Sadeghian. The work pre-
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To robustness.

In memory of the passengers on PS752
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Chapter 1
Introduction

“The antifragile loves
randomness and uncertainty,
which also means—
crucially—a love of errors, a
certain class of errors.
Antifragility has a singular
property of allowing us to
deal with the unknown, to do
things without understanding
them— and do them well.”

Antifragile: Things That Gain from
Disorder (N. N. Taleb, 2012)
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1.1 Motivation and Inspirations

Typically, the success of industries depends on their production rate and product

quality. Along with this, they are required to comply with safety and environmen-

tal considerations in their efforts to meet the set goals on production and quality

[24]. Development of advanced process monitoring and control techniques is a key to

achieving these objectives. Effective process monitoring and control strategies require

the operational data to be recorded for the analysis of the problem.

In general, industrial plants are heavily instrumented with a large number of sen-

sors and analyzers to provide the data needed for process control, fault diagnosis, and

monitoring purposes. However, on-stream and wired measurements are not always

accessible due to restricted availability and/or reliability of measurement techniques

and devices. Even in cases where appropriate measuring devices are installed, some

key process variables are still determined offline by laboratory sample analysis or

by means of often arguable existing online analyzers. Such methods of process data

acquisition are time consuming and introduce delays and discontinuities into their

applications. Moreover, implementation of these methods might be expensive and

might demand frequent and costly maintenance. One example of delayed data is the

slowly-processed measurements obtained from gas chromatographs.

As a result of the particular issues introduced above, there has been sprouting

interest in setting up predictive models that can provide frequent estimates for quality

variables of interest. These predictive mathematical models are known as soft sensors,

inferential sensors or virtual sensors that provide online (real-time) estimates of the

key quality variables based on some other process records that are already available.

By using these soft sensor models, we could enhance the entire system’s reliability

and accuracy to develop tighter control policies for the system under study [24].

Generally, three main modeling approaches exist for design of soft sensors as men-

tioned by [24]: mechanistic or physical modeling that is performed by first principles

analysis, empirical or data-driven modeling, and grey-box modeling. In the first group

of models, we use physical laws governing the plant, such as mass and energy balances.

These models, if possible to develop, may be reliable for a long period of time and

perform well. This is because they represent the essence of the system based on the
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main governing equations. However, usually deriving these models is challenging and

considerably ambitious due to the uncertainties deep-seated in the nature of process

dynamics. Data-driven models are useful based on the fact that the plant records

contain information about factors affecting the operation, which is buried in the big

data [23]. The term big data is coined to depict records that have specific charac-

teristics such as Volume, Variety, Velocity, Value, and Veracity-usually referred to as

5 − V s. Whilst the groundwork matures, different research communities add more

V s to the list. Recent addenda are Variability and Visualization. When relevant and

high-quality data is collected, and if appropriate analysis and investigation is carried

on, it is feasible to achieve reliable and accurate models through statistical analysis

of the historical data. These two steps, namely, the collection of high quality and

relevant data and accomplishment of an appropriate analysis, are quite substantial in

soft sensor or any style of model development.

When collecting high-quality data, it is required that the effect of noise and dis-

turbances in the recording procedure be minimized; in such manner, the data meet

the requirements for the next steps, for instance, accurate model identification. Dif-

ferent filtering methods have been developed to address this challenge. Furthermore,

proper analysis of the data enables the detection and management of the adverse

effects associated with outliers, missing data, redundancy, low accuracy, and many

other possible issues [24]. Collected data could then be processed in myriads of ways,

and there are a number of choices that should be made. These choices comprise the

selection of an appropriate model structure from a suitable model class (linear or

nonlinear, static or dynamic, ...), and estimation of model parameters by applying a

suitable identification technique. The last step, that has the same significance in the

procedure is model validation. Further detailed discussions could be found in [67] for

missing data; in [90, 19, 56, 70, 13] for outlier detection; in [59, 32] for pre-filtering; in

[88, 90, 23, 58, 53, 1] for variable and model structure selection; in [9, 47] for model

order selection; in [82, 81, 41] for model identification and in [12, 7, 8] for model

validation.

Over the course of time, a vast area of research has been devoted to the above-

mentioned steps to obtain an adequate model of the process under study. However,

there are challenging issues associated with each step that make this area of research

3



open for further explorations. For instance, in relation to the quality of the data

used in modeling, issues such as measurement noises, missing values, outliers, etc.

might arise. Several ad hoc solutions to these potential issues are available. A more

general, robust and well-established approach of dealing with these issues is yet to

be developed. In the context of model identification, it is required to pay special

attention to the modeling of hybrid systems. Hybrid systems experience discrete

changes during their continuous operation. Examples of such systems are provided

by [46] from polymers industries. In this field, modeling of hybrid systems is of

interest since some production policies drive a single polymer manufacturing plant to

undergo different processes with different operating conditions, to produce different

grades of polymer. Therefore, to describe this switching act, that reflects the multiple-

mode characteristic of the process, a multi-modal representation is required. The

other application of modeling of multi-modal systems in the literature is to represent

the behavior of nonlinear dynamic processes by approximating them with individual

piecewise linear models.

Soft sensors have several advantages including: no capital cost is needed for de-

velopment stage compared to that of hardware measuring devices, since they are

software sensors. They can work in parallel with hardware sensors for process control

and monitoring purposes. They also provide online estimates for the process variable

measurements based on a previously recorded historical data. Moreover, by consid-

ering the historical data that may include some hidden information about the plant’s

operation, they can add to the prior process knowledge available from physical laws

and first principles equations. In addition, it is easy to implement soft sensors on

the readily available hardware, e.g. microcontrollers, and update them as the system

behavior changes. Along with these advantages, they would improve plant operation

by solving the previously mentioned issues faced in process control and monitoring.

As a result, soft sensors assist industries by increasing market success and profitabil-

ity along with reducing off-specification products over environmentally acceptable

operating conditions [22, 54, 69, 49].

So far, the important role of measuring variables in a process has been introduced.

One other common challenge in practice is high-dimensionality of the process data.

Searching for the most relevant variables to the target variable or key performance
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index is a solution which requires domain knowledge. An alternative to removing the

less relevant variables is to make a solution out of a type of combinations of variables

in order to reduce the dimension of the data set.

In this thesis, approaches to dealing with the issues mentioned in this section

are reviewed and the development of a solution to these issues is discussed through

upgrading and reformulation of the existing modeling approach in a robust fashion.

The work also constitutes testing of the developed solution on existing industrial data.

1.2 Outlying or Atypical Observation

Outliers, outlying or atypical observations are those that seem unusual or extreme

with respect to other observations, as well as the prior knowledge about the possible

typical range of measured values [29]. A very simple application of detecting outliers

is to monitor a specific feature in a production line, similar to monitoring credit card

usage to prevent fraudulent use [33].

Nowadays, there is a common issue in different disciplines and their commercial

applications: the concept of Big Data. Researchers indicated that almost all large

datasets contain outliers [91]. Manual evaluation of the outliers is difficult or some-

times impossible. The outlying observations mostly represent a random error caused

by hardware failure, operator’s incorrect reading from devices, transmission issues or

infrequent changes in the dynamic behaviour of the system.

Observation data is usually multivariate, and the methods used to detect outliers

in this category of data sets require distance metrics such as Euclidean or Mahalanobis

distances. The former only considers the location information, while the latter is more

reliable as it considers the dependencies between the attributes by incorporating the

covariance matrix in the calculation. The general idea of such methods, is to assign a

scalar distance to each observation and to pinpoint the observations with a distance

larger than a threshold, as outliers.

Another group of researchers provided a profound review on outlier detection

algorithms [33]. In conventional multivariate modeling methods, such as least square

or other methods with similar loss functions, a single outlying data point can have

a huge impact on the outcoming model. This is why robust methods and outlier
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detection are of considerable importance. Some basic methods, such as trimming

and winsorizing [87], are introduced in the early literature that simply discard data.

The drawback of such methods is that due to this simple omission the estimates

might be biased. It is worthwhile to indicate that the method of dealing with outliers

can depend on the application domain. For example, if the entry clerk causes a

typographical error, the person responsible could be notified to correct the error and

the outlier is then restored to a normal record. Alternatively, for outliers resulting

from a hardware failure, the treatment might be their removal.

The same group of researchers categorized three fundamental approaches to outlier

detection. The first approach is analogous to unsupervised clustering, as it only

looks at the static data and pinpoints the most remote points as possible outliers.

They portray the method to be similar to a batch processing system that requires

all data to be available to start the detection. However, the second approach is

analogous to supervised classification and models both normality and abnormality.

The application of such approaches requires pre-labeled data which are tagged as

normal and abnormal. The last category, known as novelty detection, models only the

normality or in a very few number of cases, models abnormality [33]. This approach is

believed to be analogous to a semi-supervised detection task; semi-supervised in the

sense that in this approach, the normal class is learned but the algorithm learns to

detect abnormality. This approach requires pre-classified data and it only learns one

class, the normal ones. In dynamic cases, it tunes the model of normality to improve

the fit as each new data point becomes available. This defines a so-called boundary of

normality. They also provide an overview of different statistical methods from their

early univariate application to a one-dimensional data set.

Grubbs’ method as in [31], is an example of univariate outlier detection meth-

ods. The basic idea of this method is to first, calculate the difference between the

mean value of the attributes and the query value divided by standard deviation of

the attribute. The mean and standard deviation are calculated by using all attribute

values including the query value. Then, this distance is compared to a 1 to 5%

of significance level. Previously mentioned research team in [33], defined a statis-

tical class of methods of outlier detection such as proximity-based techniques (like

k-nearest neighbor, k-NN), parametric (e.g. principal component analysis (PCA)),
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non-parametric (e.g. Dasgupta and Forrest method) and semi-parametric methods

(e.g. Gaussian mixture models (GMM)). Proximity-based methods are inefficient in

dealing with high-dimensional data sets due to the computational complexity of cal-

culating all vector distances. On the other hand, parametric methods are known to be

suitable for large data sets since they allow the model to be quickly evaluated when

new instances are received. The main shortcoming of these methods is that their

applicability is limited by the availability of a pre-specified distribution model of the

data. Such a priori knowledge is not often available since many data sets simply

do not follow a specific and known distribution model. Non-parametric methods are

more flexible and self-governing. Finally, semi-parametric methods apply different

local kernel models instead of a single distribution model. This would result in a

combination of speed and complexity growth of parametric methods [33].

Many robust approaches have been developed as an alternative to previously ad-

dressed naive methods. Another research indicated that appreciable attention has

been given to replacing the non-robust least squares estimates with robust alterna-

tives [21]. A number of methods for robust regression have been proposed in the

literature. Examples include: M-estimates [35], the Stahel-Donoho estimate [84, 18],

least median of squares [72] and S-estimates [15, 60, 21]. A review of all these methods

and some others can be found in [66]. This review mostly attempts to improve the

traditional multivariate regression methods, such as principal component regression

(PCR) and partial least squares (PLS).

In addition to Big Data, there is another issue for the statistical methods to be

aware of and that is named as Curse of Dimensionality by [5]. This publication states

that the number of data and also the number of computations required for a predic-

tive model grows exponentially with the dimensionality of the feature vectors; and

that this increases the data processing time. As the dimensionality increases the data

points are spread over a larger volume and become less dense. This makes the recog-

nition of the spreading convex hull of the data distribution more challenging. PCR

and PLS reduce the number of dimensions in data but they still do not provide the

probabilistic model underlying the data generation (generative probabilistic model)

to determine how well the new data will fit within the model. Research has been done

on this subject to develop robust models in the framework of latent variable modeling.
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There is still opportunities to improve this robustness against outliers and missing

data. The outliers can be modeled in a probabilistic representation instead of simply

being discarded. To model the outliers, different distributions could be used; some of

these distributions will be discussed in the next sections. The use of these concepts is

especially needed in process industries to develop more robust models. Development

of more reliable models would result in more effective process monitoring and control

policies. Consequently, the plant operation becomes safer and more profitable. Pa-

rameters of such models, could be estimated through an expectation-maximization

algorithm.

One of the directions of this thesis is to address the presence of outliers by assuming

different patterns of distributions for them and incorporating them in the main model

of the system, instead of considering their removal or substitution, to develop a robust

model. Considering different noise models to represent the outliers will be further

discussed in Chapters 2, 3, and 4.

1.3 Latent Variable Models

In addition to the potential outlier problem, high-dimensionality of data space is an-

other challenging issue in modeling applications. Latent variables or hidden variables,

are generally known as variables that are not observed directly but are inferred from

the directly-measured ones instead. A model that investigates the dependence of a

set of observed variables on a set of latent variables in a statistical framework is a

latent variable model [20]. We will further discuss the functionality of latent vari-

able models on high-dimensional data, and also will propose the application of our

developed method on such data sets.

A general latent variable could be formulated as:

p(x) =

∫
p(x|t)h(t)dt (1.1)

where x = [x1, ..., xM ]T is the observed variable vector and t = [t1, ..., tP ]
T represents

a vector of latent variables. The dimension of the latent space, P , is usually smaller

than the number of variables in the observation set, M .

Essentially all latent variable models assume that observations have a joint prob-

ability distribution conditional on the latents, that is p(x|t). The other point is that
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latent variable models lean on a key assumption of conditional independence. That is,

the observable variables are independent of each other, given the values of the latent

variables. Conditional and marginal density functions, p and h, could be inferred

from the known or assumed density of x, based on some assumptions, to describe the

probabilistic dependency between the observed and latent variables. The interdepen-

dence between the observable variables is the result of their common dependence on

the latent variables. Therefore, when the latent variables are fixed, the behavior of

the observable variables is random in essence. So we have:

p(x) =

∫
h(t)(

M∏
i=1

p(xi|t))dt (1.2)

Different classes of latent variable models are generated by different assumptions

about latent variables distribution. The mostly known class is factor analysis which

was developed by psychologists at first. Authors in [21], review the recent research

on multivariate statistical techniques that are related to latent variable models as

independent component analysis (ICA), Kalman filter model, and hidden Markov

models (HMMs).

1.3.1 PCA-based Regression Model

To start the data mining process, there are some preparatory steps to be taken to

ensure a correct interpretation. The compulsory step is pre-processing the data by

dealing with outliers after their detection and also by handling the missing part(s)

of the data. The next optional step, is data reduction to only consider the informa-

tive parts of the Big Data. Beside reducing the number of records by downsampling,

dimension reduction is one of the common data reduction approaches. Principal com-

ponent analysis is a suitable method for reducing the dimension of a high-dimensional

data set by identifying correlated features in the data and then projecting it onto a

lower dimensional subspace [33]. This method, known as an ideal method to select a

subset of features for use in modeling, could be a preprocessing step for the methods

that otherwise suffer from the curse of dimensionality.
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1.3.2 Deterministic PCA

Let us consider a set of input and output variables, X ∈ �n×m and Y ∈ �n×r, where n

is the number of data samples or the observation length, and m and r are the number

of input and output variables, respectively. One can perform dimension reduction on

the data set X. PCA is considered only for input data and in PCR regression is done

between the input and output data after performing the dimension reduction. To be

consistent with the notations used in this thesis, we call PCR as a deterministic PCA

based regression model.

The PCA based regression model structure is given as follows:

X = TP T + E (1.3a)

Y = TCT + F (1.3b)

where P ∈ �m×q is the loading matrix, T ∈ �n×q is the principal components matrix,

C ∈ �r×q is the regression matrix and scalar q is the number of selected principal

components (i.e. the latent space dimension). E and F are the residual matrices with

appropriate dimensions [27]. The dimension of the latent space is usually less than

that of the original observation space.

PCA could be seen as a restricted version of factor analysis (FA) with respect

to assumptions. The underlying assumptions of FA are randomly distributed latent

variables, as well as random noise (or observation) with unit variance, and zero-

centered latent variables. When we restrict FA to have isotropic error models each

with variance σ2 and force its latent variables to be deterministic, we build a PCA

model. The goal is to find the loading matrix and also to determine the noise variance.

PCA is a convenient method, when graphical representations are not available or

suitable in the representation and interpretation of data. It is a useful way to check

the quality of the data with respect to existence of any clusters. In the context of

process engineering, it is useful when univariate charts cannot sufficiently show the

effect of process variables on the system and also it is useful for constructing a quality

index in process monitoring.

The crux, to solve the unknowns, is to look at the data to see if PCA is needed and

applicable at first hand. PCA would be applicable if the data has any insignificant
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components. This evaluation is done by checking the rank of the covariance matrix of

the observation data. If the covariance matrix is not full-ranked we cannot claim that

the variables of the data matrix are independent, therefore a linear relation exists

between them. In this case, matrix T is defined as T = [t1, ..., tq] ∈ �n×q,

• where t1 ∈ �n×1 is the first principal component, that is a linear combina-

tion of the process variables such that the maximum variance happens for the

covariance matrix of the data and ‖p1‖ = 1.

• and t2 ∈ �n×1 is the second principal component, that is a linear combination

of the process variables such that the next biggest variance happens for the

covariance matrix of the data and ‖p2‖ = 1 and t1 ⊥ t2.

• tq ∈ �n×1 is the qth (last) principal component, that is a linear combination of

the process variables such that the last biggest value of variance happens for

the covariance matrix (uncertainty is presented here) of the data and ‖pq‖ = 1

and all ti=1:q are perpendicular to each other.

Principal components are uncorrelated and orthogonal, each with unit length to

build an orthonormal coordinate system for the reduced dimension space. By finding

pi=1:q that satisfy the above mentioned conditions, the loading matrix is determined.

It is proven that the pi=1:q, that are vectors of the loading matrix P , are eigenvectors

of the covariance matrix of X. Meanwhile, the eigenvalues of the covariance matrix

are equivalent to the variance of ti. This indicates that the extension of the data

over the corresponding direction, and this is the reason that maximizing the variance

is desired [40]. One obvious weakness of this model, is the uncertainty situated in

the number of principal components chosen for the reduced space. There are many

methods mentioned in the relevant literature, such as Scree plot, to estimate this

number via some thresholds. By trial and error, one can get an appropriate number

of latent variables to capture the data set at its best fit. In the following chapters, we

will investigate the use of Bayesian methods and maximum a posteriori estimation to

reach the number of reduced dimensions while determining the loadings.
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1.3.3 PPCA-based Regression Model

Principal component analysis (PCA) is widely used in dimension reduction in high

dimensional data sets to ease the analysis. Researchers have combined the PCA

method with a maximum likelihood solution for a generative latent variable model

known as probabilistic PCA or PPCA [86]. PPCA is a more complex version of

latent variable model, but has some distinct advantages. By using PPCA, there

is the possibility of developing mixture models that could show better performance

on nonlinear processes. PPCA is a probabilistic model that is more general and

applicable. PPCA can be used in problems with maximum likelihood formulation,

and since it is a probabilistic model, it also allows for the deployment of Bayesian

methods when needed. In [27], solving PPCA was extended to a mixture PPCA

(MPPCA) where multiple PPCA based models were considered; each PPCA based

model was determined individually and then combined with appropriate weights to

form the global model. In this thesis, however, we will consider a single unique model

that is optimized simultaneously in the presence of both regular and outlying noises.

A discussion on MPPCA based process model and the issue of missing observations

has been discussed in [79].

In a PPCA based model, given the input data X = [x1, x2, ..., xn]
T ∈ �n×m and

the output data Y = [y1, y2, ..., yn]
T ∈ �n×r, the model is derived via the following

generative equations [27]:

x = Pt+ e (1.4a)

y = Ct+ f (1.4b)

where P ∈ �m×q and C ∈ �r×q are the weighting matrices, t ∈ �q×1 is the latent

variable vector, and e ∈ �m×1 and f ∈ �r×1 are measurement noises for the input

and output data, respectively. For this to be a probabilistic model, there are some

assumptions for the random variables involved in the model. In this general model,

it is assumed that the latent variables and the measurement noise both follow a

Gaussian distribution as t ∼ N (0, I), e ∼ N (0, σ2
xI), and f ∼ N (0, σ2

yI), where I

is the identity matrix, and σ2
x and σ2

y are noise variances of the input and output

variables, respectively. To estimate the optimal unknown parameters of the model,

12



loading matrices and the variances, maximization of the likelihood of the data is

performed. EM algorithm is usually used for this estimation because of the presence

of hidden variables [27].

1.4 Thesis Outline

This thesis is organized as a collection of three primary chapters and a chapter on con-

clusions, aside from this introductory chapter. The upcoming chapters are organized

as follows:

Chapter 2: Robust Probabilistic Principal Component Analysis for Process Mod-

eling Subject to Scaled Mixture Gaussian Noise

In this chapter, unlike the conventional noise assumption, a mixture noise model

with a contaminated Gaussian distribution is adopted for probabilistic modeling to

diminish the adverse effect of outliers, which usually occur due to irregular process

disturbances, instrumentation failures or transmission problems. This is done by

downweighing the effect of the noise component which accounts for contamination on

the output prediction. Outliers are common in process industries; therefore, handling

this issue is of practical importance. When compared with the conventional PPCA

based regression model, the prediction performance of the developed robust proba-

bilistic regression model is improved in presence of data contamination. To evaluate

the model performance, two case studies were carried out in this chapter. A simulated

set of data with specified characteristics that highlight the presence of outliers was

used to demonstrate the robustness of the developed model. The advantages of this

robust model are further illustrated via a set of real industrial process data.

Chapter 3: Robust Probabilistic Principal Component Analysis Based Process

Modeling: Dealing with Simultaneous Contamination of Both Input and Output Data

In this chapter, possible location outliers are considered for both input and output

data in contrast to the traditional robust algorithms that have focused on output

outliers only, such as the scale outliers that are discussed in Chapter 2. Probabilistic

principal component analysis based regression is used for the predictive model in this

chapter and Expectation Maximization algorithm is applied to solve a complex ro-

bust estimation problem. Finally, the performance of the developed robust predictive
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model is evaluated by simulated and industrial case studies. This chapter is a gen-

eralization to the traditional robust probabilistic principal component analysis based

regression modeling work which considered a different type of outliers that occur in

the output only.

Chapter 4: Robust Probabilistic Principal Component Analysis for Process Mod-

eling Subject to Switching Scaled Mixture Gaussian Noise

This chapter considers another common behaviour of measurement noise patterns.

Robust PPCA based model is developed under the assumption of switching noise

model. This more broad glimpse of the behaviour of a measurement noise is a closer

reconstruction of the reality of complex chemical processes. The dynamic behaviour

of the noise is designed to be switching between two states; and the two states are

sourced from different Gaussian distributions, one representing regular noise and the

other representing outliers. Similar to Chapter 2, a scaled Gaussian mixture model

is studied. Here as in the previous chapters, the derived model is evaluated under a

simulated case study and then is used in a real industrial application. Results confirm

the robustness of this approach.

Chapter 5: Conclusions and Future Directions

Final chapter is dedicated to summarizing the contributions and providing an overall

view of the results at a glance.

It is noted that the thesis is based on the paper-format and follows the rules set

by Faculty of Graduate Studies and Research at University of Alberta. Therefore, to

maintain the paper-format and ensure completeness, each chapter is self-contained.

Some parts of the chapters might have overlaps, especially in the fundamentals section.

The overlap was not removed in order to provide a smooth flow of the thesis to the

readers and ease the understanding for the material.

1.5 Contributions

The main objective of this work is unfolding some process data quality matters and

developing robust models through an improved formulation of a PPCA based process

model. Uncertainty, high-dimensionality, and outlying data points are the central
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focus of this thesis. I was responsible for conceptualization, literature review, data

curation, formal analysis, and investigation, methodology, simulation, visualization,

validation, and writing of the original manuscript.

As Chapter 2 elaborates, the first step was to develop a robust PPCA based

model through the consideration of a scaled Gaussian mixture noise for the process

measurements.

Next contribution, as elaborated in Chapter 3, is the consideration of a more

broad noise formulation. A combination Gaussian mixture noise model was used

for both input and output data to formulate a robust PPCA based model. I was

responsible for conceptualization, data curation, formal analysis, and investigation,

methodology, visualization, validation, and the writing of the original manuscript.

My coauthor for the corresponding published paper, Ouyang Wu, contributed to the

simulation, review, and editing of the manuscript.

For the next contribution, a more realistic case for the noise model was con-

sidered that contains its dynamic behaviour. As Chapter 4 elaborates, the robust

PPCA based process model developed in Chapter 2 was reformulated with a switch-

ing noise model to mimic the dynamic nature of process noise. I was responsible for

conceptualization, data curation, formal analysis, and investigation, methodology, vi-

sualization, validation, and the writing of the original manuscript. My coauthors for

the corresponding published paper, Ouyang Wu and Nabil Magbool Jan, contributed

to conceptualization, reviewing the formulae derivations and the simulation. Nabil

Magbool Jan also participated in creating an initial draft of the manuscript.

To make this research journey happen, conceptualization, resources, software,

project supervision, submission review, and funding acquisitions were provided by

Dr. Biao Huang.
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Chapter 2
Robust Probabilistic Principal Component
Analysis for Process Modeling Subject to
Scaled Mixture Gaussian Noise∗

”I have two ways of learning
from history: from the past,
by reading the elders; and
from the future, thanks to my
Monte Carlo toy.”

Fooled by Randomness: The Hidden Role
of Chance in Life and in the Markets (N.

N. Taleb, 2001)

∗A version of this chapter is published as Anahita Sadeghian, Biao Huang, 2016, ”Robust proba-
bilistic principal component analysis for process modeling subject to scaled mixture Gaussian noise”,
Computers & Chemical Engineering
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2.1 Introduction

The profitability of many industries depends on their production throughput and

product quality. Moreover, they are required to comply with safety and environmental

considerations in their efforts to meet the goals they have set on production and

quality [24]. Development of advanced process monitoring and control techniques is

a key to achieving these objectives. This development stage requires the operational

data to be recorded for the analysis of the problem.

In general, industrial plants are heavily instrumented with a large number of

sensors and analyzers to provide the data needed for process control and monitoring

purposes. However, online and fast-rate measurements are not always available due

to restricted availability and/or reliability of measurement techniques and devices.

Even in cases where appropriate measuring devices are available, some key process

variables are still determined offline by laboratory sample analysis or by means of

often unreliable online analyzers. Such methods of process data acquisition are time

consuming and introduce delays and discontinuities into their application.

As a result of the issues stated above, there has been a growing interest in setting

up predictive models that can provide frequent estimates for quality variables of

interest. These predictive mathematical models are known as soft sensors, inferential

sensors or virtual sensors that provide online (real-time) estimates of the key process

variables based on some other process records that are already available. By using

these models, we can enhance the entire system’s reliability and accuracy to develop

tighter control policies for the system under study [24].

Generally, three main modeling approaches exist for the design of soft sensors

as mentioned by [24]: mechanistic or physical modeling that is performed by first

principles analysis, data-driven modeling, and grey-box modeling. In the first group

of models, we use physical laws governing the plant, such as mass and energy balances.

These models, if possible to develop, may be reliable for a longer period of time.

This is because they represent the essence of the system based on the main governing

equations. However, usually deriving these models is difficult due to the uncertainties

deep-seated in the nature of the process dynamics. Data-driven models are useful

based on the fact that the plant records contain information about factors affecting
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the operation, which is buried in the data. However, the relevancy and quality of

data affects the model performance, along with other factors such as the data analysis

method used. For high fidelity modeling, it is required to reduce the effect of noise

and disturbances in the recording of the data. This might not be possible at all times.

Although different filtering methods have been developed to address this issue, proper

analysis of the data enables one to detect and deal with the effect of outliers, missing

data, redundancy, low accuracy, and many other possible issues [24]. Several ad hoc

solutions to these potential issues are available in the literature [42, 33, 10].

Outliers, or outlying observations are one of the main causes of low quality data

[44, 58]. These points are usually the data points that do not seat in the range of most

of data points and are randomly off the statistics of the majority. The outliers could

be result of instrument failure, field operator and/or laboratory technician errors, and

other factors [45, 13, 96, 52].

Addressing all data issues together in one step is a highly complicated task. This

chapter addresses the problem of outliers and develops a robust predictive model

which is invulnerable to the presence of outliers. There are different types of outlying

observations as discussed in [45], and the focus of this article would be on scaled

outliers. This contribution is done in a probabilistic modeling framework under a

different noise formulation.

In the next sections, the basics of probabilistic principal component analysis

(PPCA) and PPCA based regression models are reviewed. Then, the robust model is

formulated based on one of the most common outlier models. The developed model

is next solved with the use of an Expectation Maximization (EM) algorithm. Finally,

to evaluate the developed robust model two case studies are discussed.

2.2 Fundamentals

To start the process of working with data, there are some preparatory steps to be

taken to ensure a correct interpretation. The compulsory step is preprocessing of the

data by dealing with outliers after their detection and also by handling the missing

data. Outliers, are those observations that seem unusual or extreme with respect

to other observations. They are also extreme with respect to the prior knowledge
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about the possible typical range of measured values [29]. A very simple application of

detecting outliers is to monitor a specific feature in a production line, or monitoring a

credit card usage to prevent fraudulent use [33]. The next recommended step, is data

reduction to only consider the informative parts of the Big Data. Beside reducing the

number of records by downsampling, dimension reduction is one of the common data

reduction approaches. Principal component analysis is a suitable method for reducing

the dimension of a high dimensional data set by identifying correlated features in the

data and then projecting them onto a lower dimensional subspace [33]. This method,

which has been extensively discussed in Section 1.3, is known as an ideal method to

select a subset of features for use in modeling, could be a pre-processing step for the

methods that otherwise suffer from the curse of dimensionality.

The preliminaries of the probabilistic modeling approach have been previously

discussed in 1.3. The fundamentals of outliers have been previously reviewed in 1.2.

In this chapter, under the framework of probabilistic principal component analysis

(PPCA)-based regression, we aim to develop a robust PPCA-based regression model

to capture the output outliers by applying appropriate distributions for them and

cautiously incorporating them into the main model instead of considering the removal

or substitution of a whole sample point. Principles of how to consider different noise

models in comparison with that of a regular PPCA-based model will be discussed in

Section 2.4.

2.3 Problem Statement

The authors in [45] classify outliers to two general classes, scale and location outliers.

These classes are result of a shift in variability and/or location of the measurement

noise. They consider scale outliers to be generated from process measurements which

are violating the physical limitations of a process operation unit, while stating that

the other class is caused by process measurements that do not conform to the techno-

logical extent of the measuring device. The second class under the above-mentioned

circumstances usually generates a symmetric location outlier. In addition, the mea-

surements which are obtained from a jammed instrumentation device could be con-

sidered as an asymmetric location outlier. In this article, one of the most common
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outlier categories, scaled outlier, is considered for the output noise model of a PPCA

based regression model to advance its predictive role in presence of contaminated

data.

2.4 Robust Model Development

In this section a data-driven generative regression model based on probabilistic prin-

cipal component analysis is formulated which is robust to scaled mixture type of

outliers. As seen in Section 2.2, probabilistic principal component regression model

is formulated by [99, 86] as: {
xi = Pti + μx + ei
yi = Cti + μy + fi

(2.1)

In this generative model, ti ∈ �q×1 is latent variable vector, xi ∈ �m×1 and

yi ∈ �r×1 are observed as input and output data vectors, respectively. μ stands for

mean vectors. In a matrix form, the model could be written as:{
X = TP T +Mx + E
Y = TCT +My + F

(2.2)

where, X = [x1, · · · , xn]
T ∈ �n×m, Y = [y1, · · · , yn]T ∈ �n×r and T = [t1, · · · , tn]T ∈

�n×q. In Section 1.3.3, the assumptions for the input/output noise models were

reviewed. In order for the model to be robust to outlying observations, we consider

a more general output noise model.

The noise is assumed to follow a mixture distribution which consists of two Gaus-

sian components. One component of this noise model is a Gaussian distribution with

a specific mean and variance, whereas the other one is a Gaussian with same mean

as the first component but a different variance (often taking an extreme value). Vari-

ance of the latter one, which we call as contaminating part, is inflated with respect

to that of the first component by a factor of ρ−1, where ρ ∈ (0, 1]. In other words,

this mixture output noise model is assumed to incorporate a scaled contaminating

portion to acknowledge the outliers which originate from measurements violating the

physical limitation of a process unit, such as a very large flow rate.

ei ∼ N (0, σ2
xI)

fi ∼ (1− δy)N (0, σ2
yI) + δy N (0, ρ−1

y σ2
yI)

(2.3)

20



-8 -6 -4 -2 0 2 4 6 8
0

0.2

0.4

0.6

-8 -6 -4 -2 0 2 4 6 8
0

0.2

0.4

Figure 2.1: A regular standard Gaussian distribution (top) and its scaled
counterpart with ρ = 0.2 (bottom)

A regular Gaussian distribution is shown in Figure 2.1, along with a superim-

posed scaled Gaussian distribution which is responsible to account for the outliers.

According to its fat-tailed shape and wider spread, this scaled distribution is capable

of considering the noises which are located farther from the mean. Thus, the noise

models would become as that in (2.3); such a noise model will help downweighing the

effect of outliers in parameter estimation.

A vector of variables QY = [qy1 , · · · , qyn ]T ∈ �n×1, (qyi ∈ �1×1) is introduced as

a vector of binary indicators which implies identity of each sample point. When this

indicator qyi = 1, the output noise fi is distributed as N (0, σ2
y); and when qyi = ρy,

fi is distributed as N (0, ρ−1
y σ2

y). [45] represents a Bernoulli distribution for qyi as:

P (qyi |δy, ρy) = δ

1−
qyi − ρy
1− qyiρy

y (1− δy)

qyi − ρy
1− qyiρy , (2.4)

where δy is the probability that the output observation yi is generated by the con-

taminated Gaussian noise component; ρy is the variance inflation factor for that com-

ponent which could vary between 0 and 1; the smaller ρy is, the bigger the magnitude

of noise (that leads to an outlying observation) would be.

RPPCA regression model parameters consist of P , C, and the hyperparameters of

noise terms e and f which are the noise variances σ2
x, σ

2
y and the output noise variance

21



inflation factor ρy, as well as one other parameter δy which adjusts the proportion

of the two Gaussian components in the mixture noise. Assumptions which were

discussed for PPCA regression model hold for this model as well. Establishment of

this problem will be delineated in Section 2.4.2.

2.4.1 Expectation Maximization Algorithm

In a broad variety of problems with incomplete data, EM algorithm is applied to

iteratively solve a maximum likelihood problem. This is an alternative solution when

the maximum likelihood problem is hard to tract due to the absence of some data

or variables. The incompleteness of data could arise from different evident factors,

namely missing observation data, truncated distributions, censored or grouped obser-

vations, or from statistical models such as random effects, mixtures, convolution and

latent variable structures [62].

As the name suggests, the algorithm consists of two main steps in its iterations.

First, an expectation step which is called E-step for short; second, a maximization

step which is shortened as M-step. These two steps work towards formulating a

complete-data problem out of the given incomplete-data problem. Thus, a succession

of optimizations is done on an augmented or completed data instead of performing one

complex optimization task [16]. This is accomplished by considering hidden variables.

Repetition of these two steps is stopped when a convergence criterion is satisfied; this

criterion could be relative difference of the parameters or the complete-data likelihood

function of two successive iterations. The latter is known to be faster; nevertheless,

[94] in particular devoted effort to discuss whether the convergence of likelihood can

automatically involve the convergence of estimated parameters.

Numerical stability is among the properties that make this algorithm to be fa-

vorable, such that in each iteration the likelihood function is increased until the

convergence occurs. Easy implementation, low computational cost per iteration and

the ability to provide estimates for missing data are other beneficial properties [62].

However, this algorithm might require the user to start from different initial sets of

parameters and to use Monte Carlo simulations to achieve convergence in the case of

multiple local optimum points (multimodal complete-data likelihood function). More

details on EM algorithm will be discussed in Section 3.2.2.
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2.4.2 Parameter Estimation

For the RPPCA regression model to be developed, the available observations are X

and Y . Unknown information is:

{P,C, σ2
x, σ

2
y , μx, μy, δy, ρy, T,QY },

from which {ti}ni=1 and {qyi}ni=1 are treated as latent variables of the model and

θ = {P,C, σ2
x, σ

2
y , μx, μy, δy, ρy} is a set of parameters of the model to be estimated.

The EM algorithm is employed in this formulation to estimate the parameters

of the model, since there are some unknowns to be resolved which could be treated

as hidden variable in this approach. We need to construct the Q − function based

on (2.5) first, and then maximize that function to obtain the estimation of parameters

during an iterative procedure.

Q = E
T,QY |X,Y,θold

(logP (

Observed︷︸︸︷
X, Y ,

Hidden︷ ︸︸ ︷
T,QY︸ ︷︷ ︸

CompleteData

|θ)), (2.5)

where P (X, Y, T,QY |θ) is the complete data likelihood and is obtained as described

in (2.6). The noise of the input and output is assumed to be independent and identi-

cally distributed. The same assumption holds for the latent variable and the sample

indicators.

P (X, Y, T,QY |θ) = P (X, Y |T,QY , θ)P (T,QY |θ)
= P (X|T,QY , θ)P (Y |T,QY , θ)P (T |θ)P (QY |θ)
=

∏n
i=1 P (xi|ti, qyi , θ)P (yi|ti, qyi , θ)P (ti|θ)P (qyi |θ)

(2.6)

Therefore,

Q = ET,QY |X,Y,θold

(
logP (X, Y, T,QY |θ)

)

= ET,QY |X,Y,θold

(∑n
i=1 logP (xi|ti, qyi , θ)

+
∑n

i=1 logP (yi|ti, qyi , θ)
+
∑n

i=1 logP (ti|θ)

+
∑n

i=1 logP (qyi |θ)
)

= ET,QY |X,Y,θold

(
I○+ II○+ III○+ IV○)

(2.7)
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Now, the conditional expectation is taken based on the definition of expectation as

in (2.8). Note that the variable T is continuous unlike QY which is discrete. Thus,

integration over the indicator variables would transfer to summation.

Q = E
T,QY |X,Y,θold

(function(xi, yi, ti, qyi , θ))

=

∫
ti

∑
qyi

(function(xi, yi, ti, qyi , θ))P (ti, qyi |xi, yi, θ
old) dti (2.8)

Thus, in the RPPCA regression model with Gaussian-mixture output noise model

the Q− function would be as:

Q = E
T,QY |X,Y,θold

(logP (X, Y, T,Qy|θ))

=

∫
ti

∑
qyi

n∑
i=1

logP (xi|ti, qyi , θ)× P (ti, qyi |xi, yi, θ
old) dti

+

∫
ti

∑
qyi

n∑
i=1

P (yi|ti, qyi , θ)× P (ti, qyi |xi, yi, θ
old) dti

+

∫
ti

∑
qyi

n∑
i=1

P (ti|θ)× P (ti, qyi |xi, yi, θ
old) dti

+

∫
ti

∑
qyi

n∑
i=1

P (qyi |θ)× P (ti, qyi |xi, yi, θ
old) dti

� Q1 +Q2 +Q3 +Q4 (2.9)

As in the complete log-likelihood expansion (2.6), the minor terms are based on known

indicator values. Indicators are binary discrete variables and the minor likelihood

terms are being separately defined for each value of indicator. This is done by using

chain rule of probability for joint posterior probability of hidden variables as in (2.10).

P (ti, qyi |xi, yi, θ
old) = P (ti|xi, yi, qyi , θ

old)P (qyi |xi, yi, θ
old) (2.10)

So, (2.9) would be expanded to (2.15), as detailed below, where Q
first
1 indicates the

first term of Q − function, Q, when the indicator qyi = 1, and Qsecond
1 indicates the

second term of Q − function when the indicator qyi = ρy (i.e. second case. Simply
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follow Qcase
term). Note that Qfirst

i=1,...,4 +Qsecond
i=1,...,4 will equal to Qi=1,...,4 as defined in (2.9).

Each of terms in (2.15) can be further expanded as shown in (2.16) to (2.23). The

probability distribution terms in the complete data likelihood function could be found

from (2.1) by recalling the model assumptions.

P (xi|ti, qyi , θ) ∼
{ N (Pti + μx, σ

2
xI) , qyi = 1

N (Pti + μx, σ
2
xI) , qyi = ρy

(2.11)

Same procedure occurs for the other three terms:

P (yi|ti, qyi , θ) ∼
{ N (Cti + μy, σ

2
yI) , qyi = 1

N (Cti + μy, ρ
−1
y σ2

yI) , qyi = ρy
(2.12)

P (ti|θ) ∼ N (0, I) (2.13)

P (qyi |θ) ∼ B(1, 1− δy) (2.14)

Based on these distributions and their logarithm, terms of (2.15) would be as in (2.16)

to (2.23).
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Q =
n∑

i=1

∫
ti

logP (xi|ti, qyi = 1, θ)× P (ti|xi, yi, qyi = 1, θold)P (qyi = 1|xi, yi, θ
old) dti

+
n∑

i=1

∫
ti

logP (yi|ti, qyi = 1, θ)× P (ti|xi, yi, qyi = 1, θold)P (qyi = 1|xi, yi, θ
old) dti

+
n∑

i=1

∫
ti

logP (ti|θ)× P (ti|xi, yi, qyi = 1, θold)P (qyi = 1|xi, yi, θ
old) dti

+
n∑

i=1

∫
ti

logP (qyi = 1|θ)× P (ti|xi, yi, qyi = 1, θold)P (qyi = 1|xi, yi, θ
old) dti

+
n∑

i=1

∫
ti

logP (xi|ti, qyi = ρy, θ)× P (ti|xi, yi, qyi = ρy, θ
old)P (qyi = ρy|xi, yi, θ

old) dti

+
n∑

i=1

∫
ti

logP (yi|ti, qyi = ρy, θ)× P (ti|xi, yi, qyi = ρy, θ
old)P (qyi = ρy|xi, yi, θ

old) dti

+
n∑

i=1

∫
ti

logP (ti|θ)× P (ti|xi, yi, qyi = ρy, θ
old)P (qyi = ρy|xi, yi, θ

old) dti

+
n∑

i=1

∫
ti

logP (qyi = ρy|θ)× P (ti|xi, yi, qyi = ρy, θ
old)P (qyi = ρy|xi, yi, θ

old) dti

� Q
first
1 +Q

first
2 +Q

first
3 +Q

first
4 +Qsecond

1 +Qsecond
2 +Qsecond

3 +Qsecond
4 (2.15)
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Q
first
1 = E

T |X,Y,QY ,θold

( n∑
i=1

P1 × logP (xi|ti, qyi = 1, θ)

)

=
n∑

i=1

[
E

T |X,Y,QY ,θold

(
P1 × logP (xi|ti, qyi = 1, θ)

)]

=
n∑

i=1

P1 ×
[−1

2
log((2π)m|σ2

xI|)−
1

2
σ−2
x

(
(xi − μx)

T (xi − μx)

−E
1
(ti|xi, yi, qyi = 1, θold)TP T (xi − μx)− (xi − μx)

TP E
1
(ti|xi, yi, qyi = 1, θold)

+tr(P TP (E
1
(tit

T
i |xi, yi, qyi = 1, θold)

−E
1
(ti|xi, yi, qyi = 1, θold)E

1
(ti|xi, yi, qyi = 1, θold)T ))

+E
1
(ti|xi, yi, qyi = 1, θold)TP TP E

1
(ti|xi, yi, qyi = 1, θold)

)]
, (2.16)

Qsecond
1 = E

T |X,Y,QY ,θold

( n∑
i=1

Pρ × logP (xi|ti, qyi = ρy, θ)

)

=
n∑

i=1

[
E

T |X,Y,QY ,θold

(
Pρ × logP (xi|ti, qyi = ρy, θ)

)]

=
n∑

i=1

Pρ ×
[−1

2
log((2π)m|σ2

xI|)−
1

2
σ−2
x

(
(xi − μx)

T (xi − μx)

−E
ρ
(ti|xi, yi, qyi = ρy, θ

old)TP T (xi − μx)− (xi − μx)
TP E

ρ
(ti|xi, yi, qyi = ρy, θ

old)

+tr(P TP (E
ρ
(tit

T
i |xi, yi, qyi = ρy, θ

old)

−E
ρ
(ti|xi, yi, qyi = ρy, θ

old)E
ρ
(ti|xi, yi, qyi = ρy, θ

old)T ))

+E
ρ
(ti|xi, yi, qyi = ρy, θ

old)TP TP E
ρ
(ti|xi, yi, qyi = ρy, θ

old)

)]
, (2.17)
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Q
first
2 = E

T |X,Y,QY ,θold

( n∑
i=1

P1 × logP (yi|ti, qyi = 1, θ)

)

=
n∑

i=1

[
E

T |X,Y,QY ,θold

(
P1 × logP (yi|ti, qyi = 1, θ)

)]

=
n∑

i=1

P1 ×
[−1

2
log((2π)r|σ2

yI|)−
1

2
σ−2
y

(
(yi − μy)

T (yi − μy)

−E
1
(ti|xi, yi, qyi = 1, θold)TCT (yi − μy)− (yi − μy)

TC E
1
(ti|xi, yi, qyi = 1, θold)

+tr(CTC(E
1
(tit

T
i |xi, yi, qyi = 1, θold)

−E
1
(ti|xi, yi, qyi = 1, θold)E

1
(ti|xi, yi, qyi = 1, θold)T ))

+E
1
(ti|xi, yi, qyi = 1, θold)TCTC E

1
(ti|xi, yi, qyi = 1, θold)

)]
, (2.18)

Qsecond
2 = E

T |X,Y,QY ,θold

( n∑
i=1

Pρ × logP (yi|ti, qyi = ρy, θ)

)

=
n∑

i=1

[
E

T |X,Y,QY ,θold

(
Pρ × logP (yi|ti, qyi = ρy, θ)

)]

=
n∑

i=1

Pρ ×
[−1

2
log((2π)r|ρ−1

y σ2
yI|)−

1

2
ρyσ

−2
y

(
(yi − μy)

T (yi − μy)

−E
ρ
(ti|xi, yi, qyi = ρy, θ

old)TCT (yi − μy)− (yi − μy)
TC E

ρ
(ti|xi, yi, qyi = ρy, θ

old)

+tr(CTC(E
ρ
(tit

T
i |xi, yi, qyi = ρy, θ

old)

−E
ρ
(ti|xi, yi, qyi = ρy, θ

old)E
ρ
(ti|xi, yi, qyi = ρy, θ

old)T ))

+E
ρ
(ti|xi, yi, qyi = ρy, θ

old)TCTC E
ρ
(ti|xi, yi, qyi = ρy, θ

old)

)]
, (2.19)
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Q
first
3 = E

T |X,Y,QY ,θold

( n∑
i=1

P1 × logP (ti|qyi = 1, θ)

)

=
n∑

i=1

[
E

T |X,Y,QY ,θold

(
P1 × logP (ti)

)]

=
n∑

i=1

P1 ×
[−1

2
log((2π)k|I|)− 1

2

(
tr(E

1
(tit

T
i |xi, yi, qyi = 1, θold)

−E
1
(ti|xi, yi, qyi = 1, θold)E

1
(ti|xi, yi, qyi = 1, θold)T )

+E
1
(ti|xi, yi, qyi = 1, θold)T E

1
(ti|xi, yi, qyi = 1, θold)

)]
, (2.20)

Qsecond
3 = E

T |X,Y,QY ,θold

( n∑
i=1

Pρ × logP (ti|qyi = ρy, θ)

)

=
n∑

i=1

[
E

T |X,Y,QY ,θold

(
Pρ × logP (ti)

)]

=
n∑

i=1

Pρ ×
[−1

2
log((2π)k|I|)− 1

2

(
tr(E

ρ
(tit

T
i |xi, yi, qyi = ρy, θ

old)

−E
ρ
(ti|xi, yi, qyi = ρy, θ

old)E
ρ
(ti|xi, yi, qyi = ρy, θ

old)T )

+E
ρ
(ti|xi, yi, qyi = ρy, θ

old)T E
ρ
(ti|xi, yi, qyi = ρy, θ

old)

)]
, (2.21)
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Q
first
4 = E

T |X,Y,QY ,θold

( n∑
i=1

P1 × logP (qyi = 1|θ)
)

=
n∑

i=1

[
E

T |X,Y,QY ,θold

(
P1 × logP (qyi = 1|θ)

)]

=
n∑

i=1

P1 ×
[

E
T |X,Y,QY ,θold

(
log(1− δy)

)]

=
n∑

i=1

P1 ×
[
log(1− δy)

]
, (2.22)

Qsecond
4 = E

T |X,Y,QY ,θold

( n∑
i=1

Pρ × logP (qyi = ρy|θ)
)

=
n∑

i=1

[
E

T |X,Y,QY ,θold

(
Pρ × logP (qyi = ρy|θ)

)]

=
n∑

i=1

Pρ ×
[

E
T |X,Y,QY ,θold

(
logδy

)]

=
n∑

i=1

Pρ ×
[
logδy

]
, (2.23)

where P1 = P (qyi = 1|xi, yi, θ
old) and Pρ = P (qyi = ρy|xi, yi, θ

old).

To obtain the parameter update equations, (2.9) should be maximized with respect

to the set of parameters. Simply,

θ = argmax
θ

E
T,QY |X,Y,θold

(logP (X, Y, T,QY |θ))

= argmax
θ

Q (2.24)

which is equal to solving a set of equations (2.25). For each parameter, partial

differentiation of a specific term of Q − function, which contains the parameter of

interest, is used. Results for the parameter update equations, after solving (2.25), are
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given as in (2.26) to (2.37).

P: ∂Q1

∂P
= 0

C: ∂Q2

∂C
= 0

σ2
x:

∂Q1

∂σ2
x
= 0

σ2
y :

∂Q2

∂σ2
y
= 0

μx:
∂Q1

∂μx
= 0

μy:
∂Q2

∂μy
= 0

δy:
∂Q4

∂δy
= 0

ρy:
∂Q2

∂ρy
= 0

(2.25)

P new =

[ n∑
i=1

(
2(xi − μx)

(
P1 E

1
(ti|xi, yi, qyi = 1, θold)T

+Pρ E
ρ
(ti|xi, yi, qyi = ρy, θ

old)T
))]

×
[ n∑

i=1

(
P1 Coeff

1
(ti|xi, yi, qyi = 1, θold)

+Pρ Coeff
ρ

(ti|xi, yi, qyi = ρy, θ
old)

)]−1

,

(2.26)

where P1 = P (qyi = 1|xi, yi, θ
old) and Pρ = P (qyi = ρy|xi, yi, θ

old) and

Coeff
∗

(ti|xi, yi, qyi = ∗, θold) = S
∗
(ti|xi, yi, qyi = ∗, θold) + S

∗
(ti|xi, yi, qyi = ∗, θold)T

+2E
∗
(ti|xi, yi, qyi = ∗, θold)× E

∗
(ti|xi, yi, qyi = ∗, θold)T ,

(2.27)

and

S
∗
(ti|xi, yi, qyi = ∗, θold) = E

∗
(tit

T
i |xi, yi, qyi = ∗, θold)

−E
∗
(ti|xi, yi, qyi = ∗, θold)× E

∗
(ti|xi, yi, qyi = ∗, θold)T ,

(2.28)
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in which the asterisk subfix indicates either cases of qyi = 1 or qyi = ρy.

Similarly,

C new =

[ n∑
i=1

(
2(yi − μy)

(
P1 E

1
(ti|xi, yi, qyi = 1, θold)T

+ρyPρ E
ρ
(ti|xi, yi, qyi = ρy, θ

old)T
))]

×
[ n∑

i=1

(
P1 Coeff

1
(ti|xi, yi, qyi = 1, θold)

+ρyPρ Coeff
ρ

(ti|xi, yi, qyi = ρy, θ
old)

)]−1

. (2.29)

σ2
x
new

=

∑n
i=1

(
P1 A

1
(ti|xi, yi, qyi = 1, θold) + Pρ A

ρ
(ti|xi, yi, qyi = ρy, θ

old)

)
n m

, (2.30)

where,

A
∗
(ti|xi, yi, qyi = ∗, θold) = (xi − μx)

T (xi − μx)− E
∗
(ti|xi, yi, qyi = ∗, θold)TP T (xi − μx)

−(xi − μx)
TP E

∗
(ti|xi, yi, qyi = ∗, θold)

+tr

(
P TP (E

∗
(tit

T
i |xi, yi, qyi = ∗, θold)

−E
∗
(ti|xi, yi, qyi = ∗, θold)E∗ (ti|xi, yi, qyi = ∗, θold)T )

)
+E

∗
(ti|xi, yi, qyi = ∗, θold)TP TP E

∗
(ti|xi, yi, qyi = ∗, θold) . (2.31)

σ2
y
new

=

∑n
i=1

(
P1 B

1
(ti|xi, yi, qyi = 1, θold) + ρyPρ B

ρ
(ti|xi, yi, qyi = ρy, θ

old)

)
n r

, (2.32)
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where,

B
∗
(ti|xi, yi, qyi = ∗, θold) = (yi − μy)

T (yi − μy)− E
∗
(ti|xi, yi, qyi = ∗, θold)TCT (yi − μy)

−(yi − μy)
TC E

∗
(ti|xi, yi, qyi = ∗, θold)

+tr

(
CTC(E

∗
(tit

T
i |xi, yi, qyi = ∗, θold)

−E
∗
(ti|xi, yi, qyi = ∗, θold)E∗ (ti|xi, yi, qyi = ∗, θold)T )

)
+E

∗
(ti|xi, yi, qyi = ∗, θold)TCTC E

∗
(ti|xi, yi, qyi = ∗, θold) .

(2.33)

μ new
x =

[ n∑
i=1

(
xi − P

(
P1 E

1
(ti|xi, yi, qyi = 1, θold) + Pρ E

ρ
(ti|xi, yi, qyi = ρy, θ

old)
))]

×
[ n∑

i=1

(
P1 + Pρ

)]−1

=

∑n
i=1

(
xi − P

(
P1 E

1
(ti|xi, yi, qyi = 1, θold) + Pρ E

ρ
(ti|xi, yi, qyi = ρy, θ

old)
))

n
.

(2.34)

Similarly,

μ new
y =

[ n∑
i=1

(
yi(P1 + ρyPρ)− C

(
P1 E

1
(ti|xi, yi, qyi = 1, θold)

+ρyPρ E
ρ
(ti|xi, yi, qyi = ρy, θ

old)
))]

×
[ n∑

i=1

(
P1 + ρyPρ

)]−1

, (2.35)

δ new
y =

∑n
i=1 Pρ∑n

i=1 P1 + Pρ

=

∑n
i=1 Pρ

n
, (2.36)

and

ρ new
y = r

[ n∑
i=1

Pρ

]
×

[ n∑
i=1

σ−2
y Pρ B

ρ
(ti|xi, yi, qyi = ρy, θ

old)

]−1

. (2.37)
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2.4.3 A-Posteriori Distributions of Hidden Variables

As shown in Section 2.4.2, QY and T in (2.1) were treated as hidden variables to carry

out EM algorithm in the stage of parameter estimation. For using the developed

model to predict the outputs corresponding to the new inputs, as will be shown in

Section 2.4.4, and to finalize the solution of EM algorithm, we need to calculate the

posterior probabilities of the hidden variables. Moreover, for output prediction, the

expectation of the variable matrix T is needed. In essence, the goal of the expectation

step in EM is to bring the updated parameters of the previous maximization step to

recalculate the a-posteriori probability distribution of latent variables and then their

expected values. The distributions are obtained via Bayes’ rule and chain rule of

probability as in (2.38),

P (ti|xi, yi, qyi , θ
old) =

P (xi, yi|ti, qyi , θold)
P (xi, yi|qyi , θold)

=
P (xi|ti, qyi , θold)P (yi|ti, qyi , θold)

P (xi, yi|qyi , θold)
(2.38)

in which, all terms of the numerator have a Gaussian distribution and the denominator

acts as a normalizing constant [27]. Expected mean and variance-related terms of

posterior distribution (2.38) are given in (2.39) to (2.42) for different values of the

discrete hidden variable QY .

E
1
(ti|xi, yi, qyi = 1, θold) = (σ−2

x P TP + σ−2
y CTC + I)−1

× (σ−2
x P T (xi − μx)

+ σ−2
y CT (yi − μy)) (2.39)

E
1
(tit

T
i |xi, yi, qyi = 1, θold) = (σ−2

x P TP + σ−2
y CTC + I)−1

+ E
1
(ti|xi, yi, qyi = 1, θold)

× E
1
(ti|xi, yi, qyi = 1, θold)T (2.40)

E
ρ
(ti|xi, yi, qyi = ρy, θ

old) = (σ−2
x P TP + ρyσ

−2
y CTC + I)−1

× (σ−2
x P T (xi − μx)

+ ρyσ
−2
y CT (yi − μy)) (2.41)
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E
ρ
(tit

T
i |xi, yi, qyi = ρy, θ

old) = (σ−2
x P TP + ρyσ

−2
y CTC + I)−1

+ E
ρ
(ti|xi, yi, qyi = ρy, θ

old)

× E
ρ
(ti|xi, yi, qyi = ρy, θ

old)T (2.42)

A similar approach is taken for the other hidden variable as follows in (2.43) onwards.

P (qyi |xi, yi, θ
old) =

P (xi, yi|qyi , θold)P ∗(qyi |θold)
P (xi, yi|θold) (2.43)

in which P ∗ is the prior probability for this hidden variable QY and the first term on

the numerator is the joint conditional probability of the input and output which is

easily calculated using multivariate Gaussian distribution properties. The prior for

QY is a Bernoulli distribution since this variable is a binary variable. The distribution

is shown in (2.4). The above mentioned posterior distribution for every value of qyi

acts as the proportion of the corresponding output noise component.

2.4.4 Online Prediction

According to the developed RPPCA based regression model, we can construct an on-

line inference method to predict the desired output variable which can be the quality

variable in a process, based on some input variables. This method is also known as soft

sensing [24]. To do so, we need the posterior probabilities of the hidden variables as

formulated in Section 2.4.3, given the new input variables, namely P (ti|xi, yi, qyi , θ
old)

and P (qyi |xi, yi, θ
old) which could be calculated from (2.38) and (2.43), respectively.

Next, the hidden variables should be estimated. In our developed model, the dis-

crete hidden variable gave the equations two distinct terms as seen in terms (2.39)

and (2.41). This happened when the joint probability of the hidden variables was fac-

torized using chain rule of probability, as in (2.44). So for prediction we only need to

estimate the continuous hidden variable t, given the different scenarios for the other

hidden variable, qy. This estimation is done via law of total expectation as in (2.45).

P (ti, qyi |xi, yi, θ
old) = P (ti|xi, yi, qyi , θ

old)

× P (qyi |xi, yi, θ
old) (2.44)
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t̂i = E(ti|xi, θ
old)

=
∑
qyi

E(ti|xi, qyi , θ
old)P (qyi |xi, θ

old)

= E
1
(ti|xi, qyi = 1, θold)P (qyi = 1|xi, θ

old)

+ E
ρ
(ti|xi, qyi = ρy, θ

old)P (qyi = ρy|xi, θ
old) (2.45)

The desired quality variable prediction could be calculated as in (2.46), with the

prediction error ε, as in (2.47) which is the difference between predicted and real values

of the output variable. To evaluate the developed model prediction performance,

there are a variety of measures available. Correlation between predicted and real test

values is usually checked to make sure the trend of the data is captured. R-squared

and mean squared error (MSE) are the other often used measures. Root mean square

error (RMSE) is also a well-known measure since it has the same unit as the output

variable and might be helpful to give a quantitative sense in comparisons.

ŷi = Ct̂i + μ̂y (2.46)

ε = ŷ − y (2.47)

RMSE is defined as

RMSE �

√√√√√ n′∑
i=1

‖ŷi − yi‖2

n′ (2.48)

where, n′ is the total number of test samples and ŷ and y are predicted and real

output values, respectively.

2.5 Case Studies for Model Performance Assess-

ment

In this section, two examples are discussed to evaluate the robustness of our developed

method. In the first case study, a data set is generated by a generative PPCA based

regression model; in the second case study, a data set from an industrial steam-assisted

gravity drainage process plant is employed for evaluation.
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Figure 2.2: Generated data for numerical example

2.5.1 Case I: Numerically Generated Data Example

For this example, a data set of 10000 sample points from 5 inputs and 1 output

variable is generated as follows by (2.1)

xi = Pti + μx + ei
yi = Cti + μy + fi

(2.49)

where the loading matrix is P(m=5)×(k=2) = [40, 10; 20, 30; 15, 20; 20, 40; 40, 15], regres-

sion coefficient matrix is C(r=1)×(k=2) = [10, 20] and input/output mean vectors are

μx = [1, 2, 3, 4, 5] and μy = [0], respectively. Input/output noises are distributed as

ei ∼ N (0, 30I), fi ∼ N (0, 30I), respectively. Each latent variable vector has the

standard Gaussian distribution as tik×1
∼ N (0, I), making the latent variable ma-

trix, Tn×k = [t1, · · · , tn]T , to become a set of i.i.d vectors. Data from the generative

model (2.49) is shown in Figure 2.2. To model this data by the probabilistic princi-

pal component analysis regression model, knowing the dimension of the latent space

is necessary. Generally, a rough estimate of the latent space dimension is obtained

by performing principal component analysis on data. Here in this example, the real
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Figure 2.3: Scree plot (left) and cumulative variance explained plot (right) for
generated data used in numerical example, obtained through PCA

latent space is two-dimensional as shown by the scree plot in Figure 2.3.

To see the robustness of the RPPCA based regression model, some random data

points are replaced with outliers to contaminate the whole data set. This causes the

performance of the PPCA regression model to diminish. Feeding contaminated data

to the RPPCA based model results in better prediction performance compared to

that of the PPCA based model, showing that the RPPCA based model tolerates the

contamination. Figure 2.4 and Figure 2.5 illustrate the performance of the PPCA

model when the generated data is used to estimate the parameters.

Data is contaminated by 10% outlying points which come from a model with a

noise of scaled Gaussian distribution with same mean as the first component of the

mixture output noise and a variance twice of that of the first component. This data

makes the conventional PPCA based model perform poor. Figure 2.6 and Figure 2.7

show the performance of the RPPCA based model on the contaminated data set.

Results are summarized in Table 2.1. Figure 2.8 shows the convergence of model

parameters for the RPPCA based regression model.
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Figure 2.4: Prediction performance of PPCA regression model on generated data

Sample point
2500 2550 2600 2650 2700 2750 2800

O
ut

pu
ts

-100

-50

0

50

100
Estimated
Reference

Figure 2.5: Prediction performance of PPCA regression model on generated data -
Zoomed in for better comparison

Table 2.1: Prediction performance of regular and robust models in numerical
example

Regular data Contaminated data

PPCA PPCA RPPCA
R2 0.9346 0.2648 0.9348
RMSE 5.8255 33.6799 5.8155
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Figure 2.6: Prediction performance of RPPCA regression model on contaminated
generated data
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Figure 2.7: Prediction performance of RPPCA regression model on contaminated
generated data - Zoomed in for better comparison

In this example we intended to show the effect of outlying observations of the

scaled category. The results confirm the robustness of the developed RPPCA based

regression model, while prediction performance of the regular PPCA based regression

model was affected by outlying observations.
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Figure 2.8: Parameter convergence for RPPCA model in first case study

2.5.2 Case II: Industrial Application

In this section, a set of data from an industrial plant is used to evaluate the robustness

of the developed model. Data are collected from a steam-assisted gravity drainage

(SAGD) operation.

SAGD process

SAGD is an in-situ method of oil recovery which is employed in heavy crude oil

and bitumen production. This method is favorable to areas in which oil sands are

deep seated in the ground and open pit mining is not feasible. This technology is

becoming more common recently and it is forecast to reach higher production rates

by the next ten years. The other beneficial aspect of this technology is that the water

consumption during this kind of oil extraction is less than that of the conventional

methods. Steam to oil ratio, which is an efficiency measure of steam-assisted gravity

drainage operations, has been reduced in SAGD operation which is a result of high

percentage of water recycling in this operation.
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Figure 2.9: SAGD operation schematic (http://www.huskyenergy.com)

In this technique two horizontal wells, that are usually located one above each

other with a four to six meter distance, are drilled under the ground surface. This

well pair is connected to a central well pad. Steam is generated from steam generators

located in the utilities section of the plant, and is then transferred into the ground

via the top well as shown in Figure 2.9, also known as steam injection well. The

heat released from injected steam brings heavy oil, deep seated under the ground,

to a temperature point in which it would flow towards the bottom well, also known

as production well. At the same time that steam heats the heavy oil, the specific

situation of wells allows for gravity drainage; therefore, the appellation SAGD was

adopted.

Robust modeling of SAGD process

The objective of this section is to develop a model to continuously predict produced

fluid flow rates of the SAGD operation. The output stream of this operation is in the

form of an emulsion which contains bitumen, water, and traces of sand particles and
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is sent to downstream operations for further processing. The measurements for this

stream flow rate are not frequently available and the available measurements might

not be reliable due to the previously mentioned factors. Thus, to better operate the

downstream operations it is critical to have frequent and more precise estimates of

this flow rate and that is the goal of this case study.

The available historical data from this process are a set of flow rates, pressures, and

temperatures for the injection and production well pair, which are constructed by a

10−min average data recorded from 1/1/2014 to 12/31/2014. Four of the mentioned

variables which are highly correlated with the product oil flow rate are selected and

smoothed for further analysis; among them three principal components are selected

to result in a good performance for the conventional PPCA based regression model.

The variable time series trends are shown in Figure 2.10. This data set consists of

a total of 4 inputs and 1 output variables that have been recorded in 37690 sample

points. For propitiatory reason, all y-axis values of the data plots have been removed.
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Figure 2.10: Data for industrial case study

In this case study, first, a PPCA based regression model is used to fit the data.

The model shows a good prediction performance with 3 principal components, as

scree plot shows in Figure 2.13. This performance is considered as a control case
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and is regarded as basis of the comparison. Figure 2.11 shows the reference predicted

emulsion flow rate versus the estimated flow rate from this control model. To evaluate
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ts

Estimated
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Figure 2.11: Prediction performance of PPCA regression model on industrial data

the robustness of RPPCA based regression model, outlying observations with inflated

noise variance are used to randomly replace a portion of the observations. As shown

in Figure 2.12, 2500 data points are replaced by outlying observations. This amount

is around 7% of the whole sample size. The outliers are sampled from a Gaussian

distribution whose variance is 5 times as large as the normal data variance. Note

that in the case of the regular PPCA based regression model, the output noise was

assumed to be a single Gaussian.

The percentage of outlying observations with mixture Gaussian noise with a scaled

Gaussian component, and the amount of inflation considered for the variance of the

contaminating noise component, are the two important factors which can affect the

prediction performance of the regular PPCA based regression model. Though it

is worthwhile to mention that contaminating the data (i.e., manipulating these two

factors) would involve restrictions, specifically when real industrial data is being used.

Increasing the variance inflation for the contaminating noise component or increasing

the number of sample points which are replaced with abnormalities, could both be

done to some extent after which the ability of the model to predict the trend will

diminish. This behavior is due to the fact that information contained in the data is

altered by too much (in terms of number of points) or by very abnormal (in terms of
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Figure 2.12: Data before and after introducing abnormality
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Figure 2.13: Scree plot (left) and cumulative variance explained plot (right) for
industrial data used in second case study, obtained through PCA

inflation) noise. The more outlying observations replace historical data and/or the

more inflated variance of the contaminated noise component is, the more deviation

would be seen in predictions of the model. However, when the amount of abnormal
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data increases noticeably, the model may lose credibility and reliability. To have a

fair comparison, in both case studies, we imposed abnormality on the historical data

records until the regular PPCA based regression model shows a noticeable failure in

its performance. That is where RPPCA based regression model would demonstrate

its beneficial characteristics. Results of this case study are summarized in Table 2.2.
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Figure 2.14: Prediction performance of RPPCA regression model on contaminated
industrial data

In terms of performance measures, the PPCA based regression model has a weaker

performance when applied to contaminated data set. The degree of performance

reduction would be higher if the contamination is more severe. The RPPCA based

model on the same data has superior performance as shown in Figure 2.14. Parameter

convergence for RPPCA based model is shown in Figure 2.15.

Table 2.2: Prediction performance of regular and robust models in industrial plant
case study

Regular data Contaminated data

PPCA PPCA RPPCA
R2 0.9589 0.7665 0.9593
RMSE 0.6799 1.6889 0.6770
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Figure 2.15: Parameter convergence for RPPCA model in industrial case study

2.6 Conclusions

A class of outlying observation problems was dealt with in this article. A contami-

nated noise assumption was considered for PPCA based regression models. Then a

robust probabilistic model was developed, based on which a better prediction per-

formance for the desired quality variable could be obtained in the presence of large

random errors in data. Unlike the conventional PPCA based models with a single

Gaussian noise model, the developed model downweighs the effect of scaled outly-

ing observations in output prediction. The robust model development problem was

formulated and solved with expectation maximization algorithm. Considering the

contaminated Gaussian noise model allows us to get closed form solutions for model

parameters, as well as downweighing the effect of the outlying noise in output predic-

tion. Robustness and performance of the model were demonstrated through simulated

data and industrial case studies.
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Chapter 3
Robust Probabilistic Principal Component
Analysis Based Process Modeling:
Dealing with Simultaneous Contamination
of Both Input and Output Data∗

”It is not certain that
everything is uncertain.”

Blaise Pascal (1623 - 1662)

∗A version of this chapter is published as Anahita Sadeghian, Ouyang Wu, Biao Huang, 2018,
”Robust probabilistic principal component analysis based process modeling: Dealing with simulta-
neous contamination of both input and output data”, Journal of Process Control
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3.1 Introduction

Predictive modeling, soft sensors and their necessity

Production rate and quality are important determinants of an industry’s profitabil-

ity. When setting higher goals for production rate and quality, industries must also

account for safety and environmental factors [24]. To achieve these objectives ad-

vanced process monitoring and control techniques need to be developed. This task

demands operational data to be recorded for further analysis. The need for recorded

historical data for process control and monitoring purposes has led to heavy use of

instrumentation in industries in the form of sensors and analyzers.

Despite the use of instrumentation, online and fast rate measurements of pro-

cess variables are not always available. This is due to restricted availability and/or

reliability of measurement devices and techniques in place which results in missing

values, off values or delay in process data. In the best case when appropriate devices

are available, there are still some key process variables that are determined offline or

online which lack the two characteristics of availability and reliability. For example,

a laboratory sample analysis lacks in terms of availability while samples from an on-

line analyzer are often unreliable. On top of this, the conventional methods of data

acquisition are time consuming and may introduce delay and discontinuity into their

application [75].

Predictive modeling has received increasing attention and discussion in recent

years. These models can provide the user with frequent estimates of quality variables

of interest. These could also be the variables that are not measurable but can be

inferred based on other available measurements. The subject is especially important

in the area of chemical process operation and control. The importance lies in the

fact that there could be losses in profitability and/or safety of a chemical plant in

the case of failure of a measuring device which plays a critical role either in operation

or in control, especially for some key process variables. There are considerable costs

involved in installation and maintenance of hardware sensors to keep track of all vari-

able measurements. To overcome the above mentioned issues predictive models have

commonly been used to infer the key process variables. This leverages profitability

in terms of reducing cost of new hardware sensor installation as well as in terms of
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maintenance and backup for the available sensors. The leverage is also seen in terms

of faster and more accurate measurements which come from synthesis of the existing

sensors.

Predictive mathematical models, also known as soft sensors, inferential sensors or

virtual sensors, provide online estimates of key process variables based on some other

process records [24]. Taking advantage of these models could help us to enhance the

system under study in terms of reliability and accuracy and develop better control

and monitoring policies.

Among the three main categories of soft sensor design approaches discussed in

[24], this thesis focuses on data-driven approach which is useful based on the fact

that the plant records contain information about the operation and the factors which

affect it. Since this information is deeply buried in data, one should be aware that

the relevance and quality of the data at hand affects the performance of the model,

along with the method of analysis used. For high fidelity modeling, it is important to

reduce the adverse effect of noise and disturbances in data records. Although there

are different filtering methods to handle this issue, a proper analysis of the data is a

better way to cope with it. A proper analysis helps us to detect and deal with data

issues such as outliers, missing data, redundancy, low accuracy, etc. Several ad hoc

solutions to these potential issues have been addressed in literature [24, 42, 33, 10].

Presence of outlying observations or outliers, is one of the main factors that affect

data quality [58]. The definition for these points will be given in Section 3.1.

One other important characteristic of data which is the base of the data-driven

modeling approaches, is multi-modality. This characteristic has been studied in lit-

erature mainly for the multiple process models, such as in [11, 39, 102, 98] to deal

with identification of complex systems. The authors in [3] dealt with identification of

multiple local linear process models; and built a global process model by combining

those local models. The same characteristic could exist in noise models. The focus

of this chapter will be on considering multiple noise models that contribute to the

process data. This situation could be observed when there are outlying observations

among the process or laboratory data. These points are basically caused by random

errors and are discussed further in Section 3.1.
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Outlying observations and robustness

Conventional models are best suited when their assumptions are met. However, if

the data does not satisfy those assumptions, results might be misleading. Specifi-

cally, presence of outliers is one of the cases that violate the assumption of normally

distributed residuals (noises) in a regular PPCA based regression model. This could

be a result of measurement error, a change in the experimental settings, or even due

to that specific outlying sample belonging to another population rather than the one

that data was supposed to represent. It should be reminded that an outlier does not

necessarily imply a wrong or bad sample, however the terminology sometimes is used

as such [36].

The main issues caused by outliers has been reviewed in Section 1.2. In this

chapter the main focus will be on certain type of outliers and a specific robustness

problem. In [4] outliers are defined as observations that are inconsistent with other

observations, or as [36] refers to, they do not follow the model that fits the majority of

the set. The authors in [4] believe these data points are sometimes hidden to the user

since they might not show up in the residual plots. This category will be discussed

below.

Outliers can cause an adverse effect on parameter estimation and also on the

prediction while they may remain unnoticed [2]. Two general remedies exist. To

detect the outliers, remove them and carry on the modeling without them, or to cope

with them by feeding the contaminated data into a robust algorithm which is capable

of handling them. One should be reminded that this handling is possible to some

extent, that is, contamination could be tolerated to a specific threshold in terms of

its density and location.

As the authors in [97] and [34] state, the purpose of diagnostics is to find and

detect deviations from assumptions, while the purpose of robustness is to prevent

deviations from assumptions. [34] categorizes outlier detection (same as what [97]

proposes) under diagnostics, not robustness. The authors see robustness to be a

procedure insensitive to outliers. Examining residuals gives us an idea about outliers,

but this method on its own is not always sufficient. This is specifically true for those

outliers which correspond to high leverage points [73].
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Robust methods (a.k.a resistant methods) are commonly used when data is con-

taminated with outliers; these methods are developed such that they are not simply

distressed by outliers. One of the effective performance statistics that compares the

performance of a regular model to a robust model is coefficient of determination, also

known as R-Squared which gives information on the goodness of fit [2]. Most robust

models are efficient and insensitive to unusual values of data points, but markedly

abnormal leverage points can diminish their performance [97, 65]. Therefore, it is

important to do a robust design to address this issue.

There are two examples in [61] that illustrate high leverage data points in detail.

Some data points might lie further away from the rest of the data. These points might

be regression (or residual or vertical, as some references use) outlier, or X-space (or

input) outliers. The points that have their X-space values to be unusual are called as

high leverage points (points B, C, D and E, in Figure 3.1). The terminology comes

from a lever and the fulcrum which is the balancing point. The balancing point stands

for the mean value of X-space data. So a high leverage point is the one which sits

far from the balancing point. Some of these high leverage points (X-space outliers)

which sit along with the largest spread of data, in a 2-D set for instance, could not

be seen as a residual outlier since they fall into the general pattern. These points

are also called a good leverage point (point D, in Figure 3.1). Some of the high

leverage points could also be a residual outlier at the same time (points B and C, in

Figure 3.1). These are the points that sit far away from the mean in the X-space and

are also having a big distance to the regression line passing through most of the data

points. According to where in the 2-D space the point sits, it could have different

combination of the outlying/inlying properties. For example, point E in Figure 3.1, is

an inlier in Y-space but a residual outlier as well. Or point A is inlier in X-space, but

a residual outlier. To be clear we remind that term outlier is mostly used in terms of

residual space, whereas the term Inlier mentioned above, is used in terms of variable

space.

To challenge a robust model thoroughly, considerations should be taken in the

design of contamination for both percentage of outliers and the percentage of high

leverage points [2]. As stated before, regressions are affected by the presence of

regression (or vertical) outliers or bad leverage points. The importance of leverage
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Figure 3.1: Scatter plot for different type of outlying observations-reproduced from
[2]

point consideration could be seen by the effect of points A and B on the regression

line. Both points have equal residuals to the regression line, but including/excluding

B in the data will affect the regression slope (the model parameters) more than

including/excluding A. This chapter is dedicated to the study of both contamination

in the input space and in the response space. To do so, input and output noises

of the PPCA based model are formulated as a Gaussian mixture with components

which differ in location and in scale. For simplicity this is done in a symmetric layout.

That means the side contaminating components of the Gaussian mixture noise are

located at the same distance from the main component, but follow a different spread

compared to the main one by an inflation factor. More details are being discussed in

Section 3.3.

Solving all data issues in a single step is a highly complicated task. This chapter

will address the problem of outliers through the development of a robust predictive

model which is invulnerable to their presence. Outliers can belong to different fami-

lies as discussed in [45]. One of the contributions of this chapter in extension to the

previous work presented in Chapter 2, is on generalizing Gaussian mixture outliers,

with special attention to symmetric Gaussian location outliers. This type of outliers

represents a common problem such as a jammed instrument and is another distin-
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guished type of outliers seen in processes in comparison with that considered in [75].

We propose a probabilistic modeling approach under a matching and more general

noise formulation. Another contribution of this chapter is on handling the input out-

liers in addition to the output outliers. Existence of input outliers or leverage points

in addition to output outliers significantly increases complexity of the problem. To

derive the complex probabilistic robust principal component regression models, cer-

tain fundamentals are needed. The following sections of this chapter will concentrate

on a brief review of basics of probabilistic principal component analysis (PPCA) and

PPCA based regression models, as well as the type of outliers versus robustness. Next

we present the formulation of our robust probabilistic model which is resistant to a

common type of outlier in parameter estimation. The developed model is then solved

for parameters using expectation maximization (EM) algorithm. Finally, the devel-

oped robust model is evaluated through discussion over two case studies which use a

simulated and a real industrial data set.

3.2 Fundamentals

The preliminaries of the latent variables and the probabilistic modeling approach

have been previously discussed in Section 1.3. PPCA-based regression model is also

reviewed in Section 1.3.3. This section will review some preliminaries over the formu-

lation of the aimed probabilistic approach and the method of solving the formulated

problem.

In the current chapter, as a continuation of the work presented in Chapter 2 that

focuses on scale outliers, we will consider a formation of Gaussian location mixture

noise. Also, to make a broader exploration here, the location mixture noise appears

in both input and output of the process, rather than a Gaussian scaled mixture that

affects the output only, as the case of Chapter 2. As before, to estimate the unknown

parameters of the model, loading matrices and the variances, maximization of like-

lihood of the complete data is performed. EM algorithm is used for this estimation

because of presence of hidden variables [27].
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3.2.1 Robust PPCA (RPPCA)-based Regression Model (with
Gaussian Scaled Mixture Noise)

This type of model is a robust PPCA based regression model, which was discussed in

Chapter 2, assumes a more representative noise distribution for output equation than

the conventional PPCA based models. The noise is assumed to follow a mixture dis-

tribution consisting of two Gaussian components. One component of this noise model

is a Gaussian distribution with a specific mean and variance, whereas the other one

is a Gaussian with same mean as the first component but a different variance (often

taking an extreme value). The variance of the latter one, which we call as contami-

nating part, is inflated with respect to that of the first component by a factor of ρ−1,

where ρ ∈ (0, 1]. In other words, this mixture output noise model is assumed to in-

corporate a scaled contaminating portion to acknowledge the outliers which originate

from measurements violating the physical limitations of a process unit, such as a very

large flow rate. Thus, the noise models would become as in (3.1); such a noise model

will help downweighing the effect of outliers in the output prediction only.

ei ∼ N (0, σ2
xI)

fi ∼ (1− δy)N (0, σ2
yI) + δy N (0, ρ−1

y σ2
yI)

(3.1)

Vector of variable QY = [qy1 , · · · , qyn ]T ∈ �n×1, (qyi ∈ �1×1) is introduced as a vector

of binary indicators which implies identity of each sample point. When this indicator

qyi = 1, the output noise fi is distributed as N (0, σ2
y); and when qyi = ρy, fi is

distributed as N (0, ρ−1
y σ2

y). [45] represents a Bernoulli distribution for qyi as:

P (qyi |δy, ρy) = δ

1−
qyi − ρy
1− qyiρy

y (1− δy)

qyi − ρy
1− qyiρy , (3.2)

where δy is the probability that the output observation yi is generated by the con-

taminated Gaussian noise component; ρy is the variance inflation factor for that

component which could vary between 0 and 1; smaller the value of ρy, the bigger

would be the magnitude of noise (that leads to an outlying observation).
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3.2.2 EM Algorithm

EM algorithm is an alternative iterative solution when a maximum likelihood problem

is not tractable due to the absence of some data or variables. This data incompleteness

[62] could arise from different scenarios such as missing observation data, truncated

distributions, censored or grouped observations, or even from statistical models like

random effects, mixtures, convolution and latent variable structures. This algorithm

consists of two main steps as the name suggests, expectation and maximization. These

iterative steps formulate a complete-data problem, given an incomplete-data problem.

The complete-data resulted from this procedure is referred to as an augmented data.

A succession of optimization tasks are performed in the EM formulation as opposed to

one single complex optimization task performed in a maximum likelihood formulation

based on an incomplete-data case [16]. The iterations in this algorithm are performed

until a predefined convergence criterion is satisfied. This criterion could be the relative

difference between the parameters or the complete-data likelihood function of two

successive iterations. The latter is known to be faster; nevertheless, [94] in particular

devoted effort to discussing whether the convergence of likelihood can automatically

involve the convergence of parameters.

One of the advantages of this algorithm is its numerical stability, such that in each

iteration the likelihood function is increased until the convergence occurs. As another

beneficial properties of this algorithm, we can refer to easy implementation [50],

reliability to provide the user with estimates for missing data and low computational

cost per iteration as stated in [62]. This algorithm might demand the user to start

over from different initial sets of parameters by using Monte Carlo simulation to

achieve convergence in the case of multiple local optima for a multimodal complete-

data likelihood function.

There have been discussions over the drawbacks of this algorithm as well. Mainly,

the available literature refers to slow convergence, dependence of the solution on

stopping criterion and on the selection of initial values for the parameters [64, 50, 6,

43]. [63] and [71] have dealt with the slow convergence issue to alleviate the problem

by means of Aitken’s approach or by creating different augmentations, respectively.

The concern on stopping criterion also has been addressed in many works such as
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[80]. Main ideas for this concern are to base the criterion on the relative change in

parameters as mentioned above and used in this chapter, or on the relative change

of the log-likelihood function [57]. [43] suggests that when the algorithm gets stuck

in the flat area of the likelihood function, one might continue the iterations hoping

for reaching a global optimum after a large number of iterations. The authors in [43]

prefer to start from various initial points and stop after a limited number of iterations

and choose the best one.

The EM algorithm is also sensitive to the choice of initial values selected for

parameters. Efficient initialization is an important step for the convergence of the

algorithm to the best optimum point for the likelihood function and it also affects the

speed of convergence. The authors in [64] also mention that among the substantial

number of initialization methods they have reviewed, there is no method which could

be considered as the best one in performance. They suggest to perform several meth-

ods and choose which works best for the problem. However, another option which

has been used in the literature is to use the estimates which are obtained from other

methods as an initial value set [26, 25]. As mentioned above, [43] have claimed that

in practice it is best to start from multiple initial points to ensure the algorithm ends

up with the global optimum. This variation in the selection of initial points is also

known as compounding; and it is believed to increase the search area for a set of

predefined iteration steps and it is claimed that it can save computation time [6].

In this chapter, to alleviate the effect of the initial values, we have used multiple

random initialization sets for the regular PPCA based model and tried the algorithm

for multiple simulations and chose the best answer. The other possible approach to

the initialization problem, which is suggested by [50], is to combine EM algorithm

with other global optimization methods such as genetic algorithm or particle swarm

optimization. However, they indicate the heavy computation load demanded by this

approach on the big data sets. In this chapter, for the robust PPCA based model,

we have used the estimated parameters of the regular model as the initial values for

the common parameters; and random initial values for the rest.
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3.3 Robust Model Development

In this section, robust PPCA is modeled by considering a Gaussian location mix-

ture noise for both input and output generative models. Then, the developed model

is solved for its parameters through EM iterations. Final results are shown in Sec-

tion 3.3.2. Posterior probabilities for hidden variables are presented in Section 3.3.3.

Probabilistic PPCA based regression model is introduced as shown below by [86].

{
xi = Pti + μx + ei
yi = Cti + μy + fi

(3.3)

In this model, ti ∈ �q×1 is latent variable vector, xi ∈ �m×1 and yi ∈ �r×1 are

observed input and output data vectors, respectively. Vector μ stands for mean

values. The same model in matrix form of the above mentioned variables could be

written as: {
X = TP T +Mx + E
Y = TCT +My + F

(3.4)

where similarly, X = [x1, · · · , xn]
T ∈ �n×m, Y = [y1, · · · , yn]T ∈ �n×r and T =

[t1, · · · , tn]T ∈ �n×q. Besides the general assumptions for a PPCA based regression

model as stated in [86, 75], here it is assumed that the noises for both generative

models of input and output have the Gaussian mixture distribution. In this way,

outliers for both input (high leverage points) and output measurements could be taken

care of in the modeling process. Here, we assume a case of Gaussian location mixture

which is capable of accounting for process measurements which do not conform to the

technological extent of their measuring device and show off-values among the other

measurements. These off-values are usually seen in both sides of the normal values.

In other cases where the measurements are obtained through a jammed instrument,

asymmetric location outliers could be observed [45, 75]. In this chapter a case of

Gaussian location mixture with symmetric means in their distributions is studied for

both input and output measurements. Note that symmetric means of the outliers

distributions do not imply that the locations of each pair of outliers have to be

symmetric. This formulation is a more general one compared to a single Gaussian

noise. This will help in looking at outliers in the data by considering some large

random errors which are added to data produced by the generative model (3.3). The
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second term in the Gaussian mixture noise distribution in (3.5), stands for such errors.

ei ∼ (1− δx)N (0, σ2
xI) + δx [ 0.5 N (Δx, ρ

−1
x σ2

xI) + 0.5 N (−Δx, ρ
−1
x σ2

xI)]

fi ∼ (1− δy)N (0, σ2
yI) + δy [ 0.5 N (Δy, ρ

−1
y σ2

yI) + 0.5 N (−Δy, ρ
−1
y σ2

yI)]
(3.5)

In this mixture Gaussian distribution of three Gaussian components, the second and

the third components have a different mean and a different variance from the first one.

This type is a more generalized case of a Gaussian location mixture where the second

and third components not only have a different mean value from the first one, but also

have a different variance from the first one. This could be termed as a combination

case of location and scale Gaussian mixture that accounts for any sort of large random

error scenarios mentioned in [45]. Vector of variables QY = [qy1 , · · · , qyn ]T ∈ �n×1,

(qyi ∈ �1×1) and QX = [qx1 , · · · , qxn ]
T ∈ �n×1, (qxi

∈ �1×1) are introduced as vector

of binary indicators which imply identity of each sample point in output and input

data sets, respectively. When this indicator, for instance qyi = 1, the output noise fi is

distributed as N (0, σ2
y); when qyi = Δy, fi is distributed as N (Δy, ρ

−1
y σ2

yI); and when

qyi = −Δy, fi is distributed as N (−Δy, ρ
−1
y σ2

yI). This holds for inputs as well, where

the two latter cases qi = ±Δ are showing the symmetric location-scaled counterparts

of the main distribution for noise, that is case one qi = 1. [45] represents a Bernoulli

distribution for |qyi | and |qxi
|, which is the equivalent of a categorical distribution for

these two values:

P (qyi |θ) = (0.5δy)

|qyi |+ qyi
2Δy (0.5δy)

|qyi | − qyi
2Δy (1− δy)

1−
|qyi |
Δy ,

P (qxi
|θ) = (0.5δx)

|qxi
|+ qxi

2Δx (0.5δx)

|qxi
| − qxi

2Δx (1− δx)
1−
|qxi
|

Δx ,

(3.6)

where δy and δx are the probabilities that the output or input observation yi or xi is

generated by the contaminating Gaussian noise component; ρy, ρx are the variance

inflation factors for that component which could vary between 0 and 1, for output

and input data respectively; the smaller the value of ρ is, the bigger would be the

magnitude of noise (that leads to an outlying observation). Δy and Δx in this formu-

lation are the shift in mean values for the contaminating counterpart in the Gaussian

mixture. As it is seen in (2.3), the location counterpart has two terms which have
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symmetric mean values on both sides of the mean value of the main component which

is assumed to be zero.

3.3.1 RPPCA-based Model with Gaussian Location Mixture
Noises in Both Input and Output

RPPCA based regression model parameters consist of P , C, μx, μy and the hyperpa-

rameters of noise terms e and f which are the noise variances σ2
x, σ

2
y and the inflation

factors ρy, ρx, as well as δy, δx which adjust the proportion of the two Gaussian com-

ponents in the Gaussian mixture noise. For this chapter, two location parameters Δy

and Δx are also added. Common assumptions for PPCA regression model, as stated

in [86] hold for this model as well.

To model and solve the problem of Robust PPCA based regression with Gaussian

mixture input and output noise, EM algorithm is adopted in this work. Available

input and output data are shown by matrices X and Y , respectively. Unknown

information of the problem is:

{P,C, σ2
x, σ

2
y , μx, μy, δy, δx, ρy, ρx,Δy,Δx, T,QY , QX},

from which {ti}ni=1 , {qyi}ni=1 and {qxi
}ni=1 are treated as hidden variables of the model

and θ is defined to be set of parameters of the model to be estimated in Section 3.3.2.

θ � {P,C, σ2
x, σ

2
y , μx, μy, δy, δx, ρy, ρy,Δy,Δx}

To employ EM algorithm, the Q− function has to be built based on both observed

and hidden variables. The general form of a Q− function is as shown in (3.7).

Q = E
T,QY ,QX |X,Y,θold

(
logP (

Observed︷︸︸︷
X, Y ,

Hidden︷ ︸︸ ︷
T,QY , QX︸ ︷︷ ︸

CompleteData

|θ)
)
, (3.7)

where P (X, Y, T,QY , QX |θ) is regarded as the complete data likelihood. The other

common assumption for this model is that the noises in the input and output data are

independent and identically distributed (i.e., i.i.d.). Consequently the i.i.d. property

also holds for the latent variable ti and the sample indicators qyi and qxi
.
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P (X, Y, T,QY , QX |θ) = P (X, Y |T,QY , QX , θ) P (T,QY , QX |θ)

= P (X|T,QY , QX , θ) P (Y |T,QY , QX , θ)

×P (T |θ) P (QY |θ) P (QX |θ)

=
n∏

i=1

[
P (xi|ti, qyi , qxi

, θ) P (yi|ti, qyi , qxi
, θ)

×P (ti|θ) P (qyi |θ) P (qxi
|θ)

]
(3.8)

The complete data likelihood is obtained as described in (3.8) in order to be substi-

tuted into the Q − function (3.7). By taking the logarithm of both sides of (3.8),

log-likelihood of the complete data would be a summation consisting of five terms

as follows in (3.9). Based on different combinations of the two indicator variables

that take three possibilities each, every term in (3.9) could have nine combinatorial

outcomes.

L = logP (X, Y, T,QY , QX |θ)

=
n∑

i=1

[
logP (xi|ti, qyi , qxi

, θ) + logP (yi|ti, qyi , qxi
, θ)

+ logP (ti|θ) + logP (qxi
|θ) + logP (qyi |θ)

]

=
n∑

i=1

[
I○+ II○+ III○+ IV○+ V○]

(3.9)

For example distributions for P (xi|ti, qyi , qxi
, θ) and P (yi|ti, qyi , qxi

, θ) in nine different

combinations would be shown as in Table 3.1. Therefore, first term in (3.9) would

become as shown in Table 3.2. In a similar way second term of the complete-data

log-likelihood could be obtained. For the third term, we have a normal distribution

as in (3.10). Fourth and fifth terms are presented in (3.11) and (3.12), respectively.

Term III = −1
2
log((2π)k|I|)− 1

2

(
tTi ti

)
(3.10)
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Table 3.1: Probabilities of data given hidden variables and parameters in different
combinatorial values of indicator variables

qxi
qyi P (xi|ti, qyi , qxi

, θ) P (yi|ti, qyi , qxi
, θ)

0 N (Pti + μx, σ
2
xI) N (Cti + μy, σ

2
yI)

0 Δy N (Pti + μx, σ
2
xI) N (Cti + μy +Δy, ρy

−1σ2
yI)

−Δy N (Pti + μx, σ
2
xI) N (Cti + μy −Δy, ρy

−1σ2
yI)

0 N (Pti + μx +Δx, ρx
−1σ2

xI) N (Cti + μy, σ
2
yI)

Δx Δy N (Pti + μx +Δx, ρx
−1σ2

xI) N (Cti + μy +Δy, ρy
−1σ2

yI)
−Δy N (Pti + μx +Δx, ρx

−1σ2
xI) N (Cti + μy −Δy, ρy

−1σ2
yI)

0 N (Pti + μx −Δx, ρx
−1σ2

xI) N (Cti + μy, σ
2
yI)

−Δx Δy N (Pti + μx −Δx, ρx
−1σ2

xI) N (Cti + μy +Δy, ρy
−1σ2

yI)
−Δy N (Pti + μx −Δx, ρx

−1σ2
xI) N (Cti + μy −Δy, ρy

−1σ2
yI)

Term IV = (1− |qxi
|

Δx

)log(1− δx) +
|qxi
|

Δx

log(0.5δx) (3.11)

Term V =
|qyi | − qyi

2Δy

log(0.5δy) +
|qyi |+ qyi

2Δy

log(0.5δy) + (1− |qyi |
Δy

)log(1− δy)

= (1− |qyi |
Δy

)log(1− δy) +
|qyi |
Δy

log(0.5δy)

(3.12)

Having (3.9), Q − function is built according to (3.7) by taking the conditional

expectation on the hidden variables.

Q = E
T,QY ,QX |X,Y,θold

(
logP (X, Y, T,QY , QX |θ)

)

Q = E
T,QY ,QX |X,Y,θold

( n∑
i=1

[
I○+ II○+ III○+ IV○+ V○])

=

∫
ti

∑
qyi

∑
qxi

( n∑
i=1

[
I○+ II○+ III○+ IV○+ V○]

×P (ti, qyi , qxi
|xi, yi, θ

old)

)
dti

� Q1 +Q2 +Q3 +Q4 +Q5 (3.13)

Hidden variables of this problem are of two different types. Variable ti is of

continuous type and the indicators are of discrete type. This causes the expectation
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to appear as in (3.13). The joint probability of hidden variables in (3.13) can be

expanded as shown below in (3.14).

P (ti, qyi , qxi
|xi, yi, θ

old) = P (ti|xi, yi, qyi , qxi
, θold)

×P (qyi |yi, θold)
×P (qxi

|xi, θ
old)

(3.14)

Therefore, based on the combinatorial values of qxi
and qyi to take, there are nine

combinations for each of the five terms of the Q − function. For a more detailed

explanation about Q− function, readers are referred to Chapter 2. As an example,

the first term of Q− function will be elaborated below.

Q1 =

∫
ti

∑
qyi

∑
qxi

( n∑
i=1

(Term I)× P (ti, qyi , qxi
|xi, yi, θ

old)

)
dti

� Q
first
1 +Qsecond

1 +Qthird
1 +Q

fourth
1 +Q

fifth
1

+Qsixth
1 +Qseventh

1 +Q
eighth
1 +Qninth

1 (3.15)

where Term I, or I○, takes various expressions depending on the values of qxi
and

qyi , and is arranged in Table 3.2. For simplicity, the integration has been broken into

nine terms as indicated in (3.15). For illustration, the first of these nine terms is given

in (3.16). The remaining terms have similar expressions.

Q
first
1 =

∫
ti

( n∑
i=1

(Term I)

)
× P (ti|xi, yi, qyi = 0, qxi

= 0, θold)

×P (qyi = 0|yi, θold)

×P (qxi
= 0|xi, θ

old) dti. (3.16)

Define P1 � P (qyi = 0, qxi
= 0|xi, yi, θ

old), which is also equal to P (qyi = 0|yi, θold)×
P (qxi

= 0|xi, θ
old). The proportions for each term of the Q− function must add up

to one, i.e.,
∑9

j=1 Pj = 1.

3.3.2 Parameter Estimation

Finally, derivations of previous section lead to an expansion of theQ−function. Then
the Q − function should be maximized with respect to set of parameters (M-step).
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Table 3.2: First term of complete data log-likelihood function in different
combinatorial values of indicator variables

qxi
qyi Term I

0

0 Δy
−1
2 log((2π)m|σ2

xI|)− 1
2

(
(xi − Pti − μx)

Tσ−2
x (xi − Pti − μx)

)
−Δy

0

Δx Δy
−1
2 log((2π)m|ρx−1σ2

xI|)− 1
2

(
(xi − Pti − μx −Δx)

T ρxσ
−2
x (xi − Pti − μx −Δx)

)
−Δy

0

−Δx Δy
−1
2 log((2π)m|ρx−1σ2

xI|)− 1
2

(
(xi − Pti − μx +Δx)

T ρxσ
−2
x (xi − Pti − μx +Δx)

)
−Δy

This optimization process is shown in (3.17).

θ = argmax
θ

E
T,QY ,QX |X,Y,θold

(
logP (X, Y, T,QY , QX |θ)

)
= argmax

θ
Q (3.17)

This maximization problem can be broken into a set of equations as in (3.18). This

is because terms of the Q− function can be arranged in a way such that parameters

are separated. This fact simplifies this optimization. Solving a series of equation in

(3.18), yields the parameters update equations as shown in equations (3.19) to (3.26).

P : ∂Q1

∂P
= 0 , C : ∂Q2

∂C
= 0

σ2
x : ∂Q1

∂σ2
x
= 0 , σ2

y : ∂Q2

∂σ2
y
= 0

μx : ∂Q1

∂μx
= 0 , μy : ∂Q2

∂μy
= 0

δx : ∂Q4

∂δx
= 0 , δy : ∂Q5

∂δy
= 0

Δx : ∂Q1

∂δx
+ ∂Q4

∂δx
= 0 , Δy : ∂Q2

∂δy
+ ∂Q5

∂δy
= 0

ρx : ∂Q1

∂ρx
= 0 , ρy : ∂Q2

∂ρy
= 0

(3.18)
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P new =

[ n∑
i=1

(
2(xi − μx)

(
P1 E

00
(ti|xi, yi, qxi

= 0, qyi = 0, θold)T

+P2 E
0Δ
(ti|xi, yi, qxi

= 0, qyi = Δy, θ
old)T

+P3 E
0−Δ

(ti|xi, yi, qxi
= 0, qyi = −Δy, θ

old)T
)

+ 2ρx(xi − μx −Δx)
(
P4 E

Δ0
(ti|xi, yi, qxi

= Δx, qyi = 0, θold)T

+ P5 E
ΔΔ

(ti|xi, yi, qxi
= Δx, qyi = Δy, θ

old)T

+ P6 E
Δ−Δ

(ti|xi, yi, qxi
= Δx, qyi = −Δy, θ

old)T
)

+2ρx(xi − μx +Δx)
(
P7 E

−Δ0
(ti|xi, yi, qxi

= −Δx, qyi = 0, θold)T

+ P8 E
−ΔΔ

(ti|xi, yi, qxi
= −Δx, qyi = Δy, θ

old)T

+ P9 E
−Δ−Δ

(ti|xi, yi, qxi
= −Δx, qyi = −Δy, θ

old)T
))]

×
[ n∑

i=1

(
P1 Coeff

00
(ti|xi, yi, qxi

= 0, qyi = 0, θold)

+P2 Coeff
0Δ

(ti|xi, yi, qxi
= 0, qyi = Δy, θ

old)

+P3 Coeff
0−Δ

(ti|xi, yi, qxi
= 0, qyi = −Δy, θ

old)

+ρxP4 Coeff
Δ0

(ti|xi, yi, qxi
= Δx, qyi = 0, θold)

+ρxP5 Coeff
ΔΔ

(ti|xi, yi, qxi
= Δx, qyi = Δy, θ

old)

+ρxP6 Coeff
Δ−Δ

(ti|xi, yi, qxi
= Δx, qyi = −Δy, θ

old)

+ρxP7 Coeff
−Δ0

(ti|xi, yi, qxi
= −Δx, qyi = 0, θold)

+ρxP8 Coeff
−ΔΔ

(ti|xi, yi, qxi
= −Δx, qyi = Δy, θ

old)

+ρxP9 Coeff
−Δ−Δ

(ti|xi, yi, qxi
= −Δx, qyi = −Δy, θ

old)

)]−1

(3.19)

where Pj defines probability of different cases of indicators from first to ninth case as
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shown in Table 3.2, and

Coeff
∗$

(ti|xi, yi, qxi
= ∗, qyi = $, θold) = S

∗$
(ti|xi, yi, qxi

= ∗, qyi = $, θold)

+ S
∗$
(ti|xi, yi, qxi

= ∗, qyi = $, θold)T

+2E
∗$
(ti|xi, yi, qxi

= ∗, qyi = $, θold)

×E
∗$
(ti|xi, yi, qxi

= ∗, qyi = $, θold)T , (3.20)

where S
∗$

is as shown below in which the asterisk or dollar sign subfixes indicate either

of the nine cases for qyi = ∗ and qyi = $.

S
∗$
(ti|xi, yi, qxi

= ∗, qyi = $, θold) = E
∗$
(tit

T
i |xi, yi, qxi

= ∗, qyi = $, θold)

−E
∗$
(ti|xi, yi, qxi

= ∗, qyi = $, θold)

×E
∗$
(ti|xi, yi, qxi

= ∗, qyi = $, θold)T , (3.21)

σ2
x
new

=
1

n m

n∑
i=1

(
P1 A

0

00
(ti|xi, yi, qxi

= 0, qyi = 0, θold) (3.22)

+P2 A
0

0Δ
(ti|xi, yi, qxi

= 0, qyi = Δy, θ
old)

+P3 A0

0−Δ
(ti|xi, yi, qxi

= 0, qyi = −Δy, θ
old)

+ρxP4 A
Δ

Δ0
(ti|xi, yi, qxi

= Δx, qyi = 0, θold)

+ρxP5 A
Δ

ΔΔ
(ti|xi, yi, qxi

= Δx, qyi = Δy, θ
old)

+ρxP6 AΔ

Δ−Δ
(ti|xi, yi, qxi

= Δx, qyi = −Δy, θ
old)

+ρxP7 A
−Δ

−Δ0
(ti|xi, yi, qxi

= −Δx, qyi = 0, θold)

+ρxP8 A
−Δ

−ΔΔ
(ti|xi, yi, qxi

= −Δx, qyi = Δy, θ
old)

+ρxP9 A−Δ

−Δ−Δ
(ti|xi, yi, qxi

= −Δx, qyi = −Δy, θ
old)

)
.

where, A
∗$
s for each case are as formulated in Appendix I.
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μ new
x =

1

n

n∑
i=1

(
− P1(−xi + P E

00
(ti|xi, yi, qxi

= 0, qyi = 0, θold)) (3.23)

−P2(−xi + P E
0Δ
(ti|xi, yi, qxi

= 0, qyi = Δy, θ
old))

−P3(−xi + P E
0−Δ

(ti|xi, yi, qxi
= 0, qyi = −Δy, θ

old))

−P4ρx(Δx − xi + P E
Δ0
(ti|xi, yi, qxi

= Δx, qyi = 0, θold))

−P5ρx(Δx − xi + P E
ΔΔ

(ti|xi, yi, qxi
= Δx, qyi = Δy, θ

old))

−P6ρx(Δx − xi + P E
Δ−Δ

(ti|xi, yi, qxi
= Δx, qyi = −Δy, θ

old))

−P7ρx(−Δx − xi + P E
−Δ0

(ti|xi, yi, qxi
= −Δx, qyi = 0, θold))

−P8ρx(−Δx − xi + P E
−ΔΔ

(ti|xi, yi, qxi
= −Δx, qyi = Δy, θ

old))

−P9ρx(−Δx − xi + P E
−Δ−Δ

(ti|xi, yi, qxi
= −Δx, qyi = −Δy, θ

old))

)
.

δ new
x =

∑n
i=1(P4 + P5 + P6 + P7 + P8 + P9)

n
, (3.24)

Δ new
x = (

1∑n
i=1(P4 + P5 + P6 + P7 + P8 + P9)

) (3.25)

×
n∑

i=1

(
P4(xi − μx − P E

Δ0
(ti|xi, yi, qxi

= Δx, qyi = 0, θold))

+P5(xi − μx − P E
ΔΔ

(ti|xi, yi, qxi
= Δx, qyi = Δy, θ

old))

+P6(xi − μx − P E
Δ−Δ

(ti|xi, yi, qxi
= Δx, qyi = −Δy, θ

old))

−P7(xi − μx − P E
−Δ0

(ti|xi, yi, qxi
= −Δx, qyi = 0, θold))

−P8(xi − μx − P E
−ΔΔ

(ti|xi, yi, qxi
= −Δx, qyi = Δy, θ

old))

−P9(xi − μx − P E
−Δ−Δ

(ti|xi, yi, qxi
= −Δx, qyi = −Δy, θ

old))

)
,
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ρ new
x = mσ2

x

[ n∑
i=1

(P4 + P5 + P6 + P7 + P8 + P9)

]
(3.26)

×
[ n∑

i=1

(
P4 A

Δ

Δ0
(ti|xi, yi, qxi

= Δx, qyi = 0, θold)

+P5 A
Δ

ΔΔ
(ti|xi, yi, qxi

= Δx, qyi = Δy, θ
old)

+P6 AΔ

Δ−Δ
(ti|xi, yi, qxi

= Δx, qyi = −Δy, θ
old)

+P7 A
−Δ

−Δ0
(ti|xi, yi, qxi

= −Δx, qyi = 0, θold)

+P8 A
−Δ

−ΔΔ
(ti|xi, yi, qxi

= −Δx, qyi = Δy, θ
old)

+P9 A−Δ

−Δ−Δ
(ti|xi, yi, qxi

= −Δx, qyi = −Δy, θ
old)

)]−1

.

The remaining parameters that are related to output equation are derived similarly.

Readers are referred to Appendix II for the final expressions.

3.3.3 Posterior Distributions of Hidden Variables

After solving the model for its parameters in Section 3.3.2, the parameter update

equations are obtained. These update equations should go through a series of itera-

tions until convergence. These equations contain the expected value with respect to

the posterior distributions of the hidden variables. Therefore, the posterior distribu-

tions of the hidden variables must be derived.

In this section the above mentioned posteriors of hidden variables are derived.

For the continuous hidden variable ti based on the assumption that the posteriors of

all combinations will have Gaussian distributions, and their sufficient statistics are

mean and variances. These two statistics are seen in the parameter update equations

as E
∗$
(ti|xi, yi, qxi

= ∗, qyi = $, θold) or E
∗$
(tit

T
i |xi, yi, qxi

= ∗, qyi = $, θold) [27]. For the

discrete hidden variables, posterior probabilities, defined as Pjs, are evaluated during

the iterations by having their prior probability based on δ values in each case, which

is the categorical distribution shown in (3.6). To derive the sufficient statistics, we

start from the joint probability of the hidden variables. As shown in (3.14), the three

probabilities constitute the joint probability. These three terms are given as follows
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in (3.27), (3.28) and (3.29) using Bayes’ rule.

P (ti|qyi , qxi
, xi, yi, θ

old) ∝ P (xi, yi|ti, qyi , qxi
, θold) P (ti|qyi , qxi

, θold) (3.27)

P (qxi
|xi, yi, θ

old) ∝ P (xi, yi|qxi
, θold) P (qxi

|θold) (3.28)

P (qyi |xi, yi, θ
old) ∝ P (xi, yi|qyi , θold) P (qyi |θold) (3.29)

Feeding the prior distributions into (3.27), (3.28) and (3.29), considering different

combinations according to qxi
and qyi , equations for the conditional expected values

of latent variable ti and tit
T
i are obtained for different combinations of indicator vari-

ables. Equations for the first case of both latent variables are shown below as an

example and the other eight cases are provided in Appendices III and IV, respec-

tively. Following the similar approach posteriors for the discrete hidden variables

are obtained from (3.28) and (3.29). Since the indicators are independent, both of

them can be brought into a joint posterior probability. For instance, in the first

possible case, P1 = P (qxi
= 0, qyi = 0|xi, yi, θ

old), and based on Bayes’ rule P1 ∝
P (xiyi|qxi

= 0, qyi = 0)P (qyi = 0|θold)P (qxi
= 0|θold), where P (xiyi|qxi

= 0, qyi = 0) is

as shown in (3.32), and P (qyi = 0|θold) = 1− δy, P (qxi
= 0|θold) = 1− δx. The

same derivations are performed for the other eight cases.

E
00
(ti|xi, yi, qxi

= 0, qyi = 0, θold) = (σ−2
x P TP + σ−2

y CTC + I)−1 (3.30)

×(σ−2
x P T (xi − μx) + σ−2

y CT (yi − μy))

E
00
(tit

T
i |xi, yi, qxi

= 0, qyi = 0, θold) = (σ−2
x P TP + σ−2

y CTC + I)−1 (3.31)

+E
00
(ti|xi, yi, qxi

= 0, qyi = 0, θold)

×E
00
(ti|xi, yi, qxi

= 0, qyi = 0, θold)T

P (xiyi|qxi
= 0, qyi = 0) ∼ N

([
μx

μy

]
,

[
PP T + σ2

xI PCT

CP T CCT + σ2
yI

])
(3.32)
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t̂i = E(ti|xi, θ
old) (3.33)

=
∑
qyi

∑
qxi

E(ti|xi, qyi , qxi
, θold) P (qyi |xi, θ

old) P (qxi
|xi, θ

old)

= E
00
(ti|xi, qyi = 0, qxi

= 0, θold) P (qyi = 0, qxi
= 0|xi, θ

old)

+ E
0Δ
(ti|xi, yi, qxi

= 0, qyi = Δy, θ
old) P (qxi

= 0, qyi = Δy|xi, θ
old)

+ E
0−Δ

(ti|xi, yi, qxi
= 0, qyi = −Δy, θ

old) P (qxi
= 0, qyi = −Δy|xi, θ

old)

+ E
Δ0
(ti|xi, yi, qxi

= Δx, qyi = 0, θold) P (qxi
= Δx, qyi = 0|xi, θ

old)

+ E
ΔΔ

(ti|xi, yi, qxi
= Δx, qyi = Δy, θ

old) P (qxi
= Δx, qyi = Δy|xi, θ

old)

+ E
Δ−Δ

(ti|xi, yi, qxi
= Δx, qyi = −Δy, θ

old) P (qxi
= Δx, qyi = −Δy|xi, θ

old)

+ E
−Δ0

(ti|xi, yi, qxi
= −Δx, qyi = 0, θold) P (qxi

= −Δx, qyi = 0|xi, θ
old)

+ E
−ΔΔ

(ti|xi, yi, qxi
= −Δx, qyi = Δy, θ

old) P (qxi
= −Δx, qyi = Δy|xi, θ

old)

+ E
−Δ−Δ

(ti|xi, yi, qxi
= −Δx, qyi = −Δy, θ

old) P (qxi
= −Δx, qyi = −Δy|xi, θ

old)

3.3.4 Predictions

Inferring via a soft sensor or prediction of variables of interest as in [24], refers to infer-

ring about a quality variable based on the developed model (soft sensor) incorporating

some other variables, which are easier to be measured on-line. In this chapter, we

use the proposed RPPCA based model developed in Section 2.4 to predict a variable

of interest. This will be elaborated further in Section 3.4 with two examples. This

probabilistic model needs posterior distribution for hidden variables for doing such

inference, since these hidden variables are not known. Determination of the posterior

distribution of hidden variables has been presented in Section 3.3.3. To take into

account the uncertainty, the law of total expectation is applied as in (3.33).

Having the estimation of the latent variable and using the generative model as in

(3.3), the output prediction can be obtained as shown in (3.34). The error for this

prediction ε, which is the difference between predicted and real values of the output

variable, is obtained from (3.35). Along with this measure, there are many other

performance measures for evaluating the goodness of fit and thus the prediction. R-

squared and mean squared error (MSE) are the other often used measures. Correlation

between predicted and real values is also checked. Root mean square error (RMSE)
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as in (3.36) is a well-known measure to give a quantitative sense in comparisons.

ŷi = Ct̂i + μ̂y (3.34)

ε = ŷ − y. (3.35)

RMSE is defined as

RMSE �

√√√√√ n′∑
i=1

‖ŷi − yi‖2

n′ , (3.36)

where, n′ is the total number of test samples and ŷ and y are predicted and real

output values, respectively.

3.4 Case Studies

In this section, two examples are discussed to evaluate the performance of our devel-

oped algorithms. In the first case study, a data set is generated by a generative PPCA

based regression model with fixed parameters; in the second case study, a data set

from an industrial steam-assisted gravity drainage (SAGD) process plant is employed

for evaluation. In both case studies, we illustrate the improved performance of the

robust model presented in Section 3.3 compared to that of the regular PPCA based

model which has the single Gaussian noise distribution. The results will demonstrate

that the developed model is insensitive to outliers in terms of parameter estimation

and thus results in better prediction performance.

The two important contributions of this chapter are to evaluate the role of high

leverage points and assess the importance of large random errors sitting far from the

center of noise distribution, i.e. location type of outliers. Two comparison studies

are done on two data sets to investigate the importance of our new contributions to

robust identification, respectively.

In the first comparison study, we will illustrate that considering outliers in both

input and output is important. In the second comparison study, we demonstrate the

performance of our proposed robust approach through comparison with the existing

approach when outliers occur only in the output. By this study we will illustrate the
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Figure 3.2: Scree plot (left) and cumulative variance explained plot (right) for
generated data used in numerical example, obtained through PCA

importance of having appropriate outlier characterization. The robust approach in

this chapter is designed to be insensitive to large random outliers sitting far from the

center of the noise distribution. This is the case with a jammed instrument and is a

common type of outlier seen in processes.

3.4.1 Case I: Numerical Example

For model performance assessment through a numerical example, a data set has

been generated using the model (3.3). The set of data contains 1000 observations

from 5 input variables and 1 output variable. Two principal components are con-

sidered for generating the data set. The loading matrix is set to be P(m=5)×(k=2) =

[40, 10; 20, 30; 15, 20; 20, 40; 40, 15], regression coefficient matrix is C(r=1)×(k=2) = [10, 20]

and input/output mean vectors are μx = [1, 2, 3, 4, 5] and μy = [0], respectively. In-

put/output noises are distributed as ei ∼ N (0, 30I), fi ∼ N (0, 30I), respectively.

Each latent variable vector has the standard Gaussian distribution as tik×1
∼ N (0, I),
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making latent variable matrix, Tn×k = [t1, · · · , tn]T , to become a set of i.i.d vectors.
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Figure 3.3: Input data before and after contamination (x5)

To employ PPCA based regression, a rough estimate of the number of latent variables

is needed. In this step, PCA is performed on input data. Based on the scree plot

shown in Figure 3.2, k is chosen to be 2. To see how robust the proposed RPPCA

based regression model is, a series of data points are replaced with outlying values

by adding a large random error to the observed data points. The RPPCA based

model is expected to show better predictions compared to a regular PPCA, which

is not designed to be robust to observations with outliers. To make the data set

contaminated by such random errors, a portion of the data set is randomly selected

and replaced by outliers. This is done by means of adding location outliers to the

data points. Here, 20% of the points in both input and output data sets are selected

to be replaced with outliers. The locations of the two symmetric counterparts of the

mixture distribution are chosen to be far away from the center component’s mean,

and these counterparts are set to have an inflated variance with an inflation factor of
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Figure 3.4: Output data before and after contamination

0.9. This setting is considering two far and distinguished Gaussian noise components

with symmetric means of distributions for the outliers that do not overlap with the

main component. This is applied to both input and output data, meaning that both

data sets are considered to have this Gaussian general mixture random error. For

simplicity of presentation, here only one of the inputs, x5, is contaminated. Contam-

inated data are shown in Figures 3.3 and 3.4. The top panel shows the histograms

before and after contamination, while the bottom panel shows the data time series

before and after being contaminated.

Figures 3.5 and 3.6 show the performances of PPCA based model on the generated

data without outliers and contaminated data with outliers, respectively. It is seen that

the performance is affected by the contamination. However, the RPPCA based model

of this chapter is insensitive to outliers. Results of this case study are summarized

in Table 3.3. Figure 3.7 shows the performance of the RPPCA based model on

contaminated data sets. The convergence of the robust model parameters is also
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Figure 3.5: Prediction performance of PPCA regression model on generated data
without outliers
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Figure 3.6: Prediction performance of PPCA regression model on contaminated
generated data

Table 3.3: Prediction performance of regular and robust models in numerical
example

Regular data Contaminated data

PPCA PPCA RPPCA
R2 0.9399 0.4010 0.9398
RMSE 5.6960 17.9759 5.6981

shown in Figure 3.8.

Effect of leverage points

In this section we illustrate two features of the developed model. First, we explore the

impact of input outliers. The approach taken in this chapter is developing a robust

model to deal with input outliers, or leverage points, as well as output outliers.

For illustration, the input data is contaminated by adding large random values to
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Figure 3.7: Prediction performance of RPPCA regression model on contaminated
generated data
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Figure 3.8: Parameter convergence for RPPCA model in the first case study

a portion of the data set. Output data is not contaminated to magnify the effect

of input outliers on the model performance first. Contamination of inputs could be

done in many different ways. We chose to contaminate x5, as an example, with two

distinguished side distributions. 35% of the data set is replaced by random outliers

sitting far away from the center with inflation factor of 0.9. Refer to Figure 3.9. The

performances of the regular PPCA and the RPPCA based model presented in this

chapter are shown in Table 3.4 which again demonstrates superiority of the robust

76



-300 -200 -100 0 100 200 300

In
pu

ts

0

0.005

0.01

0.015

X Clean
X Contaminated

0 100 200 300 400 500 600 700 800 900 1000

In
pu

ts

-400

-200

0

200

400

X Clean
X Contaminated

Figure 3.9: Input data before and after contamination (x5) in comparison study I on
generated data

Table 3.4: Prediction performance comparison for regular and developed robust
model in presence of leverage points only

Regular data Contaminated data

PPCA PPCA RPPCA
R2 0.9399 0.3196 0.9395
RMSE 5.6960 19.1572 5.7106

algorithm.

3.4.2 Case II: Industrial Application

This section is devoted to the application of the developed model to a set of data

collected from a SAGD operation in Canada. This is a real industrial data set and

has been normalized beforehand for propriety.
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Figure 3.10: Scree plot (left) and cumulative variance explained plot (right) for
industrial data used in second case study, obtained through PCA

SAGD process

SAGD is an enhanced in-situ oil recovery technology for bitumen and heavy crude oil

production. In this technology two horizontal wells, known as well pairs, are drilled

into the reservoir. Typically, these two wells have a vertical distance of about four

to six meters. Injection of high pressure steam into the well located above will heat

the oil which results in a reduction of viscosity. Heating via steam generates a steam

chamber underground. When the viscosity of oil drops, it flows downward to the

collector well due to gravity. Collected oil will need to be pumped up to the ground

level. This technology is used extensively to extract oil from oil sands reservoirs

which has majority of its deposits deep-seated underground making it infeasible to

be mined by conventional open-pit mining. It is worth mentioning that much of the

expected future production growth in the Canadian oil sands is predicted to be from

this technology [30, 68].
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Figure 3.11: Prediction performance of PPCA regression model on industrial data

Figure 3.12: Prediction performance of RPPCA regression model on industrial data

Robust probabilistic modeling of SAGD process data

In this section, robust PPCA based soft sensor is used to predict the operation fluid

flow rate as a quality variable of interest. Accurate measurement of this variable is

required for better operation of downstream units. However, it is rarely available.

A soft sensing approach can be used to provide a continuous and reasonably accu-

rate estimate for this measurement based on some other available process variable

measurements.

The available historical data from this process are a set of flow rates, pressures,

and temperatures for the injection and production well pair, which are constructed

by a 10 − min average data recorded for a season in year 2014. Four of the above

mentioned variables which are highly correlated with the product oil flow rate are

selected for further analysis; among them three principal components are chosen to

represent the process. This data set consists of a total of 4 inputs and 1 output

variables that have been recorded in about 52500 sample points from which a set of

10906 sample points have been selected for the analysis in which the process shows
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Figure 3.13: Self validation of PPCA regression model on industrial data

a linear and time-invariant behavior. This data set has been used in [75] for a scale

Gaussian mixture based robust algorithm.

In this case study, the performance of the two models are compared as follows.

Data has been divided to training and test sets by choosing the first 70% of samples

as the training set, and the rest as the test set. Regular model is trained with

the training data set from the raw data. The same is done for robust model to

obtain the parameter set. Accordingly, the cross validation of the two models are

checked. Cross validation for the regular model is done by the test data sets. Cross

validation for the robust model is checked by feeding in the clean input test data

and comparing its predictions with the clean output test data. The rational behind

this comparison is that the robust model is expected to be trained for parameters

such that the understanding of the process, which is reflected in model parameters,

is robust. This is suggesting that the parameter estimation is not affected by the

outlying observations in the input and output data set. Thus, the cross-validation of

the robust model should be done as stated above.

To understand the effect of outliers on prediction, raw industrial data was used

to train the models. Comparison of cross-validations shows that the robust model

outperforms the regular one.The performance of the regular PPCA based model and

the robust PPCA based model with three principal components on this industrial

data set are shown in Figure 3.11 and Figure 3.12, respectively. The performances

are based on cross-validation. For propitiatory reasons, all y-axis values have been

removed.

As per the fit (self-validation), the regular model performs similar when compared
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Figure 3.14: Self validation of RPPCA regression model on industrial data

to the robust one, as shown in Figure 3.13 and Figure 3.14, respectively. This is

because of the fact that the industrial data in hand has not many severe outliers.

Thus, we tend to manually impose some outliers on the raw data that we have and

test how the robust model could catch up when the regular model is not able to

perform as it did on the namely uncontaminated data. Table 3.5 summarizes this

result.

Table 3.5: Prediction performance of regular and robust models in industrial
example; Self = Self validation, Cross = Cross validation

Regular model Robust model

Self Cross Self Cross
R2 0.9489 0.8877 0.9489 0.8880
RMSE 0.5246 0.4359 0.5247 0.4354
MAPE 0.0155 0.0110 0.0155 0.0110

To carry out the contamination, we have tried a 5% and a 10% input and output

contamination task separately to show the ability of the robust model in a kind of

pressure test. In the contamination task, randomly selected data points are replaced

with large outliers far from the center of the data distribution. To have visibly

distinct Gaussian distributions at the two sides of the main noise distribution, we

have chosen the locations to be far from the mean values. This ensures that the case

of location outliers is imposed on the data. The values are calculated based on the

estimated noise variances from the regular PPCA based regression to make sure the

Gaussian bells are sitting far enough from each other so that they do not overlap. This
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Figure 3.15: Prediction performance of PPCA regression model on 5%
contaminated industrial data

Figure 3.16: Prediction performance of RPPCA regression model on 5%
contaminated industrial data

sort of outlier occurs in the presence of process measurements that do not conform

to the technological extent of the measuring devices [45]. The symmetric location

counterparts in the above-mentioned mixture have a variance inflation factor of 0.9.

Prediction performances of the regular and robust model on the 5% contaminated

sets are presented in Figure 3.15 and Figure 3.16, respectively. Table 3.6 summarizes

this result.

Table 3.6: Prediction performance of regular and robust models in industrial
example by 5% contamination in inputs and output

Regular model Robust model

R2 0.6037 0.8234
RMSE 1.6115 0.5467
MAPE 0.0348 0.0142

To further test the capability of the robust model a 10% contamination pressure test
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Figure 3.17: Prediction performance of PPCA regression model on 10%
contaminated industrial data

Figure 3.18: Prediction performance of RPPCA regression model on 10%
contaminated industrial data

is done and the results are presented in Figure 3.17 and Figure 3.18, for the regular

and robust model performances, respectively. Table 3.7 summarizes the results for

this test. As it is observed, the extent of degradation of the regular model is closely

related to the extent of contamination.

Table 3.7: Prediction performance of regular and robust models in industrial
example by 10% contamination in inputs and output

Regular model Robust model

R2 0.5057 0.8419
RMSE 2.0132 0.5173
MAPE 0.0545 0.0134
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3.5 Conclusions

This chapter extends the main idea of authors’ last work presented in [75], by consid-

ering the location outliers in both input and output data, which is very common in

industry. The contaminating location outliers are described by a Gaussian mixture

distribution. This is a more general class of distribution for outlying observations

while still maintaining the analytical properties of a Gaussian distribution for obtain-

ing closed form solutions. This model is considered for both input and output noises

to account for both regression outliers and high leverage points, simultaneously.

The developed robust model under this noise assumption was solved for parame-

ters using EM algorithm. The solution was evaluated using numerical and real data

examples in the sense of prediction performance of the model and its error. Results

show the robustness of the developed model while the performance of regular PPCA

breaks down in the presence of outliers in the simulation case study. The robust

model also showed its ability to overcome the problem of high leverage points. Then

the developed model was applied to real process data from a SAGD operation to

prove the robustness.
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Chapter 4
Robust Probabilistic Principal Component
Analysis for Process Modeling Subject to
Switching Scaled Mixture Gaussian Noise∗

”The fragile wants tranquility,
the antifragile grows from
disorder, and the robust
doesn’t care too much.”

Antifragile: Things That Gain from
Disorder (N. N. Taleb, 2012)

∗A version of this chapter is submitted to Chemometrics and Intelligent Laboratory Systems, as
Anahita Sadeghian, Nabil Magbool Jan, Ouyang Wu, Biao Huang, ”Robust Probabilistic Principal
Component Analysis for Process Modeling Subject to Switching Scaled Mixture Gaussian Noise”
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4.1 Introduction

To evaluate and measure the profitability of a process, it is essential to know product

quality and/or rate of its production. On the other hand, compliance to safety and

environmental constraints is also crucial. To meet these needs, advanced process

control and monitoring techniques have an extensive role nowadays [24]. The first

and one of the most important components in applying these techniques on the process

at hand, is providing the appropriate data which are usually obtained from recorded

observations showing the history of its behaviour. To accommodate for this need,

instrumentation industry is heavily involved through using a wide range of sensors

and analyzers.

The limitation of relying only on instruments is that some values needed to analyze

the process are not measurable and/or are expensive to measure using traditional

methods such as sending a sample for analysis in a laboratory. Such instances include

providing the online value for a fast-rate process variable or an expensive lab analysis,

expensive either time-wise or cost-wise. As an example, laboratory sample analysis

might lack in terms of availability and an online analyzer might not be reliable at

times. Other cases of shortfall might be due to restricted availability and/or reliability

of available measurement techniques or devices. All these shortages might result in

a data set that has a set of complications in dealing with process data including but

not limited to missing, completely off and incorrect, biased and delayed values. This

is aside from drawbacks of some conventional sampling methods that might need the

process to be interrupted [75].

Predictive models are a solution to provide us with frequent estimates for a vari-

able of interest which is either measurable but suffers from issues mentioned above,

or a not measurable one that could still be inferred in some way based on other mea-

sured variables and the historical behaviour of the process. This is where advanced

techniques and algorithms come into the picture to prevent loss of profitability and/or

safety deprivations contingent upon a failed sensor or lack thereof. Thus, inference of

key variables can potentially cut down the cost of hardware installation and mainte-

nance. Predictive mathematical models, also known as soft sensors, inferential sensors

or virtual sensors, provide online estimates of key process variables based on some
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other process records [24].

This work is focusing on design of data-driven soft sensors. There are other

categories mentioned in the literature [24]. Trivially the quality and relevance of the

data used for this design has an important role in performance of designed soft sensor.

Aside from data, choice of development methodology for this design also matters. One

of the sought after avenues is high-fidelity modeling that is able to scale down the

detrimental effect of disturbances and anomalies inherent in the data. An adequate

choice of an analysis method increases the possibility of dealing with some of these

issues inherent in the recorded data.

Although there are different filtering methods to handle this issue, a proper analy-

sis of the data is a better way to cope with it. A proper analysis helps us to detect and

deal with data issues such as outliers, missing data, redundancy, low accuracy, etc.

Several ad-hoc solutions to these potential issues have been addressed in literature

[74, 24, 42, 33, 10]. Presence of outliers, is one of the main concerns that affect data

quality [58]. One other important characteristic of data which is the base of the data-

driven modeling approaches, is multi-modality. This characteristic has been studied

in literature mainly for the multiple process models, such as in [11, 39, 102, 98] to

deal with identification of complex systems. The same characteristic could exist in

noise models. This work will focus on considering multiple noise models that affect

the process data. This situation could happen when there are outlying observations

among the process or laboratory data. These points are basically caused by random

errors and have been discussed in more detail in Chapter 2 and Chapter 3.

4.1.1 Hidden Markov Models

Hidden Markov Models (HMMs), as probabilistic generative models, are mathemat-

ical tools for temporal information implementation in process modeling and also in

history-based fault diagnosis. Aside from temporal analysis, HMMs are also used in

operating mode transition modeling because of their ability to model switching states.

Through fusion of time-domain information, HMMs will greatly assist a model or a

classifier in cases of fault diagnosis applications. For example, to distinguish process

modes with significant overlaps, one can take advantage of HMMs. Such approach

will consider some sort of prior knowledge about the process’s temporal behavior in
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the form of transition probability matrix [83].

Figure 4.1: Typical HMM structure

HMMs, as probabilistic sequence models, are used to estimate the joint proba-

bility distribution of hidden states I and observations O. Under the framework of

HMM, states corresponding to different operating modes can perform transitions and

generate observations with different probability distributions. A typical structure is

shown in Figure 4.1. For simplicity, two conditional independence assumptions are

considered in HMMs, i.e., P (It|It−1, ..., I1) = P (It|It−1) and P (Ot|It, O1, ..., Ot−1) =

P (Ot|It). The former describes the transition probability between two hidden states

and will turn into a transition probability matrix when considering all the possible

transitions. As a result, in comparison with other multimodal algorithms such as

Gaussian Mixure Models (GMM) and Mixture Probabilistic Principal Component

Analysis (MPPCA), HMMs perform much better at modeling the transitions.

HMMs are simple, well-performed and extensible in modeling state transitions. In

dynamic process modeling and monitoring, HMMs are effective frameworks in dealing

with industrial data issues such as missing observations, outliers and time-varying

transitions [77, 78]. In order to achieve satisfactory application performance, various

feature extraction algorithms have been combined with HMMs. This improves model

performance in process modeling and monitoring while considering industrial data

dynamics.

Missing data problems usually arise from different sources such as sensor failures

and other data collection errors. In order to deal with missing data problems, in HMM

based operating mode diagnosis, [78] proposed an algorithm based on the expecta-
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tion maximization (EM) approach for model estimation. [48] designed a semi-Markov

model to estimate the statistical patterns of missing data. To solve the outlier issues,

conventional normal threshold based outlier removal techniques will cause loss of in-

formation. In order to reduce the negative effect of outliers without information loss,

different probability distributions have been used for data description. [38] applied

a contaminated Gaussian distribution to describe the noises, but the Gaussian com-

ponent corresponding to outliers has a fixed variance. More generally, the Student’s

t-distribution has been used for modeling with robustness to outliers [21]. The t-

distribution is also embedded into the HMMs framework to describe the observation

likelihood function given each hidden state [77, 89]. During process operation, due

to external factors, the operation environment will be disturbed persistently, caus-

ing time-varying dynamics in data. For such situations, adaptive modeling has been

proposed with an auxiliary scheduling variable. Accordingly, the parameter-invariant

HMM has been extended to an adaptive framework with a time-varying transition

matrix for dynamic modeling [78].

While using probabilistic generative models, HMMs require explicit probability

distributions to model observations; to simplify the factorization, conditional inde-

pendencies are assumed within HMMs [51]. To generalize, extended versions of HMMs

have been proposed to relax these inherent assumptions of a conventional HMM. Some

examples of these extensions are autoregressive HMMs [85], higher order HMMs [14]

and the factorial HMM framework designed by [55] with three hidden layers, etc.,

although they are expensive in terms of computation. Since such extensions increase

the computational load, model training and inference for these HMMs will become

more complex. Moreover, consideration of appropriate distributions that capture the

observations is still recommended in the extended versions. For an inaccurate prob-

abilistic model, the accuracy of its application (for example, a fault diagnosis task)

will be affected consequently.

It is worth noting that probabilistic discriminative models have been introduced

to alleviate such vulnerability and to compensate for the potential shortcomings of

generative models. In discriminative probabilistic models, instead of modeling the

joint probability, the conditional probability is directly formulated and then opti-

mized. On another note aside from HMMs popularity in research, they have some

89



limitations due to the common assumption of conditional independence. In [17], the

state duration of HMMs follows an exponential distribution, which limits HMMs in

providing adequate representation of temporal correlations.

HMMs have been used in conjunction with model-based approaches to improve

fault detection. This way, instead of assuming that faulty data points are independent

of each other, it is assumed that the faults are correlated over time periods. So, by

the means of HMMs, previous information up to the current time is used as a prior

for the more recent observations [83]. HMMs have also been adopted in qualitative

trend analysis where significant events are extracted from process data. Then, major

events are analyzed as a time sequence in order to provide critical information on the

status of the process at hand. This approach has been used in online applications by

considering a window of recent observations [92].

Recent studies have used probabilistic generative models such as PPCA with

HMMs for fault diagnosis [100, 101]. PPCA considers the uncertainties and this is an

advantage over using a regular PCA. On top of that, considering process dynamics

and their transitions with HMMs builds a strong general structure. The goal would

be inferring the true current operating mode upon the reception of a new observa-

tion. Other studies have improved PPCA-based algorithms by handling the outliers.

For example, a more inclusive distribution, such as a Gaussian mixture of distribu-

tions with different centres and/or spreads, have been used as previously presented

in Chapter 2 and Chapter 3. Similar consideration can be seen in [101] by use of a

Student’s t-distribution which translates as an ultimate case of Chapter 2, where the

mixture distribution contains an infinite number of Gaussian distributions with the

same centre.

Statistical classifiers are another example where HMMs come into the picture.

In [37], the authors introduce fault diagnosis of a gear transmission system. They

modeled a process considering a triple-state continuous-time homogeneous Markov

process. Each of the different states corresponds to a process operating mode. They

have targeted the inference of the current process mode in an online application.

Many more works have been published incorporating these probabilistic sequence

models [95, 28, 93, 76].
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4.2 Fundamentals and Problem Formulation

This section is dedicated to a concise review of some preliminaries over the formulation

of the aimed probabilistic algorithm, and over the methodology of solving it.

Given N samples of m-dimensional inputs and r-dimensional outputs, denote

the input dataset as X = [x1, x2, · · · , xN ]
T ∈ �N×m and output data set as Y =

[y1, y2, · · · , yN ]T ∈ �N×r. The PPCA based model is given by:{
xn = Ptn + μx + en
yn = Ctn + μy + fn

(4.1)

where tn ∈ �q×1 is a latent variable vector having a dimension of q < N , such that

T = [t1, t2, · · · , tN ]T ∈ �q×m. In a matrix form, the equation would be as{
X = TP T +Mx + E
Y = TCT +My + F

(4.2)

In this chapter, it is assumed that the measurement errors for inputs follow a Gaussian

distribution such that,

en ∼ N (0, σ2
xI)

while measurement errors in the output are assumed to have switching noise modes

Iyn. Vector of variable IY = [Iy1 , · · · , IyN ]T ∈ �N×1, (Iyn ∈ �1×1) is introduced as

a vector of binary indicators which implies the identity of noise model. When this

indicator Iyn = 1, the output noise fn is distributed as N (0, σ2
yI); and when Iyn = ρy,

fn is distributed as N (0, ρ−1
y σ2

yI), as shown below.

fn|Iyn ∼
⎧⎨
⎩
N (0, σ2

yI) , for Iyn = 1

N (0, ρ−1σ2
yI) , for Iyn = 2

The level of switching between different noise modes is parameterized in terms of

transition probabilities matrix, α =
[ α11 α12

α21 α22

]
, where αij signifies the transition

probability of switching from noise mode i to the noise mode j. The prior probability

of the occurrence of the first noise mode is denoted as πy1 , and that of the second

noise mode is given by πy2 = 1− πy1 .

For the robust PPCA based algorithm to be developed, the available observations are

X and Y . The unknown parameters to be estimated are collected in Θ. Since the
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latent variables are unknown in the model presented in (4.1), we formulate the robust

PPCA based problem in terms of a complete-data log-likelihood as follows:

arg max
T,IY ,Θ

log p (

Observed︷︸︸︷
X, Y ,

Hidden︷ ︸︸ ︷
T, IY︸ ︷︷ ︸

Complete Data

|Θ), (4.3)

where Θ = {P,C, μx, μy, σ
2
x, σ

2
y , ρy, α,Πy1}.

Assumptions

• The input vectors, {xn}Nn=1, are assumed to be independent, and identically

distributed (i.i.d) random variables.

• The output vector, {yn}Nn=1, is affected by the switching mode indicator Iyn .

• The indicator variable, Iyn , follows a first order Markov property.

• The latent vector, {tn}Nn=1, is assumed to be independent, and identically dis-

tributed.

So, the complete-data log-likelihood can be expressed as:

log p(X, Y, T, IY |Θ) = log
(
p(X|T,Θ) p(Y |T, IY ,Θ) p(T |IY ,Θ) p(IY |Θ)

)
(4.4)

= log
( N∏

n=1

[
p(xn|tn,Θ) p(yn|tn, Iyn ,Θ) p(tn|Iyn ,Θ) p(Iyn)

])

Since IY follows a first order Markov property, p(IY ) =
[∏N

n=2 p(Iyn |Iyn−1)
]
p(Iy1).

Thus, (4.4) will be as

log p(X, Y, T, IY |Θ) =
N∑

n=1

log p(xn|tn,Θ) +
N∑

n=1

log p(yn|tn, Iyn ,Θ)

+
N∑

n=1

log p(tn|Iyn ,Θ) +
N∑

n=2

log p(Iyn |Iyn−1)

+ log p(Iy1) (4.5)

Owing to the presence of hidden variables, T, IY , the formulated robust algorithm is

difficult to solve in general. Therefore, expectation maximization algorithm is used to
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solve the formulated maximum likelihood problem above. Expectation Maximization

(EM) has been previously discussed in Section 2.4.1.

4.3 Solution Methodology

Denote the set of observed variables as Cobs = {X, Y }, and the set of hidden variables

as Cmis = {T, IY }. Then the complete data would be {Cobs, Cmis}. The unknown

parameters, Θ, can be determined by solving the following Maximum Likelihood

Estimation (MLE) problem:

arg max
Θ

p(Cobs, Cmis|Θ) (4.6)

For problems involving hidden variables, EM algorithm is often used. The basic idea

of this algorithm is to solve (4.6) in two steps, iteratively.

• Step 1 (Expectation): Evaluate the Q − function defined as the conditional

expectation of hidden variables,

Q(Θ,Θold) =

∫
p(Cmis|Cobs,Θ

old)
[
log p(Cmis, Cobs|Θ)

]
dCmis (4.7)

• Step 2 (Maximization): Optimize the parameters by maximizing theQ−function,

Θnew = arg max
Θ

Q(Θ,Θold) (4.8)

The current optimal values of parameters, Θnew, are used to re-evaluate the Q −
function in the E-step, and the process is repeated until convergence. To derive

the Q − function, we take the conditional expectation of the complete-data log-

likelihood over the hidden variables. Thus, the Q − function for the robust PPCA

based algorithm under consideration is given by
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Q = E
T,Iy |X,Y,Θold

[
log p(Cmis, Cobs|Θ)

]
= E

T,Iy |X,Y,Θold

[
log p(X, Y, T, IY |Θ)

]
=

∫
tn

∑
Iyn

p(tn, Iyn |xn, yn,Θ
old)

[
log p(Cmis, Cobs|Θ)

]
dtn

=

∫
tn

∑
Iyn

p(tn, Iyn |xn, yn,Θ
old)

[ N∑
n=1

log p(xn|tn,Θ)
]
dtn

+

∫
tn

∑
Iyn

p(tn, Iyn |xn, yn,Θ
old)

[ N∑
n=1

log p(yn|tn, Iyn ,Θ)
]
dtn

+

∫
tn

∑
Iyn

p(tn, Iyn |xn, yn,Θ
old)

[ N∑
n=1

log p(tn|Iyn ,Θ)
]
dtn

+

∫
tn

∑
Iyn

p(tn, Iyn |xn, yn,Θ
old)

[ N∑
n=2

log p(Iyn |Iyn−1)
]
dtn

+

∫
tn

∑
Iyn

p(tn, Iyn |xn, yn,Θ
old)

[
log p(Iy1)

]
dtn

= Q1 +Q2 +Q3 +Q4 +Q5 (4.9)

In the above equation,

p(tn, IY |xn, yn,Θ
old) = p(tn|xn, yn,Θ

old) p(Iy1:yn |xn, yn,Θ
old)

= p(tn|xn, yn,Θ
old)

[ n∏
j=2

p(Iyj |Iyj−1
, xn, yn,Θ

old)
]
p(Iy1) (4.10)

4.3.1 Parameter Estimation

As previously mentioned, in RPPCA-based algorithm here the available observations

are X and Y . The unknowns in this chapter and under the assumption of switching

noise modes are

Unknowns = {P,C, σ2
x, σ

2
y , μx, μy, ρy, T, IY , α.πy}. (4.11)

From this set of unknowns, T, IY are treated as latent variables, and the rest are

contained in the parameters set Θ = {P,C, σ2
x, σ

2
y , μx, μy, ρy α, πy} to be estimated.

The EM algorithm is deployed to estimate the parameters of the model, since there

exist some hidden variables in addition to the unknown parameters. We need to
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construct the Q− function based on (4.7) first, and then maximize that function to

obtain the estimation of parameters by means of an iterative procedure. To obtain

the parameter update equations, (4.9) should be maximized with respect to the set

of parameters. Simply,

Θ = arg max
Θ

E
T,IY |X,Y,Θold

(logP (X, Y, T, IY |Θ))

= arg max
Θ

Q1 +Q2 +Q3 +Q4 +Q5 (4.12)

which is equivalent to solving a set of equations (4.13). For each parameter, a partial

differentiation of a specific term of the Q− function, which contains the parameter

of interest, is used. Results for parameters update equations, after solving (4.13), are

given in (4.14) to (4.27).

P: ∂Q1

∂P
= 0

C: ∂Q2

∂C
= 0

σ2
x:

∂Q1

∂σ2
x
= 0

σ2
y :

∂Q2

∂σ2
y
= 0

μx:
∂Q1

∂μx
= 0

μy:
∂Q2

∂μy
= 0

ρy:
∂Q2

∂ρy
= 0

α: ∂Q4

∂α
= 0

π: ∂Q5

∂πy
= 0

(4.13)

P new =

[
2

N∑
n=1

K∑
k=1

γnk (xn − μx)E
k

T

]

×
[ N∑

n=1

K∑
k=1

γnk Coeff
k

]−1

, (4.14)

where

E
k
= E(tn|xn, yn, Iyn = k,Θold) (4.15)

Coeff
k

= S
k

T + S
k
+2E

k
E
k

T , (4.16)
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and

S
k
= E

k
−E

k
E
k

T . (4.17)

Similarly,

C new =

[
2

N∑
n=1

(
γn1 (yn − μy)E

1

T + ρyγn2 (yn − μy)E
2

T

)]

×
[ N∑

n=1

(
γn1 Coeff

1
+ρyγn2 Coeff

2

)]−1

(4.18)

μ new
x =

1

N

[ N∑
n=1

xn − P
( N∑

n=1

K∑
k=1

γnk E
k

))]
(4.19)

μ new
y =

∑N
n=1

(
γn1

(
yn − C E

1

)
+ ρyγn2

(
yn − C E

2

))
∑N

n=1

(
γn1 + ρyγn2

) (4.20)

σ2
x
new

=
1

mN

[ N∑
n=1

K∑
k=1

γnk

(
(xn − μx)

T (xn − μx)− E
k

TP T (xn − μx)

−(xn − μx)
TP E

k
+E

k
(tTnP

TPtn)

)]
, (4.21)

in which

E
k
(tTnP

TPtn) = tr

(
P TP

(
E
k
(tnt

T
n |xn, yn, Iyn = k,Θold) (4.22)

−E
k
(tn|xn, yn, Iyn = k,Θold)E

k
(tn|xn, yn, Iyn = k,Θold)

T
))

+E
k
(tn|xn, yn, Iyn = k,Θold)

T
P TP E

k
(tn|xn, yn, Iyn = k,Θold)
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σ2
y
new

=
1

r N

[ N∑
n=1

(
γn1

(
(yn − μy)

T (yn − μy)− E
1

TCT (yn − μy)

−(yn − μy)
TC E

1
+E

1
(tTnC

TCtn)

)

+ρyγn2

(
(yn − μy)

T (yn − μy)− E
2

TCT (yn − μy)

−(yn − μy)
TC E

2
+E

2
(tTnC

TCtn)

))]
(4.23)

, where

E
k
(tTnC

TCtn) = tr

(
CTC

(
E
k
(tnt

T
n |xn, yn, Iyn = k,Θold) (4.24)

−E
k
(tn|xn, yn, Iyn = k,Θold)E

k
(tn|xn, yn, Iyn = k,Θold)

T
))

+E
k
(tn|xn, yn, Iyn = k,Θold)

T
CTC E

k
(tn|xn, yn, Iyn = k,Θold)

ρ new
y =

[
r σ2

y

N∑
n=1

γn2

]
×

[ N∑
n=1

(yn − μy)
T (yn − μy)− E

2

TCT (yn − μy)

−(yn − μy)
TC E

2
+E

2
(tTnC

TCtn)

]−1

(4.25)

α new
jk =

[ N∑
n=2

ξ
(jk)
n−1,n

]
×

[ K∑
k=1

N∑
n=2

ξ
(jk)
n−1,n

]−1

(4.26)

π new
k =

γ1k∑K
k=1 γ1k

(4.27)

where,

γnk = p (Iyn = k) (4.28)

ξ
(jk)
n−1,n = p (Iyn−1 = j , Iyn = k) (4.29)
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4.3.2 Latent Variables’ A-posteriori Calculation

As shown in Section 4.3, IY and T in (4.2) were treated as hidden variables in order to

use EM algorithm for the parameter estimation. For using the developed algorithm

in order to predict the outputs corresponding to new inputs, as will be shown in

Section 4.4, and to finalize the obtained solution of EM algorithm, we need to calculate

the a-posteriori probabilities of the hidden variables. Also for the output prediction,

the expectation of hidden variable T is needed. Basically, the goal of the expectation

step in EM algorithm is to bring the updated parameters of the previous maximization

step for re-calculating the a-posteriori probability distribution of latent variables and

then updating their expected values. This is achieved via Bayes’ rule and the chain

rule of probability.

p(tn, Iyn , Iyn−1 |xn, yn,Θ
old) =

p(Iyn , Iyn−1 |xn, yn, tn,Θ
old) p(tn|xn, yn,Θ

old)∑
Iyn

∑
Iyn−1

p(Iyn , Iyn−1 |xn, yn, tn,Θold) p(tn|xn, yn,Θold)

(4.30)

p(Iyn , Iyn−1 |xn, yn, tn,Θ
old) =

p(xn, yn, tn|Iyn ,Θold) p(Iyn |Iyn−1 ,Θ
old) p(Iyn−1 |Θold)∑

Iyn

∑
Iyn−1

p(xn, yn, tn|Iyn ,Θold) p(Iyn |Iyn−1 ,Θ
old) p(Iyn−1 |Θold)

(4.31)

p(xn, yn, tn|Iyn ,Θold) =
p(xn, yn|tn, Iyn ,Θold) p(tn|Iyn ,Θold)∑

Iyn

∑
Iyn−1

p(xn, yn|tn, Iyn ,Θold) p(tn|Iyn ,Θold)

=
p(xn|tn, Iyn ,Θold) p(yn|tn, Iyn ,Θold) p(tn|Iyn ,Θold)∑

Iyn

∑
Iyn−1

p(xn, yn|tn, Iyn ,Θold) p(tn|Iyn ,Θold)
(4.32)

xn|tn, Iyn ,Θold ∼ N (Ptn + μx, σ
2
xI)

tn|Iyn ,Θold ∼ N (0, I)
(4.33)

yn|tn, Iyn ,Θold ∼
{ N (Ctn + μy, σ

2
yI) , for Iyn = 1

N (Ctn + μy, ρ
−1
y σ2

yI) , for Iyn = 2
(4.34)
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Using the completion of squares formula, a joint distribution of input and output

given the latent variables, can be obtained as follows

xn, yn, tn|Iyn ,Θold ∼ N (Joint mean, Joint variance) (4.35)

where,

Joint mean = (σ−2
x P TP + σ−2

y CTC + I)−1 · · ·
· · · × (σ−2

x P T (xn − μx) + σ−2
y CT (yn − μy)) (4.36)

Joint variance =

⎧⎨
⎩

(σ−2
x P TP + σ−2

y CTC + I)−1 , for Iyn = 1

(σ−2
x P TP + ρyσ

−2
y CTC + I)−1 , for Iyn = 2

(4.37)

Expected mean and variance related terms of the a-posteriori distribution (4.10) are

given in (4.38) to (4.41) for different values of the discrete hidden variable IY .

E
1
(tn|xn, yn, Iyn = 1,Θold) = (σ−2

x P TP + σ−2
y CTC + I)−1 · · ·

· · · × (σ−2
x P T (xn − μx) + σ−2

y CT (yn − μy)) (4.38)

E
1
(tnt

T
n |xn, yn, Iyn = 1,Θold) = (σ−2

x P TP + σ−2
y CTC + I)−1

+ E
1
(tn|xi, yn, qyn = 1,Θold) · · ·

· · · × E
1
(tn|xn, yn, Iyn = 1,Θold)T (4.39)

E
2
(tn|xn, yn, Iyn = 2,Θold) = (σ−2

x P TP + ρyσ
−2
y CTC + I)−1 · · ·

· · · × (σ−2
x P T (xn − μx) + ρyσ

−2
y CT (yn − μy)) (4.40)

E
2
(tnt

T
n |xn, yn, Iyn = 2,Θold) = (σ−2

x P TP + ρyσ
−2
y CTC + I)−1

+ E
2
(tn|xn, yn, Iyn = 2,Θold) · · ·

· · · × E
2
(tn|xn, yn, Iyn = 2,Θold)T (4.41)
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4.4 Predictions

Inferring via a model (a.k.a. soft sensor), or prediction of the variables of interest

as discussed in [24], refers to determining a quality variable in real-time based on

the developed model by incorporating some other variables, which are easier to be

measured in real-time. In this chapter, we use the proposed RPPCA based model de-

veloped in Section 2.4 to predict a variable of interest. This will be elaborated further

in Section 4.5 with examples. Since the values of hidden variables of the probabilistic

model are not known, posterior distribution for hidden variables is needed for per-

forming such inference. Obtaining the posterior distribution of hidden variables has

been presented in Section 4.3.2. To take uncertainty into account, the law of total

expectation is applied as in (4.42).

t̂n = E(tn|xn,Θ
old)

=
∑
Iyn

∑
Iyn−1

E(tn, Iyn , Iyn−1 |xn,Θ
old) (4.42)

The expectations of the hidden variable for each noise state are as follows:

E
1
(tn|xn, Iyn = 1,Θold) = (σ−2

x P TP + I)−1(σ−2
x P T (xn − μx)) (4.43)

E
1
(tnt

T
n |xn, Iyn = 1,Θold) = (σ−2

x P TP + I)−1

+ E
1
(tn|xn, Iyn = 1,Θold) · · ·

· · · × E
1
(tn|xn, Iyn = 1,Θold)T (4.44)

Similarly,

E
2
(tn|xn, Iyn = 2,Θold) = (σ−2

x P TP + I)−1(σ−2
x P T (xn − μx)) (4.45)

E
2
(tnt

T
n |xn, Iyn = 2,Θold) = (σ−2

x P TP + I)−1

+ E
2
(tn|xn, Iyn = 2,Θold) · · ·

· · · × E
2
(tn|xn, Iyn = 2,Θold)T (4.46)
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Having the prediction for the latent variable, and using the generative model as in

(4.2), the output prediction can be obtained as shown in (4.47). The error for this

prediction, ε, which is the difference between predicted and real values of output

variable, is obtained from (4.48).

ŷn = Ct̂n + μ̂y (4.47)

ε = ŷ − y (4.48)

There are many standard performance measures for evaluating the goodness of fit and

thus the prediction. R-squared and mean squared error (MSE) are used more often.

The mean absolute percentage error (MAPE) is also a measure of how accurate a

forecast is. It measures this accuracy as a percentage, and can be calculated as the

average absolute percent error for each time period minus actual values divided by

actual values. Correlation between predicted and real values is also useful. Root mean

squared error (RMSE) as in (4.49) is a well-known measure to give a quantitative sense

in comparisons and is defined as

RMSE �

√√√√√ N ′∑
n=1

‖ŷn − yn‖2

N ′ , (4.49)

where, N ′ is the total number of test samples and ŷ and y are predicted and real

output values, respectively.

4.5 Case Studies

In this section, the developed algorithm in this chapter is put into test for validation

in a simulated example and then in an example with real industrial dataset.

4.5.1 Case I: Numerical Study

Here, the prediction performance of the developed algorithm in this chapter is ver-

ified and its robustness in presence of a switching noise is evaluated. To perform

this analysis, a dataset is generated based on a known model. Output noise is

simulated with an HMM that takes two states, one for the normal situation and

101



Figure 4.2: Generated state sequence for numerical case study using HMM

the other for the switched (abnormal) one. Data were generated including 300

observations from 5 input variables and 1 output variable. Two principal com-

ponents are considered for generating the dataset. The loading matrix is set to

P(m=5)×(k=2) = 1
50
[40, 10; 20, 30; 15, 20; 15, 35; 40, 10], regression coefficient matrix is

C(r=1)×(k=2) = 1
50
[10, 40] and input/output mean vectors are μx = [0, 0, 0, 0, 0] and

μy = [0], respectively. Input/output noises are Gaussian random variables. Input

noise is a simple Gaussian variable with zero mean and output noise en has a switch-

ing model that will be discussed later in this section. Both input noise and the nor-

mal counterpart of the output noise, follow a Gaussian distribution with zero mean

and a variance that is an averaged scaled version of original data variance (namely

en ∼ N (0, 30I), fn ∼ N (0, 30I), respectively). As a conventional assumption, latent

variable vectors have a standard Gaussian distribution and are i.i.d. To get a hint on

the number of latent variables, PCA can be applied to the data. Based on the scree

plot, the number of latent variables can be chosen to capture the variability of this

generated data. Generated state sequence is shown in Figure 4.2. Hidden state in

this example has two modes, shown in the figure, ”1” and ”2”, respectively. States

are generated in different frequencies to simulate the mode changes. Figure 4.2(a)

shows states that change in every time step, which represents a fast switching dy-

namic. Since chemical processes are not naturally fast in changes, Figure 4.2(b) is

used to represent the state switching behaviour. To demonstrate the efficiency of
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Figure 4.3: Fit statistics of Robust PPCA models with and without switching noise
model

Figure 4.4: Scatter plot for predictions of two Robust PPCA-based models with and
without switching noise model

our developed algorithm, we compared its performance with a robust PPCA based

model that does not consider switching behaviour in the states of noise. This happens

while both models are applied to a dataset that intentionally has switching modes for

the noise model. Fit statistics R2 for both models and in different runs are reported

in Figure 4.3. It verifies the results of considering dynamic switching noise model as

expected, when the underlying noise has a switching behaviour. Typical trend pre-
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Figure 4.5: Trend plot for predictions of two Robust PPCA-based models with and
without switching noise modes

diction performance of the two robust models are shown in Figure 4.4 and Figure 4.5

on a dataset that has noise switching. As the figures show the robust PPCA-based

algorithm that considers noise mode switch, acts more robust compared to the pre-

vious algorithm developed in Chapter 2 which assumed independent and identically

distributed (i.i.d.) noise attributes.

To conclude this case study, a set of contaminated data for two different noise

state transition patterns, with the inflation factor of ρ = 0.01, are used and the two

RPPCA based algorithms are compared in terms of their performances. Prediction

error measures are compared in Table 4.1. Static and Dynamic in the table headings

refer to the sequence in noise model.

Table 4.1: Prediction performance in robust models for two transitions, ρ = 0.01

RPPCA-Static RPPCA-Dynamic

Transition matrix R2 RMSE MAPE R2 RMSE MAPE
[0.9, 0.1; 0.1, 0.9] 0.8405 0.372 1.144 0.9255 0.2543 0.8306
[0.6, 0.4; 0.4, 0.6] 0.8341 0.3675 1.3357 0.9244 0.2481 0.9714
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4.5.2 Case II: Industrial Application

In this section, the robust algorithms are used on a real dataset to predict a variable

of interest. SAGD operation is chosen for data acquisition. The operation details

have been discussed in Section 2.5.2 and Section 3.4.2.

Robust probabilistic model with switching noise modes

Here, the developed robust PPCA based algorithm, which now has the capability of

handling switching noise modes, is used for process modeling. The model performance

is compared to that of a robust counterpart previously showcased in Chapter 2, which

has only considered random noise mode switching. In both cases a scaled Gaussian

mixture noise is considered for the model development, but each with different as-

sumptions about the mode switching dynamics; one considers the correlation of the

switching sequence and the other does not. A correlated switching sequence is added

in the scaled Gaussian mixture measurement noise. In reality, the measurement noise

is not solely originated from the same distribution; this could be seen in terms of

distribution family and also in terms of hyperparameters of the mixed counterparts.

For representing normal noise and outliers, two switching modes are considered.

Figure 4.6: Mixture noise distribution for two different values of spread factor
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The existing historical data from this process are a set of flow rates, pressures,

and temperatures for injection and production well pair which are constructed by

a 10 min average data recorded for a season in year 2014. This dataset consists of

a total of 4 inputs and 1 output variables that have been recorded in about 52500

sample points, from which a set of 10906 sample points have been considered for the

analysis in which the process shows a linear and time-invariant behavior. This dataset

has been used in Chapter 2 for a scaled Gaussian mixture based robust algorithm

without considering the dynamics of the switching sequence. In this study roughly

two third of the data is used for training and the rest is left out for validation. Both

robust algorithms are applied for obtaining a set of model parameters and then are

compared in terms of their prediction performances. Noise model switching sequence

is generated by a random sequence of states generated from an HMM. Figure 4.6

shows the noise distribution for two different inflation factors, representing the extent

of contamination.
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Figure 4.7: SAGD product oil flowrate and its contaminated counterpart
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(a) Original data vs contaminated data with ρ = 0.001

(b) Original data vs contaminated data with ρ = 0.1

Figure 4.8: Data contamination
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In this study, the inflation factor of the scaled noise mixture distribution is set

to 0.001, meaning that one noise mode has a spread of 1000 times of the other

to represent the outliers. For transitioning between the two noise modes (normal

and outliers), transition probabilities of 30 percent and 70 percent are considered,

indicating that during the time, each of the states would repeat itself most of the

time (70 percent) and will have a transition to the other mode with a probability of

30 percent. The possible transition happens in intervals of every 100 samples. As for

the emission probability, 0.9 and 0.1 are set, respectively, for the normal noise mode

and the outlier mode. Figure 4.7 shows the data before and after contamination with

a switching noise in the above mentioned setting.

Comparison of the data distributions before and after contamination is shown in

Figure 4.8, for two different scenarios. Figure 4.8(b) shows the case when ρ is bigger

and the spread of contamination is more narrow since its inverse determines the

inflation of the standard deviation for the contaminating noise mode. As expected,

when there is more severe contamination as in Figure 4.8(a), there would be more

data lying farther from the center. Figure 4.10 shows the prediction performance

for product flowrate. To compare the effect of the robust model in this chapter and

that of a robust model that was developed in Chapter 2 without considering the

correlation of the switching sequence, see Figure 4.9. Comparison of Chapter 3 and

this chapter might be an interesting topic to investigate. Although that might not be

a fair comparison on all datasets since the contamination is assumed to be of a specific

nature. Instead, advancement of the idea of Chapter 3 with a mixture switching noise

model might be of interest for future researchers as a forward movement on this topic.

Table 4.2: Prediction performance of two robust models in Industrial case example

Original data Contaminated data (ρ = 0.001)

RPPCA-Static RPPCA-Dynamic RPPCA-Static RPPCA-Dynamic
R2 0.8865 0.8872 0.6817 0.8740

MAPE 0.0111 0.112 0.0205 0.0116
RMSE 0.4395 0.4381 0.7358 0.4631
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Table 4.2 summarizes the results for the comparison of the two RPPCA-based algo-

rithms. As the outcome of EM algorithm depends on the initial points, the parameters

from a regular PPCA based model are used as initial points for the robust model pa-

rameter optimization. To make sure the results are representative, a Monte Carlo

simulation was carried out and the average of all runs are reported. As Table 4.2

shows, when the original data is used, the performances are similar for both robust

algorithms, regardless of the noise model assumption.
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Figure 4.9: SAGD product oil flowrate prediction for previously developed
RPPCA-based model

When feeding the algorithms by contaminated data with switching noise modes, the

results indicate that the RPPCA proposed in this chapter can perform better while

the RPPCA proposed in Chapter 2, has a poorer performance due to the fact that it

does not consider the correlation of switching sequence. Nevertheless, the prediction

performance and the extent of robustness will depend on the intensity and level of

contamination.
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Figure 4.10: SAGD product oil flowrate prediction for proposed RPPCA-based
model
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4.6 Conclusion

This chapter advances the work presented in Chapter 2, by considering a more re-

alistic scenario. A correlated switching behaviour is considered in the noise model

of process measurements. Nonetheless, in real processes the number of noise modes

could be more, depending on the complexity of the process and measurement devices.

To describe normal noise and outliers, two noise modes are usually sufficient. The

proposed robust model under this noise assumption was solved for parameters using

EM algorithm. The solution was evaluated using a set of simulated data as well as a

set of industrial data.
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Chapter 5
Conclusions and Future Directions

“Resilience is accepting your
new reality, even if it’s less
good than the one you had
before. You can fight it, you
can do nothing but scream
about what you’ve lost, or
you can accept that and try
to put together something
that’s good.”

Mary Elizabeth Anania Edwards (1949 -
2010)
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5.1 Concluding Remarks

Different categories of outlying observation problems have been discussed. A Gaus-

sian mixture distribution and a contaminated noise assumption were considered for

PPCA based process models. This represents a more general class of distribution for

explaining outlying observations while still maintaining the analytical properties of

a Gaussian distribution for a closed-form solution. Accordingly, for different cate-

gories a robust probabilistic model was developed, based on which a better prediction

performance for the desired quality variable could be obtained in the presence of

large random errors in data. Unlike the conventional PPCA based models with a

single Gaussian noise model, the developed robust models downweigh the effect of

different styles of outlying observations in output prediction. The developed robust

algorithms under these noise assumptions were solved for the model parameters using

Expectation Maximization (EM) algorithm. Consideration of the Gaussian mixture

noise model eases the process of getting closed-form solutions for model parameters, as

well as downweighing the effect of the outlying noise in output prediction. Robustness

and performance of the models were demonstrated through numerical and industrial

case studies. Results confirm the robustness of the developed algorithms while the

performance of other models breaks down in the presence of outlying observations.

5.2 Suggestions for Future Studies

Finally, there are more comprehensive directions of a robust PPCA-based algorithm

development to be explored. A more general and inclusive assumption for the noise

model which accommodates for other possible scenarios of outlying observations will

expand the capability of the developed robust model. Some suggestions could be

the consideration of a simultaneous switching dynamics for both input and output.

Comparison of the algorithm introduced in Chapter 3 with a robust version of the

algorithm that is developed under a switching noise assumption in Chapter 4 might

be of interest for future contributions around this topic.

The switching itself can consist of more states to encompass a broader category

of dynamic behaviour. States could be sourced from a scaled or location Gaussian

112



mixture or even a combination of both. This choice could be handed over to the user

of the model for making the decision based on their knowledge of the process and

its nature. Student’s t-distribution assumption for the noise model is also common

as its heavy tails are a representative of outlying process records. This thesis studies

a mixture of Gaussian distributions for the sake of obtaining closed form solutions

through this family of distributions. The ultimate case would be a Student’s t-

distribution which could be seen as an infinite number of Gaussian distributions in

a mixture noise model. Laplace distribution can also be assumed as the noise model

for its representative shape and properties.
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Appendix III
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· · ·+ ρyσ
−2
y CT (yi − (μy +Δy)))

E
Δ−Δ

(ti|xi, yi, qxi
= Δx, qyi = −Δy, θ

old) = (ρxσ
−2
x P TP + ρyσ

−2
y CTC + I)−1

(ρxσ
−2
x P T (xi − (μx +Δx)) · · ·

· · ·+ ρyσ
−2
y CT (yi − (μy −Δy)))

E
−Δ0

(ti|xi, yi, qxi
= −Δx, qyi = 0, θold) = (ρxσ

−2
x P TP + σ−2

y CTC + I)−1

(ρxσ
−2
x P T (xi − (μx −Δx)) + σ−2

y CT (yi − μy))

E
−ΔΔ

(ti|xi, yi, qxi
= −Δx, qyi = Δy, θ

old) = (ρxσ
−2
x P TP + ρyσ

−2
y CTC + I)−1

(ρxσ
−2
x P T (xi − (μx −Δx)) · · ·

· · ·+ ρyσ
−2
y CT (yi − (μy +Δy)))

E
−Δ−Δ

(ti|xi, yi, qxi
= −Δx, qyi = −Δy, θ

old) = (ρxσ
−2
x P TP + ρyσ

−2
y CTC + I)−1

(ρxσ
−2
x P T (xi − (μx −Δx)) · · ·

· · ·+ ρyσ
−2
y CT (yi − (μy −Δy))) .
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Appendix IV

E
0Δ
(tit

T
i |xi, yi, qxi

= 0, qyi = Δy, θ
old) = (σ−2

x P TP + ρyσ
−2
y CTC + I)−1

+ E
0Δ
(ti|xi, yi, qxi

= 0, qyi = Δy, θ
old) · · ·

· · · E
0Δ
(ti|xi, yi, qxi

= 0, qyi = Δy, θ
old)T

E
0−Δ

(tit
T
i |xi, yi, qxi

= 0, qyi = −Δy, θ
old) = (σ−2

x P TP + ρyσ
−2
y CTC + I)−1

+ E
0−Δ

(ti|xi, yi, qxi
= 0, qyi = −Δy, θ

old) · · ·
· · · × E

0−Δ
(ti|xi, yi, qxi

= 0, qyi = −Δy, θ
old)T

E
Δ0
(tit

T
i |xi, yi, qxi

= Δx, qyi = 0, θold) = (ρxσ
−2
x P TP + σ−2

y CTC + I)−1

+ E
Δ0
(ti|xi, yi, qxi

= Δx, qyi = 0, θold) · · ·
· · · E

Δ0
(ti|xi, yi, qxi

= Δx, qyi = 0, θold)T

E
ΔΔ

(tit
T
i |xi, yi, qxi

= Δx, qyi = Δy, θ
old) = (ρxσ

−2
x P TP + ρyσ

−2
y CTC + I)−1

+ E
ΔΔ

(ti|xi, yi, qxi
= Δx, qyi = Δy, θ

old) · · ·
· · · × E

ΔΔ
(ti|xi, yi, qxi

= Δx, qyi = Δy, θ
old)T

E
Δ−Δ

(tit
T
i |xi, yi, qxi

= Δx, qyi = −Δy, θ
old) = (ρxσ

−2
x P TP + ρyσ

−2
y CTC + I)−1

+ E
Δ−Δ

(ti|xi, yi, qxi
= Δx, qyi = −Δy, θ

old) · · ·
· · · × E

Δ−Δ
(ti|xi, yi, qxi

= Δx, qyi = −Δy, θ
old)T

E
−Δ0

(tit
T
i |xi, yi, qxi

= −Δx, qyi = 0, θold) = (ρxσ
−2
x P TP + σ−2

y CTC + I)−1

+ E
−Δ0

(ti|xi, yi, qxi
= −Δx, qyi = 0, θold) · · ·

· · · × E
−Δ0

(ti|xi, yi, qxi
= −Δx, qyi = 0, θold)Tv(1)

E
−ΔΔ

(tit
T
i |xi, yi, qxi

= −Δx, qyi = Δy, θ
old) = (ρxσ

−2
x P TP + ρyσ

−2
y CTC + I)−1

+ E
−ΔΔ

(ti|xi, yi, qxi
= −Δx, qyi = Δy, θ

old) · · ·
· · · × E

−ΔΔ
(ti|xi, yi, qxi

= −Δx, qyi = Δy, θ
old)T

129



E
−Δ−Δ

(tit
T
i |xi, yi, qxi

= −Δx, qyi = −Δy, θ
old) = (ρxσ

−2
x P TP + ρyσ

−2
y CTC + I)−1

+ E
−Δ−Δ

(ti|xi, yi, qxi
= −Δx, qyi = −Δy, θ

old) · · ·
· · · × E

−Δ−Δ
(ti|xi, yi, qxi

= −Δx, qyi = −Δy, θ
old)T
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