
 1

Computer-game Construction: A Gender-
neutral Attractor to Computing Science
MIKE CARBONARO
Faculty of Education, University of Alberta, Edmonton, AB T6G 2G5, Canada

DUANE SZAFRON
Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada

MARIA CUTUMISU
Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada

JONATHAN SCHAEFFER
Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada

ABSTRACT : Enrollment in Computing Science university programs is at a dangerously low level. A major reason
for this is the general lack of interest in Computing Science by females. In this paper, we discuss our experience with
using a computer game construction environment as a vehicle to encourage female participation in Computing
Science. Experiments with game construction in Grade 10 English classes showed that females enjoyed this activity as
much as males and were just as successful. In this paper, we argue that: a) computer game construction is a viable
activity for teaching higher-order thinking skills that are essential for Science; b) computer game construction that
involves scripting teaches valuable Computing Science abstraction skills; c) this activity is an enjoyable introduction
to Computing Science; and d) outcome measures for this activity are not male-dominated in any of the three aspects
(higher-order thinking, Computing Science abstraction skills, activity enjoyment). Therefore, we claim that this
approach is a viable gender-neutral approach to teaching Computing Science in particular and Science in general that
may increase female participation in the discipline.

INTRODUCTION
The March 23rd, 2006 edition of the Economist featured an article called “Computing and the

Scientific Method” in which an interesting question was asked and answered:
WHAT makes a scientific revolution? Thomas Kuhn famously described it as a “paradigm shift” – the change that
takes place when one idea is overtaken by another, usually through the replacement over time of the generation of
scientists who adhered to an old idea with another that cleaves to a new one. … Some 34 of the world’s leading
biologists, physicists, chemists, Earth scientists and computer scientists … have spent the past eight months trying to
understand how future developments in Computing Science might influence science as a whole. They have concluded,
in a report called “Towards 2020 Science”, that computing no longer merely helps scientists with their work. Instead,
its concepts, tools, and theorems have become integrated into the fabric of science itself. (Economist.com).

Computing Science is playing an increasingly important role across all scientific disciplines, to the point
that advancements in Science are inherently linked to advancements in computational representations
and functional implementation. One only needs to examine the human genome project to see the
extensive role that computational techniques continue to play in helping us to understand our genetic
code. Diverse subjects such as space travel, environmental modeling, cell phones, and online social
networking all depend on the concepts, tools, and theorems linked to research in Computing Science.

Predictions by the U.S. Department of Labor Statistics (www.doleta.gov) indicate that information
technology is the fastest growing economic sector, with a 68% increase in output growth rate projected
for the 2002-2012 decade. Unfortunately, since the dot.com bubble burst in 2000-2001, Computing

duane
Text Box
This is a preprint of an article that will appear in the journal Computers and Education.

 2

Science enrollment at universities and colleges has decreased by 50% to 70% (www.cra.org). In part, the
sharp decline has been attributed to the fear that Computing Science is no longer a viable career path.
This is ironic in the light of the increased dependence of Science on computing.

Stanford Professor Eric Roberts pointed out why the declining interest in Computing Science has
serious implications beyond that of the computing industry and how it may severely hinder advances in
Science (Roberts, 2007). For example, algorithms that model the movement of a robot’s arm can also be
used to assess whether a specific drug molecule can dock on a human protein and block the development
of certain diseases. Roberts suggests the real barrier to generating interest in Computing Science is
public education, especially at the K-8 level, where the teaching of Computing Science is rarely found
(Cohoon & Aspray, 2006) and often deficient at the 9-121 level as well.

Although efforts are being made by many educational institutions to encourage students to study
Computing Science at both the secondary and post-secondary level (www.csta.acm.org), few K-12
schools teachers have formal training in the subject area and/or access to the necessary
hardware/software (Goode, 2007). If students do take Computing Science in high school, it is often as an
Advanced Placement option with restricted enrollment. Contrast this with other Science subjects like
Mathematics, Biology, Chemistry, and Physics. For these subjects, schools have designed curricula and
environments to support these disciplines and teachers have been formally trained in the appropriate
domain content and pedagogy.

In addition to the lack of resources at the K-12 level for teaching Computing Science, there are other
factors that impact students selecting this field of study. Carter (2006) surveyed 796 (363 male, 423
female) pre-calculus high school students as to why individuals with an apparent aptitude for Computing
Science did not select it as a major. The top reasons that both males and females cited for not selecting
Computing Science were the lack of desire to sit in front of a computer screen all day, and the fact that
they had already selected a major. The number one reason for males selecting Computing Science was
their experience with computer games, while for females it was their desire to use their Computing
Science knowledge in another area of study. Overall only 36% of the males and 11% females surveyed
indicated they were somewhat likely to select Computing Science as a major.

That few females are interested in Computing Science as a field of study should come as no surprise
since traditionally there have always been a small percentage of undergraduate women in Computing
Science (Camp, 1997; Singh, Allen, Scheckler, & Darlington, 2007). According to the 2006 Taulbee
survey (www.cra.org), the percentage of Computing Science bachelor’s degrees granted to women in the
U.S. between 1994-2006 ranged between 14% and 18%, with 2005/06 having the lowest percentage at
14%. Such percentages may be expected, given differences in parental socializing behaviour. Parents
often encourage males to engage in scientific thinking and activities (Crowley et al., 2001; Simpkins et
al., 2005) more than they encourage females. In addition, girls’ perceptions and experiences with
Science are different from those of boys. For example, during the middle-school years, girls often begin
to lose confidence in their ability to learn Science (Dreves & Jovanovic, 1998) and also suffer from
gender stereotypes, such as ‘physics is for boys’ (Kessels, 2005).

One would expect this historical bias against females pursuing Science to result in low female interest
in all major scientific disciplines. However, recent data indicates that this is no longer true. In 2004-
2005, graduation levels across traditional scientific disciplines show the percentage of B.Sc. degrees

1 Unfortunately to many teachers/parents, Computing Science means the study of word processors,
spreadsheets, presentation tools and web page construction.

 3

granted to women in the U.S. were as follows: 62% in Biology, 51% in Chemistry, 46% in Mathematics,
and 22% in Physics (National Center for Educational Statistics, nces.ed.gov). This data indicates that in
some areas of Science, the female participation level has met or exceeded the male level. Only Physics
B.Sc. graduation rates are close to the dismal showing found in Computing Science.

Why are Physics and Computing Science levels so low? High school experience plays an important
role in student selection of subject area interest at university (Goode, 2007). In the context of high
school Physics, there are a number of pedagogical approaches that create barriers to female participation
and often negatively influence their performance (Hazari, Tai & Sadler, 2007):

• Males are often allowed to dominate the classroom environment.
• Females must do unhelpful collaborative group work with males, especially in lab settings.
• The content is often specific to male interests.
• Traditional Physics instructional environments are typically isolated.

Research in Computing Science is less clear, but according to Goode, Estrella & Margolis (2006):

“We have witnessed female high school students who want to be more deeply involved with technology,
who know it is part of their future, who dream big, but who have no understanding of what deeper
involvement entails, or what preparation is required.” Barriers for female participation may come from
an overall negative attitude towards using computers, lack of confidence with software and hardware
tools, and a general misconception that work in Computing Science is conducted in isolation and is not
relevant to society (Cohoon & Aspray, 2006).

There is strong evidence to suggest that gender is not a constraint in learning Mathematics and
Science concepts. In a landmark publication, Hyde and Linn (2006) reported their meta-analysis on
gender diversity and its role in selecting Mathematics and Science as career paths. Their research
indicates that, regardless of gender, school age children have similar cognitive abilities and
psychological traits. They conclude that, “rather than focusing on gender differences, mathematics and
science educators and researchers could more profitably examine ways to increase awareness of the
similarities of performance and in ability to succeed.” Shibley’s and Linn’s assessment provides
important insight into the direction educators might take to encourage females’ interest in disciplines
like Physics and Computing Science.

Computing Science: Curriculum, Learning, and Games
Female students often make decisions about a possible career in Science during their middle school

years (American Association of University Women Educational Foundation, 1996). Unfortunately,
Computing Science has traditionally been introduced in high school with a formal instructional
approach. Most introductions to Computing Science focus on perplexing/irrelevant topics and use
languages such as C or C++ that are often perceived to be cryptic. Introductory assignments often
involve sorting and merging lists of numbers or text, testing algorithms, and creating files. For example,
the Computer Science Teachers Association Model Curriculum for K-12 Computer Science (CSTA,
2006) suggests the following lab assignments for the high school Computing Science programming
component: methods (functions) and parameters, recursion, objects and classes (arrays, vectors, stacks,
queues), graphics, and event-driven interactive programming. They also suggest introducing hardware
and systems: logic, gates and circuits, binary arithmetic, assembly language, operating systems, user
interface, and compliers.

This traditional approach to understanding Computing Science is less than appealing to many
students, and particularly to female students (Cohoon & Aspray, 2006). Over the past several years there

 4

has been a concerted effort on the part of educators to: a) understand the barriers female students
encounter to studying Computing Science (Sing, Allen, Scheckler & Darlington, 2007), and b) develop
innovative curriculum models that promote female participation in Computing Science (Beyer et al.,
2005; Graham & Latulipe, 2003; Kurkovsky, 2007; Vilner & Zur, 2006). This paper investigates topics
related to the second issue.

We contend that introducing computer game design and construction into the high school curriculum
is now a viable way of promoting female interest in Computing Science. Using the computer gaming
environment as a vehicle to encourage female participation in Computing Science may appear counter-
intuitive, given that game players are almost always boys (Cummings & Vandewater, 2007). That being
said, there is a critical difference between playing games and constructing computer games with respect
to motivating learners and facilitating problem-solving (Szafron, 2005; Kelleher, Pausch & Kiesler,
2007; McClay et al., 2007; Kafai, Heeter, Denner & Sun, 2008). Game programming as part of a
university Computing Science curriculum is not new; most university computing programs offer such a
course. However, computer game construction in K-12 is rare. In a recent example, an after-school
program (with support from the National Science Foundation) called the Girls Creating Games program
(GCG) was created to stimulate female interest in information technology (Denner et al., 2005; Denner
2007). Quantitative and qualitative studies involving female middle-school students (grades 6-8, average
age 11.7 years) suggest that the GCG program improved skills and knowledge of computers while
decreasing negative stereotypes associated with working in the field of information technology. Fairly
simple games were programmed using Flash (www.macromedia.com) and Denner provides extensive
resources for teachers (programservices.etr.org/gcgweb/). Note that the activity we are promoting
consists of both the design and construction of games. For simplicity, we will use the term game
construction to encompass both activities. We selected this word to emphasize that the result of these
equally important activities is an actual artifact that can be shared and discussed. We often use the term
author to describe an individual who participates in the design and construction process.

Constructivist learning theory argues that knowledge is built by the learner, very often in a social
context (Vygotsky, 1978). A corollary of constructivism, constructionism, further argues that this
knowledge-building process can be facilitated through the construction of tangible, shareable artifacts
such as text, plays, stories, models, working machines, computer programs, and even toys (Papert,
1991). From a learning and problem-solving perspective the act of constructing such an artifact is much
different than interacting with that artifact in its final form (Penner, 2001). Recent research has shown
that even though boys play computer games for significantly more hours than girls, there is no
difference in their ability to construct computer games (software artifact) of comparable complexity
(Carbonaro et al., 2008).

Unfortunately the construction of a complex computer game, with 3D graphics and a multi-threaded
‘story’ architecture, is difficult because of the sophisticated level of programming knowledge that is
required. Papert’s (1980) early work on the development and use of the Logo programming language
demonstrated how abstract and concrete relationships could be managed so that computer programming
could be made accessible to children—without comprising the programming integrity of Computing
Science. Simple programs could be constructed, observed, reflected upon, revised, and shared with
others. The core ideas of his work, that programming could be made more accessible to children and
non-programmers, has resonated throughout Computing Science, and is instantiated in new language
environments such as the Lego NXT G graphical programming tool (Kelly, 2007) and the Alice object-
oriented programming world (www.alice.org).

 5

The Alice programming environment is an excellent example of how novice Computing Science
students can learn basic programming constructs by using a simplified, yet functionally powerful
programming environment. Alice allows students to write 3D animated movie type stories by dragging
and dropping code elements to form scenes (Kelleher & Pausch, 2007). A modified version of Alice,
called Storytelling Alice, has been successfully used with middle-school girls to motivate them to learn
programming (Kelleher, Pausch, & Kiesler, 2007).

Other scientific disciplines have increased their enrollment by drawing from both genders. Without
diversity of gender there is a real possibility that new ideas and potential opportunities in Science will be
missed (Kenway & Gough, 1998). The research presented in this paper describes how student
construction of computer games in grades K-12 can be used to increase interest in the Computing
Science discipline for both genders, and to enhance general higher-order thinking skills that are
applicable across all Science disciplines. Since males have a higher interest in playing computer games
than females, one might expect that computer game construction activities may stimulate more interest
and enthusiasm for Computing Science from males than females and further alienate females from this
discipline. However, we show that despite a large disparity in interest and experience between males and
females with respect to playing computer games, this relative lack of experience has no impact on their
success and enjoyment in constructing computer games. An affinity for playing computer games
certainly draws males to the discipline of Computing Science. We show that the lack of affinity for
playing computer games is not an impediment to using game construction as a mechanism for providing
an enjoyable scientific experience. We assert that this enjoyable scientific experience may in fact attract
more females to the discipline.

We conducted a study of high school students who constructed game adventures (interactive stories)
for BioWare’s Neverwinter Nights (NWN) game (BioWare, 2008), using a commercial game
construction toolset (Aurora Toolset) and a scripting tool, ScriptEase (Cutumisu et al., 2007) that we
created. The research conducted in this study builds upon previous work that demonstrated high school
students are capable of successfully creating and writing interactive stories (Carbonaro et al. 2008;
McClay et al. 2007; Szafron et al., 2006).

In this paper, we argue that: a) computer game creation is a viable activity for teaching higher-order
thinking skills that are essential for Science; b) computer game construction that involves scripting
teaches valuable Computing Science abstraction skills; c) this activity is an enjoyable introduction to
Computing Science; and d) outcome measures for this activity are not male-dominated in any of the
three aspects (a. higher-order thinking, b. Computing Science abstraction skills, or c. activity
enjoyment). To increase overall interest in Computing Science, we propose a general-neutral attractor
that allows students to enjoy using Computing Science skills to construct tangible, shareable artifacts.

SCRIPTEASE: COMPUTER GAME CONSTRUCTION SIMPLIFIED
BioWare Corp.’s Aurora Toolset is a drag-and-drop CAD tool used to define and populate a game

adventure that is run using the Neverwinter Nights infrastructure. It provides a rich palette of interior
and exterior map tiles, objects, creatures, etc. for constructing the environments in which the game
adventure will unfold. Figure 1 shows an author placing a container (named Magic Chest) into a room.

ScriptEase (Cutumisu et al. 2007) is a tool that simplifies the task of defining the interactions between
the player character and game objects. Normally, this is done using a scripting language, which is
usually a simplified version of a programming language, such as C or C++. However, with ScriptEase,
the game author specifies interactions through the use of patterns, a familiar concept or idiom in a game

 6

adventure, rather than writing explicit scripts. From an author’s point of view, using ScriptEase to
specify the game content is a simple three-step process:

1. Select an appropriate pattern and create an instance of it. ScriptEase provides a rich set of
patterns for role-playing games. These patterns can be used for specifying the plot, dialogues,
character/object interactions, and character behaviours. For example, when a magic container is used
(e.g., opened or closed), the author might want to have a creature spawned nearby. This can be done
using the encounter pattern2 Placeable use – spawn creature, since a container is represented by a
Placeable object in the game. Instantiation of a pattern generates a high-level natural language
description. Figure 2 shows this pattern in ScriptEase.

2. Adapt the pattern. Each pattern must be customized to match the intent of the author for the
specific story being told. The author adapts the pattern by selecting appropriate game adventure
information using menu selection and dialog boxes. For example, when using the Placeable use – spawn
creature pattern, the author must specify The Placeable, the Spawned Creature, and a visual Spawn
Effect that will be displayed when the creature is spawned. Figure 2 shows The Placeable option being
set to the Magic Chest. The simplicity of the adaptation process is a key to success. Setting options is the
simplest form of pattern adaptation. There are other kinds of adaptation as well and the encounter
pattern in Figure 2 has been opened to show its contents so that the other kinds of adaptation can be
described (next section).

3. Generate scripting code. The author presses a button and the scripting code is generated
automatically from the adapted pattern. Most authors never see the scripting code.

Figure 1. Using the Aurora Toolset to manipulate objects in the game world.

2 An encounter pattern describes an interaction between the player character and a game object. A
placeable refers to an inanimate game object such as a chest, a lever or a statue.

 7

Figure 2. Using ScriptEase to add a pattern and set an option.

Once the scripting code is generated, the author can push a button to test the game. When the Player
Character (PC) opens the Magic Chest, a creature is spawned as shown in Figure 3.

Figure 3. The NWN game adventure encounter created by the Placeable use – spawn creature pattern
of Figure 2, where the inset in the upper right shows the changed scene when the pattern of Figure 4 is
used instead – the visual effect is gone and the Magic Chest disappears after the creature has spawned.

 8

Adapting Patterns in ScriptEase
The power of patterns comes from the ability of each pattern to represent a wide range of common

game scenarios. For example, the Placeable use – spawn creature pattern can be applied to any
placeable (chest, statue, lever, etc.) and is capable of spawning any kind of creature with any kind of
spawn effect. This generality is captured by allowing the author to adapt the pattern by setting The
Placeable, The Creature, and Spawn Effect options. However, if pattern adaptability (customization)
was limited to only setting options, we would need many more patterns to capture common game
scenarios. For example, if the author wanted the placeable to be destroyed after the creature was
spawned, we would need a new pattern to represent this scenario. Instead, to keep the pattern catalogue
at a reasonable size, we support a much broader range of adaptations. In this case, we allow the author to
add an action to the existing pattern to destroy the placeable. In addition to setting pattern options, an
author can adapt a pattern in any of the ways shown in TABLE 1. Since these adaptations correspond to
programming, ScriptEase can be used to teach the basics of programming to individuals who do not
know how to program. The difficulty categories listed in TABLE 1 (Cutumisu 2007) were assigned
based on the authors’ experience in teaching programming concepts to undergraduate Computing
Science students. The Computing Science skill column of TABLE 1 is new and is used in this research.
TABLE 1
Adaptation Operations for ScriptEase Encounter Patterns.

Difficulty
Category

Adaptations Computing Science Skill

0 Set options Types and argument setting
1 Delete a situation
2 Delete an action or a definition*
3 Delete a condition*
4 Replace an action or definition placeholder Function, procedure or method calls
5 Add an action or a definition Function, procedure or method calls
6 Replace a condition placeholder Booleans and selection control structures
7 Add a condition Booleans and selection control structures
8 Add a situation Events

Note. Operations that are rarely used are marked with an asterisk (*).

For example, if the author does not want a visual effect to appear when the creature in Figure 2 is
spawned, the action, Then, Show the Spawn Effect (Unsummon) …, could be selected and deleted. If the
author wanted to add a new action to the encounter pattern, then the author could select the encounter,
and use a menu to add a new action, such as Destroy Object. In this case, the author can then set the
Destroyer option on the Destroy Object action to be the New Creature, so that the placeable is destroyed
after the creature is spawned. Figure 4 shows this action after it has been added to the encounter pattern
in Figure 2, with the Destroyer option being set to the New Creature. Note that the Spawn Creature
action defines a new object, named New Creature. Authors have access to these new objects in the
Select Object menu box at the bottom of the dialogue. Adding an action and setting an option is like
adding a function, procedure or method call to a program and setting its arguments. The inset of Figure 3
shows the in-game consequences of deleting the visual effect and adding the Destroy Object action. This
is a gentle introduction to function calls and argument setting, using menu selection and options. This
high-level abstraction allows an author to learn the concept of function calls, while hiding the low-level
code that is generated (shown in Figure 5). This approach shifts the focus of learning about function
calls from syntax to semantics.

 9

Figure 4. Adding an action to a pattern and setting its options.

 // Define User as the user of Magic Chest
 User_SE0 = GetLastUsedBy();

 // Define The Placeable as the object the event is fired on
 ThePlaceable_SE1 = OBJECT_SELF;

 // Main code body - checks conditions and executes actions

 // Spawn New Creature from Greendude near The Placeable
 NewCreature_SE2 = SE_Ac_SpawnCreatureNearObject("goblina001", ThePlaceable_SE1);

 // New Creature* destroys The Placeable
 AssignCommand(NewCreature_SE2, ActionDoCommand(DestroyObject(ThePlaceable_SE1)));

Figure 5. The code generated by the Destroy Object action shown in Figure 4, along with code for the
option objects.

Although the following terminology is not used when talking to game authors, the Select Object menu
box is a complete list of variables in scope that are of compatible type for the option being set. In this
case, the Destroyer option has type Object that matches any game object (Creature, Placeable, Item,
etc.). This menu box includes any new local variables created by actions (New Creature), any implicit
variables defined by the situation (User – the creature that used the placeable) and any variables of
compatible type defined as options (see Figure 2) in the encounter (The Placeable). The encounter
option (Spawned Creature) is not included, since its type is the kind of creature to be spawned
(Greendude), not the actual creature spawned. The encounter option (Spawn Effect) is not included since
it has type Visual Effect, which is not compatible with a game object (Object). The authors obtain a
gentle introduction to the concept of “types”, an important Computing Science concept, without the
jargon normally associated with them in a more sophisticated course. A type is used in Computing
Science to categorize the data that is manipulated in an algorithm or program with different operations
defined on each type. For example, a Creature is a different type than a Placeable, since a Creature can
walk, talk, and use a Placeable, while a Placeable cannot do any of these.

 10

The Add a condition adaptation is more complex. For example, if the author wanted the encounter in
Figure 4 to occur only if the PC was not carrying a particular magic book (The Origins of Magic), then
the author could use a menu to add a definition (Whether a creature/placeable has an item) and a
condition (If negative) to the encounter and set the options on the definition and condition. Adding a
condition teaches authors about Booleans and selection control structures, although these terms are not
used. Figure 6 shows the author setting the Owner option of the new definition, where User is pre-
defined as the creature that used the placeable (in this case the PC). Figure 7 shows some of the script
code generated by ScriptEase for the condition in Figure 6.

Figure 6. Adding a definition and condition to a pattern and setting their options.

 // Define Has Item as whether User has The Origin of Magic
 HasItem_SE3 = GetIsObjectValid(GetItemPossessedBy(User_SE0, GetTag(TheOriginofMagic_SE2)));

 // Define User as the user of Magic Chest
 User_SE0 = GetLastUsedBy();

 // Define The Placeable as the object the event is fired on
 ThePlaceable_SE1 = OBJECT_SELF;

 // Define Has Item as whether User has The Origin of Magic
 HasItem_SE3 = GetIsObjectValid(GetItemPossessedBy(User_SE0, GetTag(TheOriginofMagic_SE2)));

 // Main code body - checks conditions and executes actions

 // If Has Item is Negative (False, No, Off, etc.)
 if(! HasItem_SE3) {

 // Spawn New Creature from Greendude near The Placeable
 NewCreature_SE4 = SE_Ac_SpawnCreatureNearObject("goblina001", ThePlaceable_SE1);

 // New Creature* destroys The Placeable
 AssignCommand(NewCreature_SE4, ActionDoCommand(DestroyObject(ThePlaceable_SE1)));

 }

Figure 7. The code generated by a ScriptEase condition.

 11

Tenth grade English students with no previous programming experience have successfully used
ScriptEase to manipulate patterns of this complexity for constructing their game adventure stories
(Carbonaro et al., 2008).

METHODOLOGY

The ScriptEase Study Participants and Components
Two tenth grade high school classes used ScriptEase to author interactive NWN game adventures

using the Aurora Toolset and ScriptEase. There were 50 participants in the study, 24 females and 26
males. Each class was from a different high school located in suburban middle class neighborhoods in
Edmonton, Canada. The classes were multi-ethnic as reflected by the fact that 14 of the 50 participants
who answered the language fluency question were fluent in at least one language other than English
(Albanian, Arabic, Cantonese, Farsi, French, Hindi, Mandarin, Polish, Punjabi, Russian, or Spanish) in
addition to English. The subject area for both selected classes was English Literature/Composition, and
most of the students had no previous formal experience with computer programming and had made no
explicit decision to study Computing Science (Carbonaro, et al. 2008).

Each class attended a two-day workshop at the University of Alberta where they spent a total of six
hours working through two tutorials (www.cs.ualberta.ca/~script/supplementary01.html), followed by
two hours in which they began to construct an interactive game adventure. After this, students spent a
total of four more hours in their school, finishing their interactive adventure. During both the workshop
and the school sessions, the teacher and graduate students supervised the students and answered
questions about the tools. The first tutorial introduced students to playing NWN and the second tutorial
taught them about the Aurora Toolset and ScriptEase. Students were then provided with an adventure
module containing two areas, the exterior and interior of a castle. No objects (placeables, items,
creatures, etc.) and no scripts were provided. Students then constructed their game adventure by
populating these two areas with game objects (characters and props) using the Aurora Toolset and
generating scripts for these objects using ScriptEase.

The Instruments for the ScriptEase Study
Several instruments were used to measure student attributes. In this paper, we use results from exit

surveys (www.cs.ualberta.ca/~script/supplementary01.html), a rubric that assesses the higher-order
thinking skills that a player of a game adventure would require, and a rubric that assesses the Computing
Science skills used to author a game adventure. The exit survey included data about enjoyment of the
game adventure construction activity.

Higher Order Thinking
As a first attempt to measure the utility of game adventure construction as a means of learning skills

applicable across scientific domains, we used the “Video Game Higher Order Thinking Evaluation
Rubric” created by Rice (2007). This rubric produces a score in the range from 0 - 20. The score is then
mapped onto a Video Game Cognitive Variability Scale (VGCVS). The VGCVS is defined in TABLE
2. Although this rubric is designed to evaluate the higher order thinking skills used when playing video
games, it is a good first step to measure the higher order thinking skills used to construct game
adventures as well, since the author uses similar skills to create situations as the player uses to solve
them. However, as outlined by Papert (1991) and illustrated by many others (Bers et al. 2002; Penner,
2001; Resnick, Berg, & Eisenberg, 2000; Vygotsky, 1978), the constructionist activity of producing an
artifact (the interactive game adventure) provides an even more powerful learning experience than

 12

studying a previously constructed artifact. There are twenty binary questions in Rice’s rubric, which we
illustrate by listing six of them: 1) has a storyline, 2) has a complex storyline with characters users care
about, 3) offers simple puzzles, 4) has complex puzzles requiring effort to solve, 5) allows different
ways to complete the game, and 6) requires gathering of information in order to complete.
TABLE 2
VGCVS, (Rice, 2007, p. 94):

20 Perfect score. Game displays highest elements of cognitive
viability.

18 -19 Upper-range. Game holds several positive characteristics
lending itself to higher order thinking.

14-17 Mid-range. Game is probably acceptable for some higher order
thinking opportunities.

9 -13 Lower-range. Fewer opportunities for higher order thinking will
take place in the game.

0 -8 Little or no cognitive viability. Typical score range for arcade-
style only games.

Computing Science Abstraction Skills
We created a new instrument to assess the Computing Science skills that the students used to construct

their game adventure. The instrument counts the percentage of students who used each kind of pattern
adaptation listed in column two of TABLE 1, as a measure of the computing skills (column three) that
they displayed in constructing their game adventure.

If one teaches programming “top down” in an interpreted environment like Smalltalk, Lisp, Logo or
Alice, then picking a function requires typing a function call so that it can be evaluated (executed)
immediately. In this case, the first programming skill learned is how to pick an appropriate library
function from a large set to solve a specific problem and how to set the parameters of this function to
values appropriate for the specific problem. For example, in Smalltalk a student might learn how to use
the “+” message to add two numbers by entering: “3+4” in a workspace and observing the answer, 7. In
ScriptEase, this skill is introduced and learned when students select an appropriate pattern from a menu
that will create the appropriate situation in their game module. After selecting the appropriate pattern, a
student must set options (parameters) that the pattern uses in the game. These options are usually game
objects or values. For example, if a student selects the Placeable use – spawn creature pattern, the
student must select two options: a specific placeable whose use triggers the situation and a specific
creature blueprint to use in spawning. Selecting a pattern and setting its options is rated as difficulty
level 0 in TABLE 1.

Adapting a pattern consists of various operations that are also used in computer programming. We
previously categorized these adaptations by difficulty level (TABLE 1), based on our experience in
teaching computer programming. For example, adding a condition is more difficult than adding an
action, since adding an action corresponds to adding a simple library function call, but adding a
condition requires the author to understand Boolean values and the equivalent of selection control
structures. Replacing a component is easier than adding a component since the location does not need to
be determined when replacing.

 13

Activity Enjoyment (Fun)
To draw more students to Computing Science, we need to increase the number of introductory

activities that are enjoyable. To increase the percentage of female students interested in Computing
Science, we must ensure that the activities that we use to introduce Computing Science are enjoyable to
female students. Otherwise, we risk further alienation of the female students. The following five
questions from the exit survey were used to gather data about student enjoyment of this activity.

1. How much fun did you have writing your traditional short story at school before the field trip

to the University of Alberta? (circle):
none not much some quite a bit a huge amount

2. How much fun did you have learning to write an interactive story during your field trip to the
University of Alberta? (circle):
none not much some quite a bit a huge amount

3. How much fun did you have writing your own interactive story at school after the field trip to
the University of Alberta? (circle):
none not much some quite a bit a huge amount

4. Would you like to write more traditional short stories in school (circle): no yes

5. Would you like to write more interactive stories in school (circle): no yes

Questions one and four are control questions that attempt to determine a base line of fun for students

in these classes. These questions were designed to measure their fun level in performing a traditional
activity in the school. Since the classes were tenth grade English classes, we picked a typical activity in
this class – writing a traditional short story in the school environment. Questions two and three were
designed to determine if the game adventure authoring activity was enjoyable, not only in the field trip
mode (question two), but also as an activity that could be done in the school (question three) over a
longer period of time.

RESULTS
Using ScriptEase is a new gentle approach to introducing Computing Science. We describe the higher

order thinking skill evaluation, the Computing Science abstraction skill measurement and our
measurements of student enjoyment for this approach. In each case, we also discuss the differences in
the scores based on gender.

Higher Order Thinking
Two raters used Rice’s (2007) rubric to evaluate the student’s interactive game adventures with

respect to their ability to promote higher order thinking. The fifty high school students each authored a
video game adventure. The results are shown in Figure 8, where the score for each evaluator is shown as
a separate bar in a pair of adjacent bars. The final score for each student is the average of the scores
assigned by the two evaluators. The mean final score across all students is 15.44 (SD = 1.13). This puts
the score in the mid-range (14-17) as defined by Rice (2007) in TABLE 2. Therefore, we conclude that
this game adventure authoring activity stimulates higher order thinking skills. We evaluated the inter-
rater reliability of these ratings using Cohen’s (1960) kappa coefficient and obtained a value of 0.994,

 14

which indicates almost perfect agreement (Landis & Koch, 1977). Figure 8 shows the overlap of the two
evaluators, with perfect agreement on fourteen items.

We divided the higher order thinking data, based on gender as shown in Figure 9. The mean scores for
interactive games for the males and females were 15.12 (SD = 1.12) and 15.92 (SD = 1.13) respectively.
Given that the games produced by the females had a higher mean score, we performed a two-sample t-
test to determine if the female scores were significantly higher than the male scores at a 95% confidence
level. There is a significant difference (p = 0.015).

Figure 8. Higher order thinking scores by evaluator.

Figure 9. Higher-order thinking scores by gender.

 15

Computing Science Abstraction Skills
We analyzed the modules of each of the students and recorded all of the patterns that they used and all

of the adaptations performed by each student on each of their patterns. Since these measures were
objective counts of ScriptEase lines they were done by machine and no inter-rater reliability was
necessary. The stated goal of the activity was to construct a game adventure and the students spent a
total of 6 hours on this activity (after 6 hours of training). In this time they were encouraged to create
game objects and place them in the game, write dialogue for the character objects, and use ScriptEase to
make the objects interact. There were no requirements or guidelines about how much time they should
spend on each of these three sub-activities. Since there were no explicit instructions to students that they
had to use ScriptEase to demonstrate a specific skill level, we cannot conclude that any student who did
not use ScriptEase was incapable of using it. Therefore, when we report that a certain percentage of
students used a skill, we can conclude that they successfully learned that skill. However, we cannot
conclude anything about the relationship between the other students and the skill. For example, we
cannot conclude that the other students tried the skill and failed to use it when building their game. The
amount of time spent using ScriptEase on their game adventure varied from student to student and
ranged from 0 hours to about 2 hours out of the 6 hours. The majority of the time was spent using the
Aurora Toolset to populate their game adventure with game objects and to write dialog for the
characters.

Of the students in this study, 98% (49/50) selected at least one pattern for their module. The other
student did not use any patterns. This student’s module was still playable since it had characters and
dialogue. However, since no patterns were used, no scripts were generated, so the interaction with the
PC was very limited. We cannot conclude that the student was incapable of using a pattern – we can
only conclude that the student chose not to use any patterns. We can conclude that 98% of the students
learned a valuable Computing Science skill: how to select an appropriate computational artifact from a
library. Only one of the students who successfully selected a single pattern did not set the options
properly, so 96% (48/50) were successful in learning how to select an artifact from a library and
customize the artifact by setting options (parameters) appropriate to the problem being solved.

The percentages of students who successfully used each adaptation type are shown in Figure 10. The
labels on the x-axis are in order of our nominal difficulty level listed in TABLE 1, except that the two
rare abstractions (Delete an action or definition; Delete a condition) are put at the far right. The “set
options” adaptation is excluded, since we already know that 96% of students were able to perform this
adaptation. Only two students that successfully used patterns did not perform any adaptations other than
setting options. This means that 94% (47/50) students successfully used patterns in which other
adaptations were used. The green bars in the graph indicate that 80% of the students learned to delete
situations, 84% learned to replace actions and/or definitions and 50% learned to add actions and/or
definitions. The skill required to perform these actions is analogous to the skill required to write
sequential computing programs where the statements are function calls (or message expressions in the
object-oriented paradigm). The groups of students who performed these operations were not monotonic,
in that not every student who replaced an action also deleted a situation. That is why the percentage of
students who used at least one adaptation (94%) is higher than the percentage of students who used any
single kind of adaptation.

The next two types of adaptations shown in the graph (Replace a condition placeholder – 18%) and
(Add a condition – 24%) correspond to learning Computing Science skills related to Booleans and
selection control structures. Given the short amount of time students had to complete their stories and

 16

the focus on complete stories rather than versatility of interactions in the stories, we were pleasantly
surprised that so many students were able to find time to perform these adaptations.

The most difficult adaptation is to add a situation. A situation consists of an event, a condition and a
set of actions that are performed when the event occurs and the conditions are met. This is the most
conceptually difficult adaptation and is most analogous to writing a function or method in a program.
Nevertheless, four students (8%) learned to use this kind of adaptation, even though there was very little
time to learn. Figure 10 provides some evidence that our difficulty ranking in TABLE 1 is correct.

Given the limited time that students spent on the ScriptEase (programming) part of this activity (0 – 2
hours), we feel the percentages shown in Figure 10 indicate that a reasonable level of Computing
Science skills were learned. We also factored this data by gender, as shown in Figure 10 and used t-tests
to compare the percentages for each kind of adaptation by gender. The only difference that is
statistically significantly (p = 0.04) is that the percentage of female students that deleted a situation was
higher than the percentage of male students. However, since replacing an action/definition placeholder is
slightly more difficult and there is no statistically significant difference between the percentage of male
(77%) and female (92%) students who performed this type of operation, the differences in percentages
for deleting a situation can safely be ignored.

Figure 10. Percentage of students that used each type of abstraction.

Activity Enjoyment (Fun)
Figure 11, Figure 12, and Figure 13, show the percentage answers for exit survey questions one, two,

and three respectively. We subsequently assigned a numerical score to each answer, from 0 for “none”
to 4 for “a huge amount”. TABLE 3 shows the mean scores for each of the first three questions for both
males and females.

A repeated measure using the Greenhouse-Geisser (Field, 2005) correction for unequal correlations
between the three levels of the independent variable (i.e., ‘How Much Fun’, the first three questions)
was used to analyze the mean scores reported in TABLE 3. Results from the analysis show a significant
difference between the levels, MSR = 19.192, F = 21.758, p > .001, indicating there are reliable
differences between the levels (Question 1: fun-traditional, Question 2: fun-interactive-university,
Question 3: fun-interactive-school). Within subject contrasts show fun-traditional is significantly

 17

different from fun-interactive-school (MSR = 56.866, F = 31.5, p > .000) and that fun-interactive-
university is significantly different from fun-interactive-school (MSR = 34.533, F = 45.306, p > .000).
Therefore, students appeared to enjoy interactive game adventure writing over traditional writing and
they also enjoyed writing this interactive game adventure at the University over writing it at school.
Furthermore, there was no significant difference across gender, MSR = .123, F = .180, p > .673, for any
level. This indicates no difference in the enjoyment of these activities between males and females.
TABLE 3
Mean score of student’s ratings on the questions concerning “how much fun” they had
writing stories in three different settings.

How Much Fun (mean scores)

Writing Traditional
Story at School

Writing Interactive
Story at University

Writing Interactive
Story at School

Male

1.73

3.12

2.08

Gender

Female

1.93

2.67

2.04

Figure 11. Percentage of students who enjoyed traditional story writing at school (the control activity).
The results indicate that most of the extra enjoyment was derived from the novelty of being on a field

trip at the University rather then on the activity itself. Nevertheless, for question three, with 72% of the
students indicating that they enjoyed writing a game adventure in school at the level of ‘some’ (40%) or
higher (32%), this activity can be regarded as an enjoyable way to learn higher order thinking skills in
general, and Computing Science skills in particular.

Questions four and five provide additional information on whether students enjoyed writing either
traditional or interactive stories in school. The results are shown in Figure 14. Although only 34.0% of
all students (30.8% of males and 37.5% of females) would like to write more traditional stories in school

 18

(the control activity), 63.3% of all students (69.2% of males and 56.5% of females) would like to write
more interactive stories in schools.

Figure 12. Percentage of students who enjoyed game adventure authoring during the field trip.

Figure 13. Percentage of students who enjoyed game adventure authoring at school.
Given the dichotomous nature of the data for questions four and five we used Chi-Square (χ2) to

compare more-traditional-in-school (Question 4) and more-interactive-in-school (Question 5) across
gender, resulting in χ2 (1, N = 50) = .252, p = .210 and χ2 (1, N = 49) = .845, p = .185 respectively. Thus
there were no significant differences on each of these questions with respect to males and females.

 19

We also used the McNemar test (Field, 2005) for comparing two paired dichotomous observations,
more-traditional-in-school versus more-interactive-in-school, and obtained χ2 (1, N = 49) = 5.63, p =
.018. There is a significant difference in favor of the students wanting to write more-interactive-in-
school. This result is partly due to the higher rating on Question 5 given by males (69%) than females
(56%) and partly due to the lower rating on Question 4 writing given by males (31%) than females
(38%). A subsequent analysis of more-traditional-in-school versus more-interactive-in-school by gender
reveals no significant difference for females, χ2 (1, 23) = .006, p = .388, but a significant difference, χ2
(1, N = 26) = 2.006, p = .031, for the males. Therefore, it appears that males favor writing interactive
stories at school over traditional stories, whereas girls report no difference in this context.

Figure 14. Percentage of students who would like to write more traditional and interactive stories at
school and at home.

DISCUSSION
The results support our contention that computer game construction (as opposed to game playing) is a

viable activity for teaching higher-order thinking skills that are essential for Science. Each game
adventure constructed by a student represents a narrative artifact in a computational form. As the
findings in Figure 8 show, every interactive game adventure constructed by a student was classified in
the midrange or above on Rice’s (2007) assessment scale. The idea that students can build
computational models of abstract ideas that are sharable and can be reflected upon by others is an
important pedagogical activity of scientific understanding, thinking, and conceptual development
(Penner, 2001). What makes this observation even more profound is: a) females (M=15.92) exercised
their higher-order thinking skills at a significantly higher level than males (M=15.12); and b) Rice’s
scale was designed to assess video games that were professionally produced, whereas our games (in a
story context) were produced by grade 10 English students.

Our second point is that computer game construction that involves scripting teaches valuable
Computing Science abstraction skills. The results also support this argument. Students were able to use
our scripting tool (ScriptEase) to construct complex games (stories) that embody a deep level of
computer programming knowledge without ever writing a single line of ‘traditional’ code. The ability
for a student to set function parameters and embed conditional logic demonstrates a mastery of abstract

 20

programming knowledge of the type typically taught in introductory Computing Science. Other
Computer Science abstraction skills include selecting an appropriate entity from a library (98% of
participants) and setting parameter options (96%), writing sequential statements that use function calls
(50%), selection control structures and Booleans (24%) and writing custom functions (8%). We feel
these percentages would be even higher if the scripting part of this activity was performed for a longer
time than two hours. Given that we selected a non-Science course (Grade 10 English) to teach Computer
Science concepts we were pleased that students enjoyed the interactive game adventure activity.
Teaching Computing Science concepts through narrative construction clearly demonstrates the power of
the ScriptEase toolset.

The results support the activity of interactive game adventure authoring as enjoyable introduction to
Computing Science with 92% of the students enjoying it at least “some” in a field-trip setting, 72%
enjoying it at least “some” in a high school setting and 63% who would like to continue this activity for
a longer period of time in school. The findings showed that interactive game adventure authoring was
more fun that traditional story writing in both the university and school setting. It is not surprising that
the novelty of the university setting appeared to be the most fun. A field trip to the university for high
school students is generally considered to be an exciting event. There were no gender differences found
across the independent variable (fun). This is an important finding when it comes to introducing
Computing Science concepts.

A major impetus for our work is to encourage female students to enjoy learning Computing Science in
a context where both males and females are having fun. Prensky (2002) argued for the concept of ‘fun’
in computer gameplay as a motivational tool for learning. In our findings, ‘fun’ at writing interactive
stories is gender-neutral thereby placing males and females on equal footings as computer game
builders, as opposed to computer game players, which favor males. There are two important questions
related to enjoyment. First, is game adventure authoring ‘fun enough’ that it might help to increase
interest in Science (in general) and Computing Science (in particular) above the current percentages of
36% of the males and 11% females that were somewhat likely to select Computing Science as a major?
Second, could game adventure authoring be “fun enough” for females that it might help to raise the
percentage of graduating students from Computing Science programs that are females above 14%? We
believe that the enjoyment rates in Figure 12, Figure 13, and Figure 14 provide some evidence that the
answer is yes to both questions. A positive result was finding no gender difference with respect to
writing traditional versus writing interactive stories. Interactive stories are synonymous with computer
games and the idea that girls enjoyed writing in either traditional or interactive stories equally well is
encouraging.

Although we found no within-group gender differences with respect to students wanting to write more
traditional or more interactive stories in school (questions 4 & 5), we did find that students overall
would prefer writing interactive stories at school as opposed to traditional stories (between-group
difference for questions 4 & 5). This is a positive indication that, given the right tools and instructional
context, interactive game adventure authoring would be a well-received pedagogical intervention in
schools. Subsequent analyses showed that males did differ from females on this issue and thus were
more inclined to like to write more interactive stories at school than traditional stories at school.

Given the interactive game adventure authoring tools, methods, and outcomes measures used for this
study it was encouraging to find that females scored significantly better than males on higher-order
thinking skills and that Computing Science abstraction skills were gender neutral. It was even more
encouraging to see that students were actively incorporating Computing Science concepts into the
construction of their stories without even realizing it. In this sense both game adventure authoring and

 21

programming appear as a seamless interwoven construction process, one that is analogous to Papert’s
(1980) early work on the relationship between Mathematical concepts and Logo. We view interactive
game adventure authoring as an important scaffolding activity that supports the learning of Computing
Science concepts by allowing students to be game constructors in a gender neutral way. Interestingly
males, more than females, liked writing interactive stories at school over writing traditional stories at
school. This result did not surprise us, given that males at that age tend not to enjoy writing as much as
females (MacArthur, Graham, & Fitzgerald, 2008). We interpret males wanting to write interactive
stories as a positive result in the overall context of writing.

CONCLUSION
This study represents the importance of building a strong collaboration between Science and

Education to help overcome a serious issue, the underrepresentation of females in Computing Science. A
recent study by Anderson, Lankshear, Timms and Courtney (2008) concluded that senior high school
girls perceive advanced computing subjects as boring and irrelevant, and they often express a strong
aversion to computers. The perception by females that Computing Science is boring is in direct contrast
to boys who often perceive the subject as an exciting area, largely do to their unprecedented attraction to
the playing of computer games (Carter, 2006). That being said, research suggests that when the
environment is supportive and female-friendly, retention in Computing Science is possible (Cohoon,
2006). To increase the representation of females in the field of Computing Science, it is critical to create
an educational environment that they perceive as more enjoyable. Our study shows that given the right
tool-set and pedagogical context, female students can develop higher order thinking skills, master
abstract computational concepts, construct meaningful computational artifacts (interactive stories), in a
gender neutral activity, and have fun doing it. Our hope is that this learning environment encourages
female students to pursue Computing Science as a field of study and work.

REFERENCES
American Association of University Women Educational Foundation (1996). Girls in the Middle:

Working to Succeed in School, Retrieved Dec 17, 2008, www.aauw.org/research/girlsinMiddle.cfm

Anderson, N., Lankshear, C., Timms, C., & Courtney, L. (2008). ‘Because it’s boring, irrelevant and I
don’t like computers’: Why high school girls avoid professionally-oriented ICT subjects. Computers
& Education, 50, 1304-1318.

Beyer, S., Rynes, K., Perrault, J., Hay, K., & Haller, S. (2003). Gender differences in computer science
students. SIGCSE Bulletin, 35(1), 49-53.

BioWare Company. (2008). http://www.bioware.com

Camp, T. (1997). The incredible shrinking pipeline, Communications of the ACM, 40(10), 103-110.
Carbonaro, M., Cutumisu, M., Duff, H., Gillis, S., Onuczko, C., Siegel, J., Schaeffer, J., Schumacher,

A., Szafron, D., & Waugh, K. (2008). Interactive story authoring: a viable form of creative
expression for the classroom, Computers & Education. 51(2), 687-707.

Carter, L. (2006). Why Students with the apparent aptitude don’t choose to major in computer science,
SIGCSE Bulletin, 38(1), 27-31.

Cohen, J. (1960). A coefficient of agreement for nominal scales, Educational and Psychological
Measurement, 20(1) 37-46.

 22

Cohoon, J. M. (2006). Just get over it or get on with it: Retaining women in undergraduate computing.
In J. M. Cohoon & W. Aspray (Eds.), Women and information technology: Research on
underrepresentation (pp. 205-237). Cambridge MA: MIT Press.

Cohoon, J. M., & Aspray, W. (2006). A critical review of the research on women’s participation in
postsecondary computing education. In J. M. Cohoon & W. Aspray (Eds.), Women and information
technology: Research on underrepresentation (pp. 137-180). Cambridge MA: MIT Press.

Cummings, H. M., & Vandewater, E. A. (2007). Relation of adolescent video game play to time spent in
other activities. Archives of Pediatric and Adolescence Medicine, 161(7), 684-689.

Cutumisu, M., Onuczko, C., McNaughton, M., Roy, T., Schaeffer, J., Schumacher, A., Siegel, J.,
Szafron, D., Waugh, K., Carbonaro, M., Duff, H., Gillis, S. (2007). ScriptEase: A generative/adaptive
programming paradigm for game scripting, Science of Computer Programming, 67 (1), 32-55.

Denner, J. (2007). The Girls Creating Games Program: An innovative Approach to Integrating
Technology into Middle School”, Meridian: a Middle School Computer Technologies Journal, 1(10).
www.ncsu.edu/meridian/win2007/girlgaming/index.htm

Denner, J., Werner L., Bean, S., & Campe, S. (2005). The girls creating games program: Strategies for
engaging middle school girls in information technology, Frontiers: A Journal of Women's Studies,
26(1), 90-98.

Dreves, C. & Jovanovic, J (1998). Male dominance in the classroom: Does it explain the gender
differences in young adolescents’ science ability perceptions? Applied Developmental Science, 2(2),
90-98.

Economist.com (2006, March 23). Computing and the scientific method, Retrieved June 3, 2009,
http://www.economist.com/displaystory.cfm?story_id=5655067

Kafai, Y.B., Heeter, C. Denner, J., & Sun, J.Y. (2008). Beyond barbie and mortal kombat. Cambridge,
MA: MIT Press.

Field, A. (2005). Discovering Statistics Using SPSS, (2 Ed.), New York, NY: Sage Publishing
Goode, J. (2007). If you build teachers will students come? The role of teachers in broadening computer

science learning for urban youth, Journal of Educational Computing Research, 36(1), 65-88
Goode, Estrella & Margolis (2006). Lost in Translation: Gender and High School Computer Science, In

J. M. Cohoon & W. Aspray (Eds.), Women and information technology: Research on
underrepresentation (pp. 89-114). Cambridge MA: MIT Press.

Graham, S., & Latulipe, C. (2003). CS girls rock: Sparking interest in computer science and debunking
the stereotypes. SIGCSE Bulletin, 40(4), 107-110.

Hazari, Z., Sadler, P., & Tai, R. (2008). Gender differences in the high school and affective experiences
of introductory college physics students. The Physics Teacher, 46, 428-432.

Hyde, J. S., & Linn, M. C. (2006). Gender similarities in mathematics and science, Science, 314, 599-
600.

Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming. Communications of the
ACM, 50(7), 59-64.

 23

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling Alice motivates middle school girls to learn
computer programming, Proceedings of the SIGCHI conference on Human factors in computing
systems, San Jose, California, USA

Kessels, U. (2005). Fitting into the stereotype: How gender-stereotyped perceptions of prototypic peers
relate to liking for school subjects. European Journal of Psychology of Education, 20, 309-323.

Kelly, J. F. (2007). LEGO MINDSTORMS NXT-G Programming Guide, Berkeley, CA: Apress

Kenway, J., & Gough, A. (1998). Gender and science education in schools: A review ‘with attitude’.
Studies in Science Education, 31(1), 1-30.

Kurkovsky, S. (2007). Making computing attractive for non-majors: a course design, Journal of
Computing Sciences in Colleges, 22(3), 90-97.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data,
Biometrics, 33, 159-174

MacArthur, C. A., Graham, S., & Fitzgerald, J. (2008). Handbook of writing research, Guilford Press:
NY

McClay, J., Mackey, M., Carbonaro, M., Szafron, D., & Schaeffer, J. (2007). Adolescents composing
fiction in digital game and written formats: Tacit, explicit and metacognitive strategies. E-Learning, 4
(3), 273-284.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books

Papert, S. (1991). Situating Constructionism. In I. Harel & S. Papert (Eds.) Constructionism. Norwood,
NJ: Ablex Publishing.

Penner, D. E. (2001). Cognition, computers, and synthetic science: Building knowledge and meaning
through modeling, In W. G. Secada, (Ed.) Review of Research in Education. (pp. 1–35). Washington,
DC: American Educational Research Association.

Prensky, M. (2002). The motivation of gameplay: The real twenty-first century learning revolution. On
the Horizon, 10(1), 5 – 11.

Rice, J. W. (2007). Assessing higher order thinking in video games. Journal of Technology and Teacher
Education, 15(1), 87-100.

Roberts, E. (2007). Stanford University News Release, Retrieved June 10, 2009, news-
service.stanford.edu/pr/2007/pr-robertsaaas-021407.html

Sing, K., Allen, K.R., Scheckler, R., & Darlington, L. (2007). Woman in computer-related majors: A
critical synthesis of research and theory. Review of Educational Research, 77(4), 500-533.

Szafron, D., Carbonaro, M., Cutumisu, M., Gillis, S., McNaughton, M., Onuczko, C., Roy, T. &
Schaeffer, J. (2005). Writing interactive stories in the classroom, Interactive Multimedia Electronic
Journal of Computer-Enhanced Learning, 7(1), imej.wfu.edu/articles/2005/1/02/index.asp

U.S. Department of Labor Employment & Training Administration. (Thursday, November 15, 2007)
Retrieve January 6, 2009, www.doleta.gov/BRG/Indprof/IT_profile.cfm

Vilner, T., & Zur, E. (2006). Once she makes it, she is there: Gender differences in computer science
study. ITiCSE, Proceedings of the 11th Annual Conference on Innovation and Technology in
Computer Science Education, Bologna, Italy.

 24

Vygotsky, L.S. (1978). Mind and society: The development of higher mental processes. Cambridge,
MA: Harvard University Press.

