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Abstract

Modern power systems are vulnerable to false data injection attacks (FDIAs) due to

the widespread applications of two-way communication networks for system opera-

tion and control. Diagnosing such malicious attacks are of great significance for the

resilient operations of power systems.

Firstly, to detect the presence of FDIAs, a novel FDIA detection scheme is pro-

posed in this thesis for three-phase distribution systems based on zero-sequence volt-

age (ZSV). From the voltage and power measurements, the bus voltages are estimated,

and then the estimated ZSV is calculated as the sum of the estimated bus voltages

on the three phases to represent the degree of unbalance of the distribution system.

Via mathematical analysis of the linear distribution system state estimation (DSSE)

model, the distribution of the estimated ZSV under the normal condition is derived,

based on which a whitening process is adopted on the estimated ZSV to weaken the

effect of measurement noises. The L2-norm of the whitened ZSV vector is then com-

pared with a predefined threshold for the FDIA detection. Moreover, the probability

of false alarm of the proposed scheme is derived, which can be utilized to determine

the detection threshold for a desired tolerance of false alarm rate. The proposed

FDIA detection scheme is validated on several IEEE Test Feeders and simulation re-

sults show the effectiveness of the proposed scheme in detecting FDIAs in three-phase

distribution systems.

To further specify the locations of FDIAs, a ZSV-based FDIA localization scheme

is also proposed in this thesis for three-phase distribution systems. Based on the

estimated ZSV of a bus relative to others, the bus under attack is localized. By elim-
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inating the effect of estimation error, an estimation of the injected attack is obtained.

With an optimal test to minimize the error rate, the phase under attack can be di-

agnosed. By analyzing the estimated ZSV values in three steps, the bus localization

and phase diagnosis can be achieved. Simulation results verify the effectiveness of the

proposed FDIA localization method with high accuracy.
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Chapter 1

Introduction

1.1 Background

With increasing penetrations of information and communication technologies, the

traditional power system is gradually transitioning towards a future smart grid. The

smart grid is a fully automatic electric network that can monitor and control all cus-

tomers and nodes, enabling a two-way flow of electricity and information between

the utility and users, as well as all nodes between them [1]. Facilitated by the highly

integrated structure of information and communication technologies, as well as ad-

vanced electrical infrastructures, the smart grid possesses numerous advantages over

the conventional power grid, such as improved fault monitory and recovery capabili-

ties, increased efficiency and flexibility in the operation and control of power systems,

as well as enhanced resiliency and robustness to outer disturbances [2, 3].

As the smart grid is a hybrid of power, information, and communication systems,

in today’s standards, it is also characterized as a typical cyber-physical system (CPS)

[4]. As shown in Fig. 1.1, a CPS usually includes four layers, i.e., physical layer,

sensor/actuator layer, network layer, and control layer [5]. The physical layer of a

power system includes generation, transmission, and distribution networks, as well

as the consumers. The information and data of the physical layer are measured in

real-time by remote terminal units (RTUs) including meters and sensors, and then

sent to the control layer via the communication network. The control center is usually
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equipped with the supervisory control and data acquisition (SCADA) system, whose

function includes bad data detection (BDD), state estimation, economic dispatch,

fault analysis, power flow calculation and optimization, etc. Then, the operation

command on the power network is made in the control layer and delivered to the

actuators via the communication network to control the physical layer, e.g., operating

the power line circuit breaker.

Figure 1.1: General structure of a CPS with multiple layers.

In the smart grid, the cyber system and physical process are tightly coupled. Due to

cyber system vulnerabilities of the information and communication networks, cyber-

attacks can be easily launched in various ways [6]. The typical types of cyber-attacks

include denial of service attack, data injection attack, energy theft, the insertion of

malware or worms, etc., all of which can cause significant economic and physical

impacts on the CPS [7]. A summary of the major cyber-attacks in energy industry

is presented in Table 1.1 [8]. Besides their huge physical and economical impacts,

the increasing number of cyber-attacks is also considered as a real threat. According

to the report from the U.S. Department of Energy [9], there were about 362 cases of

power disturbances caused by the cyber-attacks from 2011 to 2014, where the number

of attacks increased from 31 in 2011 to 161 in 2013.

Compared with power transmission systems where fiber optics are widely used

for data communications, power distribution systems are more vulnerable to cyber-

attacks due to the uses of public networks (e.g., Internet) and/or devices with broad-
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Table 1.1: Major Cyber-Attacks in Energy Industry

Year Place Attack Type Attack Impact

1982 Soviet Union Code Manipulation
Three kilotons TNT
equivalent explosion

1999 Bellingham, U.S. Code Manipulation
A huge fireball that
caused people injuries

2003 Oak Harbor, U.S. Malware Injection
Parameter Display System

was OFF for 5 hours

2008 Refahiye, Turkey False Data Injection
Oil explosion and 300
barrels were leaked

2012 Saudi Arabia & Qatar Malware Injection
Affected the generation
and delivery of energy

2015 Kiev, Ukraine False Data Injection
Large blackout affecting

225,000 customers

cast channels (e.g., cellular phone or Zigbee). Besides, the large number of customer

devices and dispersed measurement units in power distribution systems provide more

entry points of cyber-attacks, which exacerbate the difficulty for attack defense. A

well-known example of cyber-attack on power distribution system is the Ukraine case

in December 2015, as also summarized in Table 1.1. Aimed at affecting the power

supply, three power distribution companies were under cyber-attacks, and a malicious

remote operation of the circuit breakers was conducted via virtual private network

(VPN), affecting approximately 225,000 customers across half of the country for over

twelve hours [10].

Among the common types of cyber-attacks, the false data injection attack (FDIA)

is considered as the most prominent and detrimental one [11, 12]. In smart grids, the

potential targets for FDIAs can be either the physical devices (i.e., physical-based

FDIAs) or data transmitted via the communication networks (i.e., communication-
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based FDIAs), as shown in Fig. 1.2. For physical-based FDIA, by injecting malicious

data into the measurement, control, and protection devices that installed amongst the

power grid, the attackers can tamper the estimated state variables, then control and

disrupt the power system operations. The power system data collected by RTUs can

also be modified via the data transmission process by communication-based FDIA

through the communication networks.

Figure 1.2: Potential targets of FDIAs on power systems.

In order to successfully launch FDIAs on power systems, various studies have

been conducted on FDIA constructions. Although the targets of FDIAs include both

transmission systems (transmit electric power from generating sites to electrical sub-

stations) and distribution systems (distribute electric power from substations to con-

sumers), as shown in Fig. 1.2, their FDIA construction mechanisms are not identical

due to their distinct characteristics. At the power transmission system level, Liu et

al. first introduced the basic concept and construction mechanism of FDIAs that

can avoid being detected by the BDD in control center [13]. On this basis, some

improved FDIA construction models for power transmission systems have been de-

veloped under different considerations [14–18]. For example, the FDIA construction

4



model proposed by Liu and Li in [14] only needs the local topology information for

attack vector designs, instead of the complete topology information as in [13]. Such

simplification was achieved by using a mixed integer programming model to reduce

the required information. Then, in [18], Liu and Li extended the FDIA construction

model under linear DC state estimation [14] to nonlinear AC state estimation, which

is also applicable with incomplete topology information.

On the other hand, the FDIA construction models for power transmission sys-

tems cannot be straightforwardly applied to power distribution systems, as they were

customized to the unique features of power transmission systems, such as the low

x-to-r-ratio in distribution feeders, limited real-time measurement units, unbalanced

load distribution, asymmetrical line parameters, and missing phase conditions in cer-

tain topologies. To fill this gap, firstly, in [19], a type of cyber-attack was analyzed

by Isozaki et al. against voltage regulation for power distribution systems. Then, in

[19], Deng et al. proposed an FDIA model for three-phase balanced distribution sys-

tems with limited knowledge of system states. To be more consistent with practical

models, in [20] and [21], the linearized and physical-constraint-based nonlinear FDIA

construction mechanisms in multiphase unbalanced distribution systems were further

investigated.

As the well-designed FDIAs can easily bypass the BDD in the control center, it is

of great significance in designing the effective countermeasures for FDIAs to protect

the normal operations of power systems. The works in this thesis focus on the design

of FDIA detection and localization schemes on multiphase distribution systems.

1.2 General Terms and Definitions

In this section, important terms used in this thesis are defined.
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1.2.1 Power System State Estimation

Power system state estimation is a data processing tool performed by the energy

management system (EMS) in the control center, for converting meter readings and

other available information into an estimate of the state of power systems [22]. By

collecting the real-time measurement data generated by the SCADA system and pha-

sor measurement units (PMUs), including the bus voltage, active and reactive power

of generators, power line, and load data, as well as the tap positions of transformers

or phase shifters, the values of state variables (i.e., the bus voltage amplitudes and

phase angles) of the power system can be obtained by state estimators. For most

cases, the power system state estimation refers to the static state estimation to con-

sider only the quasi steady-state operating conditions of power systems, while their

dynamics such as generator dynamics and load dynamics are usually not taken into

account.

1.2.2 Bad Data Detection

Considering the sampling errors of various measurement devices and the potential

malicious cyber-attacks, in order to improve the accuracy of state estimation, the

BDD technology is usually adopted after obtaining the estimated state variables to

determine whether there is bad data in the measurements received by the SCADA.

The BDD technology is operated by analyzing the difference between the measure-

ment data and the estimated state variables, then compares it with a predefined

threshold to identify the existence of the bad data in measurements and/or deter-

mine the locations of the measurement units where the bad data has been injected.

After successfully identifying the bad data in the measurement set, the operators can

first estimate the bad data value, and then use the estimated value to modify the

original state estimation results. However, a well-designed FDIA construction can

bypass the BDD.
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1.2.3 Zero-Sequence Voltage

In order to analyze the unbalance degree of three-phase distribution systems, the

three-phase unbalanced components (voltage or current) can be decomposed into

three sequence components, i.e., zero-sequence component, positive-sequence com-

ponent, and negative-sequence component [23]. Zero-sequence voltage consists of

three-phase voltages with equal magnitudes and zero phase displacement. In other

words, ZSV is the summation of voltages on three phases. Accordingly, positive-

sequence voltage and negative-sequence voltage consist of three-phase voltages with

equal magnitudes and 120-degree phase displacements with positive-sequence and

negative-sequence, respectively. For perfectly balanced three-phase distribution sys-

tems, zero-sequence voltage and negative-sequence voltage are both zero, while the

output voltages are only the positive-sequence components. As a result, the zero-

sequence component, especially zero-sequence voltage, can well-represent the unbal-

ance degree of distribution systems.

1.3 Literature Review

In this section, the existing research works regarding the DSSE, model-based and

data-driven FDIA detection methods, as well as the FDIA localization methods are

reviewed.

1.3.1 Distribution System State Estimation

Distribution system state estimation (DSSE) is used to obtain the state variables,

e.g., bus voltage magnitude and phase angle, using the available measurement data

collected at specific points over the distribution systems [24]. Similar to the state

estimation design for power transmission systems, most of the DSSE methods are

also voltage-based, i.e., the bus voltage magnitudes and phase angle values are used

as state variables for DSSE. The forms of the state variables in voltage-based DSSE
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can be either based on polar form, i.e., magnitude and phase angle, or rectangular

form, i.e., real and imaginary parts.

For polar form-based implementations of DSSE, in [25], a DSSE method based on

the weighted least square (WLS) was proposed, which included the general measure-

ment functions with a fast convergence speed. However, the Jacobina matrix with

this method is both state-dependent and impedance-dependent, and it can be used

for radial distribution networks only. In [26], a branch-based DSSE was proposed

based on decomposing the whole WLS problem of the system into a series of WLS

subproblems, so that each subproblem only relates to a single-branch state estimation.

Such simplification can significantly improve the computational efficiency compared

with [25]. However, the application scope of this method is still limited to the ra-

dial topology. In order to extend the application scope as well as to further reduce

the computational burden, in [27], a linearized DSSE method was proposed, which

can get rid of the iterative solving process and obtain the solutions directly. Both

three-phase unbalanced and single-phase distribution systems are considered in this

method, as well as the meshed distribution topology. The limitation of this method

is its slightly reduced accuracy, i.e., the small angle difference assumption is made in

this method that can degrade its accuracy to some extent.

For rectangular form-based implementations of DSSE, in [28], the rectangular co-

ordinates are introduced to represent the state variables, where the resulted Jacobian

matrix can be state-independent which reduces the overall complexity. However, as

the current-based measurement functions are used in [28], the power measurements

need to be converted into their equivalent currents in each iteration, which increases

its complexity in implementation. Besides, the application scope of this method is

still limited to radial distribution topology. In [29], a quasi-symmetric impedance

matrix is used to formulate the distribution feeder and a matrix reduction technique

is used to obtain the state variables. As a result, the computation efficiency can

be improved, and the application scope can be extended to both radial and weakly
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meshed topologies. The major drawback is its complexity in the formulation.

1.3.2 Model-Based Detection Schemes for FDIAs

The existing FDIA detection schemes can be generally classified into model-based

detection schemes and data-driven detection schemes, as shown in Fig. 1.3 [8].

For model-based detection schemes, they can be classified into estimation-based and

estimation-free methods, depending on whether the state estimation is used in the de-

tection process, including both static state estimation and dynamic state estimation.

In this section, the existing model-based FDIA detection schemes are reviewed.

Figure 1.3: General classification of the existing FDIA detection schemes.

Static power system state estimation is the most widely-used state estimation

method, which assumes the quasi steady-state operations of power systems. As dis-

cussed previously, the WLS is a main tool for static state estimation. In [30], the

WLS with a residual pre-whitening procedure was used to detect in real-time the ex-

istence of FDIA that targets on the voltage measurements. In [31], a recursive state

estimation method based on WLS was proposed, which combined the historical data

and the current measurement data recursively to increase both the detection accuracy

and the convergence speed of state estimation. In [32], the WLS was used to detect

in real-time the FDIA that targets on the voltage controllers in transmission systems,
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with the help from the control signals and quantitative node voltage stability index.

In [33], a model-based FDIA detection scheme was proposed based on a linearized

three-phase interval state estimation (ISE) with WLS, which leverages the informa-

tion in the state domain. The existence of FDIA in distribution systems is detected

when the estimated state variables are out of the boundaries set by the linearized ISE.

However, one limitation of this method is that the calculated boundaries are sensitive

to noises which may lead to high false alarm rate and low detection rate. Moreover,

the data used for calculating the boundaries are obtained from measurements col-

lected in previous operation periods from SCADA which may be outdated. In order

to further increase the detection accuracy, some proactive FDIA detection methods

have been developed that based on distributed flexible AC transmission system (D-

FACTS) devices [34–36]. By changing the system parameters actively, the existence of

FDIAs can be reflected by the WLS state estimation results after modifications. The

detailed analysis on its feasibility and limitations were presented in [34]. Despite the

WLS-based methods, other static state estimation methods have also been adopted

for detecting FDIAs, such as the median filtering (MF) [37], Kriging estimator (KE)

[38], maximum likelihood estimation (MLS) [39–41], and minimum mean square error

estimator (MMSE) [42].

For dynamic power system modeling that considers the transients and dynamic

changes, the dynamic state estimation tools are used for FDIA detection, where the

Kalman filter (KF) is considered to be the most widely used one [43–45]. Some

advanced versions of KF, such as distributed KF (DKF) with reduced computational

burden [46] and extended KF (EKF) with nonlinear modeling [47] were also used to

detect FDIA in power systems. Despite the KF and its variants, the unknown input

observation (UIO) was also used for FDIA detections [48].

On the other hand, some model-based detection methods are only based on the sys-

tem model and/or parameters without utilizing the state-estimation. For example, in

[49], the FDIA detection problem was re-formulated as a matrix separation problem
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based on both the measurement matrix and the attack matrix. Then the performances

of different algorithms in solving this matrix separation formulation for FDIA detec-

tion were compared, including augmented lagrange multipliers (ALMs), the low rank

matrix factorization (LMaFit), as well as the Go Decomposition (GoDec) approaches.

Compared with the estimation-based method, such direct representations based on

system parameters (e.g., measurement matrix) are more straightforward, but more

complicated in the formulation and implementation process.

1.3.3 Data-Driven Detection Schemes for FDIAs

The data-driven FDIA detection schemes are based on machine learning. Machine

learning schemes can be classified into supervised learning, semi-supervised learning,

and un-supervised learning, depending on whether the data used for training is la-

belled and/or unlabelled, where the labelled data means that the data are known to

be either malicious or normal.

For supervised machine learning-based methods, in [50], the distributed support

vector machine (SVM) was used to detect FDIAs, which was based on the alternating

direction method of multipliers and can ensure provable optimality and convergence

rate. In [51–54], various artificial neural network (ANN)-based methods were devel-

oped, such as feedforward neural network (FNN) [51], recurrent neural network (RNN)

[52], deep neural network (DNN) [53], and convolutional neural network (CNN) [54],

etc., and each type of neural network has its unique characteristics in FDIA detec-

tion. For example, the superiority of CNN in extracting different features of the

target makes it popular for pattern recognition, which is also advantageous for FDIA

detection. In [55], the decision tree (DT), which is another popular tool in machine

learning, was used together with the SVM for FDIA detection. The input data are

first processed by DT and then are sent to the SVM classifier to obtain the detection

result. Such two-layer implementation can improve the detection accuracy compared

with conventional SVM-based methods. In [56], the detection performance of FDIAs
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in power distribution systems using Bayesian network (BN), SVM, K-nearest neigh-

bour (KNN), DT, and multilayer perceptron were analyzed and compared compre-

hensively. Overall, although satisfactory detection performance can be achieved with

supervised learning-based methods, a large amount of labelled data are needed for

model training purposes, which are often unavailable in practice.

For unsupervised machine learning-based methods where the input data are un-

labelled, the hidden features of the data are studied and classified by the machine,

thus can also be used for detecting FDIAs. In [57], an FDIA detection method by

deep belief network (DBN) was proposed, and the comparison results show that it

has better performance than the SVM-based methods. In [58], the hidden Markov

model (HMM) was used to detect FDIA in advanced metering infrastructure (AMI)

in power systems.

The semi-supervised learning has also been adopted for FDIA detection for power

distribution systems [59], which only requires a limited set of labelled training data to

ensure the detection accuracy. For example, the labelled data only consist of 12.5%

of the whole data set used for the modeling and the training purpose.

Compared with model-based FDIA detection schemes, the data-driven methods

are free from the system model and parameters. Besides, they usually have fast

detection process to enable real-time FDIA detections, and they avoid the issue of

the threshold selection needed in many model-based detection methods. However,

for data-driven detection methods, extensive training and/or extra memory space are

usually required, as well as a large amount of historical data set of the power system

for training purposes.

1.3.4 Localization Schemes for False Data Injection Attacks

Although various FDIA detection schemes for power systems have been developed,

there are very few attempts on the FDIA localization [60–65]. Accurate localizations

of FDIAs can help operators deploy countermeasures quickly and efficiently, reducing
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the impacts on power systems.

The FDIA localization schemes in [60] and [61] are based on interval observers [60],

[61], and those in [62–65] use advanced machine learning tools. The interval observer-

based methods with dynamic model of power systems suffer from high complexity

in modelling and constructing the customized logical localization judgment matrix,

which limits their scalability and implementations in real-world large power systems.

For machine learning-based schemes, the first attempt was made in [62], with the

help of the CNN as a multilabel classifier as well as the classical BDD unit. In [63],

a joint FDIA detection and localization scheme was proposed based on graph neural

networks (GNN), which can exploit the inherent graph topology of power systems

and the spatial correlations of the measurement data to help detect and localize the

FDIAs. In [64], a method by combining SVM and ANN was used to detect and localize

FDIAs, which is based on dividing the power systems into several areas and equipping

each area with an ANN-based detector. With a distributed state estimation, the state

of each local area can be estimated and used as the trained neural network input to

detect and localize FDIAs. However, the method in [64] can only find the approximate

area of the FDIA, not the accurate location. In [65], an auto-encoder-based generative

adversarial network was used for detecting the FDIA, and a pattern match algorithm

was used for localizing the FDIA. The implementation of these schemes is also limited

by not only their high complexity but also privacy concerns.

1.4 Thesis Motivation and Contribution

According to the discussion above, although there are many research works on detect-

ing and localizing the FDIAs for power systems, the majority of them are focused on

power transmission systems, which cannot be straightforwardly extended to distribu-

tion systems that are featured by larger scale and less labeled data with lower-level

measurement accuracy. The large topology scale of distribution systems, as well as

their unbalanced and dynamic nature introduce extra complex and nonlinear rela-
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tionships in the historical data set, which make the existing FDIA detection and

localization methods less effective for power distribution systems. Due to the innate

difficulties in detecting FDIAs for power distribution systems, only a handful of stud-

ies have been conducted [33], [56], and [59], where their shortcomings and limitations

have been discussed in details previously. Moreover, no existing study has focused

on designing the FDIA localization scheme for power distribution systems. There-

fore, it is of great significance to develop training-data-free, simple-implementation,

but effective FDIA detection and localization schemes for power distribution systems,

which are the motivations of this work.

The thesis contributions are summarized as follows.

• ZSV-Based FDIA Detection Scheme for Multiphase Distribution Systems

We propose a novel detection scheme for FDIAs in multiphase distribution systems

based on ZSV. The utilization of ZSV transforms the detection of FDIAs from the

measurement domain to the state domain, which can directly detect the stealth FDIAs

with high precision. Besides, the estimation error of the approximate linear DSSE

is analyzed under the normal condition, based on which a transformation process is

proposed to whiten the estimated ZSV vector. This process eliminates the correlation

among the entries of the estimated ZSV vector, subsequently weakening the effect of

system noises on the detection. Finally, the probability of false alarm is derived for

the proposed detection scheme. This result can be used to find the detection threshold

for a given level of false alarm rate, which is crucial for practical implementations in

utility grids.

• ZSV-Based FDIA Localization Scheme for Multiphase Distribution Sys-
tems

We propose an FDIA localization scheme based on ZSV for multiphase distribution

systems. With the estimated bus voltages derived from DSSE, the estimated ZSV

vector is calculated. By comparing the estimated ZSV values, the bus under attack
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can be localized. Then the information of estimation deviation can be extracted

by eliminating the effect of estimation error. Finally, the phase under attack can

be diagnosed by analyzing the information of estimation deviation. The proposed

FDIA localization scheme is the first in literature that designed for power distribu-

tion systems, which can be implemented under all existing DSSE methods with high

universality. In addition, the proposed FDIA localization scheme shows very high

accuracy in localizing both the bus under attack and phase under attack of the power

distribution systems under various testing conditions.

1.5 Thesis Outline

This thesis consists of four chapters which are organized as follows: in Chapter 1, the

research background and some key definitions are introduced. Besides, the related

works for DSSE, FDIA detection and localization schemes in recent years are reviewed.

In addition, the research motivation and contributions are presented. Chapter 2

presents an FDIA detection method for multiphase distribution systems based on

ZSV. Both the implementation process and mathematical analysis of the proposed

FDIA detection method are presented. The performance of this proposed FDIA

detection scheme is evaluated using case studies based on standard IEEE Test Feeders.

In Chapter 3, an FDIA localization scheme for multiphase distribution systems based

on ZSV is proposed, where both the bus and phase under attack can be accurately

localized. The feasibility of the proposed FDIA localization scheme is verified using

the standard IEEE Test Feeders under various environments. In Chapter 4, the

contributions of this thesis and the future works are summarized.
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Chapter 2

ZSV-Based FDIA Detection
Scheme for Multiphase Power
Distribution Systems

In this chapter, an FDIA detection scheme based on ZSV is proposed for multiphase

power distribution systems. By calculating the sum of the estimated bus voltages

on the three phases, the estimated ZSV is obtained, which represents the unbalance

degree of a three-phase distribution system. Mathematical analysis is conducted on

the estimation error of the bus voltages and the distribution of the obtained ZSV

vector for the case that the system is not under attack. Based on the analytical

results, a whitening process is implemented to eliminate the correlation among the

elements of the estimated ZSV vector and reduce the influence of noises. Then the

FDIA detection scheme is carried out by comparing the L2-norm of the processed

estimated ZSV vector with a predetermined threshold. The relationship between the

false alarm rate and the detection threshold is also derived. Case studies based on

IEEE Test Feeders verify the effectiveness of the proposed method.

The remainder of this chapter is organized as follow. In Section 2.1, we intro-

duce the state estimation and FDIA principles for three-phase distribution systems.

Section 2.2 presents the FDIA detection scheme based on ZSV for multiphase dis-

tribution systems as well as its detailed mathematical analysis. In Section 2.3, the

simulation results are provided to validate the effectiveness of the proposed method.
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Finally, the summary of this chapter is given in Section 2.4.

2.1 State Estimation and FDIA Principles for Three-

Phase Distribution Systems

In this section, the nonlinear DSSE model and a DSSE model with linear approxi-

mation of the three-phase distribution system are introduced. Then the principles of

FDIAs against DSSE are presented.

2.1.1 Non-Linear DSSE in Distribution Systems

We consider a three-phase distribution system with n nodes andmmeters, wherem ≥

n. Denote the vector of state variables as x ∈ C3n×1 and the vector of measurements

as z ∈ C3m×1. The following non-linear DSSE model can be used for distribution

systems [19]:

z = h (x) + e, (2.1)

where h(·) contains the measurement functions involving the system topology and

parameters, and e ∈ C3m×1 is the vector of measurement noises. A common as-

sumption on the noises is that e ∼ CN (03m,R), i.e., the noise vector e follows the

complex Gaussian distribution whose mean vector and covariance matrix are 03m and

R, respectively; and 03m denotes the 3m× 1 vector of all zero entries.

The WLS estimate of the state vector, denoted as x̂, is the solution of the following

WLS minimization problem [19]:

x̂ = argmin J (x) = argmin [z − h(x)]H R−1 [z − h(x)], (2.2)

where (·)H denotes the Hermitian (or conjugate transpose). The solution of this

optimization problem is given by

∂J (x)

∂x
= HH(x)R−1 [z − h(x)] = 0, (2.3)
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where H(x) = ∂h(x)/∂x is the Jacobian matrix of the measurement functions h(x).

The WLS estimate is usually solved iteratively by

x̂k+1= x̂k+
[︁
HH(x)R−1H(x)

]︁−1
HH(x)R−1[z − h(x)] , (2.4)

where x̂k is the estimated state vector in the k-th iteration.

2.1.2 Non-Linear FDIA Principles

With the objective of misleading the operators, hackers usually inject malicious data

into the meters. The measurement vector under attack za can be modeled as

za = zn + a, (2.5)

where a ∈ C3m×1 denotes the erroneous vector on the three phases which manipulates

the measurement vector with no attack zn.

• Residual-Based BDD

A widely used method to detect erroneous data is the residual-based BDD. The

residual vector r is the difference between the measurements z and the estimated

measurements ẑ ≜ h(x̂), i.e.,

r = z − ẑ = z − h(x̂). (2.6)

The residual value r, which is the L2-norm of r, i.e., r ≜ ∥r∥2, is compared with

a predefined threshold λ to detect the attack. If r > λ, the detection result is the

existence of an attack, and vice versa. The BDD can detect many malicious injections,

however, it does not function for stealthy FDIAs [8].

• Stealthy FDIA

Stealthy FDIAs are specifically designed to mislead the operators to obtain a devi-

ated state estimation x̂a, modeled as x̂a = x̂n + c, where x̂n is the supposed state

estimation when there is no attack and c ∈ C3n×1 denotes the estimation deviation of
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the three-phase state variables. Particularly, for the general non-linear DSSE model

in (2.1), the attack vector a is designed to satisfy

a = h(x̂a)− h(x̂n). (2.7)

With this design, from (2.5), the residual vector under attack can be calculated as

ra = za − ẑa = zn + a− h(x̂a) = zn − h(x̂n) = r, (2.8)

which is the same as the residual vector when the attack does not exist. It can thus

bypass BDD.

2.1.3 DSSE and FDIA with Linear Approximation

When practically implementing stealth FDIAs, due to the limitation of attacker’s

capability and the lack of knowledge of state variables and measurements [66], the

linearization of DSSE in distribution systems is necessary. Different approaches have

been developed in recent works [24]. For the multiphase unbalanced distribution

systems considered in this work, we use the DSSE method with linear approximation

in [28].

In this model, the three-phase measurements z consist of voltage measurements

V mea and equivalent current measurements Iequ, which are calculated from the power

measurements Smea. Here, V mea ∈ C3m1×1 is composed of both complex bus voltages

and equivalent complex bus voltages; and the total number of voltage measurements

is 3m1 for all three phases. Also, Smea ∈ C3m2×1 is composed of both complex power

injections and complex power flows; and the total number of power measurements

is 3m2 for all three phases. Thus, m1 + m2 = m. Further, the equivalent complex

voltages are obtained from the bus voltage magnitudes combined with the phase angle

of the nearest bus equipped with a PMU. The complex bus voltages V in the power

distribution system are chosen as the state variables. The notations eV ∈ C3m1×1 and

eS ∈ C3m2×1 are used for the vectors of the voltage and power measurement noises,
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respectivley, where the elements are assumed to follow zero-mean complex Gaussian

distributions.

Due to limited resources in some systems, not all nodes are equipped with mea-

surement units. Two indicator matrices are introduced to represent the elements of

the state variables that have corresponding measurements. Specifically, the 3m1× 3n

matrix AV and the 3m2 × 3n matrix AS show the elements of V which have voltage

and power measurements, respectively. The elements of AV and AS are either 1’s or

0’s, and there is a single 1 in each row of these two matrices. Take a 5-bus three-phase

distribution system as an example. Assuming that the bus voltages are measured in

three phases at bus 1 and bus 2, and the power injections are measured in three

phases at bus 3, bus 4, and bus 5, then the two indicator matrices are given by

AV =

⎡⎣1 0 0 0 0
0 1 0 0 0

⎤⎦⊗U 3,AS =

⎡⎢⎢⎢⎣
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎦⊗U 3, (2.9)

where U 3 denotes the 3× 3 identity matrix and ⊗ represents the Kronecker product.

The DSSE model with linear approximation can be written as

z ≈ HV + e, (2.10)

where

z ≜

⎡⎣V mea

Iequ

⎤⎦ ,H ≜

⎡⎣ AV

YAS

⎤⎦ , e ≜

⎡⎣eV

e∗
S

⎤⎦ . (2.11)

Here, Y represents the admittance matrix, which is composed of both the complex

bus admittance matrix and the complex branch admittance matrix with respect to

the power measurements. The notation (·)∗ represents the complex conjugate.

For systems without direct current measurements but with power measurements

of some nodes, we use I to denote the 3m2 × 1 vector of current values where power

measurements are available, given by

I = Y (ASV ) . (2.12)
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Thus the power measurements can be written as

Smea = S + eS = diag{I}∗ASV + eS, (2.13)

where diag{I} is the diagonal matrix whose diagonal entries are elements of the vector

I. When there is no measurement noises, the true current vector is

I = diag−∗{ASV }S∗, (2.14)

where (·)−∗ represents the conjugate of the inverse of a matrix. But when the noises

exist, we use the power measurement Smea and the estimated voltages V̂ to obtain

equivalent current measurements, which is given by

Iequ = diag−∗{ASV̂ }S∗
mea, (2.15)

where V̂ is the bus estimated voltage vector. The equivalent current vector Iequ is

used as an approximation for the direct current measurements Imea to obtain the

approximate linear DSSE model in (2.10). For this DSSE model, the WLS state

estimation is known to be

V̂ = (HHR−1H)−1HHR−1z. (2.16)

If eV and eS are independent, then the covariance matrix of noise vector can be

presented as

R ≜

⎡⎣RV 0

0 RS

⎤⎦ , (2.17)

where RV and RS represent the covariance matrices of the noise vectors eV and

e∗
S, respectively. Note that since the equivalent complex current is calculated as the

conjugate of the ratio of power and voltage in (2.15), the noise vector at the power

measurements is the conjugate form e∗
S.

To implement the state estimation, the equivalent currents and the voltage esti-

mates are calculated iteratively using (2.15) and (2.16), respectively, until conver-

gence. For the initialization step, a common choice for V̂ is the vector of all 1’s. A
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small positive value, denoted as ϵ, is used as the threshold for the termination of the

iterations.

In distribution systems, some of the buses may only be equipped with one or two

phases. For these buses, the virtual lines can be added to facilitate the implementation

of the proposed detection scheme [20]. Specifically, the admittance of the missing

phases is assigned with arbitrary values, and the mutual admittance between an

existing phase and a missing phase is set to zero. Accordingly, the corresponding

power and current measurements on missing phases are set as zero, and the voltage

measurements are set as the voltages of the nearest upstream bus equipped with the

missing phases. In this way, each bus in the distribution system is virtually equipped

with three phases, and the proposed scheme is generalized for systems with missing

phases.

For this linear approximate DSSE, by following the conditions in (2.7), a stealthy

FDIA needs to be designed to satisfy

a = Hc, (2.18)

so the residual vector r is unchanged under the attack. Since the second part of

the measurement function matrix H in (2.11) is constructed based on the equivalent

current measurements Iequ, the corresponding part of the designed stealthy attack a

is related to the virtual injections on the equivalent current measurements. In the

practice of the attack, a needs to be transformed to aequ, which is the attack vector

injected into the direct voltage measurements V mea and power measurements Smea,

such that with the injection of aequ to the voltage and power measurements, the

resulting measurement vector z becomes z+a. More detailed derivation steps of the

transformation can be found in [20].
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2.2 FDIA Detection Scheme Based on ZSV

To deal with the challenging FDIA detection problem in distribution systems, we

propose to conduct the detection in the state domain. Particularly, the ZSV vector

is used, which reflects the unbalance degree of each bus. Furthermore, a whitening

process is designed to reduce the influence of measurement noises. In this section, the

concept of ZSV is introduced first. Then, the proposed detection scheme is elaborated.

Additionally, the estimation error and the false alarm rate of the proposed scheme

are analyzed.

2.2.1 ZSV in Three-Phase Distribution Systems

In a three-phase distribution system, the three phase voltages V a, V b and V c can be

resolved into three sequence components [23]: zero-sequence component V 0, positive-

sequence component V p, and negative-sequence component V n. The three sequence

voltages can be formulated as follows:⎡⎢⎢⎢⎣
V 0

V p

V n

⎤⎥⎥⎥⎦ =
1

3

⎡⎢⎢⎢⎣
1 1 1

1 a a2

1 a2 a

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
V a

V b

V c

⎤⎥⎥⎥⎦ , (2.19)

where a = ej(2π/3).

In power transmission systems, the topology is a mesh structure, and each bus is

equipped with three phases in good balance [67]. Thus the attacker can inject the

FDIAs in a substation on three phases at the same time. The operator can trans-

form the three-phase balanced system into a single-phase system for FDIA detection.

However, in power distribution systems, the topology is a radial structure, and each

customer is usually connected to a single phase [68]. Thus, the attacker usually in-

jects the attack in a single phase of a bus only. The ZSV vector V 0 represents the

voltage on the neutral wire of each bus in a distribution system. If the system is

perfectly balanced, V 0 is a vector with all 0’s. In a three-phase unbalanced distribu-

tion system, the values of V 0 may be non-zero and they reflect the unbalance degree
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[69]. In a healthy and normally operating distribution system, the ZSV vector is very

close to zero. The estimation deviation c of a stealthy FDIA in distribution systems

is usually on the voltage magnitude of one phase of a bus. This injected deviation

will cause an apparent change in the unbalance degree of the system. Therefore, we

can assume that a sudden and obvious change of ZSV represents the existence of an

FDIA. If the attacker injects several FDIAs into multiple phases or multiple buses

in the distribution system, the ZSV-based detection scheme can still be applied if

the FDIAs cause system unbalanced that affects the ZSV of the buses. There is one

special and uncommon case that the FDIAs are injected into one bus on all three

phases with the same magnitudes. In this case, the proposed detection scheme is not

applicable. Instead, we can equate the model to a single-phase distribution system

and implement detection schemes designed for single-phase distribution systems.

The utilization of ZSV transforms the FDIA detection from the measurement do-

main to the state domain. For the traditional residual-based BDD and many other

detection schemes, the values and features of measured data are used for detection.

One problem is that the measured data obtained by operators is limited in distribution

systems and the attacker can design stealthy FDIAs according to the measurement

function H . In this case, transforming the detection problem into the state domain

is more effective. The ZSV vector can directly reflect abnormal changes of state

variables and can be used for FDIA detection in three-phase unbalanced distribution

systems.

2.2.2 Proposed FDIA Detection Scheme

The FDIA detection problem is a binary hypothesis testing problem with the following

two hypotheses: the system is not under attack (denoted as H0) and the system is

under attack (denoted as H1). From the linear approximate model in (2.10), the

detection problem can be modeled as the following

H0 : z ≈ HV + e, (2.20)
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H1 : z ≈ HV + a+ e, (2.21)

where a ̸= 0.

The voltage vector is constructed as

V =
[︁
V T

a , V T
b , V T

c

]︁T
, (2.22)

where V a,V b,V c ∈ Cn×1 are the voltage vectors of the three phases, and (·)T denotes

the vector/matrix transpose. The state estimation result is denoted as V̂ which has

the same structure as (2.22), given by

V̂ =
[︂
V̂

T

a , V̂
T

b , V̂
T

c

]︂T
. (2.23)

The estimated ZSV V̂ 0, can thus be calculated as

V̂ 0 = V̂ a + V̂ b + V̂ c = Ũ V̂ , (2.24)

where

Ũ ≜ [1, 1, 1]⊗Un. (2.25)

Next, three processing steps are introduced on V̂ 0 to enhance the detection per-

formance. The first step is to represent it in the real-valued form for subsequent

derivations, given by

V̂
vec

0 ≜
[︂
V̂

T

0,real, V̂
T

0,imag

]︂T
, (2.26)

where V̂ 0,real and V̂ 0,imag are the real and imaginary parts of V̂ 0, respectively. Notice

that

V̂ 0 = V̂ 0,real + jV̂ 0,imag (2.27)

is an n×1 complex-valued vector while V̂
vec

0 is the 2n×1 real-valued vector equivalent

to V̂ 0. The second processing step is to eliminate the intrinsic non-zero ZSV of the

system under the normal condition. In a three-phase unbalanced system, the actual

ZSV vector is not exactly zero though close-to-zero. To take this into account in

the detection, the intrinsic ZSV is subtracted from the estimated ZSV. Let V 0,ave
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denote the average of the ZSV vector under the normal condition. In practice, an

approximation of V 0,ave can be obtained from historical measurements. The third

process is a linear transformation to reduce the effect of the correlation among the

noise components in V̂
vec

0 . For this, a 2n× 2n real-valued transformation matrix W

is introduced with the function of noise-whitening. The design of the transformation

matrix W will be presented in a subsequent subsection. The processed ZSV vector

is thus

V 0,proc ≜ W (V̂
vec

0 − V vec
0,ave), (2.28)

where V vec
0,ave is the real-valued form of V 0,ave, whose structure is similar to that in

(2.26).

The proposed detection scheme is based on the L2-norm of the processed ZSV.

Specifically, the proposed detection rule is⎧⎨⎩Decision is “no attack” if ∥V 0,proc∥22 < h;

Decision is “under attack” if ∥V 0,proc∥22 ≥ h,
(2.29)

where h is the detection threshold. This decision rule can also be represented as

T ≜ ∥V 0,proc∥22 =
⃦⃦⃦
W (V̂

vec

0 − V vec
0,ave)

⃦⃦⃦2

2

H1

⋛
H0

h, (2.30)

where T is the test statistic.

2.2.3 Mathematical Analysis of the Three-Phase DSSE

For the design of the transformation matrix W and the performance analysis of the

proposed detection scheme, the distribution of V̂ 0 needs to be derived, and from

(2.24), this requires studies of the state estimation V̂ . For linear system models

with Gaussian noises and the WLS estimation in (2.16), the distribution of V̂ can

be obtained straightforwardly. However, for the linear approximate DSSE, the state

estimation is obtained by iteratively using (2.15) and (2.16). The mathematical anal-

ysis on the estimation vector is significantly more challenging, and there has not been

any result in the literature. In this subsection, the analysis of the state estimate V̂
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under H0 is conducted. The results are crucial for the design of W and the derivation

of the false alarm rate.

By using (2.12) and (2.13) in (2.15), the equivalent current vector can be written

as

Iequ=diag−∗{ASV̂ } (diag{ASV }I∗ + eS)
∗

=diag−∗{ASV̂ }diag∗{ASV }Y (ASV ) + diag−∗{ASV̂ }e∗
S. (2.31)

Then the equivalent measurement vector defined in (2.11) can be rewritten as

z=

⎡⎣V mea

Iequ

⎤⎦ =

⎡⎣ AV V + eV

diag−∗{ASV̂ }S∗
mea

⎤⎦ =

⎡⎣ AV V + eV

diag−∗{ASV̂ }
[︁
diag{I}A∗

SV
∗ + e−∗

S

]︁
⎤⎦

=

⎡⎣ AV V + eV

diag−∗{ASV̂ }diag∗{ASV }Y ASV + diag−∗{ASV̂ }e∗S

⎤⎦
=

⎡⎣ AV

diag−∗{ASV̂ }diag∗{ASV }Y AS

⎤⎦V +

⎡⎣1 0

0 diag−∗{ASV̂ }

⎤⎦⎡⎣eV

e∗S

⎤⎦
=HV +

⎡⎣1 0

0 diag−∗{ASV̂ }

⎤⎦ e+

⎡⎣ 0

(diag−∗{ASV̂ }diag∗{ASV } − 1)Y AS

⎤⎦V , (2.32)

where H and e are also defined in (2.11). To help the presentation, we define

A ≜ (HHR−1H)−1HHR−1. (2.33)

By using (2.32) in (2.16), the state estimation can be presented as

V̂ = (HHR−1H)−1HHR−1z = Az

=A

⎛⎝HV +

⎡⎣1 0

0 diag−∗{ASV̂ }

⎤⎦ e+

⎡⎣ 0(︂
diag−∗{ASV̂ }diag∗{ASV } − 1

)︂
Y AS

⎤⎦V

⎞⎠
=V +A

⎡⎣1 0

0 diag−∗{ASV̂ }

⎤⎦ e+A

⎡⎣ 0(︂
diag−∗{ASV̂ }diag∗{ASV } − 1

)︂
Y AS

⎤⎦V .(2.34)

It provides an expression of the estimated vector V̂ for the iterative estimation

scheme in terms of the parameters of the power grids, such as voltages, impendence,

and noises. However, the expression in (2.34) is recursive and implicit as the state
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estimation V̂ appears on both sides of the equality. Further analysis is needed to un-

derstand the distribution of V̂ . Define the estimation error as the difference between

the true values and the estimated values, given by,

∆V ≜ V − V̂ , (2.35)

and let

∆V vec =
[︁
∆V T

real,∆V T
imag

]︁T
, (2.36)

which is the real-valued equivalent representation of ∆V .

Theorem 1 Define

E1≜ A

⎡⎣1 0

0 diag−∗{ASV̂ }

⎤⎦ , (2.37)

E2≜ A

⎡⎣ 0

diag−∗{ASV̂ }diag{Y ASV̂ }A∗
S

⎤⎦ , (2.38)

E ≜

⎡⎣1+E2,real E2,imag

E2,imag 1−E2,real

⎤⎦−1 ⎡⎣ E1,real −E1,imag

E1,imag E1,real

⎤⎦ , (2.39)

where E1,real, E2,real and E1,imag, E2,imag are the real and imaginary parts of matrices

E1 and E2, respectively. Further, define

Rrec ≜

⎡⎣ Rreal −Rimag

Rimag Rreal

⎤⎦ , (2.40)

with Rreal and Rimag being the real and imaginary parts of R, respectively. With the

approximate DSSE model (2.10) and the state estimation in (2.16), when the system

is not under attack, the estimation error in the real-valued format ∆V vec can be

approximated as a zero-mean Gaussian vector whose covariance matrix is ERvecET .

That is, ∆V vec ∼ N (0,ERvecET ).

Proof. For the (2, 1)-block of the matrix in the last term in (2.32), by using (2.35)

to replace V with V̂ +∆V , we have(︂
diag−∗{ASV̂ }diag∗{ASV } − 1

)︂
Y ASV
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=
(︂
diag−∗{ASV̂ }diag∗{AS(V̂ +∆V )} − 1

)︂
Y AS

(︂
V̂ +∆V

)︂
=

(︂
diag−∗{ASV̂ }diag∗{ASV̂ }+ diag−∗{ASV̂ }diag∗{AS∆V }−1

)︂
YAS

(︂
V̂ +∆V

)︂
= diag−∗{ASV̂ }diag∗{AS∆V }Y AS

(︂
V̂ +∆V

)︂
. (2.41)

When the power system is under normal condition without attack, the effect of the

noises is small compared to the actual voltage values or estimated values, i.e., ∆V ≪

V or ∆V ≪ V̂ . Thus, by ignoring the ∆V at the end of (2.41), we have the following

approximation:

(diag−∗{ASV̂ }diag∗{ASV } − 1)Y ASV

≈ diag−∗{ASV̂ }diag∗{AS∆V }Y ASV̂

= diag−∗{ASV̂ }diag{A∗
S∆V ∗}Y ASV̂

= diag−∗{ASV̂ }diag{Y ASV̂ }A∗
S∆V ∗. (2.42)

Then, by using (2.42) in (2.34), the following approximation can be obtained on the

state estimation and the estimation error:

V̂ ≈ V +E1e+E2∆V ∗, (2.43)

which is equivalent to

−∆V ≈ E1e+E2∆V ∗. (2.44)

Both ∆V and its conjugate ∆V ∗ appear in (2.44) and they cannot be straightfor-

wardly combined in the complex form. To further obtain the distribution of ∆V , the

vectors and matrices in (2.44) are converted into their equivalent real-valued forms.

With the following equalities,

∆V = ∆V real + j∆V imag,

∆V ∗= ∆V real − j∆V imag,
(2.45)

(2.44) can be rewritten in rectangular forms as

−∆V real ≈ E1,realereal −E1,imageimag +E2,real∆V real +E2,imag∆V imag,

−∆V imag ≈ E1,imagereal +E1,realeimag +E2,imag∆V real −E2,real∆V imag.
(2.46)
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From (2.46), we can obtain

−

⎡⎣ ∆V real

∆V imag

⎤⎦≈

⎡⎣ E1,real −E1,imag

E1,imag E1,real

⎤⎦⎡⎣ ereal

eimag

⎤⎦+
⎡⎣ E2,real −E2,imag

E2,imag E2,real

⎤⎦⎡⎣ ∆V real

−∆V imag

⎤⎦
=

⎡⎣ E1,real −E1,imag

E1,imag E1,real

⎤⎦⎡⎣ ereal

eimag

⎤⎦+
⎡⎣ E2,real E2,imag

E2,imag −E2,real

⎤⎦⎡⎣ ∆V real

∆V imag

⎤⎦ .(2.47)

The estimation error in the real-valued form can be derived from (2.47) as

∆V vec ≈ −Eevec, (2.48)

where

evec =
[︁
eT
real, e

T
imag

]︁T
(2.49)

is the real-valued form of the noise vector e, and it is a Gaussian vector following

N (0,Rvec). From (2.48), it can be seen that ∆V vec is also a zero-mean Gaussian

vector whose variance is ERvecET , i.e., ∆V vec ∼ N (0,ERvecET ). Therefore, the

theorem is proved.

2.2.4 Transformation Matrix Design and False Alarm Rate
Analysis

Define

Ũ
vec

≜

⎡⎣ Ũ real −Ũ imag

Ũ imag Ũ real

⎤⎦ = U 2 ⊗ Ũ . (2.50)

By using (2.35) and (2.24) in (2.28), we have

V 0,proc =W (V̂
vec

0 − V vec
0,ave)

=W
[︂
Ũ

vec
(V vec −∆V vec)− V vec

0,ave

]︂
=−WŨ

rec
∆V rec +

(︂
WŨ

rec
V rec −WV rec

0,ave

)︂
≈−WŨ

vec
∆V vec

≈WŨ
vec

Eevec, (2.51)

where the last two steps are due to (2.48) and

V 0,ave ≈ ŨV ⇔ V vec
0,ave ≈ Ũ

vec
V vec. (2.52)

30



For detection problems with Gaussian noises, whitening is known to be an impor-

tant step of many optimal detectors. It is used in this work for the design of the

transformation matrix W , where the goal is to transform the test vector V 0,proc to

a white Gaussian vector with the identity matrix as the covariance matrix. In this

way, the correlation among the estimation error components can be removed. Notice

that V 0,proc is zero-mean. Thus, for whitening, the condition on the transformation

matrix W is

E
[︁
V 0,procV

T
0,proc

]︁
= U , (2.53)

which is equivalent to

E
[︂
WŨ

vec
Eevec(WŨ

vec
Eevec)T

]︂
=WŨ

vec
E E

[︁
evecevecT

]︁
ET Ũ

vecT
W T

=WŨ
vec

ERvecET Ũ
vecT

W T = U . (2.54)

Therefore, the following design is proposed:

W =
(︂
Ũ

vec
ERvecET Ũ

vecT
)︂− 1

2
. (2.55)

With this design, we have V 0,proc ∼ N (0,U ). And thus the statistic T under

H0, which is the square of L2-norm of V 0,proc, follows the centralized Chi-squared

distribution with degree 2n, e.g., T |H0 ∼ χ2 (2n) [70].

The false alarm rate PF is the probability that the detection result is under attack

when the system is not under attack. The PF for the detection rule in (2.30) can be

calculated as

PF = P(T ≥ h|H0) =
1

Γ(n)
Γ

(︃
n,

h

2

)︃
, (2.56)

where Γ(n) is the gamma function and

Γ(n, x) ≜
∫︂ ∞

x

xn−1e−xdx (2.57)

is the upper incomplete gamma function.
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The result in (2.56) provides a tractable analytical formula for the false alarm rate

of the proposed detection scheme. It only depends on the detection threshold h and

the number of system states n, as a result of the whitening transformation on the

estimated ZSV. To determine the threshold value has been a challenging problem

in many practical detection systems. A widely used method is to find the threshold

based on a tolerance level of the false alarm rate. This usually requires a good amount

of historical data or extensive trials, and the process needs to be repeated when the

system parameters change or the desired PF level changes. Our derived result in

(2.56) can be used to analytically and straightforwardly set the threshold value h

according to the desired level on the false alarm rate and the number of the buses in

the topology. For example, in a three-phase distribution system with 35 buses, i.e.,

n = 35, if the desired level of false alarm rate is PF = 1%, the detection threshold can

then be calculated as h = 45.42; if the desired level of false alarm rate is PF = 0.1%,

the detection threshold can then be calculated as h = 39.05.

2.2.5 Detection Algorithm and Discussions

The proposed FDIA detection method based on DSSE and ZSV is summarized in

Algorithm 1.

The proposed detection scheme is general and can be implemented for any DSSE

methods in three-phase distribution systems. We can use the estimated bus volt-

ages resulted from any DSSE method to calculate the estimated ZSV. The estimated

ZSV vector can reflect the unbalance degree, which has abnormal change under

FDIAs. However, the transformation matrix should be adjusted according to the

DSSE method based on the distribution of the estimation error ∆V . Particularly, if

the DSSE method is based on a linear model with no approximation and the system

state is chosen as bus voltages, the corresponding analysis, including the derivation of

the distribution of estimation error ∆V and the design of the transformation matrix,

can be significantly simplified. On the other hand, if the DSSE method is non-linear
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Algorithm 1 Proposed detection scheme based on DSSE and ZSV.

1: Initialize V̂ and ϵ. Let Flag = 1.
2: while Flag == 1 do
3: Calculate the equivalent current vector Iequ using (2.15).

4: Update the state estimate using (2.16) and name it V̂ new.
5: if ∥V̂ new − V̂ ∥∞ > ϵ then
6: V̂ = V̂ new.
7: else
8: Flag = 0.

9: return V̂ . ▷ The state estimate V̂ .
10: Calculate E1,E2, and E using (2.37), (2.38), and (2.39), respectively.
11: Calculate W using (2.55).
12: Calculate V 0,proc using (2.28).
13: Calculate T and compare with a predetermined detection threshold h as in (2.30).

aaaaaaaaaaaaaaaaaaaaaaaaaaaa ▷ The detection result.

and complicated, the corresponding mathematical analysis can be more challenging.

The proposed scheme only needs real-time measurement data for fault detection. The

load profile, which characterizes the variation in electrical load versus time, does not

influence the performance of the proposed detection scheme.

The overall complexity order of the proposed scheme is O(m3t), where t is the

number of iterations in the DSSE. Particularly, the complexity order of the DSSE

(Steps 1-9 of Algorithm 1) and the remaining part (Steps 10-13 of Algorithm 1) is

O(m3t) and O(m3), respectively. In comparison, the traditional ISE-based detection

scheme [33], which also operates from the state domain, has the same overall com-

plexity order since it also needs the DSSE, and the complexity order of the part other

than the DSSE is also O(m3).

2.3 Case Study

To evaluate the performance of the proposed FDIA detection scheme for three-phase

distribution systems, the IEEE 37 Bus Test Feeder as well as the IEEE 123 Bus Test

Feeder are used in the case studies, whose topologies and the branches with missing

phases are shown in Fig. 2.1 and Fig. 2.2, respectively [71]. The slack bus is selected
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as bus 701 in IEEE 37 Bus Test Feeder and bus 149 in IEEE 123 Bus Test Feeder.

For the IEEE 123 Bus Test Feeder, some switches are usually closed on the branches,

such as branches 13-152, 18-135, 60-160, 97-197. For simplicity, each pair of buses

connected by these branches is combined in Fig. 2.2.

Figure 2.1: The distribution system topology of IEEE 37 Bus Test Feeder.

To understand the performance with different numbers of measurements, two cases

of direct measurement arrangements are considered: the case of Least Measurements

and the case of Half Measurements. Since most distribution systems in practice are

equipped with a small number of measurements units for the voltages due to the cost

consideration, the Least Measurements setting is used to simulate such application

environment. On the other hand, with the emerging of smart grid technologies, more

real-time voltage measurement units are expected to be available in future distribution

systems. Therefore, the Half Measurements setting is also considered to test and

show the performance for the proposed detection scheme for such systems. The Least

Measurements contain the power injection measurements on each node, one power

flow measurement on the main branch, one bus voltage injection measurement on the

top node, and one equivalent bus voltage injection measurement on the terminal node.
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Figure 2.2: The distribution system topology of IEEE 123 Bus Test Feeder.

The Half Measurements contain the power injection measurements on each node,

power flow measurements on the main branches, bus voltage injection measurements

on the intersection nodes, and equivalent bus voltage injection measurements on the

terminal nodes. The locations of the measurements for IEEE 37 Bus and IEEE 123

Bus test feeders are shown in Table 2.1 and Table 2.2, respectively.

Table 2.1: The Measurement Arrangement of IEEE 37 Bus Test Feeder

Least Mea. Half Mea.

Equivalent Bus
Voltage Injections

740
712, 742, 722, 724, 718, 725, 729,
728, 731, 732, 735, 736, 740, 741

Bus Voltage
Injections

701
701, 702, 703, 727, 713, 704, 720, 730,

709, 708, 733, 734, 737, 738, 711

Power Injections All Buses All Buses

Power Flows 701-702
701-702, 702-703, 703-730,
730-709, 709-708, 702-713

Pseudo measurements based on historical data are also used, whose noise variance
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Table 2.2: The Measurement Arrangement of IEEE 123 Bus Test Feeder

Least Mea. Half Mea.

Equivalent Bus
Voltage Injections

114

2, 4, 6, 10, 11, 12, 16, 17, 20, 22, 24, 32, 33,
37, 39, 41, 43, 46, 48, 51, 56, 59, 66, 71, 75,
79, 83, 85, 88, 90, 92, 94, 96, 104, 107, 111,

114, 250, 300, 450

Bus Voltage
Injections

149
1, 7, 8, 13, 18, 21, 23, 25, 26, 40, 42, 44, 47,
52, 53, 54, 57, 60, 67, 72, 76, 77, 78, 86, 97,

101, 105, 108, 149

Power Injections All Buses All Buses

Power Flows 149-1

149-1, 1-7, 7-8, 8-13, 13-18, 152-52, 18-21,
18-135, 35-40, 40-42, 42-44, 44-47, 21-23,
23-25, 25-26, 52-53, 53-54, 54-57, 57-60,
160-67, 67-72, 67-97, 72-76, 76-77, 77-78,

76-86, 197-101, 101-105, 105-108

is assumed to be 20 or 60 times that of direct measurements [72]. The two cases

of pseudo measurements are referred to as Pseudo Measurements (20) and Pseudo

Measurements (60). For the FDIA event, one entry of the estimation deviation c

is randomly chosen and set as 5% [73], which can cause damage in distribution sys-

tems. All measurement values, DSSE, and detection are simulated in MATLAB. The

threshold for the DSSE iteration is set to be ϵ = 1× 10−6.

2.3.1 Results on the Detection Performance

A common method to show the performance of a binary detector is the receiver

operating characteristic (ROC) curve [74], which is the correspondence between the

detection rate PD and the false alarm rate PF . In simulation, the detection rate PD is

the ratio of the number of detected attacks to the number of attack events. However,

since the detection rates simulated in many case studies are very closed to one, the

PD v.s. PF curves of different cases are very close to each other, thus it is difficult to

make insightful observations from the plots. Therefore, we replace the detection rate

PD with the miss rate PM (where PM = 1 − PD) and use the logarithmic scale for
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clear presentation.

In simulation, the miss rate PM is the ratio of the number of attack events that

are not detected to the number of attack events. There is an intrinsic trade-off

between PM and PF , i.e., by adjusting the detection threshold, one can improve

the PM -performance by sacrificing the PF -performance and vice versa. 106 events

are generated where half of them are under attack. For each under-attack event,

the location of FDIA is randomly chosen as one phase of a bus in the distribution

system. Four cases of measurements are simulated: 1) Least Measurements, 2) Least

Measurements and Pseudo Measurements (20), 3) Least Measurements and Pseudo

Measurements (60), and 4) Half Measurements.

The PM v.s. PF curves are shown in Fig. 2.3 and Fig. 2.4 for the IEEE 37 Bus

Test Feeder and IEEE 123 Bus Test Feeder, respectively. The variance of noises at

all measurement units are assumed to be 0.1, that is, R = 0.1U , which is a large

noise setting in practice [75]. The figures show that the detection accuracy with Half

Measurements is obviously better than that with Least Measurements. This is because

more direct measurements improve the detection performance. Among the three

cases with Least Measurements, the one with the addition of Pseudo Measurements

(20) has the best performance. The figures also show that the addition of Pseudo

Measurements (60) to Least Measurements can improve the detection performance

even with a high noise variance. The use of Pseudo Measurements (20) can further

improve the performance due to its lower variance in the noise. With Least and

Pseudo Measurements (20), for IEEE 37 Bus Test Feeder, at the false alarm rate

of 1%, the proposed FDIA detection scheme can achieve 2% of miss rate, which is

equivalent to 98% of correct detection rate; for IEEE 123 Bus Test Feeder, even for

a very low false alarm rate of 0.1%, the proposed detection scheme can achieve 0.2%

of miss rate, which is equivalent to 99.8% correct detection rate.

The cases with different noise variances are also simulated, where five noise levels

are considered: σ2 = 0.01, 0.03, 0.05, 0.08, 0.1; and R = σ2U . The curves of PM v.s.
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Figure 2.3: PM v.s. PF with different measurements of IEEE 37 Bus Test Feeder.
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Figure 2.4: PM v.s. PF with different measurements of IEEE 123 Bus Test Feeder.

PF of the proposed detection scheme with Least Measurements for IEEE 37 Bus Test

Feeder and IEEE 123 Bus Test Feeder are shown in Fig. 2.5 and Fig. 2.6, respectively.

From these figures, it can be seen that as the noise variance decreases, the detection

performance improves. With the noise variance of σ2 = 0.05, for IEEE 37 Bus Test
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Feeder, at the false alarm rate of 1%, the proposed FDIA detection scheme can achieve

1% of miss rate, which is 99% of correct detection rate; for IEEE 123 Bus Test Feeder,

even for the very low false alarm rate of 0.5%, the proposed FDIA detection scheme

can achieve 0.6% of miss rate, which is 99.4% of correct detection rate. For the

case where σ2 = 0.01, the proposed scheme achieves the perfect performance where

PM = 0 and PF = 0. Since the logarithmic scale is used in the figure, the PM v.s. PF

curve of this case cannot be shown.
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Figure 2.5: PM v.s. PF with different noise variance of IEEE 37 Bus Test Feeder.

2.3.2 Comparison with Existing Approach

In this subsection, the proposed detection scheme is compared with the detection

scheme using ISE [33]. Similar to our proposed ZSV-based detection scheme, the

ISE-based detection scheme also operates from the state domain, which offers a direct

comparison of the detection performance. The same as the proposed method, the ISE

detection scheme is model-based and targets at unbalanced distribution systems to

detect the FDIA from the state domain. When PF = 1%, the comparison results of PD

of IEEE 123 Bus Test Feeder are summarized in Table 2.3. Here, we set R = 0.1U .
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Figure 2.6: PM v.s. PF with different noise variance of IEEE 123 Bus Test Feeder.

Compared with the ISE-based detection scheme, the proposed scheme has obvious

advantage in the detection rate for all four cases of measurements. One reason is

that, in the ISE-based scheme, the lower and upper boundaries on each individual

state are sensitive to the noises, and the deviation in bounds is likely to cause a false

alarm or a miss of detection. Moreover, the proposed scheme enlarges the intrinsic

unbalance degree of buses when the system is under attack, and uses L2-norm of the

transformed ZSV, which is a more effective feature in measuring the system status.

Further comparisons of the ZSV-based and the ISE-based detection schemes for the

case of σ2 = 0.1 and Least and Pseudo Measurements (20) are conducted, i.e., in Fig.

2.7, the test statistic values of the proposed scheme for 100 no-attack events and 100

under-attack events are shown; in Fig. 2.8, the state variables of one of the no-attack

event are shown; and in Fig. 2.9, the state variables of one of the under attack event

are shown. Fig. 2.7 shows the test statistic value T of two hundred events: the first

half are no-attack events corresponding to H0 and the other half are under-attack

events corresponding to H1. With an appropriately selected threshold, the attacks

can be successfully detected with no false alarm. Two representative events, one for
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Table 2.3: PD Comparison between ISE-Based Detection Scheme and ZSV-Based
Detection Scheme at PF = 1%

Detection Rate ISE-Based ZSV-Based

Least Mea. 72.84% 91.15%

Least and Pseudo Mea.(60) 85.91% 99.38%

Least and Pseudo Mea.(20) 92.65% 99.95%

Half Mea. 95.43% 99.9933%

no-attack and one for under-attack, are further studied for the ISE-based detection

scheme. Fig. 2.8 shows the estimated states of all buses and the detection boundaries

for the H0 event. It can be seen that the estimates of Bus 60 exceeds its upper

boundary, which results in a false alarm. The H1 event is an attack injected into Bus

60 and Fig. 2.9 shows the state estimates of all buses and their boundaries. With a

5% estimation deviation, the estimated states has a peak on Bus 60, but the value

does not exceed the bounds calculated by ISE, which leads to a miss of detection.

While the noises in these two events affect the calculations of the bounds for the ISE-

based scheme, the proposed ZSV-based scheme can effectively conquer the influence

of noise for better performance.
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Figure 2.7: Test statistic values of the ZSV-based detection scheme for 200 events.

As to the computation load of the proposed detection scheme, the simulation time

in MATLAB in detecting an event is 279.43 ms for the IEEE 37 Bus Test Feeder and
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Figure 2.8: State variables of the ISE-based detection scheme for one H0 event.

Figure 2.9: State variables of the ISE-based detection scheme for one H1 event.

3857.12 ms for the IEEE 123 Bus Test Feeder, respectively, for Least and Pseudo

Measurements (20). In comparison, the simulation time of the ISE-based detection

scheme is 201.96 ms and 4488.76 ms, respectively, for the same setting. The com-

putation load of our proposed scheme is slightly higher than that of the ISE-based

detection scheme. Yet, it scales well as the system dimension increases, similar to

that of the ISE-based detection scheme, which conforms with our analytical results

in Chapter 2.2.3.

2.3.3 Effect of the Whitening Process

A whitening transformation matrix W is designed in (2.55) and is applied to the

estimated ZSV as shown in (2.28). This transformation eliminates the correlation

among the noise components in the estimated ZSV under the normal condition. It

is important for the performance improvement of the proposed detection scheme and

the derivation of the false alarm rate. In this subsection, the effect of the whitening
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process is investigated. The detection scheme without the transformation on the test

variables can be represented as follows:

TNoWhiten ≜
⃦⃦⃦
V̂

vec

0 − V vec
0,ave

⃦⃦⃦2 H1

⋛
H0

h. (2.58)

The PM v.s. PF curves of the ZSV-based schemes with and without the transfor-

mation for IEEE 123 Bus Test Feeder are shown in Fig. 2.10. The two considered

measurement cases are Least and Pseudo Measurements (20) and Least and Pseudo

Measurements (60), where the noise variance isR = 0.1U . It can be seen from the fig-

ure that the two measurement cases have the same performance, although the quality

of pseudo measurements is different. The (0.5, 0.5) point, which represents the perfor-

mance of a naive random guess, is on the curves. This observation indicates that the

performance without the transformation is very low, and the whitening process can

significantly improve the detection performance. The performance of the proposed

detection scheme with whitening improves when the quality of pseudo measurements

improves from 60 times to 20 times the noise variance.
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Figure 2.10: PM v.s. PF with and without whitening of IEEE 123 Bus Test Feeder.
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2.3.4 Results on the False Alarm Rate

In order to verify the accuracy of the derived results in (2.56), simulation results

on the false alarm rate for different threshold values are shown in Fig. 2.11 and

Fig. 2.12 for IEEE 37 Bus Test Feeder and IEEE 123 Bus Test Feeder, respectively.

Four cases are considered: 1) analytical results using (2.56), 2) simulation results

with Half Measurements where R = 0.01U , 3) simulation results with Least and

Pseudo Measurements (20) where R = 0.005U , and 4) simulation results with Least

and Pseudo Measurements (20) where R = 0.01U . It can be seen from Fig. 2.11

and Fig. 2.12 that the simulation results for Case 2 and Case 3 have tight match

with the analytical results. For the case of Least and Pseudo Measurements (20)

with R = 0.01U , where the direct measurements are of lower quality due to the

higher noise variance, there is a small gap between the simulation result and the

analytical result. The gap comes from the approximation in (2.42), which is tight

when ∆V ≪ V or ∆V ≪ V̂ , i.e., the estimation error is small compared with the

value of the state vector. Higher noise variance leads to higher estimation error. As a

result, the analytical result on PF derived in (2.56) is slightly higher than that of the

simulated one, which shows that the use of the analytical formula to set the threshold

can guarantee the PF level for this case.

2.3.5 Effect of the Intrinsic ZSV Subtraction

In (2.28), the intrinsic ZSV is subtracted from the estimated ZSV in order to eliminate

the impact of three-phase system unbalance. In this simulation, the effect of the

subtraction of the intrinsic ZSV is studied. In Fig. 2.13, the PM v.s. PF curves for

the proposed scheme with average ZSV subtraction and the scheme without average

ZSV subtraction are shown for IEEE 123 Bus Test Feeder. The two considered

measurement cases are Least and Pseudo Measurements (20) and Least and Pseudo

Measurements (60), where R = 0.1U . The figure shows that subtracting the intrinsic

ZSV can improve the performance. On the other hand, even without the subtraction
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Figure 2.11: PF v.s. h of IEEE 37 Bus Test Feeder.
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of the intrinsic ZSV, the detection scheme still works well for the case with high-

quality measurements. For systems where historical data are not available to obtain

the average ZSV or systems with highly dynamic ZSV, the scheme without average
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ZSV subtraction can be applied.
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2.4 Summary

In this chapter, an FDIA detection scheme based on ZSV is proposed for three-phase

unbalanced distribution systems.

In this scheme, the estimation of ZSV is obtained from the DSSE with linear

approximation. Then, the estimated ZSV is processed by subtracting the intrinsic

ZSV average value and a whitening transformation matrix. By comparing the L2-

norm of the processed estimated ZSV vector with a predefined threshold, the existence

of FDIA can be detected. Besides, the distribution of the state estimation is analyzed,

based on which the whitening transformation matrix is designed and the false alarm

rate is derived in a simple analytical form. Various case studies on standard IEEE

Test Feeders show that the proposed method can detect the presence of FDIAs with

high accuracy and low false alarm rate. In addition, simulation results validate the

analytical result on false alarm rate and demonstrate the significance of the designed
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processes on the estimated ZSV, including the whitening transformation and the

intrinsic-ZSV subtraction.
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Chapter 3

ZSV-Based FDIA Localization
Scheme for Multiphase Power
Distribution Systems

In this chapter, an FDIA localization scheme based on ZSV is proposed for multiphase

distribution systems. Based on the estimated ZSV value of a bus relative to that of

others, the bus under attack is localized first. Then by eliminating the effect of

estimation error from the estimated ZSV, the estimated injected fault is obtained.

Finally, by minimizing the error rate with an optimal test, the phase under attack

can be diagnosed. With these three steps to analyze the estimated ZSV vector, the

bus localization and phase diagnosis can be achieved. Some simulation results are

provided to verify the proposed FDIA localization scheme with high accuracy.

The remainder of this chapter is organized as follow. In Section 3.1, we introduce

the three steps of the FDIA localization scheme. In Section 3.2, the simulation re-

sults are presented to validate the performance of the proposed scheme. Section 3.3

summarizes this chapter.

3.1 FDIA Localization Scheme

In this section, the proposed FDIA localization scheme for the three-phase distribution

systems is presented. The localization method is based on the assumption that the

existence of an FDIA has been successfully detected using existing FDIA detection
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schemes, e.g., the detection method in Chapter 2. Our goal is to localize which

bus and which phase is under attack using measurement signals. The cases of miss

detection and false alarm are not considered.

As mentioned in Chapter 2.2.1, the ZSV vector symbolizes the unbalance degree

of three-phase distribution systems. For healthy systems without any attack, the

unbalance degree of all buses is usually similar. Since the attacker usually only injects

the estimation deviation into a single phase of a bus, the system unbalance degree

of the bus with a fault injection in one of the phases is increased when an FDIA

exists. Thus, we can use the estimated ZSV for FDIA localization. By calculating

the estimated ZSV vector as (2.24), we can design the FDIA localization scheme in

three steps which are presented in the following subsections.

3.1.1 Localization of the Bus Under Attack

The first step is to localize the bus under attack. As explained above, an FDIA causes

a change in the unbalance degree of the bus under attack. Thus, we propose to locate

the bus under attack by finding the bus whose estimated ZSV value has the largest

difference from the average of the estimated ZSV of all buses. The average estimated

ZSV value of all n buses is calculated as

V̂ 0 =
1

n

n∑︂
i=1

V̂ 0,i, (3.1)

where V̂ 0,i is the ith element of V̂ 0, representing the ZSV of the ith bus. The bus

whose estimated ZSV value has the largest difference from V̂ 0 is determined as the

bus under attack, whose index, denoted as k̂, follows

k̂ = argmax
i

⃓⃓⃓
V̂ 0,i − V̂ 0

⃓⃓⃓
. (3.2)

Denote the index of the bus under attack as k. For the ideal noiseless case where

the voltage estimation is precise, we have

V̂ 0,i =

⎧⎨⎩V0,i, if i ̸= k;

V0,k + c, if i = k,
(3.3)
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where c is the ZSV value of the injected fault. As all values of V0,i’s are approximately

the same, in this case,

V 0 =
1

n

n∑︂
i=1

V0,i ≈ V0,i, for i ̸= k. (3.4)

And

V̂ 0 =
1

n

n∑︂
i=1

V̂ 0,i ≈ V 0 +
c

n
. (3.5)

Thus ⃓⃓⃓
V̂ 0,i − V̂ 0

⃓⃓⃓
≈

⎧⎨⎩
⃓⃓
V0,i − V 0 − c

n

⃓⃓
≈ 1

n
c, if i ̸= k;⃓⃓

V0,k + c− V 0 − c
n

⃓⃓
≈ n−1

n
c, if i = k.

(3.6)

Since n > 2, by using the proposed bus localization in (3.2), we have k̂ = k. Thus

the bus under attack can be correctly localized. In practical applications, the voltage

estimation is subject to error due to measurement noises. When the estimation error

is small compared to the amplitude of the injected fault, the proposed bus localization

scheme is expected to work well.

3.1.2 Estimation of the ZSV Value of the Injected Fault

The second step is to obtain an estimation on the ZSV value of the injected fault.

Recall that k̂ is the bus localization result. The estimated ZSV value of the injected

fault, denoted as ĉ, is obtained as

ĉ = V̂ 0,k̂ − V̂ 0,k̂,nei, (3.7)

where V̂ 0,k̂,nei is the estimated ZSV of the neighbor bus of bus k̂. The estimated fault

ZSV value in (3.7) is obtained by subtracting V̂ 0,k̂,nei from the estimated ZSV of the

bus under attack V̂ 0,k̂.

For the ideal case of no measurement noises in the system, we have k̂ = k and thus

ĉ = c+ V0,k − V0,k,nei ≈ c, (3.8)

where the second step is by using (3.3) and the last step is because the values of

V0,i’s are approximately the same for all i. Here, we particularly choose the nearest
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upstream neighbor since such node is usually the one with the closest unbalance

degree to the bus under attack. For the practical case with voltage estimation error,

similar to the previous step, the proposed estimation is expected to have high quality

when the estimation error is small.

3.1.3 Diagnosis of the Phase Under Attack

The third step of the localization scheme is to diagnose the phase under attack, which

is given by

ω̂ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a, if arg(ĉ) ∈

(︁
−π

3
, π
3

]︁
;

b, if arg(ĉ) ∈
(︁
−π,−π

3

]︁
;

c, if arg(ĉ) ∈
(︁
π
3
, π

]︁
.

(3.9)

When there is no noise or estimation error, the angles of ZSV voltage deviation caused

by an attack injected in the three phases in polar coordinates are θa = 0, θb = −2π/3

and θc = 2π/3, respectively. The proposed phase diagnosis in (3.9) is to find the

phase whose corresponding polar coordinates is the closest to that of the estimated

ZSV value of the injected fault.

In practical applications, the estimated injected fault vector ĉ is subject to estima-

tion error. One common way is to model the estimation error defined as

∆c = c− ĉ, (3.10)

as a zero-mean Gaussian distribution. It has been shown that under the zero-mean

Gaussian error model and equal priori, the proposed test in (3.9) is the optimal test

that minimizes the error rate. The proposed localization scheme is summarized in

Algorithm 2.

3.2 Case Study

To evaluate the performance of the proposed FDIA localization method in three-

phase distribution systems, the IEEE 37 Bus Test Feeder and the IEEE 123 Bus Test
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Algorithm 2 Proposed FDIA Localization Scheme Based on ZSV.

1: Calculate the estimated voltages V̂ a, V̂ b, and V̂ c and then the estimated ZSV
V̂ 0.

2: Calculate an average of the estimated ZSV V0̂ using (3.1), and localize the bus
under attack using (3.2).

3: Calculate the estimated ZSV value of the injected fault using (3.7).
4: Diagnose the phase under attack using (3.9). aaaaaaaa aaaaa aaa aaaaa aaaaaaa

aaaaa ▷ The localization result of FDIA.

Feeder [71] are used in the case studies. A DSSE method with linear approximation

proposed by Zhuang et al. in [20] is also utilized in the case studies, which is explained

in Subsection 2.1.3 in details. The virtual lines are still added to deal with the

missing phase problem, so that the diagnosis of the phase under attack can still be

implemented on the buses equipped with one or two phases.

There are two cases of direct measurement arrangements of IEEE 37 Bus Test

Feeder and IEEE 123 Bus Test Feeder, which are introduced in Table 2.1 and Table

2.2, respectively. Pseudo measurements based on historical data are also used, whose

noise variance is assumed to be 20 or 60 times that of direct measurements. Also,

106 events are generated where each event is under attack, and the location of the

FDIA is randomly chosen as one phase of a bus. The magnitude of the attack is

set as 5%. Eight levels of noise variances are considered: 0.005, 0.006, 0.008, 0.01,

0.015, 0.02, 0.025, and 0.03, which are equivalent to 23.0dB, 22.2dB, 21.0dB, 20dB,

18.2dB, 17.0dB, 16.0dB, and 15.2dB, respectively. All measurement values, DSSE,

and localization are simulated in MATLAB.

The localization rate PL is the ratio of the number of attack events that are correctly

localized to the number of attack events. It equals to the product of the probability of

correctly localizing the bus under attack and the probability of correctly diagnosing

the phase under attack. With some further simulations, we find that there are always

some special buses in the topology. For each wrong localization, the localization

result corresponds to one of these special buses, i.e., they have a higher possibility
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of being wrongly localized. Take the IEEE 37 and IEEE 123 Bus Test Feeder as

examples. For the IEEE 37 Bus Test Feeder, the set of indices of special buses is

Q37 = {736, 740, 741, 722, 724, 725}; for the IEEE 123 Bus Test Feeder, the set of

indices of special buses is Q123 = {6, 36, 37, 39, 46, 50, 51, 66, 84, 85, 94, 96, 114, 250}.

For the probability of correctly diagnosing the phase under attack, with some further

simulations, we find out that the probability can even achieve 1 with the same settings

in the case studies. This is because a wrong phase diagnosis occurs when the polar

angle of ĉ shifts by π/3 from that of c, which is an almost impossible event.

Since the localization rates simulated in many case studies are very closed to one,

the localization rate PL is replaced with the false localization rate PFL in the figures

(where PL = 1 − PFL) and the logarithmic scale is used for clear presentation. In

simulation, the false localization rate PFL is the ratio of the number of attack events

that are wrongly localized to the number of attack events. The relationship between

PFL and the noise variance with four different measurement cases for the IEEE 37

Bus Test Feeder and IEEE 123 Bus Test Feeder is shown in Fig. 3.1 and Fig. 3.2,

respectively.
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Figure 3.1: PFL v.s. noise variance of IEEE 37 Bus Test Feeder.
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Figure 3.2: PFL v.s. noise variance of IEEE 123 Bus Test Feeder.

Moreover, the values of PL for the two feeders are shown in Table 3.1 and Table 3.2,

respectively.

Table 3.1: PL v.s. Noise Variance of IEEE 37 Bus Test Feeder

Noise
Variance
(dB)

Least Mea.

Half Mea.Without
Pseudo Mea.

With 60%
Pseudo Mea.

With 20%
Pseudo Mea.

23.0 0.9902 0.9986 0.99995 0.99999875

22.2 0.9836 0.9974 0.99983 0.999995

21.0 0.9677 0.9920 0.99919 0.999967

20 0.9447 0.9834 0.9977 0.999864

18.2 0.8693 0.9509 0.9895 0.998687

17.0 0.7967 0.9016 0.9684 0.9955

16.0 0.7333 0.8581 0.9451 0.9889

15.2 0.6747 0.8046 0.9163 0.9813

The figures and tables show that as the noise variance decreases or the quality of

measurements increases, the localization accuracy improves. With Least and Pseudo
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Table 3.2: PL v.s. Noise Variance of IEEE 123 Bus Test Feeder

Noise
Variance
(dB)

Least Mea.

Half Mea.Without
Pseudo Mea.

With 60%
Pseudo Mea.

With 20%
Pseudo Mea.

23.0 0.7363 0.9984 0.99999 1

22.2 0.6918 0.9961 0.99997 1

21.0 0.6062 0.9871 0.999857 1

20 0.5385 0.9740 0.99945 1

18.2 0.4316 0.9224 0.9958 1

17.0 0.3545 0.8640 0.9849 0.999998

16.0 0.3092 0.8017 0.9671 0.99999

15.2 0.2602 0.7391 0.9430 0.999975

Measurements (20) and 20dB noise variance, for the IEEE 37 Bus Test Feeder, the pro-

posed FDIA localization scheme can achieve 99.77% of localization rate; for the IEEE

123 Bus Test Feeder, the proposed FDIA localization scheme can achieve 99.945% of

localization rate.

3.3 Summary

Considering the unbalanced nature of multiphase power distribution systems, an

FDIA localization scheme based on ZSV is proposed in this chapter. Based on the

estimated ZSV of a bus relative to others, the bus under attack is localized, and

the injected attack value is estimated by eliminating the estimation error. With an

optimal phase test, the phase under attack is diagnosed with the minimum error.

The feasibility of the proposed scheme is verified using the IEEE 37 and 123 Bus

Test Feeders. It is shown by simulation results that the proposed scheme can achieve

successful FDIA localization under various environments with high accuracy.

55



Chapter 4

Conclusion and Future Work

In this thesis, we investigate the FDIA detection and localization schemes for mul-

tiphase power distribution systems. To detect the presence of stealthy FDIAs, we

proposed a ZSV-based FDIA detection scheme. In this scheme, a ZSV estimation

is obtained from the DSSE with linear approximation. The estimated ZSV is then

processed by subtracting the intrinsic ZSV average value and a whitening transfor-

mation matrix. The existence of FDIA is detected by comparing the L2-norm of the

processed estimated ZSV vector with a predefined threshold. The distribution of the

state estimation is analyzed, based on which the whitening transformation matrix is

designed and the false alarm rate is derived in a simple analytical form. Extensive case

studies on both IEEE 37 Bus Test Feeder and IEEE 123 Bus Test Feeder show that

the proposed method is capable of accurately detecting FDIAs with low false alarm

rate. The comparison with the existing ISE-based detection scheme is also conducted

to further demonstrate the superiority of the proposed method. Further, simulation

results validate the analytical results on false alarm rate and demonstrate the im-

portance of the designed processes on the estimated ZSV, including the whitening

transformation and the intrinsic-ZSV subtraction.

To further specify the location of stealthy FDIAs in multiphase power distribution

systems, we proposed a ZSV-based FDIA localization scheme. In this scheme, based

on the estimated ZSV value of a bus relative to others, the bus under attack can
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be localized. The injected fault value on the bus under attack is then estimated

by eliminating the estimation error. After localizing the bus under attack, with an

optimal phase test, the phase under attack can then be diagnosed with the minimum

error. The feasibility of the proposed FDIA localization scheme is verified using the

IEEE 37 Bus Test Feeder and IEEE 123 Bus Test Feeder, where the results show that

the proposed method can achieve high localization rates under various measurement

and noise settings.

In the following, we list several possible future research directions based on the

work in this thesis:

• For the proposed detection scheme in Chapter 2, the corresponding mathemati-

cal models can be extended for different DSSE methods. Specifically, in Chapter

2, the linearized DSSE method in [28] and its related linearized FDIA model

in [20] are used as the foundations for the proposed FDIA detection scheme.

The future work can focus on the extended applications of the proposed scheme

under nonlinear DSSE methods and FDIA models for distribution systems [21].

The mathematical analysis, e.g., (2.31)-(2.56), needs to be re-conducted to in-

corporate the nonlinear DSSE, and the Algorithm 1 needs to be updated ac-

cordingly for FDIA detection.

• The proposed attack detection and localization schemes in this thesis are de-

signed specifically for FDIAs. In a real-world CPS, there exist other types of

cyber-attacks that can also result in significant consequences on the normal

operations of power systems, such as denial of service attacks, load altering

attacks, energy theft, etc. The future work can focus on the extended applica-

tions of the proposed ZSV-based detection and localization schemes on different

types of cyber-attacks in CPS, e.g., modeling the energy theft for multiphase

distribution systems as the FDIAs in [19, 20, 28], and updating the proposed

detection and localization schemes accordingly.
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