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Abstract

One of the main aims in this thesis is to establish analogues of the classical Hardy-

Littlewood-Sobolev (HLS) inequality for weighted orthogonal polynomial expan-

sions (WOPEs) on the unit sphere, the unit ball and the simplex. An optimal condi-

tion for which this inequality holds is obtained. Classical proofs of the optimality

of this inequality on the usual Euclidean spaces rely on the dilation operators and

do not seem applicable in our setting, where dilations are not available. The crucial

ingredients in our proofs in this thesis are a series of new sharp pointwise estimates

for some important kernel functions that appear naturally in the WOPEs. These

estimates are more difficult to establish, and will be useful for some other problems

in WOPEs.

The HLS inequality for the first order fractional integral operator has been play-

ing important roles in many applications. The second part in this thesis proves an

equivalent version of the first order HLS inequality, which involves the tangent gra-

dient and the difference operators. This equivalent version has the advantages that it

is much simpler and much easier to deal with in applications. While the main tool

for the proof of this equivalent version is the Calderon-Zygmund decomposition,

the details are much more involved. Of particular importance in our proof is an

elegant decomposition of the second order differential-difference operator associ-



ated with the WOPEs, discovered in this thesis. It turns out that this decomposition

is very useful in several other problems, such as the uncertainty principle of the

WOPEs.

The main results of this thesis have many interesting applications in N -widths,

embedding of function spaces and approximation theory.
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Notation
Rd the d dimensional Euclidean space

Sd−1 the (d− 1) dimensional unite sphere

〈·, ·〉 the regular inner product in Rd

‖ · ‖ the Euclidean norm in Rd

| · | the absolute norm in Rd, |x| = |x1|+ |x2|+ · · ·+ |xd|
x̄ the absolute form in Rd, x̄ = (|x1|, · · · , |xd|)
Lp(Sd−1) the Lp space on Sd−1 about the regular Lebegue measure

‖ · ‖p the regular norm on Lp(Sd−1)

Zd2 the set of {ε = (ε1, ε2, · · · , εd) : εi ∈ {0, 1}, i = 1, 2 · · · , d}
σε the reflect operator on Rd, σε : x 7→ x− 2〈x, ε〉ε
∼ the asymptotically equivalence.

. the asymptotically less relationship



Chapter 1

Introduction
The classical Hardy-Littlewood-Sobolev (HLS) inequality on Rd states that if α > 0

and 1 < p ≤ q <∞, then the inequality

‖(−∆)−α/2f‖Lq(Rd) ≤ C‖f‖Lp(Rd)

holds if and only if α = d(1
p
− 1

q
), where ∆ denotes the usual Laplace operator on

Rd, and (−∆)−
α
2 denotes the fractional power of (−∆) (see [StWe, Ch V.]). This

inequality has been playing crucial roles in many areas of mathematics, such as
harmonic analysis, approximation theory, partial differential equations, and numer-
ical analysis, to name a few (see [CoLi],[St],[TaWe] and the references therein). For
example, the well known Sobolev embedding theorem follows directly from this in-
equality [So]. Due to the importance of the HLS inequality, it has been established
in many other different settings, where fractional order integrals are defined in terms
of orthogonal expansions, see, for instance, ([To, pp.150-156]) for the Fourier se-
ries expansions on the d-torus, [Wa] for the spherical harmonic expansions on the
unit sphere.

The main purpose of this thesis is to establish an analogue of the HLS inequality
for the weighted orthogonal polynomial expansions (WOPEs) on the unit sphere
Sd−1 := {x ∈ Rd : ‖x‖ = 1}, and several other related domains, such as the unit
ball Bd := {x ∈ Rd : ‖x‖ ≤ 1} and the simplex T d := {x = (x1, · · · , xd) ∈ Rd :

xj > 0, j = 1, · · · , d. |x| ≤ 1}. Here and throughout the paper, ‖ · ‖ denotes the
usual Euclidean norm in Rd, and we write |x| :=

∑d
j=1 |xj| for x ∈ Rd.

To be more precise, we need to describe some necessary notations first. Through-
out the paper, d is a positive integer and all functions are assumed to be real and
Lebesgue measurable on their underlying domains. We denote by dσ(x) the usual
rotation invariant measure on Sd−1 normalized by

∫
Sd−1 dσ(x) = 1. The weight
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functions that we will consider on Sd−1 are product functions given by

h2
κ(x) :=

d∏
j=1

|xj|2κj , (1.0.1)

where κ := (κ1, · · · , κd) ∈ Rd and κmin := min1≤j≤d κj ≥ 0.

Given 1 ≤ p ≤ ∞, we denote by Lp(h2
κ;Sd−1) the usual Lp- space with Lp-

norm ‖ · ‖κ,p being defined with respect to the measure dµκ := h2
κ(x) dσ(x) on

Sd−1. Thus, ‖f‖κ,p :=
(∫

Sd−1 |f(x)|ph2
κ(x)dσ(x)

)1/p for 1 ≤ p < ∞, with the
usual change when p =∞. We will simply write Lp(h2

κ) for the space Lp(h2
κ;Sd−1)

whenever the underlying domain is understood and there is no confusion from the
context.

Let Πd
n denote the space of all real spherical polynomials of degree at most

n on Sd−1; namely, the restrictions to Sd−1 of all real algebraic polynomials in d
variables of total degree at most n. We denote by Hd

j (h
2
κ) the space of all real

spherical polynomials of degree j that are orthogonal to spherical polynomials of
lower degree with respect to the inner product of L2(h2

κ). In other words,Hd
j (h

2
κ) is

the orthogonal complement of Πd
j−1 in the Hilbert space Πd

j equipped with the inner
product

〈f, g〉κ :=

∫
Sd−1

f(x)g(x)h2
κ(x) dσ(x), f, g ∈ L2(h2

κ),

where it is agreed that Πd
−1 = {0}. Each function in Hd

j (h
2
κ) is called a spherical

h-harmonic of degree j. In the case when κ = 0 (i.e., the unweighted case),Hd
j (h

2
κ)

coincides with the space of usual spherical harmonics of degree j, which had been
studied extensively in previous literatures (see, for instance, [WaLi, DaXu2] and
the references therein). The theory of h-harmonics was developed by Dunkl (see
[Du1, DuXu]) for a family of weight functions invariant under a finite reflection
group, of which hκ in (2.2.1) is the example of the group Zd2. One of the difficulties
for the study of spherical h-harmonics comes from the fact that the weight functions
h2
κ contain zeros on the underlying domain Sd−1, near which much more delicate

analysis is required.

Since the set of all spherical polynomials is dense in L2(h2
κ), the usual the-

ory of Hilbert space shows that the space L2(h2
κ) has an orthogonal decomposition

L2(h2
κ) =

⊕∞
j=0Hd

j (h
2
κ). This means that each function f ∈ L2(h2

κ) has an orthogo-
nal expansion in spherical h-harmonics, f =

∑∞
n=0 projn(h2

κ; f), converging in the
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norm of L2(h2
κ), where projn(h2

κ; f) denotes the orthogonal projection of f onto
the space Hd

n(h2
κ). Since Sd−1 is compact and the weight function h2

κ is integrable
over Sd−1, it can be easily seen that the projection operator projn(h2

κ) extends to
a bounded operator on the whole space L1(h2

κ) for each fixed n. Thus, associated
with each function f ∈ L1(h2

κ;Sd−1), there is a WOPE
∑∞

j=0 projj(h
2
κ; f).

It turns out that each space Hd
j (h

2
κ) coincides with the eigenvector space of

a self-adjoint, nonnegative definite, second-order differential-difference operator
∆κ,0, an analogue Laplace Beltrami operator, corresponding to the eigenvalue−j(j+
2λκ), where λκ := d−2

2
+ |κ|. In other words, f ∈ Hd

j (h
2
κ) if and only if f ∈

C2(Sd−1) and ∆κ,0f = −j(j + 2λκ)f . The explicit expression of the operator
∆κ,0 will be given in Theorem 2.3.6 in the next section. In the case of κ = 0,
∆κ,0 is simply the usual Laplace-Beltrami operator on Sd−1, which was very well
studied (see [WaLi]). In general, this operator is self-adjoint, semi-positive defi-
nite, but unbounded on L2(h2

κ). More importantly, the eigenvalue expansions of
every f ∈ L2(h2

κ) coincides with the above mentioned WOPE of f . Thus, for each
spherical polynomial f and every positive integer m, we have

(−∆κ,0)mf =
∞∑
j=0

(j(j + 2λκ))
m projj(h

2
κ; f),

where there are only finitely many nonzero terms in the above sum. Indeed, moti-
vated by the above discussion we introduce the fractional integral operator Iακ :=

(−∆κ,0)−α/2 for each α > 0 in a distributional sense via proj0(h2
κ; I

α
κ f) = 0, and

projj(h
2
κ; I

α
κ f) = (j(j + 2λκ))

−α/2 projj(h
2
κ; f), j = 1, 2, · · · .

Furthermore, it can be shown that for each α > 0 and f ∈ Lp(h2
κ) with 1 ≤ p <∞,

Iακ f =
∞∑
j=1

(j(j + 2λκ))
−α/2 projj(h

2
κ; f), (1.0.2)

with the infinite series on the right hand side converging in the norm of Lp(h2
κ).

One of the main purposes in this paper is to show the following HLS inequality
for the above mentioned WOPEs: If 1 < p < q <∞ and α > 0, then the weighted
HLS inequality,

‖Iακ f‖κ,q 6 C‖f‖κ,p, ∀f ∈ Lp(h2
κ), (1.0.3)
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holds if and only if α ≥ (2σk + 1)(1
p
− 1

q
), where σκ := λκ − κmin and κmin :=

min1≤j≤d κj . Note that this inequality leads immediately to a sharp Sobolev em-
bedding theorem, which has many important applications in approximation theory
(see [CaQu]).

The proof of (1.0.3) relies largely on delicate pointwise estimate of the convo-
lution kernels of Iακ , which were not known before. It should be pointed out that the
sharpness of the classical HLS inequality for functions on Rd are normally proved
via rescaling the functions on the underlying domain and using some symmetry of
the Fourier transform, which do not seem to work in our setting where dilation is
no longer available.

Of particular interest is the case when α = 1, where we can rewrite (1.0.3)
equivalently in the following form: For 1 < p < q <∞ and (2σk + 1)(1

p
− 1

q
) ≤ 1,

‖f‖κ,q ≤ C‖(−∆κ,0)1/2f‖κ,p. (1.0.4)

Indeed, this is the most frequently used version of the HLS inequality in practice,
where only f ∈ C1(Sd−1) is assumed. Note that (−∆κ,0)1/2 is always well defined
on a dense subset of L2(h2

κ) as the operator −∆κ,0 is semi-positive definite.

A problem with (1.0.4) is that the fractional derivative (−∆κ,0)
1
2 that is a global

operator rather than a local operator, which makes it much more difficult to deal
with in practice and some applications in approximation theory. In other words,
evaluation of the derivative (−∆κ,0)

1
2f at a point x0 ∈ Sd−1 for a given f ∈

C1(Sd−1) depends not only on the restriction of f to a small neighbourhood of x0,
but also on the behavior of f on the complement of this neighbourhood. To avoid
such a difficulty, in the unweighted case, for the usual Laplace-Beltrami operator
∆0, one normally uses the following equivalent version of the HLS inequality: for
1 < p < q <∞ and (d− 1)(1

p
− 1

q
) ≤ 1,

‖f‖q ≤ C‖∇0f‖p, (1.0.5)

due to the equivalence relation (see, for instance, [DaDiHu])

‖(−∆0)
1
2f‖p ∼ ‖∇0f‖p, 1 < p <∞, (1.0.6)

where ‖ · ‖p denotes the Lp-norm defined with respect to the Lebesgue dσ(x) on
Sd−1, and∇0 denotes the tangential gradient given by
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∇ =
1

r
∇0 + ξ

∂

∂r
, x = rξ, ξ ∈ Sd−1,

where ∇0 = (∂1, ∂2, · · · , ∂d) is the usual gradient operator. In comparison with
(1.0.4), the tangential gradient ∇0 in (1.0.5) is a local operator, and therefore, is
much easier to handle in applications.

Our next purpose is to prove a weighted analogue of (1.0.6), which, in turn, will
imply a weighted analogue of (1.0.5). Our main result in this direction asserts that
if 1 < p <∞, then

‖(−∆κ,0)1/2f‖κ,p ∼ ‖∇0f‖κ,p + max
1≤i≤d

‖Eif‖κ,p, (1.0.7)

where

Eif(x) =
f(σix)− f(x)

xi
, (1.0.8)

σix = (x1, . . . , xi−1,−xi, xi+1, · · · , xd), i = 1, . . . , d. (1.0.9)

As a result, we deduce from (1.0.4) that for 1 < p < q <∞ and (2σk+1)(1
p
− 1

q
) ≤

1,

‖f‖κ,q ≤ C‖∇0f‖κ,p + C max
1≤i≤d

‖Eif‖κ,p. (1.0.10)

The proof of (1.0.7), however, turns out to be rather involved and difficult. It
relies on several very delicate estimates of some kernels, as well as the following
elegant formula pointed out first in this thesis:

〈∆κ,0f, g〉κ =

∫
Sd−1

[
∇0f · ∇0g

]
h2
κ(x) dσ(x) +

d∑
i=1

κi〈Eif, Eig〉κ. (1.0.11)

In fact, this last formula plays crucial roles in our proof of (1.0.7). Since it enhances
our understanding of the WOPEs on Sd−1, we believe that it will have some other
important applications as well in the future. Clearly, compared with the fractional
derivative on the right hand side of (1.0.4), the inequality (1.0.7) looks simpler and
is more convenient to use in applications. For example, the terms on the right hand
side of (1.0.7) are clearly computable, while the fractional derivative in (1.0.4) is
much harder to compute if at all possible.

A second way to establish a weighted analogue of (1.0.5) is to use the differential-
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difference operators,
Di,j := xiDj − xjDi,

which were recently introduced by Yuan Xu [Xu3] in the study of uncertainty prin-
ciple of the WOPEs. These operators appear very naturally in the setting of Dunkl
analysis, where the operators Di := ∂i + Ei, i = 1, · · · , d are normally used to
replace the usual partial derivatives Di, 1 ≤ i ≤ d. In fact, they are the weighted
analogues of the following angular derivatives, which have recently been found to
be very useful in approximation theory on the sphere [DaXu4]:

Di,j := xi∂j − xj∂i.

Properties about the operators Di,j and Di,j can be found in Section 1.8 [DaXu2],
and [Xu3] respectively. One of the very important properties of the operators
Di,j is that they are invariant on the spaces Hd

n(h2
κ), n = 0, 1, . . . of spherical h-

harmonics; that is, Di,jP ∈ Hd
n(h2

κ), for anyP ∈ Hd
n(h2

κ). As the last result on
the sphere, we shall prove that for all 1 < p < ∞, f ∈ C1(Sd−1) satisfying that∫
Sd−1 f(x)h2

κ(x)dσ(x),

‖(−∆κ,0)1/2f‖κ,p ∼ max
1≤i<j≤d

‖Di,jf‖κ,p. (1.0.12)

Therefore, we deduce that for 1 < p < q <∞ and (2σk + 1)(1
p
− 1

q
) ≤ 1, and

‖f‖k,q ≤ C max
16i<j6d

‖Di,jf‖κ,p. (1.0.13)

The proof of (1.0.12) turns out to be much easier than that of (1.0.10). On the other
hand, however, the terms on the right hand side of the inequality (1.0.10) may be
more convenient to deal with and appear more frequently in spherical harmonic
analysis.

One reason why we consider WOPEs on the sphere is that it allows us to estab-
lish similar weighted results on some other related domains, such as the unit ball
Bd, and the standard simplex T d of Rd. In fact, we will also establish analogues of
the weighted HLS inequalities (Theorem 3.1.1), with respect to the weights

WB
κ (x) :=

d∏
j=1

|xj|2κj(1− ‖x‖2)κd+1−1/2, forκ ∈ [0,∞)d+1

6



on the unit ball Bd, and with respect to the weights

W T
κ (x) :=

d∏
j=1

x
κj−1/2
j (1− |x|)kd+1−1/2, forκ ∈ [0,∞)d+1

on the simplex T d. In most cases, the results on these domains can be deduced
directly from the corresponding weighted results on the sphere.

In addition, the notation we introduce in this and next chapter will keep through-
out the context. The constants in the thesis are denoted by c, c1, · · · and C,C1, · · ·
which may vary at every occurrence.
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Chapter 2

Preliminaries
To better describe our results, in the chapter we shall introduce some needed pre-
liminaries and standard notion which will be valid throughout the rest of this report.

2.1 Orthogonal Polynomials

In this section, we will introduce some well known result about orthogonal polyno-
mials, which one can refer to [Sz] and [DuXu] for the details.

Theorem 2.1.1. Suppose that X is a compact subset in Rd with a finite measure µ
and a set of linearly independent functions, {fi, i = 1, 2, · · · } in L2(X,µ). Then
there exist a set of functions {Dj(x) : j ∈ N} which is orthogonal in L2(X,µ) and
satisfies that

span{Dj(x) : 1 6 j 6 n} = span{fj(x) : 1 6 j 6 n}.

In fact, we can choose Dn’s in the way gi,j = 〈fi, fj〉, for i, j ∈ N

Dn(x) := det


g1,1 g1,2 · · · g1,n

· · · · · · · · · · · ·
gn−1,1 gn−1,2 · · · gn−1,n

f1(x) f2(x) · · · fn(x)

 ,

where 〈·, ·〉 is the inner product of L(X,µ).
In particular, we let X be an interval [a, b] and µ be a probability measure sup-

ported on [a, b] such that
∫ b
a
|x|ndµ(x) <∞, for all n and {1, x, x2, · · · } is linearly

independent in L2
[a,b](µ). Applying the above discussion to the basis fj(x) = xj−1,

the orthonormal polynomials are defined by

pn(x) = (dn+1dn)−1/2Dn+1(x),

where dn = 〈Dn, Dn〉. Further more, what is worth to point out is that every pn is a
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polynomial with degree n and satisfies that∫ b

a

pn(x)q(x)dµ(x) = 0,

for any polynomials q of degree < n.
For n > 0, the polynomial xpn(x) is of degree n + 1 and can be expressed by

{pj : j 6 n+ 1}, but more is true.

Theorem 2.1.2. For the case of orthonormal polynomials,

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x),

where an = (dndn+2/d
2
n+1)1/2 and bn =

∫ b
a
xp2

n(x)dµ(x).

With these formulae one can easily find the reproducing kernel for polynomials
of degree 6 n, the Christoffel-Darboux formula:

Proposition 2.1.3. For n > 1,

n∑
j=0

pj(x)pj(y) =
kn
kn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
,

n∑
j=0

pj(x)2 =
kn
kn+1

(p′n+1(x)pn(x)− p′n(x)pn+1(x))

with kn being the leading coefficient of pn.

Next, we give out two important examples, which will play a key role in the
context.

Example 2.1.4. Thy are called ultraspherical polynomials. For a parameter λ >

−1
2
, the weight function µ(x) = (1− x2)λ−

1
2 on −1 < x < 1. Let

P λ
n (x) =

(−1)n

2n(λ+ 1
2
)n

(1− x2)1/2−λ d
n

dxn
(1− x2)n+λ−1/2, n = 0, 1, 2 · · · .

Then {P λ
n (x)}∞n=0 satisfy the properties below.

1
∫ 1

−1
q(x)P λ

n (x)(1 − x2)λ−1/2dx =
∫ 1

−1
dn

dxn
q(x)(1 − x2)n+λ−1/2dx, for any poly-

nomial q(x).

2
∫ 1

−1
xmP λ

n (x)(1− x2)λ−1/2dx = 0 for 0 6 m < n.

10



3 P λ
n+1(x) = 2(n+λ)

n+2λ
xP λ

n (x)− n
n+2λ

P λ
n−1(x).

4 For n > 1,
d

dx
P λ
n (x) =

n(n+ 2λ)

1 + 2λ
P λ+1
n−1 (x).

For n > 0, λ > 0, a key tool Gegenbauer polynomials Cλ
n(x) can given by

Cλ
n(x) =

(2λ)n
n!

P λ
n (x).

Then we have

d

dx
Cλ
n(x) = 2λCλ+1

n+1(x) and Cλ
n(1) =

(2λ)n
n!

,

where (a)n denotes that (a)n = a(a+ 1) · · · (a+ n− 1).

Example 2.1.5. For parameters α, β > −1, the weight function is (1−x)α(1 +x)β

on −1 ≤ x ≤ 1, i.e. dµ = (1− x)α(1 + x)βdx. The Jocobi polynomials P (α,β)
n (x)

are the orthogonal polynomials with respect to the basis fj = xj and P (α,β)
n (1) =

(β+1)n
n!

. Then the orthogonality relations are found similarly to the Gegenbauer
polynomials, precisely,

1
∫ 1

−1
xmP

(α,β)
n (x)(1− x)α(1 + x)βdx = 0 for 0 6 m < n.

2 P
(α+1,β)
n (t) = Γ(n+β+1)

Γ(n+α+β+2)

∑n
j=0

(2j+α+β+1)Γ(j+α+β+1)
Γ(j+β+1)

P
(α,β)
j (t).

3 For n > 1,
d

dx
P (α,β)
n (x) =

n+ α + β + 1

2
P

(α+1,β+1)
n−1 (x), (2.1.1)

Of course the Jacobi weight includes the Gegenbauer weight as a special case.
In terms of the usual notation the relation is

Cλ
n(x) =

(2λ)n
(λ+ 1

2
)n
P (λ−1/2,λ−1/2)
n (x) =

Γ(2λ+ n)

Γ(λ+ 1
2

+ n)
P
α− 1

2
,β− 1

2
n .

2.2 Spherical Harmonic Analysis

Let d > 2 be an integer, and Sd−1 be the unit sphere embedded in the Euclidean
space Rd with the usual Lebegue measure dσ(x) and norm ‖·‖. As it is well known,
spherical harmonics are the restrictions of harmonic homogeneous polynomials to

11



the sphere. Further more, they can be considered as an application of orthogonal
polynomials of several variables with X = Sd−1, dµ = dσ and the basis being
fα = xα, for α ∈ Nd.

However, now we introduce more general case in terms of the weight functions
that are product functions on Sd−1 given by

h2
κ(x) :=

d∏
j=1

|xj|2κj , (2.2.1)

where κ := (κ1, · · · , κd) ∈ Rd and κmin := min1≤j≤d κj ≥ 0.

More precisely, first of all, throughout this thesis all functions are assumed
to be real and Lebesgue measurable on their underlying domains. Given 1 ≤
p ≤ ∞, we denote by Lp(h2

κ;Sd−1) the usual Lp- space with Lp-norm ‖ · ‖κ,p
being defined with respect to the measure h2

κ(x) dσ(x) on Sd−1. Thus, ‖f‖κ,p :=(∫
Sd−1 |f(x)|ph2

κ(x)dσ(x)
)1/p for 1 ≤ p <∞, with the usual change when p =∞.

We will simply write Lp(h2
κ) for the space Lp(h2

κ;Sd−1) whenever the underlying
domain is understood and no confusion is possible from the context.

Consider the Hilbert space L2(h2
κ) with the inner product 〈·, ·〉κ given by

〈f, g〉κ :=

∫
Sd−1

f(x)g(x)dµκ(x), for f, g ∈ L2(hκ;Sd−1).

Let Πd
n denote the space of all real spherical polynomials of degree at most n on

Sd−1; namely, the restrictions to Sd−1 of all real algebraic polynomials in d vari-
ables of total degree at most n . We denote byHd

j (h
2
κ) the space of all real spherical

polynomials of degree j that are orthogonal to spherical polynomials of lower de-
gree with respect to the inner product of L2(h2

κ). In other words, Hd
j (h

2
κ) is the

orthogonal complement of Πd
j−1 in L2(h2

κ), where it is agreed that Πd
−1 = {0}.

Each function in Hd
j (h

2
κ) is called a spherical h-harmonic of degree j. In the case

when κ = 0 (i.e., the unweighted case), Hd
j (h

2
κ) coincides with the space of usual

spherical harmonics of degree j, which had been studied extensively in previous
literatures (see, for instance, [WaLi] and [DaXu2]). Then the Fourier analysis of
continuous functions on the weighted unit sphere is performed as an orthogonal
decomposition L2(h2

κ) =
⊕∞

j=0Hd
j (h

2
κ).

12



2.3 Dunkl Theory

In the late 1980s, C.F.Dunkl introduced Dunkl operators in a series of papers ([Du1]-
[Du5]), which became a key tool in the study of special functions with reflection
symmetries.

To begin the theory, we at first define reflections with respect to vectors.

Definition 2.3.1. Given a nonzero vector α ∈ Rd, the reflection σα : Rd → Rd is a
map defined by

σα(x) = x− 2〈x, α〉
〈α, α〉

α

for any x ∈ Rd.

Then σα satisfies the following useful properties.

Properties 2.3.2. σα is orthogonal, i.e., 〈σα(x), σα(y)〉 = 〈x, y〉 for all x, y ∈ Rd;
and detσα = −1

Besides reflections, we also introduce the concept of a reflection group. Let

O(d,R) = {f : Rd → Rd linear and 〈f(α), f(β)〉 = 〈α, β〉 for allα, β}

be the orthogonal group of Rd.
Now we are in the position to point out the definition of root system and reflec-

tion group.

Definition 2.3.3. Let R ⊂ Rd\{0} be a finite set. Then R is called a root system,
if for all α ∈ R,

1 R
⋂
Lα = {±α} , where Lα = {cα : c ∈ R};

2 σα(R) = R.

The subgroup G(R) ⊂ O(d,R) which is generated by the reflections {σα :

α ∈ R} is call the reflection group (or Coxeter-group) associated with R. The
dimension of span{R} is called the rank of R. Since each root system can be
written as a disjoint unionR = R+∪ (−R+). We call such a setR+ a positive root

subsystem. Of course, its choice is not unique.
The following is an example to understand the theory better. It is also the case

we will study in the context.

13



Example 2.3.4. Let the system R = {±ei : i = 1, 2, · · · , d}, where ei’s are
the standard basic vectors of Rd. Then the reflection group G(R) is generated by
the sign changes σi : ei 7→ −ei, i = 1, 2, · · · , d. The group of sign changes is
isomorphic to Zd2. The corresponding root system has rank d. A positive system
R+ = {ei : i = 1, 2 · · · , d}.

From now on we fix R to be a root system in Rd, normalized in the sense
that 〈α, α〉 = 1 for all α ∈ R; and let G be the reflection group generated by
{σα, α ∈ R}. Then the Dunkl operators defined below can be considered as an
extension of the usual partial derivatives in terms of reflections.

Definition 2.3.5. Let κ : R → R be a function on the root system R and invariant
under the natural action of G. Then for a fixed normal vector ξ ∈ Rd, the Dunkl
operator Dξ := Dξ(κ) is defined by

Dξf(x) := ∂ξf(x) +
∑
α∈R+

κ(α)〈α, ξ〉f(x)− f(σαx)

〈α, x〉
,

for f ∈ C1(Rd), where ∂ξ is the directional derivative corresponding to ξ.

For the particular case when the root system R = {±ei : i = 1, 2, · · · , d}, κ is
equal to a d-dimensional vector a in the sense of κ(±ei) = ai. At this moment, κ is
invariant under the group actions of G and we denote such vector a as κ as well for
convenience. Then

Dif(x) := Deif(x) = ∂if(x) +
d∑
i=1

κi
f(x)− f(σix)

xi
, x ∈ Rd.

Of particular importance, we define ∆κ , an analogue of Laplace operator, by

∆κ :=
d∑
j=1

D2
j .

Of particular, in the case Zd2, we shall need the following essential Theorem (for
more detail see [DaXu2], Lemma 7.1.8).

Theorem 2.3.6. Given a fixed κ > 0, in the spherical-polar coordinates x = rξ, r >

0, ξ ∈ Sd−1, then we have that,

∆κ =
d2

dr2
+

2λκ + 1

r

d

dr
+

1

r2
∆κ,0,

14



where, with ∆0 denoting the usual Laplace-Beltrami operator,

∆κ,0f =
1

hκ
[∆0(fhκ)− f∆0hκ]−

d∑
j=1

κj
ξ
Ejf,

where Ejf(ξ) = f(ξ)−f(σiξ)
ξ

, for ξ ∈ Sd−1.

Further more, the h-spherical harmonics are eigenfunctions of the ∆h,0, that is,

∆κ,0Y
h
n (ξ) = −n(n+ 2λκ)Y

h
n (ξ), ∀Y h

n ∈ Hd
n(h2

κ), ξ ∈ Sd−1.

Another aspect of Dunkl theory we need to emphasis is Dunkl’s intertwining
operator. It was first shown in [Du4] that for non-negative multiplicity functions,
the associated commutative algebra of Dunkl operators is intertwined with the al-
gebra of usual partial differential operatos by a unique linear and homogeneous
isomorphism on polynomials. More precisely, the following theorem is formulated.

Theorem 2.3.7. For a fixed κ > 0, there exists a unique linear isomorphism, “
intertwining operator”, Vκ such that

Vκ(Pn) = Pn, Vκ|P0 = id and DξVκ = Vκ∂ξ, for all ξ ∈ Rd.

Particularly, recall that if {Y h
m : m = 1, 2, · · · ,M} with M := dimHd

j (h
2
κ), is

an orthonormal basis ofHd
j (h

2
κ), then the projection operator projj fromL2(h2

κ,Sd−1)

ontoHd
j (h

2
κ) satisfies that

projj f(x) =
1

|Sd−1|

∫
Sd−1

f(y)Zκ
j (x, y)h2

κ(y)dσ(y) (2.3.1)

for any f ∈ L2(hκ;Sd−1), with

Zκ
j (x, y) =

M∑
m=1

Y h
m(x)Y h

m(y), ∀x, y ∈ Sd−1. (2.3.2)

A key point is that the kernel Zκ
j (x, y) can be deduced via intertwining operators as

following formulas of Yuan Xu (see [Xu] and [Xu2] for details)

Zκ
j (x, y) =

j + λκ
λκ

Vκ[C
λκ
j (〈·, y〉)](x), (2.3.3)

where Cλκ
j denotes the Gengenbauer Polynomial with degree j and indice λκ as
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defined previously and the intertwining operator Vκ is given explicitly by

Vκf(x) = cκ

∫
[−1,1]d

f(x1t1, x2t2, · · · , xdtd)
d∏
j=1

(1 + tj)(1− t2j)κj−1dt, (2.3.4)

where cκ = cκ1cκ2 · · · cκd with cµ = Γ(µ+1/2)√
πΓ(µ)

. If any one of κi’s equals 0, then the
formula holds in the following sense:

lim
µ→0

cµ

∫ 1

−1

f(t)(1− t2)µ−1dt =
f(1) + f(−1)

2
.

2.4 Singular Integrals on Homogeneous Spaces

In this section, we shall extent some well-known classical results of harmonic anal-
ysis to the more general setting of homogeneous spaces, which are guaranteed on
the weighted unit sphere as a consequence. For more detail of proof below, one can
refer to [St].

Definition 2.4.1. Given a measure space (X,B, µ) with a metric ρ, it is called ho-
mogeneous space, if all open ballsB(x, r) := {y ∈ X : ρ(x, y) < r}, x ∈ X, r > 0

are measurable with positive finite measure, and that one has the doubling property
there exists a positive constant C such that

µ(B(x, 2r)) 6 Cµ(B(x, r)),

for any x ∈ X , r > 0. In addition, the best constant C for which this last inequality
holds is called the doubling constant of µ.

Then its Hardy-Littlewood(HL) Maximal function is defined by

Mf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f(y)|dµ(y), ∀x ∈ X.

Similarly, one can easily extend the Vitali-type and Whitney-type covering lemma
to this setting

Lemma 2.4.2. For any measurable subset E ⊂ X , if B is a finite cover of E,
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collecting of open balls, then there exist a set {B1, B2, · · · , Bm} ⊂ B such that

µ(E) 6 C

m∑
j=1

µ(Bj),

for some positive constant C.

This yields the maximal inequality

‖µ{x ∈ X : |M(f)(x)| > α} .
‖f‖Lp(X)

α
,

for any positive number α, and

‖Mf‖Lp(X) . ‖f‖Lp(X)

for 1 < p 6∞.

Lemma 2.4.3. Let G $ X be a nonempty open set. Then there exist a collection
of open balls {Bk}k∈N such that

1 Bk’s are disjoint with each other.

2 there exists c1 > 1 such that G =
⋃
c1Bk.

3 there exists c2 > 1 such that Gc
⋂
c2Bk 6= ∅, for any k ∈ N.

With this, we have the Calderòn-Zygmund decomposition and Singular inte-
grals on the general setting.

Theorem 2.4.4. Let f ∈ L1(X) and α > 1
µ(X)

∫
X
|f |dµ. Then there exist a decom-

position of f , f = g +
∑

j bj and a sequence of disjoint balls {Bj} so that

1 |g(x)| 6 cα a.e. x ∈ X .

2 Each bj is supported in 3Bj , and∫
X

bjdµ = 0,

∫
Bj

|bj|dµ 6 cαµ(Bj).

3
∑

j µ(Bj) 6 c
‖f‖L1(X)

α
.
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Theorem 2.4.5. Let T be an operator in the form

(Tf)(x) =

∫
X

K(x, y)f(y)dµ(y),

and bounded on Lq(X) with norm A; that is

‖Tf‖Lq(X) 6 A‖f‖Lq(x), ∀ f ∈ Lq(X).

Moreover, if K satisfies that for some constant c > 1,∫
B(z,cδ)c

|K(x, y)−K(x, z)|dµ(x) 6 A, ∀ y ∈ B(z, δ), (2.4.1)

for all y ∈ X , δ > 0. Then the operator T is bounded in Lq norm on Lp ∩ Lq for
1 < p < q; that is

‖Tf‖p 6 A‖f‖p, for f ∈ Lp ∩ Lq.

In addition, it is necessary to point out the following remarks.

1 T can be extended to Lq uniquely and keep the boundedness, since Lp ∩ Lq is
dense in Lq;

2 If there is an upper bound for the radius of all of balls in X , then the condition
“ for any δ > 0” can be deduced to “ for 0 < δ < δ0 with some δ0 > 0”;

3 The domain in the integral of (2.4.1) can be replaced as well by a measurable set
Dc with µ(D) 6 c

∑
j µ(Bj).

2.5 Cesàro means

In this subsection, we will talk about some facts about Cesàro means in terms of the
spherical h-harmonic, which will be a key tool of our following proof. For more
details, one can refer to [DaXu2] and [DaXu5].

Definition 2.1. For δ > 0, the Cesàro means of the spherical function f are defined
by

Sδn(h2
κ; f) :=

1

Aδn

n∑
j=0

Aδn−jPκj f,
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where Aδj denotes as

Aδj =

(
δ + j

j

)
=

(δ + j)(δ + j − 1) · · · (δ + 1)

j!
.

Theorem 2.5.1 ([DaXu2],corollary 8.1.2). If δ > σκ, then for f ∈ Lp(hκ,Sd−1)

and 1 6 p <∞, or f ∈ C(Sd−1) when p =∞,

sup
n
‖Sδn(h2

κ; f)‖p,κ 6 c‖f‖p,κ.

Consider Sδn(h2
κ; f) as a convolution:

Sδn(h2
κ; f) = f ∗Kδ

n(h2
κ),

then the kernel Kδ
n(h2

κ;x, y) is the Cesàro means of Zλκ
j (x, y)

Kδ
n(h2

κ;x, y) :=
1

Aδn

n∑
j=0

Aδn−kZ
λκ
j (x, y),

which has the following pointwise estimate.

Theorem 2.5.2 ([DaXu2], Theorem 8.1.1). For any x, y ∈ Sd−1,

|Kδ
n(h2

κ;x, y)h2
κ(y)| 6 cnd−1(1 + nρ(x̄, ȳ))−β(δ),

where β(δ) := min{d+ 1, δ − σκ + d}.
Further more, for any δ > σκ∫

Sd−1

|Kδ
n(h2

κ;x, y)|h2
κ(y)dσ(y) 6 C, (2.5.1)

where C is a constant independent of n.

Theorem 2.5.3 ([DaXu2],B.1.13). Let

S`n(u) :=
1

Aδn

n∑
j=0

Aδn−j
j + λ

λ
Cλ
j (u),

then for ` > 2λ+ 1,

0 6 S`n(u) 6 cn−1(1− u+ n−2)λ+1.
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2.6 Difference operators

Let f be a function defined on R. For r = 1, 2, · · · , we define the difference
operator ∆r by

∆0f(x) = f(x), ∆f(x) = f(x)− f(x+ 1), ∆r = ∆r−1(∆f(x)). (2.6.1)

For a sequence {an}∞n=0, the difference operator ∆ran is defined as ∆rf(n), where
f(n) = an.

Proposition 2.6.1. Let {aj}∞j=1 be a sequence converging to 0 and {fj}∞j=1 be a
functional sequence. Then

∞∑
j=1

ajfj(t) =
∞∑
j=1

∆`+1ajA
`
jK

`
j (t), (2.6.2)

where A`j =
( `+ j

j

)
, K`

j (t) = 1
A`j

∑j
k=0A

`
j−kfk(t).

Proof. Using summation by parts repeatedly, we can write

∞∑
j=1

ajfj(t) =
∞∑
j=1

∆`+1aj

j∑
k`+1

k`+1∑
k`=1

· · ·
k2∑
k1=1

fk1(t).

By induction on `, We claim that

j∑
k`+1

k`+1∑
k`=1

· · ·
k2∑
k1=1

fk1(t) =

j∑
k=1

A`j−kfk(t). (2.6.3)

First, it is simple to see that (2.6.3) holds for ` = 0.
Next, We assume that (2.6.3) is true for ` 6 n.
Then

j∑
kn+1

kn+1∑
kn=1

· · ·
k2∑
k1=1

fk1(t) =

j∑
kn+1=1

kn+1∑
k=1

An−1
kn+1−kfk(t)

=

j∑
k=1

j∑
kn+1=k

An−1
kn+1−kfk(t) =

j∑
k=1

j−k∑
m=0

An−1
m fk(t) =

j∑
k=1

Anj−kfk(t)
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where the last equality is followed from the fact
∑s

m=0 A
n
m = An+1

s .

2.7 the Littlewood-Paley theory

As we know, the Littlwood Paley theory introduce a way to express and quantify
orthogonality of the Fourier transform on Lp function spaces. As a performance of
Fourier analysis on the unite sphere Sd−1 with the weight h2

κ, h-spherical harmonics
provide a tool to extend the Littlewood Paley theory (see [DaXu2, Chapter 3]).

Theorem 2.7.1 (Littlewood-Paley Inequality). Let m be the smallest positive in-
teger greater than d/2. If θ is a compactly supported function in Cm[0,∞] with
supp θ ⊂ (a, b) for some 0 < a < b < ∞, then for all f ∈ Lp(Sd−1) with
1 < p <∞,

‖(
∞∑
j=0

|∆θ,jf |2)1/2‖p 6 ‖f‖p,

where

∆θ,j(f) :=
∞∑
n=0

θ(
n

2j
) projn(f), j = 1, 2, · · · (2.7.1)

and c depends only on p,d,a and b. If, in addition,

0 < A1 6
∞∑
j=0

|θ(2−jt)|2 6 A2 <∞, ∀t > 0,

and
∫
Sd−1 f(x)dσ(x), then

‖(
∞∑
j=0

|∆θ,jf |2)1/2‖p ∼ ‖f‖p.

Theorem 2.7.2 (Fefferman-Stein). If 1 < p, q < ∞ and {fj} is a sequence of
functions on X, then

‖

(
∞∑
j=0

|Mµfj|q
)1/q

‖p . ‖

(
∞∑
j=0

|fj|q
)1/q

‖p,

where (X, dµ) is a measurable space and Mµ is the Hardy-Littlewood maximum
function correspondingly.
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Theorem 2.7.3 (Weighted Nikolskii’s Inequalities [DaWa],Lemma 2.3). Let 0 <

p < q 6∞, then for any g ∈
∏d

n

‖g‖q,κ 6 Cn(2σκ+1)( 1
p
− 1
q

)‖g‖p,κ,

where C depends only on p, q and κ.
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Chapter 3

Hardy-Littlewood-Sobolev Inequality
on the Unite Sphere
In this chapter, we shall first formulate results of pointwise estimete that will be in-
dispensable in much of our future work. Next, the first main result, HLS inequality
and its necessary conditions, on the weighted unit sphere will be introduced and
proved in detail. Finally, the analogue conclusions on the corresponding weighted
unit ball and simplex will be builded up.

Let η ∈ C3`−1[0,∞) supported in [0, 2] with the jth order derivative η(j)(0) = 0

for j = 1, 2, · · · , 3`− 2. We define

LN(t) :=
∞∑
j=1

η(
j

N
)
j + λ

λ
Cλ
j (t), t ∈ [−1, 1].

In fact, LN can be seen as a partial summation operator. For our purpose one of
aspects of its importance arises form the following fact.

Theorem 3.0.4 ([DaXu2] Theorem 2.6.5). Let ` be a positive integer. For any
θ ∈ [0, π] and N ∈ N,

|L(r)
N (cos θ)| 6 c`‖η(3`−1+2r)‖∞N2λ+1+2r(1 +Nθ)−`, j = 0, 1, · · · .

The proof of the fact is not involved in the context, but it will be best to present
it in an appendix.

Lemma 3.0.5. Let Ψ be a polynomial on [−1, 1] satisfying that for any positive
number ` > 2λκ + 1, there exists a constant C which only depends on ` and d such
that

|Ψ(cos θ)| ≤ Cn2λκ+1+r(1 + nθ)−`,
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for any r. Then for any x, y ∈ Sd−1, there exists a positive number `0 such that∣∣∣Vκ[Ψn(〈y, ·〉)
]
(x)
∣∣∣ ≤ C`0

nd−1+r(1 + nρ(x̄, ȳ))−`0∏d
j=1(|xj|+ ρ(x̄, ȳ) + n−1)2κj

. (3.0.1)

Furthermore,∣∣∣Vκ[Ψn(〈x, ·〉)
]
(y)
∣∣∣ ≤ C ′

nr(1 + nρ̃(x, y))−`0

Un−1(x) + Un−1(y) + U(x̄, ȳ)
, (3.0.2)

and ∣∣∣Vκ[Ψn(〈x, ·〉)
]
(y)
∣∣∣ ≤ C ′

nr(1 + nρ̃(x, y))−`0

U(x̄, ȳ)
, (3.0.3)

where Ur(x) denotes as

Ur(x) =

∫
ρ(x,y)≤r

h2
κ(y)dσ(y)

and U(x, y) = Uρ(x,y)(x).

Proof. By theorem 3.0.4, we have,

|Ψ(cos θ)| 6 C2s(2λκ+1−α)(1 + 2sθ)−` (3.0.4)

which implies that

|Vκ(Ψ(< ·, y >))(x)| 6 C

∫
[−1,1]d

|Ψ(
d∑
j=1

tjxjyj)|
d∏
j=1

(1 + tj)(1− t2j)κj−1dt

≤ C`

∫
[−1,1]d

n2λκ+1+r(1 + nθ)−`
d∏
j=1

(1− t2j)kj−1dt

by setting cos θ =
∑d

j=1 tjxjyj . Noticing that

θ2 v 1− cos θ = 1−
d∑
j=1

tjxjyj
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and

1−
d∑
j=1

|xjyj|+
d∑
j=1

|xjyj|(1− |tj|) ∼ ρ(x̄, ȳ)2 +
d∑
j=1

|xjyj|(1− |tj|),

we have that there exists a constant c such that for any t ∈ [−1, 1]d

[
ρ(x̄, ȳ)2 +

d∑
j=1

|xjyj|(1− |tj|)
] 1

2 ≤ cθ.

Thus

|Vκ(Ψ(< ·, y >))(x)|

≤C`n2λκ+1+r

∫
[0,1]d

(
1 + n

[
ρ(x̄, ȳ)2 +

d∑
j=1

|xjyj|(1− tj)
] 1

2

)−` d∏
j=1

(1− tj)κj−1dt

≤n2λκ+1+r

∫
[0,1]d

d∏
j=1

[
1 + nρ(x̄, ȳ) + n

(
|xjyj|(1− tj)

) 1
2

]− `
d
(1− tj)κj−1dt

≤n2λκ+1+r

d∏
j=1

∫ n|xjyj |
1
2

0

[
1 + nρ(x̄, ȳ) +m

]− `
d m2κj−1

n2κj |xjyj|κj
dm

≤nd−1+r

d∏
j=1

|xjyj|−κj
∫ n|xjyj |

1
2

0

[
1 + nρ(x̄, ȳ) +m

]− `
d
m2κj−1dm

If we denote
∫ na

0

[
1 +nb+m

]−`
m2k−1dm as M , for some positive numbers a, b, k,

then by choosing ` so large that ` > 2d|κ| and breaking up the integral in the parts
where m < (1 + nb) and m > (1 + nb), we claim that

M ≤ c(1 + nb)−`+2k[a−2k + n2k + b−2k]a2k

because that∫ (1+nb)

0

[
1 + nb+m

]−`
m2k−1dm ≤ c1(1 + nb)−`n2ka2k ≤ (1 + nb)−`+2kb−2ka2k,

and ∫ ∞
(1+nb)

[
1 + nb+m

]−`
m2k−1dm ≤ c2(1 + nb)−`+2k.
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Therefore, we obtain an estimate

|Vκ(Ψ(< ·, y >))(x)| (3.0.5)

≤c`nd−1+r[1 + nρ(x̄, ȳ)]−
`
d

+2|κ|
d∏
j=1

[
|xjyj|−κj + n2κj + ρ(x̄, ȳ)−2κj

]
. (3.0.6)

For given x, y ∈ Sd−1, if let j be such that |xj| > 4ρ(x̄, ȳ),

|yj| − |xj| ≤ |x̄− ȳ| ≤ 4ρ(x̄, ȳ) < 4|xj|,

and
|xj| > 4ρ(x̄, ȳ) > 2|x̄− ȳ| ≥ 2|xj| − 2|yj|,

so
|xj| ∼ |yj|;

otherwise if |xj| ≤ 4ρ(x̄, ȳ),

|yj| ≤ |xj|+ |xj − yj| ≤ 4ρ(x̄, ȳ) + 2ρ(x̄, ȳ).

Then we divide the product in (3.0.5) into two parts, J1 = {j = 1, · · · , d :

|xj| > 4ρ(x̄, ȳ)} and J2 = {j = 1, · · · , d : |xj| ≤ 4ρ(x̄, ȳ)}. Using the discussion
above, we obtain that

d∏
j=1

[
|xjyj|−κj + n2κj + ρ(x̄, ȳ)−2κj

]
≤ c1

d∏
j=1

[
|xjyj|

1
2 + n−1 + ρ(x̄, ȳ)

]−2κj

≤c2

∏
j∈J1

[
|xj|+ n−1

]−2κj ∏
j∈J2

[
n−1 + ρ(x̄, ȳ)

]−2κj

≤c3

d∏
j=1

[
|xj|+ n−1 + ρ(x̄, ȳ)

]−2κj

Thus we obtain the estimate (3.0.1). For (3.0.2) and (3.0.3), it just need to notice
the estimate of the area of a cap, given by Y. Xu in [DaXu2], that is

U(x, θ) ∼ θd−1

d∏
j=1

[|xj|+ θ]2κj .
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Noting that if we break up the sum in the kernel of Iακ in the sense that

Kα(x, y) =
∞∑
s=0

∞∑
j=1

ϕ(
j

2s
)(j(j + 2λκ))

−α/2λκ + j

λκ
Vκ

[
Cλκ
j (〈x, ·〉)

]
(y),

where ϕ is supported on [1
2
, 2] and of class C∞[0,∞). Then by setting

ϕs(t) := 2−sαϕ(t)(t(t+ 2−s+1λκ))
−α/2,

and applying the above lemma 3.0.1 to
∑∞

j=1 ϕs(
j
2s

)λκ+j
λκ

Vκ

[
Cλκ
j (〈x, ·〉)

]
(y), we

obtain that

|Kα(x, y)| .
∞∑
s=0

2−sα(1 + 2sρ(x̄, ȳ))−`

U(x̄, ȳ)
.
ρ(x̄, ȳ)α

U(x̄, ȳ)
, (3.0.7)

for any x, y ∈ Sd−1, since ‖ϕ(3`−1)
s ‖∞ ≤ c2−α.

3.1 HLS on the unit sphere

After establishing the pointwise estimate of the kernel of Iακ , we are on the posi-
tion to formulate our first main result: The Hardy-Littlewood-Sobolov theorem of
fractional integration.

Theorem 3.1.1. Let α > 0, 1 6 p < q <∞ and σκ := d−2
2

+ |κ| − κmin.

a If p > 1 and α > (2σκ + 1)(1
p
− 1

q
), then

‖Iακ f‖q,κ 6 C‖f‖κ,p, ∀f ∈ Lp(h2
κ;Sd−1) (3.1.1)

b If p = 1 and in addition, α > (2σκ + 1)(1
p
− 1

q
), then (3.1.1) is still true.

c If p = 1 and α = (2σκ + 1)(1
p
− 1

q
), then the inequality in part(a) will be replaced

by

µκ{x ∈ Sd−1 : |Iακ f(x)| > λ} 6 c
‖f‖q,κ
λ

,

for any λ > 0. That is, the mapping Iακ is of “weak-type” (1, q).
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Proof. Using the estimate (3.0.7), in view of the identity (1.0.2), we have that

Iακ f(x) =
1

|Sd−1|

∫
Sd−1

f(y)K(x, y)h2
κ(y)dσ(y)

.
∫
Sd−1

|f(y)|ρ(x̄, ȳ)α

U(x̄, ȳ)
dµ(y),

where dµ(y) = h2
κ(y)dσ(y).

Let us decompose K as K1 +K∞, where

K1(x, y) = K(x, y) if ρ(x̄, ȳ) 6 δ K1(x, y) = 0 if ρ(x̄, ȳ) > δ(3.1.2)

K∞(x, y) = K(x, y) if ρ(x̄, ȳ) > δ K∞(x, y) = 0 if ρ(x̄, ȳ) 6 δ(3.1.3)

where δ is a fixed positive constant which will be determined later. First for a fixed
point x ∈ Sd−1, we consider

I1(x) : =

∫
Sd−1

|f(y)K1(x, y)|dµκ(y)

=
∞∑
k=0

∫
2−k−16ρ(x̄,ȳ)<2−kδ

|f(y)|ρ(x̄, ȳ)α

U(x̄, ȳ)
dµ(y)

6
∞∑
k=0

(2−kδ)α

U(x̄, 2−k−1δ)

∫
ρ(x̄,ȳ)<2−kδ

|f(y)|dµ(y)

6 c1

∑
ε∈Zd2

δαMκf(εx)

For the other part, by Holder’s Inequality, we have

I2(x) : =

∫
Sd−1

|f(y)K∞(x, y)|dµκ(y)

6 ‖f‖κ,p

{∫
ρ(x̄,ȳ)>δ

ρ(x̄, ȳ)(α−(d−1))p′
d∏
j=1

( |yj|
(|xj|+ ρ(x̄, ȳ))p′

)2κj
dσ(y)

} 1
p′

6 c2‖f‖κ,p
[∫

ρ(x̄,ȳ)>δ
ρ(x̄, ȳ)(2σκ+1)( 1

p
− 1
q
−1)p′+(2|κ|−2κmin)dσ(y)

]1/p′

6 c3‖f‖κ,p
∑
ε∈Z2

d

[∫ ∞
δ

θ−
p′
q

(2σκ+1)−1dθ
]1/p′

= C‖f‖κ,pδ−
2σκ+1
q .
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Now, let

δ̃ =
( ‖f‖κ,p∑

ε∈Zd2
Mκf(εx)

) p
2σκ+1

.

If δ̃ > π, then
|
∑
ε∈Zd2

Mκf(εx)| . ‖f‖κ,p.

At the moment, take δ = π, then I2 = 0, and

|Iακ f(x)| . ‖f‖κ,p.

Otherwise let δ = δ̃, then

|Iακ f(x)| . ‖f‖
(1− p

q
)

κ,p (
∑
ε∈Zd2

Mκf(εx))
p
q . (3.1.4)

Thus for any x ∈ Sd−1,we can obtain that

|Iακ f(x)| . ‖f‖κ,p + ‖f‖
(1− p

q
)

κ,p (
∑
ε∈Zd2

Mκf(εx))
p
q .

Since Mκ is strong (p, p) operator for p > 1, and h2
κ(x)dσ(x) is invariable for Zd2,

‖Iακ f‖qq,κ 6 C‖f‖q−pκ,p ‖f‖pκ,p + ‖f‖κ,p = C‖f‖qκ,p.

Finally for α > (2σκ + 1)(1
p
− 1

q
), there exists q′ ∈ (1,∞) such that q′ > q and

α = (2σκ + 1)(
1

p
− 1

q′
).

Then by the above what we have shown and Holder Inequality, we obtain that

‖Iακ f‖q,κ . ‖Iακ f‖κ,q′ 6 c‖f‖κ,p.

Thus part(a) of the theorem is proved.

From the above proof, we can see that there is a cut-off function ϕ ∈ C∞(R)

such that χ[1,2] 6 ϕ 6 χ[1,4] and for any x ∈ Sd−1,
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Iακ f(x) =
∞∑
j=1

∞∑
m=1

φ(
m

2j
)(m(m+ 2λκ))

−α/2 projm f(x)

=
∞∑
j=1

∞∑
m=1

[∆`+1φ(
m

2j
)(m(m+ 2λκ))

−α/2]A`mS
`
m(h2

κ; f)

where the last identity is from the formula (2.6.2) and S`m(h2
κ; f) is the Cesaro

means of spherical function f . In fact, we can choose ϕ as η(x
2
)− η(x) where η is

defined in proof of Lemma. Noting that

|∆`+1φ(
m

N
)| ∼ N−`−1 and A`m ∼ m`, (3.1.5)

then for any integer ` > σκ, there exists a constant c only depending on α, κ, q, d
such that

‖Iακ f‖κ,q 6 c1

∞∑
j=1

2−j(`+1)
∑

2j6m<2j+2

m−α+`‖S`m(h2
κ; f)‖κ,q

6 c2

∞∑
j=1

2−j(`+1)
∑

2j6m<2j+2

m−α+`+(2σκ+1)(1− 1
q

)‖S`m(h2
κ; f)‖κ,1

6 c3 sup
m
‖S`m(h2

κ; f)‖κ,1
∞∑
j=1

2−j(α−(2σκ+1)(1− 1
q

))

6 c‖f‖κ,1,

where the second inequality is followed from weighted Nikolskii Theorem given by
F.Dai and Y.Xu [DaXu5], and the third one is just a special case p = 1 in theorem
2.5.1.

Finally, we point out two remarks. First is the method in part (b) still works on
the case α > (2σκ + 1)(1

p
− 1

q
) by just replacing 1 as p in the proof; however, it will

fail on the case α = (2σκ+1)(1
p
− 1

q
), since the series

∑∞
j=1 2−j(α−(2σκ+1)(1− 1

q
)) will

be divergent at this moment. Second, because Hardy Littlewood Maximal function
is only weak type for L1, it is impossible to apply the method in part (a) to part (b).

By now the part (b) is complete.

To begin proving part (c), we construct a sequence of functions which makes
(3.1.1) destroyed. Without loss of generality, we suppose that κ1 = minj κj for a
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given positive vector κ ∈ Rd. Let fN(x) =
∑N

j=1 Z
κ
j (x, e1) with e1 := (1, 0, · · · , 0)

for any integer N and x ∈ Sd−1, then

Iακ fN(x) =
N∑
j=1

(j(j + 2λκ))
−α/2Zκ

j (x, e1)

= Vκ[
N∑
j=1

(j(j + 2λκ))
−α/2 j + λκ

λκ
Cλκ
j (〈·, e1〉)](x)

Choose a cut-off function η ∈ C∞(R) with χ[0,1] 6 η 6 χ[0,2] and let

LN(t1) :=
∞∑
j=1

η(
j

N
)(j(j + 2λκ))

−α/2 j + λκ
λκ

Cλκ
j (x1t1),

Then a pointwise lower bound estimate is obtained as the following

lim
N→∞

|Iακ fN(x)| = lim
N→∞

Vκ[
∞∑
j=1

η(
j

N
)(j(j + 2λκ))

−α/2 j + λκ
λκ

Cλκ
j (〈·, e1〉)](x)

= c1

∫
[−1,1]d

∞∑
j=1

(j(j + 2λκ))
−α/2 j + λκ

λκ
Cλκ
j (t1x1)

d∏
j=1

(1 + tj)(1− t2j)κj−1dt

> c2

∫ 1

0

(1− t1x1)(α−2λκ−1)/2(1− t1)k1−1dt1

> c2

∫ 1−|x1|

0

(1− |x1|)(α−2λκ−1)/2tκ1−1dt

= c2(
√

1− |x1|)α−(2σκ+1)

where the second identity is garanteed by Lebesgue Dominated Convergence The-
orem(LDCT) through checking

|LN(t1)| =
2N∑
j=1

[∆`+1η(
j

N
)](j(j + λκ))

−α/2A`jS
`
j(x1t1)

.
2N∑
j=1

N−(`+1)j−αj−`j−1(1− x1t1 + j−2)−(λκ+1)

. (1− |x1|)−(λκ+1)

∞∑
j=1

j−α−1 <∞

by using summation by parts formula and theorm 2.5.3 in the first and second step
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respectively, and the third one is implied in [AsWa] given by Richard Askey and
Stephen Wainger; that is

∞∑
j=1

(j(j + 2λκ))
−α/2 j + λκ

λκ
Cλκ
j (t) v (1− t)(α−2λκ−1)/2.

Next, considering the subdomain of Sd−1

Ω := {x ∈ Sd−1 :
1

2
6 x1 6 1}

we have that:

‖ lim
N→∞

Iακ fN‖qq,κ > c3

∫
Ω

ρ(x, e1)(α−(2σκ+1))q

d∏
j=1

|xj|2κjdσ(x)

= c3

∫ π
3

0

∫
Sd−2

θ(α−(2σκ+1))q sind−2 θ
d∏
j=2

|ξj|2κj sin2κj θdσ(ξ)dθ

= c3

∫ π
3

0

θ(α−(2σκ+1))q+d−2+2|κ|−2κ1dθ.

Since α = (2σκ + 1)(1− 1
q
),

‖ lim
N→∞

Iακ fN‖qq,κ &
∫ π

3

0

θ−1dθ =∞.

Then, by Fatou lemma,

lim inf
n→∞

‖Iακ fn‖κ,q > ‖ lim inf
n→∞

Iακ fn‖q,κ =∞.

On the other hand, however, using summation by parts repeatedly, we can obtain
that:

fN(x) =
∞∑
j=1

[∆`+1η(
j

N
)]A`jK

`
j (h

2
κ;x, e1),

which implies that

‖fN‖κ,1 . N−`−1

2N∑
j=1

j`‖K`
j (h

2
κ; ·, e1)‖1,κ 6 C,

where the last equality is followed from the fact (2.5.1).

To prove the weak-type(1,1) inequality, we shall import the estimate (3.1.4);
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that is
|Iακ f(x)| . ‖f‖

(1− p
q

)
κ,p (

∑
ε∈Zd2

Mκf(σεx))
p
q ,

since it is deduced without depending on the condition p > 1.
Then using the special case p = 1, for any λ > 0,

µκ{x ∈ Sd−1 : |Iακ f(x)| > λ}

6µκ{x ∈ Sd−1 : ‖f‖
1− 1

q

1,κ (
∑
ε∈Zd2

Mκf(εx))
1
q > λ}

=µκ{x ∈ Sd−1 :
∑
ε∈Zd2

Mκf(εx) >
λq

‖f‖q−1
1,κ

}

6
∑
ε∈Zd2

µκ{Mκf(εx) >
λq

2d‖f‖q−1
1,κ

}

622d
‖f‖q1,κ
λq

where the last step is guaranteed by invariance of dµκ.

3.2 Necessity of conditions in HLS Theory

After showing the sufficient conditions for the boundedness of Iακ from Lp(h2
κ) to

Lp(h2
κ), we shall see below that they are also necessary in some degree.

Theorem 3.2.1. If the inequality

‖Iακ f‖q,κ 6 C‖f‖κ,p, ∀f ∈ Lp(h2
κ;Sd−1),

holds for some α and 1 < p < q 6∞,Then one must have that

α > (2σκ + 1)(
1

p
− 1

q
).

Proof. Choose cut-off function φ ∈ C∞[0,∞) such that χ[1,2] 6 φ 6 χ[1,4]. For an
integer N and κ = (κ1.κ2, · · · , κd) ∈ [0,∞)d , without loss the general we suppose
that κ1 = κmin and define:

fN(x) :=
∞∑
j=0

φ(
j

N
)Zκ

j (x, e1), ∀x = (x1, x2, · · · , xd) ∈ Sd−1,
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Noting the fact(one can refer to [Sz] ) that

Zκ
j (x, e1) =

j + λκ
λκ

cκ1

∫ 1

−1

Cλκ
j (x1t1)(1 + t1)(1− t1)κ1−1dt1 (3.2.1)

=
j + λκ
λκ

C
(λκ−κ1,κ1)
j (x1),

and
‖C(λ,µ)

j ‖∞ = C
(λ,µ)
j (1) ∼ j2λ−1,

we have that

‖fN‖κ,∞ = ‖
∞∑
j=0

φ(
j

N
)
j + λκ
λκ

C
(λκ−κ1,κ1)
j ‖∞ 6

4N∑
j=N

j + λκ
λκ

C
(λκ−κ1,κ1)
j (1)

= c1

4N∑
j=N

j + λκ
λκ

j2λκ−2κ1−1 = c2N
2σκ+1.

Let ∆ denote the difference operator defined in (6.0.1), and K`
j be the Cesaro (C, `)

means of the sequence λκ+j
λκ

C
(λκ−κ1,κ1)
j (t), namely

K`
j (t) =

1

A`j

j∑
k=0

A`j−k
λκ + k

λκ
C

(λκ−κ1,κ1)
k (t), t ∈ [−1, 1],

where Amn =
( m+ n

n

)
= (m+1)(m+2)···(m+n)

n!
.

Using summation by parts `+ 1 times, we can obtain that:

fN(x) =
∞∑
j=1

[∆`+1φ(
j

N
)]A`jK

`
j (h

2
κ;x, e1),

Then by theorem 2.5.2 with ` > σκ,

‖fN‖1,κ . N−`−1

2N∑
j=N

j`‖K`
j (h

2
κ; ·, e1)‖1,κ 6 C,

where C is independent of N.
Hence the Lp(h2

κ) estimate can be obtained as following

‖fN‖κ,p 6 ‖fN‖
1
p

κ,1‖fN‖
1− 1

p
κ,∞ v N (2σκ+1)(1− 1

p
). (3.2.2)
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Next we will find out the Lq(h2
κ) estimate of Iακ fN . To do it, we begin with the

special and crucial case q = 2. With the summation expression (2.3.2) of Zκ
j (·, ·)

and the orthonormal relationship between the basis {Y h,j
m : m = 1, 2, · · · ,M} of

Hd
j (h

2
κ), we can obtain that

‖Iακ fN‖2
2,κ = C

∞∑
j=1

φ2(
j

N
)(j(j + 2λκ))

−α
M∑
m=1

[Y h,j
m (e1)]2

= C

∞∑
j=1

φ2(
j

N
)(j(j + 2λκ))

−αZκ
j (e1, e1)

= C
∞∑
j=1

φ2(
j

N
)(j(j + 2λκ))

−αλκ + j

λκ
C

(λκ−κ1,κ1)
j (1)

= C
∞∑
j=1

φ2(
j

N
)j−2αj2λκ−2κ1

Thus,
2N∑
j=N

j−2α+2λκ−2κ1 . ‖Iακ fN‖2
2,κ .

4N∑
j=N

j−2α+2λκ−2κ1 ,

which implies that
‖Iακ fN‖2,κ v N−α+ 2σκ+1

2 .

Similarly with the method we just use in the estimate of ‖fN‖∞,κ and ‖fN‖1,κ, we
have that

‖Iακ fN‖∞,κ v N−α+2σκ+1 ‖Iακ fN‖1,κ . N−α.

Then for 1 < q < 2,

N−α+ 2σκ+1
2 v ‖IακfN‖2,κ 6 ‖Iακ fN‖

q
2
q,κ‖Iακ fN‖

1− q
2∞,κ . ‖Iακ fN‖

q
2
q,κN

(1− q
′
2

)(−α+2σκ+1),

which implies that
‖Iακ fN‖q,κ & N−α+(2σκ+)(1− 1

q
). (3.2.3)

On the other hand, for the case q > 2,

N−α+ 2σκ+1
2 v ‖Iακ fN‖2,κ 6 ‖Iακ fN‖

q′
2
q,κ‖Iακ fN‖

1− q
′
2

κ,1 . N−α(1− q
′
2

)‖Iακ fN‖
q′
2
q,κ,

which also implies that (3.2.3). Finally combining (3.2.3), (3.2.2) with the hypoth-
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esis (3.2.1), we can get for arbitrary large number N ,

N−α+(2σκ+1)( 1
p
− 1
q

) . 1.

which implies that

α > (2σκ + 1)(
1

p
− 1

q
).

3.3 HLS on unit ball and simplex

In this chapter, we shall work out the similar conclusions for orthogonal expansions
on the unit ball Bd = {x ∈ Rd : ‖x‖ 6 1} with respect to the weight function

WB
κ (x) :=

d∏
j=1

|xj|2κj(1− ‖x‖2)κd+1−1/2, κj > 0, (3.3.1)

and on the simplex Td = {x ∈ Rd : xj > 0, j = 1, 2, · · · , d, |x| 6 1} with respect
to the weight function

W T
κ (x) :=

d∏
j=1

x
κj−1/2
j (1− |x|)kd+1−1/2. (3.3.2)

That is, corresponding operator Iα,Bdκ and Iα,Td satisfy the inequality

‖Qf‖κ,q 6 C‖f‖κ,p, ∀f ∈ Lp(h2
κ),

for 1 < p < q <∞ and α > (2σκ + 1)(1
p
− 1

q
) or α > (2σκ + 1)(1

p
− 1

q
) and p = 1,

where Q is Iα,Bdκ or Iα,Td .

To prove it, it is enough to build a bridge to connect the unit ball Bd or the
simplex Td with the unit sphere Sd on which the inequality has been studied totally.

Let us consider the following three mappings which plays a role like bridge
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from Sd−1 to Bd:

φ1 :Bd → Sd⊥
(x1, x2, · · · , xd) 7→ (x1, x2, · · · , xd,

√
1− ‖x‖2)

φ2 :Bd → Sd>
(x1, x2, · · · , xd) 7→ (x1, x2, · · · , xd,−

√
1− ‖x‖2)

T :Sd → Bd

(x1, x2, · · · , xd, xd+1) 7→ (x1, x2, · · · , xd)

It is to point that the Jacobi matrix of each φj , j = 1, 2, is a (d+ 1)× d matrix,

1

1
. . .

1
−x1√
1−‖x‖2

−x2√
1−‖x‖2

· · · −xd√
1−‖x‖2


.

Then we claim that

Lemma 3.3.1. Given a function f ∈ L1(WB
κ ;Bd), for a.e. x ∈ Sd,

(Iα,B
d

κ f)(Tx) = Iακ (f ◦ T )(x).

Proof. From the definitions of these operators, it suffices to show the reproducing
kernel Pn(WB

κ ;x, y) satisfies that for any x, y ∈ Bd,

Pn(W B
κ ;x, y) = Zκ

n((x,±xd+1), (y, yd+1)) + Zκ
n((x,±xd+1), (y,−yd+1)) (3.3.3)

which implies for x ∈ Sd,

projα,Bn f(Tx) = projαn(f ◦ T )(x) ∀n ∈ N.

However, (3.3.3) can be guaranteed by the following check. Obviously, the left side
part in (3.3.3) is a polynomial of degree n. Furthermore, for any polynomial p with
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degree n, which is orthogonal with any polynomial of lower degree,∫
Bd
p(y) [Zκ

n((x,±xd+1), (y, yd+1)) + Zκ
n((x,±xd+1), (y,−yd+1))]WB

κ (y)dy

=

∫
Sd⊥

p(Ty)Zκ
n((x,±xd+1), y)h2

κ(y)dσ(y) +

∫
Sd>

p(Ty)Zκ
n((x,±xd+1), y)h2

κ(y)dσ(y)

=

∫
Sd
p(Ty)Zκ

n((x,±xd+1), y)h2
κ(y)dσ(y)

=p(T (x,±xd+1)) = p(x)

Applying the above lemma, the HLS inequality can be deduced immediately by∫
Bd
|Iα,Bκ f(x)|qWB

κ (x)dx =

∫
Sd
|Iακ (f ◦ T )x)|qh2

κ(x)dσ(x)

6c
∫
Sd
|fT (x)|ph2

κ(x)dσ(x)

=2c

∫
Bd
|f(x)|pWB

κ (x)dx,

where c is the same constant in Theorem 3.1.1.

Similarly, between Sd and Td we define the following mappings:

φε :Td → Sdε
(x1, x2, · · · , xd) 7→ σε(

√
x1,
√
x2, · · · ,

√
xd,
√

1− |x|)

G :Sd → Td

(x1, x2, · · · , xd, xd+1) 7→ (x2
1, x

2
2, · · · , x2

d)

Then the analogue of (3.3.3) is that: for any fixed ε0 ∈ Zd+1
2 , the reproducing kernel

Pn(W T
κ ;x, y) satisfies

Pn(W T
κ ;x, y) =

∑
ε∈Zd+1

2

Zκ
2n(ψε0(x), ψε(y)).

And the proof is also same as that of Lemma 3.3.1, expect for one slight change:
At this moment, we divide the sphere into 2d+1 parts, where Sdε = {σεx̄ : x ∈ Sd}
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for each ε ∈ Zd+1
2 . Thus combining the uniform transform∫

Td
|f(x)|pW T

κ (x)dx =
1

2d+1

∫
Sd
|f(G(x))|ph2

κ(x)dσ(x), f ∈ Lp(Td,W T
κ ),

(3.3.4)
deduces the following theorem directly.

Theorem 3.3.2. For any x ∈ Sd and f ∈ L1(W T
κ ;Td),

projα,Tn f(Gx) = projα2n(f ◦G)(x)

and
projα2n+1(f ◦G) = 0,

for any n ∈ N. Moreover,
Iα,Tκ f = Iακ (f ◦G),

and
‖Iα,Tκ f‖q,κ,T 6 2d+1c‖f‖p,κ,T , ∀f ∈ Lp(W T

κ ;Td),

for the same parameters p, q, α in the case of Bd and constant c in Theorem 3.1.1.
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Chapter 4

Decomposition of Generalized Laplace-
Beltrami Operator
In the HLS theory, it is most concerned to people when α = 1. In particular, at this
moment, the inequality can be rewritten as

‖f‖κ,p ≤ C‖(−∆κ,0)1/2f‖κ,q,

for certain proper p, q. Motivated by this discussion, in this chapter, we shall in-
troduce two versions of decomposition for the operator, Laplace-Beltramic (∆κ,0).
These lead to a practical replacement of the operator, (−∆κ,0)1/2, in the sense of
the equivalence of the Lp(h2

κ) norm.

4.1 the 1st Version of Decomposition

At first, we shall recall definitions of every related operators. Given a positive vector
κ ∈ Rd, for 1 6 j 6 d,

Dj := ∂j + κjEj and Ejf(x) :=
f(x)− f(σjx)

xj
.

For 1 6 i 6= j 6 d,

Di,j := xi∂j − xj∂i, Ei,j := xiκjEj − xjκiEi

and
Di,j := xiDj − xjDi = Di,j + Ei,j.

We also need the following facts that can be found in [DaXu2],

DjVκ = Vκ∂j and DiDj = DjDi.

The next proposition gives a decomposition for ∆κ,0.
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Proposition 4.1.1. For ξ ∈ Sd−1 and f ∈ C2(Sd−1),

∆κ,0f(ξ) =
∑

1≤i<j≤d

D2
i,jf(ξ) + Tf(ξ), (4.1.1)

where

Tf(x) : = (d− 2)
d∑
i=1

κi(f(ξ)− f(σiξ))

+ 2
∑

1≤i<j≤d

κiκj(f(ξ)− f(σiσjξ)). (4.1.2)

Proof. After some straightforward calculation, we obtain that

E2
i,j(f) =− 2κiκj(f − fσiσj)

Di,jEi,j(f)(x) =x2
i∂jEj + x2

j∂iEi − [κi(f − fσi) + κj(f − fσj)]

− [xjκi(∂jf − ∂jf(σix)) + xiκj(∂if − ∂if(σjx))]

Ei,jDi,j(f)(x) =x2
iEj∂j + x2

jEi∂i

− [xiκj(∂if(σjx) + ∂if) + xjκi(∂jf(σix) + ∂jf)]

Then it follows that∑
16i<j6d

(Di,jEi,j + Ei,jDi,j)f(x)

=2
∑

16i<j6d

(
κjx

2
i

xj
∂j +

κix
2
j

xi
∂i)f(x)− 2

∑
16i<j6d

(xiκj∂i + xjκi∂j)f(x)

−
d∑

i=1

κiEif(x)

xi
− (d− 2)

d∑
i=1

κi(f − fσi)(x)

=2
∑

16i<j6d

(
xjκi
xi
− xiκj

xj

)
Di,jf(x)−

d∑
i=1

κiEif(x)

xi
− (d− 2)

d∑
i=1

κi(f − fσi)(x).

From the facts∑
16i<j6d

D2
i,j =

∑
16i<j6d

(D2
i,j + E2

i,j +Di,jEi,j + Ei,jDi,j)
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and

∆κ,0(f)(x) =
∑

16i<j6d

h−2
κ Di,jh

2
κDi,j(f)(x)−

d∑
j=1

κiEif(x)

xj

=
∑

16i<j6d

D2
i,jf(x) + 2

∑
16i<j6d

(
xjκi
xi
− xiκj

xj

)
Di,jf(x)−

d∑
j=1

κiEjf(x)

xj
,

we shall get the decomposition (4.1.1).

Before deriving the equivalent relationship, we still need the following two lem-
mas. The inner product we will mention below always means the weighted form,
that is,

〈f, g〉 =

∫
Sd−1

f(x)g(x)h2
κ(x)dσ(x),

for certain pair of appropriate functions f, g and a fixed positive vector κ.

Lemma 4.1.2. Suppose f, g ∈ L2(Sd−1), then for any pair of i, j, with 1 ≤ i < j ≤
d,

〈Di,jf, g〉 = −〈f,Di,jg〉. (4.1.3)

Further more, if P ∈ Hd
κ(Sd−1), so is Di,jP .

Proof. At first, we fix a positive vector κ ∈ Rd with κj > 1 for j = 1, 2, · · · , d so
that h2

κ(x) is a continuously differentiable function. Then

Di,jh
2
κ(x) = 2(

κjxi
xj
− κixj

xi
)h2

κ,

which follows that∫
Sd−1

(Di,jf)(x)g(x)h2
κ(x)dσ(x)

=−
∫
Sd−1

f(x)(Di,jg)(x)h2
κ(x)dσ(x)−

∫
Sd−1

f(x)g(x)(Di,jh
2
κ)(x)dσ(x)

=− 〈f,Di,jg〉 − 2

∫
Sd−1

f(x)g(x)

(
κjxi
xj
− κixj

xi

)
h2
κ(x)dσ(x)
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On the other hand, we consider the operator Ei,j .∫
Sd−1

(Ei,jf)(x)g(x)h2
κ(x)dσ(x)

=κj

∫ d−1

S
xi
f(x)− f(σjx)

xj

g(x) + g(σjx)

2
h2
κ(x)dσ(x)

− κi
∫ d−1

S
xj
f(x)− f(σix)

xi

g(x) + g(σix)

2
h2
κ(x)dσ(x)

=κj

∫ d−1

S
xif(x)

g(x) + g(σjx)

xj
h2
κ(x)dσ(x)− κi

∫ d−1

S
xjf(x)

g(x) + g(σix)

xi
h2
κ(x)dσ(x)

=− 〈f, Ei,jg〉+ 2

∫
Sd−1

f(x)g(x)

(
κjxi
xj
− κixj

xi

)
h2
κ(x)dσ(x).

Next, since Di,j = Di,j + Ei,j and analytic continuation , we obtain the desired
identity (4.1.3).

Finally given any P ∈ Hn
κ(Sd−1) andQ ∈

∏d
n−1(Sd−1), thenDi,jQ ∈

∏d
n−1(Sd−1)

and
〈Di,jP,Q〉 = −〈P,Di,jQ〉 = 0.

So Di,jP ∈ Hn
κ(Sd−1) as well.

Lemma 4.1.3. Let T be the operator as defined in Proposition 4.1.1. Then T is a
positive bounded operator, i.e. for any function f ∈ Lp(Sd−1),

〈Tf, f〉 ≥ 0.

Further more,

‖T (f)‖κ,p ≤ c1‖(−∆κ,0)1/2f‖κ,p + c2 max
1≤i<j≤d

‖Di,jf‖κ,2,

where c1 can be chosen as small as we need.

Proof. To prove the positivity of T , it suffices to show

〈f − fσi, f〉 ≤ 0.

However, since 2f(x)f(σix) ≤ f 2(x) + f 2(σix),

〈f − fσi, f〉 ≥
1

2

∫
(f − fσi)2dµκ ≥ 0.
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Further more, since the operator (−∆κ,0)1/2 is self-adjoint and the identity (4.1.3),

‖(−∆κ,0)1/2f‖κ,2 = 〈(−∆κ,0)f, f〉 (4.1.4)

=
∑

1≤i<j≤d

‖Di,jf‖κ,2 − 〈Tf, f〉 ≤ c max
1≤i<j≤d

‖Di,jf‖κ,2. (4.1.5)

Next,we fix a cut-off function η ∈ C∞[0,∞) such that χ[0,1] ≤ η ≤ χ[0,2]. Then
we define

V κ
n (f) =

∞∑
j=0

η(
j

n
) projj f.

About the operator V κ
n , as a consequence of Theorem 7.1 in [?], we assert that there

exists a constant c only depending on p, n and κ such that

‖f − V κ
n f‖κ,p ≤ cn−r‖(−∆κ,0)r/2f‖κ,p,

for 1 ≤ p ≤ ∞ and r > 0; and ‖V κ
n f‖κ,2 ∼ ‖V κ

n f‖κ,p, since V κ
n (L1(Sd−1)) is a

finite dimensional polynomial space. Then for a temporarily fixed natural number
n, we have that

‖V κ
n f‖κ,2 6 c‖(−∆κ,0)1/2V κ

n f‖κ,2 6 c max
1≤i<j6d

‖Di,jV κ
n f‖κ,2

=c max
16i<j6d

‖V κ
n Di,jf‖κ,2 6 c′ max

16i<j6d
‖V κ

n Di,jf‖κ,p 6 c′′ max
16i<j6d

‖Di,jf‖κ,2

Finally, by the boundedness of T , we obtain

‖Tf‖κ,p ≤ c‖f − V κ
n f‖κ,p + ‖T (V κ

n f)‖κ,p
≤cn−1‖(−∆κ,0)1/2f‖κ,p + c′ max

1≤i<j≤d
‖Di,jf‖κ,2

where c is independent of n.

Now we give out a relation between (−∆κ,0)1/2 and Di,j’s.

Theorem 4.1.4. If 1 < p <∞ and f ∈ C1(Sd−1), then

max
16i<j6d

‖Di,jf‖κ,p ≤ C‖(−∆κ,0)1/2f‖κ,p.
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Proof. At first, it can be seen that it suffices to show that

‖Di,j(−∆κ,0)−1/2f‖κ,p ≤ C‖f‖κ,p,

for any 1 ≤ i 6= j ≤ d and p, f as we assumed above. Then we fix a pair of i, j,
1 ≤ i < j ≤ d temporarily and choose θ ∈ C∞[0,∞) satisfying that

supp θ ⊂ (
1

2
, 2) and

∞∑
j=0

θ(
x

2j
) = 1, ∀x > 0;

and ∆θ,j which is defined as (2.7.1),

fn := ∆θ,jf =
∞∑
j=0

θ(
j

2n
) projj f.

Then by the Little-Paly Inequality 2.7.1, we can obtain that

‖Di,j(−∆κ,0)−
1
2f‖κ,p ∼ ‖(

∞∑
n=0

|∆θ,nDi,j(−∆κ,0)−
1
2f |2)

1
2‖κ,p

= ‖(
∞∑
n=0

|Di,j(−∆κ,0)−
1
2fn|2)

1
2‖κ,p,

where the last identity is from the fact that Di,jP ∈ Hd
κ(Sd−1), for P ∈ Hd

κ(Sd−1).
We rewrite the operator Di,j(−∆κ,0)−

1
2 as

Di,j(−∆κ,0)−
1
2fn =

∫
Sd−1

fn(y)KKn(x, y)h2
κ(y)dσ(y),

then its associated kernel KKn is that

KKn(x, y) = Di,jVκ[Gn(〈·, y〉)](x) = (xiyj − xjyi)Vκ[G′n(〈·, y〉)](x),

with

Gn(t) =
∞∑
j=0

θ(
j

2n
)(j(j + 2λκ))

− 1
2
j + λκ
λκ

Cλκ
j (t).
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According to Lemma 3.0.5

|KKn(x, y)| . |xiyj − xjyi|
2n(1 + 2nρ(x̄, ȳ))−`

U(x̄, ȳ)

.
(1 + 2nρ(x̄, ȳ))−`+1

U(x̄, ȳ)
,

since |xiyj − xjyi| 6 ρ(x̄, ȳ). Then we can claim that,

|Di,j(−∆κ,0)−1/2fn(x)| ≤ c
∑
ε∈Zd2

Mκfn(εx),

where Mκ is the Hardy-Littlewood maximum function about the measure µκ, since
` can be chosen large enough. Therefore, using Fefferman-Stein theorem 2.7.2 and
Littlewood-Paly Inequality 2.7.1 again. One can have that

‖Di,j(−∆κ,0)−1/2f‖κ,p 6 Cd‖(
∞∑
n=0

|Mκfn|2)1/2‖κ,,p 6 Cd‖(
∞∑
n=0

|fn|2)1/2‖κ,p 6 C ′d‖f‖κ,p.

Now, we shall derive the converse inequalities by using the decomposition
(Proposition 4.1.1) and the basic duality property. Together with the above inequal-
ity, this we formulate as a corollary.

Corollary 4.1.5. If 1 < p <∞ and f ∈ C1(Sd−1), then

‖(−∆κ,0)1/2f‖κ,p ∼ max
16i<j6d

‖Di,jf‖κ,p.

Proof. It suffices to show one way of the above inequality, that is,

‖(−∆κ,0)
1
2f‖κ,p ≤ C max

1≤i<j≤d
‖Di,jf‖κ,p. (4.1.6)

Given a function f as assumed and g ∈ Lp
′
(h2

κ;Sd−1), 1
p

+ 1
p′

= 1, such that∫
Sd−1 g(y)h2

κ(y) dσ(y) = 0, otherwise we may consider the function g̃(x) = g(x)−∫
Sd−1 g(y)h2

κ(y) dσ(y), we have that
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∫
Sd−1

(−∆κ,0)
1
2f(y)g(y)h2

κ(y) dσ(y)

=

∫
Sd−1

(−∆κ,0)f(y)(−∆κ,0)−
1
2 g(y)h2

κ(y) dσ(y)

=
∑

1≤i<j≤d

∫
Sd−1

Di,jf(y)
[
Di,j(−∆κ,0)−

1
2 g(y)

]
h2
κ(y) dσ(y)

−
∫
Sd−1

Tf(y)(−∆κ,0)−
1
2 g(y)h2

κ(y) dσ(y)

≤
∑

1≤i<j≤d

‖Di,jf‖κ,p‖Di,j(−∆κ,0)−
1
2 g‖κ,p′ + C‖Tf‖κ,p‖(−∆κ,0)−

1
2 g‖κ,p′

≤c1 max
1≤i<j≤d

‖Di,jf‖κ,p + c2‖Tf‖κ,p ≤ c′1 max
1≤i<j≤d

‖Di,jf‖κ,p +
1

2
‖(−∆κ,0)

1
2f‖κ,p,

where the last inequality is from Lamma 4.1.3.

Now taking the supremum for the right hand side of above inequality as f ranges
over all functions in L2(Sd−1)∩Lp′(Sd−1) with ‖g‖κ,p′ ≤ 1, we obtain therefore the
desired result (4.1.6).

4.2 the 2nd Version of Decomposition

In this section, we shall introduce another decomposition of the h-harmonic Laplace-
Beltrami operator ∆κ,0, which lead to a far reaching and practical replacement of
the operator (−∆κ,0)1/2 in the Lp(Sd−1) norm sense, for p > 1.

Before going any further, we shall make a few comments that will help to clarify
the meaning of the operator Di,j and Ej . First, for any fixed 1 ≤ i < j ≤ d,
the definition of Di,j is independent of any extension of a spherical function. To
understand it, we adapt the polar coordinates on the (xi, xj) plane, that is, (xi, xj) =

(ri,j cos θi, ri,j sin θj). Then it follows that

∂

∂xi
= cos θi,j

∂

∂ri,j
− sin θi,j

r

∂

∂θi,j

and
∂

∂xj
= sin θi,j

∂

∂ri,j
+

cos θi,j
r

∂

∂θi,j
,
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which implies that

Di,j = xi∂j − xj∂i =
∂

∂θi,j
.

This is another way of saying that, Di,j is just the angular derivative with respect to
the (xi, xj) plane.

Next, from the above discussion it is not hard to assert that

Proposition 4.2.1. For any given f, g ∈ C1(Sd−1) and 1 ≤ i < j ≤ d,∫
Sd−1

(Di,jf)(x)g(x)dσ(x) = −
∫
Sd−1

f(x)(Di,jg)(x)dσ(x).

The following proposition shows the decomposition of the operator ∆κ,0 in
terms of Di,j’s and Ej’s in the sense of inner product.

Proposition 4.2.2. For f, g ∈ C2(Sd−1),

〈(−∆κ,0)f, g〉 =
∑

1≤i<j≤d

〈Di,jf,Di,jg〉+
d∑
i=1

κi
2
〈Eif, Eig〉.

In particular, this implies that

‖(−∆κ,0)
1
2f‖2

κ,2 =
∑

1≤i<j≤d

‖Di,jf‖2
κ,2 +

d∑
i=1

κi
2
‖Eif‖2

κ,2 (4.2.1)

= ‖∇0f‖2
κ,2 +

d∑
i=1

κi
2
‖Eif‖2

κ,2. (4.2.2)

Proof. First, note that

g(x) =
g(x) + g(σjx)

2
+
g(x)− g(σjx)

2
,

with the first term on the right of this equation being even in xj and the second term
being odd in xj . Hence, for any ε > 0,

2

∫
{x∈Sd−1:|xj |≥ε}

f(x)− f(σjx)

x2
j

g(x)h2
κ(x) dσ(x)

=

∫
{x∈Sd−1:|xj |≥ε}

f(x)− f(σjx)

xj

g(x)− g(σjx)

xj
h2
κ(x) dσ(x).

The desired formula then follows by letting ε→ 0.
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Next, with the aid of Calderon-Zygmund singular integral and the estimate,
Lemma 3.0.5) , we will establish the estimation of Ej(−∆κ,0)1/2, which leads to
the relation between ∆κ,0 and Di,j instantly.

Theorem 4.2.3. Given any 1 < p 6∞ and j = 1, 2, · · · , d

‖Ej(−∆κ,0)−
1
2f‖p . ‖f‖p, (4.2.3)

for any f ∈ Lp(Sd−1).

Proof. For the simplest case p = 2, it can be seen from (4.2.1) directly. However,
the Lp(Sd−1) inequalities, when p 6= 2, will be obtained as a corollary of the theory
of singular integrals as given in §2.4.

Now, let j = 1, · · · , d and 0 < r < arccos 1√
d
, and keep it temporarily fixed.

Define the associated kernel Kelj of the operator Ej(−∆κ,0)−1/2 by[
Ej(−∆κ,0)−

1
2

]
(f)(x) =

∫
Sd−1

f(y) Kelj(x, y)h2
κ(y)dσ(y),

for any f ∈ L2(Sd−1) ∩
∏d

n(Sd−1) with all integer n. Then it suffices to show that
for any y, z ∈ Sd−1 with ρ(y, z) < r,∫

ρ(x̄,z̄)>2r

|Kelj(x, y)−Kelj(x, z)|h2
κ(y)dσ(x) 6 C,

Without lose of generality, we will just consider the case j = 1. As we presented
in Chapter 3,

(−∆κ,0)−
1
2f(x) =

∞∑
s=1

∫
Sd−1

f(y)Ks(x, y)dµ(y),

where

Ks(x, y) =
∞∑
j=1

ψs(
j

2s
)(j(j + 2λκ))

− 1
2
j + λκ
λκ

Vκ[C
λκ
j (〈·, y〉)](x)

with ψ ∈ C∞, suppψ ⊂ [1
2
, 1] and ‖ψ(`)‖∞ 6 C2−s. Then using integral by parts,

KKs(x, y) := E
(x)
1 Ks(x, y) =

∞∑
j=1

ψs(
j

2s
)
j + λκ
λκ

Ṽ (1)
κ [Cλκ

j (〈·, y〉)](x),
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where

Ṽ (1)
κ (x, y) =

∫
[−1,1]d

1

x1

[
Cλκ
j (

d∑
k=1

xkyktk)− Cλκ
j (

d∑
k=2

xkyktk − x1y1t1)

]

×
d∏

n=1

(1− t2n)κn−1(1 + tn)dt

=

∫
[−1,1]d

y1

κ1

(Cλκ
j )′(

d∑
k=1

xkyktk)(1− t1)
d∏

n=1

(1− t2n)κn−1(1 + tn)dt.

It follows that

Ej(−∆κ,0)−
1
2f =

∞∑
s=1

∫
Sd−1

f(y)KKs(x, y)dµ(y).

Then given a fixed point z ∈ Sd−1, without loss of generality, we assume that
|zd| = max{|zj| : j = 1, 2, · · · , d} and zd > 0. Now we define

M(x, y′) := y1(Cλκ
j )′(

d∑
k=1

xkyktk), for any y′ = (y1, · · · , yd−1) ∈ Bd−1,

where yd =
√

1− y2
1 − · · · − y2

d−1. Consider the function

φ(c) := M(x, (1− c)z′ + cy′).

By the intermidiate theorem, for any y, z ∈ Sd−1 and ρ(y, z) < arccos( 1√
d
)there

exists c ∈ (0, 1) such that

M(x, y′)−M(x, z′) = φ(1)− φ(0) = φ′(c)

=(y1 − z1)(Cλκ
j )′(

d∑
k=1

xkξktk) + ξ1(Cλκ
j )′′(

d∑
k=1

xkξktk)
d∑

n=1

Tn(y, z)xntn

where ξ′ = (1− c)z′ + cy′ , ξd > 0 such that ξ = (ξ′, ξd) ∈ Sd−1,

Tn(y, z) = yn − zn, for, n = 1, 2, · · · , d− 1;

Td(y, z) =
(yd − zd)((1− c)zd + cyd) + (1− 2c)(1− cos ρ(z, y))√

((1− c)zd + cyd)2 + 2c(1− c)(1− cos ρ(z, y))
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It is to point out that the fact

ρ(x̄, ξ̄) ∼ ρ(x̄, ȳ) ∼ ρ(x̄, z̄) for ρ(x̄, z̄) > 2ρ(ȳ, z̄)

and that |Td(y, z)| 6
√
d|yd − zd|. Then when |x1| > 4ρ(x̄, ξ̄) implying that |x1| ∼

|ξ1|, without loss of generality, we suppose that xi, yi, i = 1, · · · , d, have the same
sign, otherwise we consider x̃ such that x̃i = sign(yi)xi, for i = 1, · · · , d. Then
from the Lemma 3.0.5, we obtain that

I2(s) :=
∞∑
j=2

ψ(
j

2s
)

d∑
i=1

xiξ1Ti(y, z)

∫
[−1,1]d

(Cλκ
j )′′(

d∑
k=1

xkξktk)ti(1− t1)

×
d∏

n=1

(1− t2n)κn−1(1 + tn)dt

6c
∑
n∼2s

|
d∑
i=1

xiTi(y, z)||ξ1|
nd(1 + nρ(x̄, ξ̄))−`0∏d

j=1(|xj|+ ρ(x̄, ξ̄) + n−1)2κj

|x1ξ1|−1/2

(|x1|+ ρ(x̄, ξ̄) + 2−s)

6c′
ρ(y, z)2sd(1 + 2sρ(x̄, z̄))−`∏d
j=1(|xj|+ ρ(x̄, ȳ) + 2−s)2κj

6c′′
ρ(y, z)2s(1 + 2sρ(x̄, z̄))−`

U(x̄, z̄) + U2−s(z̄) + U2−s(x̄)
,

where the last second inequality is based on the fact

|
d∑
i=1

xiTi(y, z)| 6 cρ(y, z)ρ(x̄, ȳ).

On the other hand, if |x1| 6 4ρ(x̄, ξ̄) which implies that |ξ1| 6 6ρ(x̄, ξ̄), then
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I2(s) :=
∞∑
j=2

ψ(
j

2s
)

d∑
i=1

xiξ1Ti(y, z)

∫
[−1,1]d

(Cλκ
j )′′(

d∑
k=1

xkξktk)ti(1− t1)

×
d∏

n=1

(1− t2n)κn−1(1 + tn)dt

6c
∑
n∼2s

|
d∑
i=1

xiTi(y, z)||ξ1|
nd(1 + nρ(x̄, ȳ))−`0∏d

j=1(|xj|+ ρ(x̄, ȳ) + n−1)2δj

6C
ρ(y, z)2sd(1 + 2sρ(x̄, z̄))−`∏d
j=1(|xj|+ ρ(x̄, ȳ) + 2−s)2κj

ρ(x̄, ȳ)2

(|x1|+ ρ(x̄, ȳ) + 2−s)2

6C
ρ(y, z)2s(1 + 2sρ(x̄, z̄))−`

U(x̄, z̄) + U2−s(z̄) + U2−s(x̄)
.

Similarly, by letting

I1(s) :=
∞∑
j=1

ψ(
j

2s
)
j + λκ
λκ

∫
[−1,1]d

(y1 − z1)(Cλκ
j )′(

d∑
k=1

xkξktk)(1− t1)
d∏

n=1

(1− t2n)κn−1(1 + tn)dt

and the Theorem 3.0.5 given in 3.1, we have

|I1(s)| ≤ C
ρ(y, z)2s(1 + 2sρ(x̄, ξ̄))−`

U(x̄, ξ̄) + U2−s(ξ̄) + U2−s(x̄)
,

Finally, for any y, z ∈ Sd−1 the desired inequality can be guaranteed directly
since∫

ρ(x̄,z̄)>δr
|Kel1(x, y)−Kel1(x, z)|dµ(x) 6 C

∫
ρ(x̄,z̄)>δr

∞∑
s=1

[I1(s) + I2(s)]dµ(x)

6C
∫
ρ(x̄,z̄)>δr

ρ(y, z)

ρ(x̄, z̄)U(x̄, z̄)
dµ(x) 6 C ′

By the (4.2.1), we can see that (4.2.3) is true for the case p = 2. Then according
to the Caldron-Zygmund theorem, (4.2.3) is true for 1 < p 6 2. To show the part of
p > 2, we just need to consider the adjoint operator of Ej(∆κ,0)−

1
2 , whose kernel is

KK∗(x, y) =
∞∑
s=1

E
(y)
1 Ks(x, y).
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Using the same method, it can be proved as well. Hence, by now we finish the
prove of theorem 4.2.3.

For 2 < p <∞, we will exploit the duality between Lp and Lq, 1/p+ 1/q = 1,
and the fact that the theorem is proved for Lq. Observe the following : if a funtion
ψ is locally integrable and if sup|

∫
ψϕdx| = A < ∞, where the sup is taken over

all continuous ϕ with compact support which verify ‖ϕ‖ 6 1, then ψ ∈ Lq and
‖ψ‖ = A. This being so, take f ∈ L1

⋂
Lp, (2 < p < ∞), and ϕ of the type

described above.

The following corollary is a direct result of Theorem4.1.5 and Theorem4.2.3
due to the relationship Di,j = Di,j + Ei,j and triangle inequality.

Corollary 4.2.4. For any 1 < p <∞,

‖(∆κ,0)1/2f‖κ,p ∼ max
16i<j6d

‖Di,jf‖κ,p + max
i=1,··· ,d

‖Eif‖κ,p.

Consequently, the HLS inequalities can be expressed in another way.

Corollary 4.2.5. Given a positive vector κ and a pair of p, q such that 1 < p < q <

∞ and
(2σκ + 1)(

1

p
− 1

q
) ≤ 1,

then for f ∈ Lp(Sd−1) ∩ Lq(Sd−1),

‖f‖κ,q . ‖∇0f‖κ,p + max
i
‖Eif‖κ,p,

where the operators∇0, Ei are defined as above.
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Chapter 5

Future Work
By now, our results are just associated with the weight function

h2
κ(x) =

d∏
j=1

|xj|2κj .

Next, we expect to extend them on more general weight

w2
κ(x) =

∏
α∈R+

|〈x, α〉|2κα ,

in terms of a root system R.

55



Chapter 6

Appendix

Lemma 6.0.6. Let ` be a positive integer and η ∈ C3`−1[0,∞) with suppη ⊂ [0, 2]

and η(j)(0) = 0 for j = 1, 2, · · · , 3`− 2. We consider function

G(α,β)
n (t) =

∞∑
k=0

η(
k

n
)
(2k + α + β + 1)Γ(k + α + β + 1)

Γ(k + β + 1)
P

(α,β)
k (t).

Then if α ≤ β ≤ −1/2 and θ ∈ [0, π
2
], for a positive integer j,

|G(j)
n (cos θ)| ≤ c`,j‖η(3`−1)‖∞n2α+2j+2(1 + nθ)−`.

Proof. From the fact

d

dt
P (α,β)
n (t) =

n+ α + β + 1

2
P

(α+1,β+1)
n−1 ,

for j ≤ n, we have

dj

dtj
P (α,β)
n (t) =

(n+ α + β + 1) · · · (n+ α + β + j)

2j
P

(α+j,β+j)
n−j (t).

This implies that

G(j)
n (t) =

∞∑
k=j

η(
k

n
)
(2k + α + β + 1)Γ(k + α + β + j + 1)

Γ(k + β + 1)
P

(α+j,β+j)
k−j (t)

=
∞∑
k=0

η(
k + j

n
)
(2k + α + β + 2j + 1)Γ(k + α + β + 2j + 1)

Γ(k + β + j + 1)
P

(α+j,β+j)
k (t)
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Then using summation by parts over and over again, we have that

G(j)
n (t) =

∞∑
k=0

an,1(k)
k∑
s=0

(2s+ α + β + 2j + 1)Γ(s+ α + β + 2j + 1)

Γ(s+ β + j + 1)
P (α+j,β+j)
s (t)

=
∞∑
k=0

an,1(k)
Γ(s+ α + β + 2j + 2)

Γ(s+ β + j + 1)
P

(α+j+1,β+j)
k (t)

=
∞∑
k=0

an,2(k)
k∑
s=0

(2s+ α + β + 2j + 2)Γ(s+ α + β + 2j + 2)

Γ(s+ β + j + 1)
P (α+j+1,β+j)
s (t)

=
∞∑
k=0

an,2(k)
Γ(k + α + β + 2j + 3)

Γ(k + β + j + 1)
P

(α+j+2,β+j)
k (t)

= · · ·

=
∞∑
k=0

an,`(k)
Γ(k + α + β + 2j + `+ 1)

Γ(k + β + j + 1)
P

(α+j+`,β+j)
k (t)

where an,0(s) = (2s+ α + β + 2j + 1)η( j+s
n

) and

an,`+1(s) =
an,`(s)

2s+ α + β + 2j + `+ 1
− an,`(s+ 1)

2s+ α + β + 2j + `+ 3
;

and the 2nd, 4th identities are from the relation

Γ(k + α + β + 2)

Γ(k + β + 1)
P

(α+1,β)
k (t) =

k∑
s=1

(2s+ α + β + 1)Γ(s+ α + β + 1)

Γ(s+ β + 1)
P (α,β)
s (t).

We claim that for the fixed ` and m+ p ≤ q,

|a(m)
n,q (s)| ≤ c`,j(1 + s)−m−2p+1

(1 + s

n

)2`−1

‖η(`+m)‖∞. (6.0.1)

Assuming it is true, by letting m = 0 and p = q = `, we get that

|an,`(s)| ≤ c`,j‖η(`+m)‖∞n−2`+1.

Adding the fact

|Pα,β
n (cos θ)| ≤ cn−1/2(n−1 + θ)−α−1/2(n−1 + π − θ)−β−1/2,
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and the assumption θ ∈ [0, π/2], we obtain that if 2n > θ−1,

|G(j)
n (cos θ)| ≤ c‖η(3`−1)‖∞n−2`+1

2n∑
k=0

kα+j+`k−1/2(k−1 + θ)−(α+j+`)−1/2

≤ c‖η(3`−1)‖∞n−2`+1
[ θ−1∑
k=0

k2α+2j+2` +
2n∑

k=θ−1

kα+j+`−1/2θ−(α+j+`)−1/2
]

≤ c‖η(3`−1)‖∞n−2`+1
[
θ−(2α+2j+2`+1) + nα+j+`+1/2θ−(α+j+`)−1/2

]
≤ c‖η(3`−1)‖∞n−2`+1(θ−1 + n)(2α+2j+2`+1)(1 + nθ)−(α+j+`)−1/2

≤ c‖η(3`−1)‖∞n(2α+2j+2)(1 + nθ)−(α+j+`)−1/2

Now we return to prove the claim we used. First of all, we can see that

an,1(s) = η(
s+ j

n
)− η(

s+ j + 1

n
).

So take derivative about s m times,

|a(m)
n,1 (s)| = | −

∫ 1

0

dm+1

dtm+1
η(
s+ j + t

n
)dt|

= n−m−1

∫ 1

0

|d
m+1η

dtm+1
(
s+ j + t

n
)|dt

≤ n−m−1(
s+ j + 1

n
)2`−1‖η(m+2`)‖[0, s+j+1

n
]

≤ c(1 + s)−m−2p+1(
s+ 1

n
)2`−1‖η(m+2`)‖[0, s+j+1

n
]

where q = 1 and p ≤ q. By induction, we suppose (6.0.1) is true for q and show so
it is for q + 1 . Since

an,q+1(s) =

∫ 1

0

d

dt

an,q(s+ t)

2s+ 2t+ α + β + q + 2j + 1
dt,
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|a(m)
n,q+1(s)| ≤

∫ 1

0

max
k1+k2=m+1

a
(k1)
n,` (s+ t)(1 + s)−k2−1dt

≤ c‖η(m+2`)‖[0, s+j+1
n

](1 + s)−k2−1

∫ 1

0

(1 + s+ t)−k1−2p+1(
s+ 1 + t

n
)2`−1dt

≤ c‖η(m+2`)‖[0, s+j+1
n

](1 + s)−m−2p−1(
s+ 1

n
)2`−1

= c‖η(m+2`)‖[0, s+j+1
n

](1 + s)−m−2p′+1(
s+ 1

n
)2`−1

where p ≤ q and p′ = p+ 1 ≤ q + 1. So we conclude the claim and thus complete
the proof.

60



Bibliography
[AsWa] R. Askey, and S. Wainger, On the behavior of special classes of ultras-

pherical expansions. I, J. Analyse Math. 15 (1965), 193-220.

[BrDa] G. Brown and F. Dai, Approximation of smooth functions on compact
two-point homogeneous spaces, J.Func.Anal.220(2005), no, 2, 401-
423.

[CaQu] C. Canuto and A. Quarteroni, Approximation results for orthogonal
polynomials in Sobolev spaces. Math. Comp. 38 (1982), 67-86

[CoLi] R. Coifman, R L. Lions, Y. Meyer and S. Semmes, Compensated com-
pactness and Hardy spaces, J. Math.Pures Appl. (9) 72(1993), 247-286.

[Da] F.Dai, Mutivariate polynomial inequalities with respect to doubling
weights and A∞ weights, J.Funct.Anal.235(2006), no. 1, 137-170.
MR2216443(2007f:41010)

[DaBr] G. Brown, F. Dai, Approximation of smooth functions on compact two-
point homogeneous spaces, Journal of Functional Analysis 220 (2005),
401–423.

[DaDiHu] F. Dai, Z. Ditzian and H. Huang, Equivalence of measures of smooth-
ness in Lp(Sd−1). Studia Mathematica 196 (2011), 179-205.

[DaXu1] F. Dai, Y. Xu, Boundedness of projection operators and Cesaro means
in weighted Lp space on the unit sphere, Transactions of the American
Mathematical Society 361 (2009), 3189-3221.

[DaXu2] F. Dai and Y. Xu, Approximation Theory and Harmonic Analysis on
Spheres and Balls. Springer Monographs in Mathematics , Springer,
2013.

[DaXu3] F. Dai,Y. Xu, Maximal function and multiplier theorem for weighted
space on the unit sphere. J. Funct. Anal. 249(2), 477-504 (2007)

61



[DaXu4] F. Dai and Y. Xu, Moduli of smoothness and approximation on the unit
sphere and the unit ball. Advances in Mathematics 224(2010), no. 4,
1233-1310.

[DaXu5] F. Dai, Y. Xu, Cesaro Means of orthogonal expansions in several vari-
ables, Constr. Approx.29 (2009), no. 1, 129-155.

[DaWa] F. Dai, and H. Wang, Positive cubature formulas and Marcinkiewicz–
Zygmund inequalities on spherical caps, Constr. Approx.31 (2010), no.
1, 1-36.

[Du1] C.F. Dunkl, Reflection groups and orthogonal polynomials on the
sphere. Math. Z. 197 (1988), 33-60.

[Du2] C.F. Dunkl, Differential-difference operators associated to reflection
groups. Trans. Amer. Math. Soc. 311 (1989), 167-183.

[Du3] C.F. Dunkl, Operators commuting with Coxeter group actions on
polynomials. In: Stanton, D. (ed.), Invariant Theory and Tableaux,
Springer, 1990, pp. 107-117.

[Du4] C.F. Dunkl, Integral kernels with reflection group invariance. Canad. J.
Math. 43 (1991), 1213-1227.

[Du5] C.F. Dunkl, Hankel transforms associated to finite reflection groups. In:
Proc. of the special session on hypergeometric functions on domains
of positivity, Jack polynomials and applications. Proceedings, Tampa
1991, Contemp. Math. 138 (1992), pp. 123-138.

[DuXu] Charles F. Dunkl, Yuan Xu, Orthogonal Polynomials of Several Vari-
ables. Cambridge University Press, 2001.

[HaLi] G.H. Hardy and J. E. Littlewood, Some properties of fractional inte-
grals (1), Math. Zeitschr. 27 (1928), 565-606.

[Ro] M. Rosler, Positivey of Dunkl’s Intertwining Operator, DUKE MATH-
EMATICAL JOURNAL, VOL.98, NO.3.

[So] S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. (N.S.) 4
(1938), 471-479. A. M. S. Transl. Ser. 2, 34 (1963), 39-68.

62



[St] E. M. Stein, Singular integrals and differentiability properties of func-
tions, Princeton Univ. Press, N. J.,1970.

[St2] E.M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality
and Oscillatory Integrals. Princeton University Press.(1993)

[StWe] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean
spaces.
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