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Y ) Abstract ) L
Self-tuning  PI(D) controllers = have received
¥
considerable attention in .recent j&ears. _This. thesis

*

analyzes three of thesé controMers which are bésed on a
ARIMA fiddel process representation: Song et al. (1986);
Tutfs and Clarke (1985); Tjokro and Shah (1985). The first
two cohtfollers are simblified forms of the éeneralizea
minimum'vafiance (GMV) controllers while the third is based
on the pole placemenﬁ technique. The§ stability and
performance aspects of the algorithms are compared by means
'of simulatién studies and root locus analysis.x The
comparison shows the pole‘placement based PI(D) controller
to have  superior stability ané performance
characteristifés. In addition the Song et al. (1986),and'the‘
Tuffs and .Clarke (1985) agaptlve controllers are shown to be
equivalent for the 51mp11f1ed explicit PI(D) forms.

An alternate d%51gn method is suggested for calculation
of the controller gain which 1is diréctl§ related to the
maximym ove;shoot of the c}osed-ldop sySteﬁ when used.in
cohjunction with the pole placement design principleﬁ' The
;@thod is wggééd\\gg~ the loéation of the closed-loop poles
calculated from the estimated characteristic equation and
exactly specifies the peak overshoot for low order
processes. Simulation studies in the presence of process-
model mismatch show the resultant self-tuning PI(D)

controller to be a workable scheme.

Finally, process identification based on incremental



i

variables ié compared "with that based on positionél or
absolute variables. Incremental identification is shown to
be less sensitive to‘;process bias and unmeasurable
deterministic step disturbantgs than positionai‘ variables:
éstimatioﬁ, but is more sé;sitive to unmodelled dynamics,
process hqnlinearities, time delay mismatch -and process

noise.
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1. Introduction

1.1 Overview

The initial intent of this thesis work was to
investigate the performance of a single-input, single-output
(S150) self-tuning}'PI{p) controller in a multivariable
environment. Inter; tion of the multi-output, multi-output
(MIMO) was to be 'dé*ouplea' Qith an adaptive feedforward

compensator. TimeQ#{elaYS‘wefe fo be dealt with by means of

A

. i Cnlgs
communication liak to &Wé microcomputer.

The work progressed on this initial ‘ research
proposal. A number of multivariable systems were identified
as potential simulation processes. Static and dynamic
decouplers were designed to reduce the interaction of thesge
multivariable systems by a direct Nyquisg array frequency
analysis. Familiarization with the microcomputer system,
industrial controller and the communication protocol was
completed. A driver progfam in PASCAL and Modula-2 fo
communicate between the personal computer and the industrial
controller was writtén. A literature review of published
self-tuning PI(D) algorithms suggested a control algorithm
by Song (1983) be used in this study. Simulation software
including a MIMO continuous-time linear plant simulator was

then written to test the algorithm in a SISO and MIMO

»

1



\\

environment. The simulator allowed underdamped and
overdamped process of wup to‘ third order with numerator
dynamics  and time ‘delays. Options included load
disturbances, process and measurement noise.

However, it soon bec::- apparent £toh simulation
stuaies that this self-tuning PI(D) controller calculated
unstable‘controller gains for some processes and sampling
rate choices. It now became necessary to determine the
reason behind this probleﬁ. The resulting investigation
revealed that a great déal of analysis work should be done
on adaptive controllers to understand the "how" and "why" of
their closed-loop perfbrmance before they are applied to
multivariable systems.

This need for analysis of self-tuning PI(D) controllers
shifted the course of the research work midstream. It now
became important to- analyze and compare a number of self-
tuning PI(D) algorithms to determine ;kich gives better
performance and - why. This evaluation proceeds along the
lines of root locus anglfsis ‘and time-domain
simulations. The results of the evaluation are used to
suggest modifications to improve the stability and
performance characteristics of the self-tuning PI(D)
algofithms. This then became the focus -of ‘the thesis
work. Onl& after this analysis is complete 1is it

appropriate to implement a self-tuning PID controller in ‘a

multiloop configuration for multivariable systems.

—



1.2 Organization of Thesis

The classical contiunous proportional plus integral
plus derivative (PID) control algbrithm is presented in
Chapter 2. The positiohal and velocity forms of the discrete
PID algorithm are derived. The effect of removing the
setpoint from the proportional and derivative terms of the
controller are considered. The PID control algorithd/is
also presented as a pole-zero controller to assist in later
‘root locus analyéqii” The chapter is completed by
investigating tuning pfocedureﬁsfor'this algorithm. A brief
overview of both classical tuning and auto—tuning-techniqﬁes
is presented.

Chapter 3 investigates self-tuding control as 1t
relates to the PID algorithm form. A brief literature
review 1is pres;nted to set the context for the self-tuning
controllers. Three adaptive controllers are derived and
simplified into a self-tuning PI(D) form. Two of the
controllers are based on the generalized minimum varilance
(GMV) principle; the third on the pole placement
principle. The three PID forms are compared and an
alternate method for controller. gain calculation is also
presented in the chapter.

Related topics for the implement cion of self-tuning
control are discussed in Chapter 4. The importance of the

sampling rate choice is noted as well as guidelines for its

selection. Various least squares estimation methods are
/



presented with implementation issues such as details of the
UDUT tactorization method, types of variables used in ﬁhe
input/output regressor, conditioning problems and
filtering. The chapter is completed by considering a model
reduction technique, a time delay compensation method and
adaptive feedforward control.

In Chapter g eight linear single-input, single-output
linear processes are outlined . The models are presented in
transfer function form in terms of the complex Laplace and z
operator. The choice of sampling time for eacﬁ process is
given,

A stability and pg;formance analysis of .the self-tuning
PI(D) algorithm is done in Chapter 6 for the eight linear
process models. The methods used for comparing the
algorithms are the root locus technique -and time-domain
simulations. _

Chapters‘? and 8 presents simulation results for the
preferred self-tuning PI(D) controller on the linear
systems. The effects of mismatch, time delays, process

.bias, load disturbances and noise are considered. In
addition results are presented to compare incremental and
positional variable identification.

The evaluaﬁion of the preferred self-tuning PI(D)
algorithm is continued in Chapter 9) on a distillation
process. Details of a .nonlinear’ distillation column

simulation package are presented along witi results for SISO

servo and requlatory control of the overhead and bottoms

-



composition of the column model.

Chapter 10 summarizes the results of the entire

thesis. Conclusions are drawn and recommendations for the
. , N
direction of future work are outlined.



2. Proportional Plus Integral Plus'Deriveiive Control

2.1 Introduction = - K
Proportlonal -Integral- Derlvatlve > (PID) controllers,
also known as three-term controllers, have been used widely
in the process industries for " over four
decades., Originally, they werev implemented using analog
" hardware but. more recently many of hthese controllers. have.
been 1mplemented in dlg1tal form. By and large the advences
in control theory and techniques over the past 20 years or
so have not replaced or d1splaced the PID_gentrol algorithm
-1n the process 1ndnftr1es but have rather served to modify
or enhance its. basic charaCter1st1cs. There are many
reasone for this, a number of which have been summariéedl by
Clarke and Gawthrop (1981) : - N |
1. The PID control structure is a robust structure which
is remarkagiy effective in regulat1ng a w1de range of
',processes. Low, mlddlé‘and high frequency behavior are
adjusted by the 1ntegral time, the controller ga1n and
~the derivative time respectively.
2,7-Many @ advanced control technigues are . model-
based. Equipment and- processes in the  process.
industries are generally less well understood. and
therefore more difficult to model than -well-defined
aerospace, elec:rical'or meehanical contrnl problems.
3. Nenlinearities, time delays and time-varying barameters
tend to characterize "difficult™ control problems in

.
.
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the process industries.
4. The a priori economic benefits of modern ;ontrol is
5 ofﬁen difficult to establish, It is therefore often
| difficult to justify the effort required to imﬁlement
modgf@ control technigues.

4, 3
R ol
5. Many of the modern control techniques are unproven and

may not be robust enough to handle industrial

i
]

‘processes.

It is, howe..r, qlite Frue that PID controllers have
dominated the process industri'g‘and will probabiy continue
to dominate them.'-The purposeipf this chapter is to provide
a brief review of the mathematical representations of the
various forms of the PID algorithm in” both the.coqtinuohs
and discrete domains. This will be followed”bg a literature
review éf- the various tuning methods ‘availabie for PID
controllers. X
2.2 PID Control Law Derivation

A standard "textbook, " continuous4time PID controller

is written in the form:

-

‘ 1 de
ult) = Kc[e(t) + —Je(t)dt + ’I‘d—-—] + u (2.1)

S -

where K_ is the controller gain, T, the integral or reset

time and Td the derivative or rate time. The controller

b

output and the error signal are u(t) and e(t)

respectively. The error signal is defined as

-



N e | et

Celt) = y_(£) - y(t) o (2.2)

t .
where yr(t) and y(t) are the process reference signal and

output repectively. The controller bias, ué, represents the
mean output of the controller when the error is
zero. Equation 2.1 can'be rewritten in Laplace form (assume

—— :

us=0) as: 

1
+°T

u(s) = K D1+ 48] E(s) | = (2.3)

PR

The derivation of a discrete PID approximation of

T.s
1

Equation ~2.1 and 2.3 can proceed along various lines
(Isermann, 1981; Rstrom and Wittenmark ,1984), If .Equation
2.1 is the starting point, a discrete PID algorithm can be
déduced by approximating thé derivative term by a first
order backward difference and the continuous integration’by
either a rectangular or trapezoidal vinteg;atién.‘ If
rectangular intégration is chosen, the discrete PID

algorithm has the following form:

T t Tdk :
ult) = K lel(t) + “Bre(i) + e(t)-e(t=1))] (2.4)

T. 0 T
i S

A discrete PID algorithm can be derived from Equation 2.3 by
straightforward sampling or by taking Euler or backward
difference approximations to the Laplace complex

viriable. I1f the backward difference method 1is used,

Equation 2.3 takes the form:

@



T 2 Td(z—1)
u(z) = K_[1 + — + ] E(2) (2.5)
¢ T, (z=1) T2

where z is the complex z-plane.operator.

The discrete forms of Equations 2.4 and 2.5 are called
the positional forms of the PID controller because the total
output of ﬁhe controller is calculated. A velocity or
incremental form can be dérived if a chanée in control

signal is defined as:

Au(t) = u(t) - ul(t-1) (2.6)

" The velocity form of Equation 2.4 then beccmes

‘T T T, _, Ti _-
ault) = K[ (1+=3+3)-(142-3)27 1482727 (1) (2.7)
¢ T. T T T :
1 S ’S ) S
or
TS
ault) = K [e(t) - e(t=-1) + —e(t)
c - -
_ s Sle(t) - 2e(t=1) + e(t-2))] (2.8)
T
S

where z-1 is the backward shift operator. This form affords

M

i’ a recursive algorithm more suitable to computer

certain operational advantages over the positional form. It

implementation. 1t does not require initialization for
bumpless transfer from manual to automatic control. It has
inherent antireset windup protection when the output is

limited.
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The structure of the "textbook" form of the PID
controller (Equation 2 1) can be mod1f1ed in gé&éral ‘ways
(Astrom and  Wittenmark, 1984). The structure of the
algorithm discussed so far has the error signal driving the

proportional, integfal " and derivative terms. This wlll be

: J
~called the "setpoiht-on-P&I&D" strycture. A “common

modification to the basic algorithm 1is to remove the
setpoint from the derivative term thus avoiding the well
known "derivative kick"™ phenomenon during sudden setpoint
changes in the reference signal. This is the structure most
often seen in the literature. It will be referred to as the

"getpoint-on-P&I" structure and is of the form:

T .
au(t) = K_[e(t) - e(t-1) + —2e(t)
2 T.

T 1 .
o B(oy(e) + 29(t-1) - y(t-2))] (2.9)

T
S

/

An alternative method to avoid "der1vat1ve kick" is to shape

_setpo;nt changes to follow a ramp or first order model.

-

A third structure, less commonly seen, is to remove the
setpoint from the proportional term in addition to the

derivative term. This is referred to as the "setpoiné-on-l—

.

only" structure and is of the form:

: T
ult) = K [-y(t) + y(e-1) + 2—e(t)
’ i
Tg
+ S(-y(t) + 2y(t-1) - y(t-2))] (2.10)

Ts

Other forms of PID contrpller structure are summarized in
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Wittenmark (1979). .

The structure of tge PID control algorithm affects .its. - . -
closed-loop performance. = The servo response of the
"setpoint—on-P&I&D", "setpoint-on-P&I" and "setpoint-on-I-
only"® forms 1is shown in Figure 2.1 for a second order
overdambed process ~ with Kc=4.7, Ti=7.06 and
Td=1.62. Removing the setpoint from the proportional and
derivative terms slows down the servo response. However,.
the regulatory performance of each structure  'is
identical. For a unit step load disturbance ﬁhe regulatory
response is similiar in form to the "setpoint-on-P&I&D"
servo response.

An 'explanatidn for thé servo and regulatory response
characteristics of the .three PID control algorithm
structures is easily seem by considering the PID control law

to be repfesented by:

.

Ault) = D1(z-1)e(t) - nz(z“>y(t) (2.11)

where D1(z-1) corresponds to the nﬁmerator polynomial of the
error feedback controller, .Dz(z~1) corresponds to the
numerator polynomial of the output feedback controller and
z—1 is the backward shift operator. Co&sider also a

deterministic process represented by:
Az My(t) = Bz  Du(t) - Lz Hv(t) (2.12)

where Az '), B(z™!) and L(z”!) are polynomials in the _

backward shift operator and v(t) 1is a process load

¥
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disturbance. The closed-loop system transfer function

relating y(t) and yr(t) is:

8(2_1)D1(z_1)

y(t) = -

— — — = Y"r(t) (2.13)
aa(z ') + B(z )[D,(z )+D2(z )]

The closed-loop load transfer function relating y(t) and

v(it) is: ¢/

1

AL(z )

aa(z™ ") + a<z")[n1(z">+nz(z")}

y(t) = v(t) - (2.14)
It can be easily éhown that the denominator of the closed-
loop characteristic polynomial is_invariant or independent
of the partitioning of the of the numerator polynomial of
the controller 1into terms D1(z_1) and D2(2—1) since it is
the sum of D1(z-1) and 02(2-1) which‘ appears in the
characteristic polynomiél._ Therefore, the stability
b;Lndary for the three PID algorithm structures is the
same. The numerator of the closed-loop system transfer
function determines the zeroes of the closéd?loop system,
and hence influences the | transient response
characteristics. These zeroes vary depending on the
partitioning of the controller. For the "setpoint-on-P&I"

structure D1(z—1) is:

D1(z—1) = R [(1 + T /T;) - 271 (2.15)

-1

and for the "setpoint-on-I-only" structure D1(z ) is:

r

<
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s

-1
D, (z7") = K T/T (2.16)

This accounts for the different servo responses of the three
controller structures. The numerator polynomial of the
closgé;loop load transfer function is alsb invariant o{ the
conErolleg_ numerator polynomial and accounts for the
identical requlatory response of the three controllér
structures. |
The PID controller can also be viewed from a pole-zero
perspective. 1If the discrete velocity PID algorithm in
Equation 2.7 is examined from this standpoint, its transfer
function takes the form: .
Kc[(1+Z§+EQ)22 - (1+2E§)2 + E53—]

Ti Ts ’ Ts TS

Gc(z) = (2.17)

z (z - 1)

The controller poles are fixed in the z-plane unit circle at
2z=0 and z=1. The controller zeroes are determined by the
integral and derivative times and sampling time. If Ti>4Td'
the two Controllerréeroes will be real and distinct. If
Ti-4Td, the two controller zerbes will be real and egual and
if Ti<4Td’ the'two controller zeroesnvwill be a complex
conjugate pair. It will be noted that the PID algorithm in
Equation 2.7 introduces two zeroes iinto the closed-loop
transfer funcﬁion. Wittenmark (1979) shows some PID
structures which introducé one, or even no, additional
zeroes into the closed-loop transfer function.

The analysis of this work will focus on the dtscrete

-
~
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velocity "setpoint-on-P&I&D". PID structure shown in

Equations 2.7, 2.8 and 2.17.

2.3 Tuning of PID Controllers

The PID algorithm is a robust, simple algorithm which
can handle most of the control loops in the process
industries but must be tuned properly to obtain "reasonable”
closed-loop control. Over the past 40 years many: tuning
methods have beeén proposed. However; a large percentage of
the process control loops in industry are still poorly tuned
or even set on manual (Andreiev, 1981).

Ziegler and Nichols (1942) proposed the first two
manual methods for tuning PID control algorithms. ‘The
transient-response method calculates the steepest slope, R,
and delay time, L, from a unit-step response of the open-
loop system (i.e. précess reaction curve). Theb controller
settings are then calculated from R and L. The ultimate-
sensitivity method involved closed-loop control of the plant
under propoffional control only. The gain 1is increased
until sustained oscillations ' .are obtained. Controller
settings are then calculated from the ultimate gain and
period of oscillation.

Coheh and Coon (1953) suggested controller parameters
based on a first order plus dead time (FOPDT) model ' of the
process reaction curve. More recently ofher model-based
methods have been proposed by Kuo, Corripio and Smith (1973)

and MacGregor, Wright and Hong (1975). Smith and Corripio
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(1985) summarize tuning formulae based on the iniegral of
error squared (ISE), integral of absolute error (IAE), and
integral of time absolute error (ITAE) criteria.

Most recently several new auto-tuning methods have been
proposed. Astrom and Hagglund (1984) have automated the
Ziegler-Nichols method by proposing a different technique to
determine the critical gain and critical period of the
closed-loop system. It’ involves closed-loop reiay
control. The critical gain and period are determined from
the input signal excited by the relay amplitude and the
amplitude of oscillation of the éystem output. ‘Gain and
phase margin methods can also be used. Hagglund and ‘Astrom
'1985) have extended this method by determining two points
on the Nyquist curve and using dominantgy pole design to
calculate the PID'settings; NAF Controls have introduced a
commercial controller based on this type of method (Rstrém,‘
1985) . ) { |

Another auto-tuning method has been proposeé by
Nishikawa et al. (1984). It involves sémpling a process
response to a test input signal under open-loop or closed-
loop conditions, processing the data to estimate
characteristic values of the process and calculating the PID
‘cdhtrol. settings by optimization of a weighted. ISE
function. The Foxboro EXACT controller is a more rec;nt
entry into the 'auto—tuning; controller market., PID
settings are based on pattern recognition of the process.

PID tuning using model estimation have been by far the

>
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most common methods introduced in recent years. A common
approach taken is to derive a complex cont;oller based on
some commonly accepted design method (i.e. generalized
minimum variance, pole placement, linear quadratic gaussian
control, optimization methods, phase and gain margin
specification). A time series model of the process is ~
recursively eétimated on-line. If suificient simblifyiég
conditions are imposed, a 3-term PID controller structure
can be obtained. fhe estimated parameters can then be used
to calculate the controller settings. These techniques can
be found in Kohahl and Isermann (1985), Tuffs and Clarke
(1985), Song et al. (1983, 1984, 1986) and Tjokro and Shah

(1985). Commercial controllers on the market that fit into
this category are the Leeds and Northrup Electromax V, the
Turnbull Control System TCS 6355, and the ASEA
Novatune. Recently Dumont et al. (1985) and Zervos et al.
(1985) have proposed a novel method for automatic tuning of
PID controllers. Here the closed-loop system is rgpresented

by a series of Laguerre functions and the PJD settings are

found by optimization of an ISE criteria.



3, Self-Tuning Control

- .

3.1 Introduction .

This chapter 'sets the overall context for adaptive
control and derives three self-tuning PID cqnt?ollers which
will be evaluated and compared. The remainder of Section
3.1 presénté a brief overview of adaptive control and the
linear models used to describe the process for adaptive
control. Section 3.2 derives a PID controller from the
self-tuning robust (SRC) controller of Song et al.
(1986). The integrating form of the Clarke and Gawthrop
gelf-controller (STC) (Tuffs and Clarke, 1985) is developed
in Section 3.3. This controller is then simplified into its
PID form. A self-tuning PID controller based on a pole
placement design 1is derived in Section 3.4. The .explicit
forms of these adaptive PID algorithms are compared in

Section 3.5. Section 3.6 proposes a new method to calculate

the controller gain.

3.1.1 General Overview

The concept of adaptive control goes back thirty
years to the lafe 1950's when there was a great interest in
designing. autopilots for high performance rockets and
aircraft capable of handling a wide range of flight
conditions. ééme early papers in the field were those of

Wwhitaker et al. (1958), Kalman (1958) and Gregory

(1959). These efforts were largely unsuccessful due to

18
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insufficient theory and poor hardware and therefore interest

. 1
in the area waned.

There was a renewsg interest in selg-tuning control
systems in the 1970's. The 1960's had witnessed the
theoretical developments of modern control concepts,
especially those of stability theory, while the early 1970's
saw the widespread availability of inexpensive digital
computer hardware. Major steps forward were made by the
self-tﬁning controller systems of Peterka (1970), Astrom and
Wittenmark (1973) and Clarke and Gawthrop (1975).

Since tgis time adaptive control has become a very
active field of--research. For a general overview of the
area the reader is referred to survey articles by Seborg et
al. (1986) and Astrom (1983).‘

The adaptive control strategies which appear 1in the
literature may be classified by considering the design
method used for their derivation. Three main categories
become apparent and are‘listed below:

1. Controllers based on the minimization of a quadratic
cost function (e.q. self-tuning regulators and
controllers). Many simple (predictor based) adaptive
technigues have been shown to be globally stable at
least in the deterministic case.

2. Controllers derived from a 'stability point of view
(e.g. model reference adaptive control) )

3. Controllers based on pole-zero assignment techniques

(e.g. Astrom -and Wittenmark, 1980) .
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A further classifibatio: of adaptive controller is
pbssible. This clasgification is not based on the theory or -
technique from which the controller is derived but how the.
algorithm is implemeﬁted from the 'vigwpoipt of parameter
estimation. The two geqefalm classes are: explicit of
indirect methods, and implicit or . direct methods. In the
explicit approach the process paraméteré are éstimated_and
used in the controller deiignv calcﬁlations. it is ~called

indirect because the controller pérameter are derived from
the process pargmeters. In the imp}i;it or direct approach
the - original process model 1is manipulated into a predictive
modél where the controller'pargﬁet;ré are estimated directly
: @
ﬁ;oﬁlthe input-output data.
- The adaptive coﬁt;ollers'developed in this chapter can
be éonveniently‘characterized by the cla§sification detailed
- above, JThe self-tuning feedback controller _(Song et al;,
1966)' andlthé integrating self—;uning controller (Tuffs and
Clarke, 1985)iare ‘implicié controllers derived form the
minimiiation of a quadratic cost function. hThe adaptiv
controller of iTjokro and Shah (1985) 1is an  explici

A

controller based on a pole placement design. )

3:1.2 Time Series gglynomial Models

| QThe. deVelopmént of a self-tuning control policy
generélly sgaftsiwipﬂ ihe assumption that a élant can be
represenzed, under sampled-data control, by a locally

linearized model of the form:

Y
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1
-1 NS I
Atz )y(t) = z "Bz ultlgt x(t). (3.1)
in which A(z~ ') and B(z ') are polynomials in the
backward shift operator 2z~ ! represented by:
> -1 | -1 -2, -
A(z ') =1 + a,z + a,z + ... +a_z "a
: 1 2 n
— ‘ — -2 a (3.2)
B(z ') = by *+ b;z2 + b,z + ... *+b_ 2z b :
0 1 2 Ny ,

and k is the system time dela";specified as an 1integer

" number of sample intervals The plant input and
output are u{(t) and y(t) respectively. The signal «x(t)
‘models the disturbances acting on the process and generally

takes the form C(z—1)E(t) + d so that Equation 3.1 becomes:
“1y g cky =1 | 1, .
A(z” )y(t) = z "Bz ul(t) + C(z JE(t) + & (3.3)

where £t(t) is a sequence of independent random variables, d |

is the process b{as and C(z_1) is a polynomial represented

by:

C(z-1) =1 +cz *+C,Z ¥ ... +vc oz c (3.4)

~

The disturbance procesé is also generaLlf assumed to be
stationary with zero mean. The complete model is known as a
'Autoregressive Moving Average' or ARMA model.

A common problem which must be faced when deriv;ng

self-tuning controllers based on the ARMA model is “the
- B

S

problem of“offset and %onstationary data. An approach often

used in the identification literature to handle these

P

situationst is to postulate a disturbance process which has
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stationary increments (Kawashima, 1981; Yaglom, 1973):

x(t)

.oz heeys e a (3.5)

where A is ‘the differencing operator (1-2_1)rw~eombining

Equations

3.1 and 3.3 results in the ARIMA (Autoregressive

Integrating Moving Average) system representation:

A(i-

By assum
interpret

represent

Ny(e) = z ¥B(z"DHult) + ciz Hee)y/a +da - (3.6)

ing various forms .for C(z_1)' and t(t), one can
x(t) as either stochastic (Brownian motion) or

ing random steps. Another feature of the ARIMA

model is the fact that integrating control arises naturally.

Most

that the

self-tuning controllers. Other workers KBeianger, 1983;

recently Tuffs and Clarke (1985) have suggested

~ ARIMA model be used in the derivation of

3

~ Fessel and Karny, 1979; Gawthrop, 1982a; - Gawthrop, 1982b)

‘have also suggested 1its |use. The controllers derived in

this thes

is are based upon the ARIMA model.

’

3.2 The Self-Tuning Robust Controller

3.2.1 Int

5
»_
.‘ N" .
described
is based

Wonham (1

~ achieve

-

roduction \
self-tuning  robust controlldr (SRC) has been
in Song et al, (1983, 1984, 1986). The controller

on  the internal model principle of Francis and

975, .1976) which states that a compensator can

stability plus steady state regulation and/or
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tracking despite certain finite perturbations, in the system
parameters only if the controller utilizes feedback of the

requlated variable, and incdrporates in the feedback path a

_ suitability reduplicated model of the dynamic structure of

the exogenous signals which it is required to process.

pavison (1976) demonstrated that such a controller can.

be realized .using separate "servo" and . "stabilizing” -

compensators. The specific SRC proposed by Song ‘et al.

generalizes and extends the robust control strategy of

Silveira and Doraiswami (1984). In summary it is an,

error-driven, "robust” struCture controller which
incorporates an internal model of 'the reference- ’aﬁﬁ
M ,
distﬂrbance signals.
Song's SRC was derived using a ARMA representation of
the process. The purpose of this‘section is to rederive the

SRC using a ARIMA process model. The derivation will be 1in
I1f more details are reqguired, the reader is

@?ierred to the original derivation in Song et al. (1983,

3.2.2 Derivation of a Self-Tuning Robust Controller Based on

the ARIMA Model 3

It is assumed that the process to be controlled can be

described by a discrete equation of the form:

-k

Am(z“1)y(t) - 2 ,Bm(z;])u(t) + Hm(zh1

yw(t) + x(t) (3.7)

in which Am(z-1), Bm(z—1) and Hm(z_1) are polynomials in the
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backward shift operator =z ' Am(z-1) is monic and the
system delay ié denoted by k. The process input and output
are u(t) and y(t) respectively. The unmeasured
detérministic disturbance sequence 1is giveh by w(t). The
residual, x(t), is defiped as thé difference between the
actual output and the detegministic model and can be any

bounded deterministic or stochastic signal.

1f it is assumed that x(t) is of the form:
Cx(e) = ¢ (27 )E(e) /D (3.8)

where Cm(z_1) is a monic polynomial, A is the dif ferencing
operator and §(t) is a sequence of independent random

variables, the ARIMA process representation is obtained:

A y(t) = z-kBmu(t) + H_w(t) + CoE(t)/a - | (3.9)

¢

The SRC derivation assumes that yr(t) and w(t)
asympotically satisfy the following relationship (Davison,

1976; Silveira and Doraiswami, 1984):

D(z” Ny (t) =0

p(z” Nw(t) = 0

where yr(t) is,the‘reference signal and D(z-1) is a monic
polynomial with known coefficients which characterizes the
dynamics. of the reference signal and the unmeasured
determinisfic diéturbancés.

/

The control error e(t) is defined as:

(3.10) ..
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LN

e(t) = y . (t) - y(t) (3.11)

If Equation 3.11 is multiplied by D(gf‘) and a substitution

is made for y(t) from Equation 3.9, it can be shown that:
_ _ .-k
A Delt) = z B Du(t) + cDE(t)/a (3.12)

In addition to the process description considered in
Equation 3.12, the following structure is required for the
adaptive controller:

p(z ) 1 : :

u(t) = ——-__—1—e(t) + ——Tn(t) (3.13)

D(z ) D(z ) ‘
N ’
The first term of the RHS corresponds to the servo-
compensator output and the second term to the stabilizing
compensator output. P(z—1)’is a rational weighting transfer
" function chosen by the user and n(t) is an auxiliary signal

to be defined later.

Substitution of Equation 3.13 into 3;12 yields:
_(AD + 2z ¥B_Ple(t) = z KB _n(t) + c DE(£)/A (3.14)
m mt m m :

To simplify further analysis Equation 3.14 can be written

more compactly by defining the following new polynomials:

Az =.;[Am(z_1)D(;_1) + z_kBm(z_1)P(i_1)]
B(z ) = Bm<z"> (3.15)
c(z™h) = Cm(z-1)D(z—T)/A

where n_, Ny and n_ are the orders of the A(z_l), B(z_1) and
v

c(z”') polynomials respectively. Equation 3,14 can now be
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rewritten as:

. B C
e(t) = —n(t-k) + —k(t) (3.16)
A A

.
kN

The auxiliary signal is determined by Winimizing the
. -
following performance index J:

3 = E{lp(z" e(t+k)I® + [Q'(z‘¥>n<z“yu(ta1f} (3.17)
where : " }_

-1 -1 -1
Rz = [P (27 /RglzT )]

ez = o (27 /R (27 D)

are rational transfer functions weightings on system output
error and control effort respectively. To minimize this

performance index, e(t+k) must be expressed in terms of

-2

known values at time t. Equation 3.16 can be rewritten as a
weighted, predicted control error:
PB PC
Pe(t+k) = —n(t) + —E(t+k) (3.18)
5 A A
The well known Diophantine identity can be used to

separate £(t+k) into presént and future parts:v

PC E + z FF
—_— = (3.19)
A PdA
where
-1 .- -(k-1
E(z ) =-1+g,z * A Y ( )
-1, _ =1 -(s-1)
F(z ) =f_ + £,z + MR PPE
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§ = max(na + npd,lnC + nPn -k + 1)

Combining Egquation 3.18 and 3.19 then substituting for §(t)
i ! .
from Equation’ 3.16 results in the following equation for the
predicted weighted control error:
F BE -

Pe(t+k) = —e(t) + —n(t) + EE(t+k) . (3.20)

PdC C

The optimal prediction of Pe(t+k), if E(t) is assumed to be

zero mean, is given by:

. F BE | |
Pe (t+k|t) = —e(t) + —n(t) _ (3.21)
PdC C '
Substituting the optimal prediction into the

performance index and completing the minimization results

in: L

pe*(t+k|t) + Qln(t) + Pe(t)] =0 . (3.22)

where

Q= -(q' /a'4 )(Q'/b) | -7
No do o) _

The general controller can then be obtained by substituting
Equations 3.21 and 3.22 into Equation 3.13. For minimum
variance type control, i.e. P(z—1) = 1 agg Q(z—‘) = 0, the
auxiliary signal n{t) is given by:

F(z™h)

n(t) = —— ——e(t) , (3.23)
B(z )E(z )

The robust minimum variance control law then becomes:
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1 F .
u(t) = = [1 - —Je(t) (3.24)

3.2.3 Simplification to a Self-Tuning PID Form
A self-tuning PID conérdller can be derived from the
general SRC if the following coqditions are imposed.
1. The process can ‘be modeiled by the following éecond

order ARIMA model

Am(z-1)y(t) = z-kBm(z_1)u(t) + Hm(z—1)w(t)

+ Cm(z_1)E(t)/A (3.25)
where
Am(z_1) = 1 + a1z_ + azz—% )
-1
Bm(z ) = bo . (3.26)
-1
Cm(z y = 1

k = 1 (sampling delay)

2. The external signals can be characterized by step like

changes, i.e.:

-1

Diz™') =1 -z (3.27)

-

3. The performahce index weighting transfer functions are
chosen to be P(z ') = 1 and otz™h) =0 { '

Remark: Strictly speaking this self-tuning PID control law

_is an approximation of the minimum variance based controller

since Q(z—1)=0. However, 1in later chapters the GMV
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qualifier will be used as a label when referring to this PID

control law since it designates the general desfgn principle

from which it is derived.

Based on the above conditions the auxiliary signal,

n(t), becomes:

The resulting control law then follows as:

-1 -2
_ (b +f ) + .z + £,z
ult) = —=2-2 ! 2 e(t)

bo(1 - 2-1)

This 3 term control law can be cast into

(3.28)

(3.29)

a conventional

discrete control algorithm where the output error drives the

propprtionél, integral and derivative terms. Equation 3,429

can be represented as.the fixed discrete-PID algorithm‘of

_ Equation 2.8 with:
: ‘ 1

-1

'KR_= — (£, + 2f,)
c b - 1 2
o
-(f, + 2€£,)T
Ti - 1 2°.°s
bo + fo + f1 + f2
_f2Ts
Td = —
f1 + 2f2

(3.30)

The regression model .is implicit with the structure:

e(t) = Fe(t=1) + Bn(t-1) + E(t)

(3.31)
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Both the data vector and the measurement are 2zero mean and
the noise is uncorrelated with the data.

This controller can be reformulated so that explicit,
rather than ihplicit, estimation of the plant paraﬁéters is
carried out. The Diophantine identity specific to the above

conditions is of the form:

1

-— 1 ‘ -
1 = (AmD + Bmz ) + Fz (3.32)

This equation results from substituting Equations 3.15 and

3.26 into Equation 3.19 with p(z ')=1. Solving for the £,

parameters in terms of a. and bo,'Equations 3.28 becomes:

| -1 -2
(1-a,) + (a,-a,)z + a.z
ult) = ! L2 2_  e(t) (3.33)
bo(1 -z )

- Reworking into the form of Equation 2.8, the controller

parameters are then:

-1
Kc = ;— (a1 + a2
Q

)

T, = ~(a, *+ a,)T, : (3.34)
: -a,T,
a> T _

a, * 8

and the explicit regression model Rgcomes:

- Ay(t) = boduft-1) - alay(t=-1) - asz(t—z) + £(t) (3.35)

Again the data vector and measuremént have a zero mean and

the noise is uncorrelated with the daté vector.
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3.3 Integrating Self-Tuning Controller

3.3.1 Introduction

Interest in self-tuning control began with the
groundbreaking work of Astrom and Wittenmark (1973). In it
the self-tuning regulator (STR) was developed which in the
limitiné case was a minimum variancé controller. In 1975,
and later in 1979, Clarke and Gawthrop introduced their
self-tuning controller (STC). This took the form of a
generalized minimum variance controller which allowed for
setpoint, control and output weighting. This STC has been
modified in various ways.gjnce 1979. Clarke et al. (1983)
proposed the k-incremental STC to handle the offset
problem. Tuffs and Clarke (1985) developed the integrating
form of the Clarﬁe—éawthrop self-tuner as é unified approach
to handle offsets in STC's. |

This integrating STC is based on a ARIMA process model
representation. It is a development of this controller
which will be used to derive a self-tuning regulator in PID
form. For more details of the original STC derivation the
reader is referred to the earlier works of Tuffs (1985) and

Tuffs and Clarke‘(1985).

3.3.2 Derivation of the Integrating Form of the Self-Tuning

Controller

The plant model is chosen as the ARIMA model as set out

1

in Equation 3.36 with C(z ') = 1. This is not required but

-
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simplifies the algebra that follows.
alz"Dy(t) = z7¥B(z" Dulr) + £(c)/A (3.36)
The control law is defined as:

6 - Nau(t) + Friz y(r) - vz Dy (£) =0 (3.37)

-] 1\

Jhere G(z '), F'(z ') and H(z ') are polynomials in

z“. The above control law 1is derived by minimizing the

following cost function with respect to u(t):

J = E{[Py(t+k) - Hyr(t)lz + [Q'ul(t) 1%} (3.38)

where P(z-]) = 1 and Q(z—1) = 0 and the ARIMA system model
is assumed. The detailed derivation of the control law 1s
very similiar to Section 3.2 and is omitted here.

Combining Equations 3.36 and 3.37 results in the

following closed-loop equation:

K

(AGA + z FBF')y(t) ='z-kBHyr(t) + GE(L) (3.39)

A Diophantine equation which includes the weighting

polynomial p(z™ ') can be written as:

PB = AGA + z KgF (3.40)

By defining G = EB, Equation 3.40 becomes:

k

P = AEA + z 'F' (3.41)

Substitution of Equation 3.41 into 3.39 gives the equivalent
closed-loop expreésion:

Bk
.
E -

N
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py(t) = Hyrt—k) + EE(t) (3.42)

Implementation of the controller defined in Eguation

|

3.37 requires*the polynomials G(z~‘), F'(z_{) and H(z ') be

specified. A regression model can be formulated to estimate

v - - i
G(z 'y and F'(z " by multipling Equation 3.36 by E(z 'y and i
~ g
substituting Equation 3.41:
ylb‘
-
Py(t) = GAu(t-k) + F'y(t-k) + EE(t) (3.43) ~
} _hyg‘?}
Equation 3.43 can be further modified by defining: ' 'fj L
Fr(z ') = 1+ aF(z ) , (3.4@)“f3‘
The resulting regression model 1s now:
Py(t) - y(t-k) = GAul(t-k) + Fay(t-k) + Ef(t) (3.45)
This regression model has zero-mean data and“measurement and ‘
the noise 1is uncorrelated with the data vector (i.e. \

DegE=k-1). ¢ 4

3.3.3 Simplification to a Self-Tuning PID Form 2
A self-tuning PID controller can be obtained from the
integrating STC if the following conditions are imposed:
1. The process can be modelled by a second order ARIMA

system model with

-1

it

+

o1

N
\

+

%)

Az )

B(z ') = b (3.46)
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= 1 (sahpling delay)

2. The cost function weighting polynomials are chosen to
be p(z-1) = 1, a(z"h) = 0 and H(z™1) =
Remark: Strictly speaking thié’self—tuhing P;D control law
is an approximation of the minimum variance based cén;roller-
since Q(z_1)§0. However, 1in later ’Ehapters the GMV
qualifier will be used as a label when referring to this PID
coﬁtrél law since -it designates tne genefal aesién principle
from which it is aerived. ’
. ' Based updn.ﬁhese conditions the degree of §blynomial
‘F(z_1) is DegF=1 and the degree of polynomial E(z_1) is.

‘DegE=0. The implicit 2-term contrcl law then becomes: '

y(£) = y(£) - Al +E,z Dyle) :
ule) = 5 , C(3.47)

g, (1 - 2 h

This control law can be cast into a yeloc1ty,“setp01nq:ogﬁ;¢
only"™ PID control algorithm form as seenb,in‘fﬁqgéfioﬁ"'f“

2.10. The conventional controller paramet@}s éfé‘calcﬁiétéd~

as: ' .
"1
Kc =‘—f;:;f!(fo + f1)
9
‘,‘g‘: ‘o n
T o= (fg t EOT, (3.48)
£, T, T '
Td = i i
Cf o+ £y | ST
o V& : . .

: 5 : G
. ’ [3 e . u’ . B ') 3 .
The regression model for the implicit formulation 1s:



’ A

/

f%?s\\\ |

\J y \ . 35

. : ! ‘ o

Ay(t)= GAu(t-1) + FAy(t-1) + EE(t) . (3.49)

This cont;ol}er can be reformulated in explicit form by

solving the Diophantine identity below:

1 = AEA + z (1 + AF) (3.50)

4

Solving for the.fi and 9, parameters in terms of\ai and bo’.

the following qp%trol law can be derived:

y tt) - y() + Ala; +.ayz Dyle)
ul(t) = — (3.51)
b (1 - z. ) '

Casting Equation 3.51 into the form of Equation 2.10, the

controller constants take the form:

-1

KC= - (a1 + az) ("J’ -

bo Ve

' o R
T, = -(a1 + a2)T5< (3.52)

_ ‘ |
o T3pTy
Td = ——

a, + a

1 2

and the explicit.regresion model 1is:

Ay(t) = b_pu(t-1) - a,ayle=1) = a By (t-2) + E(t) (3.53)

3.4 Self-Tuning Pole Placement Controller
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%.4.1 introduction
The design of self-tuning controllers based on pole-
‘zero placement methods has been considered by ﬁany auéhors
in the literature. The general idea has been popularized by
wéllstead and co-workers (1979a, 1979b, 1981) and Astrom and.
_Wittenmark (1980). - "
"Wittenmark and gétrém (1980) and Isermann (1981) have
used the pole placement method to design "simple" self-
tuning controllers. Some of these controllers ¢an lead to
three-term controllers.
. The partiéﬁlar pole placement controller  to. be
summarized here 1is the one proposed by Tjokro (1984) and
Tjokro and Shah (1985) based on the ARIMA model. The same

oy

format of development has been used and the rea@srnis

referred to the original references  for .a mom Eied

derivation.
G’}j i

i

3.4.2 Derivation of the Self-Tuning pold l?igﬁgment

Cont%bller | }&\
Consider a single-input, single-outpdt RROCEeSS which

can be characterized by a linear ARIMA model: ¢
e, kg -1 -1
Alz )y(t) =z B(z ul(t) + Cl(z )E(t)/b _ (3.54)

where A(z-1), B(z_1)k and C(z-1) are polynomials 1in the

backward shift operator 2 ', a(z™ 1) is monic and k is the

oy

system time‘delay (k21) . "The process input'and output aré\\

u(t) and “Ly(t) respectively. N(t)=C(z” DE(t)/a is the

- hd . ‘,
! ”
- s
o
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£
"'.'

. Ly

residual which accounts for the effects of unmeasured
disturbances, noise, modelling . error— angﬁ‘ non-
linearities. c(z™') is assumed to be unity.

Consider a general linear feedback' controller of the

form:
Gz Mault) = Bz Dy (£) - F(z7 Dy(e) © (3.55)

shere F(z '), G(z ') and H(z~') are polynomials in
2~'. G(z~") is monic and y (t) is the process reference

signal.

Combining Equations 3.54 and 3.55 results in the

‘closed-loop transfer function:

2 ¥BHy () + GE(t)

y(t) = n

= (3.56)
(AGA + z

According to pole placement criterion, the coefficients
of the:polynomials F(z-1), G(z-1) and H(z-1) are determined
in such a way that the closed-loopgsystem has the following

desired closed-loop transfer function:

x(z™H s(z™ )

y(t) = y (t) + E(t)/n (3.57)

wiz™ " wiz™ "

where S(z 1), Ww(z ') and x(z™ ") are polynbmials in z~' with

"
3,

W(z—1) * being monic. These are pre-specified by the
desigher. w(z_1) is the desired closed-loop characteristic

i

polynomial.
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Equating the coefficients of yr(t) and f£(t) in

Mf§QUations 3.56 and 3.57 givés: S

GWA

AGA + z_kBF . — ’ (3.58)
S ‘
GXA \
H = o ' (3.59)
z BS '

°

The: controller design problem has now been reduced to the
solution bf Equations 3.58 and 3.59 to find the controller

-1)

polynomials F(z , 'G(z—1) and H(z-1), provided that

polynomials aA(z"!) and B(z ') are known and polynomials
W : N
S(z-1), Wiz 1) and X(z 1) are pre-specified. The
polynomials A(z-1) and B(z-1) can be determined by.recursiQe
B | .

parameter estimation based on the following explicit

incremental regression model:
"z Day () = B(z Naule-k) + E(t) (3.60)

This:;;egression“model has zero-mean data and measurement in
the steady state and t#ie noise is uncorrelated with the data

vector.

3.4.3 Simplification to a Self-Tuning PID Form
4, A self-tuning PID algorithm can be derived from this

self-tuning _bole placement controller if the following

conditions are imposed:

1. The process can be represented by at most -a second

”~

order plus'time»delay ARIMA model with:



39

Az"ly = 1+ a1i-1 + azz—%
B(z ') = b_ + b1z_1 (3.61)
ciz™!) = 1

2. A steady-state approximation for the numerator term can

be dsed such that:
2 *B(z7") = Ib, & (3.62)

The desired closed-loop characteristic polynomial

w(z_1) is chosen as a first order polynomial, 1i.e.
-1 1 ’
Wiz ) =1 + w,2Z : (3.63).

The design polynomials s(z™') and x(z—1) are specified

to be:
stz™h) = aclz™")/(kAalzT) | (3.64)
x(z™ ") = xzz"‘B(z")/K1 | (3.65)
where
K1 = z—kZb
K2 = J + w1

-1

5. The controller polynomial F(z ') is fixed as:

= KZA(z'1) ‘. (3.66)

Based on the above conditions, the control law can Dbe

expressed as (Tjokro, '1984):
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ult) = u(t-1) + Afe(t) + a1e(t~1) + aze(t-Z)] (3.67)
where

A = —<1+w1)/(w1zbi') | (3.68)

e(t) = yr(ﬁ) - y(t) ‘ (3.69)

This controller can be shown to be equivalent to a discrete
velocity PID algorithm with T"setpoint-on-P&I&D" form as

shown in Equation 2.8 with:

\

f/)+w )(a, + 2a,)
K 1 1 2

c
wilby Co
-(a, + 2a,)T , v
T, = 1 2 s 4 AN (3.70)
! 1 +a, +a \\
1 2 . |
-a,T » '
Tg = 2= g
a, +‘2a2 7’

1f the additional steady-state approximation of
- 1 '
A(z )yr(t) = (1+Zai)yr(t) (3.71)

is made, a velocity PID control law with T"setpoint-on-I-
only" form similiar to Equation 2.10 can be derived.
The incremental regression model for the sel f-tuning

PID controller is then:

Ay(t) = B(z~ Daul(t-k) - a1Ay(t-1)

- asz(t—Z) + E(t) (3.72) -
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3.5 Compérison of Self-Tuning Control PID Algorithms
In the previous sections three self-tuning PID
algorithms are developed by reduction from their more

complex "complete” self-tunimg counterparts which were
/

derived using generalized minimum var1angé (GMV) and pole
placement (PP) criteria. These algdrithmg are summarized
and compared in Table 3.1.

The—}egression model for each controller 1is based on
incremental variables, a result of the ARIMA system
represenﬁation. Both the SRC and integrating STC derived
self-tuning PI(D) controllers can be  formulated with
implitcit and explicit parameter regression model. The
implicit formulation is how the SRC and integrating STC are
presented in the literature. The explicit forms for both
controllers is derived 1in Sections 3.2 and 3.3. It is
interesting to note that the explicit SRC and' STC PID
controlleré calculage identical KC, ’I‘.1 and Td. However, the
SRC PID controller has a "setpoint-on-P&I&D" structure while
the integrating STC has a "setpoint-on-I-only" structure.

t The controller gain, Kc, i§> a function of ‘all the
estimated parameters and for the pole placement PID
algorithm LB The desired closed-loop pole w actually

1
becomes a scaling factor for K- The integral and
derivative times are a function of the parameters
corresponding to the process output y(t) and the sampling
time, T For the explicit form this corresﬂ%nds to the a;

parameters.

4
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Table 3.1 Comparison of self-tuning PID algorithms
Control Regression ' K. ‘ T, Ty
Law Model
SRC Implicit -(f1+2f2) —(fl+2f2)T’ -szs
Incremental
b, bo+f+f, +1f, £,+2f£,
SRC Explicit -{a,+a,) —(a1+a2)T, -a,T,
Incremental ——
- b, . at+a,
STC. Implicit (£4+£)) : (f,+E) T, -£.7,
Incremental —_—
go f0+f1
STC Explicit -{a,*a,) -(a,+a,) T, -a,T,
' Incremental —
by a,*a,
PP Explicit - (14w ) (a,+2a,) -(a1+2a2)T" -a,T,
Incremental
: HXZbL l+a, +a, a,+2a,
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3.6 Alternate Method for Controller Gain Calculation

The three self-tuning PID control algorithms calculate
K. as summarized in Table 3.1. The SRC and integrating STC
PID controller gain is totally determined by the—estimated
parameters. No additional tuning of K. is allowed by the
equations. The pole placement PID controller K. calculation
includes a factor W which allows the gain calculation to pe
scaled 1if necessary. In essence w, is a tuning knob. Due
to the simplifying assumptions to obtain a PID cohﬁroller
structure, this tuning knob has only an indirect
relationship ‘to any characteristic of the closed-loop
system., An alternate method for K. calculation 1is now
proposed which is directly related to the transient behavior
of the closed-loop. In the ideal case the alternate method
exactly specifies the maximum overshoot (Mp) of the closed-
loop system when subjected to a step change in the reference
signal. The method determines Kc by locating the closed-
loop poles in locations to achieve the desired transient
reponse. The proposed meéhod is described in the following
section.

Consider a continuous second order process with no
numerator dynamics: s

2
n

G(s) = — ' (3.73)

2
s + ZSwns *wy

w

&
where s is the complex Laplace operator, § 1is the damping -

ratio and W is the natural frequercy of the process. If
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— P

¢>1 the process 1is overdamped with real and distinct
poles. If {=1 the process is critically damped with real
and equal poles. If §<i the process is underdamped with
complex conjugate poles. The maximum overshoot (Mp) is
directly related to the damping ratio (Coughanowr and
Koppel, 1965):

If {21, then M_ = 0 .

P . 0.5 (3.74)

I1f {<1, then Mp = EXP(-#S/(l-i )7 T)

Consider now a discrete deterministic second order
process which can be viewed as the discrete equivalent of

Equation)3.73:

Alz"Dy(e) = 27 'B(z" Hu(e) (3.75)
3 ;
where
1 -1 -2
Az ) = a2 + a,z

-1 -1
B(z ') = b0 + b1z

The self-tuning PID controller designed for this process has

- the form:

Ault) = xcu<z")e<t> (3.76)
where
_ T T T, _ T, _
Nzm) = (1 s 5+ 28y o (1w 22y e dp72
Tl TS ITS TS

From the specified process model and PID controller the

closed-loop characteristic polynomial is derived and has the
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form:

alz a + 27! )

Kc's(z“‘)N(z = 0 (3.77)

The degree of this polynomial 1is fourth order (i.e.
four closed-loop poles). 1If the self-tuning PID coptroller
is derived from e pole placement method, Equation 3.77 s
effectively second order since Ti"nd Td take on values so
that the controller cancels the estimated process poles
(i.e. N(z ")=aA(z™')). Therefore, there are two closed-loop
- poles which determine the dominant closed-loop system
response characteristics. The effective characteristic

polynomial is now:

A+ z_1aKCB(z-1) (3.78)
where
= -1 /! )
a 1 a, * 2a2)
An analysis tquation 3.78 reveals that the closed-loop

wl.:? -

poles originate at the open-l les of A and terminate at

h. wQ‘f‘h&e\exact “location of the

the open-loop poles of B(z
closed-loop poles is determined by K. and can be related %o
maximum overshoot.

Consider a particular choice of K_. The closed-loop
poles are determined by solving the gquadratic Eguation
3.78. The dampiné ratio is calculated from the closed-18op
pole locations in\\gbe complex z-plane according to the

N

following formulae {Phillips and Nagle, 1984):

4
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Stable real positive poles

§ = 1.0 (3.79)

Stable complex conjugate poles
Stable real negative poles

2,0.5

{ = -Inr / (1n2 r + 67) (3.80)

where r and 6 are the polar coordinates of the <closed-loop
poles. Franklin and Powell (1980) show Equation 3.80
graphically gg concentric logarithmic spirals. This damping
ratio can be related to Mp via Equations 3.74 and K.
incremented accordingly to reach the Mp setpoint.
The qualitative algorithm for the alternate K,
calculation is summarized below:
1, Specify desired maximum Qvershoot (Mp) setpoint (i.e.
Mp59-15)
2. Setup the current estimated characteristic polynomial
and solve for dominant closea-loop pole locations.
3. Calculate the damping ratio coresponding to the
dominant closed-loop pole locations.

4. Calculate equivalent Mp .

5. Make appropriate .adjustment ih"KC so that Mp equals

ELSEIF (M ’< MpSp) THEN

+ K I crement
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4. Additional Techniques for Enhanced Self-Tuning Control

4.1 Introduction

The effectiveness of an adaptive or self-tuning
controller is not only contingent upon the strucure and
parameters of the control algorithm itself but also on the
steps that proceed the actual Galculation of the control law
output. A self-tuning controller is a complex, nonlinear,
time-varying controller. It is necessary to determine the
process structure, estimate the process model parameters and
carry out controller design calculations automatically. The
practical application of these controllers requires the
engineer to make certain a priori decisions such as choice
of sampling time, recursive parameter estimation techniques,
model reduction and filtering techniques, inclusion of
feedforward and time delay compensation. These are the
important issues that will be consiwdered in this chapter.

“l

4.2 Choice of Sampling Period . -

One of the first decisions ¢ “made in digital

‘$control »ig the rate at which the process is to be sampled
i ‘ -

» “*and control implemented. The sdmpling time, T greatly

‘

S ’
influences the behavior of the controller and therefore the

closed-loop response. The importance of the choice of
sampling period is not specific only to adaptive control but
is an important design parameter for all sampled-data design

methods (Wittenmark and Astrom, 1984). The particular
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~

choice of Tg varies’greatly depending on the appli ation and?

?
the specified performance criteria. Some of the basic

considerations in cnoosing'an appropriate sampling period
are sunmarized by the following points:

1. The simpling rate must be fast enough so that

| significant process information is not"lost and. the

reconstruct1on of the continuous-time signal 1is

p0551ble. Shannon's samplln; theorem (Shannon, 1949)

- states ., that a sinusoidal signal must”be sampled at

-~

least twice each period if the original signal is to be
pes

recovered. Process 51gnals of interest in the process

industriés rare typically not sinusoidal. Shannon's

theorem translates into _identifying the highest

frequency of importance and sampling the signal at
twice that frequency (Seborg, ‘Edgar and Mellichamp,
1983). -

2. A fast sample rate allows one to use the parameters of

the contlnuous time controller directly in a digcrete
convent10nal PID controller. It must be fast ﬁ%&\o;oer
to obtaln a good approximation of the derlvatlve of/ the
——
output (W1ttenmark 1979). Sampllng too slowly
reduce the effectiveness of the feedback control system
to load disturbances and 'setpoint changes since a
sampled data -system runa effectlvely open-loop between’
sample per1ods (Rstromr 1985) The above .requ1rements
must be compromlsed with the 1ncreased load 1mposed on

the‘central computer by fast sampling conditions.

E313

Bl

¥
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Sampling at a fast rate can cause numericgl problems
fqr the parameter estimator. With a small "Tg the b,
prameters tend to bgcome very small. If the control
H!y uses éhese parameters in the denominator of the
Eontrol law calculation, the ampiitude of the

manipulated variable can become very large (Isermann,
1986) .
For processes with time delays, it is desireable that
the sample period be chosen so that the time delay be
expressed as an integer multiple of the sample
period. If this is not the case, a fractional delay
may give rise to a non-minimum phase =zero in the
discrete-time domain (Wellsteéd et al., 1979; Goodwin
and Sin, 1984). |
The sampling Trate at “which a continuous plant is
sampled largely/aétermiﬁes the location of the discrete
system poles and zerﬁes. The continuous pole, ps, is
| pS?S. A stable, real,
continuous pole ;S translated into the real axis of the
z-plane between 0 and 1. At high sample rates the
poles tend toward =z=1 and at low raﬁes towards 2=0.
Phillips and Nagle (1984) summarize this mé&ging of
poles from the s-plane to the z-plane.

There/is no simple transformation for zeroes. It

is possible to have a nonstably invergible discrete-

time model from a stably invertible . continuous-time

‘model. The converse. is also-true - to have a stably
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invertible discrete-time model from a nonstably
invertible continuous-time model (Rstrom, Hagander, and
ﬁg Sternby, 1984). It can be shown that all coneinubﬁs—
time systems with pole exceSs.greater than 2 will give
sampled-data systems with non-minimum phase zeroces if
the sampling period is sufficiently small. It ‘is
therefore very comnmon to have unstable zeroes in
d}&crete-time syétems(ﬂstrém_et,al., 1984).‘ As well a
non—minimum phase —continuous-time “model can -yield a

minimum phase discrete-time plant if the sample‘ period

is sufficiently long.__Therefore, cautlon Qéﬁt be shown -

5 o

in the choice of»samble rate when designing controllers
which rely on inverse stability of the system. Caut;on
must also be shown in cancelling the ringing zeroes of

'a procegs withvthe control law as this will résult in
ringing of the control signalw(Wittenmark and Astrom,
1984).

'6. The effects of process/model mismatch can be’feduced by
‘a proper ehpice of sempfing% raee, Longer sampling
pe;iods ere good for limiting the bandwidth.ef tﬁe'
centroller ahd' therefore minimizing the):effects of
unmodelled hlgher frequency dynamics (Cluett, Shah and
Flsher, 1986 Rohrs-et al.,1984) Rstrom (1985) states
that the ch01ce of sample perlod is crxt}cal when a low
order model is fitted to a ﬁigher order process. The
.qual;ty of the approximation is éncreased if the sample

, period'is'increased.

v
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7. From a regulation point of view it is desireable to

have a fast sample rate. However, from a discrete-time
model estimation view it is desireable to have a slower
sample fate. These cite;ia may. be satisfied if an
asynchronous combination is adoptea (Isermaﬂn,
1986). This strategy would update the parameﬁ%r
estimates 5ver- several sample peridds while computi&g

%

new control action every sampling instant based on the?
~

most current parameter estimates (Goodwin and Sin, -

1984).

8. Process and measpremént' noise can Be attenuated by
proper selection of the sampling rate. At low signal-
te-noise ratios rapid sampling shou;d be avoided .since
the measurement will primarily show the effects of the
Inbise. - A high frequency roll-off can be obtained with
lower sample rates. If a high sample rate is required
for control performance, the process signal should be
filtered by an effective anti-aliasing filter such as
an anal;g e#poﬁential filter (Wittenmark ~and Ast;ém,
1984; Seborg et al., 1987).

Many of these designzcgnsiderations have been‘ applied

in " explicit criteria for determining an appropriate sample

‘rate for a process. Seborg et al. (1987) has summarized  in
'_Eabular form some deneral guideiines for selecting the

-sémpling ‘period for discrete PID controllers based on

methods published in the literatufe. The methods vary as to

their basis and criteria. For an. open-loop system the

¥
i o

g
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sampie period can be determined from the dominant time
cbnstant, rgsponse time and the criﬁicalg}requency of the
continuous system. The sampling. time (Ts) can also be based
on the bandwidth or rise time of the desired closed-loop
responsé. | |

For the purposes of this study the open-loop response
time method proposed by Isermann (1982) has been used. It

is of the form

(ad

t .
L < T s & —
15 6

(4.1)

" where Tg is the sampling period and t, is the 95% complete

response time of the open-loop system. This was found to
locate the discrete-time system. poles in an éééeptable
location in the unit circle (i.e. 0.3 < pole < 0.9) and to

allow the controller to give acceptable performance.

4.3 Recursive Parameter Estimation

The on-line estiﬁétion of unknown  process and

PR
g

controller parameters is at the 6ofe of adapgive and seif-
tuning controllers. The body of liteﬁ?ture de§oted to this
topic. is extensive and has grown considerably over the last
15 years (for example, Astrom and Eykhoff, 1971; Strejc,

1980; Isermann, 1980). The aim of this section 1is to

document the recursive algorithm and implementation used in

# -
this work and discuss other related issues.

Pt
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4.3.1 Parameter Estimation Methods
" Some possible choices of recursive algorithms for
parameter estimatfbn of linear systems are. : recursive
projection'élgorithm (RPA), recursive least gguares (RLS) ,
récursive extended least squares (RELS), reéunsive max imum
PO ‘
likelihood (RML) and recursive instrumental ﬁ%riﬁh}es»(RIV).
The actual choice is governed by COQ;idgfétions of
convergence, computation effort, senSitiQi€§' to ‘monzero
process bias and performance in the presence of process and
measurement noise.
Equation 3.6 describes the ARIMA system representation

adopted in this thesis. The regression model corresponding

to representation is:

ay(e) = (1-A(z”')ay(e) + B(z~ ')au(t-k)

v clz  E(r) (4.2)

The regression model differences the input andS oﬁtput data
as a result of the assumed integrating noise model. 1f a
special noise model of N(t)=£(t)/(A(z—1)A) (i.e. c(z h=1)
is presumed, recursive least squares caﬁ be used to
identified the process parameters (Isermann, 1980). The

algorithm'is then of the form:

o(t) = B(t-1) + K(t)é(t|t-1) ' (4.3)
K(t) = P(e-1)o(t)[A(t) +;¢T(t)P(t-1)¢(t)]—1 (4.4)
p(t) = [1 - x(t)&%@?] P(t-1)/x(t) (4.5)

x
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&(tlt-1) = Ay(t) - ¢T(£)8(t=1) (4.6)

where K(t) is the Kalman gain, é(t|t-1) is the & priori
incremental prediction error, P(t) is the covariance matrix
and M (t) the forgetting factor (to be defined later). The
parameter vector and input-output regressor vector are 6(t)
and ¢(t) respectively and are defined as:
n - T
o(t) = [ &, ... a ;b b ] (4.7)
n

a b

p(t) = [-ay(t-1) ... -Ay(t-n_);
su(t=k) ... ault-k-n )17 (4.8)

where n_ and np 1is the order of the polynomials\A(z‘1) and
B(z_1)respectively. The RLS algorithm has the advantage of
a relatively small computation expense, reliable
convergence. It has the disaavantages of giving biased
parameter estimates if the assumed noise model differs
significantly fron the true noisékhodel (Isermann, 1982).

1f the ﬁrocéss' noise can be modelled realistically
by N(t)=C(z—1)E(t)/(A(z-])A), the recursive extended least
squares method  or m;ximum likelihood method can be used to
estimate the process and noise parameters. Lf RELS 1is
selected, the _basic. algorithm -is similiar to Equations
4.3-4.6. The main difference being that the parameter
vector and the regressor vector are augmented to estimate

“the C(z-1) bolynomial parameters as shown below:.
. Ca

pUE) = [4, ... &, 1By ... B e .e 1 (4.9)
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¢b(t) = [-ay(t-1) ... —Ay(t-na);Au(t—k) “en Au(t—k-nb);

- _ _ ~ _ _ T
eb(t e=-1) ... eb(t nclt nc)] (4.10)

The particular RELS method used in this work is the one
 proposed ’ by Young (1972) and summarized in Strejc
(1980). This modified version uses the most recent estimate
of the parameters in calculating the prediction error for
insertion into the input-output (1/0) regressor shown in
Equation 4.10. The two modified prediction error equations

tnen become:
5, (£le-1) = ay(e) = 6 T(E)6(E=) (4.11)
g (t]t) = ay(e) - 6, T(£)8(t) (4.12)

The a priori pfediction error of Equation 4.71 is used for
the parameter update (Equation 4.3) and thé a posteriorl
prediction error of Equation 4.12 is used in the 1/0
regressor. Performance of RELS is good for this special
noise model. Computational expense is marginally greater
than that for the RLS and convergence of the éi parameters
is slower than the process parameters. It is recommended
that RELS only be used for large amplitude'stationary noise
(Isermann, 1986). \

If a noise model N(t)=C(z-1)z(t)/(D(z_T)A) is
encountered where D(z_1) is a general monic polynomial,
parameter estimation algorithms like  the recursive
instrumental variables method (RIV) is recommended to obtain

unbiased parameter estimates of the system polynomials. In

—
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this work the noise model will be assumed to be of the form
N(t)-C(z_1)E(t)/(A(z-1)A), such that an RELS estimator will

be adequate for parametef estimation.

4.3.2 Discounting 0ld Data ! "

&
"

One of the key properties of an adaptive controller is
the ability to track changes 1in the process dynamics. :To do
this effectzvely it is necessary to discount old. data. The
rate at which ‘the data is discounted is of 51gn1f1cant
impo;tance. Discounting too rapidly causes covarlance
matrix windup if the process is at steady state whilst too
slow discountiné'renders the édaptive controller unable to
follow rapid parameter variations (Wittenmark and Astrom,
1984).

One way to discount old data islto use exponentiai
forgetting. This s typically done by the wusey of a
fofgetting factor, A. If ‘A=1 all data 1is Jeiéhted
equally. If A<l more recent data is weightedgmore than old
data. The smaller k~is; the greater the discounting of old
data. The asymtotic sample length (ASL) of the parameter
estimation algorithm is calculated as:

ASL = 1/ (1 - x)’&%” $ ‘ (4.13)

‘ LA

The use of exponential data forge'ting allows rapidly
changing parameters‘ to be tracked, but it can also cause
problems. I& there are long periods of almost quiescent

g

se. the process is 1nsuff1c1ently excited,

operat ion,
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problems of ‘covariange windup and parameter bursting are
encountered. If A<1 in the absence of process excitation,
parameter uncertainty increases and the elements of the
covariance matrix grow exponentially. This 1is known as
estimator windup. Under such conditions | when new
informaﬁiqn suddenly enters the process (for example, a
process disturbance), a numerically large covariance matrix
can result in wildly varying parameter variations -
parameter bursting.

_ These problems can be handled by properly exciting the
process or eliminating the discounting during periods of low
excitation. This second method has give rise to variable
forgetting factor schemes (Fortéscue et al., 1981; Morris et

val., 1977; Hégglund, 1983). The particular variable
2forgetting, factor scheme used in this work is one ﬁresented

by Montague et al. (1986):

N (E) = ad (e-1) + (1-a)Xg (4.14)
K, * é(tlt-1)2

kz(t) = 1.0 - - 5 (4.15)
1.0 - Kzé(tlt-1)

A(E) = A, (E) * A,(t) . ©(s.16)

where A(t) is the variable forgetting factor, a is a filter

constant, kf is the forgetting factor value at steady state,

-—

K, and K, are constants and é(t|t-1) is the a priori
incremental prediction error. Furthermore, A(t) is set to

kmin if k(t)<kmin and X(t)=kf if k(t)>kf. This variable

forgetting factor method is a simple approach but it does
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require the selection of four parameters. For future work
the more rigorous variable forgetting factor method of

Ydstie et al. (1985) is recommended.

4.3.3 Estimation Algorithm Conditioning

Potential numerical conditioning problems of the
recursive algorithm may be encountered during the parameter
estimation step of self-tunihg control. Astrom (1983)
states that the parameter estimation algorithm can be poorly
conditioned (Hanson and Lawson, 1969) for any of the
following reasons: -

1. Overparameterization of the assumed process models.

2. Lack of process excitation. The least squares
algorithm is poorly conditioned to high msignal-to-noise
ratios.

3. Signals with high superimposed nonzero mean data
levels.

4. Finite word length effects in microcomputers.

These conditioning and the consequential numerical
problems can be * reduced by minimizing the above
conditions. Of particular importance is removai of the
nonzero mean data level and use of factorization algorithms
to implement the recursive estimation metﬁod. Factorization
algorithms (for example,'g{;rhén and Thorton, 1976; Streijc,
1980; Radke, 1984) wupdate a factored .fé:;;;ance matrix

instead of the full covariance matrix so as to maintain the

positive definiteness of the covariance matrix.



¥
89

LINY
e

The RLS and RELS algorithms used in this work are
implement;d using the factorization algorithm of Bierman
(1976). This method is based on the factorization of P

into:
P=UDU (4.17)

where D is diagonal and U 1is an upper-triangular

matrix. Astrom and Wittenmark (1984) set out a Pascal

»

routine for least squares estimation wusing the U-D
factorization algorithm. For this work this code has been
rewrittén in FORTRAN. ~
1
4.3.4 Nonzero Mean Data
Most input and output signals seen in industrial

control loops are nonzero mean and are related by a process
model which includes a bias or offset as shown in Equations
3.4 and 3.6. In general, however, it is only the variations
of the output signal with respect to the input signal which
should be used in the parameter estimation algorithm
(Isermann, 1980, 1982). The presence of nonzero mean input
and output signal levels and a process bias complicates the
recursive‘ estimation of the oprocess and noise model
parameters. Various approaches to handle nonzero mean
levels and process bias are suggested. Isermann (1980,
1982, 1986) summarizés three methods:

1. Use of incremental variables - If the first difference

of the input and output signals is used instead of
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Ay(t) = y(t) = yle=1) & . .
0 - ;o (4.18)
su(t) = u(t) - U“”& : ? L

Incremental rvarxables ar1 é ‘naturally from the ARIMA
system representatlon 0ut11ned in Section 3.1 and is
_the focus of this work. They do, however, have the
disadvantage of being sensitive to high frequency noise
so proper filtering must be used beforehand in thwe-
presence of this noise.

s 2. Use of deviation variables - This method remcves the
steady state levels from the input and output signals
and defines a new deviation variable as:

y'(t) = y(t) - Ysg

’ | (4.19)

u'(t) = u(t) - Ugg

The mean deviation variables, u'(t) and y'(t), areiﬁhen
passed to the recursive algorithm for paraméqeri =
estimation. One requirement of this method is the
determination of the unknown steady state levels. Tﬁié.tﬁw
may be achieved by using a simple averaging filter. 1f°

required the process bias, d, is calculated as:

da= (1 + Zai) Ygg ~ Zbi Ugg ':(4.209w;
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Use of positional variables with a "1-in-the-data-
vector” - The absolute signal values of u(t) and y(t)
may be used directly in the input-output regressor of
the gﬂkameter estimation algorithm if the process bias
is estimated in addition to the dynamic
paf;meters. The parameter and 1/0  vectors are

augmented in the following wa

6(t) = [éx1 én ;50 . (4.21)
a
p(t) =V[-y(t—1) v.. —ylt-n \////
ul(t-K) ... u(t—k-nb);1]T (4.22)

This scheme “3rises naturally from the ARMA system
representation detailed in Section 3.1. A disadvantage
of this scheme is the slow convergence of the bias
‘estimate due to the fact that the "l1-in-the-data-
vector™ is not a persistently exciting signal (Tuffs
and Clarke, 1985). Another related problem is the
interdependence of the dynamic parameter estimates and
the bias estimate. Unbiased dynamic parameter
estimates are not obtained until the bias estimate has

converged to its true value.

As mentioned in Chapter 3, self-tuning controllers can

divided into two broad categories, explicit/indirect and

implicit/direct algorithms (Astrom and Wittenmark, 1980;

Isermann, 1986). This - in turn results in explicit and

—

-



implicit parameter estimation:

1. Explicit or - indirect ‘identification - In this

o

o/

)

e

arrangement the process model parameters are estimated

”and stored as;~1ntermed1ate results. The controller

de51gn calculat1ons aré ‘then ‘carried out using the

estlmated process parameters by invoﬁgng'the certainty

%quivalence principle. Some advantages of this method

are greater freedom of design, enabling modular
programmlng, direct . access to procéss parameter

estimates and accommodatlon of varlable time delays.

‘2. Implic1t or direct: 1dent1§1cat10n - ThlS method recasts,

-

ftheY regre551on model of = the process @S0 that the

controller ‘ parameters are estlmated dlrectly " The

" process parameters are contalned 1mp11c1tly and not as_!

intermed1ate results. 'An advantage of: this method is
the reducéa’calculation_time as the controller design
oaleplations are eliminated. A limitation isfthat k
must be knOWn/exactly | - ”

Each of the self tunlng PID " controllers developed in

Chapter '3 ‘has one formulatlon wh1ch 1s’exp11c1t. fTh focus

f

thls‘ work 1s thls exp11c1t or 1nd1rect formulatlon w1th

‘the coeff1q1ents of’A(z f), B(z 1), and C(z T) process model

K

pglynomlalsnbelng ldentlfled o e ,f -

v,
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4.4 Model Reduction Technique

Reduced-order modelling is a technique whereby a high
' .

order process 1is represented by a lower order model which

retains certain of the process properties such that model
)

may be viewed as a reasonable approximation to the H1gher~ﬁ-‘

order ‘process accordlng to some specified criteria. This

technique has been used in self-tuning control by de la Cruz

et al. (1983) qu-Warggcg (1985),

In the agﬁa d§t se!f tun1ng or adaptive control a
@ : o )

reduct1on in model order 'can be made at several stages

(Warwlck 1985). .The‘ reduction can occur during the

parameter estlmatlon step by choosing.»the order of the
estlmated model to be lower 'than the orlglnal system

“

order. Th1s 1nvolves parameter estlmatxon in theﬂ presence
/

of process/model mismatch and can present potential problems

‘1f the mlsmatcﬁ.15751gn1f1cant. ‘Model reduction can also be

L3

3

made derng ‘the - conyroller/ design stage. A suff1c1ently
E

high order model of the process is estimated, and then éﬁ

hlgh order model is reduced u51ng systemat1c model reductlon

technlques.- This technlque has the advant7ge that the user

- can specify the crlterlon that the reduced order model must

L

" meet (1.e, 1n1t1al dynamlcs, steady state accuracy or a

Comhination of both). ' Ashoor and angh (1982) and Warwlck

(1984) glveﬁa review of ava1lable¢methods.

&%é

- Of 1nterest kih thxs sect1on 15 the second ‘method -

estlmatron of h1gher‘drdq§g3xoéess» par, ameters followed by

%
model c orde@ d&@mﬁﬁloh %& by - “a . systematic

L 4

= %g; T T ce
D N . . kel .
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L

technique. The particular method used in this work is the
approach proposed by Warwick (1984). It involves definition
of a discrete error polynom1al whose coe£f1c1ents indicate
the difference at any instant in time \between the higher
order process and the reduced orderv model. The @rrof”
'pctynom1ai coefficients are determlned by matching certain
of‘ the Markov parameters and certaln of the time series
proportionals (Pade approx1mat1on) between the reduced-order
model and the process. The reduced-model coefflc1ents are

then calculated. A detailed development of this method can

- be found in warwick (1984, 1985) and is summarized below.

. Consider a general deterministic transfer functlon

r

process of the form:

-1 8(1_1) ' ,
G(z ') = —— (4.23)

. ©Rzh ,

where A(z_1) and B(z-1) are polynomials 1in the backwafé/f~\\:/

shift operator 2~ ! represented by:

Az Y

ft
+
o
N
+
*
r
+
4
N
s}

B(z”) = b1z- + ...+ Db zfpb

The desired reduced-order transfer functionk model can be
P _

described by: . ‘

S . : ’ -

o, .ctE™h h .
‘Rz ) = ——~ N 5 (4.24)
'D(z )); .ﬁ ' P
o =1 Y |
where c(z”!') and D(z ') are again polynomials Cin 2™
a8 3 B ; ‘)’.CJ ey . ;‘ \‘H&E.
, R .



65

(&0

represented by:
j
C(z‘x) = c1z_‘1 + ..+ CZ C s

n
D(z™1) = 1+ a,z ! +K,.. +d 2 "a

In addition both the process‘and the reduced-oraef model
transfer functions can be written  as power series
expansions. The pbwer series . expansion about z== is an
infinite \series whose coefficients are called Markov
parameters. The pover series expans1on about z=1 is an
infinite series whose coefficients ng called time series
proportionals. The :reduced order modelling problem is one
of determining the‘parameters of C(z N and ﬂ(z-1) from the;
known polynomlals a(z™") dnd B(2~ 'y so that R(z “1) is a good
approximation to G(z 1) according to some specified

criteria.

An error polynomial is defined as:

wiz™') = B(z~ )D(z ]),‘ Az hez™h (4.25)
where . ’
-1 - =1 -2 -n.
Wiz ') = w.z + w,z + ...t W_Z W (4.26)
. 1 2 n, «
n, = max(ng +nq, na+n¢)‘ f (4.27)

L

The reduced-order model parameters can be determined - by

_solving the system of ‘equations resulting from Bquatioh

4.25. The number of unknowns at this point is greater -than

the number .Qf equations. The additional equations result

'from matching JErtaln Markov parameters~ and certaih. time

series proportlonal between the reduced order model and the

R
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process. If the initial Marko%/parameters of the low-order
model equal those of the proceee;‘the initial response of
the model to~a step input will approximate that of the
system. In the same way, if the initial time series
proportionals of the model and ‘process are equated, the
‘reduce-order model will approximate the proeess as the
steady _state is approached. The’ total number of poiets
which can‘be\matcbed is 2n. where n_ is the order of the
reduced order ﬁbdel. The matching of the first i Markov
‘Esarameters of the reduced order model to the system can be
JQone directly by equating the fifft w. coefficientd of
w(z;1) to 2ero. In order"to match the time series

proportionals of the model and the system, a modified form

of the w(z_1) pﬁﬁynomlal is required. This Q'(ztlé\x‘

&golynomlal is deflned as?

- _ 2 . . - , _{;it

. w‘(zwﬁg =w,'z +w,'z + o +{wn;'z W R *28}
¥ ‘W # 1 ;, 3 ﬁ}

where the coefficients of W'z ') -are’ obtalned from the

coeff1c1ents of w(z @) by meaps of -Pascal's trlangle.

In this work the model reduc; ion technlque is wused to

r
- reduce an estimated second @rder process model to a first

[

order model for PI control “law calculations instead of e

1

estimating the parameters of a f&rst_ order. mode

directly. This'approach'is adopted to reduce théé{order

mismatch between the process and the estlmated model under
whlch the. parameter estlmatlon algorithm must operate and to o

explore the ‘merits  of . systematic model reductlon

)

R

¥ ms«g@;}
T o



. technique. A worked example is now considered.

Consider a second order process as shown

1’7

67

in "Equation

4,23 whicﬁ is to be reduced to a first order model. The

coefficients of the wﬁ?:1) error polynomial 'can be
. \ -

caléulated from:

IRl

v, b1 0 -1 J \
W = {b, b, —a d
2 2 .1 "t 1
W3 O‘ b2 a2 c,
and

Ty
2 g
R ., . ‘»‘(&%25’-},_ 1

have W&

P

at the steady state. Matching the first two time series

(4.29)

L.

b, are the parameters of the second order
V%d d.
i

the first order mode 1 parameters. The

equations has 5 unknowns. It is desired to

uced order model match the second order system

Iy
&R

proportionals coefficients of the system and reduced-8rder ~

model results in two more equations. Now the system can be

‘solved. The W'(z ') polynomial coefficients,

are derived’

from the w(z_1) polynomial using Pascal's triangle as:

oo w2‘ = 2w+ W, =0 . ‘

€
w
1}
%
—h
+
E %
N
+
E
w
"
o

© (4.30)

_With these extra equations, the relationships shown in

Equation 4.29 is reafranged into the form:

10 -1

-b1 v, .
-by| = | 2 by -a, d, ;
0*. f1 P2"—a2 c1

This system’ of equations is solved for w,, d1

(4.31)

and ¢, given

i

R L. ,
g b . .
_ R o : 4\ /> . LR TR “ W .

s)/

4
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théﬁlparameters of the second order system. For computer
_implementation Equation 4.31 is r?arranged‘SO that c, and d,
are calculated explicitly from ‘the second order Ssystem
. FY . .

" parameters and are given Dy:.”

“* (b +b,)? | |
c, = — : | (4.32)
' b](1-a2)“+fb2(2+_a1)‘ ”
4.5 Filtering »
A practical difficulty; encoung;red 1nwgwﬁhe fpui

\n@plementat1on of process control on real plénts is thé

h)

problem of nolsej) Th1s n01se associated with analog signals
'tésults from the

prbcess 1tself the measurement device and

the electrical %pd/or electronlc equipment during
- : :

'm*transmi:s%%(Seborg et al., 1983). "The process induced
~ may

rige from variations due to mixing, turbulence

’

noiSe; 
.. and non-uniform multiphase flow.’ The  me&surement noise
comes from vibrations-or instrument noise. This noise may
be - low or gagh frequency E1th wﬂagﬁﬁﬁ C¥ . noise
introducing the problem of aliasing. Durlng the sampblng

procedur% of digital control systems, hlgh frequency noise

"~ may be approx1mated as a- low ﬁreqanﬁﬁ& component due to

s

q&xasxng (Astrom and wlttenmark 1984§qﬁi >
. Noise wand its effects can be’ ‘reduced by proper

,electrxcal practxce ahd Yilterxng of ~analog signals. The

electrxcally generated noise can be m1n1mxzed by shielding -

Y
L

4 )
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of cables, proper location of cables in conduit racks and
éroundin% of equipment (Seborg et al., 1983). The other
method of‘ noise reduction is filtering of analog
s1gnals Two types of filtering will be considered: analog
f11ter1ng and dlg1ta1 filtering.

™~ ‘Th\351mplest solution in handling the aliasing of high

frequency noise is to introduce a low pass analog filter of

the form:
: ¢ X - 4

.

G(s) = (4.34)

’

]

) betweeﬁ"the' process sensor and the sampler of analog to
M-dlgltal con%grter (ADC) of the dlglta; contrqAMsyétém. This
prefllter will attenuate noise );g9ve the prefilter
breakpoint "a". The ﬁ@rticulér breakpoint specified is also
a 'function of the gample rate. If the sampling rate is
changed, the prefilter may also require ﬁgdificafidn.' One

situation in process control where prefiltering can not hq

+
~

‘,r'\» vﬁ“a\ Q.f” * '

IR

-used is when a process stream is sampled and sent to an'“hwﬁ

1nstrument for analysis (Rstrom and W1ttenmark

1984). N01se reduction in this case would 1nvolve taking a
o o

number of samples and mixing them before sending them to ;he‘

T .

?process-anaiy;er_(i.e. oh-line gqs~‘chroma£ograph). Further
details on analpg filte:ing~ are givenl in Sebofg et al.
(1983), Astrom and Wittenmark (1984), Franklin and Powell
(1981) and‘Isefmann (1981).

The use of analog filters for low dfrequenty noise

L » i

'. '%at‘
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becomes expensive. Iserménn (1981)  suggests that
attenuation . of low fregquency noise be handled by digital
methods. A simple low pass first order digital filter can

have the form:

il

yelt) = (1mady, (&) + ayg(e=1) (4.35)

where Y¢ is the filtered output, y f#i$he measured output and
a the filter constant. Other types of digital fiiters aai
summarized in Isefmgnn (1981) and Seborg et al. (1983). A"
special first order, high pass, filter is:.

R

ay(t) = y(t) - B(e-1) W (4.38)

where A is the differencing op&gator The use of
incremental variables in the paramet;§4est1matzon algorithm
as outlined in Section 4.3 is this type of filter. B
In the 1mplementat10n of self- tunlng controllers both '
analog and digital filters have 'appllcatlon. The analogl
input and output signals can be filtered by a low pass
analog filter to attenuate high frequency noise if aliasing
is a problem. A low pass digital fllter (Equation 4.35) has
| appl1catxon in fxlterlng the process parameter estimates so

that large fluctuatzons are elxmlnated before they are used

for control law ca&»ulatlons.
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A
4.6 Time Delay Compensation ~
The occuxrence of time delays in the process industries
is common and their presence complicates the implementation
of process control techniques. The reasons for its
prevalence is usually due to the nature of the process and

the measurement instrumentation. Transportation of fluids

over long distances is considered be the most common cause
) R A

of time delays. In addition some measuring devices require

long cycle . times for sampling and analysis of process
§treams. Agaas chromatograph is a typical example of such a
device. Stephanopoulos (1984) suggests that time delays are
somet imes 1ntroduced by’ flnal control elements which requ1re

some time to develop the actuatlng signal or by control

implemented by a human operator who takes significant time

to think and take proper control actien. »

The net effect of time delays is the degradation of

closed loop response if convent%onal feedback controllers

are used. ThlS is due-to d1sturbances goxng undetected for

iy

a 51gn1f1capt perlod of time, control actlon being taken on

a measurement which described the process awhile ago, and

s A

control action not affecting the proéess output until ,Sbme‘

time in -the future (Stephenopoulos, 1984). The result of
these factors is that the stability margin of the closed-
loop system is reduced (i.e. the crossover frequency and

ultimate gain decreases). Therefore, to - maintain the

stability of the closed-loop system, the gain of the

controller must be reduced. T™is leads to a slgggish

-

¢
. P
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closed-loop response.

One method proposed to imprové closed-loop performance
in the presence of time delay is a time delay compensation
(TDC) technlque. Such a method attempts to predict the

undelayed output of the process and feedback this predlctlon

to the controller. The best known technigue is the Smith

predictor (Smith, 1957). It is a model-based approach which
divides the process model into two parts: the model dynamics
portion and the time delay portion. Smith's approach in the

discrete-time is summarized in Figure 4.1 where Gp(z—1) is

the actual process pgjth time delay, Gpr(z—1) is the

estimated process model without time delay, Gd(z—1) the

i

estimated process time delay and Gc(z-1) the feedback

controller., The feegback signal is the predicted undelayed
output ‘plus the médel predicéion error. The effect of a
perfe mith predictor is to remove the process time delay
from* closed-loop characterlstlc 'polynorr{ial. The
effectiVeneSs of the ﬁﬁmlth predictor is based on the

+ -’

accuracy of the model and the estlmated time delay. Herein

e Astp,

lies the weakness of the Smlth predlctor. Modelling errors

due to changes in the process dynamlcs and tiﬁé delay ‘cause
deterioration of the controller perfbrmancé possibly to the
L. {

The modell1ng problem and the 51mulat10n of time delays

with analog hardware were agaxnst the wxdespread use of the
» T

Smith predictor in the 1950's and 1960's. With the advent

of digital computers and adapciJe ?control .techniques, the

l\
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feasibility of time delay compensation techniques like the
Smith predictor has -increaseds If  the  process is
%ime—invariant in terms of the dynamics and the t%me deléy;
off-line model identificati@p can be used in conjunction

with the TDC methods. If. the structural parameters of a

model, i.e. model order and time delay.;ér§ constant but the

‘dynamic  model parametcl“~ are time .arying, standard

recursive parameter esti _techniques ,.¢an be .used to

v

implement the "~ adaptiwe e delay compqnéaidr (Isermann,

1980, 1982, 1986). A ,MBFe difficult problem is on-line

-

search for model oi?ﬁt and tTme delay as well as dynamic

‘ .
parameters. Schumnanfi et al. (1981) have proposed one
method based on the information matrix P-1. Vogel and Edgar

(1980) note that many technigues p}oposed to handle this

problem are unsatisfactory as a result of poor performance ™

and/or excessive computational requirements. They conclude

that the time delay is a difficult parameter to estimate ?ﬁ<

. ( 3
line, ‘ P

N

Some possible choices of time delay compensators from

\

the literature are thgjgdaptive Smith predictor (Habermayer
A ) ’

and Kevicsky, 1985), the discrete analytical predictor (Doss

-and Moore, 1 1982), the generalized ang}ytical predictor

i g

(Wellons and Edgar, 1985) and the adaptive time delay
compensator of Voggl and Edgar (1980). The method ch¥sen
for this work was tﬁe Vogel and 5dgar adapﬁive time delay
compensagor. .I? is a discrete TDC whick is similiar 1in

¢
% . *

structure to the Smith predictor. A ‘priorl information

o
vy
. o
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reéuired is the process model order and the upper and lower

bound of the time delay. This second condition is les§’

restrictive than the Smith predictor which requires exact
knowledge of the time delay. The Vogel and Edgar adaptive

TDC also handles processes with varying time delaysQ

3@5 The structure of this TDC is summarized in Figure 4.1

~ #yhere Gc(z'1) and Gp(z_‘) are as in  the Smith

predictor. Gpr(Z) and Gd(z) are modified as:

1

. (Ebi)z— . ;
G r(z ) = — (4.37)
1% A(z )
' t
_ S, k. + ”
Gd(z 1) - B(z )%z "min (4.38)
Zbi
¢
where
A(z-1) = 1 + a1z“1 + a!. +a_ z Na
-1 -1, ¢ & -r
B(z ) = by * bz  *,...* b z (4.39)
[' ;:‘.'J,s
r = k - k_. +n
max min b

_1)

where n_ and n, are the deqree of the A(z_1> and  B(z
polymonials respectively. The minimum and maximum time

delay estimates of the process are denoted by k and

-1

min

kmax' Multiplication of Gpr(z

) and Gd(z-1) result in an
estimated process model Gm(z’1) as shown:

A3

-1

G ( _1) G ( -1) . G ( _.1‘) _km“wB&(Z 3 ) " (4 40)

z = z z = z 1n._...-——;—-—— .

m pr d . Az f) ) / .
g

Vogel and‘_Edéar (1980) éontend that the difference between

A
B 3

o

R S —

A

-



R

76

RN
1

o ‘ L { ' L
_the "true dynamic response and the dynam%c response of the

'.*a%p;edicted 6ptput has a féyourableveffect on the: éLoséd-loop

behavior. For a second order system with no continuous-time
! : | )

. zeroes, the:prgdiéted model has fé&ster dynam{cs. A root

® ‘ s . . P N ’
locus - analysis of this shows that the discrete zero of the
TDC process model Has been moved to the origin of the unit

circle. .

4.7 Adaptive Feedforward Control

" The basic idea behind feedforward control is to use. the
measUr;blé load disturbance s{?qals”té anticipate tW& effect
of ﬁhe disturbancé on the process output and to take
appropriate compensatiné; control ~ action (Rstrom and

Wittenmark, 1984). It 1is a very effective and well known

way to reduce the influence of measurable . distprbanbe§. It
has the advantage that action 1is ‘taken before the
‘disturbance is felt by the system and it does not " introduce

,instabilfty in the closed-loop responser—1Its disadvantage

is that it requires a good dynamic process and disturbance
model for systematic feedforward design. Another gpssible
application of feedforward compensators is 'uédaptive

decoupiing‘ in multivariable system. Here the interaction

*

. is treated as a load disturbance and eliminated using

- '_ 4 -

feedforward coOmpensation.
The model requirement problem can be overcome by the
application of parameter adaptive control techniques

(Schumann and Christ, 1979). bThe parameters of the process



f\'

3

and load model can be obtained by a recursive- parameter
estimation method. Feedforward ‘controller design can

proceed according to the certainty equivalehce

’~principle.b‘The only -a priori information required is the

s

'sampling period and the structural parameters of the model -
model , orders and time delays. Vasious forms of . the
feedforward controller cSﬁfiguration are possible. Schumann

s ) o . o
and Christ (1979) consider seven feedforward control
o . T : '
strategies. Only three methods, however, will be considered

here in order show that adaptive feedforward compensation

/4

qén be naturally included into the explicit self-controllers
:developed in Chapter 3. This work does not include
simulatioh results of adaptive feedforward compensation.
N Consider the following deterministic "multi-input,
xfingle-output (MISO) g;stem: |

L(zfj) :

_j)
v(t) b (4.41)

-xB(z ) o
y(£) = 27 ¥ u(t) + 271
A(z ') o

_1), B(z ) and L(z™') ‘are polynomials in the

where A(z
‘backward shift'operatbr 2!, and the time delays of the
process and disturbaqce;; m¢éels. are k and ﬁl
respectively. The process inbut, measurable _  load

disturbance and process output are u(t),. v(t) and y(t)

‘respectively. This MISO model can be derived from the ARIMA

model of Equation 3.6 if the noise model and bias térﬁ'is
deleted and a measurable disturbance model added.

The design”’objective} is to eliminate the effect of a

N\
~ . A
~ \w
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measurable disturbance on the proéess output.‘ This can be
achieved if the feedforward compenSator takes a completely
dynamic form:

4

: -1 ' —
v _gqowybz )
-2 (1-k)

ugelt) = vit) - (4.42)

This dynamic feédforWard compehsator is realizable and
appl*icéblew if:jlzk and thé ;polyhomial ‘B(z—w) Es stabie
(minimum phase). . T . .

A’ suitable approximation which can handle non-minimum
phase brocesses is to design a partially‘;tatic‘ feedforward
compensator of the form: |
C(f-okz ) | .

v(t) | (4.43)

Zb, -« *

uee(t) = -z
s 7 ;

. -This avoids the'instabflity problem caused by the nonmimimum
phase B(z-1) polynomial but the ‘disturbance rejection

capibility 1is compromised. <A third alternative is a

compfetely static feedforward‘controller of the form: :

- RVEURRY S TR ‘ : :
up o (t) = -z7 (ITRIZL Ty o (4.44)
f£" . e
) Lb, .

In'general this compensator results in poor dynamic behavior
of the controlled system but may be appropriate for

: r
deterministic step disturbances.

Implementation of each of the adaptive feedforwa?d

- compensator listed in Equation 4.42 - 4.44 requires the on-

A .
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line recursive estimation of the  process and disturbance
o

model parameters ‘and a knowledge of the model orders and
time délafs; I1f the time delay estimates of ;%e process and
load models ére difficult 'to obtain or the time delay is
time varying (i.e. changing flow rates), an approach
suggested by Vogel and Edgar. (1980) may be used. This
! techgique would exfend the B(z-1) and L(z‘1)§poiynomials to
handle the uncertainty of th;'time delayvof the process and

disturbance models. For example, the partially static

A A o
feedforward compensator would take the form:

.

)L(z-1)

uee(t) = -z~ QminXmin)—— v(t) C . (4.45)
£f R
Zb. .
~ i
where
: Zb1 = b1 +“b2 + ...t br
L(z-ﬂ) = 112_1 + lzz_ + + lsz“S :
A : (4.46)
r = kmax - kmin +'nb p )
S =_lmax - lmin * 1
and lmin’ lmax' kmin and kmax are the minimum and maximum

estimated time delays of the disturbance an@ proceés model
bééspectively. The process and disturbance model orders  are
ny and ny respectively. Xi

The use of this technique in conjunctioh with the
l to

-

completely  dynamic FF compensator could lead
implementation problems . since the straightferward

application of Equation 4.42 in the presence of

an overestimation of the process time delay will cause the
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first few b, péramete:s to be zero or close to zero. This
will result in a division by =zero problem when the
compensator coétrol signal is calculaggd. This prdblem can
be avoided by sea:ching;for leading zeroes and éliminating
them by increasing the time delay estimgte in the process
-modgl. The partially static a&d completely static FF

]

'compensators woulé‘also avoid this problem since the sum of

'

-—

the bi parameters 1is used.,



5. Linear SISO Process Models for Simulation Studies

-

5.1 Introauctioh ’
Chemical engineeriﬁg industry processes- are typically
complex and nonlinear. They may be characterized as self-
regulating or nbnself-tegulating, single—input'single—outpﬁt
(s1s0) or multipIe-inpdt.multiplefouﬁput (MIMO), overdamped
or underdamped systems. Most of the processes that control
engineers must“aeal with are open-loop stable and overdamped
and either SISO or MIMO. This does not ;ule out the
occurrence of importgnce of nonself-regulating or
under damped prdcesses.
- Many of the today's advancedicontrol techniques are
model-based. Therefore, it 1is necessary to obtain a
., mathematical representation of the process which describes
the physical and chemical phenomena occurring. Modelling of
chemical processes is a discipline that requires all the
pfinciples4of chemical engineering; such as thermodynamics,
kinetics, tranéport phenoqeni etc. (Stephanopoulos,
(1984). One approach is to obtain a linear input/output
transfer function model of éhe process around a cértaiﬁ
operating 'point. It has been 's;id that most chemical
-ppocésses can be adequately described by a first or at most
14

. a second order overdamped continuous transfer function

cascad;d‘with a time delay term of the form:
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K e—es v
(5.1) co

G(s) = 2D ¢
‘ (r1s,+‘A)(725'+ 1)

where Kp is the précess gain, 1 is gpe préceés time constant

and 6 is the time delay. An equivalent sampled-data

represehtétipn can be obtained b§ cascading a =zero order

hold (ZOH) with Equation 5.1 and sampling at a, rate Tg. The

resultant second order discrete-time model is of the form:
(b0 +.b1z'1)z_r

) = =5 (5.2)

-1
1+ a1z _+ azz

G(z"1

where a; and bi are the sampled-data model parameters, k is

the time delay of the proceés_rincluding the unit delay

-1

introduced by ' the .ZOH and z is the . backward shift

opefator. Further dgtail; oh the sampling of continuous-
time plants are available in Franklin and Powell'(1981),
Phillips . and Nagle (1984) and S;ephénopoulos
(1984).v Equation 5.2 1is in discrete polynomial fbrm. It
can be rearranéed 'in‘ pole~zéro form by factoring  the

“

numerator and denominator polynomials. This results in a

discreté\;8581~ef the form: ' e

— . ' _k

K 'z - z.,)=z
G(z) = —P ! | (5.3
» (z - py)iz -vpz) - ' ' N

N

where z,, Py and pz_are the zeroes and poles respectively of
the discrete process and Kp' is the discrete process gain.
The remainder of this chapter describes the linear SISO

models used in the root locus and simulation studies of
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Chapters 6, 7 and 8.- The linear model structure will take
on a more gener#l form than those shown in Equations 5.1 -
5.3. Continuous procggs models of'Zp to third order will be
"fgisctibed as well as models with minimum phase zeroes and
underdamped dynamics. The equivalent diécrete b:oéess are

described with the rationale for the sampling time choice.
LN '
‘ e a;vi"j\[(‘\' ,‘”4;"’ ) »
5.2 Process Models 7 ' ey*‘?ﬁ%*‘.,
2 & » % fg‘{'“
protess transfer

Table 5.1 summarizes the eiégﬁ
funcﬁions models used for stability and pefforﬁance analysis
in later chapters. Three forms of the process models are
given: one in Laplace operator éorm and two in the sampled-
daka form. The range of possible sampling periods
calculated by Isermann's criteria (Equation 4.1) is shown as
well as the actual 'sampling period used. References are
given if the process model has been extracted from the
literature. There are three types of processes:

1. Overdamped process with no numerator dynamic in the

continuous-time domain

‘ Tbis category has four modele# ranging from first to
third order. Process Model 2 (PM2) is the
benchmark. This model has been used by .Voéel
(1982), Seborg, Shah.and Edgar (1983),. Tjokro - and

Shah (1985) and Chien et al. (1985). Process Model

3 is PM2 with lower frequen;y dfnamiég

added. Process Model 4 is PM2 with highe;f

frequency dynamics added. Both PM3 and PM4 have a -
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Table 5.1 Linear SISO process models for simulation studies
Model Sampling G(s) a(z™ Glz)
Time
PM1  0.6<T <1.5 1 .283527} .2835
Ty=1.0 (3a+1) i-.7165z71 2-.7165
PM2 1.3<T 3.2 1 028z Ls 0234272 0.028 (z+.837)
Tymi.0 (3541) (5s+1) 1-1.53532"1+0.58662 72 (z-.7165) (2-.8187)
PMI 2.2<T_<5.4 1 . 02614271+.06379272+.009482™3 02614 (2+.159) (z+2.281)
T4°3.0 {3s+1) (53¢1) (Ts+1) 1-1.5681z71+.7991272- 1315277 (2-.368) (z-.549) (z-.651
1
PMA  1.4<T <3.4 1 0076827 1+.02123272+.00357277 00768 (z+.180) (z+2.586
T,=1.0 (13+1) (38+1) (S58+1) 1-1.9031z 1. 151272 2158277 (2-.368) (2-.717) (z-.819)
PM5  1.2<T_<3.0 s+l 079127 - .0277272 0.0791(2-0.350
T 1.0 {35+1) (Ss+1) 1-1.5353271+0. 5866272 (z-.7165) (z~.8187)
PME  2.1<T <5.2 s+l .04809271+,0530027%-.00168277  .04809 (2-.031) (z+1.133
T,=3.0 (3s+1) (S8¢1) (Ts+1) 1-1.5681271+.799127%- 1315277 (2-.368) (z-.549) (2-.65"
PM7 L21<T <. 52 1 096921+ .0754272 0.0969(z+0.778)
1,-0.5 s2+1.58+1 1-1.3001z71+0.4724272 22-1.30012+0.4724
PMB  .21<T <.52 458 L4673z e 1889277~ 00090271 L4673 (2+.0048) (z+.399)
7,=0.4 (1s+1) (32+305+229) 1-.6738271+.002327%-4. 167827 (2-.67) (22-.00352+6.5"5)




non-minimum phase zero in the discrete-time domain.

2. Overdamped process witﬂuone minimum phase zero in the
| coﬁtinuous-time domain |

This category has two models. Process Model 5 is

PM2 with one zero added at s=-1. Process Model 6

is PM3. wisﬁ a zero added at s=-1, PM6 has a

non-minihum‘bhase zero in the discrete-time domain
3. Underdamped proéess with no numerator dynamics in the

continuous-time domain

This category has two models. Process Model 7 is

second order and has been used by Zafiriou and

Morari (1985). Process Model 8 is a third order

model used by Rohrs et 'al. (1984) and Cluett et al.

(1986).
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6. Stability and Performance - A Root Locuss’and Time-Domain

Analysis

6.1 Introduction

Three self-tuning PID controllers were derived in
Chapter 3. The self-tuning robust controller (SRC) and the
integrating STC based PID controllers, .derived from a
generalized minimum variance (GMV) design strategy, can be
shown to be identical for the explicit velocity "setpoint-
on~P&I&D" formulation. The third PID controller results
from a pole placement criteria and can also be formulated in
the explicit velocity "sgtpoint-on-P&I&D structure, The
object of this chapter is to compare these two types of
controllers on some linear SISO process models in order to
form some conclusions as to their characteristics.

The basis of comparison 1is two-f&6ld : stability
analysié focusing on the root locus method and performance
analysis from time-domain responses. Stability
consideration are of prime importance for any closed-loop
control system. The controller must be designed so that the
closed-loop poles are in a stable region : the left half of
the s-plane or the interior of the unit circle in the z-
plane. To achieve stability of the closed-loop system, the
designer may moaify the gain, poles and zeroces of the
controller assuming that the process 1is fixed. 1In a
velocity | PID structure, . the controller pole; are

fixed. Only the controller gain and zeroes can be modified

86
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by varying .the controller gain, integral and derivatives
times., It is also required that the closed-loop poles of
the control system be located so that desirable time-domain
characteristics be achieved such as transient behaviocur and
steady staté’résponse.

Some stability analysis techniques available for
continuous-time systems are the Routh-Hurwitz criterion, the
Nyquist and Bode frequency response methods and the root
locus method. Some of these techniques can be applied to
discrete-time systems via a bilinear transformation whereas
the root locus method may be applied directly to discrete-
time systems. It is the réot locus method that is ‘used to
compare the generalized minimum variance and pole placement
self-tuning PID controllers for stability. Insights into
the controller time-domain performance, sensitivity to
process/model mismatcﬁ and parameter tuning also result from
this analysis.

The second method for compariscon of theéé two

—controllers types is the time-domain response of the system
to a unit step change in the system setpoint. The basis for
comparison 1is the observed rise time (tr) and settling time
(ts) for a fixed actual peak overshoot (Mp). The controller
gajP (Kc) required for the given response 1is also
con§idered.

This qpapter will compare the stability and performance
of the generalized minimum variance (GMV) and pole placement

(PP) based PID controllers on eight linear, time invariant

.
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SISO transfer function models with varying stfucture and
order and with varying degrees of process/model
mismatch. Section 6.2 presents a brief summary of the root
locus technique. Section 6.3 documents a {ypical data set
of the controllers with a particular model. Section 6.4
compares the GMV AND PP Pl controllers for the eight”proces§
models. Section 6.5 compares the PID controilers. Section
6.6 discusses the results and draws some general

conclusions.

6.2 The Root Locus Technique

A root locus curve is simply a complex plane plot of
the roots of the charactéristic polynomial of a closed-loop
control system as ®he controller gain (KC) is‘varied from
zero to infinity. It is a graphical display of all the
closed-loop poles as a function of KC and may be(used to
determine the stability and performance characteristics of a
closed-loop syétem. \wn\\\\

A root locus plot may be constructed by solving the
characteristic polynomial explicitly as K. ts varied and
plotting the results or by qualitatively sketching the root
locus by following a set of rules. TheuEirst method~is
increasingly more common with the availabilitf of
computers. The second‘ method is generally covered 1in most
standard control texts (Ogata, 1920; Derf, 1980; Phillips
and Nagle, 1984). Phillips and Nagie (1984) list the

following rules for the construction of a root locus plot :
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1. The . root . loci origlnate at the open=loop poles;6f the
| process and controller and terminate at the ‘open—loop
zeroes of the process and controller. \

2; The root locus onfthe real axis is determlned by the.
‘location of real open-loop poles ano zeroes»and always
lies to the lgft of an odo‘number of real open-loop
poles and zeroes.‘~Complex-conjdgate open-loop polea
and zeroes have no effect on the location of the root
locus on the real axis. ”

3. The root loci are symmetrical with respect to‘the‘ real’
axis of the complex plane.

4. Breakaway points and break- in po1nts elther 11e on the.
real axis or occur in 'complex—Conjugate pairs. Thex

are given by the roots of :

a
— {1t / [D(z)G(z)]}
dz ‘
where D(z) is the transﬁe?\ggnction of the controllefs
and G(z) the transfer function of the process.

"The rules fof constructing a root locus plot, for

discrete-time systems are the same as those for continuous-

_ time systems., However, the interpretation of the root loci

plot with respect to stability .and dynamic responae is
different. In the,complex s plan@ the stablegregion is the

left ’half plane. Thg stable regign in the z- plane is the
¢ , _
1nterlor of the un1t c1tcle.

PRENEES

4

The root locus analysis of this work is in the
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S *
discrete-time domain. Various controller and process
configurations are analyzed for stability boundaries by
plotting the root locus curve and-calculating the Ke whicn/
causes the root loci to cross the unit circie. As mentionéo
earlier« root  locus plots- not only provide stability
information but also give information about the general
dynamic response of the closed-loop system as a function of
Kc and controller zero location. These same controller and
processu configurations are analyzed qualitatively for
dynamic responses from the root locus plot because the basic
characteristics of the transient response of. the closed- loop
system is determined by the closed—loop»poles locations.
6.3 Method of Comparison - A Typical Data Set

An ahalysis is presented comparing the GMVPI(D) and
PPPI (D) controllers for the eight/process models documented
in Chapter 5. The complete set /of root locus plots are

- . : /

included in this chapter but only”a selected number of time-
domain responses are presented Those presented are typical
“for the ideal ano model- plant mismatch cases. To illustrate
" the method-used for this comparison, @ detailed data set is
"presented. for a 1ideal case along' with the basis of the
comparison.

Process Model 2 (PM2) is.an overdamped, second order

process with no numerator dynamics (see Table 5.1). The

discrete transfer function for Té=i is of the form :



\ 0.0280z + 0.0234

' Gz(z) = = . , (6.1)
’ z“ + 11,5353z -+ 0.5866 ‘ '

“ For an ideal case the process'ordér (P),‘esﬁimated model
order (M) énd the controiler order (C) mﬁst' be equal. For
this example a PID coﬁtfoller (c=2) is used. The structure
of the controller is always “the "setpoint-on-P&I&D"

- form. Both the GMV and PP based PID controliers are
designed from the process parameter estimates which are

—_— —;assumed to have cbnvérged to a "reasoﬁable" set of
values. If there 1s no mlsmatch between process o;dér -and
controller order, | s 15 the case in this example, the true
parameter values aremusedA(l.e,4M=2). The GMVPID controller

calculates the'intthal time_and derivative time as:

T, = -(a, + a, ) T, ,-”0.949

1l . ' \ v
-a \T oo
Ty = —2—S5— = 0.618
(ak1 + az) :
These constants fix the controller zeroes - at

0.418%+3j0.237. The PPPID controlh%?“calculates T, and Tq as:

-(a, + 2a,)T_
T, = ! 2_ S . 7,058
. 1 + a1 + a2 : |
--a, T : | <
Td.-.__.__i__é__ = ].620
(a1 +‘2a2)
This results in the controller zero locations of z = 0.7165

and z = 0, 8187 exactly cancelling the process poles.

The root locus plot of PM2 with the GMVPID and PPPID
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controllers is shown in Figure 6.1 as the controller gain .is
varied from .zero to infinity. The op;n-fgop poles are
marked with an "X". The PID controlleg contributes real
poles a£ z=0 and z=1. The open-loop zeroes are marked with
a "0O". The closed-loop poles are marked with a "go" and
'correqund Etoffa”Kc which gives an actual peak overshoot of
15% for thé“gio§§ﬁ4loop systém. The value of K for these
points is shown on the appropriate table. The real cloéed;
loop poles.are-not generally shown as théy often obscure'the
. open—-loop poles 6 and zerpgs. The root 1loci are the boid #
lines whichdare,ﬁymmetric Fith the real axis. The stability
bouﬁdaﬁx’ is shown as thé unit circle. The conﬁrollef gain'
is shown for breakaway and break-in points of the root
loci. The controller gain at the stability boundary for the
GMVPID controller is K; = 1.16 and the PPPID controller is
K, = 15.5. A qualitative analysis of the root locus plots
shows that the GMVPID controller has 4 branches and the‘
complex portion oﬁkhthe root locus is very near the unit
circle.  The PPPID co troller root loci has only 2 branches
and the complex portion of the rootllocus is well within the
unit circle.

The timé:domain.responée of Process PM2 with the GMVPID
and PPPID controllers for a unit step change in setpoint 1is
shown in Figure 6.2. For each closed-loop system the actual
time-domain peak overshoot is fixed - as Mp=15%. Controller
_pefformance is then evaluated by comparison. of the rise time

and settling time for each élosed—lpop system. The rise
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a)

f
- 12

b)

IMAG AXIS

12

Figure 6.1 Root loci 'of Process Model 2 with a) GMVPID and
..b) PPPID controllers (P=M=C=2) »
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time is defined as the time required for the butpu;uto ‘rise
to .withiﬁ 5% of the new gsetpoint. The settling time is
defined as the time reqﬁired for the process outpoint to
remain within a 1% deadband of the new setpoint. For thel
GMVPID control law the k. and tg ére'calculatgd to be 18.8
and 66.0 respectively. The PPPID algorithm resulted in‘a
t =2.2 and‘ts-7f8; The control effort of the PPPID control
laﬁ is considerably greater than the GMVPID control law;

- The results of the root locus analysis‘ qnd ‘the time
domain analysis are summarized for comparison in tabular
£orﬁ. The ultimate controller gain, the risg time and the
settling time‘ are the criteria used to aetermine which of
the two PiD control laws has better characteristics. The
individual criterion which 1is ‘superior is markeq with an
asterisk. This comparison is completed for the eight

process models for both the PI case and the PID case.

,G,GNCompafison of GMV and PP Based PID Controllers

The results of the comparative study between the GMVPI
and PPPI :ontrollers are summarized in Table 6.1 for seven
of the lingar SISO models outlined in Chépter 5. The basis
fbr determining which PI controller 1is superior ' is the
ultimate controller gain (Kcu) f;om the root locus plots and
the rise time (tr) and settling time (ts) for an actual peak
overshoot of Mp=15% from‘ the time-domain response
data. Table 6.1 also incluggs the integral time calculated

by the GMVPI or PPPI controllers and the controller gain
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Table 6.1 Comparison of GMV and PP based PI control laws

| GMVP! } i PPPI

. u u
Process |MismatchiFigurel - KC Tl t. ty Notes | Kc Tl t. t, ‘NOFll
Mode 1 No. 1 K ) K,

PM1 P=1 6.3 3.587 0.72 3.8 17.7 4 5.05 2.53 0.8 2.5 1
M=1 6.4 0.41 2.90 7
C-l - L[] - L]

PM2 pa2 6.5 0.80 0.88 19.1 66.4 - 2 12.70 1.54 5.7 22.8 2
M=2 0.096 2.10
C‘l . . .

PM3 Pw=3 6.6 0.55 2.32 32.3 113.0 2 2.87 10.20 17.2 58.6 2
Mw2 6.7 0.13 0.93 -7
Cm=1 - . * . .

PM4 P=3 6.8 0.39 0.82 21.1 73:9 2 3.79 4.57 11.1 396 2
M=2 - 0.017 < 0.77 R
Cal . . . M

M5 P=2 6.9 18.60 0.87 15.6 57.5 ] 27.20° 6.52 2.9 14.9 q
M=2 0.12 4.00
C-I ) [ ] [} .

PM6 pa=3 6.10 0.80 2.32 29.6 105.0 2 3.90 10.20 4.8 52.6 2
Ma2 0.15 1.08
C-l . - -

M7 Pw2 6.11 0.82 0.36 3.4 11.3 2 3.49 1.25 2.0 11.6 2
Mw2 0.18 0.88
C_l - . -

Notes: 1. no branches in root ‘locus 2. two branches in root locus

3. four branches in root locus 4. clrcle pattern in root locus
5. complex controller zerces
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which produced the time-domain response with Mp=15%. The
degree  of process/model "mismatch for eachv process is
listed. Table 6.1 cross-references to the figure number for
each process/controller combination.l The root locus plots
and.tFansient runs are shown in Figures 6.3 + 6.11. These
plbts have been 1included to validate the analysis and
provide a basis for discussion later. Finallya Table 6.1
quaiitatively” deécribes the néture of the root locus plots
for the varioﬁs proceés/controller combinations’ in summary
form. Each root locus plot inéludes open-loop poles and
.zeroes, the closed-~loop poles corresponding - to the
controller -gain (Kc) listed ‘on Table 6.1, which do not
obscure open-loop poles énd zéroes, and the breakaway/break-
in points. '

Table 6.1 clearly shows which PI controller is superior
based on the three-fold criteria. Of th& 21 criteria 20

asterisks are marked on the PPPI controller. Only the

settling time of GMVPI for Process Model 7 is siightly

better than the settling time of the PPPI controller. In

most other cases the KCU, t, and t_ of the PPPI controller

r
are a factor of two better than the same parameters for the
GMVPI controller. The general pattern\of the root loci for
each process model is the same. The main difference between
the two controllers is the position of the controller open-

. loop zero which is located by the inteqgral time. The T, for

-the GMVPI contralléf is calculated simply as the estimated

a, parameter multiplied by the sampling period. For the
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2.Figure 6.3 Root loci of Process Model 1 with a) GMVPI and
b) PPPI controllers (P=M=C=1) :
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Figure 6.4 Servo response of Process Model ! with GMVPI
(----) and PPPI ( ) controllers
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JFigure 6.5 Root loci of Process Model 2 with a) GMVPI and
b} PPPI controllers (P=M=2,C=1)
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a)

b)

-

.

Figure 6.6 Root loci of Process Model 3 with a) GMVPI and
b) PPPI controllers (P=3,M=2,C=1)



102

1.9
_. 1.04 /-\,"\/7“*
g ||/
o S
0.5 ’
/
4 s
4
rd
0.0 r v r v ‘ . T v T T ‘ v 1
5.0
2.5
)
~ | A TN ee-aay
D -——'—
0.0 -
-2.5 ~ Y v L T T T S T v T AR
0 10 20 30 40 50 60 70

SAMPLE INTERVALS

Figure 6.7 Servo response of Process Mode] 3 with GMVPI
. (=---) and PPPI ( ) controllers
(P=3,M=2,C=1)



103
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Flgure 6.8 Root loci of Process Model 4 with a) GMVPI and
b) PPPI controllers (P-3 M=2,C=1)
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Figure 6.9 Root loci of Process Model 5 with a) GMVPI and
b) PPPI controllers (P=M=2,C=1)

-
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b)

105

Figure 6.10 Root loci of Process Model 6 with a) GMVPI and

b) PPPI controllers (P=3,M=2,C=1)

1 . [N
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a)

b)

Figure 6.11 Root loci of Process Model 7 with a) GMVPI and
b) PPPI controllers (P=M=2,C=1)
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processes considered this generally placed the controller
zero near z=0.4 on the real axis. This controller zero
location causes branching between the controller pole
at z=1 and the process pole nearest z=1. This  branching
occurred at very low controller gains (KC<O;06). The
complex portion of the root loci for the GMVPI controller is.
generally near z=1 close to the unit circle. The result of
.this.location is the long rise and settling times.

The PPPI cbntroiler located its controller zero near .
the open-loop process poles. For the no mismatch ;case of
§M1 this controller cancels the process pole. Tﬁis location
generally cases the branching to occur between the »brocess
poles at higher controller gains. The root loci are located

well within the unit éircle and results in a better t. and
tg. The superiority of the PPPI controller over the GMVPI'

‘controller is illustrated for the ideal and mismatch case by

the dynamic responses shown in Figures 6.4 and 6.7.

6.5 Comparison of GMV'aﬂd PP Based PID Controllers

Results of the comparison between the GMVPID and PPPID
controllers are summarized in Table 6.2 for six of ﬁhe
linear SISO models; The criteria for ju@ging the better éiD
controller is the ultimate consroller gain (Kcu) from a root
locus analysis and the rise time (tr) and'settling time (ﬁs)
from the time-domain response data for an actual peak
overshodt of Mp=15%. Table 6.2 includes the integral and

‘derivative times calculated by the GMVPID and PPPID
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Table 6.2 Comparison of GMV and PP based PID control laws

| GMVPID | PPPID
Process|MismatchiFigure] Kcu Ti t t Notes | Kcu T1 t, T, Notes
Model No. | K, T4 | K. T4
PM2 p=2 6.1 1.16  0.95 18. 66.0 3,5 15.50 7.06 2. 7. 2
M=2 6.2 0.10 0.62 4.70 1.62
C.Z L - .
PM3 pP=3 6.32 0.97 2.70 31, 111.0 3,5 3.24 8.10 8. 53. 3,5
Me2 6.13 0.16 2.09 1.46 6.92
c.z * - .
PM4 p=3 6.14 0.52 0.96 20. 73.3 3,5 5.58 3.84 3. 36. 3,5
M=2 0.089 0.82 2.30 4.52
C-2 L .
PM5S pu2 6.15  10.60 0.95 5. 56.7 2,4,5 6.78 7.06 1. 10. 1
M=2 0.12 0.62 5.25 1.62
C.z - L] .
PM6 p=3 6.16 3.90 2.65 28. 104.0 3,5 5.05 8.54 7. 37 3,5
M=2 0.18 1.88 1.90 5.04
c.2 3 . .
M7 p=2 6.17 1.95 0.41 3. 10.9 3,5 4.71 1.03 1. 3. 2,5
M=2 - 0.24 0.29 1.45 0.67
Ce2 . . .
Notes: 1. no branches Lin root locus 2. two branches in root locus
3. four branches ln root locus 4. circle pattern in root locus

5. complex controller zeroes
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controllers and the controller gain which bfoduced the time-
domain response of Mp-15%. The degree of érocess/mpdei
mismatch for each process is listed. Table 6.2 cross-
references to the figure number for each process/controller '
combination. These root locus plots aﬁd transient run as
shown in Figures 6.1, 6.2 and 6.12-6.17. These plots have

been included to validate the analysis and facilitate later

—discussion. Finally, Table 6.2 qualitatively describes the

nature of the root focus plot for each process/controller
combination in summary form. Each root locus plot includes
the open-loop poles and zeroes, the Closed—lgop poles
corresponding to the controller gain (Kc) 1listed in Table
6.2, which do‘ not obscure open—lodp poles and zeroes, and
the breakaway/break-in points.

Table 6.2 clearly shows that superiority of the PPPID
contfsller over the GMVPID controller. For 17 out of the 18
criteria, the PPPID controller is judged to have the better

Y of the GMYPID controller for

characteristics. Only the K.
PM3 is better. As is the case with the PPPI controller the

k_ Y, t_ and t, for the PPPID"is generally a factor of two

c '’ r
better than those of the GMVPID controller.

An analysis of the root 1locus plots shows that the
GMVPID controller places - complex controller ze:des at

approximately z=0.4%j0.2. The complex controller zeroes are

caused by Td>Ti/4; As is the case with the ‘GMVPI

’cbntroller, the location of these zeroes generally cause 4.

branches in the root loci with the breakaway points at low
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b)

Figure 6.12 Root loci of Process Model 3 with a) GMVPID and
b) PPPID controllers (P=3,M=C=2)
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Figure 6.14 Root loci of Process Model 4 with a) GMVPID and
b) PPPID controllers (P=3,MaC=2)
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a) RE

Figure 6.15 Root loci of Process Model 5 with a) GMVPID and
b) PPPID controllers (P=M=C=2)
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Figure 6.16 Root loci of Process Model 6 with a) GMVPID and
b) PPPID controllers (P=3,M=C=2)
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Figure 6.17 Root loci of Process Model 7 with a) GMVPID and

b) PPPID controllers (P=M=C=2)
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controller gains (KC<0.07). The main branches are between
fthe controller pole at z=1 and the nearest  process
pole. These branches, therefore, lie near the unit circle
and leave the unat circle at low controller gains for
overdamped, second and third order processes with no
numerator dynamics. The net effect for all the processes
considered, is longer rise and settling times,.

The PPPID controller zeroes cahcel the estimated
process poles. 1If the process is second order (ideal), this
controller cancels the true process pcles. This effectively
reduces the «closed-loop system to the two controller poles
and the process zero. The root loci breakaway poini is well
within the unit circle which results in better rise and
settling times (see Figures 6.{g and 6.17b). If the process
has numerator dynamics the root locus remain entigely on the
real axis. For the mismatch case (P=3, C=2) the controller
1s wunable to cancel the process poles because the estimated
model is only second order (M=2). For these q;;es the PPPID
controller calculates complex controller ;eroes near

z=0.8+j0.2 (see Figures 6.12b, 6.14b, 6.16b) as 1ts

estimated second order model is underdamped. This results

in very large derivative times (i.e. Td>Ti/2)' The better
& - .
controller performancg for the PPPID controller is

summarized in Figures 6.2 and 6.13 for an 1ideal and a

mismatch case,
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6.6 Summary |
 ’The comparison of the GMV and the PP based‘ PID
controllers summarized in Tables .1 and 6.2 clearly show
that - the PPPI(D) confroller'is superior according to the
criteria investigated. The major,faé;or for the difference
in performance is tge locaﬁion of ‘'the controller
;proes; The GMVPID controller places zeroes near z=Q;4tj0.2
well away from the z=1 for both the ideal and the miéhatch
cases. This resukts in the complex portion of the rcot loci
bei;g very close to the unit circle at z=1. vClosed-loop
poles in this area correspond to slowegygase and settling
times. The PPPI(D) controllér places.cénérbller zeroes near
the process poles. This mbves the root lbci w2ll within the
unit circle where _improvedw fise and settling times are.
possible. h |
The PPPID ¢ontrollerl is designed to canceln the
eétiméted real process - poles which generally lie between
d.5<z<0.8 for the chosen sémpling.rates. For the ideal cas;
the process poles are exactly cancelled by controller zeroés
and the closed-loop sYStem response is accurately predicted -
from the location‘éf the closed-loop poles. 'This is seen in
Tables 6.1 and 6.2. For the PPPI controller with PM1, there
is effectively .oneb closed-loop ‘pole and the time—domaih
response can be exactly-d:£ermined by the damping ratio,
rise and  settling time mc6fresonding to that cloSed~loop

pole. For the PPPID controller with PM2, the effective

open-loop poles and zeroes which determine the root loci are
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1

the  &.contro11er poles and the process , zero at
© L . . g :
z=-0.8371. Again the time-domain resﬁonse of this system

can . be determined ‘acgurately by the damping ratio (§) and

natural frequency (wn) associated with the closed-loop polés

\

For the mismatch cases tﬁe PPPI(D) controller 1locates

controller zeroes near ;=1t£i.e; z=0.8 for PI; z=0.8%30.2

for PID). The complex controller zero;1ﬂfor the PID case

-

are a result of the model that is est#hated in_the presence

of process/model,mism;tch. The actual third ofaer processes
are overdamped, but parameter estimation results in an
underdamped second oféer modei. The ;ontroller zeroes érev
the = complex poles of thisj underdampe@ second order
model. . These zeroes‘do noE/géncel the actuai process pole§
and have. a signiﬁicént influence on the time-domain
response. They increasé the peak overshoot (Mp)‘ and the
rise ﬂtimé (tr) of the closed-loop.system. This is seen in
Tables 6.1 and 6.2.

\ » .
The PPRID controller design method has potential

prdbiems wﬂén_ used 1in the presence of Qrocess/model
mism n. This  design method calculates very large:
derivative times (Td>Ti)' Thus this controller would be
very sensitive to the process and measuremght noise of a
real process, resulting in ° excessive controller
action., Derivétive kick g%uld glso be severe at setpoint

changes. Finally, Franklin and Powell (1980) show that peak

overshoot 1is quite sensitive to complex zeroves near z=1. A
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small variation of controller zero positions can result in a
large change in the maximum ove;shobt _65 the closed-loop
system. Because of theée potential problems a modification
to the PPPID controller ‘is suggested when contfolling'\én
bverdamped pr;;é;s in the presence of process/model
mismatch. If the derivative time is calculated to " be
greater than -T./4, it is reset to T,/4.1. This new T, is
then implemented i;.the control algorithm.

This modification wauld reduce the potential problems

of noise and derivative kick mentioned earlier. It forces

the controller. zeroes to be real. This is in keéping with
the pole placement design method which attempts to cancel
the process poles,, For an errdamped process the poles are
real, thérefore the controller zeroes should be real. This
modification meets the well-known Zieglér énd Nichols tuning
rules. Both the trahsieht response method - and the
ultimative-sensitivity method call fér the derivative time

to be T =T. /4.

d
he effect of this modification on the criteriaﬁhsea in

Sectilon 6.4 and 6.5 is Ysummarized in Table 6.3 for the

mi tch cases. It increases the ultimate gain of the

closeq—lgop sygtem but increases the rigb and settling
time, It 'Qin effect dégaihs the response. = The most
significant change is the slower rise time. The settling
time is | only marginally greater. However, the small

decrease in performance is more that offset by  the

usefulness of the algorithm on real processes. Figure 6.13
R
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and modified PP based PID control

| «PPPPID | PPPID (modified)
, . u u
Process iMismatch|Figurel Kc Tl tr ty Notes | Kc ‘rl Ct Ly Notes
Model No. | K, Td | K. Ty
PM3J Pe3 6.12 3.24 8.10 8.5 53.9 3,5 3.75 8.10 16.0 58.3 2
M=2 6.13 1.46 6.92 ' 0.90 1.98
C=2 6.18 . . .
M4 P=3 ©6.14 5.58 3.84 3.2 36.4 3,5 6.86 1.84 11.8 45.6 2
M=2 6.19 2.30 4.52 0.67 0.94
Cu2 . . * .
PM6 pP=3 6.16 5.05 .3 37.7 3,5 5.75 8.54 12.0 45.3 2
Me2 6.20 1490 1.25 2.08
quzj . . .
&

Notes: l. no branches ln root locus
3. four branches in root locus
5. complex controller zeroes

2. two branches in root locus

&

. circle pattern in root locus
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compares the time response of this modification with fhe
previous PID controllers.. Figures 6.18-6.20 show the effect
of this modification on. the raot loci of these process
models. The number of branches has been reduced from four
to two and the conttoller zeroces have Seen forced to be

real.
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«/Figure 6.18 Root loci of Process Model 3 with modified PPPID
e controller (P=3,M=C=2)
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" Figure 6.19 Root loci of Process Model 4 with modified PPPID
controller (P=3,M=C=2) '
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Figure 6.20 Root loci of Process Model 6 with modified PPPID
controller (P=3,M=C=2) ‘



7. Performance of Self-Tuning PID Algorithm With Linear

Systems: In the Presence of Process/Model Order Mismatch .

7.1 Introduction

The analysis of Chapter 6 concluded that the self-
tuning PI(D) algorithm derived from a pole placement design
criterion gives superior closed-loop performance tovsetpoint
changes. The objective of this.chapter and the nextn is to
evaluate the performance of this self-tuning PPPI(D)
controller. The evaluation tests the controller over the
wide faﬁge of linear SISO process models outlined in Chapter
5 for both the PI and PID forms. Performancg in the
presence of process/model order mismatch, time delays,
process bias and deterministic and stochastic disturbances
are aléo considered.

All simulation studies are based on a contihuoﬁs—time
simulation of the process models. The self-tuning PID
algorithm used is the modified PéPI(D) algorithm outlined in
Chapter 6. The method of evaluation is based on convergence
of the estimated process parameters, tuning lof’ the
controller constants andvservo and regulatory control.

The layout of the chaptér is as follows. Section 7.2
discusses.. the specifics  of the»‘ self-tuning PI(D)
impleméntation as well as the conti?uous—time plant
simulator used to generate the fesults; Section 7.3

presents the simulation. results for the ideal case of no

process/model mismatch. Process/model migmatch 'is

124
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considered in Section 7.4. Summary comments of the PPPI(D)

performance are made in Section 7.5.

7.2 Self-Tuping PID.Algorithm Implementation

fhe implementation of an explicit adaptive control
algorithm generally involves three steps: process parameter
estimation, control law parameter calculation and controller
output calcula;ion. A typicai control cycle for the self-
tuning  PPPI(D) controller :begins with the explicit
'estimation of the process parameters for a prespecified
process model structure. The estimated process parameters .
are uséd to calculate the integral (T;) and derivative (Td)
times for the PID controiler. The estimated process model
and the controller parameters are used to set up the
characteristic equation of the clqsed—loop 'system as
outlined in Section 3.6. The damping ratio corresponding to
each root of the characteristic equation is calculated.
(This calculation assumes a second order process with no
numerator dynamics.) The dominant damping ratio is compared
with the damping ratio equivalent to the peak overshoot
setpoint. The controlier gain is incremented or decremented
to meet this makimuﬁ gvershodgv speéification. The current
control signal is calculated based on the calculated Koo Ty
and Td after’they have been filtered by a first order
digital filter.

The control software for the simulation studies is

designed to allow numerous identification and control

—
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opfions. For parameter estimation the user has the éhoice
of first or secondﬁorder model identification, incremental
or .positional variable identification, and recursive least
squares oOr rgqursive extended least squaresy estimation
algoritﬁﬁt -The controller can be chosen as first (PI) or
second (PID) order. If a second order process model is
estimated, model reduction to a first order model is done
before the PI controller is designed. The PPPI(D)
implementation can handle a reasonable amount of time
delay. The time delay can be known or unknown. If‘hnknown,
the minimum and maximum estimated time delay is used to
increase the order of the B(z ') polynomial. A unique
feature of the PPPI(D) control algorithm is that it.can bé
tuned online. If the response to a setpoint change is
sluggish, the Mp specific#tion can be increaéed
online. This causes the controller gain  to be
ihcreased. For the study of processeé dominated by time
de}ays, the adaptive time delay compensator (TDC) of Vogel
and. Edgar (1980) is implemented in the simulation software
with many of the options listed above.

Self-tuning controllers require 1initialization of
numerous parameters '(e.gf initial process parameter
estimates, variable forgetting factor parameters and initial
covariance matrix, etc.). The individual effect of many of
these parametefs is not 1investigated in this study, and
therefore are fixed it the same value for them‘majority‘ of

runs. Table 7.1 summarizes those parameters which are fixed
A

-
(1



127

Table 7.1 Initialization parameters for self-tuning PI(D)
controller

Inttialization Parameters Value or Optlon

-

Intlal procass parameter a, --0.9
estimates a, = 0.0
by~ 1.0
b, - 0.0
¢, - 0.0
Varlable forgetting factor a = 0.8
parameters K = 1.0
kf = 1.0
Ay, = 0.99
klnlc 0.99
Intial covarlance matrix Py = 10001

Control law parameters and
limits

Estimation variable type

Maximum overshoot setpoint

Kcmin = 0.025

K max = 20.0
Fllter = 0.7
no high, low or
rate limits

Incremental

Mp = 15% .3
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and the values they are assigned. If one of these
initialization parameters 1is changed for a particular run,
it is noted.

The simulation study results are based on a continuous-
time simulation of the linear process. The transfer
function models of the processes are transformed into
differential equations and integrated. The integration
method is the Euler predictor-corrector method. The
integration step is chosen ® as Ts/100. Deterministic
disturbances are implemented ifn the same manner. Stochastic
disturbances are handled by digital techniques. A discrete
white noise sequence is filtered by the noise model
C(z-l)/A(z_1)A. The ﬁiltéred output N(t) is then added to
the output at every sample interval. =

All simulations were done on the Univef;ity of .Alberta
Amdahl computer. Source listings of the simulation software
are available from the DACS Center or by contacting Dr. S.L.

Shah.

7.3 Simulation Results for No‘Process/Model Mismatch
Mismatch here 1is defined as a difference between the
order of the process and the order of tﬁ; controller., For
no mismatch to be present the order of the process must be
equal to the order of the model used to design the self-
tuning controller. For example if the process is second

order, the order of the controller must be second order

(i.e. based on a second order model). Four ideal cases are
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possible from the linear processes listed in Chapter 5. The
results of these cases are now considered.

The simplest no mismatch case 1is the figpst order
Process Model 1 (PM1) with- a self-tuning PPPI
controller. The results of this simulation are shown in
Figure 7.1, The initial parameters and options are as
outlined in Table 7.1. Note the excellent servo control co
setpoint changes. The controller tunes in quickly with the
estimated first order process parameters converging' to
within the third decimal point of the true values after 10
sampling intervals. The control effort required at setpoint
changes is large in keeping with the "setpoint-on-P&I&D"
controller structure. The time-domain response of Mp=15% is
exactly as specified in the z-domain.

Figure 7.2 shows the base case results fér an
overdamped second order process with no numerator dynamics
(pM2) and a PID controller. Servo control is excellent even
while the controller 1is tuning. A maximum overshoot
specification  of Mp=15% is realized in the time-
domain. Convergence of the estimated process parameters to
the true parameter values is smooth and uniform. The
estimated paramet?rs move only at setpoint changes when
there is dynaméé‘ information. The estimated parameters
converge to within 0.01 of thé true values after 100
sampling intervals. The controller constants (KC,Ti,Td)

converge slowly as well. Integral and derivative action

increase as the\gstimated process parameters converge to the

.
N\
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true vaiuesﬁ' The controller gain increases  as the
parameters converge. This is a result of the fixed
incremgnt Kc can move per ‘sampliné vintervaf. In additidn
all controller cohsténts are* filtered by a first order
digital filter with a filter constant equal to 0.7. The
control effort at setpoint changes is large.

The results for an ovefdamped second order process with
numerator dynamics (PM5) are shown in Figure 7.3. These
resultg show the ideal base case for processes with a
minimuh phase zero in the ;ontinuous—time domain. The servo

”response is good but not as fast as the previous case. In

‘addition the output response does not show an overshoot as

—— sgpecified in the z~domain. This is a result of'the location

of the discrete-tipe zero in the z-plane- atr’”
(0.35,50.0). The root locus plot of this system revea
that the root loci always lie on the real axis. The o
way this closed-loop system can have an actual 6vershoot 
Mp-15% is‘to have a rimging pole at (-0.71,30.0), which is
$clearly undesirable. The convergenée of tgé | estimated
ﬁ?process parémeters and controller constants is gggerélly as
ffbefbre.' The tUn;ng of Kc~exhibits a peak as doég T, . bThis
is due‘t6 thé way.the estimated process par#méters converged
5 dufiﬁéﬁ%he initial transieﬁts.

The 1last no mismatéh base case is shown in Figure 7.4
fBr an underdamped second order proceés with no numerator(
dynamics . (PM7). Serve control performance is

)

excellent, Thevtiﬁiidomain response shows the Mp=15% as
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specified by the damping ratio 1in the wunit circle of
z-plane. Convergance of the estimated process parameters is

_ smooth and within 0.03 of the true values after 150 sample
intervals. The integral amd derivative times ﬁove
similarly, increasing their respective control ‘action as
they converge. The tuning in of the controller K. is slow‘”
in this case. This is a result of a very conservative
initial estimate of K, (Kc=0.1). If Kc(init)=1.0 had been
chosen, convergence of all parameters would have been more
rapid.

A unique feature of ,the self-tuning PPPI(D) control
algorithm !is that it allows for ‘online shaping of the
closed-loop response. Since the maximum overshoot seppoihﬁ
determines . the controller gain, it can be ch&nged
online. This then modifigs KC' to produce the desired
response. This is illustrated .in Figure 7.5 for PM2. The
Mb setpoinf‘is yaried fgom 15-30% in 5% increments. Since
this 1is a no mismatch case with no numerator dynamics, the
time-domain response 1is ‘as specified. Tuned process
parameter estimates are used to initialize this run.

In summary fhese no mismatch runs show the.
characteristics of "the 'self-tuning PPPI(D) controller for
the ideal case. Estimated process parameter convergence 1is
uniform and smooth to the true values. Parameter estimates
are updated only during dynamic :fansients of the
process. “This - is due to incremental variables

identification. The tuning of the controller constants is
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also smooth with amount of control action increasing as the
estimated process parameters converge. The closed-loop
system exhibits the maximum overshoot as specified in the z-

7
domain for processes with no numerator dyﬁamics.

7.4 Simulation Results for Process/Model Mismatch

The performanée of the self-tuning PPPI(D) controller
is now examined for mismatch between the process ordé?,
model order and cdntroller order. For example, if a PI
controller (i.e. a first order controller) is ‘used to
control a third order process, a mismatch of 2 exists. This
section 1is divided into two parts. Thé first part considers
the self-tuning PPPI controller with 'those linear ©process
models which result 1in a mismatch. The self-tuning PPPID
con}roller is then evaluated in the presence of process/
@Daei‘ mismatch in the second part. Both parts also look at
online tuning of the Mp setpoint for the mismatch case. It
is noted here that all the results presented in this section
afe . based on parameter estimation of a second order
model. If a PI controller is designed, the estimated second
order model is reduced to a first order model by Warwick's

model reduction technique outlined in Section 4.4.

7.4.1 Pl Control and Mismatch
Self-tuning  PI éayontrol results in process/model
mismatch for seven of the linear processes outlined in

Chapter 5. The simulation results of these combinations are
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summarized in Tablé 7.2, The table lists for each run, the
process, the degree of mismatch, the Mp setpoint and the
time-domain response of the closed-loop system for the tuned
PI controller. Figures 7.6 - 7.12 show the simulation
results for the seven runs. Each figure shows the tuning
period and . ‘the resultant controller
performance. Initialization parameters are as per Table
7.1,

Figures 7.6 - 7.12 show many of the characteristics~of
the no mismatch cases examined previously. Tuning of
estimated process parameters is generally smooth and uniform
with all movement of parameters occuring at setpoint
changes. The convergence of the céntroller parameters, Kc
and T:., is similar to the mismatch case. Figures 7.7, 7.8
and 7.10 show the results of process parameter estimation of
a second order model when the actual process 1is third
order. The estimated parameters converge to a set of
nonunique values (cf. Figure 7.8b).

The results presented in Table 7.2 are based on a
maximum overshoot specificatibn of Mp=15%. Only the time-
domain response of PM5 and PMB come close to this
specification. Four of the processes exhibit a heavily
overdamped closed-loop response. In the presence of
mismatch the Mp setpoint becomes a tuning knob to shape the
closed-loop response ahd does not actually specify exactly
what the time-domain response will be.

The use of the M, setpoint as a tuning knob is
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Table 7.2 Performance of self-tuning PI controller in the
presence of process/model order mismatch

1 | |

Process |Mismatch|Figurel Mp | Time-Domain Response | Comment s
Model No. | sSp | Mp T T, |

pM2 Pw2 7.6 15% 6% 7.5 27.7 Control action moderate, underdamped
Mw?2 . response with long settling times
C=1

2M3 p=3 7.7 15% 0% 75.0 117.0 Control action sluggish, heavily
M=2 oyerdamped response. Increase MDSP
C=1

M4 ' P=} 7.8 15% 0% 30.3 46.0 Control action sluggish, heavily

CM=2 overdamped response. Increase MpSP

C=1

oMS P=2 7.9 15% 16% 2.5 13.8 Control actlon vigorous, fast
Mw 2 urnlerdamped response
C=-1

PM6 P=3 7.10 15% 0% 48.6 81.0 Control action sluggish, heavily
Mw?2 overdamped response. Increasse MpSP
Cel

PM7 P=2 T.11 15% Cy 8.6 13.8 Control action slugglsh, heavily
M=2 overdamped response. Increase HpSP
C=1

M8 Pe3 7.12 15% 9% 0.7 2.7 Control action vigorous, fast
Mw2

. underdamped response
Cwi : ’
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illustrated in Table 7.3 for two third order processes. The
‘use of these processes results in a mismatch of two between
controller order and process order. The Mp setpoint is
varied from 15% to 30% in 5% increments. The effect of
these increases -is to improve the system closed-loop
reSponse._ For SﬁB botﬁ the rise time (tr) and settling time
'(tr) decfe ‘with increasing Mp. However, the fésponge
remaiﬂgﬁ\vzjz;damped. The effect of 1increasing the Mp
setpolint for PMé is similar. wFor Mp5p=30% the response
becomes underdamped with an actual Mp=4%. This improves the
rise time but causes the Setpling time to increase over the
Mp5p-25% case. Figures 7.13 and 7.14 show the transient
response for these runs. Both runs are initialized with
tuned parameter estimates.

-In summary the self-tuning 'PPPI céntroller performs
well in the presence of p;ocess/model,dfder mismatch. The
Mp g;tpoint becomes a tuning knob whiﬁgﬁcan bé uséd to shape
the closed-loop response. It does ng% accurately determine
 the actual closed-loop Mp; For the runs considered, here,
mismatch causes a detuned contﬁpller gain to be
calculated. A more desirable response 1is achieved by
increasing the M SP,

P
The runs presented in this section are all based on -an

estimated second order process model. This gives enough'
‘information about the process to do a proper controller
design. Controller design based on an eétimated first order

model when the actual process order 1is 2 or dgreater was



Table 7.3 Online tuning of Mp

control
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W

setpoint for self-tuning PI

M

Process Mismatch|Figure| o Time-Domain Response Comment s
Model No. | SP Mp T te
M3 P=3 7.13 15% 0s 75.0 117.0 Time-domain parformance improves as
Mm2 MpSP tuning knob ls increased.
C=1 20% 0% 68.0 108.0
25% 0% 50.3 84.0
308 0% 27.4 72.0
PM4 p=3 7.14 15% 0% 30.3 46.0 Rise time improves as M_SP ‘tuning
M=2 knob is increased. Settling time does
C=1 20% 0% 21.9 40.0 the same until an overshoot is
observed.
25% os 15.8 19.3
0% 4% 12.4 35.0
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found to have difficultigs. The calculated controllers give
unstable closedeoop results., This 1is attributed td the
_ fact that the ‘ first order model gives insufficient
information about the process to carry out a reasonable

controller design.

7.4.2 PID Control and Mismatch

The performance of the self-tuning PPPID control for 
mismatch is summarized in Table 7.4. Five of the linear
processes listed in Table 5.1 result 1in a model order
mismatch when controlled by a sécond order PID
controller. These processes are either first or third
order. Figures 7.15 - 7.18 show the self-tuning runs for
four of  these cases. Each run begins with the initial
parameters Jpisted in Table 7.1.

The self-tuning PID algorithm controls PM1 and PM6 very
well. Since PM1 is first order and the controller second
order, the order mismatch involves parameter estimation with

an overpar%meterized model. Figur%? 7.15 shows a fast

overdamped response with moderate control® action. Estimated
process parameter convergence is excellent with the second
ay and bi parameters having values close to zero but not
identically zero. ?igure;f:18 shows the control performance

j . .
‘pfocess with numerator dynamics

for a third order ,
(PM6). Control producesia - fast overdamped response with
moderate control action.

A

Figures 7.16 and 7.17 summarize the closed-loop

s %.,

PN .
Wi, B,
-
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Table 7.4 Performance of self-tuning PID controller in the
' presence of process/model order mismatch

}

Process|MismatchiFlgure| M |  Time-Domain Response | Comment s
*
Model No. | SP | Mp T te !
M1 Pel 7.15 15% o1 ] 4.9 1.7 Control actlon moderate, fast
M=2 i overdamped response
c=2 o
PM3 p=3’ 7.186 15% ok | 66.0 36.0 Control actlion sluggish, heavily
M=2 overdamped response. Increase M_SP
C=2
PM4 P=3 7.17 15% 4] 199.3 297.0 Response {s so slow that the system
Mu2 1s essentlally open-loop. Increase
Cw2 M SP
o
PM6 P=3 7.18 15% 1] 28.5 34.5 Control action moderate, fasc
M=2

C=2

overdamped response
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‘p,s'lmprowéhf £ in” closed- loop, responsg, is 3 seen as the M
*'“4 o .o K'a“

160

[4

td

performance for two ‘third order processes w1th no numerator

dynamics | (PM3 and PM4) Both responses are heavily

overdamped. The response of PM4 for a M_ setpoint of 15% is
!

P
very poor with Trise'and settling times of 199.3 and 297.0

respectively. ‘For PID control PM4 répresents‘the worst case

¢

for order mismatch. The process is third order and sampled

at a rate where the high frequency components of the pfOCESva'

. o %f‘ .
are significant. s ;ﬁ

v
B

fﬁ thé&mpfésehCe - of, mismatch

i l L4
As ment1oned prev1ously,

" the Mp -setp01nt becomes a tun1ng knob to shape the closed~:.

b R .
loop response of the %ystem._ This is illustrated in 'Table

795 for PM3 and PM4.  The Mp setpoint is increased from

15-30% in 5% increments. ‘The simulation runs aré& seen in *
Figures 7.19 and 7.20. Converged process parameter

estlmates are used to 1initialize these runs. A marked
. #,o ‘Ef‘ P
* set o%nt is 1ncreased The rise ' and settllng times

. : 4

dec}eaSed until the response becomes underdamped. Settllng
tlmes began to increase when the peak overshoot is greater
than 1%. -Process Model 4 is character1zed by long settﬂ’ng

-‘t1mes for PID control This is explalned by exam1nat1on of
, . ° //

the Flgure 6 21 where the root locus plot for-. th1s case is

%

shown:- The root loc1v11e close\ _? the} unit c1rc1e neer o’
'z=f.oxThzs- areao is ehar;é;etlzed_by long:rise.anq£ﬁett11ng‘
‘_tiﬁes. Improved pefforﬁence codld beqjgph}eved if the‘
samplxng perlod;‘is. longer as,th1s wou@?gmo€d“the process

N
e

poles toward the orlgln of the unLt c1 e...Tﬁas would move

,;%\‘.\ : ‘. .
B3

$n
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Table 7.5 Online tuning of Mé setpoint for self-tuning PID

‘control
i | |
Process|Mismatch|Figuret Mp | Time-Domain Response | Comments
Model No. | SP | Mp € tg
N
PM3 P=3 7.19 15% (o 4 66.0 96.0 Rise time improves as MPSP éuninq
M=2 ' knob is increased. Settling time does
C=2 « 208 os 51;8 72.0 the same until an overshoot is
. observed.
25% 18 35.0 42.0
30% 3% 26.7 58.0
PM4 P=3 7.20 15% 0% ©199.3  297.0. Rise time improves as SP tuning
M=2 : ' knob i3 increased. Settling time does
Cw2 © o 20% 0% 96.4 144.7 - che same until an overshoot is
" observed.
, 25% 1% 30:0 3§§§‘ .

v

308 6% 18.7 44.1
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Fzgure 7.20 Onllne Mp setp01nt (15 30%) tunlng of self-
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the root loci fu?%her ‘into the unit circle where better

time-domain response is achieved. In aﬂﬂition sampling at a

slower rate would improve the estimated second order model
as the high frequency portion of PM4 would be attenuated.
ffhe control performance of ;thej ‘self- tuning PID

contg;ller with Process Model 4 is 1mproved by increasing

the M setpoint ‘or sampl}ng at a slower rate. It could also

p
be fhproved by moving

Lu N

ller zeroces, The controller

, &%‘x
eroes are .determin

of the estimated second

ordeib’ wlth the restr1ct10n that Ty must be less than.

®

fi/}j g,an- overdamped system. The ‘effect of “the

estim¥¥ mod 1‘;s'examined for PM3 and PM4 by comparing the
é’ ’ r;’.' - Y T e ?

results , .of incremental and positional variable

1dent1f1cat1on. The results of this 'study are shown in
Table 7.6 for PM4 with a M, setpoint of 15% ~and 30%. The
simulation Tres ilts for thlS study are shown in Fxgureip7 17
arnd 7. 21 -7.23. “ior this thlrd order procese the 1mproVement
in contrgq is consxderable by the’ use of positional ve;lable
identification. The results of Figure 7.22 show rise and

settling times one tenth those of the equivalent incremental

variable case. If the M_ setpoint is increased to 30%, the.

P

‘response becomes underdamped with good rise and settling

times.

. It "can,‘ be concluded“ that - positional wvariable

.

identification results in better PID control of PM4;. The . -

reason for this can. be explalned by examining the second

and Té ‘which are in turd
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Table 7.6 Effect of identification method on elf tunlng PID
A control in the presence. of processﬁﬁb

i
I I ! I ] .
Process {Mismactch|Figure|l M_.'| Time-Domain Response | ID | o Comments )
Model No. | 'SP I' Mp te tg {Method |- ‘ LRI S
b [ B : o 4
PM4 P=3 -7, 0s 199.3 297.0 INC System response extremely slow
M=2 : e 4 ‘ .
. -
Cm2 7 6% 18.7 44 I/NC Sluggish underdamped response
S .
7. 1} ] 16.8 ‘ 22.5 POS Reasonable response
) 7.23 30% 18% 5.0 19.3 - PGS Underdamped response
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i) R
order model,‘%ii'ch each variable type estima‘t‘es. If there is .
no mismatch between the process order and”the estimated
model order, both inéfemental and positional variabl;s yill‘A
résult in the ;true parameter values assuming‘;o noise and
zero-mean data. In the presence of process/mogdel ordér
mismatch, there are no true parameter estimates. One can
only speak of a converged set of parameter estimates with
incremental and positional variable resulting in a different
set of converged parameter estimates. This 1is shdwn in
Table 7.7 for PM3 and PM4. Although both these third order
processes are overdamped, the estimated s;Lond order models
are underdamped with each identification method having a
different parameter estimate set. The open-loop step
response of these estimated models is compared with the
actual process in Figures 7.24 and 7.25. The estimated
models from positional variable identification match the
process response over the whole dynamic range and 1in the
steady state. The gain of the positioﬁal variable models {éu
closé to. 1.0 while for PM4 the incremental variable ,Todéli;-
has ié gain of 0.59. The incremental variable estimég}on
models match the process’ response mainly ¢ in the initial
dfnamic pbrtion. The by paramééers «gf the incremental
)‘-modéls are very ciose to the bg parameJer "of the actual
»proceéses. This 1is due to the incremental model matching
the high frequency part é& the process which 1is 'more

tredominant iin Process Model 4. This preference for the

high frequency dynapics is a result o£r>differenc§ng the

i
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Table 7.7 Effect of iaentification method on estimated model

. : ~ in the presence of process/model mismatch
—— - RS A :
. [ | o
Process MlsmatchiFigurei ID | ‘Egtimated Process Parameters | Comments
Moae. No.. iMethod] a, a, bo ! b1 Gain | _
oMl p=3 7.24 INC -1.527 .6273 .0265 .0619 0.88 Model is underdamped with poles
M=2 at 0.763 + j0.211, f=0.65

< . .
POS - -1.458 .5568 .0278 .0700 -0.99 Model, 18 underdamped with poles
' at 0.729 +10.158, {-0.81

PM4 P-B 7.25 INC ~1.736 .7824 .0072 .0201 0.59 -~ Model is underdamped with poles
M=2 at 0.868 ¢ 30.169, {-0.54 .
; . . |
' POS ~1.697 .7314 .0084 .0252 0.98 ' Model is underdamped with poles

St at 0.849 + j0.107, {-0.78

7
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data.' The d1£ferenc1ng operator acts as a h1gh dbss filter.

This ‘difference in estimated parameters for 1ncrementalﬁ
A
‘and positional variable 1dént1f1catlon methods results in

"different— controller zero_locat;ons. .The. positional model

places the controller zeroes closer to (1,30) in the "unit
circle of the z-plane. This causes the root loci to branch
between the process poles well within the unit ‘circle and

results in better: rise and -settling times. The increment

model places the controller =zeroes among the process

v N , I
poles. This causes ‘tqe root loci to otanch between the

largest process pole and the confroller -pole at

(1,j0). This results in poor rise and settling times.

In summary the self- tun;ng PPPID controller performs
well 1in the presence of process/model order mxsmatch The
Mp setpoint car be used to speed the response of the closed-
loop system if-required. The controller performance for the
worst mismatch cases (PM3, PM4) can be' improved }by model
parameter estimation using positional variables. This is
foupd to locate the controller ;eroes to a location' which
gives improved closei-loop response. However, the 'use of

positional variables i

-

troduces other problems especially

for non-zero mean data.

7.5 Summary »

*  The modified self-tuning PPPI(D) control law proposed
in Chapter 6 has been evaluated with and without the

' .
presence of process/model order mlsmatch As a result of

i‘iv
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these simulation studies it can be concluded that this self-
A\ f

- -&' .
tuning PI(D) controller is a reasonable controller design
, , .

sttategy for the calculation of con&;oller constants (Kc,

A). The positioning«of'the controller zeroes by Ti and

Tq 2s seen in the complex z-plane results in good root loci

T, T

location for time domain characteristics. The calculation
of the cOnt;oller gain ,(Kc3 by solving the estimated
characteristic equation of the closed-loop system and
matching a damping ratio setpoint has been shown to be
workable. The specific results of th;se simulation studies
are summarized in point form below:

1. Control with no mismatgh between the process and the
estimated moael Fesulted in excellent closed-loop
performance. The maximum overshoot is as specified for
processes with no numerator dynamics. In the presence
of a mismatch befween the process and estimated model
oraer, cont?ol is good with the Mp setpoint becoming a
tuning knob to shape the closed-loop response.

2. Incremental and positional variable identification
results in a considerably different estiméted model
when a mismétch between process and model ordet
exists. Incremental estimation tends to match the
‘initial transients wh&ch are dominated by the higher
_frequency dynamics of the process. The incremen;al
mo@el does not match ﬁhé steady state gain of the
-process. The positional,model matches the process 1in

the steady state and resulted in a better controller

¢
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-
desigh. Both methods ¢eswimated an underdamped model

for the higher order over-damped process.

T S
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8. Performance of Self-Tuning PID Algorithm with Linear

Systems: In the Presence of Delays and Disturbances

8.1 Introduction )

The analysis of this chapter ~/continues the studies
begﬁHH in Chapter 7 for #linear systems. The basis for these
fesults are the same as for .those presented in Chapter
7.' In this chapter the objective 1is to evaluate the
performance of this self-tuningMFPPPI(D) controller, The
evaluation tests for the self-tuning controller focuses on
three linear SISO process models outlined in Chapter 5 -
pPMi, PM2 and PM4. Pperformance 1in the presence of timé
delays, process bias and deterministic and stbchast}c
disturbances is considered. -

The 'layout of the chapﬁer is as follows. Secﬁion 8.2
discusses “the results of the self-tuning controller in the
presence  of time delays. simuiation | results for
detérministicl disturbances are presented in :Section
8.3. Section 8.4 considers thé effect of stochastic
disturbances on -'contrbller performancé and parameter

estimation, followed by a summary and comments in Section

8.5.

8.2 Simulation Results for Processes with Time Delays
- Time delays are 'very tommon in the process industries
and their presence cdmplicates the use of advanced control

strategies. From the frequency domain perspective time

178
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delays introduce additional phase lag and ﬁhus, reduce th..
stability margin. From a z—doﬁain view they introduce open-
loop poles at the origin which cause the ultimats gain of
the closed- loop system to be lowered Mfgnlflcantly |

Time delays can be &andled by a variety ‘ of
methods. The controller can'be detuned to allow closed-loop
stability in;the presence of time delays. Another approach
is time delay compensation which predicts the_undelayed
' output of the process "and feedbacks this signal for control
output calculation. This section will 1nvestlgate these two
methods for processes with time delays. The objective is to
evaluate qualitatively the performance of the self-tuning
PPPI (D) control law in the presence of time delays. Ideal
and model-plant mismatch cases for process/model order and
time delay estimate are considered. : : :
8.2.1 Controller Detun{;g

The simulation results for this method of handling time
delays = are summarized in Table 8.1. The two processes
con51dered are PM2 and PM4 for the ideal casg as well as a
mismatch in the txmg\‘delay estimate. In addition the
performance of the self-;;;;ﬁg PPPIDVin the presenée of a
large time delay is considered. |

Figure 8.1 shows the results for the ideal»case cof no
mishatch in the process/model order and’ time delay

estimate. The time delay is unity (i.e. d=1 or k=d+1) and

known. Control performance is excellent once process
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Table 8.1 Performance of self-tuning PID_control in the

180

presence of time delays .
| | |
Process| Mismatch |Figurel ’Mp | Time-Domain Response | Comments
Model iOrderi|Delayi No. ! SP | Mp Ty Ty |
PM2 p=2 da=1 8.1 0% 12% 4.9 15.8 Excellent underdamped response
Ma2  de=l '
T=2
da=1 8.2 158 kY] 19.7 42.90 slow underdamped response, large
de=0 unstable oscillations during tuning
R 4
da=3 | PO f%*iu 25% 3.0 16.8 Good underdamped response, large
de=7. ' j“?‘p“u;yﬂ: unstable oscillations during Laning
)V)
da=4 8.4 ‘408 0% 18.7 . overdamped response
de=4 8.5
PM4 =3 da=1 8.6 15% 0} ) 30.4 39.0 slow overdamped response, lncrease
(Ts-l) M=2 de=1 MpSP
C=2
- da=1 8.7 15% - - - Raesponse 1s essentlally open-lcop due
’
de~0 co béth order and delay mismatch.
da=0 8.8 15% 5% 11.3 28.7 Reasonable underdamped response
de=0-1 .
da=4 8.9 40% 27% 16.7 80.0 Slow underdamped response
de=4
M4 pPe3 da=4 8.10 40% 2% 40.1 75.0 Slow overdamped response

(TB-Z) M=2 de=4
Cw2

——
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parameter estimates have convergeé. Note that the peak
overshoot setpoint is varied from Mp=15-30% in 5%
increments. The actual Mp differs from the setpoint and tﬁe
Mp setpoint has become a tuning knob. "The controller gain
,;alculation method can natura%}y take time delays into
account since it solves the root loci of the estimated model
with time delay and the self-tuning controller.

The effect of a mism;tch in the time delay estimate 1is
shown in Figure 8.2 and 8.3. In the first run the actual
time delay is d=1 but is considered as d=0 in the estimation
algorithm. Control performance 1is reasonable with long rise
and settling times. In the second run the actual delay is
d=0 Dbut éstimated to be d=1. The control performance is
good once process parameter estimates have converged but is
unstable duriﬁg the tuning period. This was also observed
in Fiqure 8.2 during the tuning period. These large
oscillations are attributed to the mismatch of data in/the
input/output regressor and the sensitivity of incremental
variable identification.\ This unacceptable tuning behaviour
can be avoided if initial parameter estimation 1is done 1in

the backgrqund or by esgimating additional bi parameters to
span the estimated minimum and maximum time delay.

The performance of the self-tuning PID controller in
the presence of a significant known time delay (i.e. d=4) is
shown in Figure 8.4. The control law produces an excellent
overdamped”response. The time delay adds four open-loop

Yy
poles at the origin of the unit circle as seen in Figure
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B;S'JRoet loci of Process Model 2 with selt-tuning

Figure
_ ;VPID,contfoller*ggy time delay = 4
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8.5. The ‘Kcu‘is reduced further and the breakaway point is

moved toward (1,30).
The overall performance of the self-tuning controller
-

is excellent if the time delay is %nown. The controller

gain calculation method takes the time delay into account

when determining the ;ontrollér gain. The results for a’

mismatch in time delay estimate are poor during the tuning .

phaée,iﬁlncremental variable identification with™ this

R H 4 . e e o
mismatch 1s difficult. Background initial process parameter

tuning is recommended before self-tuning control  is

"implemented.

A similiar series of simulation rugs are presented for
Progess Model 4 where a mismatch between process and
cbntroller order vexists. In Figﬁre B.6 thg closed-loop
response for a known time delaj of 'd=1 is shown. The
response is s;ow'and overdamped but feasohable. A faster
response may be achieved by iﬁcreasing the Mp setpoint.
Figure 8.7 shows the effect of time delay mismatch for
pPM4. Underestimation of the time delay in addition to the
procgss/md@ii ‘order mismatch results in control’ law
'parameferS' hich ‘are unreasonéble (i.e. Vnegative Ti and
'Td). The estimation of a féasonaﬁle model of the process by
incremental wvariable identification has failed. Figure 8.8
considers a time delay mismatch where the actual delay is
d=0 but—-is estimated to be between d=0 and 4=1. The
controller broduces a . reasonable underdamped

response. Three b.1 parameters are estimated and all are

-
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nonzero since the process is third order.

The performance of the self-tuning PID controller'for a
known time delay of d=4 sample ;eriods is shown in Figure
8.93. The simulation run léngth was 1200 sample intervals
but only the last 600 are shown. The'cloéed—loop response
is slow and underdamped with a large overshoot which' could
be reduced by lowering the Mp setpoint. Recall that PM4 is
sampled at rate such that the high freguency component of
the continuous model is significant. If PM4 is sampled at
.T =2, this high frequency m1smatch is ¢t reduced The effect
of this change for a d=4 is shown in Figure 8.10. The
closed-loop response is excellent. Note that the ‘acfual
delay is twice that of Figure 8.9. This good performance 1is
attributed to a better estimated model by incremental
variable identification.

Overall the self-tuning PPPID controller | gives
reasonable control for § process/model order mismatch and
known time delays. If the delay is unknown, it is better to
overestimate the delay and estimate extra bi

parameters. However, excessive overestimation leads to

poorer conditioning of the estimation algorithm.

8.2.2 Time Delay Compensation
Time delay compensation (TpC) is a second control
technique for handling processes dominated by time

delays. The technique generally involves prediction of the

undelayed output of the process. This predicted output is
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then fedback to the controller for control out put
calculation. The particular method used here is the model-
based, adaptive time delay compensation (TDC) of Vogel and
Edgar (1980). This adaptive TDC is used in conjunction with
the self-tuning PPPID control law for a no process/model
order mismatch case (PM2) and a process/model order mismatch
case (PM4).

The TDC simulation studies presented here are based on
a strategy where the adaptive TDC and the self—t;ning
controller are considered to be totally separate. The TDC
estimates a process model and estimates the undelayed
process output. The self-tuning takes this predicted output
‘and estimates a second model for the controller design
calculations. Therefore, two process models are
estimated. The advantage of separatigé the TDC design from
the self-tuning PID design is that both are independent of
the other. For example a nonadaptive or non-model-based
time delay compensator can be used with the self-tuning PID
controller. A second approach is to use an integrated time
delay compensator and self-tuning PID controller where only
one process model 1is estimated and this one model used to
design the TDC and the self-tuning controller. This would
reduce computational effort and speed convergence of the
controller parameters. Clearly, the first approach gives
more flexibility but at the expense of peing more difficult.

The simulation results are summarized in Table 8.2 for

the two processes considered. Figure 8.11 shows the results



Table 8.2 Performance of self-tuning PID control 1in the
presence of time delay compensation (TDC)

P
i |
vrocess ! Mismatch (Figurel M Time-Domaln Reaponse
1
Model order:Delayi  No. EU Hp v, " .
PM2 Pl da=d 8.:1 15% 108 ] 1
M=) de=d
T )
da=2,4 B.12 198 a0 g6 as’
lam2-5 '
™4 =31 da=-4 8.11 JON L0 -
(T ey M=2 cle=d
]
-p
My p=)  da=g 8.14 308 Lie 16,3 68,3
(Tg=di Ma?  de=4
(-
da=2,4 8.i5 LIV ) 30N 116 B

de=2-5

Comment a

fwcellent nnderdamped respanse

Highiy underdamped resporse

Poor underdamped rasponse

Reansnablie underdamped rosponss

Highly underdamped resporse
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for Process Model 2 with a known time delay of d=4 sample
periods. Closed-loop fesponse is excellent. The undelayed
wﬁgredicted output, marked by the: dashed line, leads the
Jﬂ’égtual output. The convergence “of the estimated process
pgfametersl for controller design are slow to converge as
Fhey‘areﬁgépendentwon the TDC process parameter convergence.
Figure 8.12 shows the results of the self-tuning PID
contrgller with TDC for an unknown varyihg time delay. The
run 1s initiated.with tuned parameters for an actual delay

of d=2 and an egtimated delay ranging from d=2-5. After 250

S

sample intervais the time \delay 1is changed to d=4. The
closed-loop response is highl;\underdamped but the overshoot
ié being reduced as the TDC process parameter estimateé
adapt to the new time delay.

The performance of the self-tuning PIDﬁcqntroller with
the TDC is shown in Figure 8.13 for Process Model ﬁ with a’
known time delay of 4 sample periods. The closed-loop
response for this processy/model order bmismatch . case is
“poor. The respohsé is characterized by large overshoots- and
long settling times. The cumulative effect of time delays,
éequential estimation of two process models and the high
frequency process/model mismatch results in poor closed-loop
performance. To reduce the ﬁismatch of high freguency
dynamics,'PM4 is sampled at TS=2 instead of TS=1. The time"
delay is again lchosen Ato be 4 sample periods (i.e.
delay=4x2=8 secs). The improvement in performance ié

dramatic as .is seen 1in Figure 8.14. The improvement 1is
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primarily attributed to the better estimated process
model. 1Incremental variable identification is sensitive to
the high frequency dynamics present in PM4 when sampled at
TS-1. At T5-2 the high frequency dynamics are attenuated
and a better estimated process model results. }

_/ The performance of the self-tuning PI'D controller with
An unknown varying time delay is shown in Figure 8.15. The
run is initialized with tuned parameters for an actual time
delay of d=2 and an estimated time delay of d=2-5. The time
delay is changed to d=4 after 250 sample intervals. The
response 1is similaf to Figure 8.12 for PMZ. The overshoot
is being reduced as the TDC pi estimates adapt to the new
time delay. |

In summary the performance of the self-tuning PID
controller with the Vogel and Edgar time delay compensator
_is good. The convergence of the estimated parameters could
be improved 1if an integrated strategy wére adopted. It is
again shown that the sampling rate choice is an 1important
parameter for the performance of incremental variable
identification in the presence of high frequency dynamic

mismatch.

8.3 Simulation ﬁesults,for Deterministic Disturbances
Adaptive control on real processes generally reqguires

process model estimation in the presence of deterministic

disturbances. Two disturbances most often encountered are

process bias caused by nonzero mean operating levels of
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plant signals and load disturbances. The following results
examine the performance of the self-tuning PI(D) controller
based on incremental wvariable identification under such
conditions. These results are compared with some selected

results based on positional variable identification.

8.3.1 Process Bias

A process bias generally occurs when the mean level{ OE‘
the process 1nput and output signals are nonzero. ?he
actual value of this bias 1s calculated by Equation
4.20. From this eguation it is evident that if the input
and output levels are zero mean, the process bias 1s
sero. The effect of this bias on the performance of the
self-tuning PI controller for incremental and positional
parameter estimates is summarized in Table 8.3. Four runs
are presented for both Process Model 2 and Process Model
4. The first two runs are based on zero mean data; the
second 2 runs on nonzero mean data. The nonzero mean levels
are chosen to be the mean top composition in weight percent

( =95.0) and the reflux flow rate in grams per second

Yss
(uss=9.93) for a distillation column simulation model used
in Chapter 8. These numbers provided proper scaling of the
‘data. )

Both reflux and overhead composition move between +1.0
of the mean value and thus do not create numerical problems

for the estimation algorithm. The resultant bias for PM2

;and PM4 is 4.36 and 2.76 respectively.  The performance
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criteria for Table 8.3 are calculated after the self-tuning
controller has tuned for 400 sample intervals.
Figure 7.6 provides the PM2 base case results based on

incremental variable identification and no protess

bias. The equivalent result for pos?tional variable
identification 1s shown in Figure 8.16. The closed-loop
response is very similar to Figure 7.6 with a slightly
faster parameter convergence observed. The similarity of
pertormance results from both identification methods
converging to the true parameter values in the absence of
mismatcdh and process bias. The effects of a nonzero process
bias are shown in Figures 8.17 and 8.18. The incremental
results seen in Figure 8.17 are identical to the results of
Figure 7.6. The presence of process bias does not affect
the process parameter estimates based on incrementai data as
this estimation techniqu; differences the data and
Ad=0. The effect of a process bias on positional estimation
is significant, as Sseen in Figure 8.18. The estimated
process parameters are biased as a result of poor
convergence of the process bias estimate. After 450 sample
intervals the bias estimate is only 3.25. This also results
in the poor convergence of the b, parameters. The closed-
loop response is highly overdamped as a result of poor
dynamic and static process parameter estimates. lmproved
performance can be achieved by increasing the Mp setpoint or

beginning the run with a better -initial estimate of the

process bias.
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The results for PM4 seen in Figures 7.8, 8.19 and :8.20
show the same trends for model estimation with process/model
order mismatch. The presence of a process bias -haslvno
effect on incremental variable identification therefore the
time-domain response is identicgl to that of the no proéess
bias run. Positional variable identification is
characterized by poor convergence of the static énd bi

dynamic parameters and biased ai‘parameters.

" 8.3.2 Load Disturbances

Because unmeasurable load disturbances are so common in
the process industries, it is necessary to determine their
effect on the self-tuning PID controller performance. The
objective of this section 1is to -evaluate the regulatory
>capability of the self-tuning controller tuned for setpoint
changes and the effect of unmeasurable load disturbances on
closed-loop process parameter estimation for incremental and
positional variable identification. |

The results preéented in this section are for self-

tuning PID control of Process Model 2 and Process Model

4. Each simulation run was initialized with a reasonable

set of tuned parameters. The load transfer function 1is

chosen as:

1
G(s) = —m , - - (8.1)
3g + 1

-

A unit step change in the load variable is made at 50 and
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150 sample intervals.

The requlatory capabilities of the self-tuning PID
controller are summarized in Table 8.4. For PM2 the effect
of the load change is removed to within a 1% deadband of the
setpoint in 11.3 sample intervals. This excellent
regulatory control 1s shown in Figure 8.21 and 1illustrates
the fact that the self-tuning PPPID controller tuned for
good Servo control gives equally good regulatory
control. The results for PM4 are seen in Figure 8.22. The
requlatory control is sluggish but similiar to the servo
control. Because the form of the PID algorithm is
"setpoint-on-P&I&D", the servo and regulatory response of
the self-tuning PID algorithﬁ are similiar.

The effect of an unmeasurable load disturbance on
incremental process parameter estiﬁation is alsolseen in
Figures 8.21 and 8.22. For PM2, the no process/model
mismatch case, the effect 1is small. The a. process '
parameters move very slightly causing a small deérease in
the 1integral and derivative times. The movement qf'bi
param;Eer‘estimates is larger but does not result 1in a
noticeable change En KC. The closed-l&?p response of the:
process to load and setpoint change; is basically
unaltered. The effect of a load change for a mismatch
between procéss and/;;del order ;s seen ;ﬁ Figﬁre 8.22 for
PM4. The same general trends as for PM2 are.oberVe' but

the movement of process  model estimates is " more

pronounced. The bi estimate movement causes a noticeable
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Table 8.4 Regulatory performance of self-tuning PID control

for unmeasureable load disturbances

i Time-Domain Response!

Process i MismatchIFlgurel M 0 Comments
Mode L No. ! SP Mp T, IType !
pMe Pe? .21 Bl 59% 1. INC Excallent regulatory controi simliliar
M=2 to servo control
Cw2
M4 p=3 L2230 76% 7. INC slugglsh requlatory control similiar
Mw2 L0 Servo controi

Cc=2
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Ko '_decrease\in ‘the controller gain. This translates in a

marginally slower closed-loop response to setpoint and load

——

changes.
The effect of unmeasurable load disturbances for
positional estimation is @uch more pronounced as seen in’
Figures 8.23 and 8.24 for PM2 and PM4 respectively. For PM2
the a; garametereestimates decrease to cause a large upward
fluctuations  1in the integral time. -The bi parameter
‘estimates decrease causing the controller gain tok
inorease., This results in a more underdamped closed-loop
response to setpoint changes. These parameter variations
are alsoA'seen for PM4 in Figure 8.54. The movement of
controller constants is more pronounced in the presenoe of
process/model order mismatch. The large 1increase 1n the
controller'gain is the result of the decrease in tne b

¥

parameter estlmate (i.e. estimated process

igain) This

Vfranslates 1nto a highly osc1llatory closed loop resﬂonSe to;n '

load and setpoint changes. fThe fluctuatlon of W andﬂTd\.fr
track each other. because T4 is resetﬁto one- quarter of T if 5_3
the estlmated model calchlates T ‘to be greater than T, /4.-g7°”
In summary this sectlon shows ‘that incremental varxable
1dent1f1cat1on is not affecteo by a nonzero‘process b1as and
has 5 low 9‘,sens1t:1v1ty xo o unmeasured gf load
éistnrbances. Positional 1dent1f1catlonV:ﬁs shown to be
highly sensitive to both nonze;o process blas and unmeasured

load distur@ance..-" It 1is galso shown that the self-tuning
oo R )

"8lgorithm tuned for servo ,«éo trol gives good

K v
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regulatory control.

8.4 Simulation Results for Stochastic Disturbances

stochastic disturbances are a reality whiéh must vbe
dealt with when implementing adaptive control strategies on
industrial processes. These disturbances may loosely be
called process noise and measurement noise. Process noise
originates from the process itself while measurement noise
results from electrical sources as the procgss signals are
carried to the cohtroller hardware. The objective of this
set of simulation results is to evaluate the performance of
"the self-tuning PI(D) controller under noisy conditions. A
second goa1 is té compare - the self-tuning PI(D) control
based on incremental variable identificétion with one based
on positional identification.

The basis of the simulation runs are summarized in what
follows. The PI form of the controller is used for all
runs. This was doﬁe vecause of  the sensiti§ity of
derivative action to noisy environments. The desire wa&s—to-
examine the noise effects on the self-tuning aspect of t?e
controller not the derivative action aspect. The noise
model is: : {

C(z_1) .
‘N(t) = — 7 E(t)/A o (8.2)
a(z )
where N(t) and £(t) are coloured and white noisé sequences

-respectively, A(zf1) and C(z-1) are monic- polynomials in the

o



backward shift operator z”! and & is (1-z~'). The

particular choice of C(z—1) used for these results is:
-

1

ciz™') = 1 - 0.8z (8.3)

This choice results in the noise being correlated with the
estimation walgorithm input-output data regressor. The
A(z-1) polynomial is the denominator polynomial of the
process model. Process Model 1 and Process Model 4'are
chosen as the ideal and the mismatch cases
respectively. The estimation method is recursive extended
least squares (RELS) with one ¢, parameter estimated.

The simulation results for PM! are shown in Figure 8.25
for the self-tuning PRR control}er based on incremental
. variable identification for the iégal case. The variance of
the white noise ingﬁ&, E(t) ig 0%=0.00111. The ’servo
performanceﬁ of the co;troller is excellent with the process
parameter estimates and the controller constants being Qery
close to the results of the equivalent no noise case (see
Figure 7'1)', It is interesting to nofe that the convergence

of the c, parameter estimate is slow and the nonstationary

1
nature of the disturbance as seen by the drifting controller
output signal.

The self-tuning PI control results for PM4 is seen 1n
Figure 8.26. These results show how incremental
jdentification is affected by both noise and mismatch

between process and model order. The variance of the white

noise sequence 1S 02=0.000025. The closed-loop response 1is
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qpod, similiar to the equivalent no-noise case (see Figure
7.63. The process parameter estimates are slightly biased
from the no-nolse case.

In _summary it 1is evident that the selfftuning PPPI
controller can héndle stochastic disturbances if there is no
mismatch between the process and the model. It is, however,
sensitive to noise in the presence of mismatch, In this
situation the input and output signals should be filtered
through an analog filter before Hifnq passed to the process

parameter estimation algorithm.

8.5 Summary
The self-tuning PPPI(D) control law has now been
evaluated in the presence of—time delays, process bias, load
disturbances and ncise 1in addition to the process/model
order mismatch results of Chapter 7. As a result of these
simulation results the following additional conclusions are
' )

drawn and ~arized in point form below:

1. The . :ormance of the self-tuning PID controller is

found to be good for lown time délay. The control

design method incorpofaﬁiﬂA the time delay into the
controller gain calculation and detuned the controller
gain. Incremental variable identification for a
mismatch of time delay and model order results in poor
control. An overestimation of the time delay with

estimation of extra b.1 parameters improves the

performance. Time delay compensation 1is shown to
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result in good control for a known or unknown delay.

2. The self-tuning PID controller tuned for servo response
gives good regulatory control for léad disgurbances.

3. The self-tuning PID controller based on incremental
identification is found to have a ~low sensitivity to
process bias " and deterministic load disturbances
whereas positional identification is very sensitive to
both process bias and load changes.

4. Good Hcontrol is achleved in the presence of stochastic
disturbances for no mismatch of process and model
order. With mismatch degradation of control
performance is seen because incremental identification
is sensitive to the additive effect of the high
frequency dynamics of model order mismatch and
noise. Positional identification is less sensitive to
these effects. ‘ .

The feasibility of the controller design strategy and
the cabability of self-tuning PPPI(D) controller has been
demonstrated for linear processes under various
environments. It is projected that it is also capable of
controbiing -more difficult processes chéracterizsea by
nonlinearitiééfémﬁ»méa%urément noise ‘in addition to the

Fhis | chap¢er. H@@qyer, the sensitivity

B

issues con51dered im
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dentification leads to increased parameter variance. 'This

can be attenuated by proper analog filtering.



.J'y

.
9. performance of Self-Tuning PT Controller on\a Simulated

Nonlinear System ?

9.1 Introduétion
The conclusions drawn in Chépters 7 and 8 for the self-
tuning PI(D) " controller are based on simulation studies

‘using linear transfer function process models. The

o

objective of this chapter is to evaluate the performance of

the self-tuning PI(D) controller on a highly nonlinear

-

system which  approaches the complexity of a real

process. The particular system chosen is the distilli;;dn
process, an important‘seﬁafation method in éhe refiniﬁé'énd
chemiéal industrieg. The se1f4£uning controller, based on
the pole placement design principle: and increméntal

parameter estimation, is examined under the combined effects

of time delays, noise - and nonlinearities. The

=

initialization parameters for the controller are summarized-

in Table 7.1 with the ‘exception of two variable forgetting

factor parameters. The initial and minimum' forgetting

factor are chosen to be 0.998 instead of 0.99.

Section 9.2 describes the nonlinear distillation column

0

simulation ' .package. SISO ‘control of the ovgrhead' and

‘bottoms composition (but not simultaneously) are considered

in, Sections 9.3 . and " 9.4 respectively. Section 5.5
' , 3

o

summarizes the results of this chapter.

242
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" noise added to the control, output and load signals at every

243
9.2 Distillation Column Simulator
The distillation column simulation package  (DCSP)

employed for these studies is a simulator developed by Kan

{rand modified . by Nazer (1981). It is a dynamic,

'fear model of a ‘binary distillation column based on

both material and energy balances equation. Assumptions

made. in éhe derivation of the model are:

1. constant ligquid mass holdup,

2. neéligible vapor mass holdup,
3. perfect mixing at each stag;,
. 4. instantaneous heat and mass transfer equilibrium.

A detailed description of the simulator is given by Kan
(1982).

For the purposé§ of this .study the distillation column
model is configured to make the binary separation of
methanbl‘and water. Appendii A cohpains a sample listing pf
the data file ~uséé. to:'initialize the simulator for SISO
control of the overhead composition. The majority of the
data- "file contains\‘thermodynamic data such as enthalpies,
flow rates and compositions.‘ Lines 1,7,8 and 16 are the
only lines modified for the simulation results'presented fﬁ
this chapter. Line 1 specifiés the option of servo conttol
of the top ~or bottom lbop or regulatory congnol in the
presence of feed flow rate load changes. vLines 7 and. 8

determine the time and magn:tude of setpoint changes or load

disturbances. Line 10 specifies the amount . of measuremént
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J .
; ‘

/ A
control 1mterval All simulation runs are SISO runs. No

o attempt was made to study the multi- loop per formance of the

-

§elf-tuning PI controller.
pe

Cet

9.3 Overhead Composition Control
control of the overhead eompositiqn is achieved by
manipulating the reflux flow rate  of the simulated
column.: The column feed and reboiler.steam flow rates are -
held constant. A time series ahalysis (Tsa) (vien, 1986) of
c}osed-loop input-output data wes cbmpfe;ed to determine the
-=modet-order of the discrete transfer fungtion relating the
reflux flow rate and the overhead eompositig§{: The‘results
showed that the model was first order w1th one a and one b.1
parameter. Initial model pardheter estlmatlon was then
completed us1ng thes nonrecursive honlinear least squares
option of Vien's Process Ident1f1cat10n Package (PIP (Vien,
1986). The resultant ‘model for T =3 minutes is .estimated to

v
- Eo ) . -
L] '

0.5372" "+

G(z™) =. - 1 | (9.1)
1 - 0,351z ’ - ’

éecause the time series analysis shows that the model order
of thf* overhead loop 1is first order, all simulations are
done with a self- tunlng PI controller based on a’ first order
model. Due to the-presence of noise and nonlinearities, aw

recursive extended least squares estimation algorithm is

used with.one c; estimated.
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The servo self-tuning control results are summarized in
. g

q“.

Table 9.ﬂ‘£or two sampliﬁé rates for the no noise and th@'ﬁ
noise cases. All results. presented in this chaptef are
based on incremental variable iden;ification. Figure 9.1
shows the no noise results for Ts=3. Closed-loop responsé/
to setpoint changes is goqd. The change in setpoint @from
95% to 94% at T=305 minutes results in an‘oscill§§ory
response. This change also causes a distinct change in “the
process parameter estimates and the controlger
gain. Convergence of the process pargmeﬁer estimates -is

good but slight shifts age seen at setpoint changes as the

. process output moves above and below the mean level. This

is partially attributed to the nonlinearity of the:
process. The ‘estimated deterministic process model at T=800 °
minutes is:
-1
0.586z

G(Z—H = = - (9.2) °
) 1 - 0.3962

v

The addition of measurement noise, as seen 1in Figure 9.2,

results in biased parameter estimates. The estimated

deterministic process model at T=800 minutes is now:

- 0.661z " |
Gl(z . ) = 7 — ' ' (9.3)
1 _ 0-4212 E ) . N

v
-

However, the resultant control is good in spite of biased -

parameters.

The effect of choosing T =1 minute is shown in Figures -



Tablé 9.1 Servo self-tuning PI control of overhead and
bottoms composition of distillation column
simulator (DCSP)

! 1

Run | Sample | Figure | Nolse
|Intervall No. |
DCSPTL.3.D00 3.0 9.1 No
;

DCSPTL.3.D01 3.0 9.2 Yos
3CSPTL.1.D0O 1.0 9.3 No
DCSPTL.1.DO1 1.0 9.4 Yes
2CSPTL.3.DOS 3.0 9.5 Yes
~CSPBL.3.002 3.0 9.6 No
5CSPBL.J.DO3 3.0. 9.7 Yos
DCSPBL.3.DO6 3.0 9.8 Yos

|
| IAE
1

|
'] ' Comments
|

21.7

112.0

79.4

130.0

496.0

Good servo control

Good servo control, some blasing of
parameter estimates

Good servo control

Good servo control, severe biasing of
parameter estimates

Good regulatory control
.20
Good underdamped servo control

Reasonable underdamped servo control

Acceptable regulatory control
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9.3 and 9.4. For the no noise case closed-loop control is
excellent., Again the most oscillatory response is seen at
T=305 minutes as the setpoint moves to 94% from 95%. The
estimated'process model at T=800 minutes is:

. -

0.259z
: (9.4)

Gz =

, - 0.718z

The effects of measurement noise for TS=1 are shown 1in
Figure 9.4. The estimated gEocess model at T=800 minutes
is:

0.486z

G(z_1) =

T “ (9.5)

1 - 0.494z
A severe biasing of the estimate process parameters appears
when compared with the no noise model (cf. Eduation
9.4). This is attributed to the additive& effects of the
noise implemented in DCSP and the sensitivity of incremental
variable identification to high frequency
noise. Measurement noise will cause biased process
parameter esﬁimates if there is a mismat;h between the
estimated noise ,model and the true noise model, as is the
case here. At the higher sampling rate (TS=1) biasing
effects of the noise are magnified and incremental variable
identification estimates a model which incorporates the high
frequehcy noise dynamics. The biased process parameter
estimates result in a reduction of the cz};&faféd KC and 'I‘.1

of the controller. Even with this biaSing, the controller
]
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performance 1is judged to be good based upon the integral o:
the absoiute error (IAE) calculation.

The regulatory control ability of the self-tuning PPPI
controller tuned for servo responses is demonstrated in
Figure 9.5. The unmeasurable load disturbances in this case
are a +g§% change in feed flow rate. The controller 18,
opera}ed with the identification off. The controller
parameters, Kc and Ti’ are averaged from the results of
Figure 9.2 and are K_=0.793 and T,=2.63. Regulatory control
is excellent. The nonlinear nature of the- distillation
column simulator is demonstrated at the -25% change in feed

.flow rate. The reflux flow rate moves sharply upward at
this point. No noticeable change in reflux flow rates is
seen for a +25% change in feed flow rate.
4

9.4 Bottoms Composition Control

Contrél of the bottoms composition of the distillation
_column simulator is achieved by manipulating the steam flow
rate to the reboiler. For this scheme the feed and reflux
flow rates are held constant. A times series analysis (TSA)
of closed-loop input and output data showed the order of the
model relating the steam‘ flow rate to the bottoms
composition to be first order. & first order model fit for
T =3 minutes using a nonr;gur51ve nonlinear least squares

estimation algorithm resulfed in the following model:
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Figure 9.5 ‘Regulatory PI control of OVHD composition
(K_=0.793,T,=2.63,T,=3,noise)
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o -1.245z2 . N , -
Glz ') = - — \ ' . (9.6)
4 - 0.8312 .

These results suggested that a self-tumning PI controller be
implemented. ‘ \
The choice of the sampling period gor the bottom @Qop

is di¢tated by the desire that DCSP emulate the experxmental

.

column conditions as closely as possible. The bottoms

composition of the experimental column igrenglyzed by a gas

chrom&tograph ;ﬂgch*’ “has a cycle time of 3

minutes. Therefqg%@ .5 feasonable ch01ce of ﬁs is 3

minutes. This 1nt:oduces a, time’ delay of one sample
: : K "o

interyéi into the bottom loop.
The iser.'vo self-tuning PI runs fdf control of the
.bottoms'compoeition are summariZed in Table‘9.1. Eigure 9.6
describes the tuning phase and the resultahf closed-loop-

response for no noise added to the simulator. Process
- ) :
para?eter . estlmaggs . a@aonverge quickly. The estimated
B {5 .
deterministic prodess model at T=800 minutes for recup ive:

e

extended least sguares is:

oy -y.314z -
Gz ) = : — ! C(9.7)
© 1 -.0.869z i :

The closed loop performance for setpoint changes in the

.,

‘~_bottoms comp051t;on, iﬁ good (W1th a peak oversﬁoot as
speclf;eau§1.e..,p-15%) The - efﬁg;t of noise on the Fpottom

~ loop is showh Flgugg g 7 ‘The most 51gn1ﬁ1cant result is

> w
v o

Lo S ‘f g, e ‘@
4 g 'vﬁ" 1

- .:M‘:. : 2' R thpigg . ) , . . ~

5
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‘model at T=800 minutes:

results

” § ETR—

LT 268

) s N co
P @
8

R ' . . . E s
~the biasing of the a, estimate as shown 1in this estimated

. -1.3712"] |
Glz ') = - . IR . (9.8)
ﬂ 1 - 0.787z o

¥

This causes the T, 'to be half the value of the no-noise 6

1

,run.‘ TheﬁﬁfeSult on the. closed-loop performance is an

increase in control action and the oscill;}ory response seen

in Figure 9.7. Thls again illUstrates the sensitivity of
* 5 Caw ‘,*“ )
1ncremental 1dentlflcatlon to h1gh frequency noise.A
e ,
The tuned Kc and Ti of Flgure ga7paqe used in, a fixed

PI control algor1thm to show the regulatory ablllty of, thef

; .5”%¢¢¢Ng“
self-tuning PI controller tuned for setpg1nt change& Thesef””ﬁ

results are seen in Figure 9.8. Load dlsturbances are a

$25% change) in the 1liquid feed flow rate to  the

s

column. Regulatory control  is good with the bottoms®

comp051txon returning to within 2% of the -setpoint in 10

‘ sample%ntervals. Disturbance reijection for a -25% change

n an underdamped response. Comparing Figure 9.8
w1th Figure 9.5 it is apparent that feed flow rate changes

have a much greater 1mpact on the bottom loop than on the

" top loop.@'rhis is attrib%ted Wh%n‘mleed ;whi.ch has a

faster effect on the stripping portion-of the column¥
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9.5 Summary L

The distillation column simulation results show that
the _self-tuning PPPI controller can handle systehs which
approach the complexity of a real prbcess. S1SO servo and
requlatory control of the overhead compositibn and bottoms
composition show satisfactory results. It also demonstrates
that the controller design strategy is feasible in self-
tuning mode - the strategy whig calculates the controller
gain by solving £he estimatdd characteristic equation and
the integral and derivative times to cancel the esti ated
process poles. |

The sensitivity of 1ncremental varlable identification
to high frequency noise is 111ustraté§ For simulaﬁion runs
with measurement n01se the parame%ﬁr estlmates are biased
from the no’n01se runs. This b1as&ng of parameter est1mates
must be reduced to allow long term Qperat1on of the q.}f-
tuning controller in theapresfnce of coloured noise. One
approach would be to employ a recursive estimation algorithm
like ~recursive ins:rumental variables (RIV) to estimate a
géneral nocise hodel. All: vruns presented assumed a
simplifieé N(t)-C(z_1)£/(A(z_1)A) noisa model. A “second
procedure to minimize the noise effects is ﬁo pass the
‘input-output'data through an analog filter before passing it
Eo the estimat:on algorithm. A final method\ is to sample
the process at a slower rate. S

ATwo_othér',issues uhicﬂ became ,aépareni during the

course of these simulation -studies are the importance of

-

o
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proper input-output data scaling and préblems of
overestimating model order. Initially, the ' process output
was passed to the parameter estimation algorithm in weight
fractions ‘instead of weight percent. For the distillation
colum overhead loop, this means that range through which the
overhead composition varied 1is 0.94-0.96, a change of
0.02. The corresponding reflux flow rate variation 1is 9.0*
11.0. Parameter estimation with this choice of units is
extremely slow with - a resultant poor ¢losed-loop
response. When the process output is passed to the
estimat%pn algorithm in weight percent (i.e. 94.0-96.0),
parameter convergence is greatly accelerated. This
phenomenon was attributed to numerical ill-conditioning of
the identification algorighm (Hanson  and Lawson, 1969) and
underlines the importanceJ of jpropgr‘ data scaling. As«§}
general rule of thumb the rangev through ‘which lthe input
moves should be close to the ranqé7of the outpuf siéﬁal.

h The second issue encohntgred is the problems which can
arise Y the  process ~ model order is "
overestima;ea. Incremental vag;abiés identxflcatlon in the
presencé““‘bf" nonl1near1t1esy 'cofrelated noise and an
overparameter1zed madel results in the process parameter
estimates drifting to unreasonable values and in some cases
unstablg closed-lopp responses. Incremental varxables 1s
more sensitive to this overparameterization than positional
variables. If the exact process order 1S unknown, it is

\\

safer to underestlmate the model order than to overestimate
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the model order.
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10. Conclusions and Recommendations ~
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10.1 Conclusions o N R

' ‘v;,‘ v, .

Two levels of conclu51ons are presentedmasap rdsu t of

i E
the theoretical, stability and performance analySLS«done in
this thesis. The first level is a small number' of overall

B

conclesions which terssl!y summarize the dontribution and
significance of this research project. The second 1eQéi‘ is .
made up of numerous conclu51ons which describe in more
detail the findings of thiyﬁyork. e

The overall conclusions are‘summarifed’below:

1. The performance of EE%L self-tuning PI(D) controller
derived from the pole olacement techniQue is superior
to that of the generalized minimum variance technique.

2. A new design method for controller gain calculation

based on the closed-loop poles of the estimated

characteristic polynomial=- is shown to be a workable

(2] N
A,

scheme. It is directly related to the  maximum
overshoot (Mp) of the closed loop system when used in
conjunction with the ggle fwgplacement " design
principle. .For low order systems‘ with no.numerator .
dynamics‘and timevdelays, the closed-loop response is
exactly as specified.

Fncremental variable identification while insensitive
to process bias ‘and deterministic step - disturbances, is

very sensitive to unmodelled dynamics, process

nonlinearities, time delay mismatch and process
. ,

267 .

¥ # ” i w2 vt "W“&" I ‘fg i



268

noise. Positional variable identification is sensitive
to a nonzero process bias and deterministic
disturbances, but ‘'shows less sensitivity to mismatch,
4 g

nonlinearities and noise.

The second levelb of onclusxons -elabogate on the

overall conclusions and are d1v1ded 1nto three areas. They

-

‘are summarlzed below

Self-rTuning PID Controller Comparlsons

1.

The self-tuning PIY

:algorlthm of Song et al. (1986)

is rigorouslw ived - from*$ h,, ARIMA process

. .. . .o
representatlon original derivation included, the

?

ad hoc step o! ’ﬁ%txng C( “1y21 whereas the ARIMA model

-

calculates C( y=1.

W

The Song et al* (1986) and the Tuffs and Clarke (1985)
adaptive controllers are equivalent for the simplified
PI1(D) forms.

As observed via the root locus analysis, positioning of
the controller ieroes near the process poles, as
determined by T, and Tg, accounts for the superior
performahce . of the pole placement P1 (D)
controller. This dr;wS' the closed-loop pole wg}ch

originates aY) controller integrator pole well within

the unit circle.

_Controller Design Considerations >

The conclusions stated below are for the self-tuning
: v

PI'(D) /controller based on the pole placement principle and

the new desagn method for the controlier gain.

f

i .
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The effect of rempving the setpoint signai from the
derivative and/or proportional term is a sloweY \SQEVO
response resulting from different closed-loop cerd’”
locations. However, the stability margin, closed=160p
poles and regulatory response is identical for the
three PI(D) algorithm forms.

In the presence of process model mismatch, the new
dgsﬁgn method for the controller gain becdmes a tuning

knob to shape the, closed-loop respénse. I the

unmodelled dynamics or time delay mismatch becomes

large, unstable controller gains. = may be
calculated. The desié% method dep;nds ©on a
"reasonable"” model of the process.

The self-tuning PID controller performed well for
processes with a known time delay. The contro}ler gain
is detured to take the‘destabilizing effect of a time
delay into accog‘t and results in a moreiﬁluggish

~ S

closed-loop response.

. The time delay combensation method of Vogel and Rdgar

(1980) when used in conjunction with the self-tuning

PI (D) controller results in good closed-loop response

-

.for both a known and unknown time delay.

The presence of minimum phase numerator dynamics in the
process had no adverse effect on the self-tuning
controlier performance.

The self-tuning ‘PI(D)‘ controller, Yuned for servo
control gives good regulatory gontrol for deterministic
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. . . : . \
and_stochastlc disturbancesy

\

.

10.2

Incremental and positional “varigble identification

result in different estimated parameters in the

~.

.

presence of mismatch; The incremental identification
model matches the initial dynamics of the process and

not necessarily the steady state gain. The posifionql

.model gives a better matbh of the process dynamics and

stgady state é%ﬁﬁ and results in a better con;roller
design. ' |

The sensitivity of incremental variables identification
to unmodelled dynamics and noiée can be reduced by -
proper sampling rate selection and apalpg filteriﬁg_ of
input and output signals.

¢

Recommendations for Future Work - T T

" This sectidén suggests topics for future research in the

field of self-tuning control and specific areas where the

self-

improved.

1.

tuning PI(D) controllers of this projétt~\might be
» | ‘ 1 2
[ /*__u—-‘
The root locus analysis of . the self-tuning . PID,
algorithms gave valuable information about how ;hé
generalized minimum ‘variance and pole placement
AN . o

principles designed their respective PID control law
and how this impacted on the stability and performance

’ , ,

characteristigs of  the closed-loop system. The

importance of controller zeroes and polé locations



~

4.

y . 2

became apparent. "This type of root locus analysis “is
recommended for‘ adaptive éqntrollérs in general és it
provides a clear picture of‘~how the’ controller
operates. o ‘ A |
The root locus techniQue Aisf onlyi one analysis
method. Other standard technigues are available for
the ~ analysis = 6f"‘ cﬁ%sed-loop~  -adaptive
systems. Frequency domain techniques could be psed to
analyze adaptive controllers as this will eprovide
fufther insight into the design method, stability and
performance ‘properties.éf tﬂe controller; It may also
suggest further design methods for adaptive
contro;lers. In pgrticular, ~a _ frequency domain
analysis of the self-tuning PID controllers outlining
in this thesis should be completed ta complement the
root locu; analysis. | |
;ncrementalﬂvariable identification is sensitive to
unmodellea dyna&ics.//This problém qan_be reduced by
estimating a highef/ order model and using mbdél

reduction techniques to obtain the low order model

) . .
necessary for PID controller design. In addition the

'prqposed~'new design method for controller.gain would

give, better results if more information about the

_process is available. Further study into the impact of

model géguction techniques on self-tuning control is

~

i

recommended. ' A

It became apparent from the study of the various self-

*

Lo
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tuning PID algorlthms that there are problems w1th the

controller gain calculation. ThlS led to the proposal

of a new design method for the controller gain based on

the - estimated closed-loop pole '1ocations. This
pFocedure could'b; refined in a number of ways. First,
a more accurate method of predicting the time-oomain
characteristics of the closéd~loop systém based on the

estimated location of the closed-loop poles and . zeroes

~should, be developed. Presently, an accurate prediction

is only possible for up to a second order system . with

~

no nhmérator“ dYnamics. Secondly, work should be done

to assess the feasibility of using the actual time

response data as a fine tune mode for the controller

gain calculation. ~One'possible method would be to use

an expert system supervisory sheli, to monitorCthe

méximum overshoot, rise time and settling time of the
N A

-_—

closed-loop system and make recommendations on how the
controller gain should be n£d1f1ed ‘

The practlcal usefulness of 1ncremental identifioation
on real processes is limited by its sensitivity to
unmodelléd dynamics, nonlinearities, time delay

mismatch and process noise. Studies should be

completed to determine the extent this sens1t1v1ty can

be reduced. Possible areas of investigation are analog

2

filtering “»of input-output data and sampling rate

‘selection. Otherwise, the utility of incremental

identification is limited..

4
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6.'U§e of ,thé various:f;cufsive least squares algorithms
result in biased parameter estimates in the presence of
coloured noise. This affects th& design of the self-

| tuning” PI(D) controller. ﬁnu investigation should be
completed to assess recursive identification schemes
which can estimate the garameters of a more general
noise model so ' that unbiased paraméter estimates are

obtained.
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- Appendix A

Table A.! is a sample listing of the data file used to
configufe the nonlinear distillation column simulation
package (DCSP) used in Chapter 9. Lines 2-6, 9 and 11-52
are unchanged for all of the results presented and are
chosen to approximate the pilot scale binary -distillation

column located in the Department of Chemical Engineering.
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Table A.1 Input data file for distillation column simulator.

(DCSP) ‘
XD SETPOINT CHANGES FOR TOP LOOP CLOSED LOOP SIMULATIONS
30.0, SAMPLE TIME
800, 0, 5, 900, 2, ', 2, 6, —
17.980, 9.330, '0.800, 21'9.81, 135.59,
3068.0, 2301.10, 0.50120. 0.95986, 0.96881,
0.0500, 0.9500, XBSP,XDSP
1, 2, S. 155, 305, 485, 605, 753, 905, 1088, CHANGE TINF
0.0, 0.0,1.053, 0.0,-%+.053, 0.0,'.0%3, 0.0,~-'.0%2, 0.3, ODIST
0.9000, 0.9000,
0.0600, 0.0900, 0.0300, 0.0300, 0.0000,
0.04997, 0.18697, 0.35693, 0.46078, 0.39500, XT(:0)
0.59445, 0.69810, 0.79780, 0.88306, 0.96000,
. 9.1003, 2R.359, 22.190, 22.998, 23.710, LT
- 5.9853, 6.7409, 7.8925, 9.2761, 9.1297,
13.259, 13.090, 13.887, 14.610, 15,115, VT 10)
15,871, 17.022, 18,475, 19,250, 0.0000,
7300.0, 100Q1.t, W18C.y,  1101.0, 841.00, wT(10)
732.10, 707.20, S516.70, 507.90, 9.30,
400.00, 406.23., 381.36, 356.49, 2331.62, QLP (1C)
306.7%5, 28'.87, 257.00, 522.30, 0.0000,
§10.70, £33.80, 456.70, 403.20, 365.90, GRP (16}
332.2C, 285,10, 248.00, 437.10, 0.0C00,
1.0000, 1.0000, 1.0000, 1.00CC, 1!.0C00. EC°Q)
1.0000, 1.0000, 1.0000, 1.0000, 0.00C00,
1.0000, 0.9500, 0.9%0C, 0.9500, 0.950C, EE(10)
0.950C, 0.9500, 0.9500. 0.9500, <¢C.o00C,
0.0000, 0©.0350, 0.068%, 0.1020, 0.1'3397" X5(26)
0.165%0, 0.2026, 0.2389, 0.273S5, 0.3c78,
0.3408, 0.3722, £.4028, 0.4325, 0.4612,
0.4892, 0.5162, 0.5665, 0.5926, 0©.6<00,
0.7272, 0.80S8, 0.8767, 0.9412, 0.9713,
1.0000,
0.0000, o.2xj§, 0.3469, 0.4372, 0.50553, Y5 (26)
0.5609, 0.6143, 0.65%6, 0.8687¢, 0.710C.
0.7331, 0.7500, 0.765Z, 0.7793, 0©.7927,
0.8043, 0©.8154, 0.8300, 0.844%, C.8624,
0.8934, 0.9224, ©.9504, 0.9783, cC.988!,
1.0000,
100.00, 96.390, 93.610, 91.390, 89.050, TLS (26!

87.500, . 85.400, 84.280, 82.700, f8:1.670,

80.250, 79.5!'0, 78.780, 78.000, 77.170,

76.600, 75.300.° 74.80p, 74.060,, 73.2zC.

71.330, 69.440; 6J.940, 66.110, 65,440,

64.700, '

0.0000, 0.0500, 0.1000, 0.!50C, 0.2000, XST(19)
0.2500, 0.3000, 0.3500, .0.4000, 0.4500,

0.5000, 0.5500, ~0.6000, 0.6500, 0.7000,

0.7500, 0.8000, 0.9000, 1.0000,

418.3%, 399.56, 378.64, 355.63, 331.46. HXS (19)
30%.43, 280.32, 256.38, 235.46, 221.75,

203.85, 191.53, 182.93, '177.82, 173.63,

17C.61, © 168.%2, 165.50, 163.17,



