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Abstract

This thesis comprehensively investigates Distributional Reinforcement Learn-

ing (RL), a vibrant research field that interplays between statistics and RL.

As an extension of classical RL, distributional RL, on the one hand, embraces

plenty of statistical ideas by incorporating distributional learning, including

density estimation and distribution divergence. At the same time, distribu-

tional RL involves frontier issues within the realm of RL, such as exploration,

optimization, and uncertainty. In this thesis, we examine the benefits of be-

ing distributional in the context of RL by exploring the resulting theoretical

advantages and properties, including regularization, optimization, and robust-

ness against training noises. This investigation finally motivates the design of

novel distributional RL algorithms.

In the first paper, we delve into the benefits of being categorical distribu-

tional in RL from the perspective of regularization. We attribute the potential

superiority of distributional RL to a derived distribution-matching regulariza-

tion by applying a return density function decomposition technique. This un-

explored regularization in the distributional RL context is aimed at capturing

additional return distribution knowledge regardless of only its expectation,

contributing to an augmented reward signal in policy optimization. In the

second paper, we further provide evidence of the benefits of distributional RL

through the optimization lens. We demonstrate that the distribution loss of

distributional RL has desirable smoothness characteristics and hence enjoys

stable gradients. Furthermore, we show that distributional RL can perform
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favorably if the return distribution approximation is appropriate, measured by

the variance of gradient estimates in each environment. In the third paper, we

study the training robustness of distributional RL by validating the contrac-

tion of distributional Bellman operators in the proposed State-Noisy Markov

Decision Process (SN-MDP), a typical tabular case that incorporates both

random and adversarial state observation noises. In the noisy setting with

function approximation, we theoretically characterize the bounded gradient

norm of distributional RL loss in terms of the state features, which interprets

its better training robustness against state observation noises. In the last pa-

per, we propose a novel distributional RL algorithm, called Sinkhorn distribu-

tional RL (SinkhornDRL), which leverages Sinkhorn divergence—a regularized

Wasserstein loss—to minimize the difference between current and target Bell-

man return distributions. Theoretically, we prove the contraction properties of

SinkhornDRL, aligning with the interpolation nature of Sinkhorn divergence

between Wasserstein distance and Maximum Mean Discrepancy (MMD).

In summary, these papers contribute to the theoretical understanding of

the benefits of being fully distributional in RL compared with classical RL,

which only focuses on the expectation of the return distribution. Along with

our algorithm design, our work not only provides sufficient insights to guild

practitioners for deploying distributional RL in real applications but also con-

tributes to inspiring researchers from other relevant areas broadly in statistics,

machine learning, operational research, and control.
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from LSE for sharing valuable research thoughts during my visit.

My appreciation also goes to my collaborators—Enze Shi, Jinhan Xie,

Hongming Zhang, Yingnan Zhao, Chen Xi, Jun Jin, and Yangchen Pan. Their

knowledge and innovative viewpoints have significantly broadened the scope

of my doctoral research. I want to acknowledge my friends from both the Uni-

versity of Alberta and LSE, whose companionship provided moments of relief

and laughter during the most stressful times.

I am also thankful to the University of Alberta for providing excellent aca-

demic resources and a supportive study environment to conduct my research.

Special thanks to the staff and technical support team, whose assistance was

indispensable in my development at the university.

Last but not least, I am immensely grateful to my family. Thanks to

vi



my parents and my twin brother for their unwavering support throughout

my studies; and especially to Jiayin Meng for her enduring love, who has

consistently encouraged me to pursue my ambitions and supported me through

all the ups and downs.

vii



Table of Contents

1 Introduction 1

2 The Benefits of Being Categorical Distributional: Uncertainty-

aware Regularized Exploration in Reinforcement Learning 4

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Uncertainty-aware Regularization in Value-based Distribution RL 8

2.5.1 Distributional RL: Neural FZI . . . . . . . . . . . . . . 8

2.5.2 Distributional RL: Entropy-regularized Neural FQI . . 9

2.5.3 Uncertainty-aware Regularized Exploration . . . . . . . 12

2.6 Uncertainty-aware Regularized Exploration in Actor Critic Frame-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Connection with MaxEnt RL . . . . . . . . . . . . . . 13

2.6.2 DERAC Algorithm: Interpolating AC and Distributional

AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 Uncertainty-aware Regularization Effect by Return Den-

sity Decomposition . . . . . . . . . . . . . . . . . . . . 19

2.7.2 Interpolation Behavior of DERAC: Mitigating the Over-

Exploration . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.3 Mutual Impacts of Vanilla Entropy Regularization and

Uncertainty-aware Regularization . . . . . . . . . . . . 21

viii



2.8 Discussions and Conclusion . . . . . . . . . . . . . . . . . . . 22

2.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9.1 Convergence Guarantee of Categorical Distributional RL 23

2.9.2 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . 24

2.9.3 Equivalence between Categorical and Histogram Param-

eterization . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9.4 Theoretical Results of Histogram Density Estimator in

Distributional RL . . . . . . . . . . . . . . . . . . . . . 26

2.9.5 Discussion: KL Divergence in Distributional RL . . . . 28

2.9.6 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . 30

2.9.7 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . 32

2.9.8 Convergence Proof of DERPI in Theorem 1 . . . . . . 34

2.9.9 Proof of Interpolation Form of Ĵq(θ) . . . . . . . . . . 36
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Chapter 1

Introduction

Background. In reinforcement learning (RL) [102], an agent seeks an op-

timal policy in a sequential decision-making process. Deep RL has recently

achieved significant improvements in a variety of challenging artificial intelli-

gence tasks, including game playing [74, 93, 69] and robotics navigation [72].

A flurry of state-of-the-art algorithms have been proposed, including Deep Q-

Learning (DQN) [74] and variants such as Double-DQN [46], Dueling-DQN [107],

Deep Deterministic Policy Gradient (DDPG) [59], Soft Actor-Critic [43] and

Proximal Policy Optimization (PPO) [90], all of which have successfully solved

end-to-end decision-making problems such as playing Atari games. The intrin-

sic characteristics of classical RL algorithms mentioned above are mainly based

on the expectation of discounted cumulative rewards that an agent observes

while interacting with the environment. In stark contrast to the expectation-

based RL, a new branch of algorithms called distributional RL estimates the

full distribution of total returns and has demonstrated the state-of-the-art

performance in a wide range of environments [9, 22, 21, 115, 120, 77, 101].

Meanwhile, distributional RL also inherits other benefits in risk-sensitive con-

trol [21, 60, 18], offline learning [113, 68], policy exploration [70, 85], training

robustness against state noises [99, 97], and optimization [98, 87, 55].

General Motivation. The idea of modeling the distribution beyond only

the expectation of a random variable is rooted in the statistical inference in

the statistical community. As the main target of interest in advanced sta-
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tistical research, statistical inference emphasizes investigating the asymptotic

distribution properties of the statistical estimates for the subsequent interval

estimate and hypothesis testing. Similarly, distributional RL models the entire

distribution of the return random variable, the target of interest, instead of

only its expectation. The promising performance of distributional RL moti-

vates us from the statistical community to study the underlying reasons and

further design advanced theory-principled algorithms for effective deployment

in broader applications.

Chapter 2. Despite the impressive empirical improvement of distributional

RL, its theoretical advantages over classical RL are not yet fully understood. In

the first paper, we dive deeper into this behavior difference, starting with cat-

egorical distributional RL (CDRL). The potential superiority of distributional

RL may stem from a distribution-matching regularization in the objective

function, decomposed by employing a return density function decomposition

technique. This form of regularization aims to align with the uncertainties of

target returns for the current return distribution estimates, fostering a novel

exploration strategy. This uncertainty-aware regularized exploration differs

from the standard entropy regularization in MaxEnt RL, which explicitly op-

timizes policies to promote exploration by encouraging diverse actions.

Chapter 3. Subsequently, in the second paper, we further explore the po-

tential advantages of distributional RL through the optimization lens. The

optimization benefits of being distributional arise from the leverage of addi-

tional return distribution information over classical RL, which we investigated

in the Neural Fitted Z-Iteration (Neural FZI) framework. Initially, we es-

tablish that the loss function specific to distributional RL exhibits desirable

smoothness properties, thereby facilitating stable gradients and contributing

to enhanced optimization stability. Additionally, we unveil the acceleration

effects of distributional RL, where we show that distributional RL can achieve

superior performance when the return distribution approximation is accurate,

as indicated by the variance of gradient estimates.
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Chapter 4. In real-world scenarios, the state observations that agents en-

counter often include measurement inaccuracies or adversarial interferences,

leading to suboptimal decision-making or even destabilizing training processes.

In the third paper, we study the training robustness of distributional RL in

the face of noisy state observations. We assess the robustness of distributional

Bellman operators within the framework of State-Noisy Markov Decision Pro-

cesses (SN-MDP) in a tabular context. In scenarios involving noisy states

combined with function approximation, we attribute the robustness of distri-

butional RL to its bounded gradient norm under the distributional loss, which

enhances the overall training robustness of distributional RL.

Chapter 5. The choice of distribution divergence and the corresponding dis-

tribution representation considerably influences the effectiveness of distribu-

tional RL. In the last paper, we introduce Sinkhorn distributional RL, which

utilizes Sinkhorn divergence—a form of regularized Wasserstein loss—to ef-

fectively minimize the discrepancy between the current and target Bellman

return distributions. We provide a theoretical foundation for SinkhornDRL

by demonstrating its contraction properties, aligning with the interpolation

nature of Sinkhorn divergence between Wasserstein distance and Maximum

Mean Discrepancy (MMD). Our comparative analysis sheds light on the be-

havioral nuances of SinkhornDRL relative to existing algorithms, offering a

deeper understanding of its unique advantages and interactions within the

broader framework of distributional RL methods.

Summary. Overall, these papers contribute to a deeper understanding of

the potential benefits of being distributional in the context of RL, compared

with classical RL, which only focuses on the expectation of return distribution

in algorithm design. We explain this advantage from various perspectives, in-

cluding regularization, optimization, and robustness, facilitating the broader

development of distributional RL algorithms in real-world applications. Next,

we propose a novel theory-principled distributional RL algorithm inspired by

the optimal transport literature. This thesis significantly advances the devel-

opment of distributional RL research.
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Chapter 2

The Benefits of Being

Categorical Distributional:

Uncertainty-aware Regularized

Exploration in Reinforcement

Learning

2.1 Abstract

The theoretical advantages of distributional reinforcement learning (RL) over

classical RL remain elusive despite its remarkable empirical performance. Start-

ing from Categorical Distributional RL (CDRL), we attribute the potential

superiority of distributional RL to a derived distribution-matching regular-

ization by applying a return density function decomposition technique. This

unexplored regularization in the distributional RL context is aimed at captur-

ing additional return distribution knowledge regardless of only its expectation,

contributing to an augmented reward signal in policy optimization. Compared

with the standard entropy regularization in MaxEnt RL that explicitly opti-

mizes the policy to encourage exploration, the derived regularization from

CDRL implicitly updates policies guided by the new reward signal. Introduc-
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ing this regularization helps to align with the uncertainty of target returns,

leading to an uncertainty-aware exploration effect. Finally, extensive experi-

ments substantiate the importance of this uncertainty-aware regularization in

distributional RL on the empirical benefits over classical RL.

2.2 Introduction

Motivation: Interpreting the Benefits of Being (Categorical) Dis-

tributional in RL. Despite various distributional RL algorithms that have

achieved remarkable empirical success, we still have a limited understanding

of what the advantages of distributional RL stem from, particularly in the

general function approximation setting. Early work [66] showed that in many

realizations of tabular and linear approximation settings, distributional RL be-

haves similarly to classic RL and the benefits of distributional RL may mainly

be attributed to non-linear approximation setting. While their findings offer

profound insights, their analysis, based on a coupled updates method, over-

looks several elements, such as the optimization effect for the different losses.

The statistical benefits of quantile temporal difference (TD) used in quantile

distributional RL algorithms, such as QR-DQN [22], were revealed in [86, 87],

potentially leading to variance reduction properties. The theoretical proper-

ties of CDRL were first revealed in [84]; however, the empirical superiority of

CDRL or being categorical distributional is not yet well understood. Recent

work [113, 105] explained the benefits of distributional RL from the perspec-

tive of the small-loss and second-order PAC bounds. However, their results are

primarily based on low-rank MDPs or offline RL, which may not be directly

applicable to online RL with the general function approximation.

Contributions. In this paper, we investigate the underlying reasons be-

hind the potential benefits of distributional RL over classical RL starting

from CDRL, the first successful distributional RL family. We examine these

benefits through the lens of regularization and exploration effects, offering a

dramatically different perspective relative to existing works. Firstly, we de-

compose the objective function of CDRL into an expectation-based term and
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a distribution-matching regularization via return density decomposition tech-

nique. The resulting regularization serves as an augmented reward in the actor-

critic framework, encouraging the policies to explore states and actions whose

current return distribution estimate lags far behind the target one determined

by the environment. This leads to an uncertainty-aware exploration effect

in contrast to the exploration for diverse actions in MaxEnt RL. Meanwhile,

we propose a theoretically principled algorithm called Distribution-Entropy-

Regularized Actor Critic accordingly, interpolating between expectation-based

and distributional RL. Empirical results demonstrate the crucial role of the

uncertainty-aware entropy regularization from CDRL in its empirical success

over expectation-based RL on both Atari games and MuJoCo environments.

We also demonstrate the distinct roles that the uncertainty-aware entropy in

distributional RL and the explicit vanilla entropy in MaxEnt RL play by ex-

ploring their mutual impacts, providing more potential research directions in

the future. Our contributions are summarized as follows:

• We propose a return density decomposition technique to decompose the

objective function in CDRL, yielding an uncertainty-aware regulariza-

tion. This derived regularization is thus used to interpret the benefits of

being categorical distributional in RL over expectation-based RL.

• We incorporate the uncertainty-aware regularization into the actor-critic

framework, thereby encouraging uncertainty-aware exploration when com-

pared with MaxEnt RL. We also propose a theoretically grounded actor-

critic algorithm, interpolating between classical and distributional RL.

• Empirically, we verify the effect of the decomposed uncertainty-aware

regularization on the advantage of distributional RL and explore the

mutual impacts of two types of regularization.

Outline. In Section 2.4, we provide the background knowledge of (categor-

ical) distributional RL. We begin by revealing the uncertainty-aware regu-

larization effect in value-based CDRL in Section 2.5, and further specifically

study this implicit regularization into the policy gradient framework to directly
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compare it with MaxEnt RL in Section 2.6. Extensive experiments demon-

strate the uncertainty-aware regularization of distributional RL and its mutual

impact with entropy regularization in Section 2.7.

2.3 Related Work

Distributional Learning via Categorical Representation. Categorical

learning has been widely employed, with advantages in representation [78, 52]

and optimization [51, 98]. Its empirical superiority has increasingly gained

attention in various RL tasks [29], within the broader category of CDRL.

The perspective of uncertainty-aware regularization-based exploration that our

research introduces adds a significant theoretical understanding of the benefits

of being categorical distributional in RL.

Exploration in RL in the Entropy Principle. As a general and effective

mechanism, the entropy principle has been extensively studied to enhance

the exploration in RL, which aims to explore more diverse actions. Classical

algorithms are established upon the maximum entropy RL framework [111],

including soft Q-learning [42], Soft Actor Critic (SAC) [43] and variants [44].

To leverage the knowledge in the learned return distribution to promote the

exploration, existing works include [70] that utilizes the variance, and [56]

in the ensemble way. By contrast, we decompose return distributions from

CDRL and the derived regularization encourages a distinct uncertainty-aware

exploration driven by the discrepancy between the agent’s uncertain estimate

and the environment.

2.4 Preliminaries

Markov Decision Process (MDP) and Classical RL. An environment

is often modeled via an Markov Decision Process (S,A,R, P, γ), with a set of

states S and actions A, the transition kernel P : S ×A → ∆(S), the bounded
reward function R : S × A → ∆([Rmin, Rmax]), and a discounted factor γ ∈
[0, 1]. We denote the reward the agent receives at time t as r(st, at) ∼ R(st, at).
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Given a policy π, classical RL focuses on estimating the expectation of the

return, i.e., the Q function: Qπ(s, a) = Eπ
[︁∑︁+∞

t=0 γ
trt|s0 = s, a0 = a

]︁
. We also

define Bellman evaluation operator T π and Bellman optimality operator T opt:

T πQ(s, a) = E[R(s, a)] + γEs′∼P,a′∼π [Q (s′, a′)] and T optQ(s, a) = E[R(s, a)] +
γmaxa′ Es′∼P [Q (s′, a′)] .

Distributional RL and CDRL. Instead of only estimating the expectation

for classical RL, distributional RL models the full distribution of the return

Zπ(s, a) =
∑︁∞

t=0 γ
trt|s0 = s, a0 = a. The return distribution ηπ : S × A →

∆(R) is defined as ηπ(s, a) = D(Zπ(s, a)), where D extracts the distribution

of the return random variable. We call the density function of Zπ(s, a) as

action-state return density function. ηπ(s, a) is updated via the distributional

Bellman operator Tπ, defined by

TπZ(s, a)
D
= R(s, a) + γZ (s′, a′) , (2.1)

where
D
= implies random variables of both sides are equal in distribution.

CDRL is the first successful distributional RL algorithm family that approx-

imates the return distribution by a discrete categorical distribution ˆ︁ηπ =∑︁N
i=1 piδzi , where {zi}Ni=1 is a set of fixed supports and {pi}Ni=1 are learn-

able probabilities. The leverage of a heuristic projection operator ΠC (see

Appendix 2.9.1 for more details) and the Kullback–Leibler (KL) divergence

guarantee the theoretical convergence of CDRL under Cramér distance or

Wasserstein distance [84].

2.5 Uncertainty-aware Regularization in Value-

based Distribution RL

2.5.1 Distributional RL: Neural FZI

Classical RL: Neural Fitted Q-Iteration (Neural FQI). Neural FQI [28,

83] offers a statistical explanation of DQN [74], capturing its key features, in-

cluding experience replay and the target network Qθ∗ . In Neural FQI, we
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update a parameterized Qθ in each iteration k in a regression:

Qk+1
θ = argmin

Qθ

1

n

n∑︂
i=1

[︁
yki −Qθ (si, ai)

]︁2
, (2.2)

where the target yki = r(si, ai)+γmaxa∈AQ
k
θ∗ (s

′
i, a) is fixed within every Ttarget

steps to update target network Qθ∗ by letting Qk+1
θ∗ = Qk+1

θ . The experience

buffer induces independent samples {(si, ai, ri, s′i)}i∈[n]. If {Qθ : θ ∈ Θ} is

sufficiently large such that it contains T optQk
θ∗ , Eq. 2.2 has solution Qk+1

θ =

T optQk
θ∗ , which is exactly the updating rule under Bellman optimality opera-

tor [28]. From the viewpoint of statistics, the optimization problem in Eq. 2.2

in each iteration is a standard supervised and neural network parameterized

regression regarding Qθ.

Distributional RL: Neural Fitted Z-Iteration (Neural FZI). While

our analysis is not intended to involve properties of neural networks, we in-

terpret distributional RL as Neural FZI as it is by far closest to the practical

algorithms. Analogous to Neural FQI, we simplify value-based distributional

RL algorithms denoted by the parameterized Zθ into Neural FZI, which is

formulated as

Zk+1
θ = argmin

Zθ

1

n

n∑︂
i=1

dp(Y
k
i , Zθ (si, ai)), (2.3)

where we denote the target random variable Y k
i = R(si, ai) + γZk

θ∗ (s
′
i, πZ(s

′
i))

with the policy πZ following the greedy rule πZ(s
′
i) = argmaxa′ E

[︁
Zk
θ∗(s

′
i, a

′)
]︁
.

The target Y k
i is fixed within every Ttarget steps to update target network Zθ∗ .

dp is a distribution divergence between two distributions and the lower cases

of random variables s′i and πZ(s
′
i) are given for convenience in notations.

2.5.2 Distributional RL: Entropy-regularized Neural FQI

Return Density Decomposition. To separate the impact of additional

distribution information from the expectation of Zπ, we use a variant of gross

error model from robust statistics [49], which was also similarly used to analyze

Label Smoothing [76] and Knowledge Distillation [47]. Akin to the categorical
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representation in CDRL [22], we utilize a histogram function estimator ˆ︁ps,a(x)
with N bins to approximate an arbitrary continuous true density ps,a(x) of

Zπ(s, a), given a state s and action a. We leverage the continuous histogram

estimator rather than the discrete categorical parameterization for richer anal-

ysis. Given a fixed set of supports l0 ≤ l1 ≤ ... ≤ lN with the equal bin size

as ∆, ∆i = [li−1, li), i = 1, ..., N − 1 with ∆N = [lN−1, lN ], the histogram

density estimator is ˆ︁ps,a(x) =
∑︁N

i=1 pi1(x ∈ ∆i)/∆ with pi as the coefficient

in the i-th bin. Denote ∆E as the interval that E [Zπ(s, a)] falls into, i.e.,

E [Zπ(s, a)] ∈ ∆E. Putting all together, we have an action-state return den-

sity decomposition over the histogram density estimator ˆ︁ps,a(x):
ˆ︁ps,a(x) = (1− ϵ)1(x ∈ ∆E)/∆+ ϵˆ︁µs,a(x) (2.4)

where ˆ︁ps,a is decomposed into a single-bin histogram 1(x ∈ ∆E)/∆ with all

mass on ∆E and an induced histogram density function ˆ︁µs,a evaluated byˆ︁µs,a(x) =
∑︁N

i=1 p
µ
i 1(x ∈ ∆i)/∆ with pµi as the coefficient of the i-th bin. ϵ

is a pre-specified hyper-parameter before the decomposition, controlling the

proportion between 1(x ∈ ∆E)/∆ and ˆ︁µs,a(x). More specifically, the induced

histogram ˆ︁µs,a in the second term is the difference between the considered

histogram ˆ︁ps,a and a single-bin histogram, aiming at characterizing the impact

of action-state return distribution despite its expectation E [Zπ(s, a)] on

the performance of distributional RL. We first demonstrate that ˆ︁µs,a is a valid

probability density function under certain ϵ in Proposition 1.

Proposition 1. (Decomposition Validity) Denote ˆ︁ps,a(x ∈ ∆E) = pE/∆ with

pE as the coefficient on the bin ∆E. ˆ︁µs,a(x) =∑︁N
i=1 p

µ
i 1(x ∈ ∆i)/∆ is a valid

density function if and only if ϵ ≥ 1− pE.

The proof can be found in Appendix 2.9.2. Proposition 1 demonstrates

that the return density decomposition is valid when the pre-specified hyper-

parameter ϵ satisfies ϵ ≥ 1− pE. Under this condition, our analysis maintains

the standard categorical distributional framework in distributional RL.

Equivalence between Histogram Density Estimator and Categorical

Representation. The histogram function is a continuous estimator in con-
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trast to the discrete nature of categorical parameterization. We show that

they are equivalent in distributional RL in Appendix 2.9.3. As a supplemen-

tary analysis, with attribution to [108], we also discuss necessary theoretical

underpinnings of the histogram density estimator in the context of distribu-

tional RL in Appendix 2.9.4.

Distributional RL: Entropy-regularized Neural FQI. We apply the de-

composition on the target action-value histogram density function and choose

KL divergence as dp in Neural FZI. Let H(U, V ) be the cross-entropy between

two probability measures U and V , i.e., H(U, V ) = −
∫︁
x∈X U(x) log V (x) dx.

The target histogram density function ˆ︁ps,a is decomposed as ˆ︁ps,a(x) = (1 −
ϵ)1(x ∈ ∆E)/∆+ϵˆ︁µs,a(x). We derive the following entropy-regularized form for

distributional RL in Proposition 2 with the proof provided in Appendix 2.9.6.

Proposition 2. (Decomposed Neural FZI) Denote qs,aθ (x) as the histogram

estimator of Zk
θ (s, a) in Neural FZI. Based on Eq. 2.4 and the KL divergence

as dp, Neural FZI in Eq. 2.3 is simplified as

Zk+1
θ = argmin

qθ

1

n

n∑︂
i=1

[− log qsi,aiθ (∆i
E)⏞ ⏟⏟ ⏞

(a)

+ αH(ˆ︁µs′i,πZ(s′i), qsi,aiθ )], (2.5)

where ∆i
E represents the interval that the expectation of the target random vari-

able R(si, ai)+γZ
k
θ∗ (s

′
i, πZ(s

′
i)) falls into, i.e., E

[︁
R(si, ai) + γZk

θ∗ (s
′
i, πZ(s

′
i))
]︁
∈

∆i
E. α = ε/(1− ε) > 0 and ˆ︁µs′i,πZ(s′i) is the induced histogram density function

by decomposing the histogram density of R(si, ai) + γZk
θ∗ (s

′
i, πZ(s

′
i)).

In Proposition 3, we further demonstrate that minimizing the term (a) in

Eq. 2.5 is equivalent to minimizing Neural FQI in terms of the minimizers.

As such, the regularization term αH(ˆ︁µs′i,πZ(s′i), qsi,aiθ ) interprets the potential

benefits of CDRL over classical RL. For the uniformity of notation, we still

use s, a in the following analysis instead of si, ai.

Proposition 3. (Equivalence between the term (a) in Decomposed Neural

FZI and Neural FQI) In Eq. 2.5 of Neural FZI, assume the function class
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{Zθ : θ ∈ Θ} is sufficiently large such that it contains the target {Y k
i }ni=1 for

all k, when ∆→ 0, minimizing the term (a) in Eq. 2.5 implies

P (Zk+1
θ (s, a) = T optQk

θ∗(s, a)) = 1, (2.6)

where T optQk
θ∗(s, a) is the scalar-valued target in the k-th phase of Neural FQI.

See Appendix 2.9.7 for the detailed proof. Proposition 3 demonstrates

that as ∆ → 0, the random variable Zk+1
θ (s, a) with the limiting distribution

in Neural FZI (distributional RL) will degrade to a constant T optQk
θ∗(s, a),

the minimizer (scalar-valued target) in Neural FQI (classical RL). That be-

ing said, minimizing the term (a) in Neural FZI is equivalent to minimizing

Neural FQI with the same limiting minimizer. Please refer to Appendix 2.9.7

for more results about the convergence rate o(∆) in distribution. With the

underlying link between optimizing the term (a) of Neural FZI with Neu-

ral FQI established in Proposition 3, we can leverage the regularization term

αH(ˆ︁µs′i,πZ(s′i), qsi,aiθ ) to interpret the potential superiority of CDRL over clas-

sical RL. The assumption that {Zθ : θ ∈ Θ} is sufficiently large such that it

contains {Y k
i }ni=1 implies good in-distribution generalization performance in

each phase of Neural FZI, which is commonly used in the context of distri-

butional RL to derive tractable theoretical results, such as [113]. Meanwhile,

this connection with classic RL is also consistent with the mean-preserving

property in classical RL [84]. Next, we are ready to elaborate on the impact

of this regularization for Neural FZI (distributional RL).

2.5.3 Uncertainty-aware Regularized Exploration

Based on the equivalence between the term (a) of decomposed Neural FZI and

FQI, the behavior difference of distributional RL compared with expectation-

based RL can be attributed to the second regularization termH(ˆ︁µs′i,πZ(s′i), qsi,aiθ ).

Minimizing Neural FZI pushes qs,aθ for the current return density estimator to

catch up with the target return density function of ˆ︁µs′i,πZ(s′i), which addition-

ally incorporates the uncertainty of return distribution in the whole learning

process instead of only encoding its expectation. Since it is a prevalent notion
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that distributional RL can significantly reduce intrinsic uncertainty of the envi-

ronment [70, 21], the derived distribution-matching regularization term helps

the learning algorithms to capture more uncertainty of the environment by

modeling the whole return distribution instead of only its expectation, leading

to an uncertainty-aware regularized exploration effect.

Approximation of ˆ︁µs′,πZ(s′). As in practical distributional RL algorithms,

we typically use temporal-difference (TD) learning to attain the target prob-

ability density estimate ˆ︁µs′,πZ(s′) based on Eq. 2.4, provided E [Z(s, a)] exists

and ϵ ≥ 1 − pE in Proposition 1. The approximation error of ˆ︁µs′,πZ(s′) is fun-

damentally determined by the TD learning nature. We also discuss the usage

of KL divergence in distributional RL in Appendix 2.9.5.

2.6 Uncertainty-aware Regularized Exploration

in Actor Critic Framework

In this section, we further investigate the uncertainty-aware regularization

and its exploration effect in the actor-critic framework by comparing it with

MaxEnt RL.

2.6.1 Connection with MaxEnt RL

Motivation for the Connection. The maximum entropy regularization is

commonly used in RL, which has various conceptual and practical advantages.

Firstly, the learned policy is encouraged to visit states with high entropy in

the future, promoting the exploration of diverse actions [44, 43, 111]. It also

considerably improves the learning speed [71] and therefore is widely employed

in state-of-the-art algorithms, e.g., Soft Actor-Critic (SAC) [43]. Similar em-

pirical benefits of both distributional RL and MaxEnt RL motivate us to probe

their underlying connection.

Explicit Entropy Regularization in MaxEnt RL. MaxEnt RL [111]

explicitly encourages the exploration by optimizing for policies to reach states
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with higher entropy in the future:

J(π) =
T∑︂
t=0

E(st,at)∼ρπ [r (st, at) + βH(π(·|st))] , (2.7)

where H (πθ (·|st)) = −
∑︁

a πθ (a|st) log πθ (a|st) and ρπ is the generated dis-

tribution following π. The temperature parameter β determines the relative

importance of the entropy term against the cumulative rewards and thus con-

trols the action diversity of the optimal policy learned via Eq. 2.7.

Implicit Entropy Regularization in Distributional RL. For a direct

comparison with MaxEnt RL, it is required to specifically analyze the im-

pact of the regularization term in Eq. 2.5. Consequently, we incorporate

the distribution-matching regularization of distributional RL into the Actor

Critic (AC) framework akin to MaxEnt RL, enabling us to consider a new soft

Q-value. The new Q function can be computed iteratively by applying a mod-

ified Bellman operator denoted as T πd , called Distribution-Entropy-Regularized

Bellman Operator. Given a fixed qθ, T πd is defined as

T πd Q (st, at) ≜ r (st, at) + γEst+1∼P (·|st,at) [V (st+1|st, at)] , (2.8)

where a new soft value function V (st+1|st, at) conditioned on st, at is defined

by

V (st+1|st, at) = Eat+1∼π [Q (st+1, at+1)] + f(H (µst,at , qst,atθ )), (2.9)

where f is a continuous increasing function over the cross-entropy H. µst,at

is the induced true target return histogram density function via the decom-

position in Eq. 2.4 regardless of its expectation, which can be approximated

via bootstrap estimate ˆ︁µst+1,πZ(st+1) similar in Eq. 2.5. In this specific tabular

setting regarding st, at, we particularly use qst,atθ to approximate the true den-

sity function of Z(st, at). The f transformation over the cross-entropy H be-

tween µst,at and qst,atθ (x) serves as the uncertainty-aware entropy regularization

that we implicitly derive from value-based distributional RL in Section 2.5.2.
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Figure 2.1: Uncertainty-aware distribution-matching regularization in CDRL to
capture the intrinsic uncertainty of the environment. qs,aθ is forced to disperse (left)
or concentrate (right) to align with the target return distribution.

By optimizing the value-based critic component in Actor-Critic, i.e., qθ, this

regularization reduces the mismatch between the target return distribution

and current estimate, aligning with the regularization effect analyzed in Sec-

tion 2.5.3. As illustrated in Figure 2.1, qs,aθ is optimized to catch up with the

uncertainty of the target return distribution of µs,a, expanding the knowledge

of algorithms about the environment uncertainty for more informative deci-

sions. Next, we elaborate on its additional impact on policy learning in the

actor-critic in contrast to MaxEnt RL.

Reward Augmentation for Policy Learning. As opposed to the vanilla

entropy regularization in MaxEnt RL that explicitly encourages the policy to

explore, our derived distribution-matching regularization in distributional RL

plays a role of reward augmentation for policy learning. The augmented

reward incorporates additional return distribution knowledge in the learning

process compared with expectation-based RL. As we will show later, the aug-

mented reward encourages policies to reach states st with actions at ∼ π(·|st),
whose current action-state return distribution qst,atθ lags far behind the target

one, measured by the magnitude of cross entropy.

For a comprehensive analysis and a detailed comparison with MaxEnt RL,

we now concentrate on the properties of our distribution-matching regulariza-

tion in the Actor Critic (AC) framework. In Lemma 1, we first show that our

Distribution-Entropy-Regularized Bellman operator T πd still inherits the con-

vergence property in the policy evaluation phase with a cumulative augmented
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reward function as the new objective function J ′(π).

Lemma 1. (Distribution-Entropy-Regularized Policy Evaluation) Consider the

distribution-entropy-regularized Bellman operator T πd in Eq. 2.8 and assume

H(µst,at , qst,atθ ) is bounded for all (st, at) ∈ S × A. We define Qk+1 = T πd Qk.

Given qθ, Q
k+1 will converge to a corrected Q-value of π as k → ∞ with the

new objective function J ′(π) defined as

J ′(π) =
T∑︂
t=0

E(st,at)∼ρπ [r (st, at) + γf(H (µst,at , qst,atθ ))] . (2.10)

We remain the updating rule πnew = argmaxπ′∈Π Eat∼π′ [Qπold(st, at)] in

the policy improvement phase. Next, we can immediately derive a new pol-

icy iteration algorithm, called Distribution-Entropy-Regularized Policy Itera-

tion (DERPI) that alternates between the policy evaluation in Eq. 2.8 and the

policy improvement. It will provably converge to a policy regularized by the

distribution-matching term as shown in Theorem 1.

Theorem 1. (Distribution-Entropy-Regularized Policy Iteration) Repeatedly

applying distribution-entropy-regularized policy evaluation in Eq. 2.8 and the

policy improvement, the policy converges to an optimal policy π∗ such that

Qπ∗
(st, at) ≥ Qπ (st, at) for all π ∈ Π.

Please refer to Appendix 2.9.8 for the proof of Lemma 1 and Theorem 1.

Theorem 1 demonstrates that if we incorporate the distribution-matching reg-

ularization into the policy gradient framework in Eq. 2.10, we can design a

variant of “soft policy iteration” [43] that can guarantee the convergence to

an optimal policy given any fixed qθ. Putting all the analyses above together,

we comprehensively compare the regularization and exploration effect between

MaxEnt RL and distributional RL (CDRL).

Uncertainty-aware Regularized Exploration in CDRL Compared with

MaxEnt RL. For the objective function J(π) in Eq. 2.7 of MaxEnt RL, the

state-wise entropyH(π(·|st)) is maximized explicitly w.r.t. π for policies with a

higher entropy in terms of diverse actions to encourage an explicit exploration.
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For the objective function J ′(π) in Eq. 2.10 of distributional RL, the policy π is

implicitly optimized through the action selection at ∼ π(·|st) mechanism

guided by an augmented reward signal from the distribution-matching regular-

ization f(H (µst,at , qst,atθ )). Concretely, the learned policy is encouraged to visit

state st along with the policy-determined action via at ∼ π(·|st), whose current
action-state return distributions qst,atθ lag far behind the target return distri-

butions. This discrepancy is measured by the magnitude of the cross entropy

between two distributions. A large discrepancy indicates the uncertainty of

current return distribution is considerably mis-estimated for considered states,

results in an uncertainty-aware exploration against these states. As such, the

policy learning will be additionally driven by the uncertainty difference be-

tween the current return distribution estimate and the target one. This leads

to a distinct exploration strategy compared with MaxEnt RL that directly

promotes diverse actions.

Interplay of Uncertainty-aware Regularization in Distributional Actor-

Critic. Putting the critic and actor learning together in distributional RL,

we reveal their interplay impact of the uncertainty-aware regularized explo-

ration as opposed to expectation-based RL: 1) the actor (policy) learning seeks

states and actions whose current return distribution estimate lags far behind

the true one from the environment (approximated by the TD target distri-

bution of µs,a), 2) on the other hand, the critic learning reduces the return

distribution mismatch on the explored states and actions between the current

return distribution estimate and the true one determined by the environment,

interpreting the benefits of CDRL over expectation-based RL.

2.6.2 DERAC Algorithm: Interpolating AC and Distri-

butional AC

With the convergence guarantee of DERPI given a fixed qθ, we also need to

optimize qθ within the actor-critic framework in the function approximation

setting. Different from SAC that introduces another value function network,

we only parameterize the return distribution qθ(st, at) and the policy πϕ(at|st),
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where we use E [qθ] to represent the Q function without parameterizing it again.

Remarkably, the resulting Distribution-Entropy-Regularized Actor-Critic (DE-

RAC) algorithm can interpolate expectation-based AC and distributional AC.

Optimize the critic by qθ. The new value function Ĵq(θ) is originally

trained to minimize the squared residual error of Eq. 2.8. We show that Ĵq(θ)

can be simplified as:

Ĵq(θ) ∝ (1− λ)Es,a
[︁
(T πE [qθ∗(s, a)]− E [qθ(s, a)])

2]︁+ λEs,a [H(µs,a, qs,aθ )] ,

(2.11)

where we use a particular increasing function f(H) = (τH) 1
2/γ and λ =

τ
1+τ
∈ [0, 1], τ ≥ 0 is the hyperparameter that controls the uncertainty-aware

regularization effect. The proof is given in Appendix 2.9.9. Interestingly,

when we leverage the whole target density function ˆ︁ps,a to approximate the

true return distribution of µs,a, the objective function in Eq. 2.11 can be viewed

as an exact interpolation of loss functions between expectation-based AC (the

first term) and categorical distributional AC loss (the second term) [67]. In

our implementation, for the target T πE [qθ∗(s, a)], we use the target return

distribution neural network qθ∗ to stabilize the training, which is consistent

with the Neural FZI framework analyzed in Section 2.5.1.

Optimize the policy πϕ. We optimize πϕ in the policy optimization based

on the Q-function and therefore the new objective function Ĵπ(ϕ) can be ex-

pressed as Ĵπ(ϕ) = Es,a∼πϕ [E [qθ(s, a)]]. The complete DERAC algorithm is

presented in Algorithm 1 of Appendix 2.9.11.

2.7 Experiments

In Section 2.7.1 of our experiments, we first verify the uncertainty-aware regu-

larization effect of being categorical distribution in RL by applying the return

density decomposition in Eq. 2.4 with different ϵ. In Section 2.7.2, we examine

the interpolation performance of the proposed DERAC algorithm in continu-

ous control environments, particularly interpreting the potential advantage of
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DERAC that can mitigate the over-exploration of CDRL by pure categorical

learning. Finally, we explore the mutual impacts between the vanilla entropy

regularization in MaxEnt RL and the uncertainty-aware one from CDRL in

Section 2.7.3, with a slight extension to quantile-based distributional RL, e.g.,

Implicit Quantile Networks (IQN) [21]. More implementation details are pro-

vided in Appendix 2.9.10.

2.7.1 Uncertainty-aware Regularization Effect by Re-

turn Density Decomposition

We demonstrate the decomposed uncertainty-aware entropy regularization an-

alyzed in Eq. 2.5 though the return density function decomposition in Eq. 2.4

plays a crucial role in interpreting the benefits of CDRL over classical RL. Our

experiments are conducted on both typical Atari games and Mujoco environ-

ments. Particularly, for the categorical distributional loss in C51 or the critic

loss in the actor-critic algorithms, we replace the whole target categorical dis-

tribution ˆ︁ps,a(x) with the derived ˆ︁µs,a(x) decomposed under different ε based

on Eq. 2.4. We then employ ˆ︁µs,a(x) instead of ˆ︁ps,a(x) to construct the KL

divergence, leading to decomposed algorithms denoted by H(µ, qθ). This de-

composed algorithm enables us to assess the uncertainty-aware regularization
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Figure 2.2: Learning curves of value-based CDRL, i.e., C51 algorithm, and decom-
posed algorithm H(µ, qθ) after the return distribution decomposition with different
ε on eight typical Atari games. Results are averaged over 3 seeds and the shade
represents the standard deviation.
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effect from distributional RL by comparing its performance with the classi-

cal RL and CDRL algorithms. To ensure a pre-specified ϵ that guarantees a

valid decomposition analyzed in Proposition 1, we re-define a new notation ε,

which shares the same utility with ϵ and is more convenient in the implemen-

tation. ε is defined as the mass proportion centered at the bin that contains

the expectation when transporting the mass to other bins. A large proportion

probability ε that transports less mass to other bins corresponds to a large ϵ

in Eq. 2.4, under which the decomposed algorithm performs more similarly to

a pure CDRL algorithm. See Appendix 2.9.10 for more explanation, including

the transformation equation between ϵ and ε.

Figure 2.2 showcases that as ε gradually decreases from 0.8 to 0.1, learn-

ing curves of decomposed C51 denoted as H(µ, qθ)(ε = 0.8/0.5/0.1) tend to

degrade from vanilla C51 to DQN across most Atari games. The sensitiv-

ity of decomposed algorithm H(µ, qθ) in terms of ε depends on the environ-

ment. Similar results in continuous control environments can be found in

Appendix 2.9.12. Overall, our empirical result corroborates the decomposed

uncertainty-aware entropy regularization is pivotal to the empirical benefits of

being categorical distributional in CDRL over classical RL.

2.7.2 Interpolation Behavior of DERAC: Mitigating the

Over-Exploration

Figure 2.3 suggests that DERAC (green) converges and tends to “interpo-

late” between the expectation-based AC and its distributional counterpart

denoted by DAC (C51), which substantiates the theoretical convergence of

the tabular DERPI algorithm in Theorem 1. We highlight that the purpose of

introducing DERAC is to interpret the benefits of CDRL from the perspective

of uncertain-aware regularization, instead of only pursuing the empirical su-

periority. In Group 1, it is important to note that DERAC achieves superior

performance over both AC and DAC (C51) on bipedalwalkerhardcore, which

demonstrates that the interpolation has extra advantages. We posit that the

interpolation nature of DERAC mitigates the over-exploration induced by the

categorical distributional learning in C51, as a pure CDRL algorithm may put
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Figure 2.3: Learning curves of DERAC algorithm averaged over five seeds. The
AC and DAC baselines are without the leverage of entropy regularization of MaxEnt.
Group 1: Ant, Swimmer and Bipedalwalkerhardcore, where DAC (C51) outperforms
AC. Group 2: Humanoid and Walker2d, where AC outperforms DAC (C51).

too much emphasis on the uncertainty-aware exploration, i.e., all weight on the

regularization term in Entropy-regularized Neural FQI in Eq. 2.5. In Group

2 where distributional algorithm (DAC) is inferior to its expectation-based

counterpart (AC), it turns out DERAC performs similarly to or slightly excels

at AC. These results demonstrate that DERAC accomplishes a more robust

performance between expectation-based AC and DAC (C51) algorithms and

can even surpass DAC (C51) by potentially mitigating the over-exploration

of variants of CDRL algorithms. We also provide a sensitivity analysis of

DERAC regarding λ in Appendix 2.9.12.

2.7.3 Mutual Impacts of Vanilla Entropy Regulariza-

tion and Uncertainty-aware Regularization

We demonstrate that the two types of exploration encouraged by Vanilla En-

tropy (VE ) in MaxEnt RL and Uncertainty-aware Entropy (UE ) in CDRL,

despite having similar entropy regularization forms, play distinct roles in the

learning when used simultaneously, either mutual improvement or potential in-

terference. We conduct an ablation study for both DSAC (C51) and DSAC (IQN),

where the latter is used to heuristically examine the mutual impacts in the

quantile-based distributional RL algorithm. We leave similar results conducted

on DSAC (C51) in Appendix 2.9.12. Specifically, we denote SAC with/without

vanilla entropy as AC+VE and AC , and distributional SAC with/without

vanilla entropy as AC+UE+VE and AC+UE or DAC. The implementation
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Figure 2.4: Learning curves of AC, AC+VE (SAC), AC+UE (DAC) and
AC+UE+VE (DSAC) over five seeds across eight MuJoCo environments where
DAC and DSAC are based on IQN. (First Row): Mutual improvement. (Second
Row): Potential interference.

details can be found in Appendix 2.9.10.

In the first row in Figure 2.4, the simultaneous leverage of uncertainty-

aware and vanilla entropy regularization renders a mutual improvement. Con-

versely, the two regularizations when employed together lead to performance

degradation in the second row in Figure 2.4, such as Swimmer and Reacher,

where AC+UE+VE is significantly inferior to AC+UE or AC+VE . We posit

that the potential interference may result from distinct exploration directions

in the policy learning for the two regularizations. SAC optimizes the policy

to visit states with high entropy, while distributional RL updates the policy

to explore states and the associated actions whose current return distribu-

tion estimate lags far behind the correct one determined by the environment

uncertainty.

2.8 Discussions and Conclusion

In this paper, we interpret the benefits of CDRL over classical RL as an

uncertainty-aware regularization derived through the return density decom-

position. In contrast to encouraging diverse actions for the exploration in

MaxEnt RL, the uncertainty-aware regularization in CDRL promotes to ex-

plore states where the environment uncertainty is largely underestimated. This
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novel exploration from CDRL contributes to explaining the benefits of being

(categorical) distributional in RL.

Limitations and FutureWork. The uncertainty-aware regularization with

the exploration effect is founded on CDRL. However, it remains elusive whether

it is feasible to extend the uncertainty-aware exploration in CDRL to general

distributional RL, given that the analytical techniques in other classes, such as

QR-DQN, are highly different from CDRL. We leave this extension as future

work.

2.9 Appendix

2.9.1 Convergence Guarantee of Categorical Distribu-

tional RL

Categorical Distributional RL [9] uses the heuristic projection operator ΠC

that was defined as

ΠC (δy) =

⎧⎪⎨⎪⎩
δl1 y ≤ l1
li+1−y
li+1−zi δli +

y−li
li+1−zi δli+1

li < y ≤ li+1

δlK y > lK

, (2.12)

and extended affinely to finite mixtures of Dirac measures, so that for a mixture

of Diracs
∑︁N

i=1 piδyi , we have ΠC

(︂∑︁N
i=1 piδyi

)︂
=
∑︁N

i=1 piΠC (δyi). The Cramér

distance was recently studied as an alternative to the Wasserstein distances in

the context of generative models [10]. Recall the definition of Cramér distance.

Definition 1. (Definition 3 [84]) The Cramér distance ℓ2 between two distri-

butions ν1, ν2 ∈P(R), with cumulative distribution functions Fν1 , Fν2 respec-

tively, is defined by:

ℓ2 (ν1, ν2) =

(︃∫︂
R
(Fν1(x)− Fν2(x))

2 dx

)︃1/2

.

Further, the supremum-Cramér metric ℓ̄2 is defined between two distribution
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functions η, µ ∈P(R)X×A by

ℓ̄2(η, µ) = sup
(x,a)∈X×A

ℓ2
(︁
η(x,a), µ(x,a)

)︁
.

Thus, the contraction of categorical distributional RL can be guaranteed

under Cramér distance:

Proposition 4. (Proposition 2 [84]) The operator ΠCT π is a
√
γ-contraction

in ℓ̄2.

An insight behind this conclusion is that Cramér distance endows a par-

ticular subset with a notion of orthogonal projection, and the orthogonal pro-

jection onto the subset is exactly the heuristic projection ΠC (Proposition 1 in

[84]). [84] also states that the operator ΠCT π is contractive under Wasserstein

distance.

2.9.2 Proof of Proposition 1

Proposition 1. Denote ˆ︁ps,a(x ∈ ∆E) = pE/∆. Following the density function

decomposition in Eq. 2.4, ˆ︁µ(x) = ∑︁N
i=1 p

µ
i 1(x ∈ ∆i)/∆ is a valid probability

density function if and only if ϵ ≥ 1− pE.

Proof. Recap a valid probability density function requires non-negative and

one-bounded probability in each bin and all probabilities should sum to 1.

Necessity. (1) When x ∈ ∆E, Eq. 2.4 can simplified as pE/∆ = (1− ϵ)/∆+

ϵpµE/∆, where pµE = ˆ︁µ(x ∈ ∆E). Thus, pµE = pE
ϵ
− 1−ϵ

ϵ
≥ 0 if ϵ ≥ 1 − pE.

Obviously, pµE = pE
ϵ
− 1−ϵ

ϵ
≤ 1

ϵ
− 1−ϵ

ϵ
= 1 guaranteed by the validity of ˆ︁ps,aE . (2)

When x /∈ ∆E, we have pi/∆ = ϵpµi /∆, i.e.,When x /∈ ∆E, We immediately

have pµi = pi
ϵ
≤ 1−pE

ϵ
≤ 1 when ϵ ≥ 1− pE. Also, pµi = pi

ϵ
≥ 0.

Sufficiency. (1) When x ∈ ∆E, let p
µ
E = pE

ϵ
− 1−ϵ

ϵ
≥ 0, we have ϵ ≥ 1 − pE.

pµE = pE
ϵ
− 1−ϵ

ϵ
≤ 1 in nature. (2) When x /∈ ∆E, p

µ
i = pi

ϵ
≥ 0 in nature. Let

pµi = pi
ϵ
≤ 1, we have pi ≤ ϵ. We need to take the intersection set of (1) and

(2), and we find that ϵ ≥ 1− pE ⇒ ϵ ≥ 1− pE ≥ pi that satisfies the condition

in (2). Thus, the intersection set of (1) and (2) would be ϵ ≥ 1− pE.
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As ϵ ≥ 1 − pE is both the necessary and sufficient condition, we have the

conclusion that ˆ︁µ(x) is a valid probability density function ⇐⇒ ϵ ≥ 1− pE.

2.9.3 Equivalence between Categorical and Histogram

Parameterization

Proposition 5. Suppose the target categorical distribution c =
∑︁N

i=1 piδzi and

the target histogram function h(x) =
∑︁N

i=1 pi1(x ∈ ∆i)/∆, updating the pa-

rameterized categorical distribution cθ under KL divergence is equivalent to

updating the parameterized histogram function hθ.

Proof. For the histogram density estimator hθ and the true target density

function p(x), we can simplify the KL divergence as follows.

DKL(h, hθ) =
N∑︂
i=1

∫︂ li

li−1

pi(x)

∆
log

pi(x)
∆

hiθ
∆

dx

=
N∑︂
i=1

∫︂ li

li−1

pi(x)

∆
log

pi(x)

∆
dx−

N∑︂
i=1

∫︂ li

li−1

pi(x)

∆
log

hiθ
∆
dx

∝ −
N∑︂
i=1

∫︂ li

li−1

pi(x)

∆
log

hiθ
∆
dx

= −
N∑︂
i=1

pi(x) log
hiθ
∆
∝ −

N∑︂
i=1

pi(x) log h
i
θ

(2.13)

where hiθ is determined by i and θ and is independent of x. For categorical

distribution estimator cθ with the probability pi in for each atom zi, we also

have its target categorical distribution p(x) with each probability pi, we have:

DKL(c, cθ) =
N∑︂
i=1

pi log
pi
ciθ

=
N∑︂
i=1

pi log pi −
N∑︂
i=1

pi log c
i
θ ∝ −

N∑︂
i=1

pi log c
i
θ

(2.14)

In CDRL, we only use a discrete categorical distribution with probabilities
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centered on the fixed atoms {zi}Ni=1, while the histogram density estimator in

our analysis is a continuous function defined on [z0, zN ] to allow richer analysis.

We reveal that minimizing the KL divergence regarding the parameterized cat-

egorical distribution in Eq. 2.14 is equivalent to minimizing the cross-entropy

loss regarding the parameterized histogram function in Eq. 2.13.

2.9.4 Theoretical Results of Histogram Density Estima-

tor in Distributional RL

Histogram Function Parameterization Error: Uniform Convergence

in Probability. The previous discrete categorical parameterization error

bound in [84] (Proposition 3) is derived between the true return distribu-

tion and the limiting return distribution denoted as ηC iteratively updated via

the Bellman operator ΠCT
π in expectation, without considering an asymptotic

analysis when the number of sampled {si, ai}ni=1 pairs goes to infinity. As

a complementary result, we provide a uniform convergence rate for the his-

togram density estimator in the context of distributional RL. In this particular

analysis within this subsection, we denote ˆ︁ps,aC as the density function estima-

tor for the true limiting return distribution ηC via ΠCT
π with its true density

ps,aC . In Theorem 2, we show that the sample-based histogram estimator ˆ︁ps,aC
can approximate any arbitrary continuous limiting density function ps,aC under

a mild condition. This ensures the use of a histogram density estimator in the

implementation of our subsequent algorithm adapted from CDRL.

Theorem 2. (Uniform Convergence Rate in Probability) Suppose ps,aC (x) is

Lipschitz continuous and the support of a random variable is partitioned by N

bins with bin size ∆. Then

sup
x
|ˆ︁ps,aC (x)− ps,aC (x)| = O (∆) +OP

(︄√︃
logN

n∆2

)︄
. (2.15)

Proof. Our proof is mainly based on the non-parametric statistics analysis [108].
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In particular, the difference of ˆ︁ps,aC (x)− ps,aC (x) can be written as

ˆ︁ps,aC (x)− ps,aC (x) = E (ˆ︁ps,aC (x))− ps,aC (x)⏞ ⏟⏟ ⏞
bias

+ ˆ︁ps,aC (x)− E (ˆ︁ps,aC (x))⏞ ⏟⏟ ⏞
stochastic variation

.
(2.16)

(1) The first bias term. Without loss of generality, we consider x ∈ ∆k,

then

E
(︁ˆ︁ps,aC (x)

)︁
=

P (X ∈ ∆k)

∆
=

∫︁ l0+k∆
l0+(k−1)∆ p(y)dy

∆

=
F (l0 + (k − 1)∆)− F (l0 + (k − 1)∆)

l0 + k∆− (l0 + (k − 1)∆)
= ps,aC (x′),

(2.17)

where the last equality is based on the mean value theorem. According to the

L-Lipschitz continuity property, we have

|E (ˆ︁ps,aC (x))− ps,aC (x)| = |ps,aC (x′)− ps,aC (x)| ≤ L|x′ − x| ≤ L∆ (2.18)

(2) The second stochastic variation term. If we let x ∈ ∆k, then ˆ︁ps,aC =

pk =
1
n

∑︁n
i=1 1(Xi ∈ ∆k), we thus have

P

(︃
sup
x

⃓⃓ˆ︁ps,aC (x)− E
(︁ˆ︁ps,aC (x)

)︁⃓⃓
> ϵ

)︃
= P

(︄
max

j=1,··· ,N

⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

1 (Xi ∈ ∆j) /∆− P (Xi ∈ ∆j) /∆

⃓⃓⃓⃓
⃓ > ϵ

)︄

= P

(︄
max

j=1,··· ,N

⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

1 (Xi ∈ ∆j)− P (Xi ∈ ∆j)

⃓⃓⃓⃓
⃓ > ∆ϵ

)︄

≤
N∑︂
j=1

P

(︄⃓⃓⃓⃓
⃓ 1n

n∑︂
i=1

1 (Xi ∈ ∆j)− P (Xi ∈ ∆j)

⃓⃓⃓⃓
⃓ > ∆ϵ

)︄
≤ N · exp

(︁
−2n∆2ϵ2

)︁
(by Hoeffding’s inequality),

(2.19)

where in the last inequality we know that the indicator function is bounded

in [0, 1]. We then let the last term be a constant independent of N, n,∆ and

simplify the order of ϵ. Then, we have:

sup
x
|ˆ︁ps,aC (x)− E (ˆ︁ps,aC (x))| = OP

(︄√︃
logN

n∆2

)︄
(2.20)
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In summary, as the above inequality holds for each x, we thus have the

uniform convergence rate of a histogram density estimator

sup
x
|ˆ︁ps,aC (x)− ps,aC (x)| ≤ sup

x
|E (ˆ︁ps,aC (x))− ps,aC (x)|+ sup

x
|ˆ︁ps,aC (x)− E (ˆ︁ps,aC (x))|

= O (∆) +OP

(︄√︃
logN

n∆2

)︄
.

(2.21)

2.9.5 Discussion: KL Divergence in Distributional RL

Remark on KL Divergence. As stated in Section 2.4 of CDRL [9], when

the categorical parameterization is applied after the projection operator ΠC,

the distributional Bellman operator Tπ has the contraction guarantee under

Cramér distance or Wasserstein distance [84], albeit the direct use of a non-

expansive KL divergence [75]. Similarly, our histogram density parameteri-

zation with the projection ΠC and KL divergence also enjoys a contraction

property due to the equivalence between optimizing histogram function and

categorical distribution analyzed in Appendix 2.9.3. We summarize some prop-

erties of KL divergence in distributional RL in Proposition 6.

Proposition 6. Given two probability measures µ and ν, we define the supreme

DKL as a functional P(X )S×A × P(X )S×A → R, i.e.,

D∞
KL(µ, ν) = sup

(s,a)∈S×A
DKL(µ(s, a), ν(s, a)).

We have: (1) Tπ is a non-expansive distributional Bellman operator under

D∞
KL, i.e., D

∞
KL(T

πZ1,T
πZ2) ≤ D∞

KL(Z1, Z2), (2) D
∞
KL(Zn, Z) → 0 implies the

Wasserstein distance Wp(Zn, Z)→ 0.

Proof. We first assume Zθ is absolutely continuous and the supports of two

distributions in KL divergence have a negligible intersection [6], under which

the KL divergence is well-defined.

(1) The contraction analysis of distributional Bellman operator Tπ under

a distribution divergence dp depends on its scale sensitive (S) and sum in-
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variant (I) properties [10, 9]. We say dp is scale sensitive (of order τ) if

there exists a τ > 0, such that for all random variables X, Y and a real

value a > 0, dp(aX, aY ) ≤ |a|τdp(X, Y ). dp has the sum invariant prop-

erty if whenever a random variable A is independent from X, Y , we have

dp(A +X,A + Y ) ≤ dp(X, Y ). We first prove that the DKL is sum-invariant,

which is based on the dual form of KL divergence via the variational represen-

tation [25, 3]:

DKL(X, Y ) = sup
f∈Lb

{EX [f(x)]− log
(︁
EY
[︁
ef(y)

]︁)︁
}, (2.22)

where Lb is the space of bounded measurable functions. Consequently,

DKL(A+X,A+ Y ) = sup
f∈Lb

{EZ1=A+X [f(z1)]− log
(︂
EZ2=A+Y

[︂
ef(z2)

]︂)︂
}

(a)
= sup

f∈Lb

{EA [EX [f(x+ a)]]− log
(︂
EA
[︂
EY
[︂
ef(y+a)

]︂]︂)︂
}

(b)

≤ sup
f∈Lb

{EAEX [f(x+ a)]− EA log
(︂
EY
[︂
ef(y+a)

]︂)︂
}

= sup
f∈Lb

{EA[EX [f(x+ a)]− log
(︂
EY
[︂
ef(y+a)

]︂)︂
]}

(c)

≤ EA sup
f∈Lb

{EX [f(x+ a)]− log
(︂
EY
[︂
ef(y+a)

]︂)︂
}

(d)
= EA sup

g∈Lb

{EX [g(x)]− log
(︂
EY
[︂
eg(y)

]︂)︂
}

= DKL(X,Y ),

(2.23)

where (a) results from the independence between A and X (Y ). (b) and (c)

rely on the Jensen inequality for the function − log and the operator sup. (d)

is because the translation is still within the same bounded functional space.

Next, we show that DKL is not scale-sensitive, where we denote the probability

density function of X and Y as p and q.

DKL(aX, aY ) =

∫︂ ∞

−∞

1

a
p
(︂x
a

)︂
log

1
a
p
(︁
x
a

)︁
1
a
q
(︁
x
a

)︁dx =

∫︂ ∞

−∞
p(y) log

p(y)

q(y)
dy = DKL(X, Y )

(2.24)
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Putting the two properties together and given two return distributions Z1(s, a)

and Z2(s, a), we have the non-expansive contraction property of the supremal

form of DKL as follows.

D∞
KL(T

πZ1,T
πZ2) = sup

s,a
DKL(T

πZ1(s, a),T
πZ2(s, a))

= sup
s,a

DKL(R(s, a) + γZ1(s
′, a′), R(s, a) + γZ2(s

′, a′))

(a)

≤ DKL(γZ1(s
′, a′), γZ2(s

′, a′))

(b)
= DKL(Z1(s

′, a′), Z2(s
′, a′))

≤ sup
s,a

DKL(Z1(s
′, a′), Z2(s

′, a′))

= D∞
KL(Z1, Z2),

(2.25)

where (a) relies on the sum invariant property of DKL and (b) utilizes the non-

scale sensitive property of DKL. By applying the well-known Banach fixed

point theorem, we have a unique return distribution when convergence of dis-

tributional dynamic programming under D∞
KL.

(2) By the definition of D∞
KL, we have sups,aDKL(Zn(s, a), Z(s, a)) → 0

implies DKL(Zn, Z)→ 0. DKL(Zn, Z)→ 0 implies the total variation distance

δ(Zn, Z)→ 0 according to a straightforward application of Pinsker’s inequality

δ (Zn, Z) ≤
√︃

1

2
DKL (Zn, Z)→ 0, δ (Z,Zn) ≤

√︃
1

2
DKL (Z,Zn)→ 0 (2.26)

Based on Theorem 2 in WGAN [7], δ(Zn, Z) → 0 implies Wp(Zn, Z) → 0.

This is trivial by recalling the fact that δ and W give the strong and weak

topologies on the dual of (C(X ), ∥ · ∥∞) when restricted to Prob(X ).

2.9.6 Proof of Proposition 2

Proposition 2 (Decomposed Neural FZI) Denote qs,aθ (x) as the histogram

density function of Zk
θ (s, a) in Neural FZI. Based on Eq. 2.4 and KL divergence
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as dp, Neural FZI in Eq. 2.3 is simplified as

Zk+1
θ = argmin

qθ

1

n

n∑︂
i=1

[− log qsi,aiθ (∆i
E)⏞ ⏟⏟ ⏞

(a)

+ αH(ˆ︁µs′i,πZ(s′i), qsi,aiθ )], (2.27)

Proof. Firstly, given a fixed p(x) we know that minimizing DKL(p, qθ) is equiv-
alent to minimizing H(p, q) by following

DKL(p, qθ) =

N∑︂
i=1

∫︂ li

li−1

pi(x)/∆ log
pi(x)/∆

qiθ/∆
dx

= −
N∑︂
i=1

∫︂ li

li−1

pi(x)/∆ log qiθ/∆ dx− (
N∑︂
i=1

∫︂ li

li−1

pi(x)/∆ log pi(x)/∆ dx)

= H(p, qθ)−H(p)

∝ H(p, qθ)

(2.28)

where p =
∑︁N

i=1 pi(x)1(x ∈ ∆i)/∆ and qθ =
∑︁N

i=1 qi/∆. Based onH(p, qθ), we
use ps

′
i,πZ(s′i)(x) to denote the target probability density function of the random

variable R(si, ai)+γZ
k
θ∗ (s

′
i, πZ(s

′
i)). Then, we can derive the objective function

within each Neural FZI as

1

n

n∑︂
i=1

H(ps
′
i,πZ(s′i)(x), qsi,ai

θ )

=
1

n

n∑︂
i=1

(︂
(1− ϵ)H(1(x ∈ ∆i

E)/∆, qsi,ai

θ ) + ϵH(ˆ︁µs′i,πZ(s′i), qsi,ai

θ )
)︂

=
1

n

n∑︂
i=1

⎛⎝−(1− ϵ)

N∑︂
j=1

∫︂ lj

lj−1

1(x ∈ ∆i
E)/∆ log qsi,ai

θ (∆j)/∆dx− ϵ

N∑︂
j=1

∫︂ lj

lj−1

pµj /∆ log qsi,ai

θ (∆j)/∆

⎞⎠
=

1

n

n∑︂
i=1

1

∆

⎛⎝(1− ϵ)(− log qsi,ai

θ (∆i
E)/∆)− ϵ

N∑︂
j=1

pµj log q
si,ai

θ (∆j)/∆

⎞⎠
∝ 1

n

n∑︂
i=1

(︂
(1− ϵ)(− log qsi,ai

θ (∆i
E)) + ϵH(ˆ︁µs′i,πZ(s′i), qsi,ai

θ )
)︂

∝ 1

n

n∑︂
i=1

(︂
− log qsi,ai

θ (∆i
E) + αH(ˆ︁µs′i,πZ(s′i), qsi,ai

θ )
)︂
,

(2.29)

where α = ϵ
1−ϵ > 0. Recall that ˆ︁µs′i,πZ(s′i) =

∑︁N
i=1 p

µ
i (x)1(x ∈ ∆i)/∆ =∑︁N

i=1 p
µ
i /∆ for conciseness and denote qsi,aiθ =

∑︁N
j=1 q

si,ai
θ (∆j)/∆. The cross-

entropy H(ˆ︁µs′i,πZ(s′i), qsi,aiθ ) is based on the discrete distribution when i =
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1, ..., N . ∆i
E represent the interval that E

[︁
R(si, ai) + γZk

θ∗ (s
′
i, πZ(s

′
i))
]︁
falls

into, i.e., E
[︁
R(si, ai) + γZk

θ∗ (s
′
i, πZ(s

′
i))
]︁
∈ ∆i

E.

2.9.7 Proof of Proposition 3

Proposition 3 (Equivalence between the term (a) in Decomposed Neural

FZI and Neural FQI) In Eq. 2.5 of Neural FZI, assume the function class

{Zθ : θ ∈ Θ} is sufficiently large such that it contains the target {Y k
i }ni=1,

when ∆→ 0, for all k, minimizing the term (a) in Eq. 2.5 implies

P (Zk+1
θ (s, a) = T optQk

θ∗(s, a)) = 1, and

∫︂ +∞

−∞

⃓⃓⃓
Fqθ(x)− FδT optQk

θ∗ (s,a)
(x)
⃓⃓⃓
dx = o(∆),

(2.30)

where T optQk
θ∗(s, a) is the scalar-valued target in the k-th phase of Neural FQI,

and δT optQk
θ∗ (s,a)

is the Dirac delta function defined on the scalar T optQk
θ∗(s, a).

Proof. Firstly, we define the distributional Bellman optimality operator Topt

as follows:

ToptZ(s, a)
D
= R(s, a) + γZ (S ′, a∗) , (2.31)

where S ′ ∼ P (· | s, a) and a∗ = argmax
a′

E [Z (S ′, a′)]. If {Zθ : θ ∈ Θ} is suffi-

ciently large enough such that it contains ToptZθ∗ ({Y k
i }ni=1), then optimizing

Neural FZI in Eq. 2.3 leads to Zk+1
θ = ToptZθ∗ .

Secondly, we apply the action-value density function decomposition on the

target histogram function ˆ︁ps,a(x). Consider the parameterized histogram den-

sity function hθ and denote hEθ /∆ as the bin height in the bin ∆E, under the

KL divergence between the first histogram function 1(x ∈ ∆E) with hθ(x),

the objective function is simplified as

DKL(1(x ∈ ∆E)/∆, hθ(x)) = −
∫︂
x∈∆E

1

∆
log

hEθ
∆
1
∆

dx = − log hEθ (2.32)

Since {Zθ : θ ∈ Θ} is sufficiently large enough that can represent the pdf of

{Y k
i }ni=1, it also implies that {Zθ : θ ∈ Θ} can represent the term (a) part

in its pdf via the return density decomposition. The KL minimizer would

be ˆ︁hθ = 1(x ∈ ∆E)/∆ in expectation. Then, lim∆→0 argminhθ DKL(1(x ∈
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∆E)/∆, hθ(x)) = δE[Ztarget(s,a)], where δE[Ztarget(s,a)] is a Dirac Delta function

centered at E [Ztarget(s, a)] and can be viewed as a generalized probability den-

sity function. That being said, the limiting probability density function (pdf)

converges to a Dirac delta function at E [Ztarget(s, a)]. The limit behavior

from a histogram function ˆ︁p to a continuous one for Ztarget is guaranteed

by Theorem 2, and this also applies from hθ to Zθ. In Neural FZI, we have

Ztarget = ToptZθ∗ . Since here we use Z
k+1
θ (s, a) as the random variable who cdf

is the limiting distribution, according to the definition of the Dirac function,

as ∆→ 0, we attain

P (Zk+1
θ (s, a) = E

[︁
ToptZk

θ∗(s, a)
]︁
) = 1, (2.33)

which is because if the pdf of a random variable is a Dirac delta function, it

implies that the random variable takes this constant value with probability

one. Due to the linearity of expectation in Lemma 4 of [9], we have

E
[︁
ToptZk

θ∗(s, a)
]︁
= ToptE

[︁
Zk
θ∗(s, a)

]︁
= T optQk

θ∗(s, a) (2.34)

Finally, we obtain:

P (Zk+1
θ (s, a) = T optQk

θ∗(s, a)) = 1 as ∆→ 0 (2.35)

In order to characterize how the difference varies when ∆→ 0, we further

define ∆E = [le, le+1) and we have:∫︂ +∞

−∞

⃓⃓⃓
Fqθ(x)− FδT optQk

θ∗ (s,a)
(x)
⃓⃓⃓
dx

=
1

2∆

(︂(︁
T optQk

θ∗(s, a)− le
)︁2

+
(︁
le+1 − T optQk

θ∗(s, a)
)︁2)︂

=
1

2∆
(a2 + (∆− a)2)

≤ ∆/2

= o(∆),

(2.36)

where T optQk
θ∗(s, a) = E

[︁
ToptZk

θ∗(s, a)
]︁
∈ ∆E and we denote a = T optQk

θ∗(s, a)−
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le. The first equality holds as qθ(x), the KL minimizer while minimizing the

term (a), would follows a uniform distribution on ∆E, i.e., ˆ︁qθ = 1(x ∈ ∆E)/∆.

Thus, the integral of LHS would be the area of two centralized triangles ac-

cording. The inequality is because the maximizer is obtained when a = ∆ or

0. The result implies that the convergence rate in distribution difference is

o(∆).

2.9.8 Convergence Proof of DERPI in Theorem 1

Proof of Distribution-Entropy-Regularized Policy Evaluation in Lemma 1

Lemma 1(Distribution-Entropy-Regularized Policy Evaluation) Consider the

distribution-entropy-regularized Bellman operator T πd in Eq. 2.8 and assume

H(µst,at , qst,atθ ) is bounded for all (st, at) ∈ S × A. Define Qk+1 = T πd Qk,

then Qk+1 will converge to a corrected Q-value of π as k → ∞ with the new

objective function J ′(π) defined as

J ′(π) =
T∑︂
t=0

E(st,at)∼ρπ [r (st, at) + γf(H (µst,at , qst,atθ ))] . (2.37)

Proof. Firstly, we plug in V (st+1) into RHS of the iteration in Eq. 2.8, then

we obtain

T πd Q (st, at)

= r (st, at) + γEst+1∼P (·|st,at) [V (st+1)]

= r (st, at) + γf(H (µst,at , qst,atθ )) + γE(st+1,at+1)∼ρπ [Q (st+1, at+1)]

≜ rπ (st, at) + γE(st+1,at+1)∼ρπ [Q (st+1, at+1)] ,

(2.38)

where rπ (st, at) ≜ r (st, at) + γf(H (µst,at , qst,atθ )) is the entropy augmented

reward we redefine. Applying the standard convergence results for policy eval-

uation [102], we can attain that this Bellman updating under T πd is convergent

under the assumption of |A| < ∞ and bounded entropy augmented rewards

rπ.
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Policy Improvement with Proof

Lemma 2. (Distribution-Entropy-Regularized Policy Improvement) Let π ∈ Π

and a new policy πnew be updated via the policy improvement step in the policy

optimization. Then Qπnew (st, at) ≥ Qπold (st, at) for all (st, at) ∈ S × A with

|A| ≤ ∞.

Proof. The policy improvement in Lemma 2 implies that Eat∼πnew [Qπold(st, at)] ≥
Eat∼πold [Qπold(st, at)], we consider the Bellman equation via the distribution-

entropy-regularized Bellman operator T πsd:

Qπold (st, at) ≜ r (st, at) + γEst+1∼ρ [V
πold (st+1)]

= r (st, at) + γf(H (µst,at , qst,atθ )) + γE(st+1,at+1)∼ρπold [Qπold (st+1, at+1)]

≤ r (st, at) + γf(H (µst,at , qst,atθ )) + γE(st+1,at+1)∼ρπnew [Qπold (st+1, at+1)]

= rπnew (st, at) + γE(st+1,at+1)∼ρπnew [Qπold (st+1, at+1)]

...

≤ Qπnew (st+1, at+1) ,

(2.39)

where we have repeated expandedQπold on the RHS by applying the distribution-

entropy-regularized distributional Bellman operator. Convergence to Qπnew

follows from Lemma 1.

Proof of DERPI in Theorem 1 Theorem 1 (Distribution-Entropy-Regularized

Policy Iteration) Repeatedly applying distribution-entropy-regularized policy

evaluation in Eq. 2.8 and the policy improvement, the policy converges to an

optimal policy π∗ such that Qπ∗
(st, at) ≥ Qπ (st, at) for all π ∈ Π.

Proof. The proof is similar to soft policy iteration [43]. For completeness, we

provide the proof here. By Lemma 2, as the number of iteration increases, the

sequence Qπi at i-th iteration is monotonically increasing. Since we assume the

uncertainty-aware entropy is bounded, the Qπ is thus bounded as the rewards

are bounded. Hence, the sequence will converge to some π∗. Further, we prove

that π∗ is in fact optimal. At the convergence point, for all π ∈ Π, it must be
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case that:

Eat∼π∗ [Qπold (st, at)] ≥ Eat∼π [Qπold (st, at)] .

According to the proof in Lemma 2, we can attain Qπ∗
(st, at) > Qπ(st, at) for

(st, at). That is to say, the “corrected” value function of any other policy in

Π is lower than the converged policy, indicating that π∗ is optimal.

2.9.9 Proof of Interpolation Form of Ĵq(θ)

In SAC [43] (Section 4.2), it introduces another parameterized state value

function to approximate the soft value in the function approximation setting.

Instead, we are not intended to do so, but directly use a single Q network to be

optimized, which allows the interpolation form of our algorithm. In particular,

we directly evaluate the least squared loss between the current Q estimates

and the target ones for the critic loss. With a particular form of fπ(H), the
removal of the interaction term, and the replacement of Qθ with E [qθ], we can

derive the interpolation form of Ĵq(θ) according to the following formula:

Ĵq(θ) = Es,a
[︁
(T πd Qθ∗(s, a)−Qθ(s, a))

2]︁
= Es,a

[︂(︁
T πQθ∗(s, a)−Qθ(s, a) + γ(τ 1/2H1/2(µs,a, qs,aθ )/γ)

)︁2]︂
= Es,a

[︁
(T πE [qθ∗(s, a)]− E [qθ(s, a)])

2]︁+ τEs,a [H(µs,a, qs,aθ )]

+ Es,a [(T πE [qθ∗(s, a)]− E [qθ(s, a)])H(µs,a, qs,aθ )]

≈ Es,a
[︁
(T πE [qθ∗(s, a)]− E [qθ(s, a)])

2]︁+ τEs,a [H(µs,a, qs,aθ )]

∝ (1− λ)Es,a
[︁
(T πE [qθ∗(s, a)]− E [qθ(s, a)])

2]︁+ λEs,a [H(µs,a, qs,aθ )] ,

(2.40)

where the second equation is based on the definition of Distribution-Entropy-

Regularized Bellman Operator T πd in Eq. 2.8 and let f(H) = (τH)1/2/γ. The
interaction term +Es,a [(T πE [qθ∗(s, a)]− E [qθ(s, a)])H(µs,a, qs,aθ )] equal zero

in the last equation is rooted in Lemma 1 in [92]. Although Lemma 1 consid-

ers the A/B testing with offline dataset, it demonstrates that the estimation

equation between the Bellman error and and any function φ (St, At) equals zero

under mild conditions, such as the consistency assumption. Strictly speaking,

we heuristically extend the conclusion in Lemma 1 of [92] to the simplification
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of our critic loss, where we let φ (St, At) = H(µSt,At , qSt,At

θ ). Consequently, we

can approximately remove the interaction term as

Es,a [(T πE [qθ∗(s, a)]− E [qθ(s, a)])H(µs,a, qs,aθ )] = 0. (2.41)

We set λ = τ
1+τ
∈ [0, 1]. Another simplification is that we directly use E [qθ] to

replace Qθ rather than to maintain both two networks qθ and Qθ with different

parameters θ. This strategy simplifies our implementation and contributes to

derive the final interpolation form in Ĵq(θ).

2.9.10 Implementation Details

Replacing ϵ with the ratio ε for Visualization The substitution of ϵ

with ε is for convenience in the implementation. As Proposition 1 elucidates,

the return density decomposition requires that ϵ exceed certain thresholds to

ensure the resultant decomposed ˆ︁µs,a qualifies as a valid density function. In

practice, pinpointing this lower boundary for ϵ in each iteration to regulate

its range could be prohibitively time-intensive. A more pragmatic approach

involves redistributing the mass from the bin that contains the expectation

to other bins in specified ratios, thereby introducing the corresponding ratio

term ε. By varying ε from 0 to 1, it invariably meets the validity condition

outlined in Proposition 1, thereby streamlining the process for conducting

ablation studies concerning ˆ︁µs,a as demonstrated in Figure 2.2.

To delineate the relationship between the ratio ε and the coefficient ϵ in

constructing ˆ︁µs,a, after some calculations we establish their equivalence as

follows:

ε =
pE − (1− ϵ)

pEϵ
, (2.42)

where pE represents the weighting assigned to the bin ∆E as specified in Propo-

sition 1. The resulting ε ∈ [0, 1] has a monotonically increasing relationship

with ϵ, which facilitates the visualization without undermining our conclusion.

Please refer to the code in the implementation for more details.
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Hyper-parameters and Network structure Our implementation is di-

rectly adapted from the source code in [67]. For Distributional SAC with C51,

we use 51 atoms similar to the C51 [9]. For distributional SAC with quan-

tile regression, instead of using fixed quantiles in QR-DQN, we leverage the

quantile fraction generation based on IQN [21] that uniformly samples quan-

tile fractions in order to approximate the full quantile function. In particular,

we fix the number of quantile fractions as N and keep them in ascending

Table 2.1: Hyper-parameters Sheet.

Hyperparameter Value

Shared
Policy network learning rate 3e-4

(Quantile) Value network learning rate 3e-4

Optimization Adam

Discount factor 0.99

Target smoothing 5e-3

Batch size 256

Replay buffer size 1e6

Minimum steps before training 1e4

DSAC with C51
Number of Atoms (N) 51

DSAC with IQN
Number of quantile fractions (N) 32

Quantile fraction embedding size 64

Huber regression threshold 1

Hyperparameter Temperature Parameter β Max episode lenght

Walker2d-v2 0.2 1000
Swimmer-v2 0.2 1000

Reacher-v2 0.2 1000

Ant-v2 0.2 1000

HalfCheetah-v2 0.2 1000

Humanoid-v2 0.05 1000

HumanoidStandup-v2 0.05 1000

BipedalWalkerHardcore-v2 0.002 2000
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order. Besides, we adapt the sampling as τ0 = 0, τi = ei/
∑︁N−1

i=0 ei, where

ϵi ∈ U [0, 1], i = 1, ..., N . We adopt the same hyper-parameters, which are

listed in Table 2.1 and network structure as in the original distributional SAC

paper [67].

2.9.11 DERAC Algorithm

We provide a detailed algorithm description of DERAC algorithm in Algo-

rithm 1.

1: Initialize two value networks qθ, qθ∗ , and policy network πϕ.
2: for each iteration do
3: for each environment step do
4: at ∼ πϕ(at|st).
5: st+1 ∼ p(st+1|st, at).
6: D ← D ∪ {(st, at, r (st, at) , st+1)}
7: end for
8: for each gradient step do
9: θ ← θ − λq∇θĴq(θ)

10: ϕ← ϕ+ λπ∇ϕĴπ(ϕ).
11: θ∗ ← τθ + (1− τ)θ∗
12: end for
13: end for

Algorithm 1: Distribution-Entropy-Regularized Actor Critic (DE-
RAC) Algorithm

2.9.12 Experiments Results

Uncertainty-aware Regularization Effect via Ablation Study in Ac-

tor Critic We study the uncertainty-aware regularization effect from be-

ing categorical distributional in the actor-critic framework, where we decom-

pose the C51 critic loss in distributional SAC (DSAC) according to Eq. 2.4.

We denote the decomposed DSAC (C51) with different ε as H(µ, qθ)(ε =

0.8/0.5/0.1). As suggested in Figure 2.5, the performance of H(µ, qθ) tends to
vary from the vanilla DSAC (C51) to SAC with the decreasing of ε on three

MuJoCo environments, except bipedalwalkerhardcore. In bipedalwalkerhard-

core. this tendency may not be clear, as we hypothesis that the algorithm
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Figure 2.5: Learning curves of Distributional AC (C51) with the return distribu-
tion decomposition H(µ, qθ) under different ε.

performance is not sensitive when ε changes within this restricted range, al-

though this range is designed to guarantee a valid density decomposition.

It is worth noting that our return density decomposition is valid only when

ϵ ≥ 1 − pE as shown in Proposition 1, and therefore ϵ can not strictly go to

0, where H(µ, qθ) would degenerate to SAC ideally. In addition, compared

with the ablation study in Figure 2.2, the trend varying from DSAC to SAC

by decreasing ε may not be as pronounced as that in value-based RL evalu-

ated on Atari games. This is because the actor-critic architecture is generally

perceived to be more prone to instability compared to value-based learning in

RL. As outlined in [33], this instability stems from the policy updates, which

may introduce additional bias or variance from the critic learning process.
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three MuJoCo environments over 5 seeds.
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Sensitivity Analysis of DERAC Figure 2.6 shows that DERAC with

different λ in Eq. 2.11 may behave differently in different environments. In

general, DERAC with different ε and λ perform similarly to DERAC, with

an interpolation nature between AC and DAC (C51). Notably, DERAC with

different ε and λ still surpasses at both AC and DAC (C51) in bidedalwalker-

hardcore, demonstrating the robust superiority of DERAC algorithm.
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Figure 2.7: Learning curves of AC, AC+VE (SAC), AC+UE (DAC) and
AC+UE+VE (DSAC) over 5 seeds across seven MuJoCo environments where dis-
tributional RL part is based on C51. Walker 2d and Humanoidstandup: Mutual
Improvement. Others: Potential Interference.

Mutual Impacts on DSAC (C51) We presents results on seven MuJoCo

environments and omits Bipedalwalkerhardcore due to some engineering issue

when the C51 algorithm interacts with the simulator. Figures 2.7 showcases

that the simultaneous leverage of uncertainty-aware and vanilla entropy regu-

larization renders a mutual improvement on humanoidstandup and Walker2d.

In contrast, the two regularization when employed together lead to a perfor-

mance degradation in other environments, especially in swimmer and halfchee-

tah, where AC+UE+VE is significantly inferior to AC+UE or AC+VE .
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Chapter 3

How Does Return Distribution

in Distributional Reinforcement

Learning Help Optimization?

3.1 Abstract

Distributional reinforcement learning (RL), which learns the whole return dis-

tribution compared with only its expectation in classical RL, has achieved great

success in obtaining superior performance. However, we still have a poor un-

derstanding of how the return distribution in distributional RL works. In this

study, we analyze the optimization benefits of distributional RL by leveraging

its additional return distribution information over classical RL in the Neural

Fitted Z-Iteration (Neural FZI) framework. To begin with, we demonstrate

that the distribution loss of distributional RL has desirable smoothness char-

acteristics and hence enjoys stable gradients, which is in line with its tendency

to promote optimization stability. Furthermore, the acceleration effect of dis-

tributional RL is revealed by decomposing the return distribution. It shows

that distributional RL can perform favorably if the return distribution approx-

imation is appropriate, measured by the variance of gradient estimates in each

environment. Rigorous experiments validate the stable optimization behaviors

of distributional RL and its acceleration effects compared to classical RL. Our
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research findings illuminate how the return distribution in distributional RL

algorithms helps the optimization.

3.2 Introduction

Motivation. Despite the remarkable empirical success of distributional RL,

the illumination of its theoretical advantages still needs to be studied. A

distributional regularization effect [100] stemming from the additional return

distribution knowledge has been characterized to explain the superiority of

distributional RL over classical RL, but the benefit of the proposed regular-

ization on the optimization of algorithms has not been further investigated.

Such a gap inspires us to investigate the optimization impact of distributional

RL by leveraging the full return distribution knowledge. However, existing

literature [71, 96] that helps to analyze the optimization of RL learning may

not apply to practical distributional RL algorithms as there still remains a gap

between the theory and practice in RL.

In this paper, we study the optimization advantages of distributional RL

over classical RL. Within the Neural FZI framework, our optimization anal-

ysis can not only sufficiently characterize offline distributional RL behaviors

but also approximate the online setting. Within this framework, we study

the uniform stability of distributional loss based on categorical parameteriza-

tion. Owing to the smoothness properties of distributional loss, distributional

RL algorithms tend to satisfy the uniform stability in the optimization pro-

cess, thus enjoying stable gradient behaviors in the input space. In addition

to the optimization stability, we also elaborate on the acceleration effect of

distributional RL algorithms based on the return density decomposition tech-

nique proposed recently. Distributional RL can speed up the convergence and

perform favorably if the return distribution is approximated appropriately,

measured by the gradient estimates’ variance. Empirical results corroborate

that distributional RL possesses stable gradient behaviors and acceleration ef-

fects by suggesting smaller gradient norms concerning the states and model

parameters. Our study opens up many exciting research pathways in this

domain through the lens of optimization, paving the way for future investiga-
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tions to reveal more advantages of distributional RL. Our contributions can

be summarized as follows:

• We specifically study the optimization advantage of practical distribu-

tional RL algorithms with the general function approximators. Within

the Neural FZI framework, we can analyze the optimization properties of

distributional RL by establishing its connection with supervised learning.

• We reveal the uniform stability of distributional RL thanks to the smooth-

ness properties of distributional loss. By contrast, classical RL may not

guarantee such a stable optimization property due to the sensitivity of

the least squared loss.

• The acceleration effects of distributional RL have also been demonstrated

through the return density decomposition. We show that distributional

RL can speed up convergence if the parameterization error of the return

distribution is appropriate.

3.3 Related Work

Interpretation of distributional RL. Interpreting the behavior difference

between distributional and classical RL was initially studied using the coupled

updates method in [66]. They conclude that both distributional and classical

RL behave the same in the tabular and linear approximation settings and at-

tribute the superiority of distributional RL to its non-linear approximation.

However, the coupled methodology mainly investigated preserving the expec-

tation of return distribution to measure the behavior differences, which rules

out other factors, including the optimization effect due to the distributional

loss [51]. An implicit risk-sensitive entropy regularization was then revealed

in distributional RL by [100], without further analyzing its optimization ben-

efits. Our work complements and extends their results through the lens of

optimization.

Convergence and Acceleration in RL. Existing optimization analysis

in RL is mainly based on the policy gradient methods, such as the Actor
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Critic framework [102]. [71] shows that the policy gradient with a softmax

parameterization converges at a O(1/t) rate, which significantly expands the

existing asymptotic convergence results. Entropy regularization [42, 43] has

gained increasing attention and [4] provides a fine-grained understanding of

the impact of entropy on policy optimization and emphasizes that any strat-

egy, such as entropy regularization, can only affect learning in one of two ways:

either it reduces the noise in the gradient estimates or it changes the optimiza-

tion landscape. The seemingly applicable analysis framework on value-based

RL is PAC-MDP [96], which effectively analyzes the convergence of typical

RL algorithms in the tabular setting. However, it is unclear whether this

analysis applies to practical distributional RL algorithms. By contrast, our

optimization is within a more interpretable Neural FZI framework and focuses

on accelerating the distributional RL algorithm.

Stable Optimization. Stable optimization is one of the crucial properties

for RL algorithms, and common strategies include Batch Normalization [89],

Spectral Normalization [73], gradient penalty [41]. In RL, stable optimization

techniques [38, 58] also benefit the training and the final performance. By

contrast, we show that (categorical) distributional RL naturally enjoys stable

optimization compared with classical RL.

3.4 Optimization Analysis of Distributional RL

Under Neural FZI established in Section 3.4.1, we analyze two optimization as-

pects of distributional RL based on the categorical parameterization, including

the stable optimization from the loss function in Section 3.4.2, and its accel-

eration effect determined by the gradient estimate variance in Section 3.4.3.

Notations. In CDRL, we denote the categorical distribution η̂ =
∑︁k

i=1 fiδli
to approximates the action-state return distribution η, where l1, l2, ..., lk is a

set of fixed supports and {fi}ki=1 are learnable probabilities, normally param-

eterized by a neural network.
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3.4.1 Optimization Analysis for Distributional RL within

Neural Fitted Z-Iteration

Approximate Supervised Learning within Neural FZI to Allow the

Optimization Analysis. We conduct our analysis in this chapter still within

the Neural FZI framework in Eq. 2.3 established in Chapter 2. Previous op-

timization analysis focuses on either policy gradient methods [71, 1] or the

sample complexity in the tabular setting [96]. However, there remains some

gap between the theory and the practical neural network parameterized RL

algorithm, and the previous results may not be directly attainable for the op-

timization analysis of distributional RL. By contrast, Neural FZI simplifies

the optimization problem in deep RL into an approximate iterative supervised

learning on a local fixed offline dataset by leveraging experience buffer and

target networks, allowing richer optimization analysis. It sufficiently charac-

terizes the offline behaviors of practical distributional RL algorithms and can

also approximate online algorithms. In particular, Neural FZI does not con-

sider the exploration; the data distribution shift caused by exploration from an

ϵ-greedy policy can be negligible in the online setting, when the replay memory

is sufficiently large or considering the short period. Thus, the optimization in

each phase of Neural FZI can be approximately viewed as supervised learning

in contrast to PAC-MDP analysis [96] that involves the exploration impact.

Two Key Factors. The Neural FZI framework offers new insights to analyze

the optimization benefits for practical distributional RL algorithms, within

which there are mainly two crucial components.

• Factor 1: the choice of dp. On the one hand, dp determines the con-

vergence rate of distributional Bellman update, i.e., the speed of outer

iterations in Neural FZI. For instance, distributional Bellman opera-

tor under Crámer distance is
√
γ-contractive [10], γ-contractive under

Wasserstein distance [9]. Moreover, dp also largely affects the contin-

uous optimization problem concerning parameters θ in Zθ within each

iteration of Neural FZI.
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• Factor 2: the parameterization of Zθ. Given the same dp, a more

informative parameterization can approximate the true return distribu-

tion more reasonably, promoting the optimization within each phase of

Neural FZI. For example, with a more expressiveness power on quan-

tile functions, IQN [21] outperforms QR-DQN [22] on a wider range of

environments.

Remark. We mainly attribute the optimization benefit of distributional RL

to the choice of distributional loss dp in Neural FZI relative to the least squared

loss in Neural FQI based on the same categorical parameterization on Zθ,

despite the different convergence rates under them.

Categorical Pameterization Equipped with KL Divergence. To al-

low for theoretical analysis, we resort to the histogram function [108, 51] as

the density estimator of Zθ, a continuous version of categorical parameteri-

zation with their equivalent proof provided in [100]. After incorporating the

projection to redistribute probabilities of target return distribution by the

neighboring smoothing proposed in CDRL, the target, and current histogram

function estimators inherit the joint supports, based on which we apply KL

divergence as dp. In particular, we denote the histogram density estimator as

f s,a with k uniform partitions on the support, denote x(s) as the state feature

on each state s. We let the support of Z(s, a) be uniformly partitioned into k

bins. The output dimension of f s,· can be |A| × k, where we use the index a

to focus on the function f s,a. Hence, the function f s,a : X → [0, 1]k provides

a k-dimensional vector f s,a(x(s)) of the coefficients, indicating the probability

that the target is in this bin given the state feature x(s) and action a. Next,

we use softmax based on the linear approximation x(s)⊤θi to express f s,a,

i.e., f s,a,θi (x(s)) = exp
(︁
x(s)⊤θi

)︁
/
∑︁k

j=1 exp
(︁
x(s)⊤θj

)︁
. For simplicity, we use

f θi (x(s)) to replace f s,a,θi (x(s)).

Categorical Distributional Loss. Note that the form of f s,a is similar to

that in Softmax policy gradient optimization [71, 102], but we focus on the

value-based RL rather than the policy gradient RL. Our prediction probability
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f s,ai is redefined as the probability in the i-th bin over the support of Z(s, a),

thus eventually serving as a density function. While the linear approxima-

tor is limited, this is the setting where, so far, the cleanest results can be

firstly achieved, and understanding this setting is necessary for the first step

towards bigger problems of understanding distributional RL algorithms. Un-

der this categorical parameterization with KL divergence, the distributional

objective function Lθ(s, a) for the continuous optimization in each phase of

Neural FZI (Eq. 2.3) can be expressed as:

Lθ(s, a) = −
k∑︂
i=1

∫︂ zi+wi

zi

ps,a(y) log
f θi (x(s))

wi
dy ∝ −

k∑︂
i=1

ps,ai log f θi (x(s)),

(3.1)

where θ = {θ1, ..., θk} and ps,ai is the probability in the i-th bin of the true

density function ps,a(x) for Z(s, a) defined in Eq. 2.4. wi is the width for the

i-th bin (zi, zi+1]. The derivation of the categorical distributional loss under

the categorical parameterization is given in Appendix 3.8.1.

3.4.2 Stable Optimization Analysis under Uniform Sta-

bility

Optimization Properties. Our stable optimization conclusions are based

on the smoothness properties of categorical distributional loss in Eq. 3.1. A

similar histogram loss was also analyzed in [51] along with a local Lipschitz

constant analysis. By contrast, in Proposition 7, we extend their optimization

results and further establish its connection with distributional RL.

Proposition 7. (Properties of Categorical Distributional Loss) Assume the

state features ∥x(s)∥2 ≤ l for each state s, then Lθ is kl-Lipschitz continuous,
kl2-smooth and convex w.r.t. the parameter θ.

Please refer to Appendix 3.8.2 for the proof. The smoothness properties of

categorical distributional loss dp are the foundation for the stable optimization

of distributional RL. In stark contrast, classical RL optimizes a least squared

loss function [102] in Neural FQI. It is known that the least squared estima-

tor has no bounded Lipschitz constant in general and is only λmax-smooth,
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where λmax is the largest singular value of the data matrix. Specifically, we

have ∥∇θLθ∥ ≤ kl for the categorical distributional loss in distributional RL.

By contrast, the gradient norm in classical RL is |yi −Qk
θ(s, a)|∥x(s)∥, where

Qk
θ(s, a) =

∑︁k
i=1(zi + zi+1)f

θ
i (x(s))/2wi under the same categorical parame-

terization for a fair comparison. Clearly, Qk
θ(s, a) can be sufficiently large if

the support [z0, zk] is specified to be large, which is common in environments

with a high level of expected returns [9]. As such, |yi − Qk
θ(s, a)| can vary

significantly larger than k and classical RL with the potentially larger upper

bound of gradient norms is prone to the instability optimization issue.

Uniform Stability of Distributional RL. As an application of stable

analysis in [45], we next show that distributional RL loss can naturally in-

duce a uniform stability property under the desirable smoothness properties

in Proposition 7, while classical RL can not. We first recap the definition

of uniform stability for an algorithm while running Stochastic Gradient De-

scent (SGD) in Definition 2.

Definition 2. (Uniform Stability) [45] Consider a loss function gw(e) param-

eterized by w encountered on the example e, a randomized algorithm M is

uniformly stable if for all data sets D,D′ such that D,D′ differ in at most one

example, we have

sup
e

EM
[︁
gM(D)(e)− gM(D′) (e)

]︁
≤ ϵstab . (3.2)

Remark: Rationale of Uniform Stability Analysis. One may be con-

cerned whether the uniform stability analysis is applicable to the RL setting

with a gradually varying experience replay buffer. Thanks to the Neural FZI

framework, it can be viewed as an approximate supervised learning on a nearly

fixed offline dataset D with each iteration of Neural FZI, as the experiment

replay allows nearly independent sampling on a fixed data distribution in a

short period when the reply memory is large enough [28]. As such, the loss

difference by varying the dataset for at most one sample can serve as a surro-

gate to measure the uniform stability for an algorithm in each phase of Neural

FZI.
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Theorem 3. (Uniform Stability for Distributional RL) Suppose that we run

SGD under Lθ in Eq. 3.1 with step sizes λt ≤ 2/kl2 for T steps. Assume

∥x(s)∥ ≤ l for each state s and action a, then we have Lθ satisfies the uniform

stability in Definition 2 with ϵstab ≤ 4kT
n
, i.e.,

E
⃓⃓
LθT (s, a)− Lθ′T (s, a)

⃓⃓
≤ 4kT

n
, (3.3)

where θT and θ′T are the minimizers after T steps under the dataset D and D′,

respectively.

Please refer to the proof of Theorem 3 in Appendix 3.8.3. Theorem 3

shows that while running SGD to solve the categorical distributional loss

within each Neural FZI, the continuous optimization process in each itera-

tion is ϵstab-uniformly stable with the stability errors shrinking at the rate

of O(n−1). The stable optimization has multiple advantages, including ϵstab -

bounded generalization gap, a desirable local minimum in deep learning opti-

mization literature [45], and improvement in performance in RL [11, 58]. By

contrast, classical RL may not yield thestable optimization property without

these smooth properties. For example, λmax-smooth may be of less help for

the optimization given a bad conditional number of the design matrix where

λmax could be sufficiently large. Empirically, we validate the stable gradient

behaviors, with smaller gradient norms in the input space, of CDRL compared

with classical RL, and similar results are also observed in Quantile Regression

distributional RL in Section 3.5.

Remark: Limitations. The potential optimization instability for classical

RL can be used to partially explain its inferiority to distributional RL in

most environments, although it may not explain why distributional RL could

not perform favorably in certain games [14]. We leave the comprehensive

explanation as future works.

Remark: Non-linear Categorical Parameterization. Although the sta-

bility above optimization conclusions are established on the linear categorical

parameterization on Zπ, similar conclusions with a non-linear categorical pa-
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rameterization can be naturally expected by non-convex optimization tech-

niques proposed in [45]. We empirically validate our theoretical conclusions

by directly applying practical neural network parameterized distributional RL

algorithms.

3.4.3 Acceleration Effect of distributional RL

To characterize the acceleration effect of distributional RL, we additionally

leverage the proposed return density function decomposition in Eq. 2.4 in

Chapter 2, and then characterize the variance of the gradient estimates before

providing the acceleration effect of distributional RL.

Measuring the Variance of Gradient Estimates. Within Neural FZI,

our goal is to minimize 1
n

∑︁n
i=1 Lθ(si, ai). We rewrite Lθ(s, a) as Lθ(gs,a, f s,aθ ),

where the target density function gs,a can be ps,a, µs,a or ps,aE , and f s,a,θ is

rewritten as f s,aθ for conciseness. We denote Gk(θ) = E [Lθ(ps,aE , f s,aθ )] and

use G(θ) for Gk(θ) for simplicity. Based on Proposition 7 in Section 3.4.2,

the appealing optimization properties concerning the parameter θ in fθ still

hold for G(θ). Although ps,aE is a single-bin density without non-zero joint

support as f s,aθ , thanks to the leverage of target networks, the KL-based Lθ
would degrade to the cross-entropy loss, on which Lθ is still well-defined. As

the KL divergence has unbiased gradient estimates, we let the variance of its

stochastic gradient over the expectation-related term ps,aE be bounded, i.e.,

E(s,a)∼ρπ
[︁
∥∇Lθ(ps,aE , f s,aθ ))−∇G(θ)∥2

]︁
= σ2. (3.4)

Next, following the similar label smoothing analysis in [114], we further char-

acterize the approximation degree of f s,aθ to the target return distribution µs,a

by measuring its variance as κσ2:

E(s,a)∼ρπ
[︁
∥∇Lθ(µs,a, f s,aθ ))−∇G(θ)∥2

]︁
= σ̂2 := κσ2. (3.5)

Notably, κ can be used to measure the approximation error between f s,aθ and

µs,a and we do not assume σ̂2 to be bounded as κ can be arbitrarily large.
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This expression κσ2 for σ̂2 allows us to utilize κ to characterize different accel-

eration effects for distributional RL given different κ. Concretely, a favorable

approximation of f s,aθ to µs,a, which coincides with the role of the Zθ param-

eterization, will lead to a small κ, contributing to the acceleration effect of

distributional RL as shown in Theorem 4.

Proposition 8. Based on the return density decomposition in Eq. 2.4, and

Eq. 3.5, we have:

E(s,a)∼ρπ
[︁
∥∇Lθ(ps,a, f s,aθ ))−∇G(θ)∥2

]︁
≤ (1− ϵ)2σ2 + ϵ2κσ2. (3.6)

Proposition 8 reveals the upper bound of gradient estimate variance for the

whole target density function ps,a, with proof in Appendix 3.8.4. Before com-

paring the sample complexity in optimizing both classical and distributional

RL, we define the first-order τ -stationary point.

Definition 3. (First-order τ -Stationary Point) When minθG(θ), the param-

eters θT after T steps is a first-order τ -stationary point if ∥∇θG(θT )∥ ≤ τ .

Based on Definition 3, we formally characterize the acceleration effects

for distributional RL in Theorem 4 that depends upon approximation errors

between µs,a and f s,aθ measured by κ.

Theorem 4. (Sample Complexity and Acceleration Effects of Distributional

RL) While running SGD to minimize Lθ in Eq. 3.1 within Neural FZI, we

assume the step size λ ≤ 1
kl2

min{1, τ2
2σ2}, ϵ = 1/(1 + κ), and the sample is

uniformly drawn from T samples. Denote G(θ0) as initialization.

(1) (Classical RL) The sample complexity T = 4G(θ0)
λτ2

= O( 1
τ4
) when mini-

mizing Lθ(ps,aE , f s,aθ ), such that Lθ converges to a τ -stationary point.

(2) (Distributional RL) The sample complexity T = O( 1
τ2
) when minimizing

Lθ(ps,a, f s,aθ ), such that Lθ converges to a max{τ, 2σκ}-stationary point.

The proof is provided in Appendix 3.8.5. Theorem 4 is inspired by the

intuitive connection between the return distribution in distributional RL and

the label distribution in label smoothing [114].
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Interpretation of Theorem 4 . Theorem 4 demonstrates that optimizing

the categorical distributional loss of distributional RL can speed up the con-

vergence with the sample complexity from O( 1
τ4
) to O( 1

τ2
), if the distribution

approximation error is favorable. In particular, when the agnostic κ deter-

mined by the environment satisfies 2κσ ≤ τ , the distributional RL algorithm

has an effective return distribution parameterization for Zθ with a smaller ap-

proximation error between f s,aθ and µs,a (ps,a). In this case, the acceleration

effect of distributional RL over classical RL can be guaranteed. However, it

is not vice versa. When 2κσ > τ , it is unclear whether the required sample

complexity for distributional RL is higher than classical RL, as classical RL

will require a lower sample complexity than O( 1
τ4
) to achieve a 2κσ-stationary

point in this case. These theoretical results also coincide with past empirical

observations [22, 14], where distributional RL algorithms outperform classical

RL in most cases, but are inferior in certain environments. Based on our re-

sults in Theorem 4, we contend that these certain environments have much

intrinsic uncertainty, the distribution parameterization error between Zθ and

the true return distribution under the distributional TD approximation is still

too large (κ > τ
2σ
) to guarantee an acceleration effect as revealed in Theorem 4.

Smaller Gradient Norms in the Weight Space. The acceleration effect

of distributional RL in Theorem 4 also implies that distributional RL tends

to have smaller gradient norms concerning parameters than classical RL at

the same training step, according to the definition of Lipschitz constant in

terms of the first-order stationary point. The small gradient norms we ana-

lyze here are in the weight space, commonly used and directly linked with the

convergence rate analysis. In contrast, the uniform stability analyzed in Sec-

tion 3.4.2 is defined on the bounded loss difference that is strongly correlated

to the gradient norms in the input space. Similar works include Spectral Nor-

malization to stabilize the training of Generative Adversarial Networks [73]

and RL [38], which normalizes the spectral norm of the weight matrix in each

layer to lead to a one-valued Lipschitz constant concerning the input. We

empirically demonstrate both of them in Section 3.5.
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Figure 3.1: Performance. Learning curve of AC, DAC (C51), and DAC (IQN)
over five seeds with smooth size five across eight MuJoCo games.

3.5 Experiments

Our experiments focus on the online distributional RL algorithms on continu-

ous control Mujoco environments to demonstrate their stable gradient behav-

iors and acceleration effects.

Implementation. Our implementation is based Soft Actor Critic (SAC) [43]

and distributional Soft Actor Critic [67]. We eliminate the optimization im-

pact of entropy regularization in these algorithm implementations, and thus,

we denote the resulting algorithms as Actor Critic (AC) and Distributional

Actor Critic (DAC) for conciseness. For DAC, we first perform a categorical

parameterized C51 critic loss from the classical least-squared critic loss dubbed

DAC (C51), which coincides with our theoretical analysis in Sections 3.4.2 and

3.4.3. We further apply our experiments on Quantile Regression distributional

RL, i.e., Implicit Quantile Network (IQN), denoted as DAC (IQN), to heuristi-

cally extend our conclusion in broader algorithm classes. More implementation

details are provided in Appendix 3.8.6.
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Figure 3.2: Uniform Stability. The critic gradient norms in the logarithmic
scale regarding the state during the training of AC, DAC (C51), DAC (IQN) over
5 seeds on eight MuJoCo environments.

3.5.1 Performance and Uniform Stability

Figure 3.1 suggests both DAC (IQN) and DAC (C51) excel at the classical

RL counterpart, i.e., AC (black lines), in most environments, which allows our

further optimization analysis.

Proxy: Gradient Norms in the Input Space. We demonstrate the ad-

vantage of uniform optimization stability for distributional RL over classical

RL. According to Theorem 3, the stable optimization of distribution loss within

Neural FZI is described as a bounded loss difference for a neighboring dataset

regarding each state s and action a. In other words, the error bound holds by

taking the supreme over each state and action pair. To measure this algorithm

stability, while far from perfect, we consider leveraging the average gradient

norms concerning the state feature x(s) in the whole optimization process as

the proxy. This is because the gradient magnitude in the input space could

measure the sensitivity of the loss function regarding each state and action.

Results. Figure 3.2 suggests that both DAC (C51) and DAC (IQN) entail

smaller gradient norm magnitudes than the classical AC (black lines) across all
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environments, corroborating the uniform stability for distributional RL over

classical RL analyzed in Theorem 3. As analyzed in Section 3.4.2, this result

provides empirical evidence to interpret behaviors of distributional RL.

3.5.2 Acceleration Effect of Distributional RL

Proxy: Gradient Norms in the Weight Space . Theorem 4 implies that

if the distribution parameterization is appropriate, distributional RL can speed

up the convergence and thus can achieve better first-order stationary point,

corresponding to smaller gradient norms given the time step in the learning

process. To demonstrate it, we take the same step size for both DAC and AC,

and evaluate the ℓ2-norms of gradients concerning network parameters of their

critics. A direct comparison between vanilla AC and DAC algorithm is given in

Figure 3.3, despite the slight difference in the network architecture in the last

layer. For an apple-to-apple comparison, we keep the same DAC architecture

while implementing a variant AC by optimizing the expectation of represented

return distribution. We also find a similar result in Appendix 3.8.7.
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Figure 3.3: Acceleration Effect. The critic gradient norms in the logarith-
mic scale regarding network parameters in the training of AC, DAC (C51),
DAC (IQN) over 5 seeds on MuJoCo environments.
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Results. Figure 3.3 showcases that both DAC (C51) and DAC (IQN) have

smaller gradient norms in terms of network parameters θ compared with AC

in the whole optimization process. This result also validates that distribu-

tional RL loss tends to enjoy smoothness properties in Proposition 7. More-

over, it turns out that DAC (IQN) tends to have smaller gradient norms than

DAC (C51). Given the fact that DAC (IQN) outperforms DAC (C51) in most

environments in Figure 3.1, we hypothesize that DAC (IQN) may have a better

acceleration effect than DAC (C51), contributing to explaining its superior-

ity. Moreover, the more expressive parameterization of IQN over C51 is also

helpful in interpreting both the acceleration and the improvement in the final

performance. Lastly, according to Theorem 4, the access to the agnostic κ can

serve as a sufficient condition to discriminate whether a specific distributional

RL algorithm can accelerate the training in a given environment. However, a

precise evaluation of κ is tricky, which we leave as valuable future work.

3.6 Conclusion

In our paper, we answer the question: how does return distribution in distri-

butional RL help the optimization from perspectives of the uniform stability

and acceleration effect in the optimization. Our conclusions are made within

a new Neural FZI framework that connects the optimization results in super-

vised learning with practical deep RL algorithms.

3.7 Limitations and Future Work

Our optimization analysis of distributional RL is based on categorical pa-

rameterization, and therefore, some optimization properties, such as uniform

stability, may not directly apply to other distributional RL families. The alter-

native analysis on distributional RL algorithms based on Wasserstein distance

is also an integral and valuable complement to our conclusions, which we leave

as future work.
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3.8 Appendix

3.8.1 Derivation of Categorical Distributional Loss

We show the derivation details of the Categorical distribution loss starting from

KL divergence between p and qθ. pi is the cumulative probability increment

of target distribution {Yi}i∈[n] within the i-th bin, and qθ corresponds to a

(normalized) histogram, and has density values
fθi (x(s))

wi
per bin. Thus, we

have:

DKL (p
s,a, qs,aθ ) =

∫︂ b

a

ps,a(y) log ps,a(y)dy −
∫︂ b

a

ps,a(y) log qs,aθ (y)dy

∝ −
∫︂ b

a

ps,a(y) log qs,aθ (y)dy

= −
k∑︂
i=1

∫︂ zi+wi

zi

ps,a(y) log
f θi (x(s))

wi
dy

= −
k∑︂
i=1

log
f θi (x(s))

wi
(F s,a (zi + wi)− F s,a (zi))⏞ ⏟⏟ ⏞

ps,ai

∝ −
k∑︂
i=1

ps,ai log f θi (x(s))

(3.7)

where the first ∝ results from the fixed target ps,a in the Neural FZI frame-

work. The second equality is based on the categorical parameterization for the

density function qs,aθ . The last ∝ holds because the width parameter wi can

be ignored for this minimization problem.

3.8.2 Proof of Proposition 7

Proof. For the Categorical distributional loss below,

Lθ(s, a) = −
k∑︂
i=1

ps,ai log f θi (x(s)), (3.8)

where f θi (x(s)) =
exp(x(s)⊤θi)∑︁k

j=1 exp(x(s)⊤θj)
.
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(1) Convexity. Note that − log
exp(x(s)⊤θi)∑︁k

j=1 exp(x(s)⊤θj)
= log

∑︁k
j=1 exp

(︁
x(s)⊤θj

)︁
−

x(s)⊤θi, the first term is Log-sum-exp, which is convex (see Convex optimiza-

tion by Boyd and Vandenberghe), and the second term is affine function. Thus,

Lθ(s, a) is convex.

(2) Lθ(s, a) is kl-Lipschitz continuous. We compute the gradient of the

Histogram distributional loss regarding θi:

∂

∂θi

k∑︂
j=1

ps,aj log f θj (x(s))

=
k∑︂
j=1

ps,aj
1

f θj (x(s))
∇θif

θ
j (x(s))

=
k∑︂
j=1

ps,aj
1

f θj (x(s))
f θi (x(s))(δij − f θj (x(s)))x(s)

=

(︄
ps,ai (1− f θi (x(s)))−

k∑︂
j ̸=i

ps,aj f θi (x(s))

)︄
x(s)

=
(︁
ps,ai − p

s,a
i f θi (x(s))− (1− ps,ai )f θi (x(s))

)︁
x(s)

=
(︁
ps,ai − f θi (x(s))

)︁
x(s)

(3.9)

where δij = 1 if i = j, otherwise 0. Then, as we have ∥x(s)∥ ≤ l, we bound

the norm of its gradient

∥ ∂
∂θ

k∑︂
j=1

pj log f
θ
j (x(s))∥ ≤

k∑︂
i=1

∥ ∂
∂θi

k∑︂
j=1

pj log f
θ
j (x(s))∥

=
k∑︂
i=1

∥
(︁
ps,ai − f θi (x(s))

)︁
x(s)∥

≤
k∑︂
i=1

|ps,ai − f θi (x(s))|∥x(s)∥

≤ kl

(3.10)

The last equality satisfies because |pi−f θi (x(s))| is less than 1 and even smaller.

Therefore, we obtain that Lθ is kl-Lipschitz.
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(3) Lθ is kl2-Lipschitz smooth. A lemma is that log(1+exp(x)) is 1
4
-smooth

as its second-order gradient is bounded by 1
4
, and if g(w) is β-smooth w.r.t.

w, then g(⟨x,w⟩) is β∥x∥2-smooth. Based on this knowledge, we firstly focus

on the 1-dimensional case of the function log f θj (z), where f
θ
j (z) =

exp zj∑︁k
i=1 exp zi

.

As we have derived, we know that ∂
∂θi

log f θj (zj) = δij − f θi (zi). Then the

second-order gradient is
∂2 log fθj (z)

∂θi∂θk
= −f θi (z)(δik − f θk (z)) = f θi (z)(f

θ
k (z) − 1)

if i = k, otherwise f θi (z)f
θ
k (z). Clearly, |∂

2 log fθj (z)

∂θi∂θk
| ≤ 1, which implies that

log f θj (z) is 1-smooth. Thus, log f θj (⟨x, θi⟩) is ∥x∥2-smooth, or l2-smooth. Fur-

ther,
∑︁k

j=1 p
s,a
j log f θj (x(s)) is also l

2-smooth as we have

∥∇θi

k∑︂
j=1

ps,aj log fµj (x(s))−∇θi

k∑︂
j=1

ps,aj log f νj (x(s))∥

≤
k∑︂
j=1

ps,aj ∥∇θi log f
µ
j (x(s))−∇θi log f

ν
j (x(s))∥

≤
k∑︂
j=1

ps,aj · l2∥µ− ν∥

= l2∥µ− ν∥

(3.11)

for each parameter µ and ν. Therefore, we further have

∥∇θ

k∑︂
j=1

ps,aj log fµj (x(s))−∇θ

k∑︂
j=1

ps,aj log f νj (x(s))∥

≤
k∑︂
i=1

∥∇θi

k∑︂
j=1

ps,aj log fµj (x(s))−∇θi

k∑︂
j=1

ps,aj log f νj (x(s))∥

≤
k∑︂
i=1

l2∥µ− ν∥

= kl2∥µ− ν∥

(3.12)

Finally, we conclude that Lθ(s, a) is kl2-smooth.
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3.8.3 Proof of Theorem 3

Proof. Consider the stochastic gradient descent rule as Gλ,L(θ) = θ − λ∇θLθ.
Firstly, we provide two definitions about Lθ for the following proof.

Definition 4. (σ-bounded) An update rule is σ-bounded if

sup
θ
∥θ − λ∇θLθ∥ ≤ σ.

Definition 5. (η-expansive) An update rule is η-expansive if

sup
v,w

∥Gλ,L(v)−Gλ,L(w)∥
∥u− w∥

≤ η.

Lemma 3. (Grow Recursion, Lemma 2.5 [45]) Fix an arbitrary sequence of

updates G1, ..., GT and another sequence G′
1, ..., G

′
T . Let θ0 = θ′0 be the starting

point and define δt = ∥θ′i− θt∥, where θt and θ′t are defined recursively through

θt+1 = Gλ,L(θt), θ
′
t+1 = G′

λ,L(θ
′
t)

Then we have the recurrence relation:

δt+1 ≤

⎧⎨⎩ηδt Gt = G′
t is η-expansive

min(η, 1)δt + 2σt Gt and G
′
t are σ-bounded , Gt is η expansive

Lemma 4. (Lipschitz Continuity) Assume Lθ is L-Lipschitz, the gradient

update Gλ,L is (λL)-bounded.

Proof. ∥θ −Gλ,L(θ)∥ = ∥λ∇θLθ∥ ≤ λL

Lemma 5. (Lipschitz Smoothness and Convex) Assume Lθ is β-smooth and

convex, then for any λ ≤ 2
β
, the gradient update Gλ,L is 1-expansive.

Proof. Please refer to Lemma 3.7 in [45] for the proof.

Based on all the results above, we start to prove Theorem 3. Our proof

is largely based on [45], but it is applicable in distributional RL settings and

considering desirable properties of histogram distributional loss. According to
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Proposition 7, we attain that Lθ is kl-Lipschitz as well as kl2-smooth, and

thus based on Lemma 4 and Lemma 5, we have Gλ,L is (λkl)-bounded, and

1-expansive if λ ≤ 2
kl2

. In the step t, SGD selects samples that are both in D
and D′, with probability 1 − 1

n
. In this case, Gt = G′

t, and thus δt+1 ≤ δt as

Gt is 1-expansive based on Lemma 3. The other case is that samples selected

are different with probability 1
n
, where δt+1 ≤ δt + 2λtkl based on Lemma 3.

Thus, if λt ≤ 2
kl2

, for each state s and action a, we have:

E
⃓⃓
LθT (s, a)− Lθ′T (s, a)

⃓⃓
≤ klE [δT ] , where δT = ∥θT − θ′T∥

≤ kl

(︃
(1− 1

n
)E [δT−1] +

1

n
E [δT−1] +

2λT−1kl

n

)︃
= kl

(︃
E [δT−1] +

2λT−1kl

n

)︃
= kl

(︄
E [δ0] +

T−1∑︂
t=0

2λtkl

n

)︄

≤ 2k2l2

n

T−1∑︂
t=0

2

kl2

=
4kT

n
(3.13)

Since this bound holds for all D, D′ and s, a, we attain the uniform stability

in Definition 2 for our categorical distributional loss applied in distributional

RL.

3.8.4 Proof of Proposition 8

E(s,a)∼ρπ
[︁
∥∇Lθ(ps,a, f s,aθ ))−∇G(θ)∥2

]︁
≤ (1− ϵ)2σ2 + ϵ2κσ2. (3.14)

Proof. As we know that ps,a(x) = (1−ϵ)ps,aE +ϵµs,a(x) and we use KL divergence

in Lθ, then we have:

∇Lθ(ps,a, f s,aθ ) = (1− ϵ)∇Lθ(ps,aE , f s,aθ ) + ϵ∇Lθ(µs,a, f s,aθ )
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Therefore,

E(s,a)∼ρπ
[︁
∥∇Lθ(ps,a, f s,aθ ))−∇G(θ)∥2

]︁
≤ E(s,a)∼ρπ

[︁
(1− ϵ)2∥∇Lθ(ps,aE , f s,aθ ))−∇G(θ)∥2 + ϵ2∥∇Lθ(µs,a, f s,aθ ))−∇G(θ)∥2

]︁
= (1− ϵ)2σ2 + ϵ2κσ2,

(3.15)

where the first inequality uses the triangle inequality of norm, i.e., ∥(1− ϵ)a+
ϵb∥2 ≤ (1 − ϵ)2∥a∥2 + ϵ2∥b∥2, and the last equality uses the definition of the

variance of Lθ(ps,aE , f s,aθ ) and Lθ(µs,a, f s,aθ ).

3.8.5 Proof of Theorem 4

Proof. Classical RL (1) If we only consider the expectation of Zπ(s, a), we

use the information ps,aE to construct the loss function. As Lθ(ps,aE , qs,aθ ) is

kl2-smooth, we have

G(θt+1)−G(θt) ≤ ⟨∇G(θt), θt+1 − θt⟩+
kl2

2
∥θt+1 − θt∥2

= −λ ⟨∇G(θt),∇Lθ(ps,aE , f s,aθ )⟩+ kl2λ2

2
∥∇Lθ(ps,aE , f s,aθ )∥2

(3.16)

where the inequality is according to the definition of Lipschitz-smoothness,

and the last equation is based on the updating rule of θ. Next, we take the

expectation on both sides,

E [G(θt+1)−G(θt)]

≤ −λE
[︁
∥∇G(θt)∥2

]︁
+
kl2λ2

2
E
[︁
∥∇Lθ(ps,aE , f s,aθ )−∇G(θt) +∇G(θt)∥2

]︁
≤ −λE

[︁
∥∇G(θt)∥2

]︁
+
kl2λ2

2
E
[︁
∥∇Lθ(ps,aE , f s,aθ )−∇G(θt)∥2

]︁
+
kl2λ2

2
E
[︁
∥∇G(θt)∥2

]︁
=
λ(kl2λ− 2)

2
E
[︁
∥∇G(θt)∥2

]︁
+
kl2λ2

2
σ2

≤ −λ
2
E
[︁
∥∇G(θt)∥2

]︁
+
kl2λ2

2
σ2

(3.17)
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where the first two inequalities hold because ∇G(θ) = E [∇Lθ] and the last

inequality comes from λ ≤ 1
kl2

. Through the summation, we obtain that

E [G(θT )−G(θ0)] ≤ −
λ

2

T−1∑︂
t=0

E
[︁
∥∇G(θt)∥2

]︁
+
kl2λ2T

2
σ2

We let E [G(θT )] = 0, we have

1

T

T−1∑︂
t=0

E
[︁
∥∇G(θt)∥2

]︁
≤ 2G(θ0)

λT
+ kl2λσ2

By setting λ ≤ τ2

2kl2σ2 (simultaneously λ ≤ 1
kl2

, i.e., λ ≤ 1
kl2

min{1, τ2
2σ2}) and

T = 4G(θ0)
λτ2

, we can have 1
T

∑︁T−1
t=0 E [∥∇G(θt)∥2] ≤ τ 2, implying that the de-

generated loss function based on the expectation ps,aE can achieve τ -stationary

point if the sample complexity T = O( 1
τ4
).

Distributional RL (2). We are still based on the kl2-smoothness of L(ps,a, f s,aθ ).

G(θt+1)−G(θt)

≤ ⟨∇G(θt), θt+1 − θt⟩+
kl2

2
∥θt+1 − θt∥2

= −λ ⟨∇G(θt),∇Lθ(ps,a, f s,aθ )⟩+ kl2λ2

2
∥∇Lθ(ps,a, f s,aθ )∥2

= −λ
2
∥∇G(θt)∥2 +

λ

2
∥∇G(θt)−∇Lθ(ps,a, f s,aθ )∥2 + λ(kl2λ− 1)

2
∥∇Lθ(ps,a, f s,aθ )∥2

≤ −λ
2
∥∇G(θt)∥2 +

λ

2
∥∇G(θt)−∇Lθ(ps,a, f s,aθ )∥2

(3.18)

where the second equation is based on ⟨a,−b⟩ = 1
2
(∥a− b∥2 − ∥a∥2 − ∥b∥2),

and the last inequality is according to λ ≤ 1
kl2

. After taking the expectation,

we have

E [G(θt+1)−G(θt)] ≤ −
λ

2
E
[︁
∥∇G(θt)∥2

]︁
+
λ

2
E
[︁
∥∇G(θt)−∇Lθ(ps,a, f s,aθ )∥2

]︁
≤ −λ

2
E
[︁
∥∇G(θt)∥2

]︁
+
λ

2

(︁
(1− ϵ)2σ2 + ϵ2κσ2

)︁
(3.19)

where the last inequality is based on Proposition 8. We take the summation,
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and therefore,

E [G(θT )−G(θ0)] ≤ −
λ

2

T−1∑︂
t=0

E
[︁
∥∇G(θt)∥2

]︁
+
Tλ

2

(︁
(1− ϵ)2σ2 + ϵ2κσ2

)︁
We let E [G(θT )] = 0 and ϵ = 1

1+κ
, then,

1

T

T−1∑︂
t=0

E
[︁
∥∇G(θt)∥2

]︁
≤ 2G(θ0)

λT
+ (1− ϵ)2σ2 + ϵ2κσ2

=
2G(θ0)

λT
+

2κ2

(1 + κ)2
σ2

≤ 2G(θ0)

λT
+ 2κ2σ2

(3.20)

If κ ≤ τ
2σ

and let T = 4G(θ0)
λτ2

, this leads to 1
T

∑︁T−1
t=0 E [∥∇G(θt)∥2] ≤ τ 2, i.e.,

τ -stationary point, with the sample complexity as O( 1
τ2
). If κ > τ

2σ
, we set

T = G(θ0)
λκ2σ2 . This implies that 1

T

∑︁T−1
t=0 E [∥∇G(θt)∥2] ≤ 4κ2σ2, which can only

achieve 2κσ-stationary point. Putting two cases together, we conclude that

distributional RL can achieve max{τ, 2κσ}-stationary point (since τ can be

pre-given, while 2κσ is determined by the environment.)

3.8.6 Implementation Details

Our implementation is directly adapted from the source code in [67]. For

DAC (IQN), we consider the quantile regression for the distribution estima-

tion on the critic loss. Instead of using fixed quantiles in QR-DQN [22], we

leverage the quantile fraction generation based on IQN [21] that uniformly

samples quantile fractions in order to approximate the full quantile function.

In particular, we fix the number of quantile fractions as N and keep them

ascending. Besides, we adapt the sampling as τ0 = 0, τi = ϵi/
∑︁N−1

i=0 , where

ϵi ∈ U [0, 1], i = 1, ..., N .

Hyper-parameters and Network structure We adopt the same hyper-

parameters listed in Table 3.1 and network structure as in the original distri-
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butional SAC paper [67].

Best lk for DAC (C51) As suggested in Table 3.1, after a line search for the

hyperparameter tuning, we select lk as 500, 10,000, 15,000, 160, 50, 5,000, 500,

500 for ant, halfcheetah, humanoidstand, swimmer, bipedalwalkerhardcore,

humanoid, walker2d and reacher, respectively.

Table 3.1: Hyper-parameters Sheet.

Hyperparameter Value

Shared
Policy network learning rate 3e-4

(Quantile / Categorical) Value network learning rate 3e-4

Optimization Adam

Discount factor 0.99

Target smoothing 5e-3

Batch size 256

Replay buffer size 1e6

Minimum steps before training 1e4

DAC (IQN)
Number of quantile fractions (N) 32

Quantile fraction embedding size 64

Huber regression threshold 1

DAC (C51)
Number of Atoms (k) 51

Hyperparameter lk for C51 Max episode lenght

Walker2d-v2 500 1000
Swimmer-v2 160 1000

Reacher-v2 500 1000

Ant-v2 500 1000

HalfCheetah-v2 10,000 1000

Humanoid-v2 5,000 1000

HumanoidStandup-v2 15,000 1000

BipedalWalkerHardcore-v2 50 2000
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3.8.7 Experimental Results on Acceleration Effects of

Distributional RL

Same Architecture. For a fair comparison, we keep the same DAC network

architecture and evaluate the gradient norms of DAC (C51) and a variant of

AC, which is optimized based on the expectation of the represented value

distribution within the DAC implementation framework. Figure 3.4 suggests

DAC (C51) still enjoys smaller gradient norms than AC in this fair comparison

setting.
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Figure 3.4: The critic gradient norms in the logarithmic scale during the training
of AC and DAC (C51) over five seeds on three MuJoCo games. We keep the same
DAC network architecture and evaluate based on the expectation of the represented
value distribution.

Results under Return Density Decomposition We also provide gradi-

ent norms of both expectation and distribution based on the Return Density

Function decomposition in Eq. 2.4. Similar results can still be observed in

Figure 3.5.
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Figure 3.5: The critic gradient norms in the logarithmic scale during the training
of AC and DAC (C51) over five seeds on three MuJoCo games. Results of AC is
the expectation part calculated via the Return Density Decomposition.
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Chapter 4

Exploring the Training

Robustness of Distributional

Reinforcement Learning against

Noisy State Observations

4.1 Abstract

In real scenarios, state observations that an agent observes may contain mea-

surement errors or adversarial noises, misleading the agent to take suboptimal

actions or even collapse while training. In this paper, we study the training ro-

bustness of distributional Reinforcement Learning (RL), a class of state-of-the-

art methods that estimate the whole distribution, as opposed to only the expec-

tation, of the total return. Firstly, we validate the contraction of distributional

Bellman operators in the State-Noisy Markov Decision Process (SN-MDP), a

typical tabular case that incorporates both random and adversarial state ob-

servation noises. In the noisy setting with function approximation, we then

analyze the vulnerability of least squared loss in expectation-based RL with

either linear or nonlinear function approximation. By contrast, we theoreti-

cally characterize the bounded gradient norm of distributional RL loss based

on the categorical parameterization equipped with the Kullback–Leibler (KL)
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divergence. The resulting stable gradients while the optimization in distribu-

tional RL accounts for its better training robustness against state observation

noises. Finally, extensive experiments on the suite of environments verified

that distributional RL is less vulnerable against both random and adversarial

noisy state observations compared with its expectation-based counterpart.

4.2 Introduction

Learning robust and high-performance policies for continuous state-action rein-

forcement learning (RL) domains is crucial to enable the successful adoption of

deep RL in robotics, autonomy, and control problems. However, recent works

have demonstrated that deep RL algorithms are vulnerable either to model

uncertainties or external disturbances [48, 80, 50, 15, 116, 91, 94, 40]. Par-

ticularly, model uncertainties normally occur in a noisy reinforcement learn-

ing environment where the agent often encounters systematic or stochastic

measurement errors on state observations, such as the inexact locations and

velocity obtained from the equipped sensors of a robot. Moreover, external

disturbances are normally adversarial in nature. For instance, the adversary

can construct adversarial perturbations on state observations to degrade the

performance of deep RL algorithms. These two factors lead to noisy state ob-

servations that influence the performance of algorithms, precluding the success

of RL algorithms in real-world applications.

Existing works mainly focus on improving the robustness of algorithms in

the test environment with noisy state observations. Smooth Regularized Re-

inforcement Learning [91] introduced a regularization to enforce smoothness

in the learned policy, and thus improved its robustness against measurement

errors in the test environment. Similarly, the State-Adversarial Markov Deci-

sion Process (SA-MDP) [116] was proposed and the resulting principled policy

regularization enhances the adversarial robustness of various kinds of RL al-

gorithms against adversarial noisy state observations. However, both of these

works assumed that the agent can access clean state observations during the

training, which is normally not feasible when the environment is inherently

noisy, such as unavoidable measurement errors. Hence, the maintenance and
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formal analysis of policies robust to noisy state observations during the training

is a worthwhile area of research.

Recent distributional RL algorithms, e.g., C51 [9], Quantile-Regression

DQN (QRDQN) [22], Implicit Quantile Networks (IQN) [21] and Moment-

Matching DQN (MMD) [77], constantly set new records in Atari games, gain-

ing huge attention in the research community. Existing literature mainly

focuses on the performance of distributional RL algorithms, but other ben-

efits, including the robustness in the noisy environment, of distributional RL

algorithms are less studied. As distributional RL can leverage additional in-

formation about the value distribution that captures the uncertainty of the

environment more accurately, it is natural to expect that distributional RL

with this better representation capability can be less vulnerable to the noisy

environment while training, which motivates our research. In this paper, we

probe the robustness superiority of distributional RL against various kinds of

state observation noises during the training process. Our contributions can be

summarized as follows:

• Tabular setting. We firstly analyze a systematical noisy setting, i.e.,

State-Noisy Markov Decision Process (SN-MDP), incorporating both

random and adversarial state observation noises. Theoretically, we de-

rive the convergence of distributional Bellman operator in SN-MDP.

• Function approximation setting. We elaborate the additional con-

vergence requirement of linear Temporal difference (TD) when exposed

to noisy state observations. To clearly compare with distributional RL,

we attribute its robustness advantage to the bounded gradients norms

regarding state features based on the categorical parameterization of

value distributions. This stable optimization behavior is in contrast to

the potentially unbounded gradient norms of expectation-based RL.

• Experiments. We demonstrate that distributional RL algorithms po-

tentially enjoy better robustness under various types of noisy state ob-

servations across a wide range of classical and continual control environ-

ments as well as Atari games. Our conclusion facilitates the deployment

of distributional RL algorithms in more practical noisy settings.
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4.2.1 Notations

We remain the notations in the last two chapters, except we slightly change

the distributional Bellman operator. We first define the transition operator

P π : Z → Z:

PπZ(s, a) :D= Z (S ′, A′) , S ′ ∼ P (·|s, a), A′ ∼ π (·|S ′) , (4.1)

where we use capital letters S ′ and A′ to emphasize the random nature of

both, and :
D
= indicates convergence in distribution. For simplicity, we denote

Zπ(s, a) by Z(s, a). Thus, the distributional Bellman operator Tπ is defined

as:

TπZ(s, a) :
D
= R(s, a, S ′) + γPπZ(s, a). (4.2)

4.3 Tabular Case: State-Noisy MDP

In this section, we extend State-Adversarial Markov Decision Process (SA-

MDP) [116] to a more general State-Noisy Markov Decision Process (SN-MDP)

by incorporating both random and adversarial state noises, and particularly

provide a proof of the convergence and contraction of distributional Bellman

operators in this setting.

Agent

Environment

Noise

௧ାଵ

௧ାଵ

௧

௧
௧

௧

௧ ௧ ௧

Figure 4.1: State-Noisy Markov Decision Process. v(st) is perturbed by the noise
mechanism N .

Definitions. SN-MDP is a 6-tuple (S,A, R, P, γ,N), as exhibited in Fig-

ure 4.1, where the noise generating mechanism N(·|s) maps the state from
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s to v(s) using either random or adversarial noise with the Markovian and

stationary probability N(v(s)|s). It is worthwhile to note that the explicit

definition of the noise mechanism N here is based on discrete state transi-

tions, but the analysis can be naturally extended to the continuous case if we

let the state space go to infinity. Moreover, let B(s) be the set that contains the
allowed noise space for the noise generating mechanism N , i.e., v(s) ∈ B(s).

Following the setting in [116], we only manipulate state observations but

do not change the underlying environment transition dynamics based on s

or the agent’s actions directly. As such, our SN-MDP is more suitable to

model the random measurement error, e.g., sensor errors and equipment in-

accuracies, and adversarial state observation perturbations in safety-critical

scenarios. This setting is also aligned with many adversarial attacks on state

observations [48, 61]. The following contractivity analysis regarding value

function or distribution is directly based the state s rather than v(s) as it is

more natural and convenient to capture the uncertainty of MDP.

4.3.1 Analysis of SN-MDP for Expectation-based RL

We define the value function Ṽ π◦N given π in SN-MDP. The Bellman Equations

regarding the new value function Ṽ π◦N are given by:

Ṽ π◦N(s) =
∑︂
a

∑︂
v(s)

N(v(s)|s)π(a|v(s))
∑︂
s′

p(s′|s, a)
[︂
R(s, a, s′) + γṼ π◦N(s

′)
]︂
,

(4.3)

where the random noise transits s into v(s) with a certain probability and the

adversarial noise is the special case of N(v(s)|s) where N(v∗(s)|s) = 1 if v∗(s)

is the optimal adversarial noisy state given s, and N(v(s)|s) = 0 otherwise.

We denote Bellman operators under random noise mechanism N r(·|s) and

adversarial noise mechanism N∗(·|s) as T πr and T πa , respectively. This implies

that T πr Ṽ π◦N = Ṽ π◦Nr and T πa Ṽ π◦N = Ṽ π◦N∗ . We extend Theorem 1 in [116]

to both random and adversarial noise scenarios, and immediately obtain that

both T πr and T πa are contraction operators in SN-MDP. We provide a rigorous

description in Theorem 7 with the proof in Appendix 4.7.1.

The insightful and pivotal conclusion from Theorem 7 is T πa Ṽ π◦N = minN Ṽ π◦N .
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This implies that the adversary attempts to minimize the value function, forc-

ing the agent to select the worse-case action among the allowed transition

probability space N(·|s) for each state s. The crux of the proof is that Bell-

man updates in SN-MDP result in the convergence to the value function for

another “merged” policy π′ where π′(a|s) =
∑︁

v(s)N(v(s)|s)π(a|v(s)). Nev-

ertheless, the converged value function corresponding to the merged policy

might be far away from that for the original policy π, which is more likely to

worsen the performance of RL algorithms.

4.3.2 Analysis of SN-MDP in distributional RL

In the SN-MDP setting for distributional RL, the new distributional Bellman

equations use new transition operators in place of Pπ in Eq. 4.1. The new

transition operators Pπr and Pπa , for the random and adversarial settings, are

defined as:

Pπr ZN(s, a) :
D
= ZNr(S ′, A′), A′ ∼ π(·|V (S ′)), and

PπaZN(s, a) :
D
= ZN∗(S ′, A′), A′ ∼ π(·|V ∗(S ′)),

(4.4)

where V (S ′) ∼ N r(·|S ′) is the state random variable after the transition, and

V ∗(S ′) is attained from N∗(·|S ′) under the optimal adversary. Besides, S ′ ∼
P (·|s, a). Therefore, the corresponding new distributional Bellman operators

Tπr and Tπa are formulated as:

TπrZN(s, a) :
D
= R(s, a, S ′) + γPπr ZN(s, a), and

TπaZN(s, a) :
D
= R(s, a, S ′) + γPπaZN(s, a).

(4.5)

In this sense, four sources of randomness define the new compound distribu-

tion in the SN-MDP: (1) randomness of reward, (2) randomness in the new

environment transition dynamics Pπr or Pπa that additionally includes (3) the

stochasticity of the noisy transition N , and (4) the random next-state value

distribution Z(S ′, A′). As our first theoretical contribution, we now show that

the new derived distribution Bellman Operators defined in Eq. 4.5 in SN-MDP

setting are convergent and contractive for policy evaluation in Theorem 5.
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Theorem 5. (Convergence and Contraction of Distributional Bellman oper-

ators in the SN-MDP) Given a policy π, we define the distributional Bellman

operators Tπr and Tπa in Eq. 4.5, and consider the Wasserstein metric dp, the

following results hold.

(1) Tπr is a contraction under the maximal form of dp.

(2) Tπa is also a contraction under the maximal form of dp, following the greedy

adversarial rule, i.e., N∗(·|s′) = argminN(·|s′) E [Z(s′, a′)] where a′ ∼ π(·|V (s′))

and V (s′) ∼ N(·|s′).

We provide the proof in Appendix 4.7.2. Similar to the convergence con-

clusions in classical RL, Theorem 5 justified that distributional RL is also

capable of converging in this SN-MDP setting. The contraction and conver-

gence of distributional Bellman operators in the SN-MDP is one of our main

contributions. This result allows us to deploy distributional RL algorithms

comfortably in the tabular setting even with noisy state observations.

4.4 Function Approximation Case

In the tabular case, both expectation-based and distributional RL have con-

vergence properties. However, in the function approximation case, we firstly

show linear TD requires more conditions for the convergence, and point out

the vulnerability of expectation-based RL against noisy states even under the

bounded rewards assumption. In contrast, we analyze that distributional RL

with the categorical representation for the value distributions, is more robust

against noisy state observations due to its bounded gradient norms.

4.4.1 Convergence of Linear TD under Noisy States

In classical RL with function approximation, the value estimator v̂ : S×Rd →
R parameterized by w is expressed as v̂(s,w). The objective function is Mean

Squared Value Error [102] denoted as VE:

VE(w)
.
=
∑︂
s∈S

µ(s) [vπ(s)− v̂(s,w)]2 , (4.6)
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where µ is the state distribution. In linear TD, the value estimate is formed

simply as the inner product between state features x(s) and weights w ∈ Rd,

given by v̂(s,w)
def
= w⊤x(s). At each step, the state feature can be rewritten

as xt
def
= x (St) ∈ Rd. Thus, the TD update at step t is:

wt+1 ← wt + αt(Rt+1 + γw⊤
t xt+1 −w⊤

t xt)xt (4.7)

where αt is the step size at time t. Once the system has reached the steady

state for any wt, then the expected next weight vector can be written as

E[wt+1|wt] = wt + αt(b − Awt), where b = E(Rt+1xt) ∈ Rd and A
.
=

E
[︁
xtd

⊤
t

]︁
∈ Rd×d. The TD fixed point wTD to the system satisfies AwTD = b.

From [102], we know that the matrix A determines the convergence in the

linear TD setting. In particular, wt converges with probability one to the TD

fixed point if A is positive definite. However, if we add state noises η on xt in

Eq. 4.7, the convergence condition will be different. As shown in Theorem 6 (a

more formal version with the proof is given in Appendix 4.7.4), linear TD un-

der noisy state observations requires additional positive definiteness condition.

Theorem 6. (Covergence Conditions for Linear TD under Noisy State Ob-

servations) Define P as the |S| × |S| matrix forming from the state transition

probability p(s′|s), D as the |S|×|S| diagonal matrix with µ(s) on its diagonal,

and X as the |S|× d matrix with x(s) as its rows, and E is the |S|× d pertur-

bation matrix with each perturbation vector e(s) as its rows. wt converges to

TD fixed point when both A and (X+ E)⊤DPE are positive definite.

However, directly analyzing the convergence conditions of distributional

linear TD and then comparing with them in Theorem 6 for classical linear TD

is tricky in theory. As such, we additionally provide a sensitivity comparison

of both expectation-based and distributional RL through the lens of their

gradients regarding state features as follows.

4.4.2 Vulnerability of Expectation-based RL

We reveal that the vulnerability of expectation-based RL can be attributed to

its unbounded gradient characteristics in both linear and nonlinear approxi-
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mation settings.

Linear Approximation Setting. To solve the weighted least squared min-

imization in Eq. 4.6, we leverage Stochastic Gradient Descent (SGD) on the

empirical version of VE, which we denote as gVE. We focus on the gradient

norm of gVE regarding the state features x(s) (or xt) as the gradient of loss

w.r.t state observations is highly correlated with the sensitivity or robustness

of algorithms against the noisy state observations. For a fair comparison with

distributional RL in next section, we additionally bound the norm of w, i.e.,

∥w∥ ≤ l, which can also be easily satisfied by imposing ℓ1 or ℓ2 regularization.

Therefore, we derive the upper bound of gradient norm of gVE as

∥
∂gVE(w)

∂xt
∥ = |Ut −w⊤

t xt|∥wt∥ ≤ |Ut −w⊤
t xt|l, (4.8)

where the target Ut can be either an unbiased estimate via Monte Carlo method

with Ut =
∑︁∞

k=0 γ
krt+k+1, or a biased estimate via TD learning with Ut =

rt+1 + γw⊤
t xt+1. However, this upper bound |Ut − w⊤

t xt|l heavily depends

on the perturbation size or noise strength. Even under the bounded rewards

assumption, i.e., r ∈ [Rmin, Rmax], we can bound Ut as Ut =
∑︁∞

k=0 γ
krt+k+1 ∈

[Rmin

1−γ ,
Rmax

1−γ ]. However, this upper bound can be arbitrarily large if we have no

restriction on the noise size, leading to a potentially huge vulnerability against

state observation noises.

Nonlinear Approximation Setting. The potentially unbounded gradi-

ent norm issue of expectation-based RL in the linear case still remains in

the nonlinear approximation setting. We express the value estimate v̂ as

v̂(s;w, θ) = ϕw(x(s))
⊤θ, where ϕw(x(s)) is the representation vector of the

state feature x(s) in the penultimate layer of neural network-based value func-

tion approximator. Correspondingly, θ would be the parameters in the last

layer of this value neural network. We simplify ϕw(x(s))t as ϕw,t in the step t

update. As such, akin to the linear case, we derive the upper bound of gradient
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norm of gVE as

∥
∂gVE(w,θ)

∂xt
∥ = |Ut − ϕ⊤

w,tθt|∥∇xtϕ
⊤
w,tθt∥ ≤ |Ut − ϕ⊤

w,tθt|lL, (4.9)

where we assume the function ϕw(·) is L-Lipschitz continuous regarding its

input state feature x(s), and ∥θ∥ ≤ l as well for a fair comparison with distri-

butional RL. It turns out that |Ut − ϕ⊤
w,tθt| still depends on the perturbation

size, and can be still arbitrarily large if there is no restriction on the noise size.

In contrast, we further show that gradient norms in distributional RL can be

upper bounded regardless of the perturbation size or noise strength.

4.4.3 Robustness Advantage of distributional RL

We analyze the distributional loss in distributional RL can potentially lead to

bounded gradient norms regarding state features regardless of the perturbation

size, yielding its training robustness against state noises. In distributional RL

our goal is to minimize a distribution loss L (Zw,TZw) between the current

value distribution of Zw and its target value distribution of TZw.

Our robustness analysis is based on the categorical parameterization [51]

on the value distribution with the KL divergence, a typical choice also used

in the first distributional RL branch, i.e., C51 [9]. Specifically, we uniformly

partition the support of Zw(s) into k bins, and let the histogram function f :

X → [0, 1]k provide k-dimensional vector f(x(s)) of the coefficients indicating

the probability the target is in that bin given x(s). We use softmax to output

the k probabilities of f(x(s)). Therefore, the categorical distributional RL loss

L(Zw(s),TZw(s)), denoted as Lw, equipped with KL divergence between Zw

and TZw can be simplified as

L(Zw(s),TZw(s)) ∝ −
k∑︂
i=1

pi log f
w
i (x(s)), (4.10)

where we use w to parameterize the function f in the distributional loss Lw,

and the target probability pi is the cumulative probability increment of target

distribution TZw within the i-th bin. Detailed derivation about the simplifi-
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cation of categorical distributional loss is in Appendix 3.8.3.

Linear Approximation Setting. We leverage x(s)⊤wi to express the i-th

output of f , i.e., fi(x(s)) = exp
(︁
x(s)⊤wi

)︁
/
∑︁k

j=1 exp
(︁
x(s)⊤wj

)︁
, where all

parameters are w = {w1, ...,wk}. Based on this categorical distributional RL

loss, we obtain Proposition 9 (proof in Appendix 4.7.3), revealing that value-

based categorical distributional RL loss can result in bounded gradient norms

regarding state features x(s).

Proposition 9. (Gradient Property of distributional RL in Linear Approxi-

mation) Consider the categorical distributional RL loss Lw in Eq. 4.10 with

the linear approximation. Assume ∥wi∥ ≤ l for ∀i = 1, .., k, then
⃦⃦⃦
∂Lw

∂x(s)

⃦⃦⃦
≤ kl.

In contrast with the unbounded gradient norm in Eq. 4.8 of classical RL,

we have a restricted upper bound in distributional RL loss with a linear ap-

proximator, i.e., kl, which is independent of the perturbation size or noise

strength.

Nonlinear Approximation Setting. Similar to the nonlinear form in clas-

sical expectation-based RL as analyzed in Section 4.4.2, we express the i-th

output probabilities of f(x(s)) as

fw,θ
i (x(s)) = exp

(︁
ϕw(x(s))

⊤θi
)︁
/

k∑︂
j=1

exp
(︁
ϕw(x(s))

⊤θj
)︁
,

where the last layer parameter θ = {θ1, ..., θk} and ϕw(x(s)) is still the rep-

resentation vector of x(s). In Proposition 10, we can still attain a bounded

gradient norm of distributional RL loss in the nonlinear case.

Proposition 10. (Gradient Property of distributional RL in Nonlinear Ap-

proximation) Consider the categorical distributional RL loss Lw,θ in Eq. 4.10

with the nonlinear approximation. Assume ∥θi∥ ≤ l for ∀i = 1, .., k and ϕw(·)
is L-Lipschitz continuous, then

⃦⃦⃦
∂Lw,θ

∂x(s)

⃦⃦⃦
≤ klL.

Please refer to Appendix 4.7.3 for the proof. For a fair comparison with

nonlinear approximation in classical RL, we still assume the function ϕw(·) to
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be L-Lipschitz continuous and ∥θi∥ ≤ l. Interestingly, the bounded gradient

norm of the distributional RL loss is independent of the noise size, which is

in stark contrast to the potentially unrestricted gradients in classical RL in

Eq. 4.9 that heavily depends on the noise size. Based on Theorems 9 and 10,

we conclude that the bounded gradient behaviors of distributional RL could

reduce its sensitivity to state noises, and thus mitigate the interference of

the state observation noises compared with expectation-based RL, potentially

leading to better training robustness.

Extension of TD Convergence and Sensitivity Analysis. As supple-

mentary, we also conduct the analysis on different TD convergence conditions

under the unbalanced perturbations on either the current or next state ob-

servations. Please refer to Theorem 8 with the detailed explanation in Ap-

pendix 4.7.4. In addition, we also conduct a sensitivity analysis from the

perspective of the influence function to characterize the impact of state noises

on an estimator. We provide the details in Theorem 9 of Appendix 4.7.5.

4.5 Experiments

We make a comparison between expectation-based and distributional RL algo-

rithms against various noisy state observations across classical and contin-

uous control environments as well as Atari games, including Cartpole

and MountainCar (classical control), Ant, Humanoidstandup and Halfchee-

tah (continuous control), Breakout and Qbert (Atari games). For the continu-

ous control environment, we use Soft Actor Critic [43] and Distributional Soft

Actor Critic [67] with C51 as the critic loss and thus we denote them as SAC

and DAC (C51), respectively. For the classical control and Atari games, we

utilize DQN [74] as the baseline, and C51 [9], QRDQN [22] as its distributional

counterparts. The training robustness of C51 could be consistent with our the-

oretical analysis, while QRDQN, the more commonly-used one, is also applied

to demonstrate that our robustness analysis can also be empirically applicable

to broader distributional RL algorithms. The previous analysis is for policy

evaluation, but there are natural—though in some cases heuristic—extensions
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to the control setting.

Implementation and Experimental Setup. For the continuous control

environment, we modified our algorithm based on released implementation

of [67]. For classical control and Atari games, we followed the procedure in

[37, 119]. All the experimental settings, including parameters, are identical

to the distributional RL baselines implemented by [118, 22]. We perform 200

runs on both Cart Pole and Mountain Car and 3 runs on Breakout and Qbert.

Reported results are averaged with shading indicating the standard error. The

learning curve is smoothed over a window of size 10 before averaging across

runs. Please refer to Appendix 4.7.6 for more details about the experimental

setup.

Evaluation of Training Robustness. Due to final performance difference

between expectation-based and distributional RL, for a fair comparison we

calculate the ratio between final average returns under random or adversarial

state noises with different noise strengths and the original level without any

state noises. This ratio can be used to measure the robustness maintenance

after the agent gets exposed to noisy state observations.

Random and Adversarial State Noises. We use Gaussian noise with

different standard deviations to simulate random state noises, while for the

adversarial state noise, we apply the most typical adversarial state perturba-

tions proposed in [48, 80]. For the choice of perturbation size, we followed

[116], where the set of noises B(s) is defined as an ℓ∞ norm ball around s

with a radius ϵ, given by ℓ∞B(s) := {ŝ : ∥s− ŝ∥∞ ≤ ϵ}. We apply Projected

Gradient Descent (PGD) version in [80], with 3 fixed iterations while adjusting

ϵ to control the perturbation strength. Due to the page limit, we defer similar

results under more advanced MAD attack [116] in Appendix 4.7.7.

4.5.1 Results on Continuous Control Environments

We compare SAC with DAC (C51) on Ant and Humanoidstandup. Due to

the space limit, we mainly present the algorithm performance in the adver-
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Figure 4.2: Average returns of SAC and DAC (C51) against adversarial state
observation noises in the training on Ant and Humanoidstandup under 5 runs. Gra-
dient norms in the logarithm scale of AC and DAC (C51) in the adversarial setting.
advX in the legend indicates random state observations with the perturbation size
ϵ X.

sarial setting. Figure 4.2 suggests that distributional RL algorithms, i.e.,

DAC (C51), are less sensitive to their expectation-based counterparts, i.e.,

SAC, according to learning curves of average returns on Ant and Humanoid-

standup. More importantly, Figure 4.2 demonstrates that DAC (C51) enjoys

smaller gradient norms compared with SAC, and SAC with a larger pertur-

bation size is prone to unstable training with much larger gradient magni-

tudes. In particular, On Humanoidstandup, SAC converges undesirably with

adv0.01 (green line), but its gradient norm diverges (even infinity in the very

last phase). By contrast, DSAC (C51) has a lower level gradient norms, which

is less likely to suffer from divergence. This result corroborates with theoreti-

cal analysis in Section 4.4.3 that exploding gradients are prone to divergence

when exposed to state noises.

A quantitative result is also shown in Table 4.1, where distributional RL
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Robustness(%) Adversarial ϵ=0.02 ϵ=0.03 ϵ=0.1

Ant
SAC ≈ 0 ≈ 0 ≈ 0

DAC (C51) 74.0 48.3 20.5
Robustness(%) Adversarial ϵ=0.03 ϵ=0.1

Humanoidstandup
SAC 92.1 81.7

DAC (C51) 91.8 87.1

Table 4.1: Robustness ratio of algorithms under adversarial state observations
with different ϵ on Ant and Humanoidstandup.

algorithms tend to maintain a higher robustness ratio as opposed to their

expectation-based RL versions. We also note that the training robustness of

distributional RL algorithms may not be significant if the perturbation size

is slightly small, e.g., on Humanoidstandup. However, if we carefully vary

perturbation sizes in a proper range, we can easily observe the robustness ad-

vantage of distributional RL against adversarial noises, e.g., on Ant. We also

investigate the training robustness of more distributional RL algorithms over

more games. Thus, we evaluate the sensitivity of D4PG [8] against adversar-

ial noises on Halfcheetah, which can be viewed as the distributional version

of DDPG. As suggested in Figure 4.6 in Appendix 4.7.8, the distributional

RL algorithm D4PG is much less vulnerable than it expectation-based RL

counterpart DDPG against adversarial noises.

4.5.2 Results on Classical Control and Atari Games

Results under Random State Noises. We investigate the training ro-

bustness of DQN, C51 and QRDQN on classical control environments and

typical Atari games, against the random noisy state observations. Gaussian

state noises are continuously injected in the while training process of RL al-

gorithms, while the agent encounters noisy current state observations while

conducting the TD learning. Due to the space limit, here we mainly present

learning curves of algorithms on CartPole and Breakout. As shown in Fig-

ure 4.3, both C51 and QRDQN achieve similar performance to DQN after

the training without any random state noises. However, when we start to in-

ject random state noises with different noise sizes during the training process,

their learning curves show different sensitivity and robustness. Both C51 and
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Robustness(%) Random std=0.05 std=0.1

CartPole
DQN 44.2 28.6

QRDQN 54.5 43.4
C51 67.0 47.3

Robustness(%) Random std=0.01 std=0.05

Breakout
DQN 59.1 ≈ 0

QRDQN 81.1 73.1
C51 146.5 88.7

Table 4.2: Robustness ratio of three algorithms under random state observations
with different standard deviations (std) on CartPole and Breakout.

QRDQN are more robust against the random state noises than DQN, with the

less interference for the training under the same random noises. Remarkably, in

Breakout the performance of both C51 and QRDQN (solid lines) only slightly

decreases, while DQN (dashed lines) degrades dramatically and even diverges

when the standard deviation is 0.05. This significant difference provides a

strong empirical evidence to verify the robustness advantage of distributional

RL algorithms.

A detailed comparison is summarized in Table 4.2. It turns out that the
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Figure 4.3: Average returns of DQN, C51 and QRDQN against random state ob-
servation noises on CartPole and Breakout. randX in the legend indicates random
state observations with the standard deviation X.
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Figure 4.4: Average returns of DQN, C51 and QRDQN against adversarial state
observation noises across four games. advX in the legend indicates random state
observations with the perturbation size ϵ X.

training robustness of both QRDQN and C51 surpass DQN significantly. Note

that the robustness ratio for C51 under std=0.01 noises is 146.5%, which is

above 100%. This can be explained as a proper randomness added in the

training might be beneficial to exploration, yielding better generalization of

algorithms.

Results under Adversarial State Noises. Next, we probe the training

robustness of DQN, QRDQN and C51 in the setting where the agent encoun-

ters the adversarial state observations in the current state in the function

approximation case. Figure 4.4 presents the learning curves of algorithms on

CartPole and Breakout against noisy states under different adversarial pertur-

bation sizes ϵ.

It turns out that results under the adversarial state observations are sim-

ilar to those in the random noises case. Specifically, all algorithms tend to

degrade when getting exposed to adversarial state observations, and even are

more likely to diverge. However, a key observation is that distributional RL

algorithms, especially QRDQN, are capable of obtaining desirable performance
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Robustness(%) Adversarial ϵ=0.05 ϵ=0.1

CartPole
DQN 34.8 18.6

QRDQN 26.0 24.8
C51 75.6 70.6

Robustness(%) Adversarial ϵ=0.0005 ϵ=0.001

Breakout
DQN 29.8 ≈ 0

QRDQN 107.1 132.6
C51 61.0 6.3

Table 4.3: Robustness ratio of three algorithms under adversarial state observa-
tions with different perturbation sizes ϵ on CartPole and Breakout.

even when DQN diverges. For instance, in Breakout DQN (dotted green line)

in Figure 4.4 under the adversarial perturbation with ϵ = 0.001 leads to di-

vergence, while QRDQN (solid green lines) still maintains a desirable per-

formance. The quantitative robustness ratio comparison is also provided in

Table 4.3. It suggests that the adversarial robustness of C51 is superior to

DQN and QRDQN in CartPole, while QRDQN is remarkably less sensitive to

adversarial noises than both DQN and C51 in Breakout.

Results on MountainCar and Qbert. Due to the space limit, we mainly

summarize the robustness ratio of algorithms on MountainCar and Qbert in

Table 4.4. It turns out that the training robustness of QRDQN is significantly

advantageous over DQN on both MountainCar and Qbert environments across

two types of state noises, which also corroborates the robustness advantage of

distributional RL algorithms over their expectation-based RL counterpart.

Robustness(%) Algorithms std=0.0125 ϵ=0.1

MountainCar
DQN 32.4 32.5

QRDQN 79.0 44.7
Robustness(%) Algorithms std=0.05 ϵ=0.005

Qbert
DQN 10.8 6.3

QRDQN 34.5 32.9

Table 4.4: Robustness ratio of DQN and QRDQN under random and adversarial
state noises on MountainCar and Qbert.
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4.6 Discussion and Conclusion

The robustness advantage analysis is based on the categorical distributional

RL with categorical parameterization and the choice of KL divergence between

current and target value distributions. However, it would be more convincing

if we can still have such an analytical conclusion under Wasserstein distance.

Moreover, we attribute the robustness advantage of distributional RL algo-

rithms into the unbounded gradient norms regarding state features, but other

factors, e.g., representation ability, may also contribute to the training robust-

ness. We leave the exploration towards this direction as future works.

In this paper, we explored the training robustness of distributional RL

against both random and adversarial noisy state observations. After the con-

vergence proof of distributional RL in the SN-MDP, we further uncover the

stable gradient behavior of distributional RL loss as opposed to classical RL,

accounting for its less vulnerability. Experimental observations coincides with

our theoretical results.

4.7 Appendix

4.7.1 Theorem 7 with proof

Theorem 7. (Convergence and Contraction of Bellman operators in the SN-

MDP) Given a policy π, define the Bellman operator T : R|S| → R|S| under

random and adversarial states noises by T πr and T πa , respectively. Denote a

“merged” policy π′ where π′(a|s) =
∑︁

v(s)N(v(s)|s)π(a|v(s)) and S(π) is a

policy set given π. Then we have:

(1) T πr is a contraction operator and can converge to Vπ′, i.e., T πr Ṽ π◦N =

Ṽ π◦N = Vπ′, where multiple policies πr ∈ S(π) might exist, which satisfies∑︂
v(s)

N(v(s)|s)πr(a|v(s)) = π′(a|s). (4.11)

(2) T πa is a contraction with the convergence satisfying T πa Ṽ π◦N∗ = minN Ṽ π◦N =

Vπ◦N∗, where N∗ is the optimal adversarial noise strategy. If the optimal policy
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πa exists, it satisfies πa(a|v∗(s)) = π(a|s) for each s and a, where v∗(s) is the

adversarial noisy state manipulated by N∗(·|s).

Proof. Our proof is partly based on Theorem 1 and 2 in [116], but adds more

analysis on the converged policy especially under the random noisy states

setting. The most important insight in the following proof is that the noise

transition can be merged into the agent’s policy, resulting in a new “merged”

policy π′.

Proof of (1) Firstly, as the Bellman Equation under the random noisy states

is right the general form in Eq. 4.3, it automatically satisfies that T πr Ṽ π◦N =

Ṽ π◦N when it converges. As for the proof of contraction, based on our insight

about the new “merged” policy π′ where π′(a|s) =
∑︁

v(s)N(v(s)|s)π(a|v(s)),
we can rewrite our Bellman Operator as:

T πr Ṽ π◦N(s) =
∑︂
a

π′(a|s)
∑︂
s′

p(s′|s, a)
[︂
R(s, a, s′) + γṼ π◦N(s

′)
]︂

= R(s) + γ
∑︂
s′

P ′
s,s′Ṽ π◦N(s

′)
(4.12)

whereR(s) =
∑︁

a π
′(a|s)

∑︁
s′ p(s

′|s, a)R(s, a, s′), and P ′
s,s′ =

∑︁
a π

′(a|s)p(s′|s, a)
determined by the “merged” policy π′. Then for two different value function

Ṽ
1

π◦N and Ṽ
2

π◦N we have:

∥T πr Ṽ
1
π◦N − T πr Ṽ

2
π◦N∥∞ = max

s
|γ
∑︂
s′

P ′
s,s′ Ṽ

1
π◦N (s

′)− γ
∑︂
s′

P ′
s,s′ Ṽ

2
π◦N (s

′)|

≤ γmax
s

∑︂
s′

P ′
s,s′ |Ṽ

1
π◦N (s

′)− Ṽ
2
π◦N (s

′)|

≤ γmax
s

∑︂
s′

P ′
s,s′ max

s′
|Ṽ 1

π◦N (s
′)− Ṽ

2
π◦N (s

′)|

= γmax
s

∑︂
s′

P ′
s,s′∥Ṽ

1
π◦N − Ṽ

2
π◦N∥∞

= γ∥Ṽ 1
π◦N − Ṽ

2
π◦N∥∞

(4.13)

Then according to the Banach fixed-point theorem, since γ ∈ (0, 1), Ṽ π◦N

converges to a unique fixed-point Vπ′ . However, even though the obtained

policy π′ satisfies that π′(a|s) =
∑︁

v(s)N(v(s)|s)π(a|v(s)) for each s, a, these
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equations can not necessarily guarantee a unique π especially when these equa-

tions behind this condition are underdetermined. In such scenario, multiple

policies πr will exist as long as they satisfy the equations above.

Proof of (2) Firstly, based on Theorem 1 [116] that shows an optimal policy

does not always exist, we assume that an optimal policy exists in the adversar-

ial noisy state setting for the convenience of following analysis. Based on this

assumption, we need to derive the explicit value function under the adversary.

Inspired by [116], the proof insight is that the behavior of optimal adversary

can be also viewed as finding another optimal policy, yielding a zero-sum two

player game. Specifically, in the SN-MDP setting, the adversary selects an

action â ∈ S satisfying â = v(s), attempting to maximize its state-action

value function Q̃πa(s, â). Then the adversary’s value function V̂ πa(s) can be

formulated as:

V̂ πa(s) = max
â

Q̂πa(s, â)

= max
â

∑︂
s′

p̂(s′|s, â)(R̂(s, â, s′) + γV̂ πa(s
′))

= max
v(s)

∑︂
s′

∑︂
a

π(a|v(s))p(s′|s, a)(−R(s, a, s′) + γV̂ πa(s
′))

(4.14)

where p̂(s′|s, â) is the transition dynamics of the adversary, satisfying p̂(s′|s, â) =∑︁
a π(a|v(s))p(s′|s, a) from the perspective of the agent. R̂(s, â, s′) is the ad-

versary’s reward function while taking action â, which is the opposite number
of R(s, a, s′) given the action a. In addition, since both the adversary and agent
can serve as a zero-sum two-player game, it indicates that Ṽ πa(s) = −V̂ πa(s)
for the agent’s value function Ṽ πa in the adversary setting. Then we rearrange
the equation above as follows:

Ṽ πa
(s) = −V̂ πa

(s)

= − min
N(·|s)

∑︂
s′

∑︂
a

π′(a|s)p(s′|s, a)(−R(s, a, s′)− γṼ πa
(s′))

= min
v(s)

∑︂
s′

∑︂
a

π′(a|s)p(s′|s, a)(R(s, a, s′) + γṼ πa
(s′))

= min
N(·|s)

∑︂
s′

∑︂
a

π′(a|s)p(s′|s, a)(rt+1 + γmin
N

Eπ◦N

[︄ ∞∑︂
k=0

rt+k+2|st+1 = s′

]︄
)

= min
N

Ṽ π◦N (s)

(4.15)
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Note that we optimize over N , which means we consider N(·|s) for each

state s. Further, we derive the contraction of the Bellman operator T πa . We

rewrite our Bellman Operator T πa as:

T πa Ṽ π◦N(s) = min
N

Ṽ π◦N(s) = min
N

R(s) + γ
∑︂
s′

P ′
s,s′Ṽ π◦N(s

′) (4.16)

We firstly assume T πa Ṽ
1

πa(s) ≥ T
π
a Ṽ

2

πa(s), then we have:

T πa Ṽ
1

π◦N(s)− T πa Ṽ
2

π◦N(s)

≤ max
N(·|s)
{γ
∑︂
s′

P ′
s,s′Ṽ

1

π◦N(s
′)− γ

∑︂
s′

P ′
s,s′Ṽ

2

π◦N(s
′)}

≤ γ max
N(·|s)

∑︂
s′

P ′
s,s′ |Ṽ

1

π◦N(s
′)− Ṽ 2

π◦N(s
′)|

≤ γ max
N(·|s)

∑︂
s′

P ′
s,s′ max

s
|Ṽ 1

π◦N(s
′)− Ṽ 2

π◦N(s
′)|

= γ max
N(·|s)

∑︂
s′

P ′
s,s′∥Ṽ

1

π◦N − Ṽ
2

π◦N∥∞

≤ γ∥Ṽ 1

π◦N − Ṽ
2

π◦N∥∞

(4.17)

where the first inequality holds as minx1 f(x1) − minx2 g(x2) ≤ maxx(f(x) −
g(x)) and we extends this inequality into the Wasserstein distance in the proof

of convergence of distributional RL setting in Appendix 4.7.2. The last in-

equality holds since only P ′
s,s′ depends on N(·|s) while the infinity norm is a

constant, which is independent with the current N(·|s). Similarly, the other

scenario can be still proved. Thus, we have:

∥T πa Ṽ
1

π◦N − T πa Ṽ
2

π◦N∥∞ ≤ γ∥Ṽ 1

π◦N − Ṽ
2

π◦N∥∞ (4.18)

Thus, we proved that T πa is still a contraction and converge to minN Ṽ π◦N . We

denote it as Ṽ π◦N∗ In addition, based on the insight of the “merged” policy π′
a,

we have π′
a =

∑︁
v(s)N

∗(v(s)|s)π(a|v(s)) = π(a|v∗(s)) where the deterministic

state v∗(s) is the adversarial noisy state from the state s.
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4.7.2 Proof of Theorem 5

Proof. The p-Wasserstein metric dp is defined as

dp =

(︃∫︂ 1

0

⃓⃓
F−1
Z∗ (ω)− F−1

Zθ
(ω)
⃓⃓p
dω

)︃1/p

, (4.19)

which minimizes the distance between the true value distribution Z∗ and the

parametric distribution Zθ. F
−1 is the inverse cumulative distribution function

of a random variable with the cumulative distribution function as F . The

following contraction proof is in the maximal form of dp, denoted by dp̄.

Proof of (1) This contraction proof is similar to the original one [9] in the

distributional RL without state observation noises. The only difference lies in

the new transition operator Pπr , but it dose not change the main proof process.

For two different random variables Z1
N and Z2

N about returns, we have:

dp̄(T
π
rZ

1
N ,T

π
rZ

2
N)

= sup
s,a

dp(T
π
rZ

1
N(s, a),T

π
rZ

2
N(s, a))

= sup
s,a

dp(R(s, a, S
′) + γPπr Z1

N(s, a), R(s, a, S
′) + γPπr Z2

N(s, a))

≤ γ sup
s,a

dp(Pπr Z1
N(s, a),Pπr Z2

N(s, a))

≤ γ sup
s,a

sup
s′,a′

dp(Z
1
N(s

′, a′), Z2
N(s

′, a′))

= γ sup
s′,a′

dp(Z1(s
′, a′), Z2(s

′, a′))

= γ sup
s,a

dp(Z
1
N(s, a), Z

2
N(s, a))

= γdp̄(Z
1
N , Z

2
N).

(4.20)

Thus, we conclude that Tπr : Z → Z is a γ-contraction in dp̄.

Proof of (2) Recap the distributional Bellman optimality operator T in

MDP is defined as TZ(s, a) :
D
= R (s, a, S ′)+γZ(S ′, πZ(s

′)), where S ′ ∼ P (·|s, a)
and πZ(S

′) = argmaxa′ E [Z(S ′, a′)]. By contrast, in SN-MDP, Our greedy
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adversarial rule N∗(·|s′) is based on the greedy policy rule in distributional

Bellman optimality operator, which attempts to find adversarial N∗(·|s′) in

order to minimize E [ZN(s
′, a′)], where a′ ∼ π(·|V (s′)) and V (s′) ∼ N(·|s′). As

N∗(·|s′) yields a deterministic state s∗, the agent always takes action based on

s∗, which we denote as A∗ ∼ π(·|s∗). Therefore, we can obtain the state-action

function Qπ
N∗(s, a) under the adversary as

Qπ
N∗(s, a) = min

N
E [Zπ

N(s, a)] = E
[︁
Zπ∗

(s, a)
]︁

(4.21)

where π∗(·|s) = π(·|s∗) for ∀s that follows the adversarial policy A∗.

Next, to derive the contractive property of Tπa , we denote two state-action

valued distributions as Z1
N(s, a) and Z

2
N(s, a). Then we have:

dp̄(T
π
aZ

1
N ,T

π
aZ

2
N) = sup

s,a
dp(T

π
aZ

1
N(s, a),T

π
aZ

2
N(s, a))

= sup
s,a

dp(R(s, a, S
′) + γPπaZ1

N(s, a), R(s, a, S
′) + γPπaZ2

N(s, a))

≤ γ sup
s,a

∑︂
s′

P (s′|s, a)dp(Z1
N(s

′, A∗), Z2
N(s

′, A∗))

= γ
∑︂
s′

P (s′|s, a)dp(Z1
N(s

′, A∗), Z2
N(s

′, A∗))

≤ γ sup
s′
dp(Z

1
N(s

′, A∗), Z2
N(s

′, A∗))

= γ sup
s′
dp(
∑︂
a′∗

π(a′∗|s∗)Z1
N(s

′, a′∗),
∑︂
a′∗

π(a′∗|s∗)Z2
N(s

′, a′∗))

≤ γ sup
s′

∑︂
a′∗

π(a′∗|s∗)dp(Z1
N(s

′, a′∗), Z
2
N(s

′, a′∗))

≤ γ sup
s′,a′∗

dp(Z
1
N(s

′, a′∗), Z
2
N(s

′, a′∗))

= γ sup
s,a

dp(Z
1
N(s, a), Z

2
N(s, a))

= γdp̄(Z
1
N , Z

2
N)

(4.22)

Thus, we conclude that Tπa is still a γ-contraction in dp̄.
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4.7.3 Proof of Theorems 9 and 10

Proof. Firstly, we prove Theorem 9. We show the derivation details of the

Histogram distribution loss starting from KL divergence between p and qw.

pi is the cumulative probability increment of target distribution TZw within

the i-th bin, and qw corresponds to a (normalized) histogram, and has density

values
fwi (x(s))

wi
per bin. Thus, we have:

L(Zw,TZw) = −
∫︂ b

a

p(y) log qw(y)dy

= −
k∑︂
i=1

∫︂ li+wi

li

p(y) log
fw
i (x(s))

wi
dy

= −
k∑︂
i=1

log
fw
i (x(s))

wi
(FTZw (li + wi)− FTZw (li))⏞ ⏟⏟ ⏞

pi

.
= −

k∑︂
i=1

pi log f
w
i (x(s))

(4.23)

where the last line holds as the width parameter wi can be ignored and thus the

loss function is proportion to the final term. Next, we compute the gradient

of the Histogram distributional loss in the linear approximation case.

∂

∂x(s)

k∑︂
j=1

pj log f
w
j (x(s)) =

k∑︂
j=1

pj
1

fw
j (x(s))

∇fw
j (x(s))

=
k∑︂
j=1

pj
1

fw
j (x(s))

fw
j (x(s))

k∑︂
i=1

exp(x(s)⊤wi)∑︁k
p=1 exp(x(s)

⊤wp)
(wj −wi)

=
k∑︂
j=1

pj

k∑︂
i=1

fw
i (x(s))(wj −wi)

=
k∑︂
j=1

pjwj −
k∑︂
i=1

fw
i (x(s))wi

=
k∑︂
i=1

(pi − fw
i (x(s)))wi

(4.24)
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Then, as we have ∥wi∥ ≤ l for ∀i, we bound the norm of its gradient

∥ ∂

∂x(s)

k∑︂
j=1

pj log f
w
j (x(s))∥ ≤

k∑︂
i=1

∥(pi − fw
i (x(s)))wi∥

=
k∑︂
i=1

|pi − fw
i (x(s))|∥wi∥

≤ kl

(4.25)

The last equality satisfies because |pi−fw
i (x(s))| is less than 1 and even smaller.

In summary, compared with the least squared loss in expectation-based RL,

the histogram distributional loss in distributional RL has the bounded gradient

norm regarding the state features x(s). This upper bound of gradient norm

can mitigate the impact of the noises on state observations on the loss function,

therefore yielding training robustness for distributional RL.

Next, we prove the Proposition 10. Its proof is similar to Proposition 9.

Firstly, we know that fw,θ
i (x(s)) = exp

(︁
ϕw(x(s))

⊤θi
)︁
/
∑︁k

j=1 exp
(︁
ϕw(x(s))

⊤θj
)︁

and ϕw(·) is L-Lipschitz, i.e., ∥ϕw(x)− ϕw(y)∥ ≤ L∥x− y∥. Then

∂

∂x(s)

k∑︂
j=1

pj log f
w,θ
j (x(s))

=
k∑︂
j=1

pj
1

fw,θ
j (x(s))

fw,θ
j (x(s))

k∑︂
i=1

exp(x(s)⊤wi)∑︁k
p=1 exp(x(s)

⊤wp)
(∇xϕ

⊤
wθj −∇xϕ

⊤
wθi)

=
k∑︂
j=1

pj

k∑︂
i=1

fw,θ
i (x(s))(∇xϕ

⊤
wθj −∇xϕ

⊤
wθi)

=
k∑︂
j=1

pj∇xϕ
⊤
wθj −

k∑︂
i=1

fw,θ
i (x(s))∇xϕ

⊤
wθi

=
k∑︂
i=1

(pi − fw,θ
i (x(s)))∇xϕ

⊤
wθi

(4.26)
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Then, as we have ∥θi∥ ≤ l for ∀i, we bound the norm of its gradient

∥ ∂

∂x(s)

k∑︂
j=1

pj log f
w,θ
j (x(s))∥ ≤

k∑︂
i=1

∥(pi − fw,θ
i (x(s)))∇xϕ

⊤
wθi∥

=
k∑︂
i=1

|pi − fw,θ
i (x(s))|∥∇xϕ

⊤
wθi∥

≤ klL

(4.27)

The last inequality holds because |ϕw(x)
⊤θi−ϕw(y)

⊤θi| ≤ ∥ϕw(x)−ϕw(y)∥∥θi∥ ≤
lL∥x− y∥. Thus the function ϕ⊤

wθi can be viewed as Ll-Lipschitz continuous,

indicating that ∥∇xϕ
⊤
wθi∥ ≤ lL.

4.7.4 TD Convergence Under Noisy State Observations

Theorem 8. (Conditions for TD Convergence under Noisy State Observa-

tions) Define P as the |S|×|S| matrix forming from p(s′|s), D as the |S|×|S|
diagonal matrix with µ(s) on its diagonal, and X as the |S| × d matrix with

x(s) as its rows, and E is the |S| × d perturbation matrix with each perturba-

tion vector e(s) as its rows. The stepsizes αt ∈ (0, 1] satisfy
∑︁∞

t=0 αt <∞ and∑︁∞
t=0 α

2
t = 0. For noisy states, we consider the following three cases: (i) e(s)

on current state features, i.e., xt ← xt + et, (ii) e(s′) on next state features,

i.e., xt+1 ← xt+1+et+1, (iii) the same e on both state features. We can attain

that wt converges to TD fixed point if the following conditions are satisfied,

respectively.

Case (i): both A and (X + E)⊤DPE are positive definite. Case (ii):

both A and −X⊤DPE are positive definite. Case (iii): A is positive definite.

From the convergence conditions for the three cases in Theorem 8, it is

clear that (iii) is the mildest. This is the same condition as that in the normal

TD learning without noisy state observations. Note that the case (iii) can be

viewed as the SN-MDP setting, whose convergence has been already rigorously

analyzed in Section 4.3. In Section 4.5, our experiments demonstrate that both

expectation-based and distribution RL are more likely to converge in case (iii)

compared with case (i) and (ii).
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In cases (i) and (ii), the positive definiteness of X⊤DPE + E⊤DPE and

−X⊤DPE is crucial. We partition (X+ E)⊤DPE into X⊤DPE+ E⊤DPE,

where the first term has the opposite positive definiteness to −X⊤DPE, and

the second term is positive definite [102]. Based on these observations, we

discuss the subtle convergence relationship in cases (i) and (ii):

(1) If −X⊤DPE is positive definite, which indicates that TD is convergent

in case (ii), TD can still converge in case (i) unless the positive definiteness

of E⊤DPE dominates in X⊤DPE+ E⊤DPE.

(2) If −X⊤DPE is negative definite, TD is likely to diverge in case (ii).

By contrast, TD will converge in case (i).

In summary, there exists a subtle trade-off of TD convergence in case (i) and

(ii) if we approximately ignore the term E⊤DPE in case (i). The key of it lies

in the positive definiteness of the matrix X⊤DPE, which heavily depends on

the task. In Section 4.5, we empirically verify that the convergence situations

for current and next state observations are normally different. Which situation

is superior is heavily dependent on the task.

Proof. To prove the convergence of TD under the noisy states, we use the re-

sults from [12] that require the condition about stepsizes αt holds:
∑︁∞

t=0 αt <

∞ and
∑︁∞

t=0 α
2
t = 0. Our part proof is directly established on [102]. Partic-

ularly, the positive definiteness of A will determine the TD convergence. For

linear TD(0), in the continuing case with γ < 1, A can be re-written as:

A =
∑︂
s

µ(s)
∑︂
a

π(a|s)
∑︂
r,s′

p(r, s′|s, a)xt (xt − γxt+1)
⊤

=
∑︂
s

µ(s)
∑︂
s′

p(s′|s)xt (xt − γxt+1)
⊤

=
∑︂
s

µ(s)xt(xt − γ
∑︂
s′

p(s′|s)xt+1)
⊤

= X⊤DX−X⊤DγPX

= X⊤D(I− γP)X

(4.28)

Then we use At to present the convergence matrix in the case (i) where the

perturbation vector et is added onto the current state features, i.e., xt ←
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xt + et, while we use At+1 and At,t+1to present the counterparts in the case

(ii) and (iii), respectively. Based on Eq. 4.28, in the case (iii), we have:

At,t+1 = (X+ E)⊤D(X+ E)− (X+ E)⊤DγP(X+ E)

= (X+ E)⊤D(I− γP)(X+ E)
(4.29)

From [102], we know that the inner matrix D(I− γP) is the key to determine

the positive definiteness of A. If we assume that A is positive definite, which

also indicates that D(I− γP) is positive definite equivalently. As such, At,t+1

is positive definite automatically, and thus the liner TD would converge to the

TD fixed point. Next, in the case (i) we have:

At = (X+ E)⊤D(X+ E)− (X+ E)⊤DγPX

= A+X⊤DE+ E⊤DX+ E⊤DE− E⊤DγPX

= (X+ E)⊤D(I− γP)(X+ E) + (X+ E)⊤DγPE

= At,t+1 + γ(X+ E)⊤DPE

= At,t+1 + γ(X⊤DγPE+ E⊤DγPE)

(4.30)

Similarly, in the case (ii), we can also attain:

At+1 = X⊤DX−X⊤DγP(X+ E)

= A− γX⊤DPE
(4.31)

We know that the positive definiteness of A and At,t+1 is only determined

by the positive definiteness of the inner matrix D(I − γP). If we assume the

positive definiteness ofA, i.e., the positive definiteness ofAt,t+1 andD(I−γP),

as γ > 0, what we only need to focus on are the positive definiteness of

X⊤DPE+E⊤DPE and −X⊤DPE. If they are positive definite, TD learning

will converge under their cases, respectively.

4.7.5 Sensitivity Analysis by Influence Function

Next, we conduct an outlier analysis by the influence function, a key facet in

the robust statistics [49]. The influence function characterizes the effect that
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the noise in particular observation has on an estimator, and can be utilized to

investigate the impact of one particular state observation noise on the train-

ing of reinforcement learning algorithms. Specifically, suppose that Fϵ is the

contaminated distribution function that combines the clear data distribution

F and an outlier x. The distribution Fϵ can be defined as

Fϵ = (1− ϵ)F + ϵδx, (4.32)

where δx is a probability measure assigning probability 1 to x. Let θ̂ be a

regression estimator. The influence function of θ at F , ψ : X → Γ is defined

as

ψθ̂,F (x) = lim
ϵ→0

θ̂ (Fϵ(x))− θ̂(F )
ϵ

. (4.33)

Mathematically, the influence function is the Gateaux derivative of θ at F in

the direction δx. Owing to the fact that traditional value-based RL algorithms,

e.g., DQN [74], can be viewed as a regression problem [28], the linear TD

approximator also has a strong connection with regression problems. Based

on this correlation, in the following Theorem 9, we quantitatively evaluate the

influence function of TD learning in the case of linear function approximation.

Theorem 9. (Influence Function Analysis in TD Learning with linear func-

tion approximation) Denote dt = xt − γxt+1 ∈ Rd, and A
.
= E

[︁
xtd

⊤
t

]︁
∈ Rd×d.

Let Fπ be the data distribution generated from the environment dynamics given

a policy π. Consider an outlier pair (xt,xt+1) with the reward Rt+1, the influ-

ence function ψ of this pair on the estimator w is derived as

ψw,Fπ(xt,xt+1) = E(A⊤A)−1dtx
⊤
t xt(Rt+1 − d⊤t w). (4.34)

Please refer to Appendix 4.7.5 for the proof. Theorem 9 shows the quantita-

tive impact of an outlier pair (xt,xt+1) on the learned parameter w. Moreover,

a corollary can be immediately obtained to make a precise comparison of the

impacts of perturbations on current and next state features.

Corollary 1. Given the same perturbation η on either current or next state

features, i.e., xt, and xt+1, at the step t, if we approximate ηη⊤xt and ηη
⊤w
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as 0 as η is small enough, the following relationship between the resulting

variations of influence function, ∆xtψ and ∆xt+1ψ, holds:

γ∆xtψ +∆xt+1ψ = 2γdtηx
⊤
t (Rt+1 − d⊤t w). (4.35)

We provide the proof of Corollary 1 in Appendix 4.7.5. Under this equation,

the sensitivity of noises on xt and xt+1, measured by ∆xtψ and ∆xt+1ψ, present

a trade-off relationship as their weighted sum is definite. However, there is not

an ordered relationship between ∆xtψ and ∆xt+1ψ. In summary, we conclude

that the sensitivity of current and next state features against perturbations is

normally divergent, and the degree of sensitivity is heavily determined by the

task. These conclusions are similar to those we derived in the TD convergence

part.

Proof. We combine the proof of Theorem 9 and Corollary 1 together. The TD

fixed point wTD to the system satisfies AwTD = b. Thus, the TD convergence

point, i.e., TD fixed point, can be attained by solving the following regression

problem:

min
w
∥b−Aw∥2 (4.36)

To derive the influence function, consider the contaminated distribution which

puts a little more weight on the outlier pair (xt,xt+1):

ŵ = argmin
w

(1− ϵ)E[(b−Aw)⊤(b−Aw)]+

ϵ(yb − x⊤Aw)⊤(yb − x⊤Aw),
(4.37)

where yb = Rt+1xt and xb = dtx
⊤
t . We take the first condition:

(1− ϵ)E(2A⊤Aw − 2A⊤b)− 2ϵxA(yb − x⊤Aw) = 0. (4.38)

Then we arrange this equality and obtain:

(1− ϵ)E(A⊤A+ xAx
⊤
A)wϵ = (1− ϵ)E(A⊤b) + ϵxAyb. (4.39)
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Then we take the gradient on ϵ and let ϵ = 0, then we have:

(−E(A⊤A) + xAx
⊤
A)wϵ + E(A⊤A)ψw,Fπ = −E(A⊤b) + xAyb. (4.40)

We know that under the least square estimation, the closed-form solution of

wϵ is E(A⊤A)−1E(A⊤b). Thus, after the simplicity, we finally attain:

ψw,Fπ(xt,xt+1) = E(A⊤A)−1xA(yb − x⊤Aw)

= E(A⊤A)−1dtx
⊤
t xt(Rt+1 − d⊤t w).

(4.41)

Next, we prove the Corollary. We only need to focus on the item dtx
⊤
t xt(Rt+1−

d⊤t w), which we denote as ψ0. Then we use ∆xtψ and ∆xt+1ψ to represent the

change of ψ after adding perturbations η on xt and xt+1, respectively. In

particular, since we approximate ηη⊤xt and ηη
⊤w as 0, then we have that the

change of influence function for the perturbation η on the current state feature

xt:

∆xtψ ≈ (dt + η)(x⊤
t xt + 2η⊤xt)(Rt+1 − d⊤t w − η⊤w)− ψ0

≈ −dtx⊤
t xtη

⊤w + 2dtη
⊤xt(Rt+1 − d⊤t w) + η · x⊤

t xt(Rt+1 − d⊤t w)

= 2dtη
⊤xt(Rt+1 − d⊤t w)− 1

γ
(γdtx

⊤
t xtη

⊤w − γηx⊤
t xt(Rt+1 − d⊤t w)).

(4.42)

Then the influence function for the perturbation η on the next state feature

xt+1 is:

∆xt+1ψ = (dt − γη)x⊤
t xt(Rt+1 − d⊤t w + γη⊤w)− ψ0

≈ γdtx
⊤
t xtη

⊤w − γηx⊤
t xt(Rt+1 − d⊤t w).

(4.43)

Finally, it is easy to observe that the following relationship holds:

γ∆xtψ = 2γdtηx
⊤
t (Rt+1 − d⊤t w)−∆xt+1ψ. (4.44)
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4.7.6 Experimental Setup

Noise Strength. We use Gaussian noise with different standard deviations.

In particular, for a better presentation to compare the difference, we select

proper standard deviations as 0.05, 0.1 in Cart Pole, 0.01, 0.0125 in Mountain

Car, 0.01, 0.05 in Breakout and 0.05 in Qbert. For the adversarial noises, we

select the perturbation sizes ϵ as 0.05, 0.1 in Cart Pole, 0.01, 0.1 in Mountain

Car, 0.005, 0.01 in Breakout, and 0.005 in Qbert.

Distributional Loss. After a linear search, in the QR-DQN, We set κ = 1

for the Huber quantile loss across all tasks due to its smoothness.

Cart Pole After a linear search, in the QR-DQN, we set the number of quan-

tiles N to be 20, and evaluate both DQN and QR-DQN on 200,000 training

iterations.

Mountain Car After a linear search, in the QR-DQN, we set the number

of quantiles N to be 2, and evaluate both DQN and QR-DQN on 100,000

training iterations.

Breakout and Qbert After a linear search, in the QR-DQN, we set the

number of quantiles N to be 200, and evaluate both DQN and QR-DQN on

12,000,000 training iterations.

4.7.7 Discussion about More Adversarial Attacks

We are investigating more advanced adversarial attacks to further demonstrate

the robustness advantage of distributional RL algorithms. [116] proposed Ro-

bust SARSA (RS) attack and Maximal Action Difference (MAD) attack, how-

ever, these two advanced attacked are specifically designed for PPO algorithm.

Meanwhile, Stochastic gradient Langevin dynamics (SGLD) and convex relax-

ation attacks proposed by [116] are for DDPG algorithm. PGD attacks, serve-

ing as the most natural attack for value-based RL algorithms, are leveraged to
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evaluate SA-DQN algorithm. We also probe the training robustness of distri-

butional RL algorithms under the more advanced MAD attack [116] on Ant,

where Figure 4.5 still suggests a similar robustness result of distributional RL.

0.2 0.4 0.6 0.8 1.0
3000
2000
1000

0
1000
2000
3000
4000
5000

Av
er

ag
e 

R
et

ur
ns

3248.7
2779.7

-12.1-21.6

4713.0

1996.0
913.8
-121.7

ant / adversarial (MAD)
SAC
SAC-adv0.02
SAC-adv0.03
SAC-adv0.1
DAC(C51)
DAC(C51)-adv0.02
DAC(C51)-adv0.03
DAC(C51)-adv0.1

0.2 0.4 0.6 0.8 1.0

5

0

5

10

15

20

25

lo
g

x

ant / gradient (MAD)
SAC
SAC-adv0.02
SAC-adv0.03
SAC-adv0.1
DAC(C51)
DAC(C51)-adv0.02
DAC(C51)-adv0.03
DAC(C51)-adv0.1

Figure 4.5: Robustness on MAD attack on Ant.

4.7.8 Experiments on D4PG
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Figure 4.6: Average returns of DDPG and D4PG against adversarial state noises
on Halfcheetah.
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Chapter 5

Distributional Reinforcement

Learning with Regularized

Wasserstein Loss

5.1 Abstract

The empirical success of distributional reinforcement learning (RL) highly

relies on the choice of distribution divergence equipped with an appropri-

ate distribution representation. In this paper, we propose Sinkhorn distribu-

tional RL (SinkhornDRL), which leverages Sinkhorn divergence—a regularized

Wasserstein loss—to minimize the difference between current and target Bell-

man return distributions. Theoretically, we prove the contraction properties of

SinkhornDRL, aligning with the interpolation nature of Sinkhorn divergence

between Wasserstein distance and Maximum Mean Discrepancy (MMD). The

introduced SinkhornDRL enriches the family of distributional RL algorithms,

contributing to interpreting the algorithm behaviors compared with existing

approaches by our investigation into their relationships. Empirically, we show

that SinkhornDRL consistently outperforms or matches existing algorithms

on the Atari games suite and particularly stands out in the multi-dimensional

reward setting.
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5.2 Introduction

Limitations of Typical Distributional RL Algorithms. Despite the

gradual introduction of numerous algorithms, quantile regression-based algo-

rithms [22, 21, 115, 85, 65, 86, 87] dominate attention and research in the

realm of distributional RL. These algorithms utilize quantile regression to ap-

proximate the one-dimensional Wasserstein distance to compare two return

distributions. Nevertheless, two major limitations hinder their performance

improvement and wider practical deployment.

• Inaccuracy in Capturing Return Distribution Characteristics. The way of

directly generating quantiles of return distributions via neural networks

often suffers from the non-crossing issue [120], where the learned quan-

tile curves fail to guarantee a non-decreasing property. This leads to ab-

normal distribution estimates and reduced model interpretability. The

inaccurate distribution estimate is fundamentally attributed to the use

of pre-specified statistics [85], while unrestricted statistics based on de-

terministic samples can be potentially more effective in complex envi-

ronments [77].

• Difficulties in Extension to Multi-dimensional Rewards. Many RL tasks

involve multiple sources of rewards [64, 23], hybrid reward architec-

ture [104, 62], or sub-reward structures after reward decomposition [63,

117], which require learning multi-dimensional return distributions to

reduce the intrinsic uncertainty of the environments. However, it re-

mains elusive how to use quantile regressions to approximate a multi-

dimensional Wasserstein distance, while circumventing the computa-

tional intractability issue in the related multi-dimensional output space.

Motivation of Sinkhorn Divergence: a Regularized Wasserstein loss.

Sinkhorn divergence [95] has emerged as a theoretically principled and com-

putationally efficient alternative for approximating Wasserstein distance. It

has gained increasing attention in the field of optimal transport [7, 35, 31, 81]

and has been successfully applied in various areas of machine learning [79, 36,

104



112, 30, 13]. By introducing entropic regularization, Sinkhorn divergence can

efficiently approximate a multi-dimensional Wasserstein distance using com-

putationally efficient matrix scaling algorithms [95, 81]. This makes it feasi-

ble to apply optimal transport distances to RL tasks with multi-dimensional

rewards (see experiments in Section 5.6.3). Moreover, Sinkhorn divergence

enables the leverage of samples to approximate return distributions instead of

relying on pre-specified statistics, e.g., quantiles, thereby increasing the accu-

racy in capturing the full data complexity behind return distributions and nat-

urally avoiding the non-crossing issues in distributional RL. Beyond addressing

the two main limitations mentioned above, the well-controlled regularization

introduced in Sinkrhorn divergence helps to find a “smoother” transport plan

relative to Wasserstein distance, making it less sensitive to noises or small per-

turbations when comparing two return distributions (see Appendix 5.8.1 for

the visualization). This regularization also aligns with the maximum-entropy

principle [54, 24], which aims to maximize entropy while keeping the trans-

portation cost constrained. Furthermore, the resulting strongly convex loss

function [5] and the induced smoothness by regularization facilitate faster and

more stable convergence in the deep RL setting (see more details in Sections 5.5

and 2.7).

Contributions. In this work, we propose a new family of distributional

RL algorithms based on Sinkhorn divergence, a regularized Wasserstein loss,

to address the limitations of quantile regression-based algorithms while pro-

moting more stable training. As Sinkhorn divergence interpolates between

Wasserstein distance and MMD [39, 31, 81], we probe this relationship in the

RL context, characterizing the convergence properties of dynamic program-

ming under Sinkhorn divergence and revealing the connections of different

distances. Our study enriches the class of distributional RL algorithms, mak-

ing them more effective for a broader range of scenarios and potentially in-

spiring advancement in other related areas of distribution learning. Our key

contributions are summarized as follows:

1. Algorithm. We introduce a Sinkhorn distributional RL algorithm,

called SinkhornDRL, which overcomes the primary shortcomings of pre-
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dominantly utilized quantile regression-based algorithms. SinkhornDRL

can be seamlessly integrated into existing model architectures and easily

implemented.

2. Theory. We establish the properties of Sinkhorn divergence within dis-

tributional RL and derive the relevant convergence results for (multi-

dimensional) distributional dynamic programming.

3. Experiments. We conduct an extensive comparison of SinkhornDRL

with typical distributional RL algorithms across 55 Atari games, per-

forming rigorous sensitivity analyses and computation cost assessments.

We also verify the efficacy of SinkhornDRL in the multi-dimensional

reward setting.

5.3 Preliminary Knowledge

We remain the notations of MDP, classical RL, and distributional RL as Chap-

ters 2, 3, and 4. Next, we introduce the preliminary knowledge about diver-

gences between probability measures.

Optimal Transport (OT) and Wasserstein / Earth Mover’s Distance.

The optimal transport (OT) metricWc defines a powerful geometry to compare

two probability measures (µ, ν), i.e., Wc = infΠ∈Π(µ,ν)

∫︁
c(x, y)dΠ(x, y), where

c is the cost function, Π is the joint distribution with marginals (µ, ν), and the

minimizer Π∗ is called the optimal transport plan or optimal coupling. The p-

Wasserstein distance Wp = (infΠ∈Π(µ,ν)

∫︁
∥x− y∥pdΠ(x, y))1/p is a special case

of optimal transport with the Euclidean norm as the cost function. Relative

to conventional divergences, including Hellinger, total variation or Kullback-

Leibler divergences, the formulation of OT andWasserstein distance inherently

integrates the spatial or geometric relationships between data points and al-

lows them to recover the full support of measures. This theoretical advantage

comes, however, with a heavy computational price tag, especially in the high-

dimensional space. Specifically, finding the optimal transport plan amounts
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to solving a linear program and the cost scales at least in O(d3 log(d)) when
comparing two histograms of dimension d [20].

Maximum Mean Discrepancy [39]. Define two random variables X and

Y . The squared Maximum Mean Discrepancy (MMD) MMD2
k with the kernel

k is formulated as

MMD2
k = E [k (X,X ′)] + E [k (Y, Y ′)]− 2E [k(X, Y )] , (5.1)

where k(·, ·) is a continuous kernel and X ′ (resp. Y ′) is a random variable

independent of X (resp. Y ). Mathematically, the “flat” geometry that MMD

induces on the space of probability measures does not faithfully lift the ground

distance [31], potentially inferior to OT when comparing two complicated dis-

tributions. However, MMD is cheaper to compute than OT with a smaller

sample complexity, i.e., the number of samples for measures to approximate

the true distance [35]. We provide more details of various distribution diver-

gences as well as their existing contraction properties in Appendix 5.8.2.

Notations. We constantly use the unrectified kernel kα = −∥x− y∥α in our

algorithm analysis. With a slight abuse of notation, we also use Zθ to denote

θ parameterized return distribution.

5.4 Related Work

Based on the choice of distribution divergences and the distribution represen-

tation, distributional RL algorithms can be classified into three categories.

1. Categorical Distributional RL. As the first successful class, categor-

ical distributional RL [9], e.g., C51, represents the return distribution

using a categorical distribution with discrete fixed supports within a

predefined interval.

2. Quantile Regression (Wasserstein Distance) Distributional RL.

QR-DQN [22] employs quantile regression to approximate the one-dimensional
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Wasserstein distance. It learns the quantile values for a series of fixed

quantiles, offering greater flexibility in the support compared with cate-

gorical distributional RL. IQN [21] enhances this approach by utilizing

an implicit model to produce more expressive quantile values, instead

of fixed ones in QR-DQN, while FQF [115] further advances IQN by in-

troducing a more expressive quantile network. However, as mentioned

in Section 5.2, quantile regression distributional RL struggles with accu-

rately capturing return distribution characteristics and handling multi-

dimensional reward settings. SinkhornDRL, with the assistance of an

entropy regularization, offers an alternative approach that addresses the

two limitations simultaneously.

3. MMD Distributional RL. Rooted in kernel methods [39, 110], MMD-

DQN [77] learns unrestricted statistics, i.e., samples, to represent the re-

turn distribution and optimizes under MMD, which can manage multi-

dimensional rewards. However, the data geometry captured by MMD

with a specific kernel may be limited, as it is highly sensitive to the

characteristics of kernels and the induced Reproducing Kernel Hilbert

space (RKHS) [36, 39, 34]. In contrast, SinkhornDRL is fundamentally

based on OT, inherently capturing the spatial and geometric layout of

return distributions. This enables SinkhornDRL to potentially surpass

MMD-DQN by leveraging a richer representation of data geometry. In

Section 2.7, we present extensive experiments to demonstrate the ad-

vantage of SinkhornDRL over MMD-DQN, particularly in the multi-

dimensional reward scenario in Section 5.6.3.

5.5 Sinkhorn Distributional RL (SinkhornDRL)

The algorithmic evolution of distributional RL can be primarily viewed along

two dimensions [77]. 1) Introducing new distributional RL families beyond

the three established ones, leveraging alternative distribution divergences com-

bined with suitable density estimation techniques. 2) Enhancing existing al-

gorithms within a particular family by increasing their model capacity, e.g.,
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IQN and FQF. Concretely, SinkhornDRL falls into the first dimension, aiming

to expand the range of distributional RL algorithm families.

5.5.1 Sinkhorn Divergence and New Convergence Prop-

erties in Distributional RL

Sinkhorn divergence [95] efficiently approximates the optimal transport prob-

lem by introducing an entropic regularization. It aims at finding a sweet

trade-off that simultaneously leverages the geometry property of Wasserstein

distance (optimal transport distances) and the favorable sample complexity ad-

vantage and unbiased gradient estimates of MMD [36, 31]. For two probability

measures µ and ν, the entropic regularized Wasserstein distance Wc,ε(µ, ν) is

formulated as

Wc,ε(µ, ν) = min
Π∈Π(µ,ν)

∫︂
c(x, y)dΠ(x, y) + εKL(Π|µ⊗ ν), (5.2)

where the entropic regularization KL(Π|µ ⊗ ν) =
∫︁
log
(︂

Π(x,y)
dµ(x)dν(y)

)︂
dΠ(x, y),

also known as mutual information, makes the optimization strongly convex

and differential [5, 31], allowing for efficient matrix scaling algorithms for ap-

proximation, such as Sinkrhon Iterations [95]. In statistical physics,Wc,ε(µ, ν)

can be re-factored as a projection problem:

Wc,ε(µ, ν) := min
Π∈Π(µ,ν)

KL (Π|K) , (5.3)

where K is the Gibbs distribution and its density function satisfies dK(x, y) =
e−c(x,y)/εdµ(x)dν(y). This problem is often referred to as the “static Schrödinger

problem” [57, 88] as it was initially considered in statistical physics. Formally,

the Sinkhorn divergence is defined as

Wc,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν), (5.4)

which is smooth, positive definite, and metricizes the convergence in law [31].

This definition subtracts two self-distance terms to ensure non-negativity and

metric properties.
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Properties for Convergence. The contraction analysis of distributional

Bellman operator Tπ under a distribution divergence dp depends on its scale

sensitive (S) and sum invariant (I) properties [10, 9]. We say dp is scale

sensitive (of order τ) if there exists a τ > 0, such that for all random vari-

ables X, Y and a real value a > 0, dp(aX, aY ) ≤ |a|τdp(X, Y ). dp has the

sum invariant property if whenever a random variable A is independent from

X, Y , we have dp(A + X,A + Y ) ≤ dp(X, Y ). Based on these properties, [9]

shows that Tπ is γ-contractive under the supremal from of Wasserstein dis-

tance Wp, which is regarding the first term of Wc,ε or directly letting ε = 0

in Eq. 5.2. When examining the regularized loss form of Wc,ε, a natural ques-

tion arises: What is the influence of the incorporated regularization term on

the contraction of Tπ? We begin to address this question in Proposition 2,

focusing on the separate regularization term. Here, we define mutual informa-

tion as MIΠ(µ(s, a), ν(s, a)) = KL(Π|µ(s, a) ⊗ ν(s, a)) and its supremal form

MI∞Π (µ, ν) = sup(s,a)∈S×A KL(Π|µ(s, a)⊗ ν(s, a)) given a joint distribution Π.

Proposition 11. Tπ is non-expansive under MI∞Π for any non-trivial joint

distribution Π.

Please refer to Appendix 5.8.3 for the proof, where we investigate both (S)

and (I) properties. The non-trivial Π rules out the independence case of µ and

ν, where KL(Π|µ⊗ ν) would degenerate to zero. Although the non-expansive

nature of the introduced regularization term, as shown in Proposition 2, may

potentially slow the convergence in Sinkhorn divergence compared with Wp

without the regularization, we will demonstrate that Tπ is still contractive

under the full Sinkhorn divergence in Theorem 10. Before introducing Theo-

rem 10, we first present the sum-invariant and a new variant of scale-sensitive

properties in Proposition 12, which acts as the foundation for Theorem 10.

Proposition 12. ConsideringWc,ε with the unrectified kernel kα := −∥x−y∥α

as −c (α > 0) and a scaling factor a ∈ (0, 1), Wc,ε is sum-invariant (I)

and satisfies Wc,ε(aµ, aν) ≤ ∆ε(a, α)Wc,ε(µ, ν) (S) with a scaling constant

∆ε(a, α) ∈ (|a|α, 1) for any µ and ν in a finite set of probability measures.

Proof Sketch. The detailed proof is provided in Appendix 5.8.4. Let Π∗ be the

optimal coupling of Wc,ε, we define a ratio λε(µ, ν) that satisfies λε(µ, ν) =
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εKL(Π∗|µ⊗ν)
Wc,ε

∈ (0, 1) for a generally non-zero Wc,ε. The ratio λε(µ, ν) mea-

sures the proportion of the entropic regularization term over the whole loss

term Wc,ε. Therefore, the contraction factor ∆ε(a, α) is defined as ∆ε(a, α) =

|a|α(1 − supµ,ν λε(µ, ν)) + supU,V λε(µ, ν)) ∈ (|a|α, 1) with supµ,ν λε(µ, ν) < 1,

which is determined by the scale factor a, the order α, the hyperparameter ε,

and the set of interested probability measures.

Contraction Guarantee and Interpolation Relationship. Proposition 12

reveals that Wc,ε with an unrectified kernel satisfies (I) and a variant of

(S) properties. While the scaling constant ∆ε(a, α) in (S) has a compli-

cated form, it remains strictly less than one, even considering a non-expansive

nature of the entropic regularization as shown in Proposition 11. We de-

note the supremal form of Sinkhorn divergence as W∞
c,ε(µ, ν) : W∞

c,ε(µ, ν) =

sup(s,a)∈S×AWc,ε(µ(s, a), ν(s, a)). In Theorem 10, we will integrate all these

properties to demonstrate the contraction property of distributional dynamic

programming under Wc,ε, specifically highlighting the interpolation property

of Sinkhorn divergence between MMD and Wasserstein distance in the context

of distributional RL.

Theorem 10. Considering Wc,ε(µ, ν) with an unrectified kernel kα := −∥x−
y∥α as −c (α > 0), where µ, ν ∈ the distribution set of {Zπ(s, a)} for s ∈ S,
a ∈ A in a finite MDP. We define the ratio λε(µ, ν) as λε(µ, ν) =

εKL(Π∗|µ⊗ν)
Wc,ϵ(µ,ν)

∈
(0, 1) with supµ,ν λε(µ, ν) < 1. Then, we have:

1. (ε → 0) Wc,ε(µ, ν) → 2Wα
α (µ, ν). When ε = 0, Tπ is γα-contractive

under W∞
c,ε.

2. (ε → +∞) Wc,ε(µ, ν) → MMD2
kα(µ, ν). When ε = +∞, Tπ is γα-

contractive under W∞
c,ε.

3. (ε ∈ (0,+∞)), Tπ is at least ∆ε(γ, α)-contractive under W∞
c,ε, where

∆ε(γ, α) is an MDP-dependent constant defined as ∆ε(γ, α) = γα(1 −
supµ,ν λε(µ, ν)) + supµ,ν λε(µ, ν)) ∈ (γα, 1).

Proof Sketch. The detailed proof of Theorem 10 can be found in Appendix 5.8.5.

Theorem 10 (1) and (2) are follow-up conclusions in terms of the convergence
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behavior of Tπ based on the interpolation relationship between Sinkhorn di-

vergence with Wasserstein distance and MMD [36]. We also provide a rigorous

analysis within the context of distributional RL for completeness. Our critical

theoretical contribution is the part (3) for the general ε ∈ (0,∞), where we

show that Tπ is at least a ∆ε(γ, α)-contractive operator. The contraction fac-

tor ∆ε(γ, α) ∈ (γα, 1) depends on the return distribution set {Zπ(s, a)} of the
considered MDP, and it is also a function of γ, ε and α. Due to the influence

of the regularization term in Sinkhorn loss, ∆ε(γ, α) is larger than |γ|α, the
contraction factor for Wasserstein distance without the regularization. Thus,

∆ε(γ, α) can be seen as an interpolation between γα and 1, with the coefficient

supµ,ν λε(µ, ν) ∈ (0, 1) defined in Theorem 10. The ratio λε(µ, ν) measures the

proportion of the KL regularization term relative to Wc,ε. As ε → 0 or +∞,

supµ,ν λε(µ, ν)→ 0, leading to γα-contraction. This aligns with parts (1) and

(2).

Consistency with Existing Contraction Conclusions. As Sinkhorn di-

vergence interpolates between Wasserstein distance and MMD, its contrac-

tion property for ε ∈ [0,∞] also aligns well with the existing distributional

RL algorithms when c = −kα. It is worth noting that using Gaussian ker-

nels in the cost function does not yield concise or consistent contraction re-

sults like those in Theorem 10 (3). This conclusion is consistent with MMD-

DQN [77] (ε→ +∞), where Tπ is generally not a contraction operator under

MMD with Gaussian kernels, as counterexamples exist (Theorem 2) in [77].

Guided by our theoretical results, we employ the rectified kernel kα as the

cost function and set α = 2 in our experiments, ensuring that Tπ retains the

Algorithm dp Distribution Divergence Representation Zθ Convergence Rate of Tπ Sample Complexity of dp
C51 Cramér distance Categorical Distribution

√
γ

QR-DQN-1 Wasserstein distance Quantiles γ O(n− 1
d )

MMD-DQN MMD Samples γα/2 (kα) O(n−1)

SinkhornDRL
(ours)

Sinkhorn divergence
(c = −kα)

Samples
γ (ε→ 0)

γα/2 (ε→∞)
O(n

e
κ
ε

ε⌊d/2⌋
√
n ) (ε→ 0)

O(n− 1
2 ) (ε→∞)

Table 5.1: Properties of different distribution divergences in typical distributional
RL algorithms. d is the sample dimension and κ = 2βd + ∥c∥∞, where the cost
function c is β-Lipschitz [35]. Sample complexity is improved to O(1/n) using the
kernel herding technique [17] in MMD.
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contraction property guaranteed by Theorem 10 (3). In Table 5.1, we also sum-

marize the main properties of distribution divergences in typical distributional

RL algorithms, including the convergence rate of Tπ and sample complexity,

i.e., the convergence rate of a given metric between a measure and its empirical

counterpart as a function of the number of samples n.

5.5.2 Extension to Multi-dimensional Return Distribu-

tions

As the ability to extend to the multi-dimensional reward setting is one of the

major advantages of SinkhornDRL over quantile regression-based algorithms,

we next demonstrate that the joint distributional Bellman operator in the

multi-dimensional reward case is contractive under Sinkhorn divergence W∞
c,ε.

First, we define a d-dimensional reward function as R : S×A → P (Rd), where

d represents the number of reward sources. Consequently, we have joint return

distributions of the d-dimensional return vector Zπ(s, a) =
∑︁∞

t=0R(st, at),

where Zπ(s, a) = (Zπ
1 (s, a), · · · , Zπ

d (s, a))
⊤. The joint distributional Bellman

operator Tπd applied on the joint distribution of the random vector Z(s, a) is

defined as TπdZ(s, a) :
D
= R(s, a) + γZ (s′, a′), where s′ ∼ P (·|s, a), a′ ∼ π(·|s′).

Corollary 2. For two joint distributions Z1 and Z2, T
π
d is ∆ε(γ, α)-contractive

under W∞
c,ε, i.e.,

W∞
c,ε(T

πZ1,T
πZ2) ≤ ∆ε(γ, α)W

∞
c,ε(Z1,Z2). (5.5)

Please refer to Appendix 5.8.6 for the proof. The contraction guarantee

of Sinkhorn divergence enables us to effectively deploy our SinkhornDRL al-

gorithm in various RL tasks that involve multiple sources of rewards [64, 23],

hybrid reward architecture [104, 62], or sub-reward structures after reward de-

composition [63, 117]. We compare SinkhornDRL with MMD-DQN in multiple

reward sources setting in Section 5.6.3, where SinkhornDRL significantly out-

performs MMD-DQN by leveraging its ability to capture richer data geometry,

a key advantage of optimal transport distances.
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5.5.3 SinkhornDRL Algorithm and Approximation

Equipping Sinkhorn Divergence and Particle Representation. The

key to applying Sinkhorn divergence in distributional RL is to leverage the

Sinkhorn loss Wc,ε to measure the distance between the current action-return

distribution Zθ(s, a) and the target distribution TπZθ(s, a). For each s, a pair,

this yields Wc,ε(Zθ(s, a),T
πZθ(s, a)). For the representation of Zθ(s, a), we

employ the unrestricted statistics, i.e., deterministic samples, akin to MMD-

DQN, instead of predefined statistic functionals like quantiles in QR-DQN or

categorical distributions in C51. More concretely, we use neural networks

to generate samples to approximate the return distributions, expressed as

Zθ(s, a) := {Zθ(s, a)i}Ni=1, where N is the number of generated samples. We re-

fer to these samples {Zθ(s, a)i}Ni=1 as particles. We then use the Dirac mixture
1
N

∑︁N
i=1 δZθ(s,a)i to approximate the true density function of Zπ(s, a), thus min-

imizing the Sinkhorn divergence between the approximate distribution and its

distributional Bellman target. A generic Sinkhorn distributional RL algorithm

with particle representation is provided in Algorithm 2.

Efficient Approximation via Sinkhorn Iterations with Guarantee.

By introducing an entropy regularization, Sinkhorn divergence renders optimal

transport computationally feasible, especially in the high-dimensional space,

via efficient algorithms, e.g., Sinkhorn Iterations [95, 36]. Notably, Sinkhorn

iteration with L steps yields a differentiable and solvable efficient loss function

as the main burden is the matrix-vector multiplication, which streams well on

Require: Number of generated samples N , the cost function c,
hyperparameter ε and the target network Zθ∗ .
Input: Sample transition (s, a, r′, s′)

1: Policy evaluation: a∗ ∼ π(·|s′)
2: Control: a∗ ← argmaxa′∈A

1
N

∑︁N
i=1 Zθ (s

′, a′)i
3: TD update: TZi ← r + γZθ∗ (s

′, a∗)i , ∀1 ≤ i ≤ N

Output: Wc,ε

(︂
{Zθ(s, a)i}Ni=1 , {TZj}

N
j=1

)︂
Algorithm 2: Generic Sinkhorn distributional RL Update
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the GPU by simply adding extra differentiable layers on the typical deep neural

network, such as a DQN architecture. It has been proven that Sinkhorn itera-

tions asymptotically converge to the true loss in a linear rate [36, 32, 20, 53].

We provide a detailed description of Sinkhorn iterations in Algorithm 3 and

a full version in Algorithm 4 of Appendix 5.8.7. In practice, selecting proper

values of L and ε is crucial. To this end, we conduct a rigorous sensitivity

analysis, detailed in Section 5.6.

Remark: Relationship with IQN and FQF. In the realm of distribu-

tional RL algorithms, it is important to highlight that QR-DQN and MMD-

DQN are direct counterparts to SinkhornDRL within the first dimension of

algorithmic evolution. In contrast, IQN and FQF enhance QR-DQN and po-

sition them in the second modeling dimension, which are orthogonal to our

work. As discussed in [77], the techniques from IQN and FQF can naturally

extend both MMD-DQN and SinkhornDRL. For instance, we can implicitly

generate {Zθ(s, a)i}Ni=1 by applying a neural network to N samples of a base

sampling distribution, as in IQN. We can also use a proposal network to learn

the weights of each generated sample as in FQF. We leave these modeling

extensions as future works and our current study focuses on rigorously inves-

tigating the simplest modeling choice via Sinkhorn divergence.

5.6 Experiments

We substantiate the effectiveness of SinkhornDRL as described in Algorithm 2

on the entire 55 Atari 2600 games. Without increasing the model capacity for

a fair comparison, we leverage the same architecture as QR-DQN and MMD-

DQN, and replace the quantiles output in QR-DQN with N particles (sam-

ples). In contrast to MMD-DQN, SinkhornDRL only changes the distribution

divergence from MMD to Sinkhorn divergence. As such, the potential perfor-

mance improvement of our algorithm is directly attributed to the theoretical

advantages of Sinkhorn divergence over MMD.

115



Baseline Implementation. We choose DQN [74] and three typical distri-

butional RL algorithms as classic baselines, including C51 [9], QR-DQN [22]

and MMD-DQN [77]. For a fair comparison, we build SinkhornDRL and all

baselines based on a well-accepted PyTorch implementation1 of distributional

RL algorithms. We re-implement MMD-DQN based on its original TensorFlow

implementation2, and keep the same setting. For example, our MMD-DQN

still employs Gaussian kernels kh(x, y) = exp(−(x − y)2/h) with the same

kernel mixture trick covering a range of bandwidths h as adopted in MMD-

DQN [77].

SinkhornDRL Implementation and Hyperparameter Settings. For

a fair comparison with QR-DQN, C51, and MMD-DQN, we use the same hy-

perparameters: the number of generated samples N = 200, Adam optimizer

with lr = 0.00005, ϵAdam = 0.01/32. In SinkhornDRL, we choose the number

of Sinkhorn iterations L = 10 and smoothing hyperparameter ε = 10.0 in Sec-

tion 5.6.1 after conducting sensitivity analysis in Section 5.6.2. Guided by the

contraction guarantee analyzed in Theorem 10, we use the unrectified kernel,

specifically setting −c = kα and choosing α = 2. This choice ensures our im-

plementation is consistent with the theoretical results regarding the contraction

guarantee in Theorem 10 (3). We evaluate all algorithms on 55 Atari games,

averaging results over three seeds. The shade in the learning curves of each

game represents the standard deviation.

5.6.1 Performance of SinkhornDRL

Learning Curves of Human Normalized Scores (HNS). We compare

the learning curves of the Mean, Median, and Interquartile Mean (IQM) [2]

across all considered distributional RL algorithms in Figure 5.1 summarized

over 55 Atari games. The IQM (x%) computes the mean from the x% to

(1− x)% range of HNS, providing a robust alternative to the Mean that mit-

igates the impact of extremely high scores on specific games and is more sta-

tistically efficient than the Median. For computational feasibility, we evaluate

1https://github.com/ShangtongZhang/DeepRL
2https://github.com/thanhnguyentang/mmdrl
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Figure 5.1: Mean (left), Median (middle), and IQM (5%) (right) of Human-
Normalized Scores (HNS) summarized over 55 Atari games. We run 3 seeds for
each algorithm.

the algorithms over 40M training frames. Our findings reveal that Sinkhorn-

DRL achieves state-of-the-art performance in terms of mean, median, and

IQM (5%) of HNS across most training phases. Notably, SinkhornDRL ex-

hibits slower convergence during the early training phase, as indicated by the

Mean of HNS (left panel of Figure 5.1). This slower initial convergence can

be explained by the slower contraction factor ∆ε(γ, α) > γα in Theorem 10,

as opposed to MMD-DQN. To ensure the reliability of our results, we also

provide the learning curves for each Atari game in Figures 5.6 and 5.7 in Ap-

pendix 5.8.8. Furthermore, a table summarizing all raw scores is available in

Table 5.2 in Appendix 5.8.9. This table highlights that SinkhornDRL achieves

the highest numbers of best and second-best performance of all games among

all baseline algorithms. Overall, we conclude that SinkhornDRL generally

outperforms existing distributional RL algorithms.

Ratio Improvement Analysis across All Games. Given the interpola-

tion nature of Sinkhorn divergence between Wasserstein distance and MMD, as

analyzed in Theorem 10, a pertinent question arises: In which environments

does SinkhornDRL potentially perform better? We empirically address this

question by conducting a ratio improvement comparison between Sinkhorn-

DRL and both QR-DQN and MMD-DQN across all games. Figure 5.2 show-

cases that SinkhornDRL surpasses both QR-DQN and MMD-DQN in more

than half of the games and significantly excels at them in a large proportion

of games. Notably, the games where SinkhornDRL achieves considerable im-

provement tend to have larger action spaces and more complex dynamics. In
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Figure 5.2: Ratio improvement of return for SinkhornDRL over QR-DQN (left)
and MMD-DQN (right) averaged over 3 seeds. The ratio improvement is calculated
by (SinkhornDRL - QR-DQN) / QR-DQN in (a) and (SinkhornDRL - MMD-DQN)
/ MMD-DQN in (b), respectively.

particular, as illustrated in Figure 5.2, these games include Venture, Seaquest,

Solaris, Tennis, Phoenix, Atlantis, and Zaxxon. Most of these games have

an 18-dimensional action space and intricate dynamics, except for Atlantis,

which has a 4-dimensional action space and simpler dynamics where MMD-

DQN is substantially inferior to SinkhornDRL. For a detailed comparison, we

provide the features of all games, including the number of action spaces, and

complexity of environment dynamics in Table 5.3 of Appendix 5.8.10.

In summary, compared with QR-DQN, the empirical success of Sinkhorn-

DRL can be attributed to several key factors: 1. Enhanced return distribu-

tion representation: SinkhornDRL captures return distribution characteristics

more accurately by directly using samples, avoiding the non-crossing issue of

learned quantile curves or the potential limitations of quantile representation.

2. Smooth transport plan and stable convergence. The induced smoother trans-

port plan (see Appendix 5.8.1 for visualization) and the inherent smoothness of

Sinkhhorn divergence contribute to more stable convergence, leading to perfor-

mance improvement. In contrast to MMD-DQN, the benefits of SinkhornDRL

arise from its richer data representation capability when comparing return dis-

tributions, rooted in the OT nature. This is in comparison to the potentially

restricted kernel-specific distances, such as MMD.
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5.6.2 Sensitivity Analysis and Computational Cost

Sensitivity Analysis. In practice, a proper ε is preferable as an overly

large or small ε will lead to numerical instability of Sinkhorn iterations in Al-

gorithm 3 (see the discussion in Section 4.4 of [81]), therefore worsening its

performance, as shown in Figure 5.3 (a). This implies that the potential in-

terpolation nature of limiting behaviors between SinkhornDRL with QR-DQN

and MMD-DQN revealed in Theorem 10 may not be able to be rigorously veri-

fied in numerical experiments. SinkhornDRL also requires a proper number of

iterations L and samples N . For example, a small N , e.g., N = 2 in Seaquest

in Figure 5.3 (b) leads to the divergence of algorithms, while an overly large N

can degrade the performance and meanwhile increases the computational bur-

den (Appendix 5.8.11). We conjecture that using larger networks to represent

more samples is more likely to suffer from overfitting, yielding the instability

in the RL training [11]. Therefore, we choose N = 200 to attain favorable

performance and guarantee computational effectiveness simultaneously. We

provide a more detailed sensitivity analysis and more results on StarGunner

and Zaxxon in Appendix 5.8.11.

Computation Cost. In terms of the computation cost, SinkhornDRL slightly

increases the computational overhead compared with C51, QR-DQN, and

MMD-DQN. For instance, SinkhornDRL increases the average computational

cost compared with MMD-DQN by around 20%. Due to the space limit,

we provide more computation cost comparison in terms of L and N in Ap-

pendix 5.8.11.
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Figure 5.3: Sensitivity analysis of SinkhornDRL on Breakout and Seaquest in
terms of ε, number of samples, and number of iteration L. Learning curves are
reported over three seeds.
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Figure 5.4: Performance of SinkhornDRL on six Atari games with multi-
dimensional reward functions.

5.6.3 Modeling Joint Return Distribution for Multi-

Dimensional Reward Functions

Many RL tasks involve modeling multivariate return distributions. Following

the multi-dimensional reward setting in [117], we compare SinkhornDRL with

MMD-DQN on six Atari games with multiple sources of rewards. In these

tasks, the primitive scalar-based rewards are decomposed into reward vectors

based on the respective reward structures (see Appendix 5.8.12 for more de-

tails). Figure 5.4 showcases that SinkhornDRL outperforms MMD-DQN in

most cases for multi-dimensional reward functions. Of particular note, it re-

mains an open question to directly approximate multi-dimensional Wasserstein

distances via quantile regression or other efficient algorithms in RL tasks.

5.7 Conclusion, Limitations and Future Work

In this work, we propose a novel family of distributional RL algorithms based

on Sinkhorn divergence that accomplishes competitive performance compared

with the typical distributional RL algorithms on the Atari games suite. The-
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oretical results about the properties of this regularized Wasserstein loss and

its convergence guarantee in the context of RL are provided with rigorous

empirical verification.

Limitations. While SinkhornDRL achieves competitive performance, it rel-

atively increases the computational cost and requires tuning additional hyper-

parameters. This hints that the enhanced performance offered by Sinkhorn-

DRL may come with slightly greater efforts in practical deployment. Addi-

tionally, it remains elusive for a deeper connection between the theoretical

properties of divergences and the practical performance of distributional RL

algorithms given a specific environment.

Future work. Along the two dimensions of distributional RL algorithm evo-

lution, we can further improve Sinkhorn distributional RL by incorporating

implicit generative models, including parameterizing the cost function and in-

creasing model capacity. Moreover, Sinkhorn distributional RL also opens a

door for new applications of Sinkhorn divergence and more optimal transport

approaches in RL. It also becomes increasingly crucial to design a quantita-

tive criterion for a given environment to recommend the choice of a specific

distribution divergence before conducting costly experiments.

5.8 Appendix

5.8.1 Smoother Transport Plan via Sinkhorn Divergence

We visualize the optimal transport plans by solving Sinkhorn divergence with

different ε in well-trained SinkhornDRL models across three games in Fig-

ure 5.5 We evaluate (randomly selected 64) current and target state features

to be compared and then apply t-SNE to reduce their dimension from 512 to 2

associated with a normalization for visualization. In each game of Figure 5.5,

as we increase the regularization strength ε (from right to left), the resulting

transport plans tend to be smoother, less concentrated, and more uniformly

distributed by transporting the point mass between two distributions (in red
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and blue).
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Figure 5.5: Optimal transport plans for via Sinkhorn Iterations in SinkhornDRL
on three Atari games. The first row denotes the (two-dimensional) spatial transport
plans across different data points, while the second row represents the heat map of
the obtained transport plan (optimal coupling).
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5.8.2 Definition of Distribution Divergences and Con-

traction Properties

Definition of distances. Given two random variablesX and Y , one-dimensional

p-Wasserstein metricWp between the distributions of X and Y has a simplified

form via the quantile functions:

Wp(X, Y ) =

(︃∫︂ 1

0

⃓⃓
F−1
X (ω)− F−1

Y (ω)
⃓⃓p
dω

)︃1/p

= ∥F−1
X − F

−1
Y ∥p, (5.6)

which F−1 is the quantile function, also known as inverse cumulative distribu-

tion function, of a random variable with the cumulative distribution function

as F . The supremal form of Wp, denoted by W∞
p , is defined as

W∞
p (µ, ν) = sup

(s,a)∈S×A
W∞
p (µ(s, a), ν(s, a)). (5.7)

Further, ℓp distance [27] is defined as

ℓp(X, Y ) :=

(︃∫︂ ∞

−∞
|FX(ω)− FY (ω)|p dω

)︃1/p

= ∥FX − FY ∥p. (5.8)

The ℓp distance andWasserstein metric are identical at p = 1, but are otherwise

distinct. Note that when p = 2, ℓp distance is also called Cramér distance [10]

dC(X, Y ). Also, Cramér distance has a different representation given by

dC(X, Y ) = E|X − Y | − 1

2
E |X −X ′| − 1

2
E |Y − Y ′| , (5.9)

where X ′ and Y ′ are the i.i.d. copies of X and Y . Energy distance [103, 121]

is a natural extension of Cramér distance to the multivariate case, defined by

dE(X,Y) = E∥X−Y∥ − 1

2
E∥X−X′∥ − 1

2
E∥Y −Y′∥, (5.10)
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where X and Y are multivariate. Moreover, the energy distance is a special

case of the maximum mean discrepancy (MMD), which is formulated as

MMD(X,Y; k) = (E [k (X,X′)] + E [k (Y,Y′)]− 2E[k(X,Y)])
1/2
, (5.11)

where k(·, ·) is a continuous kernel on X . In particular, if k is a trivial

kernel, also called the unrectified kernel, MMD degenerates to energy dis-

tance. Additionally, we further define the supreme MMD, which is a functional

P(X )S×A × P(X )S×A → R formulated as

MMD∞(µ, ν) = sup
(s,a)∈S×A

MMD∞(µ(s, a), ν(s, a)). (5.12)

We further summarize the convergence rates of the distributional Bellman

operator Tπ under different distribution divergences.

• Tπ is γ-contractive under the supreme form of Wassertein distance Wp.

• Tπ is γ1/p-contractive under the supreme form of ℓp distance.

• Tπ is γα/2-contractive under MMD∞ with kα(x, y) = −∥x− y∥α.

Proof of Contraction in Distributional Dynamic Programming.

• Contraction under the supreme form of Wp is provided in Lemma 3 [9].

• Contraction under supreme form of ℓp distance refers to Theorem 3.4 [27].

• Contraction under MMD∞ is provided in Lemma 6 [77].

5.8.3 Proof of Proposition 2

Proof. We denote two marginal random variables U and V with the pdf µ(x)

and ν(y). We next denote the pΠ(x, y) as the pdf for Π in MIΠ(U, V ) =

KL(Π|U ⊗ V ). We first prove that the MIΠ(U, V ) is sum-invariant, which is

based on the dual form of KL divergence via the variational representation [25,

3]:

DKL(X, Y ) = sup
f∈Lb

{EX [f(x)]− log
(︁
EY
[︁
ef(y)

]︁)︁
}, (5.13)
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where Lb is the space of bounded measurable functions. The mutual infor-

mation involves two-dimensional random variables in the KL divergence. Let

U ′ = a+U and V = a+V with pdf µ′ and ν ′, we denote the joint distribution

with margins µ′(x) = µ(x − a) and ν ′(y) = ν(y − a) as Π′(x, y) whose pdf

pΠ′ satisfies pΠ′(x, y) = pΠ(x − a, y − a). Based on the two-dimensional vari-

ational representation of KL divergence MIΠ(U, V ) = supf∈Lb{EΠ[f(x, y)] −
log
(︁
EU,V

[︁
ef(x,y)

]︁)︁
}, we have:

MIΠ(A+ U,A+ V )

= sup
f∈Lb

{EΠ′ [f(x, y)]− log
(︂
EA+U,A+V

[︂
ef(x,y)

]︂)︂
}

(a)
= sup

f∈Lb

{EA
[︁
EΠ(x−a,y−a) [f(x, y)]

]︁
− log

(︂
EA
[︂
Ea+U,a+V

[︂
ef(x,y)

]︂]︂)︂
}

= sup
f∈Lb

{EA
[︁
EΠ(x,y) [f(x+ a, y + a)]

]︁
− log

(︂
EA
[︂
EU,V

[︂
ef(x+a,y+a)

]︂]︂)︂
}

(b)

≤ sup
f∈Lb

{EAEΠ[f(x+ a, y + a)]− EA log
(︂
EU,V

[︂
ef(x+a,y+a)

]︂)︂
}

= sup
f∈Lb

{EA[EΠ[f(x+ a, y + a)]− log
(︂
EU,V

[︂
ef(x+a,y+a)

]︂)︂
]}

(c)

≤ EA sup
f∈Lb

{EΠ[f(x+ a, y + a)]− log
(︂
EU,V

[︂
ef(x+a,y+a)

]︂)︂
}

(d)
= EA sup

g∈Lb

{EΠ[g(x, y)]− log
(︂
EU,V

[︂
eg(x,y)

]︂)︂
}

= MIΠ(U, V ),

(5.14)

where (a) is by the independence of A between X, Y , and the joint cdf Π. For

instance, in the one-dimensional setting, we have EZ=A+X [f(z)] =
∫︁
a

∫︁
x
f(x+

a)pA(a)pX(x)dxda = EA [EX [f(x+ a)]]. (b) and (c) are by Jensen’s inequality

in terms of the convex function − log(x) and supf , and (d) is because the

translated cdf is still within Lb.

Next, we show that MIΠ is NOT scale-sensitive or with the zero-order τ .

This result is directly based on the similar property of KL divergence. With

a slight abuse of notations, we denote U ′ = aU and V ′ = aV , whose pdfs are

µ′(x) = 1
a
µ(x

a
) and ν ′(y) = 1

a
ν(y

a
), respectively. The scaled joint distribution Π′

with the pdf pΠ′ satisfying pΠ′(x, y) = 1
a2
pΠ(x/a, y/a). Therefore, its marginal

distributions are
∫︁
y

1
a2
pΠ(x/a, y/a)dy = 1

a
µ(x

a
) and

∫︁
x

1
a2
pΠ(x/a, y/a)dy = 1

a
ν(y

a
).
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We thus have the following result:

MIΠ(aU, aV ) = KL(Π′(x, y)|U ′ ⊗ V ′)

=

∫︂
pΠ′(x, y) log

pΠ′(x, y)

µ′(x)ν ′(y)
dxdy

=

∫︂
1

a2
pΠ(x/a, y/a) log

1
a2
pΠ(x/a, y/a)

1
a2
µ(x/a)ν(y/a)

dxdy

=

∫︂
pΠ(x, y) log

pΠ(x, y)

µ(x)ν(y)
dxdy

= MIΠ(U, V ).

(5.15)

Putting the two properties together and given two return distributions Z1(s, a)

and Z2(s, a), we have the non-expansive contraction property of the supremal

form of MIΠ as follows.

MI∞Π (TπZ1,T
πZ2) = sup

s,a
MIΠ(T

πZ1(s, a),T
πZ2(s, a))

= sup
s,a

MIΠ(R(s, a) + γZ1(s
′, a′), R(s, a) + γZ2(s

′, a′))

(a)

≤ MIΠ(γZ1(s
′, a′), γZ2(s

′, a′))

(b)
= MIΠ(Z1(s

′, a′), Z2(s
′, a′))

≤ sup
s,a

MIΠ(Z1(s
′, a′), Z2(s

′, a′))

= MI∞Π (Z1, Z2),

(5.16)

where (a) relies on the sum invariant property of MIΠ and (b) utilizes the

non-scale sensitive property of MIΠ. By applying the well-known Banach

fixed point theorem, we have a unique return distribution when convergence

of distributional dynamic programming under MIΠ for any non-trivial joint

distribution Π.

5.8.4 Proof of Proposition 12

Sum Invariant Property Given two random variables U and V with the

marginal distributions as µ and ν, and a random variable A that is independent
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of them, we aim at proving

Wc,ε(A+ U,A+ V ) ≤ Wc,ε(U, V ). (5.17)

According to [81], we have the dual form of Wc,ε:

Wc,ε(U, V )

= sup
φ,ψ

{︃∫︂
x

φ(x)µxdx+

∫︂
y

ψ(y)νydy − ε
∫︂
x,y

exp
φ(x) + ψ(y)− c(x, y)

ε
µxνydxdy

}︃
= sup

φ,ψ

{︃
Eµ [φ(x)] + Eν [ψ(y)]− εEµ,ν

[︃
exp

φ(x) + ψ(y)− c(x, y)
ε

]︃}︃ (5.18)

Therefore, we have:

Wc,ε(A+ U,A+ V )

= sup
φ,ψ

{︃
EA+U [φ(x)] + EA+V [ψ(y)]− εEA+U,A+V

[︃
exp

φ(x) + ψ(y)− c(x, y)
ε

]︃}︃
(a)
= sup

φ,ψ

{︃
EA
[︃
Eµ [φ(x+ a)] + Eν [ψ(y + a)]− εEµ,ν

[︃
exp

φ(x+ a) + ψ(y + a)− c(x, y)
ε

]︃]︃}︃
(b)

≤ EA
[︃
sup
φ,ψ

{︃
Eµ [φ(x+ a)] + Eν [ψ(y + a)]− εEµ,ν

[︃
exp

φ(x+ a) + ψ(y + a)− c(x, y)
ε

]︃}︃]︃
(c)
= sup

f,g

{︃
Eµ [f(x)] + Eν [g(y)]− εEµ,ν

[︃
exp

f(x) + g(y)− c(x, y)
ε

]︃}︃
=Wc,ε(U, V ),

(5.19)

where (a) relies on the same techniques used in the proof of Eq. 5.14 in Ap-

pendix 5.8.3, (b) utilizes the Jensen inequality of sup, and (c) is based on the

fact that the translation operator is still within the same functional space of

φ, ψ.

A Variant of Scale Sensitive Property when c = −kα. Let Π∗ be the

optimal coupling for Wc,ε, we define a ratio λε(U, V ) = εKL(Π∗|µ⊗ν)
Wc,ε

∈ (0, 1) for

any considered U, V with measures µ, ν to compare, where the denominator
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Wc,ε is generally non-zero. We thus have the following result:

Wc,ε(aU, aV ) ≤ ∆ε(a, α)Wc,ε(U, V ), (5.20)

where the scaling factor ∆ε(a, α) is defined as

∆ε(a, α) = |a|α(1− sup
U,V

λε(U, V )) + sup
U,V

λε(U, V )) ∈ (|a|α, 1)

with supU,V λε(U, V ) > 0. The ratio λε(U, V ) measures the proportion of

the entropic regularization term over the whole divergence term Wc,ε, i.e.,

λε(U, V ) = εKL(Π∗|µ⊗ν)
Wc,ε

∈ (0, 1). Under the mild assumption of a finite set

of probability measures, we have supU,V λε(U, V ) > 0. To elaborate the reason

behind it, we first know that λε(U, V ) < 1 for any U and V with their measures

on the probability measure set. If this set is finite, the ratio set that contains

all {λε(U, V )} is also finite. Based on the fact that the real set is dense, we can

directly find a positive lower bound λ∗ for the ratio set, such that {λε(U, V )} ≤
λ∗ < 1. This implies that supU,V λε(U, V ) = maxU,V λε(U, V ) < 1. Notably,

this finite set property of the ratio avoids the extreme case that may lead to a

conservative conclusion about a non-expansive distribution Bellman operator,

which we will give more details later.

Scale-sensitive Property. By definition of Sinkhorn divergence [26, 81],

the pdf of Gibbs kernel in the equivalent form of Sinkrhon divergence is

K(U, V ), which satisfies K(U, V ) ∝ e
−c(x,y)

ε µ(x)ν(y). In particular, the pdf

of Gibbs kernel is defined as

dK
d (µ⊗ ν)

(x, y) =
exp(−c/ε)∫︁

exp(−c/ε)d (µ⊗ ν) ,

where the denominator is the normalization factor. After a scaling transfor-

mation, the pdf of aU and aV with respect to x and y would be 1
a
µ(x

a
) and

1
a
ν(y

a
). Thus K(aU, aV ) ∝ e

−c(x,y)
ε

1
a
µ(x

a
) 1
a
ν(y

a
). In the following proof, we use

the change variable formula (multivariate version) constantly, while changing

the joint pdf π(x, y) and keep the cost function term c(x, y). In particu-
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lar, we denote Π∗ and Π0 as the optimal joint distribution of Wc,ε(µ, ν) and

Wc,ε(aµ, aν). Then we have:

Wc,ε(aU, aV )

=

∫︂
c(x, y)dΠ0(x, y) + εKL(Π0|aµ⊗ aν)

≤
∫︂
c(x, y)dΠ∗(x, y) + εKL(Π∗|aµ⊗ aν)

c=−kα=

∫︂
(x− y)α 1

a2
π∗(

x

a
,
y

a
)dxdy + ε

∫︂
1

a2
π∗(

x

a
,
y

a
) log

1
a2
π∗(x

a
, y
a
)

1
a2
µ(x

a
)ν(y

a
)
dxdy

= |a|α
∫︂

(x− y)απ∗(x, y)dxdy + ε

∫︂
π∗(x, y) log

π∗(x, y)

µ(x)ν(y)
dxdy

= |a|α
∫︂

(x− y)απ∗(x, y)dxdy + (|a|α + 1− |a|α)ε
∫︂
π∗(x, y) log

π∗(x, y)

µ(x)ν(y)
dxdy

= |a|αWc,ε(U, V ) + (1− |a|α)εKL(Π∗|µ⊗ ν)

= ∆U,V
ε (a, α)Wc,ε(U, V )

(5.21)

where ∆U,V
ε (a, α) = |a|α+(1−|a|α)λε(U, V ) = |a|α(1−λε(U, V ))+λε(U, V ) ∈

(|a|α, 1) for ε ∈ (0,+∞) and a < 1 due to the fact that λε(U, V ) ∈ (0, 1) for any

non-trivialWc,ε(U, V ). The non-trivialWc,ε(U, V ) rules out the case when the

regularization term is zero, e.g., ϵ = 0 or the optimal coupling is the product

of two margins. In other words, ∆U,V
ε (a, α) is a function less than 1, which

depends on the two margins, including their independence and distribution

similarity, the scale factor a and the order α.

Ruling Out Extreme Cases in the Convergence via a Finite Set.

However, the fact that ∆U,V
ε (a, α) < 1 can only guarantee a ”conservative”

non-expansive contraction rather than a desirable contraction of the distribu-

tional Bellman operator. This is because there will be extreme cases in the

power of series in general, although it is very unlikely to occur given a certain

MDP in practice. For example, denote the non-constant factor as qk for the

k-th distributional Bellman update, where qk < 1. We can construct a coun-

terexample as qk = 1 − 1/(k + 2)2. In this case, Π+∞
k=1qk = (2

3
4
3
)(3

4
5
4
) · · · > 0

instead of the convergence to 0 and the non-zero limit can not guarantee the
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contraction. It also intuitively implies that iteratively applying distribution

Bellman operator underWc,ε may not lead to convergence in general by consid-

ering all possible return distributions given the non-constant factor ∆U,V
ε (a, α).

Although we know these extreme cases are very unlikely to happen, we have to

rule out these extreme cases for a rigorous proof. As we have the assumption

of a finite set of probability measures, the set of {λε(U, V )} is also finite. As

the real set is dense, we can always find a positive constant that can be used as

the contraction factor. Alternatively, we can directly use the supU,V λε(U, V )

as the uniform upper bound across the whole set of interested probability mea-

sures. Under this condition, we can immediately find a universal upper bound

of ∆U,V
ε (a, α):

sup
U,V

∆U,V
ε (a, α) = |a|α + (1− |a|α) sup

U,V
λε(U, V )

= |a|α(1− sup
U,V

λε(U, V )) + sup
U,V

λε(U, V )

·
= ∆ε(a, α)

(5.22)

where the upper bound supU,V ∆U,V
ε (a, α) has an interpolation form, which can

be viewed as the convex combination between |a|α and 1 with the coefficient

supU,V λε(U, V ) determined by the probability measure set. More importantly,

supU,V ∆U,V
ε (a, α) is strictly less than 1, which is guaranteed by the finite set

of {λε(U, V )} thanks to a finite set of interested probability measures. Finally,

we have the variant of scale-sensitive property as follows, where the factor

∆ε(a, α) depends on α, a and the probability measure set.

Wc,ε(aU, aV ) ≤ ∆ε(a, α)Wc,ε(U, V ). (5.23)

5.8.5 Proof of Theorem 10

ε → 0 and c = −kα. We study the uniform convergence when ε → 0. The

proof is summarized from the optimal transport literature [36, 31] and we

here provide the detailed proof for completeness. On the one hand, Wc,ε ≥∫︁
(x− y)αdΠ∗(x, y)dxdy ≥ Wα

α as KL ≥ 0. We want to provide the inequality

on the other side. Denote Π′ as the minimizer in the Wasserstein distanceWα
α .

130



For any δ > 0, there always exists a joint distribution Πδ such that

|
∫︂

(x− y)αdΠ′(x, y)−
∫︂
(x− y)αdΠδ(x, y)| ≤ δ (5.24)

and KL(Πδ|µ⊗ν) < +∞, i.e.,
∫︁
(x−y)αdΠδ(x, y)−

∫︁
(x−y)αdΠ′(x, y) ≤ δ. One

possible way to find Πδ is provided in notes of Lecture 6 in Optimal Transport

Course3 and we invite interested readers for reference. It follows that

Wα
α ≤ Wc,ε ≤

∫︂
(x− y)αdΠδ(x, y) + εKL(Πδ|µ⊗ ν)

≤
∫︂

(x− y)αdΠ′(x, y) + δ + εKL(Πδ|µ⊗ ν),
(5.25)

where the RHS
∫︁
(x−y)αdΠ′(x, y)+δ+εKL(Πδ|µ⊗ν)→

∫︁
(x−y)αdΠ′(x, y)+

δ = Wα
α + δ as ε → 0. As δ > 0 is arbitrary, combing the two sides, it shows

thatWc,ϵ → Wα
α as ε→ 0. Thus, Sinkhorn divergence maintains the properties

of Wasserstein distance when ε→ 0.

When ε = 0, it has been shown that Wα can guarantee a γ-contraction

property for distributional Bellman operator [9]. The crux of proof is that Wα

is γ-scale sensitive:

Wα(aU, aV ) =

(︃
inf

Π∈Π(aU,aV )

∫︂
aα(x− y)pdΠ(x, y)

)︃1/α

≤ a

(︃
inf

Π∈Π(U,V )

∫︂
(x− y)pdΠ(x, y)

)︃1/α

= aWα(U, V ),

(5.26)

where the inequality comes from the change of optimal joint distribution.

Therefore, Wα(aU, aV ) ≤ aWα(U, V ) guarantees a γ-contraction property for

the distributional Bellman operator. As such, for Wα
α , when ε = 0, it sug-

gest that Wc,0 = Wα
α corresponds to a γα-contraction for the distributional

Bellman operator Tπ.

3https://lchizat.github.io/ot2021orsay.html
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ε → ∞ and c = −kα. Our complete proof is inspired by [82, 36]. Recap

the definition of squared MMD is

E [k (X,X′)] + E [k (Y,Y′)]− 2E[k(X,Y)]. (5.27)

When the kernel function k degenerates to an unrectified kα(x, y) := −∥x−y∥α

for α ∈ (0, 2), the squared MMD would degenerate to

2E∥X−Y∥α − E∥X−X′∥α − E∥Y −Y′∥α. (5.28)

where X,X′ i.i.d.∼ µ,Y,Y′ i.i.d.∼ ν and X,X′,Y,Y′ are mutually independent.

On the other hand, by definition, we have the Sinkhorn loss as

Wc,∞(µ, ν) = 2Wc,∞(µ, ν)−Wc,∞(µ, µ)−Wc,∞(ν, ν). (5.29)

Denoting Πε be the unique minimizer for Wc,ε, it holds that Πε → µ ⊗ ν

as ε → ∞, which is the product of two marginal distributions. That be-

ing said, Wc,∞(µ, ν) →
∫︁
c(x, y)dµ(x)dν(y) + 0 =

∫︁
c(x, y)dµ(x)dν(y). One

important proof insight here is although ε → +∞, the KL term tends to

zero, which is faster than ε. Therefore, the whole regularization term still

tends to 0 as ε → +∞. If c = −kα = ∥x − y∥α, we eventually have

W−kα,∞(µ, ν) →
∫︁
∥x − y∥αdµ(x)dν(y) = E∥X − Y∥α, where µ and ν can

be inherently correlated, although the minimizer degenerates to the product

of the two marginal distributions. Finally, we can have

W−kα,∞ → 2E∥X−Y∥α − E∥X−X′∥α − E∥Y −Y′∥α, (5.30)

which is exactly the form of squared MMD with the unrectified kernel kα. Now

the key is to prove that Πε → µ ⊗ ν as ε → ∞. We now give the detailed

proof.

Firstly, it is apparent that Wc,ε(µ, ν) ≤
∫︁
c(x, y)dµ(x)dν(y) as µ ⊗ ν ∈

Π(µ, ν). Let {εk} be a positive sequence that diverges to ∞, and Πk be

the corresponding sequence of unique minimizers for Wc,ε. According to the

optimality condition, it must be the case that
∫︁
c(x, y)dΠk+εkKL(Πk, µ⊗ν) ≤
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∫︁
c(x, y)dµ⊗ ν + 0 (when Π(µ, ν) = µ⊗ ν). Thus,

KL (Πk, µ⊗ ν) ⩽
1

εk

(︃∫︂
c dµ⊗ ν −

∫︂
c dΠk

)︃
→ 0.

Besides, by the compactness of Π(µ, ν), we can extract a converging sub-

sequence Πnk
→ Π∞. Since KL is weakly lower-semicontinuous, it holds that

KL (Π∞, µ⊗ ν) ⩽ lim
k→∞

inf KL (Πnk
, µ⊗ ν) = 0

Hence Π∞ = µ ⊗ ν. That being said that the optimal coupling is simply the

product of the marginals, indicating that Πε → µ⊗ ν as ε→∞. As a special

case, when α = 1, W−k1,∞(u, v) is equivalent to the energy distance

dE(X,Y) := 2E∥X−Y∥ − E∥X−X′∥ − E∥Y −Y′∥. (5.31)

In summary, if the cost function is the rectified kernel kα, it is the case that

W−kα,ε converges to the squared MMD as ε → ∞. According to [77], Tπ is

γα/2-contractive in the supremal form of MMD with the unrectified kernel kα.

As Wc,ε(µ, ν)→ MMD2
kα(µ, ν), which is a squared MMD instead of MMD, it

implies that Tπ is γα-contractive under the squared MMD / Wc,+∞.

ε ∈ (0,+∞) and c = −κα In the proof of Proposition 12, we have shown

that the Sinkhorn loss Wc,ε satisfies the sum-invariant (I) and a new variant

of scale-sensitive properties as follows:

Wc,ε(A+ U,A+ V ) ≤ Wc,ε(U, V )

Wc,ε(aU, aV ) ≤ ∆ε(a, α)Wc,ε(U, V ).
(5.32)

The Sinkhorn divergence Wc,ε is defined by additionally subtracting two self-

distance terms (Wc,ε(µ, µ) andWc,ε(ν, ν)) based onWc,ε(µ, ν) in order to guar-

antee the non-negativity, tri-angularity and metric properties. These two self-

distance terms do not change the (I) and (S) properties when extending Wc,ε

to Wc,ε, and some proof techniques can refer to Section 2 in [31]. The only

difference is that the scaling factor will be ∆
U,V

ε (a, α), which is the counterpart
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of Eq. 5.21 satisfying

Wc,ε(aU, aV ) ≤ ∆
U,V

ε (a, α)Wc,ε(U, V ). (5.33)

where ∆
U,V

ε (a, α) = |a|α(1 − λε(U, V )) + λε(U, V ) ∈ (|a|α, 1) for ε ∈ (0,+∞)

and a < 1 due to the fact that λε(U, V ) ∈ (0, 1) for any non-trivialWc,ε(U, V ).

The new ratio λε(U, V ) = εKL(Π∗|µ⊗ν)
Wc,ε

∈ (0, 1) for any considered U, V with

measures µ, ν in the interested probability measure set. In particular, in the

context of distributional RL, the set of interested probability measures would

be the return distribution set of {Z(s, a)} for s ∈ S and a ∈ A in a given finite

MDP. We now want to find the universal upper bound ∆ε(a, α), defined by

∆ε(a, α) = |a|α(1− sup
U,V

λε(U, V )) + sup
U,V

λε(U, V )) ∈ (|a|α, 1). (5.34)

Following the proof in Appendix 5.8.4, the finite MDP guarantees a finite ratio

set of {λε(U, V )}, and thus we can find a universal upper bound λ
∗
of the ratio

set such that {λε(U, V )} ≤ λ
∗
< 1. This also implies that supU,V λε(U, V ) ∈

(0, 1) and thus the scaling factor ∆ε(a, α) ∈ (|a|α, 1), which is strictly less than

1. Therefore, we have the (I) and (S) properties of Wc,ε:

Wc,ε(A+ U,A+ V ) ≤ Wc,ε(U, V )

Wc,ε(aU, aV ) ≤ ∆ε(a, α)Wc,ε(U, V ).
(5.35)

Putting all together, we now derive the convergence of distributional Bellman
operator Tπ under the supreme form of Wc,ε, i.e., W

∞
c,ε:

W∞
c,ε(T

πZ1,T
πZ2) = sup

s,a
Wc,ε(T

πZ1(s, a),T
πZ2(s, a))

= sup
s,a
Wc,ε(R(s, a) + γZ1(s

′, a′), R(s, a) + γZ2(s
′, a′))

(a)

≤ Wc,ε(γZ1(s
′, a′), γZ2(s

′, a′))

(b)

≤ ∆
Z1(s

′,a′),Z2(s
′,a′)

ε (γ, α)Wc,ε(Z1(s
′, a′), Z2(s

′, a′))

≤ sup
s′,a′

∆
Z1(s

′,a′),Z2(s
′,a′)

ε (γ, α) sup
s′,a′
Wc,ε(Z1(s

′, a′), Z2(s
′, a′))

= ∆ε(γ, α)W
∞
c,ε(Z1, Z2)

(5.36)
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where the inequality (a) is based on the sum invariant property (I) of Sinkhorn

divergence. (b) is based on the new variant of scale-sensitive property (S) of

Sinkhorn divergence and the leverage of c = −kα. Notably, ∆ε(γ, α) ∈ (|γ|α, 1)
is an MDP-dependent constant, also determined by γ, ε and α. As such, we

conclude that distributional Bellman operator is at least ∆ε(γ, α)-contractive,

where the contraction factor ∆ε(γ, α) is strictly less than 1 in a given finite

MDP. Based on Banach fixed point theorem, we have a unique optimal return

distribution by iteratively applying Tπ in distributional dynamic programming.

5.8.6 Proof of Corollary 2

Proof. The contraction conclusion that extends to the multi-dimensional re-

turn distributions is straightforward. As the definition of Sinkhorn divergence

inherently allows the multi-dimensional measures, the sum-invariant and the

variant of scale-sensitive properties hold naturally. Specifically, after recap-

ping to proof of these properties, we only need to change c(x, y) = (x− y)α to

c(x,y) = ∥x − y∥α and re-define two d-dimensional random vector U and V

with the d-dimensional probability measure µ and ν. Therefore, the (I) and

(S) properties in the multi-dimensional reward settings are:

Wc,ε(A+U,A+V) ≤ Wc,ε(U,V), Wc,ε(aU, aV) ≤ ∆ε(a, α)Wc,ε(U,V),

(5.37)
where A is a d-dimensional random vector independent of U and V. By
leveraging these two properties, we now derive the convergence of distribu-
tional Bellman operator Tπd underW∞

c,ε in the joint return distribution setting.
Given two d-dimensional return distributions Z1 and Z2, we have

W∞
c,ε(T

π
dZ1,T

π
dZ2) = sup

s,a
Wc,ε(T

π
dZ1(s, a),T

π
dZ2(s, a))

= sup
s,a
Wc,ε(R(s, a) + γZ1(s

′, a′),R(s, a) + γZ2(s
′, a′))

(a)

≤ Wc,ε(γZ1(s
′, a′), γZ2(s

′, a′))

(b)

≤ ∆
Z1(s

′,a′),Z2(s
′,a′)

ε (γ, α)Wc,ε(Z1(s
′, a′),Z2(s

′, a′))

≤ sup
s′,a′

∆
Z1(s

′,a′),Z2(s
′,a′)

ε (γ, α) sup
s′,a′
Wc,ε(Z1(s

′, a′),Z2(s
′, a′))

= ∆ε(γ, α)W
∞
c,ε(Z1,Z2)

(5.38)
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where the inequality (a) is based on the sum invariant property (I) of Sinkhorn

divergence that cancels the additive d-dimensional random vector R(s, a). (b)

is based on the new variant of scale-sensitive property (S) of Sinkhorn di-

vergence and the leverage of c = −kα, where the contraction factor ∆ε(γ, α)

will depend on the set of d-dimensional probability measures/distributions.

Notably, the analysis of ∆ε(γ, α) in the one-dimensional return setting estab-

lished in Appendix 5.8.4 and Appendix 5.8.5 is also applicable in the multi-

dimensional setting.

5.8.7 Algorithm: Sinkhorn Iterations and Sinkhorn Dis-

tributional RL

Input: Two samples sequences {Zi}Ni=1 , {TZj}
N
j=1, number of

iterations L and hyperparameter ε.
1: ĉi,j = c(Zi,TZj) for ∀i = 1, ..., N, j = 1, ..., N
2: Ki,j = exp(−ĉi,j/ε)
3: b0 ← 1N
4: for l = 1, 2, ..., L do
5: al ← 1N

Kbl−1
, bl ← 1N

Kal
6: end for

7:
ˆ︂Wc,ε

(︂
{Zi}Ni=1 , {TZj}

N
j=1

)︂
= ⟨(K ⊙ ĉ)b, a⟩

Return: ˆ︂Wc,ε

(︂
{Zi}Ni=1 , {TZj}

N
j=1

)︂
Algorithm 3: Sinkhorn Iterations to Approximate

Wc,ε

(︂
{Zi}Ni=1 , {TZj}

N
j=1

)︂

Given two sample sequences {Zi}Ni=1 , {TZj}
N
j=1 in the distributional RL

algorithm, the optimal transport distance is equivalent to the form:

min
P∈RN×N

+

{︁
⟨P, ĉ⟩;P1N = 1N , P

⊤1N = 1N
}︁
, (5.39)

where the empirical cost function is ĉi,j = c(Zi,TZj). By adding entropic reg-

ularization on optimal transport distance, Sinkhorn divergence can be viewed
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to restrict the search space of P in the following scaling form:

Pi,j = aiKi,jbj, (5.40)

where Ki,j = e−ĉi,j/ε is the Gibbs kernel defined in Eq. 5.3. This allows us

to leverage iterations regarding the vectors a and b. More specifically, we

initialize b0 = 1N , and then the Sinkhorn iterations are expressed as

al+1 ←
1N
Kbl

and bl+1 ←
1N
K⊤al+1

, (5.41)

where ·
· indicates an entry-wise division. Combining Sinkhorn Iteration in

Algorithm 3 and the generic update of Sinkhorn Distributional RL in Algo-

rithm 2, we provide a full version of Sinkhorn Distributional RL in Algorithm 4.

Require: Number of generated samples N , the kernel k (e.g., unrectified
kernel), discount factor γ ∈ [0, 1], learning rate α, replay buffer M , main
network Zθ, target network Zθ∗ , number of iterations L, hyperparameter
ε, and a behavior policy π based on Zθ following an ϵ-greedy rule

1: Initialize θ and θ∗ ← θ
2: for t = 1, 2, . . . do
3: Take action at ∼ π(·|st; θ), receive reward rt ∼ R(·|st, at), and observe

st+1 ∼ P (·|st, at)
4: Store (st, at, rt, st+1) to the replay buffer M
5: Randomly draw a batch of transition samples (s, a, r, s′) from the

replay buffer M
6: Compute a greedy action: a∗ = argmaxa′∈A

1
N

∑︁N
i=1 Zθ∗(s

′, a′)i
7: Compute the target Bellman return distribution:

TZi ← r + γZθ∗ (s
′, a∗)i ,∀1 ≤ i ≤ N

8: Evaluate Sinkhorn divergence via Sinkhorn Iterations in Algorithm 3:

Wc,ε

(︂
{Zθ(s, a)i}Ni=1 , {TZj}

N
j=1

)︂
9: Update the main network Zθ:

θ ← θ − α∇θWc,ε

(︂
{Zθ(s, a)i}Ni=1 , {TZj}

N
j=1

)︂
10: Periodically update the target network θ∗ ← θ
11: end for

Algorithm 4: Sinkhorn Distributional RL
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5.8.8 Learning Curves on 55 Atari Games

Figure 5.6: Part 1. Learning curves of SinkhornDRL on 55 Atari games after
training 40M frames over 3 seeds.
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Figure 5.7: Part 2. Learning curves of SinkhornDRL on 55 Atari games after
training 40M frames over 3 seeds.
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5.8.9 Raw Score Table Across 55 Atari Games

GAMES RANDOM HUMAN DQN C51 QR-DQN MMD-DQN SinkhornDRL
Alien 211.9 7,127.7 1030 1510 1030 1480 1560
Amidar 2.34 1,719.5 341 424 677 510 588
Assault 283.5 742.0 3232 3647 12943 3295 2960
Asterix 268.5 8,503.3 3000 34900 11500 14900 6500
Asteroids 1008.6 47,388.7 1180 780 1650 1080 1370
Atlantis 22188 29,028.1 15500 84900 3316700 93600 3447100
BankHeist 14 753.1 570 960 980 880 700
BattleZone 3000 37,187.5 15000 19000 26000 35000 32000
BeamRider 414.3 16,926.5 8200 7476 7642 25602 6022
Berzerk 165.6 2,630.4 970 650 640 860 910
Bowling 23.48 160.7 54 43 60 60 60
Boxing -0.69 12.1 94 90 100 100 100
Breakout 1.5 30.5 343 452 414 432 418
Centipede 2064.77 12,017.0 7551 4133 5388 9342 4070
ChopperCommand 794 7,387.8 1500 3600 3500 3600 3400
CrazyClimber 8043 35,829.4 94300 153100 139500 98500 137400
DemonAttack 162.25 1,971.0 31420 50240 240660 407030 105185
DoubleDunk -18.14 -16.4 -16 -20 -18 -22 -12
Enduro 0.01 860.5 1387 1086 1972 1953 4608
FishingDerby -93.06 -38.7 23 -1 31 31 61
Freeway 0.01 29.6 31 32 34 33 34
Frostbite 73.2 4,334.7 3330 3690 3470 3250 2640
Gopher 364 2,412.5 11400 14780 5440 3740 6620
Gravitar 226.5 3,351.4 350 350 750 350 500
Hero 551 30,826.4 3440 8535 10155 7195 6540
IceHockey -10.3 0.9 -13 -10 -4 -3 -2
Jamesbond 27 302.8 350 600 650 450 500
Kangaroo 54 3,035.0 1300 6500 14600 14800 3600
Krull 1,566.59 2,665.5 8892 9336 10053 7762 9630
KungFuMaster 451 22,736.3 46500 38000 27900 26900 43600
MontezumaRevenge 0.0 4,753.3 1 400 1 1 1
MsPacman 242.6 6,951.6 3230 2440 1860 3130 5120
NameThisGame 2404.9 8,049.0 6160 5750 13580 9350 11250
Phoenix 757.2 7,242.6 9430 18780 9390 25690 23300
Pitfall -265 6,463.7 1 1 1 1 1
Pong -20.34 14.6 21 20 20 21 21
PrivateEye 34.49 69,571.3 100 100 100 100 100
Qbert 188.75 13,455.0 7425 16375 7800 16225 7750
RiverRaid 1575.4 17,118.0 8470 13310 8710 9190 9530
RoadRunner 7 7,845.0 45500 60900 52500 45600 59500
Robotank 2.24 11.9 8 11 58 39 54
Seaquest 88.2 42,054.7 1740 5940 2640 7370 8350
Skiing -16267.9 -4,336.9 -13681 -20495 -29970 -8986 -23455
Solaris 2346.6 12,326.7 1640 660 2200 3380 7720
SpaceInvaders 136.15 1,668.7 940 2480 1170 770 1200
StarGunner 631 10,250.0 1200 17200 52900 52500 57500
Tennis -23.92 -8.3 -23 -1 -7 -8 5
TimePilot 3682 5,229.2 800 4100 4400 8000 4500
Tutankham 15.56 167.6 201 213 220 141 137
UpNDown 604.7 11,693.2 14560 18440 13710 27370 18910
Venture 0.0 1,187.5 1 1 1 1 700
VideoPinball 15720.98 17,667.9 155165 576843 189460 69175 347700
WizardOfWor 534 4,756.5 1400 2400 14300 11500 4300
YarsRevenge 3271.42 54,576.9 28048 7882 17729 7520 9120
Zaxxon 8 9,173.3 1 3900 9100 4300 19500
Number of Best 4 12 15 13 17
Number of Second Best 6 7 10 8 16

Table 5.2: Best score of all algorithms over 3 seeds across 55 Atari games after
training 40M Frames. Bold denotes the best performance, while the underline
represents the second best performance. The number of games with the best and
second best performance substantiate the superiority of our SinkhornDRL across all
considered baseline algorithms.
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5.8.10 Features of Atari Games

GAMES Action Space Dynamics
Alien 18 Complex

Amidar 6 Simple
Assault 7 Complex
Asterix 18 Complex

Asteroids 4 Simple
Atlantis 4 Simple

BankHeist 18 Simple
BattleZone 18 Simple
BeamRider 18 Complex
Berzerk 18 Complex
Bowling Continuous Simple
Boxing 6 Simple

Breakout 4 Simple
Centipede 18 Complex

ChopperCommand Continuous Complex
CrazyClimber 18 Complex
DemonAttack 18 Complex
DoubleDunk 18 Simple

Enduro 9 Simple
FishingDerby 18 Simple

Freeway 3 Simple
Frostbite 18 Complex
Gopher 18 Simple
Gravitar Continuous Complex
Hero 18 Simple

IceHockey Continuous Simple
Jamesbond 18 Complex
Kangaroo 18 Complex

Krull 18 Complex
KungFuMaster 18 Complex

MontezumaRevenge 18 Complex
MsPacman 9 Simple

NameThisGame 18 Complex
Phoenix 18 Complex
Pitfall 18 Complex
Pong 3 Simple

PrivateEye 18 Complex
Qbert 6 Complex

Riverraid 18 Complex
RoadRunner 18 Simple
Robotank 9 Simple
Seaquest 18 Complex
Skiing 9 Simple
Solaris 18 Complex

SpaceInvaders 6 Simple
StarGunner 18 Complex

Tennis 18 Simple
TimePilot 18 Complex
Tutankham 18 Complex
UpNDown 18 Complex
Venture 18 Complex

VideoPinball 6 Simple
WizardOfWor 12 Complex
YarsRevenge 18 Complex

Zaxxon 18 Complex

Table 5.3: Number of Action space and difficulty of environmental dynamics of 55
Atari games.
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5.8.11 Sensitivity Analysis and Computational Cost
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Figure 5.8: (a) Sensitivity analysis w.r.t. a small level of ε SinkhornDRL to
compare with QR-DQN that approximates Wasserstein distance on Breakout. (b)
Sensitivity analysis w.r.t. a large level of ε SinkhornDRL algorithm to compare with
MMD-DQN on Breakout. All learning curves are reported over 2 seeds. (c) and (d)
are results for a general ε on Breakout and Seaquest, respectively.

More results in Sensitivity Analysis

Decreasing ε. We argue that the limit behavior connection as stated in

Theorem 10 may not be able to be verified rigorously via numeral experiments

due to the numerical instability of Sinkhorn Iteration in Algorithm 3. From

Figure 5.8 (a), we can observe that if we gradually decline ε to 0, Sinkhorn-

DRL’s performance tends to degrade and approach QR-DQN. Note that an

overly small ε will lead to a trivial almost 0 Ki,j in Sinkhorn iteration in Al-

gorithm 3, and will cause 1
0
numerical instability issue for al and bl in Line 5

of Algorithm 3. In addition, we also conducted experiments on Seaquest, a

similar result is also observed in Figure 5.8 (d). As shown in Figure 5.8 (d),

the performance of SinkhornDRL is robust when ε = 10, 100, 500, but a small

ϵ = 1 tends to worsen the performance.

Increasing ε. Moreover, for breakout, if we increase ε, the performance of

SinkhornDRL tends to degrade and be close to MMD-DQN as suggested in

Figure 5.8 (b). It is also noted that an overly large ε will let the Ki,j explode
to ∞. This also leads to the numerical instability issue in Sinkhorn iteration

in Algorithm 3.
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Samples N . We find that SinkhornDRL requires a proper number of samples

N to perform favorably, and the sensitivity w.r.t N depends on the environ-

ment. As suggested in Figure 5.9 (a), a smaller N , e.g., N = 2 on breakout has

already achieved favorable performance and even accelerates the convergence

in the early phase, while N = 2 on Seaquest will lead to the divergence is-

sue. Meanwhile, an overly large N worsens the performance across two games.

We conjecture that using larger network networks to generate more samples

may suffer from the overfitting issue, yielding the training instability [11]. In

practice, we choose a proper number of samples, i.e., N = 200 across all games.
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Figure 5.9: Sensitivity analysis of Sinkhorn in terms of the number of samples N
on Breakout (a) and Seaquest (b).

More Games on StarGunner and Zaxxon. Beyond Breakout and Seaquest,

we also provide sensitivity analysis on StarGunner and Zaxxon games in Fig-

ure 5.10. It suggests overly small samples, e.g., 1 and overall large samples

tend to degrade the performance, especially on Zaxxon. Although the two

games are robust to ε, and we find a small or large ε hurts the performance

in Seaquest. Thus, considering all games, we set samples 200, and ε = 10.0

in a moderate range across all games, although a more careful tuning in each

game will improve the performance further.

Comparison with the Computational Cost We evaluate the compu-

tational time every 10,000 iterations across the whole training process of all

considered distributional RL algorithms and make a comparison in Figure 5.11.
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Figure 5.10: Sensitivity analysis of SinkhornDRL on StarGunner and Zaxxon in
terms of ε, and number of samples. Learning curves are reported over 3 seeds.

It suggests that SinkhornDRL indeed increases around 50% computation cost

compared with QR-DQN and C51, but only slightly increases the cost in con-

trast to MMD-DQN on both Breakout and Qbert games. We argue that this

additional computational burden can be tolerant given the significant outper-

formance of SinkhornDRL in a large number of environments.

In addition, we also find that the number of Sinkhorn iterations L is neg-

ligible to the computation cost, while an overly large sample N , e.g., 500, will

lead to a large computational burden as illustrated in Figure 5.12. This can

be intuitively explained as the computation complexity of the cost function

ci,j is O(N2) in SinkhornDRL, which is particularly heavy in the computation

if N is large enough.
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Figure 5.11: Average computational cost per 10,000 iterations of all considered
distributional RL algorithm, where we select ε = 10, L = 10 and the number of
samples N = 200 in SinkhornDRL algorithm.
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Figure 5.12: Average computational cost per 10,000 iterations of SinkhornDRL
algorithm over different samples.

5.8.12 Experimental Setting in Multi-dimensional Re-

turn Distributions

Reward Structure and Decomposition. In practice, the reward func-

tion can be multi-dimensional [104, 62, 64, 23, 117, 63], where distributional

RL is aimed at modeling multivariate return distribution with multiple re-

ward sources. We follow the multi-dimensional return distribution setting

in [117], which construct six Atari games with multiple sources of rewards

by decomposing the scalar-valued primitive rewards into multi-dimension. For

completeness, we introduce the respective reward structure and the decompos-

ing method of the six considered Atari games, including AirRaid, Asteroids,

Gopher, MsPacman, UpNDown, and Pong. The reward is decomposed while

keeping the total reward unchanged.

• AirRaid. For primitive rewards, the agent kills different kinds of mon-

sters and then receive discrete values of the rewards. The scalar-based

primitive rewards are decomposed into four dimensions. The agent will

get multi-dimensional rewards [100, 0, 0, 0], [0, 75, 0, 0], [0, 0, 50, 0],[0,

0, 0, 25], [0, 0, 0, 0] respectively for the primitive reward 100, 75, 50, 25

and 0.

• Asteroids. For primitive rewards, the agent kills different kinds of

monsters and then receive values of the rewards. We denote the prim-
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itive reward as r, and decompose it into the three-dimensional reward

as [r1, r2, r3]. If (r − 20) mod 50 = 0, we let r1 = 20, otherwise r1 = 0.

If (r − r1 − 50) mod 100 = 0, we let r2 = 50, otherwise r2 = 0. We let

r3 = r − r1 − r2.

• Gopher. For primitive rewards, the agent gets +80 reward for killing a

monster and +20 reward after removing holes on the ground. We denote

the primitive reward as r, and decompose it into the two-dimensions as

[r1, r2, ]. If (r − 20) mod 100 = 0, we let r1 = 20, otherwise r1 = 0. We

let r2 = r − r1.

• MsPacman. The agent gets {+200,+400,+800,+1, 600} rewards after
killing different monsters and +10 rewards after eating beans. In the

reward decomposition, we decompose primitive reward denoted as r into

four dimensions [r1, r2, r3, r4]. If (r − 10) mod 50 = 0, we let r1 = 10,

otherwise r1 = 0. If (r− r1−50) mod 100 = 0, we let r2 = 50, otherwise

r2 = 0. If (r − r1 − r2 − 100) mod 200 = 0, we let r3 = 100, otherwise

r3 = 0. We let r4 = r − r1 − r2 − r3.

• Pong. For primitive rewards, the agent gets +1 if it wins a round, and

−1 for losing the round. We decompose the reward into two-dimension:

the agent will get [−1, 0] for a −1 reward, [0, 1] for a +1 reward; other-

wise, [0, 0].

• UpNDown. For primitive rewards, the agent gets +400 reward for

killing an energy car, +100 for reaching a flag, and +10 reward for being

alive. We denote the primitive reward as r, and decompose it into the

three-dimensional reward as [r1, r2, r3]. If (r − 10) mod 100 = 0, we let

r1 = 10, otherwise r1 = 0. If (r−r1−100) mod 200 = 0, we let r2 = 100,

otherwise r2 = 0. We let r3 = r − r1 − r2.

Detailed Experimental Setup. Our implementation extends our code

in one-dimensional return setting to multi-dimensional return scenario and

adopts the key aspects in [117]. For instance, similar to [117], we leverage a

clipping reward normalizer to clip the multi-dimensional rewards into [−1, 1]
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after applying the reward decomposition procedure mentioned above to the

primitive rewards. We keep the same model architecture except only modi-

fying the output of the last layer from (B, |A|, N) to (B, |A|, D,N), where B

is the batch size within each batch training, and D is the dimension of the

decomposed mutivariate reward function in each game.

Baseline Algorithms. Quantile regression can be used to approximate 1-

Wasserstein distance in one-dimensional setting [22] as the one-dimensional

Wassertein distance has a closed-form expression via the quantile function.

However, it remains elusive how to use quantile regression to approximate

multi-dimensional Wasserstein distance. This is to say, it is still unclear how

to extend the quantile regression distributional RL (QR-DQN) into multi-

dimensional return distribution setting, resulting in no proper baseline in our

experiment. Despite that, we directly compare SinkrhornDRL with MMD-

DQN [77] as MMD is applicable and computationally tractable in the multi-

dimensional setting. Notably, we did not introduce other baselines, such as

Hybrid Reward Architecture (HRA) [104], or MD3QN [117]. This is because 1)

[117] shows that their proposed MD3QN and HRA do not outperform MMD-

DQN in most of the six Atari games. By contrast, as suggested in Figure 5.4,

our SinkhornDRL has already surpassed MMD-DQN across almost all the con-

sidered games, and thus excels over MD3QN and HRA, correspondingly. 2)

The primary focus of our study is the comprehensive advantages of Sinkhorn-

DRL over other distributional RL classes, especially in the more common

setting within one-dimensional return distributions. The extension capability

of SinkhornDRL into the multi-dimensional reward setting is one of its merits,

which is not the primary focus of our study.
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Chapter 6

Conclusion and Future Work

In conclusion, this thesis significantly advances the field of distributional re-

inforcement learning by investigating its theoretical advantages—through the

lens of regularization, exploration, optimization, and robustness—and by in-

novating a novel algorithm class that incorporates insights from the optimal

transport literature. We start by interpreting the advantages of being cat-

egorical distributional as a form of decomposed regularization effect, which

promotes exploring states where the environmental uncertainty is largely un-

derestimated. Further, we address the question: how does return distribution

in distributional RL help the optimization? We examine this issue from the

perspectives of uniform stability and acceleration effect in the optimization

process. Additionally, we assess the training robustness of distributional RL

against both random and adversarial noisy state observations, establishing

the state-noisy MDP as a foundation for future robustness analyses in RL.

Lastly, we propose a novel family of distributional RL algorithms based on

Sinkhorn divergence, demonstrating competitive performance relative to the

typical distributional RL algorithms.

This thesis also sets the stage for numerous promising research avenues.

Firstly, it remains elusive whether it is feasible to extend the uncertainty-aware

exploration, desirable optimization, and robustness properties in categorical

distributional RL to more general algorithm classes. Although this extension

is natural and instrumental, it is also considerably challenging, given that the

analytical techniques in other classes, such as QR-DQN, are highly different
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from CDRL. Moreover, it would also be crucial to investigate the advantages of

distributional RL from additional perspectives, such as representation, and to

develop more advanced distributional RL algorithms by diving deeper into the

knowledge pools of probability, statistics, control, and optimal transport. More

broadly, it has significant potential to apply distributional learning beyond

the realm of RL to broader scenarios. Practically, it is equally essential to

establish a criterion to determine which algorithms are likely to perform best

under various conditions, thus guiding future developments and applications

of distributional RL technologies.
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