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  ABSTRACT 

  Residual Feed Intake (RFI) is a measure of energy 
efficiency. Developing an appropriate model to predict 
expected energy intake while accounting for multifunc-
tional energy requirements of metabolic body weight 
(MBW), empty body weight (EBW), milk production 
energy requirements (MPER), and their nonlinear lac-
tation profiles, is the key to successful prediction of RFI 
in dairy cattle. Individual daily actual energy intake 
and monthly body weight of 281 first-lactation dairy 
cows from 1 to 305 d in milk were recorded at the Dairy 
Research and Technology Centre of the University of 
Alberta (Edmonton, AB, Canada); individual monthly 
milk yield and compositions were obtained from the 
Dairy Herd Improvement Program. Combinations of 
different orders (1–5) of fixed (F) and random (R) 
factors were fitted using Legendre polynomial regres-
sion to model the nonlinear lactation profiles of MBW, 
EBW, and MPER over 301 d. The F5R3, F5R3, and 
F5R2 (subscripts indicate the order fitted) models were 
selected, based on the combination of the log-likelihood 
ratio test and the Bayesian information criterion, as the 
best prediction equations for MBW, EBW, and MPER, 
respectively. The selected models were used to predict 
daily individual values for these traits. To consider the 
body reserve changes, the differences of predicted EBW 
between 2 consecutive days were considered as the EBW 
change between these days. The smoothed total 301-d 
actual energy intake was then linearly regressed on the 
total 301-d predicted traits of MBW, EBW change, and 
MPER to obtain the first-lactation RFI (coefficient of 
determination = 0.68). The mean of predicted daily 
average lactation RFI was 0 and ranged from −6.58 to 
8.64 Mcal of NEL/d. Fifty-one percent of the animals 
had an RFI value below the mean (efficient) and 49% 
of them had an RFI value above the mean (inefficient). 
These results indicate that the first-lactation RFI can 

be predicted from its component traits with a reason-
able coefficient of determination. The predicted RFI 
could be used in the dairy breeding program to increase 
profitability by selecting animals that are genetically 
superior in energy efficiency based on RFI, or through 
routinely measured traits, which are genetically cor-
related with RFI. 
  Key words:    dairy cattle ,  feed efficiency ,  random re-
gression model ,  residual feed intake 

  INTRODUCTION 

  Feed cost is the single-largest expense of dairy pro-
duction (Vallimont et al., 2011) and has increased 
substantially over the last few years (Garcia, 2009). 
Although it is a crucial factor in the profitability of 
the dairy industry, little attention has been paid to 
improve feed efficiency through direct selection on it 
(Linn, 2006; Zamani et al., 2008). This is mainly due to 
the difficulties and costs associated with individual feed 
intake measurements (Kelly et al., 2010). In addition, 
the feed conversion ratio (FCR) and gross energy ef-
ficiency (GEE), which are the most common measures 
of feed utilization efficiency, have 2 main problems. 
The FCR is the ratio of input (e.g., feed) to output 
(e.g., weight gain or milk production; Crews, 2005). 
In the dairy industry, GEE is defined as the energy in 
milk divided by the total energy intake (Veerkamp and 
Emmans, 1995). First, the energy intake by different 
animals has different partial efficiencies for mainte-
nance, lactation, and body tissue gain or loss, but FCR 
and GEE do not distinguish between them (Veerkamp 
and Emmans, 1995). Second, these measures are well 
known to be phenotypically and genetically correlated 
with measures of growth, production, and mature size 
(Crews, 2005). Thus, selection for improvement of FCR 
and GEE would result in increased growth rate, mature 
size, and consequently increase maintenance require-
ments (Crews, 2005) in an unbalanced breeding goal. 
To overcome the aforementioned problems of efficiency 
measures, an alternative measure of energy efficiency, 
residual feed intake (RFI), has been described. Re-
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sidual feed intake is the difference between an animal’s 
actual energy intake (AEI) and its expected energy 
intake (EEI) based on animal’s maintenance require-
ments and production level, and is phenotypically 
independent of production traits (Koch et al., 1963); 
an alternative definition of RFI is feed intake adjusted 
for body size and production level (milk, protein, and 
fat yield and changes in body fat composition). The 
efficient animals, which have low RFI values, consume 
less feed without compromising the production level.

Meat-producing animals use energy mainly for main-
tenance and daily weight gain during the growth period. 
The relationship between energy intake and produc-
tion is linear in the testing period of meat-producing 
animals (Archer et al., 1999; Basarab et al., 2003). As 
a result, the evaluation methods of individual RFI for 
meat-producing animals during their growth period has 
been well studied in beef cattle, swine, and poultry us-
ing linear regression models (Archer et al., 1999; Crews, 
2005). Unlike the meat-producing animals, dairy cows 
have multifunctional energy requirements for mainte-
nance, growth, pregnancy, and lactation; furthermore, 
it is established that energy intake and energy expendi-
tures have nonlinear profiles during the lactation period 
in dairy cattle, whereas their individual profiles are dif-
ferent among animals (Coffey et al., 2001; Bewley and 
Schutz, 2008). Several studies have been conducted to 
predict RFI in early first lactation or the whole first 
lactation in dairy cows, but they mainly used a linear 
regression model (Van Arendonk et al., 1991; Svendsen 
et al., 1993; Zamani et al., 2008) and limited records 
of individual AEI (Van Arendonk et al., 1991; Cole-
man et al., 2010), or used a standard table of estimated 
requirement values such as those of the NRC (Svendsen 
et al., 1993; Zamani et al., 2008). The RFI obtained 
from the above may not be very accurate, and worthy 
of further investigation (Zamani et al., 2008). In ad-
dition, based on our awareness, no previous research 
has used the daily actual measured feed intake data, 
and they collected feed intake data either weekly or 
monthly in their studies; therefore, their feed intake 
data collection methods might be too insensitive to 
capture the difference among animals (Vallimont et 
al., 2011). Moreover, most of the previous studies have 
not considered the nonlinear profiles of the component 
[metabolic BW (MBW), empty BW (EBW), and milk 
production energy requirements (MPER)] traits dur-
ing the lactation period. The objective of this research 
was to develop a modeling equation to predict RFI in 
the first-lactation dairy cow while accounting for its 
multifunctional energy requirements and considering 
the nonlinear lactation profiles of the component traits 
using an orthogonal polynomial random regression 
technique.

MATERIALS AND METHODS

Data Acquisition

Daily individual feed intake, monthly BW, milk 
production, and milk composition of 281 first-lactation 
(1–305 DIM) dairy cows from June 2007 to October 
2012, were used in the analysis. These animals were 
housed in a tie-stall system at the Dairy Research and 
Technology Center (DRTC) of the University of Al-
berta (Edmonton, AB, Canada). The animals received 
1 of the 3 (high-, mid-, or low-energy dense ration) 
TMR according to their milk production level. Indi-
vidual offered feed weight in the morning and refusal 
feed weight left on the next morning were recorded 
daily. Offered feed was adjusted periodically to keep 
the individual refusal feed around 10% of the total feed 
offered. Feed compositions, including moisture (%), CP 
(%), and NDF (%), were determined when the TMR 
ingredients changed, whereas dietary DM (%) was mea-
sured monthly. Average DM of high-, mid-, and low-
energy dense TMR over a 5-yr study were 52.12, 51.02, 
and 48.87%, respectively, and their net energy density 
were 1.85, 1.72, and 1.65 Mcal/kg of DM, respectively. 
The individual milk yield and composition data were 
retrieved from the official DHI Program, which records 
milk yield and composition once every 25 to 36 d after 
calving, but no earlier than 5 DIM. Therefore, milk 
yield and composition data were available from 5 to 305 
DIM. In addition, repeated measurements of individual 
BW and BCS of these heifers were measured at their 
calving and subsequently on their DHI milk sampling 
days during their lactation. Body condition score was 
assessed on a 1 to 5 scale with 0.25 intervals (Edmon-
son et al., 1989; NRC, 2001) by the same technician 
over the study period. All procedures of the study were 
reviewed and approved by the University of Alberta 
Animal Care and Use Committee.

Data Editing and Trait Derivations

Twenty cows were excluded from the analysis as they 
had less than 4 repeated milk yield and composition 
records, and 25 animals were disqualified from the data 
set, as they had lower than 265 AEI observations over 
301 DIM. Two cows also were excluded from the data 
due to late age at first calving (972 and 1,175 d). In 
addition, 12, 48, and 487 records were removed from 
the BW, milk yield, and feed intake data, respectively, 
because they did not fall within 3 standard deviations 
from the population mean on the test day. The remain-
ing 1,837, 1,766, and 67,561 repeated records of BW, 
milk yield, and feed intake data, respectively, from 234 
cows were used in the analysis.
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The daily AEI, MBW, MPER, and EBW for each 
animal were derived from the recorded raw data using 
the following equations:

(1) Individual daily AEI (Mcal/d) = DMI × ED,where 
DMI (kg/d) is an individual daily DMI and ED (Mcal/
kg) is the net energy density of the diet; DMI was cal-
culated as [offered feed (kg) − refused (kg)] × DM (%), 
where DM is the dietary DM.

(2) Metabolic BW (kg) = BW0.75 (kg) (NRC, 2001).
The analysis of BW records between 5 to 305 DIM were 
not adjusted for fetus growth weight because the energy 
requirements of fetus growth is negligible in this period 
of pregnancy (NRC, 2001).

(3) Milk production energy requirement was consid-
ered as the energy contained in the milk produced, and 
it is equivalent to the sum of the heat of combustion 
of milk fat, protein, and lactose. Heat of combustion 
of milk fat, protein, and lactose were reported as 9.29, 
5.71, and 3.95, respectively. Milk lactose content is less 
variable and is essentially constant at 4.85% of milk 
(NRC, 2001). Because the DHI program does not record 
lactose, the MPER was calculated based on fat and 
protein content (NRC, 2001) and a constant value of 
lactose (4.85% × 3.95) as MPER (Mcal/d) = {[0.0929 
× fat (%)] + [0.0547 × CP (%)] + 0.192} × milk yield.

(4) Changes in BW of dairy cows could be confound-
ed with many factors, including water and gastroin-
testinal content (Bewley and Schutz, 2008), so it may 
not reflect true changes of tissue energy due to gut fill 
(NRC, 2001). Therefore, EBW was an adjusted BW 
for gut fill that could be representative of true changes 
in body tissue weight (NRC, 2001). Empty BW, on 
average, was considered to be 85% of live BW in dairy 
(NRC, 2001); however, in the current study, EBW was 
calculated using the equations provided by Coffey et al. 
(2001) to account for individual gut fill at the test day, 
which was a function of DMI and the energy content of 

the diet that each animal consumed at the test day, as 
EBW (kg) = BW − GF, with GF (kg) = DMI × [11 
− (7 × MED/15)], where MED was the metabolizable 
energy density (Mcal/kg) of the diet and GF was gut 
fill. Descriptive statistics of both measured and derived 
traits are given in Table 1.

Statistical Modeling

The prediction equation of individual lactation RFI 
was developed in 2 steps: first, we modeled the daily 
nonlinear profiles of MBW, MPER, and EBW from 
their respective monthly measurements using an or-
thogonal polynomial random regression model (RRM). 
Second, we modeled the lactation multifunctional en-
ergy requirements of dairy cows using a multiple linear 
regression.

RRM Development for Individual MBW, 
MPER, and EBW. Random regression modeling is 
a useful technique to model the longitudinal data for 
each animal, and each animal could have a predicted 
daily value for the trait under modeling (Coffey et al., 
2001). An RRM can be modeled with different regres-
sion approaches, and the Legendre polynomial random 
regression model was used in this study as follows:
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where yit is a derived trait (MBW, EBW, and MPER) 
for animal i on day t, and Fit represents fixed effects 
of the population used to define contemporary groups. 
The fixed effects were combined month and year of 
measurement with ration type of 238 levels, which the 
animal received between 2 consecutive records; the 
temperature and humidity index (THI) at each test 
month with a total of 65 levels; and the covariate of 

Table 1. Descriptive statistics for daily value of measured and derived traits (n = 234) 

Trait
No. of  
records Mean SE Minimum Maximum

Measured trait
 BW (kg) 1,837 566.83 53.93 427.00 754.00
 BCS 1,837 3.00 0.25 2.00 3.75
 Milk (kg) 1,766 30.91 6.16 12.00 54.00
 Fat (%) 1,766 3.58 0.79 1.24 7.59
 Protein (%) 1,766 3.08 0.26 2.34 4.50
 DMI (kg/d) 67,561 19.47 4.06 1.66 38.52
 Age at first calving (d) 234 699.56 35.5 621.00 855.00
 Temperature and humidity index 65 43.04 15.47 13.42 66.78
Derived trait
 Actual energy intake (Mcal of NEL/d) 67,561 35.06 7.35 3.02 69.32
 Metabolic BW (kg0.75) 1,837 116.35 7.99 94.26 143.88
 Milk production energy requirements (Mcal of 
NEL/d)

1,766 21.58 4.39 7.35 40.93

 Empty BW (kg) 1,837 381.58 54.11 193.45 559.68
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animal’s age at first calving deviation from the popula-
tion mean (linear and quadratic). Term βm is the fixed 
regression coefficient for a particular contemporary 
group; λim represents random regression coefficients 
associated with the animal’s additive genetic effects 
plus its permanent environmental effects; Pm(t) is the 
mth Legendre polynomial evaluated at time t; the pa-
rameters k1 and k2 are the order of fitted fixed (1–5) 
and random (1–5) polynomials regression, respectively; 
and εit is the residual error associated with animal i 
at time t. In this study, 25 models originated from 
the combinations of 5 different possible orders (1–5) 
of fixed (F) and random (R) factors were fitted using 
Legendre polynomial regression to model the nonlinear 
lactation profiles of MBW, EBW, and MPER. These 
models were denoted as Fk1Rk2, where k1 and k2 were 
the order of the fitted fixed and random regression 
variables, respectively. For example, F5R5 was a model 
with both fixed and random variables with order of 5. 
A prediction equation out of the 25 fitted models was 
selected as the best prediction equation for each trait 
based on log-likelihood ratio test (LRT) and Bayesian 
information criterion (BIC; Tedeschi, 2006). The LRT 
is a statistical test used to compare the fit of 2 models, 
one of which (reduced model) is a special case of the 
other (full model). The BIC is a criterion for model 
selection among a finite set of models; it is based on 
likelihood function and considers a penalty term for the 
number of parameters in the model by which a model 
with smaller value is better. In the current study, the 
model with both fifth fixed and random order (F5R5) 
was considered as a full model, and then the LRT value 
was calculated between pairs of the full model and each 
of the other 24 reduced models as follows:

LRT = 2log-likelihood of full model  

− 2log-likelihood of reduced model.

The calculated LRT value between the full model 
and each of the reduced models was compared with a 
critical value to decide whether to reject the reduced 
model in favor of the full model. The critical values 
were determined based on degrees of freedom of change 
and significance level (P < 0.05) from chi-squared dis-
tribution. Twenty-four LRT values were calculated and 
compared with their corresponding critical values for 
each trait to find the simplified models that did not 
significantly differ from the F5R5 model. If more than 
1 model was not significantly different from the full 
model, then the best model was determined based on 
the BIC among them and used to predict daily profiles 
for each animal from 5 to 305 DIM. The daily values 

were only predicted from 5 to 305 DIM for each trait 
(MBW, EBW, and MPER) because the first 4 d of milk 
(colostrum) production records at each lactation are not 
included in the DHI recording program. To consider the 
body reserve changes, the differences of predicted EBW 
between 2 consecutive days were considered to be the 
EBW change (EBWC) between these days. The pre-
dicted daily values for each trait of each animal i were 
summed over 301 d to obtain the animal’s expected 
first-lactation value for that trait.

Smoothing the daily actual feed intake data using 
predicted values from the developed prediction models 
is a way to reduce the error noise and capture the real 
pattern in the data. In the smoothing process, daily 
noise presumably due to error noise is reduced, and the 
points that are lower or higher than the adjacent points 
will be increased or decreased, which leads to a smooth 
signal. To smooth daily AEI data, the best-prediction 
RRM with fifth order of F and R effects was used to 
predict individual daily AEI. Then, predicted AEI from 
5 to 305 DIM for each animal i were also summed to 

obtain the individual’s 301-d AEI AEIi
t=
∑
⎛

⎝
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⎞

⎠
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smoothed total AEI. All of the statistical procedures 
were performed using PROC MIXED of SAS (SAS In-
stitute, 2003).

Total Lactation EEI and RFI Prediction. A 
multiple linear regression model was used to predict 
the total lactation individual EEI value. The smoothed 
total 301-d AEI was linearly regressed on total 301-d 
predicted traits of MBW, MPER, and EBWC to obtain 
the individual’s 301-d lactation EEI and RFI as follows:
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The 301-d first-lactation RFI for individual animal 
i can be obtained by subtracting the total 301-d ex-
pected energy expenditures from the smoothed total 
301-d AEI of the ith individual as follows:
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The daily average lactation RFI for each individual 
over 301 d can be obtained by dividing the total lacta-
tion RFI by animal’s days in record.
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RESULTS

Descriptive statistics of measured and derived traits 
are given in Table 1. The number of observations per 
cow for measured (BW, BCS, milk yield, and composi-
tion) and derived (MBW, EBW, and MPER) traits 
over 301 d ranged from 4 to 11. However, the number 
of observations per cow for AEI was 289, on average, 
and ranged from 265 to 301. The average of recorded 
daily AEI against DIM is shown in Figure 1; the av-
erage daily derived and predicted MPER, EBW, and 
MBW are shown in Figures 2, 3, and 4, respectively. 
The peak of AEI occurred around 100 DIM (Figure 1), 
whereas the peak of MPER occurred around 60 DIM 
(Figure 2). Animals began to lose their body reserves 
to support their milk production before the peak of 

AEI, and the nadir point of EBW was around 60 DIM 
(Figure 3).

The LRT and BIC statistics for all models that 
were not significantly different from the full model by 
the LRT are presented in Table 2 for the 3 (MBW, 
EBW, and MPER) traits. The bold statistics indicate 
that the models were chosen based on BIC as the best 
prediction model for that trait. The models of F5R3, 
F5R3, and F5R2 were selected to predict the individual’s 
daily values for MBW, EBW, and MPER, respectively. 
Scatter plots for the average daily predicted versus 
the average daily derived values of MPER, EBW, and 
MBW against DIM are shown in Figures 2, 3, and 4, 
respectively. It can be seen that the predicted values 
were matched well with their derived values for all 3 
traits in their respective graphs.

Figure 1. Average actual energy intake (Mcal of NEL/d) versus DIM. 

Figure 2. Average daily derived (◊) and predicted (�) milk production energy requirement (Mcal of NEL/d) versus DIM. 
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The developed EEI prediction equation is given be-
low with a coefficient of determination of 0.68:

 

EEI MBW

MPER

i
t

i
t

i
t

= =

=

∑ ∑=− + × +

×

5

305

5

305

5

305

2 518 61 0 22 0 84, . . .  

 ∑∑ ∑− ×
=

1 51
5

305
. ,  EBWC i

t

 

and the 301-d individual lactation RFI can be predicted 
as follows:
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The mean of predicted daily average lactation RFI 
was 0.0 and ranged from −6.58 to 8.64 Mcal of NEL/d 
(Figure 5). Fifty-one percent of the animals had an RFI 

value below the mean (efficient) and 49% of them had 
a RFI value above the mean (inefficient).

DISCUSSION

Advantages of the Developed Model

The objective of this study was to develop a predic-
tion equation to calculate lactation RFI for dairy cows 
during their whole first-lactation period and to account 
for the animals’ multifunctional energy requirements. 
The developed prediction model also considered the 
nonlinear lactation profiles of RFI component traits 
and used smoothed daily actual feed intake data during 
the whole lactation period. In this research, measured 
AEI data was smoothed to remove the error noise in 
RFI prediction equation. However, applying measured 
AEI data in the RFI prediction equation provided very 
similar results to the smoothed AEI data. The correla-
tion between predicted RFI from measured AEI and 

Figure 3. Average daily derived (◊) and predicted (�) empty BW (kg) versus DIM.

Figure 4. Average daily derived (◊) and predicted (�) metabolic BW (kg0.75) versus DIM.



Journal of Dairy Science Vol. 96 No. 12, 2013

NET FEED EFFICIENCY FOR DAIRY COWS 7997

smoothed AEI was 0.96. Therefore, 289 repeated mea-
surements of AEI over 301 d may be good enough to 
capture the real pattern of feed intake in dairy cattle, 
and smoothed data may be more useful to remove error 
noise when less-repeated data points over lactation are 
recorded.

Several previous RFI prediction studies (Van Aren-
donk et al., 1991; Svendsen et al., 1993; Zamani et al., 
2008; Coleman et al., 2010; Vallimont et al., 2011) for 
dairy cattle in the literature are summarized in Table 
3. Van Arendonk et al. (1991) predicted RFI in early 
lactation (105 DIM) using linear regression of average 
daily energy intake on average daily MBW, average 
daily fat- and protein-corrected milk, and average daily 
weight gain. In this study, we used the actual daily 
feed intake records from the entire lactation to develop 
an RFI prediction equation for the first-lactation dairy 
cow (301 DIM) rather than early lactation (105 DIM). 
Furthermore, Van Arendonk et al. (1991) used the av-

erage of BW gain over 77 d in the prediction model. 
Applying an average of BW in early lactation could 
give a biased result, as measuring BW around the na-
dir point is important to ensure accurate appraisal of 
BW gain or loss. It is also well established that dairy 
animals lose their energy reserves (BW and BCS) to 
support milk production in early lactation and start to 
regain their reserves after the energy intake peak occurs 
(Coffey et al., 2001; Bewley and Schutz, 2008), which is 
also supported by the results found in the current study 
(Figure 3). For example, consider a cow that had 0.15 
kg of weight loss in the first 50 d in the test and 0.27 
kg of weight gain for the rest of 27 d in the test (from 
50 to 77 d in the test) in the study by Van Arendonk et 
al. (1991). The cow might have zero average BW gain 
during 77 d if her nadir point occurred at the d 50. To 
accurately consider the body reserve changes, RFI may 
be predicted in a shorter time, such as weekly; then, 
total lactation RFI could be calculated to be the sum 

Table 2. Maximum log-likelihood, log-likelihood ratio test (LRT), and Bayesian information criterion (BIC) values of different models, which 
were not significantly different from the full model (F5R5)

1 for metabolic BW (MBW), milk production energy requirements (MPER), and empty 
BW (EBW)2 

Model3
df  

change

Trait

MBW MPER EBW

Maximum  
log-likelihood LRT BIC

Maximum  
log-likelihood LRT BIC

Maximum  
log-likelihood LRT BIC

F4R2 12 — — — −4,901.5 23.6 9,870.0 — — —
F4R3 7 — — — −4,899.0 18.5 9,842.8 — — —
F5R2 15 — — — −4,897.3 15.0 9,834.2 — — —
F5R3 11 −5,418.6 17.8 1,0912.5 −4,894.8 10.1 9,846.3 −9,298.4 17.1 7,128.6
F5R4 6 −5,414.6 9.9 1,0924.4 −4,892.9 6.0 9,871.0 −9,293.7 3.5 7,148.8
F5R5 −5,409.6 1,0944.0 −4,889.7 9,904.3 −9,289.8 7,180.3
1F = fixed factor and R = random factor, where the subscripts indicate the order fitted.
2The selected model was based on maximum log-likelihood, LRT, and BIC values indicated in bold.
3The models were designated by Fk1Rk2, where k1 and k2 are the order of fixed and random regression, respectively.

Figure 5. Average daily residual feed intake (RFI). Each bar indicates daily RFI (Mcal of NEL/d) for each dairy cow. ID = identification.
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of weekly predicted RFI over lactation. In this research, 
RFI component traits, including EBWC, were summed 
over the lactation period to calculate total lactation 
RFI (RFILactation). Moreover, we calculated individual 
weekly RFI, and then the total individual lactation 
RFI was calculated by summing up the weekly RFI 
(RFIWeekly) over lactation. The 2 methods yielded very 
similar results: the means (SD) of RFILactation and  
RFIWeekly were 0.0 (2.42) and 0.0 (2.46), respectively, 
and RFI obtained from these 2 methods had a correla-
tion of 0.97. Summing up the RFI component traits 
method is much easier computationally and more ap-
plicable compared with the weekly approach.

Coleman et al. (2010) developed an RFI prediction 
equation for first-lactation cows from 16 to 288 DIM in 
a pasture-based system (Table 3). They predicted RFI 
by regression of estimated daily DMI on predicted daily 
energy expenditures (fat yield, protein yield, lactose 
yield, MBW, BW change, and BCS) over 272 d. On 
one hand, Coleman et al. (2010) estimated individual 
DMI by the n-alkane technique on 6 occasions from 
16 to 288 DIM. The estimated observations were then 
used to develop a prediction equation based on a cubic 
spline regression method to obtain an estimated daily 
DMI for each animal over 272 d. On the other hand, 
they predicted DMI based on animal energy expendi-
tures (fat yield, protein yield, lactose yield, MBW, BW 
change, and BCS). Then, they considered individual 

RFI as the difference between daily estimated DMI 
from the cubic spline regression data, with predicted 
DMI based on animal energy expenditures. However, 
RFI prediction is the difference between daily actual 
DM or energy intake, with predicted DM or energy 
intake based on animal energy expenditures. Therefore, 
the main difference between our study and that of 
Coleman et al. (2010) was that they used estimated 
daily DMI in their study, whereas we used smoothed 
actual daily DMI measurements in the RFI prediction 
to subtract predicted DMI based on animal energy ex-
penditures. Wang et al. (2006) reported that accurate 
RFI test results required at least 63-d observations of 
actual daily DMI in a 90-d period of a feed lot trial of 
RFI prediction for beef cattle. Although their results 
may not directly be applicable to dairy cattle, at least 
their results indicate that an adequate number of DMI 
data measurements are required to have an accurate 
RFI prediction, even with linear prediction in beef 
cattle. Coleman et al. (2010) had a lower number of 
daily actual DMI data than our study (6 vs. 289), so 
they might suffer from loss of prediction accuracy.

Two other studies (Svendsen et al., 1993; Zamani et 
al., 2008) predicted RFI for the first 2 trimesters and 
the entire first-lactation period (Table 3), respectively. 
Both of these research teams used the table values of 
the standard NRC nutrient requirements to estimate 
energy expenditures instead of using actual individual 

Table 3. Summary of available residual feed intake (RFI) prediction report in the literature 

Item1 Current study
Vallimont et 
al. (2011)

Coleman et 
al. (2010)

Zamani et 
al. (2008)

Svendsen et 
al. (1993)

Van Arendonk et 
al. (1991)

Breed Holstein Holstein Holstein Holstein Dual Holstein
Raised system Tie-stall Tie-stall Pasture Tie-stall Tie-stall Tie-stall
n 281 970 265 906 353 360
Test duration 300 305 267 365 168 105
Regression approach to model energy sink profiles NL2 NL NL NP3 NP L4

Regression approach to model relationship  
between energy intake and sinks

L; NL L L L L L

Recorded actual feed intake/cow 289 6 6 52 NP 44
R2 of RFI prediction equation 0.68 NP NP NP NP NP
Components included in expected  
energy intake equation
 MBW *5 — * * * *
 MYC * * * * * *
 EBWC * — — — — —
 BW — * — — — —
 BCS — * * * — —
 ADG — — * * * *
RFI Mcal of NEL/d kg of DM/d Mcal/d MJ of ME/kg
 Mean 0.00 NP 0.03 4.64 NP 64.2 
 Minimum −6.58 NP −0.38 −9.43 NP 42.1
 Maximum 8.64 NP 0.44 18.6 NP 86.4
1MBW = metabolic BW; MYC = milk yield and components; EBWC = empty BW change.
2NL = nonlinear.
3NP = not provided.
4L = linear.
5Components included in the expected energy intake equation are indicated by an asterisk (*).
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feed intake measurements. Moreover, the standard 
requirements tables such as those of the NRC were 
prepared based on population averages and were not 
applicable to identify an efficient individual. In the 
current study, both group mean efficiency (the fixed 
effects) and the individual deviation of efficiency (the 
random effects) from the group mean were modeled 
and the latter allowed us to identify efficient animals 
within the group.

Model Development and Selection

Twenty-five Legendre polynomial RRM were fitted 
for each of the energy expenditure components (MBW, 
EBW, and MPER), and then LRT along with the BIC 
were used to select the best prediction equation for the 
energy expenditures. Random regression modeling is a 
useful technique for analyzing longitudinal traits, such 
as feed intake, milk production, and BCS (Schaeffer, 
2004). It is a flexible model that allows regression co-
efficients to be different among animals, giving each 
animal a specific model (Schaeffer and Dekkers, 1994). 
In an RRM, an average curve of a trait for all animals 
in a particular group is fitted as a fixed regression, 
and deviation of each animal from this average curve 
is modeled using random Legendre polynomials (Cof-
fey et al., 2001; Schaeffer, 2004). Legendre polynomials 
have advantages of having good convergence and lower 
correlations between coefficients, as the coefficients 
are orthogonal compared with an ordinary polyno-
mial (Coffey et al., 2001; Schaeffer, 2004). The com-
mon statistical criteria such as mean square of error, 
or coefficient of determination were not useful for our 
model selection because the numbers of parameters to 
be estimated were different for all possible combina-
tions of the RRM. Therefore, we first used LRT to test 
the proficiency of reduced models compared with the 
full model and then BIC was used to select the best 
model among the models that were as efficient as the 
full model.

The preliminary results of the tested fixed and ran-
dom regression orders of 1 to 10 for the traits showed 
that most of the orders greater than 5 had a conver-
gence problem. Therefore, 5 possible orders (1–5) of 
F and R Legendre polynomial regression models were 
tested to model the daily nonlinear lactation profiles of 
MBW, EBW, and MPER with time. For the 3 derived 
traits, a fixed regression of order 5 (F5) was selected, 
whereas random regression of order 3 (R3), 3 (R3), and 
2 (R2) were selected for MBW, EBW, and MPER, 
respectively, and were used to predict their respec-
tive daily values for each animal. Several reports used 
Legendre polynomial RRM technique to model BW, 
energy balance, and milk yield within the first-lactation 

period (Coffey et al., 2001; Banos et al., 2005; Liu et 
al., 2006). They considered a fixed regression order 
of 5 to model average records across all animals for 
the tested traits. Random orders of 5 and more were 
suggested to be used for modeling of energy balance, 
which was a derived trait from BW and BCS (Banos 
et al., 2005). It is noted that the random regression 
model consists of fixed and random parts. The random 
part of the model could be partitioned into different 
parts, including animal additive and permanent envi-
ronmental effects (Coffey et al., 2001). If the random 
part did not partition, it would be a combined effect of 
animal additive and permanent environmental effects. 
Currently, a random order of 4 is being used for both 
additive and permanent effects in Canada for modeling 
of milk yield within the first lactation (Interbull, 2009). 
However, Liu et al. (2006) tested Legendre polynomial 
random orders of 3 to 8 to select the best order of fit 
for milk yield using some statistical criteria, including 
LRT and BIC. They also compared the selected model 
with the currently used model (order of 4 for both ad-
ditive and permanent random effects) in Canada and 
found that the random orders of 5 and 7 were the best 
orders for additive and permanent random effects, re-
spectively. Therefore, they concluded that the model 
used in the Canadian Holstein dairy evaluation was not 
the best, based on a single criterion, but was optimal 
when considering all criteria including LRT and BIC. 
However, in the current research, pedigree information 
was not included in the analysis, as we were interested 
in predicting phenotypic RFI. Therefore, the animal 
random effect was a combination of animal additive 
and permanent effects. Overall, the selected models in 
the current study were the best models that fitted the 
traits (Figures 2, 3, and 4), and they were in line with 
comparable results in the literature.

EEI Equation and RFI Calculation

The linear and quadratic relationships between 
smoothed total AEI and total MBW, EBWC, and 
MPER were examined. The linear RFI prediction 
equation had a coefficient of determination of 0.68. 
The quadratic multiple regression adds just 2% to the 
coefficient of determination in the linear model, and 
none of the quadratic terms in the nonlinear prediction 
equation were statistically significant (P > 0.34). The 
coefficient of determination determines the percentage 
of the variation of the dependent variable (AEI) that 
is explained by independent variables (MBW, EBWC, 
and MPER). It is a good indicator for comparing the 
different RFI prediction modeling approaches. Ideally, 
we should compare the coefficient of determination 
of our prediction equation with other available RFI 
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predictions from the literature. However, based on our 
awareness of published results, none of them provided 
a coefficient of determination for their RFI prediction 
equations (Table 3). Therefore, we could not compare 
the coefficient of determination directly with the predic-
tion equations in the previous works in the literature.

Individual AEI and EEI, which is predicted based 
on animal maintenance and production requirements, 
are necessary to calculate individual RFI. The RFI 
calculation method has been well established in beef 
cattle during the growth period. Generally, daily DMI 
and biweekly BW are recorded over 90 d in beef cattle 
during their growth period. Then, linear regression of 
measured weight over time is used to model the growth 
curve for each animal and predict its MBW and ADG 
(Basarab et al., 2003; Wang et al., 2006; Kelly et al., 
2010). Basarab et al. (2003) used linear regression to 
model the growth curve of beef steers to predict the 
mid-test BW and ADG of animals during the feedlot 
test period and reported that all animals had a growth 
curve with a coefficient of determination of more than 
95%, indicating that the growth during this phase was 
linear and the selection of a linear regression model was 
an appropriate approach. Consequently, expected DMI 
was calculated from linear regression of actual daily 
DMI on estimated MBW and ADG. As a result, the 
coefficient of determination of RFI prediction equation 
ranged from 0.72 to 0.82 in beef cattle (Basarab et al., 
2003, 2007). However, energy requirements of dairy cows 
are complicated and they need energy to produce milk, 
grow, conceive, and bring their calves to term while 
maintaining themselves as biological entities, staying 
healthy, and keeping up with general activities (Banos 
et al., 2005). In dairy cattle, the amount of energy in-
take and that dispensed by an animal determines its 
body energy state. Almost all lactating animals tend to 
lose their body reserves to support lactogenesis, espe-
cially in high milk-producing cows (Coffey et al., 2001). 
Therefore, accounting for nonlinear lactation profiles 
for multifunctional energy requirements of expected 
individual energy intake over DIM is the key success 
to obtain an accurate RFI prediction for dairy cows. 
In the current study, the nonlinear lactation profiles 
of energy expenditures were accounted for by using 
RRM and a summation of individual daily values over 
the trajectory. For multiple requirements, the authors 
initially considered smoothed AEI as functions of total 
MBW, MPER, and BW over 301 d and accounted for 
56% of variation in AEI. Including BCS in the initial 
model produced an equation with a coefficient of deter-
mination of about 0.58. However, after adjusting BW 
for gut fill and EBW, and then calculating the EBWC 
and replacing with BW and BCS, we provided a model 
that accounted for 68% of variation in AEI. The previ-

ous research teams in dairy cattle did not report coef-
ficients of determination for RFI calculation; however, 
the achieved coefficient of determination value for RFI 
prediction equation was close to the lower range of 
beef studies (Basarab et al., 2003, 2007). In this study, 
the mean of average daily lactation RFI was 0.0 (SD 
= 2.42 Mcal of NEL/d; 1.33 kg of DM/d) and ranged 
from −6.58 to 8.64 Mcal of NEL/d (−3.59 to 4.77 kg of 
DM/d). Other researchers also reported an average of 
zero for RFI in dairy (Van Arendonk et al., 1991; Cole-
man et al., 2010), but no standard deviation was given. 
The standard deviation of RFI estimation in growing 
beef cattle was reported as almost 0.56 kg of DM/d and 
the range of RFI values has been reported from −2.5 
to +2.2 kg of DM/d (Basarab et al., 2003; Wang et al., 
2006; Kelly et al., 2010), with an average of zero.

CONCLUSIONS

The F5R3, F5R3, and F5R2 RRM were selected as the 
best models to model the daily nonlinear profiles and 
to predict individual daily values of MBW, EBW, and 
MPER, respectively. The results indicated that the 
first-lactation RFI is predictable and could be used in 
the dairy industry to increase profitability by selecting 
animals that are genetically superior in energy effi-
ciency based on the predicted RFI without compromis-
ing the production level, through indicator traits such 
as conformation traits, marker-assisted selection, and 
other genomic approaches. However, further investiga-
tions are required to develop a prediction equation to 
calculate RFI across the lactation. In addition, a need 
exists to investigate the phenotypic and genetic corre-
lations between RFI and conformation traits, fertility, 
and lifetime profitability, and to investigate indicator 
trait(s) in an effort to ensure that the measurement of 
feed intake and, consequently, RFI calculation is more 
cost effective.
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