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ABSTRACT

Integration by parts and time reversal of stochastic processes Liave been inves-
tigated for some years. In chapter 3 we consider integration by parts for Poisson
processes. By using a Girsanov change of measure, we obtain a small c-perturbation
of the rate of the process. This is then compensated by a time change of the process
under the new measure. An identity involving the parameter ¢ is obtained, and the
integration by parts formula follows by differentiating with respect to ¢ and then
putting € = 0. We then utilize this formula to derive a new explicit expression for
the integrand that appears in the martingale representation for a Poisson functional.

In chapter 4 we derive integration by parts formulae for functionals of a single
Jump process. When the state space of the process is Euclidean space, we follow the
technique of Norris (1988) by introducing a small e-perturbation of the state space.
We then remove this effect by a Girsanov change of measure, and an integration
by parts formula is then obtained by dirirentizting in e. When the state space is
a general measure space, the above does not work. Instead we consider a small e-
perturbation in the time direction. An integration by parts formula, which involves a
time derivative, then follows by differentiating in €. An expression for the integrand
in the martingale representation for functionals of the jump time is also derived.

In chapter 5 we consider time reversal for a standard Poisson process, a point
process with Markov intensity, and a point process with a predictable intensity.
For a point process N with Markov intensity h(N;), H; = N, — /th(N,)ds is a

0
martingale. We derive the reverse time quasimartingale decomposition of H for

v



t € (0,1]. For a point process with a predictable intensity, we introduce an analog
of the Fréchet derivative for functicnals of a Poiss~n process. We then formulate
the integration by parts formula on Poisson space derived in chapter 3 in terms of

this derivative, and we utilize this formula to obtain the reverse time decomposition

of the point process.
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Chapter 1

PRELIMINARIES

In this chapter we present a list of basic definitions and theorems which will
serve as prerequisites for subsequent chapters. We will take the time index set = as

either [0,00) or {0, 1].

1.1. Filtration and Stopping Times.

DEFINITION 1.1.1. Let (R, F) be a measurable space. A filtration {F,} of (2, F)

is a family of sub-o-fields F;, t € T, of 7 such that if s < ¢, then F, C F.

DEFINITION 1.1.2. Write Fyy = () Fs. The filtration {F:} is said to be right
s>t

continuous if Fy = Fy.

DEFINITION 1.1.3. Suppose (2, F) is a. measurable space with a filtration {F:}ier-
A random variable T : Q@ — T is said to be a stopping time if for every t € T,

{T <t} ={w:T(w) <t} €F.

LEMMA 1.1.4. Suppose S and T are stopping times. Then S A T, SVT are

stopping times.

DEFINITION 1.1.5. Suppose T is a stopping time with respect to the filtration
{F:}. Then the o-field Fr of events occurring up to time T is the o-field of events
A € F such that

AN{T <t} e F; foreveryt.

1
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PROPOSITION 1.1.6. Suppose S and T are stopping times. If S < T a.s., then

Fs C Fr.

DEFINITION 1.1.7. The o-field Fr_ of events strictly prior to the stopping time T
is the o-field generated by Fy and all sets of the form AN{t < T}, where t € [0, )

and A € F;.

THEOREM 1.1.8. Suppose S and T are stopping times. Then
(1) Fr- C Fr;

(2) T is Fr— measurable;

(3) f T <S as., then Fr— C Fs_;

(4) forevery A€ Fs, AN{S<T}e Fr—.

DEFINITION 1.1.9. Suppose (2, F, P) is a probability space with a filtration {F;} tcr.
FP will denote the completion of F, and FF, t € r, the o-field generated by Fi
and the P-null sets of F¥. Then {FF} is a filtration on (, FP, P) and is called
the completion of the filtration {F;}. A filtration is said to be complete if F is

complete and each F; contains all P-null sets of F.

DEFINITION 1.1.10. A stopping time T is said to be predictable if there is a

sequence {Tn}, n € IN, of stopping times such that

(1) {Tn(w)} is almost surely an increasing sequence in [0,00) and li'r‘n Tn(w) =
T(w) a.s.;

(2) On the set {T' > 0}, Tn(w) < T(w) a.s. for all n. The sequence {Tn} is said

to announce T'.



1.2. Stechastic Processes and Martingales.
Starting from this section we will assume that a probability space (R2,F, P)
with a right continuous, cornplete filtiation {F;}, t € 7, is given. Furthermore, we

assume that every stochastic process is real valued.

DEFINITION 1.2.1. Let {X,}, t € 7, be a stochastic process defined on (Q, F, P).

Then {X,} is said to be adapted to {F,} if X, is F,;-measurable for each t € r.

DEFINITION 1.2.2. A stochastic process {X,}, t € t is said to be right continuous
if for almost all w, the sample path t — X,(w) is right continuous. {X,} is said to
have left haad limits if the sample paths have left limits. A right continuous process
with left limits is said to be a CORLOL process. Similar definitions hold for left

continuity and right hand limits.

DEFINITION 1.2.3. A stochastic process {X,}, t € 7, is said to be a supermartin-
gale (resp. a submartingale) with respect to the filtration {F;} if:

(1) {X.} is adapted to {F.};

(2) ElIX,l]<oo., t€T:

(3) E[X: | Fs] < X, as. ift > s (resp. E[X; | F,] > X, a.s. ift > 5.

{X:} is sa’d to be a martingale if it is both a supermartingale and a submartin-

gale.

DEFINITION 1.2.4. A martingale {X,}, t € T is said to be uniformly integrable if

the class of random variables {X,, t € 7} is uniformly integrable.

‘THEOREM 1.2.5. Suppose {X,}, t € [0,00), is a uniformly integrable martingale.
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Then there is a random variable X, such that tlim Xe(w) = Xoo(w) a.s. The
—_— 0

convergence also takes place in L', and {X,}, t € [0, o], is a martingale.

THEOREM 1.2.6. If Fo = \/ F: and Y is an integrable F., -measurable random
t
variable, then {E(Y | F1]}, t € [0,cc], is a uniformly integrable martingale. We can
take a right continuous modification {Y;} of this martingale, and tlim Yi(w) = ¥ (w)
— 00

a.s. and in L1.

THEOREM 1.2.7. (Optimal Stopping) If {X.}, t € [0,00], is a right continuous

martingale, and S and T are two stoppirg times such that S < T a.s., then

Xs=E{Xr|Fs] as.

DEFINITION 1.2.8. Let H denote the family of subsets of [0, co) x € containing all
sets of the form {0} x Fy and (s,t] X F, where Fy € Fo and F € F, for s <t in

[0,00). The o-field P generated by H is called the predictable o-field.

THEOREM 1.2.9. The predictable o-field P is generated by the family ..f left-

continuous, adapted processes.

DEFINITION 1.2.10. A process {X.} is said to be predictable if the map X :

[0, 00) x 2 — IR is measurable with respect to the predictable o-field P.

NOTATION 1.2.11. Led B = B([0,c0)) be the Borel o-field of [0,0c). Write B{B x

F) for the space of bounded, B x 7 measurable processes, and B(}’;

;

s te cuace

of bounded predictable processes.

TH_.OREM 1.2.12. (Projection Theorem) There is a unique linear order preserving

projection II, of B(B x F) onto B{P) such that for X € B(B x F) and for every



@1}

predictable stopping time T,

EXTI{T<oo}] = E[(TpX)T{T<o0})

I1p(.X) is called the predictable projection of X.

THEOREM 1.2.13. Suppose X € B(B x F). Then for any predictable stopping
time T,

Hp(X)rliT<o) = E[XT{T<00} | Fr-].

DEFINITION 1.2.14. A B([0,00)) x F measurable stochastic process {A:}, t €
[0,00), with values in [0,00), is called an increasing process if almost every sample

path A - (w) is right continuous and increasing.

DEFINITION 1.2.15. V¥ will denote the family of processes {A,} which is increasing
and adapted to the filtration {F;}. Vg will denote those processes {A;} € V* such

that Ao = 0.

DEFINITION 1.2.16. V = V* — V¥ js the set of processes, each of whick is the

difference of two elements of V+.

DEFINITION 1.2.17. A% denotes the set of integrable increasing processes, that
is, the set of increasing processes {A:} adapted to the filtration {F,}, such that

E[Aw] < 0. Af will denote the set of processes {A,} € At with Ay = 0.

DEFINITION 1.2.18. A right continuous uniformly integrable supermartingale {X,}
is said to be of class D if the set of random variables {Xr}, for T any stopping

time, is uniformly integrable.
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THEOREM 1.2.19. Suppose {X:} is a right continuous supermartingale of class D.
Then there exists a unique predictable increasing process {4,} € A{ such that the

process My = X, + A, is a uniformly integrable martingale.

THEOREM 1.2.20. Suppose {X:}, t € [0,00], is a right continuous supermartin-

gale. Then {X.} has a unique decomposition of ithe form
Xe =M, - A,

where {A:} is an increasing predictable process, Ay = Q a.s., and there is an in-
creasing sequence {T'n} of stopping times such that lim Tn = oo a.s., and each
n—oo

process {MI™} is a uniformly integrable martingale. The above decomposition is

called the Doob-Meyer decomposition of the supermartingale {X,}.

DEFINITION 1.2.21. A martingale {X,}, t € [0, c0), is called a square integrable

martingale if

sup E[{X?] < cc.
H? will denote the class of square integrablc martingales.

NOTATION 1.2.22. IfC is some family of processes, then Cio. will denote the family

of processes which are locally in C. That is, {Y:} € Cioc if there is an increasing

sequence of stopping times {Tn} such that im Tn = oo a.s., ~nd that each stopped
n

process {YI"} = {Yianrn} is in C.

If C is any class of processes, Cp will denote the set of X € C with X, = 0 a.s.



T
DEFINITION 1.2.23. M will denote the class of uniformly integrable martingales.

We shall write L for the class ( Mjoc)o-

DEFINITION 1.2.24. Two local martingales M, N < M,,. are orthogonal if their

product MN = {M;N:} isin L.

DEFINITION 1.2.25. H?*°< C H? will denote the space of continuous square inte-
grable martingales. H*? is the subspace orthogonal H?°. Martingales in H?¢ are

said to be purely discontinuous.

THEOREM 1.2.26. For any M € H?, there is a unique decomposition of M of the

form

M = M®+ M?,

where M¢ € H>°, and M9 € H?*4.

THEOREM 1.2.27. Suppose M € L. Then there is a unique decomposition
M =M+ M*

where M€ is a continuous local martingale and M? is a totally discontinuous local

martingale.

1.3. Quadratic Variation Processes.

DEFINITION 1.3.1. Suppose M € H?. Then the predictable quadratic variation
of M, denoted by (M, M), is the unique predictable increasing process in At given

by the Doob-Meyer decomposition of the supermartingale

Xe = EMZ, | Fe] — M}



PROPOSITION 1.3.2. M? — (M, M), is a martingale, and (M, M), = MZ.

NOTATION 1.3.3. For any process {X.} having left limits, write

A.Y: = .Xg - 4Yt_.
DEFINITION 1.3.4. For M € H?, define

[M, M}, = (M°, M), + > AMZ.

s<t

[M, M}, is called the optional quadratic variation of M.

DEFINITION 1.3.5. Suppose M, N € H?. Define

(M, N) = %((M + N, M + N) — (M, M) — (N, N}).

DEFINITION 1.3.6. Suppose M,N € H?. Define

[M,N], = (M, N), + > _ AM,AN,.

s<t
ProrosITION 1.3.7. MN — (M, N) is a martingale, and My Ng = (M, N)o.

PROPOSITION 1.3.8. MN — [M, N] is a martingale, and MyNy = [M,N}], =

AMoANg.

PROPOSITION 1.3.9. If M is a continuous local martingale, then M € H?

loc*

DEFINITION 1.3.10. Suppose M € H}_.. So there is an increasing sequence of

stopping times {Tn} such that lim Tn = oo a.s., and M(n) € H?, where
n

M(n), = MI™.



From Theorem 1.2.26,
M(n) = M(n)° + M(n)?

is unique. f Tn < T'm, then M(n); = M(m)§, and M(n)¢ = M(m)¢ for t < Tn(w).

Since the predictable quadratic variation process is unique, so
(M(n), M(n)), = (M(m), M(m)); fort < Tn(w).

We can, therefore, define the predictable quadratic variation process of M €

HZ . as the unique process (M, M) € Ajf, such that

lcc
(M7 M);rn = (M(n)v M(n))t-

Similarly, the optional quadratic variation process of M € H2 _ is the process

(M, M] € At such that

loc

(M, M]{" = (M(n)°, M(n))e + D AM(n) .

s<tATn
PROPOSITION 1.3.11. Let M € £ and M = M+ M? as in Theorem 1.2.27. Then

the optional quadratic variation of M is the increasing process

[M, M) = (M°, M), + > AM?.

s<t

If M,N € L, define

[M,N]e = (M°,N°)¢ + > AM,AN,.
s<t
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1.4. Stochastic Integrals with Respect to Martingales.

DEFINITION 1.4.1. Let A be the collection of those processes (H;) having the

property that there exists a sequence of real numbers
O=to<t; <---<tph <.

limt, T oo, and a sequence of random variables {Hi(w)}{2, such that H; is Fy,-

measurable, sup || H;{lo < o0, and
3

Ho(w) if t = 0
H,(w) = {

H,(w) if te (t,',‘t,'_',.l].

DEFINITION 1.4.2. For X & HZ2, set
IXlir = E[X3]"/?
oo
1Xl=>_27"(IX]la A D).
n=1

DEFINITION 1.4.3. For M € H?, let L*(M) denote the class of predictable pro-
cesses {H,;} such that for every T > 0,
T
(W = E[ [ H24(04,00).] < oo
0

For H € L*(M), set

17 =D 27" (IH I3 A ).

n=1

LEMMA 1.4.4. A is dense in L?(M) with respect to the metric || - ||37.

DEFINITION 1.4.5. For H € A of the form

Hy= Hol(s=0y(t) + D Hil(e; 1;,.)(t)

=0
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define

t n—1

/ H,dMg = ZHi(Mti+1 - Mt.‘)
0 1=0
+Hn(M¢—A/It") fOI'tn Ststn+l, n=1,2,.
Then
t
(/ H,dM,) € H?
0 t>0

and

Using this isometry, H € A — / H,dM, € H? is extended to H € L*(M) —

/ H,dM, € H>. / H,dM, is called the stochastic integral of H € L*(M) with

respect to M € H?2.

PROPOSITION 1.4.6. IfM,N € H?, H € L3(M), K € L*(N), then fort > s > 0,

/ H.dM, / K,dN, | 7,] / H,K,d(M,N), | 7).

DEFINITION 1.4.7. Suppose M € HE_. Let L (M) be the class of predictable
processes {H:} such that there exists a sequence of stopping times {on} such that

on T o0 a.s., and
TAon
E[/ H2d(M, M),] < oo
0
forevery T >0 andn =1,2,...

DEFINITION 1.4.8. Suppose M € Hi_, H € L% (M). Then we may choose a

sequence of stopping times {o,} such that g, T 0o 2.5., M°" € H2, and

E| / N o, M),] < oo
1]



forevery T >0 andn=1,2,....

Hence for H = HI{1<,,} and M(n) = M°", we can define / H}dM(n),,
0

and for m < n,
t tACTm
/ HMdM(m), = / H™dM(n),.
0 0
Thus there exists a unique process / H,dM, such that
0
tAon t
/ Hde,=/ HldM((n),, n=12,...
0 0
and
/ H,dM, € HE,..
0

/ H,dM, is called the stochastic integral of H € L2 _(M) with respect to M €
0

loc

2
Hloc .

1.3. Semi-martingale and the Differentiation Rule.

DEFINITION 1.5.1. An adapted process {X;:}:>o is a semi-martingale if it has a

decomposition of the form
X =Xo+ M+ A,
where M € £ and A € V. Write
X¢=M°.
Then X°¢ is called the continuous martingale part of X.

DEFINITION 1.5.2. Suppose X = Xy + M + A is a semi-martingale, and that H

is a predictable, locally bounded process. Define

t t t
/ H,dX, = HoX,+ / H,dM, + f H,dA,.
0 0 0
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DEFINITION 1.5.3. Suppose X is a semi-martingale. Then the optional quadratic

variation of X is the process

[X, X]e = (X, X°), + > AXZ.
<t

IfY is a second semi-martingale, define

[X,Y]=(X°,Y) + > AX,AY,.

<t
THEOREM 1.5.4. Suppose X is a semi-martingale and F a twice continuously
differentiable function. Then F(X) is a semi-martingale, and
t 1 t
F(X:) = F(Xo) + / F/(X,-)dX, + 3 / F'(X,)d(X°, X°),
0 0

+ Y (F(X,) - F(X,-) — F'(X,-)AX,).

0<s<t
PROPOSITION 1.5.5. If X and Y are semi-martingales, then the product XY is a

semi-martingale, and

XYoo= | X,_dVi+ | Yi_dX,+[X,Y).
]o.g] 10,1]



Chapter 2
INTRODUCTION TO INTEGRATION BY PARTS:

THE APPROACHES OF BISMUT AND NORRIS

Before describing Bismut’s approach we first present the simple situation of a
transformed Brownian motion, as described by Williams [8].

Let {B; : t € [0,1]} be a one-dimensional canonical Brownian motion defined
on (C[0,1], 4, (A.), P) starting at 0. For u, 2 bounded predictable process, and for
€ € IR, define a new measure Q¢ on (C|[0, 1], A) by

dQ*
dP

— €

A, =M

t t
= exp {EA usdBs — %62/ ugds}. (2.1)
0

Then from the Girsanov’s Theorem, the process

ot
Bf =B, - : j;’ u,ds
0

is a Brownian motion under @Q° (see [3]).

Let g be a strongly differentiable function on C[0, 1]. Thus for fixed y € CJ0, 1],
there exists a bounded linear functional, denoted by dg¥, called the Fréchet deriva-
tive of g at y, defined on C[0, 1], and with values in IR, such that

9(y + 2) — g(y) = dg?(2) + o(||2[)),
where |jz|]| = sup |2(¢)|. By the Riesz Represeniation Theorem, there is a signed
measure p¥ on [J, 1] which satisfies
1
dg*(2) = [ thupan).

14
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Suppose, furthermore, that ¢ is uniformly Lipschitz. Then from the above

discussion, we have
Elg(B)] = E? [¢(B*)]

= E[nfg(B. —¢ /0 | uds]. (2.2)

where E?° denotes that the expectation is taken with respect to Q°. Differentiating

(2.2) with respect to € and then putting € = 0, we obtain

E’[g(B)/ol usst] —E[ng(/o. u,ds)] =0,

so that

E[g(B) /: u,dB,]

E[/O1 [ uodspuf (dt))]
1

E[/; usuf(s,l]ds]. (2.3)

The above integration by parts formula is related to the martingale representa-

tion for Brownian functionals as follows: first we have the martingale representation:

rl
9(B) = E[g(B)] + ji0 7sdBs (2.4)

for some predictable process v,. Then

E[g(B) fol u,dB,] = E[/ol usdB, /01 7,43,]

EL/: '7,u,ds] . (2.5)

I

Now let C; be the predictable projection of #2(s,1]. Then

C; = E[pl(s,1]| A,] ae.
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Therefore,

E[u,,uf(s, 1]} = E[E[us#f(sa 1] | A,]]
= E[u,C%]. (2.6)

Hence from (2.3), (2.5) and (2.6), we obtain the relation

E[/l 7,u,d3] = E[/l c;u,ds]. (2.7)
0 0

Since (2.7) holds for any bounded predictable process u,, and since v, and C;

are predictable, we have the explicit martingale representation due to Clark [4]

¥s = Elug (5,11 | As]
or
9(B) = E[g(B)] + /01 Elug(s,1] | A,)dB,. (2.8)
We will now consider a more general diffusion following Bismut [2]. Let Q
denote the space C(IR*;IR™) of continuous functions defined on IR* with values
in R™. If w € C(R*; R™), w; = (w},...,w™) denotes the trajectory of w. Let
F: be the right continuous, complete o-field generated by o{w, : s < t}. Suppose
P is the Brownian measure on  with P(wy =0) = 1.
Let Xo,X1,. .., Xm be a family of m+1 vector fields defined on IR? with values

in IR4, which are C*, bounded with bouncied differentials of all orders.

Consider the stochastic differential equation
dz = Xo(z)dt + Xi(z) - dw*

z(0) ==z (2.9)
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where dw® denotes the Stratonovitch differential of w?, or the equivalent equation

dz = (Xo + %}" .Y,-)(:r)dt + X(z) - 6wt

o=

2(0) ==z (2.10)

where éw* is the Ito differential of w?.
For every z € IR?, (2.9) has a unique solution which is continuous a.s. (see [6]).

Moreover, we can consider the stochastic flows associated with (2.9). That is, we

consider the mapping
(w,t,z) — @(w, )

which satisfies:
(a) ¢i(w,z) is measurable in the variable w, and continuous in the variable (¢, z);
(b) For any z € IR%, ¢t — ¢,(w,z) is the essentially unique solution of (2.9)

(see [6]). Moreover, ¢¢(w, z) satisfies the following:

(i) Almost surely, for every ¢t > 0, ¢.(w,z) is a C* diffeomorphism of IR¢
onto IRY.
(i1) The differentials Eax—mﬁ,- w¢(w,z) are continuous on IR* x IR,
(iii} Forany z € R4, Z, = 565 @¢(w, z) is the unique solution of the stochastic

differential equation

08X, a

dZ = =2 (z)Zdt +

X .
—a?(:z:t)Z - dw?

Z(0)=1I. (2.11)
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1
(iv) For any z € RY, Z! = [%‘%‘ (w,:r)] is the unique solution of the

equation

X, ,0X: ..
BI (It)dt—z —a—z(lt)'dw

dz' = -2’
Z'(0) = I. (2.12)

(v) Forany T >0, R>0, 1 <p<oo, 0<}|m|< oo, the random variables

(% )7
su _— w, x)|, su w,x
ogtg’r dz™ el ) ogng Oz ( )
lzI<R |z]<R

are in L,.
The above results are proved in [3].
If L is an adapted locally integrable process with values in IR?, if z9 € IR?, and
if z; is defined by
t
Zy =29 + / L’ds,
0
then ps(w,2;) is a continuous semi-martingale given by the following generalized

differentiation rule (see [1]):

t t .
‘Pt(wa zt) =20 + / XO(‘Ps(wv Za))ds =+ / X,-(cp,(w, 23))dw;
0 0

* dps , \
+/0 . (w,z5)dz,. (2.13)

Let u = (u},...,u™) be defined on IR? with values in IR™, which is C* and
bounded, with all its derivatives of polynomial growth. Consider the stochastic

differential equation
dX! = Xo(XHdt + X (X [dw* + u'(z¢)dt]

X, = <. (2.14)
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Let z} be the unique solution to the differential equation
q

-1 .
dz® = [%&Z—t w, z* ] (Xi(pe(w, 2*))u’(ze)]de

z*(0) = z. (2.135)

Then it follews from the generalized differentiation rule (2.13) and (2.15) that
pr(w, z) is the essentially unique solution of (2.14).

If g is a bounded function defined on C([0,T}; IR?) with values in IR, which

is continuous and strongly differentiable, let dg¥ be the differential of ¢ at y for

y € C([0,T);IR?). Let u¥(t) be the finite measure on [0, 7] that appears in the

Riesz Representation of dg¥. That is, u¥(2) satisfies the relation:

T
(dg¥,z) = / (20> du¥ (1))

for z € C([0,T]; R%).

For £ € IR, let us consider the stochastic differential equation
drf = Xo(zf)dt + X (zt)(dw' + Lu’(x,)dt)
£ __
Ty = . (2.16)

From the above discussion, we know that yp(w, zf*) is the essentially unique

solution of (2.16), wherz 2% is the soluticn of the differential equation

dz®™ = [%?(w, z"‘)] - [Xi(0e(w, 29 )] eu’ (z,)dt

2'*(0) = z. (2.17)



On the other hand, let v{ be the adapted process defined by
. [t
vy = w, +/ fu(z,)ds.
0
Consider the family of exponentials Z£* defined by

, £ T 1 (T \
Zrt = - - = 5t 2.18
fr=exp{ =~ [ teuten,dv) - 5 [ leuta)Pas) (2.18)
Define a new measure Q¢ by

9"

_ ~»lu
dP lrr 27

Then by the Girsanov formula ([5]), v¢ is a Brownian motion under the measure

Q*. Hence under Q%, ¢.(w,z) is the unique solution to equation (2.16). Thus it

follows that

EP[g(¢.(w, 2!*(w)))] = EP[g(p.(w,2)) 25 (w)]. (2.19)

Here ¢ is any bounded function defined on C([0, T]; IR?) with values in IR, which
is continuous and strongly differentiable. By differentiating (2.19) with respect to £,

and then putting ¢ = 0, we obtain the integration by parts formula

E[g(p.(w,:z:)) ‘/()‘Tui(a:,)éwi]

= E[ATui(za)ds<Xa(¢s(w,z)), /[a m aai’ (w,z)[éci;ﬁz1 (w,z)]—ld#‘p'(w’r)(z’z)gll-)

We now consider the derivation of an integration by parts formula for jump

processes due to Norris ([7]).
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Let z. be the solution to the stochastic differential equation

dre = X(z¢-)dt + Y (2, y) (1 — v)(dy, dt)

zo = z € IR%. (2.21)

where p is a Poisson random measure on E %[0, o0), v is the compensator of u, and is
of the form v(dy, dt) = G(dy)dt. We will assume that £ = IR%\{0}. Furthermore,
G is a Radon measure on E and thecre is an open set E' C E and a function

g € CY{E") with

G(dy) = g(y)dy

g>0on E'.

We assume for now that the coefficients X and Y in (2.21) satisfy:
(i) X,Y(-,y)are C!, Y(z,:) is C' on E'; X(z), DX(z), Y(=,y), D,Y(z,y) are
uniformly bounded, and D,Y(z,y) is bounded on IR? x K’ for each compact
K' C E';
(ii) supp Y € IR? x K for some compact K C E.
These conditions ensure, in particular, that z, has only finitely many jumps in
any interval 0 < t < T, and is between jumps just the solution of a first order ODE.
Let v(%,y) be a predictable function defined on [0,00) x E with values in IRY.
Assume that
(1) v(t,-) is C! for each 0 < t < co; v and D,v are uniformly bounded.

(i1) supp v(-,-) € [0,00) x K’ for some compact K' C E'.
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We will use the function v(-,-) to perturb the measure p, and v is called the

perturbation.

For small h € IR, define
8" (t,y) =y + v(t,y)h.
A perturbed random measure p* is then defined by

" ate vt dy.ds) = [ [ 405,685, w))dy, ds). (2.22)
0 E 1} E

Notice that in (2.22) only the state space is perturbed, and the times at which

the jumps occur are preserved.

Set
h
det D,68(t,y) L) ¢ g
ARt y) = 9(y)
1 y ¢ K'.

Now consider the martingale X, defined by

o= [ [ Ohs,9) = 1) = v)dy.ds)
0 E

and define the family of exponentials Z} by

Zth = exp (Xt - %(Xc,xc)t) H (1 +AX,,)6~AX‘

0<s<t

= exp /0 /E log A*(s, y)u(dy, ds) — /0 /E(*h(s’y)"l)v(dy’ds)> (2.23)

Then

dZ} = Z; (AM(t,y) — 1)(p — v)(dy, ds). (2.24)
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So Z} is a martingale, E[Z}] = 1, and we may define a new probability measure

P* by

ap s = %t
We will now show that, under P*, p* has the original law of p. It suffices to

check for test function ¢ € L'(u) and for
t
up =exr>{/ / é(s, y)p"(dy, ds)}Zzh
0 E

=exp{/:A¢(s,9h(s,y))#(dy,d8)}2?

that E[U}] does not depend on h. Write
¢
Y: =exx>{/ / $(s,6" (s, ) p(dy, dS)}-
o JE

By the differentiation rule,

t t
Uk =1 +/ / Y,-dZ" +/ / zZk ay, + (Y, Z"%,.
0 E 0 E

But
t \ ~ ¢ . ) s
/o /E Zo-dY, = /o /E U,—lexp{#(s, 6" (s,9))} — 1]u(dy, ds)
Y, 2%, = Z AY,AZR
0<a<t
= /o L Ush— [exp{4‘s, eh(s, y)} — 1][1\"(3, y) — 1]u(dy, ds).
Thus

UP =1+ / /E Y,_dzh + / /E UP_[exp{d(s,6%(s,9))} — LIN*(s, y)u(dy, ds).



Hence
Ew =1+ 2 [ [ Ubfexplo(s,0%(s,u)} ~ UM (s, p)ldy, ds)]

—1+E| / /E UL lexp{6(s,6"(,1))} — LN (s, p)v(dy, ds)|

—1+ B[ [ [ U fexp{6(s,6%(s, )} = 119(6"(5,v)) det D26*(s, )dyds]
-JO E

=1+ / / E[U* Jlexp(d(s, v)) — Llg(y)dyds (2.25)
0 E

by the Jacobian formula in IR®. Since (2.25) determines E[U}*] uniquely, therefore,

in particular, E[U}*] does not depend on h.

Next, let us consider the perturbed process X defined by
dX¢ = X (X7 )dt + Y (XP,y)(p" — v)(dy,dt) (2:26)
g =< € IR,d.

It follows that the law of X} under P* does not depend on h, so for all differ-

entiable function f € L2(P), we have
E(f(z0)] = B*f(X{)]

= E[f(X})Z}). (2.27)

By differentiating (2.27) with respect to h, and putting 2 = 0, we then obtain

the integration by parts formula

BDf)Dz + Blf(e) [ [ LW o)y dn] =0 (228
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Chapter 3

INTEGRATION BY PARTS FOR POISSON PROCESSES

3.1. Introduction.

As described in Chapter 2, Bismut obtains an integration by parts formula
for a diffusion by considering a small perturbation of the trajectories and then
compensating for this by using a Girsanov change of measure (see also {1]). A
Poisson process is a counting process, and all jumps are of unit size. Consequently,
a perturbation of the trajectories of the kind considered by Bismut does not make
sense. Instead we consider below a Girsanov change of measure which alters the rate
of the Poisson process by a small amount. This is then compensated by considering
a time change of the process under the new measure. An identity involving the
perturbation pa-ameter ¢ is obtained, and the integration by parts formula follows
by differentiating with respect to € and putting ¢ = 0. The case where the function
depends only on finitely many jumps is discussed first, and the general case, for a
functional of the Poisson process over the time interval [0, 1}, is then deduced.

There is a close relation between integration by parts formulae and martingale
representation results. It is well known that any uniformly integrable martingale on
the sigma fields generated by a Poisson process can be represented as a stochastic
integral with respect to the associated martingale. The integrand can be obtained

by considering one jump at a time (though the precise form given in equation

1. A version of this chapter has been submitted for publication. Robert J. Elliott

and Allanus H. Tsoi.

26
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(3.2.12) does not appear to be in the literature). What is interesting is that the
integration by parts method gives an alternative expression for this integrand, which
does involve a derivative of the functional of the process. The equality of these two
expressions is verified in the appendix when the functional depends on finitely many
jump times. This expression for the integrand is similar to that obtained by Clark [2]

for functionals of Brownian motion.

3.2. Preliminaries and Martingale Representation.

DEFINITION 3.2.1. Let N = (N:, t > 0) be a purely discontinuous, adapted, in-
creasing process on a filtered probability space (2, F,(F:), P), all of whose jumps

are equal to 1. Let T1,T3,...,T, ... be the jump times of N. Then N is a Poisson

process if the random variables Ty, T, — T1,...,T, — Tp—1,..., are exponentially
distributed with parameter 1, and are independent of Fo,Fr,y-.-yFTp_ys-.. T€-
spectively.

The following is the characterization of a Poisson process due to P. Levy (see

for example [3]).

PROPOSITION 3.2.2. Suppose N is a counting process, as above and {F;, t > 0}

ig its right continuous, complete filtration. Then N is a Poisson process if both

Q: = Ny — t and Q? — t are {F:} martingales.

The following martingale representation result is well known, but the explicit

form (3.2.12) does not appear to be in the literature.
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Let IV be a Poisson process on (2, F, (Ft), P) with jump times Ty,...,Th,...

We shall write Tp = 0. Let G(T,...,Th,...) be an integrable function of T}, .

.... Consider the martingale M defined by:
M, := E[G(T,...,Tn,.-.) | Fdl-

For n > 1, write

£ (Tp) = My, — Mz, _,

= E|G | Fr,] - E[G | Fr,_,]-

Then for each n > 1 and for t > T,—;, the process:
M = E[e"~Y(T,) | 7]
= MT,,At - MT,.-1At

is an (JF;) martingale starting at time T}, ;.

ooy T,

(3.2.1)

—
&«
§\j
V]

S

(3.2.3)

THEOREM 3.2.3. There exists a predictable process {gs, s > 0} such that the

martingale M defined by (3.2.1) has the representation:

¢
M, = E[G] + / 9sdQ,
0

where Q¢ = N, — t.

Moreover, for Ty < s < Ty,

gs = gn—-l(s)

=" 1(s) + " (uw)e " du.

]Tn—l :3]

(3.2.4)

(3.2.5)
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Proof. Since for each n > 1, the process {AIt(")} defined by (3.2.3) is a

martingale starting at time 7,_;, we can use the method given in [3] to obtain the

representation:

where

and

Mt(n) = Mr,at — M1, _ At

= / g" Y (s)dgi™t > Tal,
]Tn—ltt]

a0~ =Ly, — (tAT) — Toy)

) =T+ [ e wer v
]Tn—lpa]

Now for t > Ty, (3.2.6) and (3.2.7) give:

My ae — M, _

Certainly, M, —

M, — M,

(3.2.6)

(3.2.7)

(3.2.8)

AL = / g (s)dI>T, — / g™ s)d(s ATy — Tr1)
]Tn—lyt] ] n—l’t]

Th
= " (Ty) — / " (s)ds.
Tn—l

Mo= 3 (Mgp,at— Mr,_,a). Hence for T,_; <t < T,,

1<n<oo

= > (Mp —Mzg_)+ (M, - Mg,_,)
1<i<n—1

1<i<n—1 Y1Ti-1,Ti] 1Tn-1,4

n—1

= g,--l(m_(”i /T T g"(s)ds + /T 9" s)ds).

=1 i=1
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Letting g, = g™~ 1(s) for T,y < s < Ty, for Th_; <t < T,

t t
M, — My = / gsdN, — / g,ds
0 0

t
=/mmr
0

a
Remarks 3.2.4. (i) By definition,
P YS)=E[G| T, Tn1,Tn = 8] — E[G | Fr,_,]- (3.2.9)
(ii) The representation for M can also be written as
o0 ThAt
M, = E[G] + Z/ g" " 1(s)dQ,,
n=1 n—1At
so that letting ¢t — oo, we get:
oo Th
G(T1,-.,Tn,...) = E[G] + Z/ g" " (s)dQ,. (3.2.10)
n=1YTn-1

(iii) If H is a function which depends on a finite number of the jump times

T,...,Ty, a similar proof gives:
n T; )
H(Ty,...,T,) = E[f] + Z/ g "1(s)dQ, (3.2.11)
i=1 YTi-1
where the ¢*, i =0,1,...,n — 1, are given by (3.2.8), and
(s) = E[H(Ty,...,T)|Th,...,Ti_q, Ts =s] — E{H(Ty,...,Tn) | Fr,_,)-

The following gives another expression for the g™.



31

PROPOSITION 3.2.5. The ¢™ which appear in (3.2.8) can be expressed as:

9" M) =EG|T1,...,Tac1, Tn=t]— e ElIr, .G | Fr._,]. (3.2.12)

Proof. By (3.2.8),

gt () = M) + et/ EG|Ty,...,Tn-1, Tn =uje *du
]Tn—lltj
- e'/ E[G| Fr,_,Je *du
]Tﬂ-lit]
= *71(t) + et~ Tn2 / E{G|Ti,...,Tay, Tn = ule " Tr-1)dy
1Ta-1,1]
— E[G | Fr,_,Je'(e7 Tt — ™)
= E[G lTl7"'7Tn—17 Tn = t]
+ et~ T / EG|T1,... T, Tn = u]e“(“—T"‘l)du
}Tn—lrt]

— e E[G | Fro_,] (3.2.13)

Bt

E[G | Fr,_,]=E[E[G | Fr,} | Fr,_,]
= El(Ir,>t + I1,<)E[G | Fr,) | F1._,]
= E{I1,5.E(G | Fr,] | F1,_,]
+/1[T e L

(3.2.14)

Hence from (3.2.13) and (3.2.14), we get (3.2.12). g
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Remarks 3.2.6. (i) For a function H(7},...,Ts) the ¢’ which appearin (3.2.11)

can be expressed as:

g "Nty = EH(Ty,...,T) | Th, ..., Ticy, Ti =t

- ez_T"‘lE[IT,->tH(T1’ vy Tn) | Frisy ) (3.2.15)

(i) The integrands in the reprecentations of functionals of the form

G(T1a1,T3A1,...) are given by the same expression (3.2.12).

3.3. Time Change of a Poisson Process.
As in Section 3.2, let N be a Poisson process on (2, F,(F:), P). Throughout
the rest of this chapter we let {u;, t > 0} be a real predictable process satisfying:
(i) {uy, t = 0} is positive and a.s. bounded, |u;| < B a.s. say.
(ii) There exists a bounded interval, say, [0, b], such that u,(w) = 0 if s ¢ [0, 8], a.s.

For € > 0, consider the martingale:

t
X :=/ euydQs
0

L4
= > eu,AN,—/ cuyds. (3.3.1)
0<s<t 0

Define the family of exponentials

Af = exp(Xe — (X5, X)) [ 1+ 8X.)em2%:

0<s<Lt

= H (1 +ecu,HN,)exp (— /-teuads)- (3.3.2)

0<s<Lt
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Then {Af, t > 0} satisfies the equation:

o
Af=14 / u_dX,

Jo
4
=1+ / Af_cu,dQ, (3.3.3)
0
and {A$, ¢ > 0} is a martingale.
LEMMA 3.3.1. {A{, t > 0} is a uniformly integrable martingale. Hence AL exists

and a new probability measure P® can be defined by

dpP¢
dP

— AE
= AL_.

Proof. It suffices to show that the martingale {A$, ¢t > 0} is square integrable.
Recall u vanishes outside the interval [0, 8] and |us| < B a.s. By (3.3.3) and

1td’s rule,

t
(AD* =1 +2/0 AS_dAS + ) (Al_eu,AN,)?

0<s<Lt
t t t
= 1+2/ A‘_dA§+/(A§_)252u§dQ,+/(A‘_)zszufds.
0 0 0
For 0 <t <5,
t
(A =1+ [ Bl(ALYeullds
)
4
<1 +€2B2/ E[(A%)?]ds.
0
So by Gronwall’s inequality,
E[(A$)?] < exp(e?B?t)

< exp(e?2B?b) 0<t<b.
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And A = A{ for t > b. Hence the martingale {Af, t > 0} is square integrable.

A%, > 0 a.s. and E[A%)] = 1 so we can define a new probability measure P¢ by

putting
dP* .
= A, (3.3.4)
Then the process {Q}} defined by
t
Qf := N, — / (1 + eu,)ds (3.3.5)
0

is an (F;) martingale under P¢ (see {4]).

Now define
Pe(t) == / t(l + €u,)ds. (3.3.6)
0
Let ¥.(t) = ¢71(¢). Then 9 (¢.(t)) =t so
t
1
= — ds. (3.3.7
velt) /o T+ cuge 3:3.0)

LEMMA 3.3.2. Let Ff = Fy.(t)- Then the process {N{, t > 0} defined by:
N¢ := Ny, (1) (3.3.8)
is a Poisson process on (Q, F,(F%), P*¢).

Proof. Since Qf = N — ¢.(t) is an (F;) martingale under P¢, so Ny, () —tis

an (F¢) martingale under P¢. Let Y7 = Ny, (1) — t. By It&’s rule,
(Ye)? —2/ Y2 dY?s + [Ye,Ye),

t
=2 / Y dY: + D (ANys)
0

<t

t
= 2/ Y:—dY: + N,,p‘(t)-
0
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Hence (Y)? — ¢ is also an (Ff) martingale under P°. Therefore, using Levy’'s

characterization {N§, t > 0} is Poisson.

3.4. Integration by Parts.

Suppose G is a function of the first n jump times T3,...,7, of a Poisson
process N. Since ¢.(t) = 7 !(t), if T; is the i-th jump time of {N,}, then ¢.(T}) is
the ¢-th jump time of the process {/Ny, (;)}. Changing the rate of the point process
by a Girsanev transformation, and then changing the time scale of the process, we

have the following result:

THEOREM 3.4.1. Let G(T1,...,T,) be bounded with bounded first partial deriva-

tives. Then

E[(/omu,dQ,)G(Tl,...,Tn)] = —E[zn:%G(Tl,...,Tn)/oTi uyds]. (3.4.1)

i=1
Proof. By the results in Section 3.3, because Ny, (1) is a Poisson process under

P¢ with jump times ¢.(T};); consequently
E[G(Tla ceey Tn)] = EE[G(‘ZSC(TI)’ SRR ¢€(Tﬂ))]

= E[ALG(e(T1), ..., #e(Th))] (3.4.2)

where E¢[ ] denotes that expectation is taken with respect to P*. Differentiating
(3.4.2) with respect to €, and then setting ¢ = 0, we get:

(A%, 5 G(6e(T)s., ¢e(T)).cs]

+E[(A%)_ GGT), o pe(Tad)ioca] =0 (343)
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From (3.3.3) and the definition of AL,

dAZ, /°° _
= sd a-
ds l¢=0 0 “ Q

Noting the definition of ¢., (3.4.3) becomes (3.4.1) and the proof is complete.

Remark 3.4.2. Consider a function H of the form H(T; A 1,...,7, A 1)
where H is bounded and has bounded first derivatives. Applying Theorem 3.4.1 to

G(Th,...,To)=H(Th1 Al,...,T;, A1) and noting that

o o
- G(Tl,...,Tn) = 52-

o H(TyAL,...,Ta AD)In<,

we have the following:

COROLLARY 3.4.3. If H(Ty A1,...,T, A1) is bounded and has bounded first

derivatives, then
1
E[(/O usdQ,)H(Tl A1,...,T,,/\1)]
—~ 0 T " dsI 4.4
:—E[; E:H(Tl/\l,.., n/\l)‘/0 u,Sf[“.Sl]. (3.)

Remark 3.4.4. Recall the martingale representation (3.2.11):
n T; .
G(Th,...,Ta) = E[G]+ 3 / g"1(s)dQ, (3.4.5)
i=1 YTi-1

or

Th
G(Ty,...,T.) = E[G] + /0 0:dQ,s, (3.4.6)
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where

gs = gi—l(s) for Tic1<s<T;.

If we substitute (3.4.6) into the left hand side of (3.4.1), we get

E[(/oxu,dQs) (E[G]+/OT" 9sdQs )]

- BlG)B| /O " wdQ.] + B /o ~ wdQ, /0 " 6,4Q.]
E[/OT gsanE[/(;oo u,dQ, | 7r,]]
= [ " g.da, [ waal]

= E[/OT" u,g.ds| = E[jﬁoou,gsds] (3.4.7)

where g, = 0 for s > T,,.

Also, if we consider the measure y defined by

W)=Y 26, ..., Tyon(an,

=1

Then the right hand side of (3.4.1) can be written

"E[éi:; a—zZG(TI,...,Tn) /OT u,ds]

- —E:/ooo/Otuads,u(dt)]

- o o0
~-FE / / I0$a$t<oouad3l“(dt)}
-Jo Jo
- o0
/ uls, oo)u,ds]

- Jo
- co R aG

=—F / It>s=—(T1,...,Ty)u.ds|. 3.4.8
¥ ;E=1 Ti> Bt,-( 1 ) ] ( )

fl
i
&
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Let C, = ) I, 2,%%(1"1, ...y Ty). Then there exists a predictable projection
i=1 :
C* of C, such that for each s,

C; = E[Cs | Fs—] a.s.
Also for any predictable process {u,, s > 0},

Elu,C,] = E[usE|[C;s | Fs-]]

= Elu,C3]. (3.4.9)

Let H be the family of subsets of [0,00) X 2 of the form {0} x Fy and (s,t] x F,
where Fy € Fg and F € F, for s < t. Recall that the predictable o-field is
generated by H. Taking u = Ijg)xF, Or u = I(;,qxF, then u satisfies the hypothesis

in Section 3.3, so (3.4.7), (3.4.8) and (3.4.9) hold for these u. Also because of (3.4.9),

on comparing (3.4.7) and (3.4.8), we have

E[/w usgsds] = —E[/w u,c;ds]
0 0

holds for all u which are indicators of sets in 7. Sizice H generates the predictable

o-field and the processes ¢ and C* are predictable, therefore we have proved the

following result:

PROPOSITION 3.4.5.
z oG
gy = —E[§ Inza g (Thy - Ta) | F _] a.s. (3.4.10)
i=1 "‘
Now if we recall (3.2.11)

n T: A} ]
H(Ti A1L,...,Tn A1) = E[H] + Z/ ¢=1(5)dQ,
= /T (3.4.11)

or
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ThAl
H(T, Al,...,T,,/\l)=E'[H]+/ gsdQ, (3.4.12)
0
where g, = g‘_l(s) for ;1 A1<s<T;AL

An argument similar to the above shows that

= —-E[ZI,<T q—(:r1 AlL,...,Ta A1) | F _] a.s. (3.4.13)

i=1

The form of g given in Section 3.2 and that given in (3.4.13) are at first sight rather
different. A direct proof of their equality is sketched in the Appendix. Next we

have the following integration by parts formula:

THEOREM 3.4.6. Suppose G = G(Ty1 A1,...,T, A l,...) is a bounded function

and its first partial derivatives are all bounded by a constant K > 0. Then
1
E / U, dQ, )G(Th AL, ..., Ta A1,...

[( ] wd@.)em )]

oo T:
= — ZE’L——G(TI AL ..., ThaAL...) / u,dsIT'.<1] . (3.4.149)
Lot 0 -
Proof. First note that for each M > 0, the partial sum
M M

Y _Ellnal=) P(Ni2i) <47,

=1 =1

so that by hypothesis, the right hand side of (3.4.14) is finite. For each n > 1, define
HY(Ty,...,Tu):=E[G(ThAL,..., T, AL...) | Fr,]
Then
Hn(Tl,...,Tn) = E[G(T1 A 1,...,Tn A 1,(Tn+5,,+1)/\1,...,
(Tn+sn+1 +"'+Sn+i)/\1.~'--) I*rT,.]

= ES[G(T1 A 1, e ,Tn A 1, (Tn + Sn+1) I 1,

(Tn +Sn+1 + e +Sn+i)/\ 1a--')]v (3'4'15)
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where Si = Tp — Ty—; for k > 1, and the last expectation ES in (3.4.15) is taken

only over the random variables Sn+1s--+ySn+i,--., and the Ty,...,T, are given.
From (3.4.1),
E[(/oou dQ.)H™(T,, ..., Ts)] TSE[aHn(T T )/T‘ ds]
s s yerensdn )}l = — yreerdn u
A 1 . 1 o L]
n Tn
_E[BH (Ty,...,T. )/ wods].

(3.4.16)
And from (3.4.15),

oH™

(Tl,...,Tn)=ES[5t2.G(T1Al,...,T,,/\l,(Tn+S’n+1)/\1,...)]

(e o]
3
=ES[ZW£G(T1 AL,...,Tu AL,(T, +S,,+1)A1,...)IT..9]

= [a_tiG(Tl /\1 Tn/\1,(Tn+Sn+1)/\1,...)I7‘..51 IFTn].

i=n

Hence

OH™ , Ta ]
E| ch (:rl,...,z*n)/0 uyds]

T, oo
:E[A usdsZE[%tC—f(TlAl,...,Tn/\l,...)Iﬂsli]:T,,]

i=n

by the hypotheses on {u,} and G.

Alsofor 1 <i:<n-1,

n Tl
[BH (Ty,. .. T)/ u,.,ds

E[E[a%G(TI AL ... TaAL,.. g | J-‘T,,] /OT u,ds]

T
E[—B—TG(TI AL, T A 1,...)/ usdsIT..Sl]. (3.4.18)
Ot; 0
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Letting n — oo in (3.4.16), because of (3.4.17) and (3.4.18), we obtain (3.4.14). [J

We conclude with the following theorem:

THEOREM 3.4.7. Suppose M is the right continuous martingale

l\/ft=E[G(T1Al,.-.Tn/\l,...)lj:g].

Then
t
M, = EiG] + / 0+dQs,
o
where
< 8G
gs = —E[;I,ST‘SI%(TI AL ...,TaAl,...)| F _] as. (3.4.19)

Proof. The argument is similar to that sketched above: Write

2 8
p(dt) =" 5 G AL .., Ta AL,.. ) Ir1br(db).

=1

Then the right hand side of (3.4.14) can be written as:

- B| /0 = /0 t u,dsp(dt)]
[J“’ ‘/0°° Iosagt<oousd3ﬂ(dt)]

=—E ’/ uls, coyusds|

~J0
oo OO
=—Er/ ZI3<T..<1§§(T1Al,...,TnAl,...)u,ds].
- Jo < - = atg
1==1 (3.420)

Recall the representation (3.2.10)

oo T:A1 )
G(T1Al,...,Tn/\l,...)=E{G]+Z/ ¢"1()dQ,

=1 Ti-1Al

~ E[G] + /0 ~ 44dQ,, (3.4.21)



where

gszgi—l(s) i Ti-iAN1<s<T;A1l

=0 if s _>_ 1.
Substituting (3.4.21) into the left hand side of (3.4.14) gives

B( [ i) (BG1+ [ 9.40.)] = B [ vagids]. (3.4.22)

Let

Then there is a predictable projection B* of B such that for each s,
B} = E[B, | Fs-] a.s.
Therefore, for any predictable process {u,, s = 0},
E[u,B,] = EusBj;].
An argument similar to that leading to (3.4.10) then shows that

[ZI,<T,<1——(T1A1 TaAL. )| For]  as
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3.5. Appendix.

We now give a direct proof that the integrands g obtained in sections 3.2 and 3.4

are equal.
First recall that g, = g*7!(s) for T;-1 A1 < s < T; A 1, and that g*71(s) can

be wrnitten

9N S) =EH(TIAL.. To ALy | Ty, .., Toeq, T = 8]

- es_n_lE[I3<1IT‘>3H(T1 A 1, iy Tn A 1) l T1, ‘e ,11,'_1].
(3.5.1)

Write

E[ZI,ST 3H If_]

i=1

oH

0H
% ]

= E[Lgng | fs—] + {E[IngIIng,q—— | Foz

+ E[IT1<3<T2 Is<Tz<1 Ot, | 7 _} } -

+ {E[Isgnfsgng%g | F. -] + E[IT1<35T2I35T <1Q£ | -7"3-]

+---+E[IT, 1<s<TI.«T«qgt—ﬂ Ifs—]}-*----

o OH ]

= {E[ s<Ti<15,- H lf w‘ + F[InglISST-)SI% | Foe

+E[I,<T113<T<1%-:ilfs ]+}+

+{E[ Ti- 1<s<7~.<lgtH lf_] +E[IT_1<,<T'I,<T+1<1£ |°7:-’—J

+---+ E[IT. L\ <8<T; Is<Tn<1 | F, —] } .- (3.5.2)
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It suffices to show that the general collection of terms in (3.5.2):

E[IT. 1<s<T.<lgf | F. —] + E[Ir. L <3< T Is<T.+1<1£f1 |fa-]
+ -+ E[IT, L<o<T: Is<T, <1 gi lfs—]

is equal to g'~!(s). To do this, for i + 1 < j < n — 1, we further write

OH - | J-'..,_]

E[IT._1<3<T. Li<ti< <157
E[IT. v<s<T LscTy <17 Bt (IT,.H>1 + I, <> +-
FIn, o ln, >4+ IT,,Sl) | .7-'3_.].
For g*~1(s) in (3.5.1), we decompose:
E[l,o.H |Ty,...,Ti—y, T; = s]

= E[l,ciH(IT:p,>1 + In < ITi>1 + -+ Inp <t Tipmpa>1 + -1

+IT,,S1) i Tl,' .. 7Ti—1, Ti = S].

T Ly Bllro s H | T .. Tic]

= T L E[(Lictici + In>)H | T, - T )

ea—'ri—l I3<1E[I8<T|‘SIH l T], “oe Ti—l]
e T L Ellicnca(ITip>1 + I <1171

+"' +IT','_1SIITJ'>1 + )H l Tl""')Ti—-l]'
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By a direct calculation with the aid of conditional densities and integration by
parts, it 1s straightforward to check that:
(:) Fore+1<7<n—-1, 1<m<n—j -1,

OH
E [ITi—1<SST.'I-9ST,'SII'I}+mSIIY'j+m+1>15t'—_ I fs—] =0
J

OH
E[IT;_1<35‘I}I337}§1IT,,51§T | fs—-1 = 0.
j

s [ OH | ~ |
(11) E|LI7‘;_1<357}I357}51173+1>13{; } ./-S_J corresponds to
e T Ellocnicilr,_,<ilnys1H | Th, ..., Tia).
(ii1) E:;’A-__l<,<T_.IT,,<1%I- | Fs—] corresponds to the terms
- - n

e"ﬂ‘lfs<1E[is<Ta51ITnSIH | Ty Lo and

es—T.‘-—x 3<1E[Is<ﬂ$lITu-1$1ITn>lH i T]_,. . ,Ti—l}.
(iv) Fr0<m<n-i-1,
OH

E[I:r.--1<ssT.-slfT.-+mslfT.-+m+1>13? | }‘,_]

-

corresponds to E[l,c1HIr, . <1ITiny>1 | Thye o, Ticy, Ti = 5.

(v) E[I’.I}_,<35T.~51%I%f7}+121 If_} corresponds to
e T L E(In> H | Th,...,Tim1] and
Ell,oHIz, 51 |Th,. .., Tie1, T; = 3).
(vi) E[Iﬂ_lqgﬂglfngl%tr—{ [ f,_] corresponds to
LoiEHIp, <, | Ty,...,Tiey, T: = s,

The proof is, therefore, complete. O
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Chapter 4

INTEGRATION BY PARTS FCR THE SINGLE JUMP PROCESS

4.1. Introduction.

In this chapter the concept of integration by parts is investigated in the funda-
mental situation of a stochastic process with a single random jump. When the state
space of the process is Euclidean space (or, possibly, an open, non-empty subset of
a Euclidean space) the techniques of Norris [2] can be specialized to the single jump
situation. This method, described in Section 4.2, considers a small e-perturbation
in the state space of the process. The effect of the perturbation can be removed by
a Girsanov change of measure, and the integration by parts formula is obtained by
differentiating in €.

However, for a process whose state space is a general measure space, the per-
turbation of the kind considered by Norris may not make sense. Such processes
include those with discrete state spaces, and, in particular, the process which ob-
serves a single random instant at a time 7. In the latter case the process p: = Ii>T
takes only the values 0 or 1.

For general jump processes, t..zrefore, an alternative e-perturbation in the time
direction is introduced. By differentiating a new integration by parts formula, which

involves a time derivative, is obtained. In the casz of the fundamental process p;

1. A version of this chapter has been submitted for publication. Robert J. Elliott
and Allanus H. Tsoi.
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an alternative expression for the integrand in a martingale representation result is

derived.

4.2. Integration by Parts for IR?-Valued Single Jump Processes.
Consider a single jump process with state space IR? for some d > 1, which re-
mains at its initial position z¢ until a random time T, when it jumps i0o a new random
position Z. The underlying probability space is taken as ([0, 0] x IR?, B([0, o0]) x
B(RR%),u). For t > 0, let F; be the completed o-field generated by the process up

to tim~ t. Suppose (A, A) is the Lévy system for the process (see Elliott [1]). For

A € B(IRY), let

p(t,A) = Li>rIzea (4.2.1)

B(t, A) = / As, 4) 3Lz (4.2.2)
10,tAT} Fs—

where F, = u(]t, co] x IR?). Then ¢(t, A) = p(t, A) — p(¢, A) is an Fr-martingale.
We assume that F} aind A are absolutely continuous, so that there exist functions

;s and ¢g(y) > 0 such that
dF, = fsds

A(s,dy) = g(y)dy.
Consequently,
—g(y) f& dyds ifs<T

0 if s > T.
Let v(t,y) be an IR%valued function which satisfies:

#(ds, dy) = { (4.2.3)
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(i) wv(t,-)is C! for each t > 0; v and % v(t,y) are uniformly bounded.
(if) supp v(-,-) € [0,00) x K for some compact A C IR4.

For small € € IR and 5 € L(u), define p* by:

/ / 8(5,y)p* (ds, dy) = / / 8(5,6%(s, v))p(ds, dy), (4.2.4)
0 JE 0 FE

where

6°(t,y) =y + ev(t, y).

Set
A(E, ) = 39‘;;,1;) 9(99‘((;,)1/)) (4.2.5)
and
X, = / /E (A%(s,y) — 1)g(ds, dy). (4.2.6)

Define the family {Zf, ¢ > 0} of exponentials by:

1 —
Zi = exp(Xe — 5{X*, X)) II @ +ax,)e2x-
0<s<t

= exp (/otfgzog A(s,y)dp — /0'/5(,\%3,9') - 1)d;‘5). (4.2.7)

Then Z§ satisfies:
t p
ze= [ [ 250, 9) ~ Datds, dy) (4.2.8)
o JE
and {Z§, t > 0} is a martingale with E[Zf] = 1.

Define a new probability measure ¢ by:

—=Z: on fg.
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LEMMA 4.2.1. Under u®, p® has the original law of p.

Proof. It suffices to check for test functions ¢ € L!(u) and for
t
vt =exp{ [ [ ols.0)ptds, )} 28

0o JvE

t
=exp { [ [ o(6,6%(s,vp(ds, ) } 22

0oJE

that E[Uf] does not depend on €. Let
t

Y; =exp {/ / &(s,6%(s,y))p(ds, dy)}.
0 JE

By the differentiation rule,

t t
Uf = 1+/ /Y;-de +/ /Z‘_dYs + 1Y, Z°]..
0 E 0 E

But
t t
[ [zzavi= [ [ Ui texp(ats,6%(s,5))) - Un(es, )
o JFE 0 JE
AY, = Y7 [exp{¢'(T, Gg(T’ Z))} - 1]Is=T
AZ:=Z5_[X(T,2) — 1]1,=1.
Hence,

Y, Z2°], = AYTAZTLi>T
= UZ_[exp{o(T,0°(T, 2))} — 1[A(T, Z) — 1}lexr

= /0 /EUg—[exPW(S’B‘(s,y))} ~ 1}[A(s, v) — 1]p(ds, dy).
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Hence,
t
U = 1+ Mastingale + [ [ US_lexp{9(5,6°(5, 1)} ~ UA“(s, v)p(ds, dy)
0 JE
t
= 1 + Martingale + / /Uf_[exp{d)(s,(f(s, y))} — 1]A(s, y)p(ds, dy)
0 JE

=1+ Martingale = [ [ UZ_fexp{o(s,6°(s, 1))} — 1N (s,0)9(0) L dyas.

Thus

B =1~ [ [ Ewlen(#(s,0(s,1) - 1lae(s)) 28 L2 ayas

¢
1~ [ [ BUSferp{e(s,0)} - 1law) L ayas
0 JE Fs
by the Jacobian formula. Thus E[U{] is independent of . (]
As a consequence of Lemma 4.2.1, we have
E[Z% exp{$(T., Z +eV(T, Z))}] = Elexp{(T, 2)}] (4.2.9)
which leads us to the following theorem:

THEOREM 4.2.2. Suppose G : [0,0] x IR? — 1R is positive, bounded and that its

partial derivative _B_Gétz,_zl exists and is bounded. Then

/ / ( 3 7 )+ LY ((y)) V(t, y))q(ds,dy))G(T, Z)] = —E[g%—z—) V(T,Z)].

(4.2.10)

Proof. Differentiate (4.2.9) with respect to €, then set € = 0 to obtain

B[225] _ ewls@z +ev(z, 2} _]
+E [z; . dii exp{(T, Z +eV(T, ..Z))}L:O] =0. (4.2.11)
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From (4.2.8),

d . Trodzg .
2= [ [ FEesn - v
T d
+ [0 [ ze & acwatanay.
0 E =
From the definition of A°(¢,y),
i
AE(t, 2 =1
( ’J)|€=0

and from (4.2.7),

zi | _ =1
Also,
dA‘(gz,y) = 6% o(t,y) + %% v(t, y).
Hence
2‘% z5| _ = /OT/E(-(% v(t,y) + %'T(% v(t,y))q(dt,dy)-

Thus (4.2.11) becomes
([ (& vew+ L2 o)) atat, i) exs(6(7, 2))
= —E[exp{¢(T, Z)}(-é-a;gﬁ(T, 2))V(T, Z)]. (4.2.12)

Let ¢(T,Z) = log G(T,Z). Then (4.2.12) becomes (4.2.10) and the proof is com-

plete. a
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4.3. Integration by Parts for a General Jump Process.

Consider a single jump process with values in a Lusin space (E, ). The under-
lying probability space is ([0, oo] x E, B([0,00]) x €, p). In this section we suppose
that for every ¢t > 0, F; > 0, and both F}; and A, are continuous in ¢. Furthermore,

we assume that there exists a function a(s), with a(s) > 0 for all s > 0, such that
t
Ay == / a(s)ds.
0
Let u : [0,00] x E — IR be a bounded, positive, deterministic function such that
us(y) =0 if s¢][0,8]

for some fixed b € IR. For € > 0, define

Af = /0 /};(l-i-eus(y))/\(s,dy)dAs. (4.3.1)

Consider the new measure x* which has a Lévy system (A, A®). Then (see Elliott BY))

u® <K p, and if
du*

L=,

we have
t
Le(t) = L(l + eu(y))A(2, dy)exp{ - / /eu,(y))/\(s,dy)dAs}. (4.3.2)
0 JE
Furthermore, if Lf = E[L®(t) | F,] then {L¢, t > 0} satisfies
t
L;=1+ / Lé_dM,
0

=1+ / e /; eus(¥)A(s, dy)q(ds, E), (4.3.3)



where

M, = /0 /E eus(y)A(s, dy)g(ds, E).

If Ff = p*(J¢t,00] x E), then

Ff = F, exp{ - /ot/Esu,(y))A(s,dy)dA,}. (4.3.4)

Define

Ye(t) = sup{s: Fy > F;}.
Then v¥.(t) is an increasing function of ¢, and Fi.y = Ft, ie,
15 (J¢e(t), o0] x E) = p(]t, 00} x E).
Hence if we let ¢.(t) = ¥ 1(¢), then under p®, ¢.(T) has the same distribution as

T under p. This observation leads us to the following theorem:

THEOREM 4.3.1. Let G(2,z) be a real-valued function defined on [0, oo} x E, which

is bounded and has bounded partial derivative %G(t,z). Then

B[([ [[wwi e 2) 6. 2)

= —E[ac(;’ 2 a(lT) /OT/;ut(y)/\(t,dy)atdt]. (4.3.5)

Proof. From the above discussion we have

E[G(T, Z2)] = E*[G(4.(T), 2)]

= E[L7G(¢.(T), Z)] (4.3.6)
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where E€ denotes that expectation is taken with respect to pu¢. Differentiate (4.3.6)

with respect to €, then set € = 0 to obtain

dL§ d
E[SZ| _ G(:(T),2) ) +Els = G(s(T),2)| _]=0. (a37)
From (4.3.2) and (4.3.3),
dLs T
% loco =j{ /Eu:(y)/\(t,dy)Q(dt,E)- (4.3.8)

Also,

0

0
=0 - E G(T’Z) -6_6- ¢€(T)L=0'

d
= G(#:(T), 2)|

To evaluate @(T , note that F¢ = F;. Hence
& =0 'f’c(t)

t
Fe =Fouy=F exp{ —-/0 /Eeus(y))/\(s,dy)df\a}

dFy, (1)

de  le=o F‘( - /Ot/Eus(y)f\(s,dy)dAs)- (4.3.9)

On the other hand (see Elliott [1]),

F; = exp (— Ata(s)ds)

SO

()
Fy,(t) = exp (— /; a(s)ds).

Thus

dFy. (0 d.(t) # ()
gl = o) D exp (= [ als)as)

and
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iﬁ;"—:‘l = —a) %’5@ _, Fe (4.3.10)
From (4.3.9) and (4.3.10), we obtain
do.(t) 1/
) m/() /Eus(y)/\(s,dy)a(s)ds. (4.3.11)
Now from (4.3.8) and (4.3.11), we have (4.3.3). a

4.4. Integration by Parts and Martingale Representation.
In Section 4.3, we considered a single jump process with values in 2 Lusin space.

Now suppose that at its random jump time 7', the process jumps to a fixed position

z1 € E. If we define A simply by

t
A = / (1+ eus)dA,
o

where u is just a function of the time, which is positive, bounded and vanishes
outside a bounded interval, then the method described in Section 4.3 would give us

the simpler integration by parts formula:

E[( /0 Tusdqs) G(T)] = —E[dCil(tT) a(lT) /0 Tu,a,ds] (4.4.1)

where G is a bounded function defined on [0, co] with bounded derivative. On the

other hand, if we assume E[G(T)] = 0, then G(T') has the martingale representation

(see Elliott [1]):
T
(1) = [ vida (4.4.2)
where

vs = G(s) — F;1 /(;SG(v)dFv.



If we substitute (4.4.2) into the left side of (4.4.1), we have

T

B[( [ weda) ([ 120.)] = E] [ wndta,an]
—E[/OTua‘rs %]

. pT
E[/O usfysasds]

l

= E[/ Ii<T us’ysasds] . (4.4.3)
0
Now, if we define the measure 7 by:
_dG(T) 1 p

then the right side of (4.4.1) is

-E[/°°/tu3a,dsu(dt)] =-F [/00/00[0539«” usasdsl.z(dt)]
o Jo o Jo

= —E[Awﬂ[s,w)usa,ds]

_ *dG(T) 1
=—F [/(; & a(T) Ii<r<o u,,a,ds].

(4.4.4)

A comparison between (4.4.3) and (4.4.4) leads us to the following expression

for ~:

THEOREM 4.4.1. The integrand v that appears in the martingale representation

(4.4.2) is given by:

d6(T) _1 ] . (4.4.5)

Ya = —E[ s a(T) I35T<oo | Fou
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Proof.

dG(T) 1 dG(t 1
E[ dt  o(T) ISST<°°”:‘ - / of

_ -1
Fs R dt  «aft)

- F;l/oomdc(t)
= F1 ( _ F,G(s)— /OOG(t)dFt)
=—-G(s) + FS_IJ[SG(r)dFr

0

= —7s
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Chapter 5

TIME REVERSAL OF NON-MARKOV POINT PROCESSES

5.0. Introduction.

The time reversal of stochastic processes has been investigated for some years.
One motivation comes from quantum theory, and this is discussed in the bock of
Nelson [8]. The time reversal of Markov diffusions is treated in, for example, the
papers of Elliott and Anderson [3], and Haussman and Pardoux [6]. However, the
first discussion of time reversal for a non-Markov process on Wiener space appears
in the paper by Follmer [5], in which he uses an integration-by-parts formula related
to the Malliavin calculus.

In the present chapter an analog of the Fréchet derivative is introduced for
functionals of a Poisson process. The integration-by-parts formula on Poisson space,
see Chapter 3, is formulated in terms of this “erivative and counterparts of Follmer’s
formulae are obtained.

In Section 5.1 we will discuss the time reversal of a Brownian motion introduced
by Follmer. In Section 5.2 the time reversed form of the standard Poisson process is
derived. Section 5.3 considers a point (counting) process N with Markov intensity
h(N,), so that @, = N, — /:h(N,)d.; 1s a martingale, and obtains the reverse time

decomposition of Q for t € (0,1]. Finally, in Section 5.4, the situation when h

1. A version of this chapter has been submitted for publication. Robert J. Elliott
and Allanus H. Tsoi.
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is predictable is considered using the “Fréchet” derivative and integration-by-parts

techniques mentioned above.

5.1. Time Reversal on Wiener Space.

We will now consider the time reversal of a Brownilan motion i the non-
Markovian case following Follmer [5]. Let (X,) be the coordinate proc=ss defined
on the filtered probability space (C[0,1],F,(F;), P*), where P* is the Brownian
measure, and F; is the complete o-field generated by o{X,, s < t}. We also use Fi
to denote the complete o-fiel:i generated by o{X,:¢t < s < 1}.

1

Let (b:) be an adapted process with ] b?dt < oo, F* a.s. Then by the
o 4

Girsanov transform ([1]), the process

t
H(—.”:X,-Xg——/b,ds
0

is a Brownian motion under P, where P is the measure definec by

dP ¢ 1 [t \
—_— = = s — = b2 .
2P |5, G: = exp (/; bsdX 2/0 sds)

We say that P has finite entropy with respect to the Brownian measure P* if
dP
HP|P)= E[log — -] < oo.
dsi *
Let H, be the o-field defined by
Ht = fg \vJ U(Xo).

It is known (see [7]) that the process W} defined by

l —
Wt1=Xt—X1+/ —)-(—’—3—‘—}{-—0'613
t
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1s a reverse time H,-Brownian motion under P*. If P has finite entropy with respect

to P*, it then follows that there exists an F,-adapted process (b;) such that

-—— 1 -

ng = AYg — 4¥1 - / b_,dS (51.1)

t
is a reverse time (F;)-Brownian motion under P. Notice that from (5.1.1), we have
———— —— t -~
4¥g-h - Xt = Wt—-h — IV; +/ bst
t—h

so that

- | -
b¢ = l}:ﬁ)i z E[Xg._h - Xt I fg]. (5.12)

We now recall what an L?-differentiable function is. For a bounded predictable

t
Ug=/u,d.s.
0

process (u;), put

Write
XU=X,+el,, 0<t<l.

DEFINITION. A function F € L?(P*) is called L?-differentiable if there is a mea-

surable process (@) such that, for any bounded predictable process (u.),

DF(,U) = lim E&XZ) Z F(X) _

1
. 2 -
i . [J Usp,ds in LE(P*). (5.1.3)

If F is Fréchet-differentiable on C[0, 1] with bounded derivative D F(w, dt),then
(5.1.3) holds with ¢,(w) = DF(w,[s,1]). Also, if F is L2-differentiable, then Bis-

mut’s integration by parte formula (2.3) holds for F.



62
If the drift (b;) is a bounded smooth function on C[0.1] x [0,1] with bounded
Fréchet derivative D&./-,ds), then it follows from the definition of G; that G, is

L?-differentiable; i.e.., there is a measurable process (7;) such that
1
DGy(-,U) = / Upyedt. (5.1,
0
We now want to shov/ that

1
7. GT! = b, +/ Do (-, [t,r]))dW]. (5.1.5)
t

For € > 0, put
GV = Gi(X +eU).

Then G5V satisfies

1
GV =1+ f GUby(X + U (X, + <Us).

0
Thus
1 1
DG,(-,U) = / Gsbsu,ds +/ (DGs(-,U)by + GyDb,(-,U))dX,. (5.1.6)
0 0
By the met}.- ' . variation of constants, we obtain
1 1 1
DG. - U)= Gl{/ byu,ds +/ Dby(-,U)dX, — / Db,(~,U)b,d.s}.
0 0 0
Thus

1 1
DGy, U)GT = [ bousds + [ Db U)W
[} 0

1 1,1
= / byusds + / / Db.(-,[s,7])dWlu,ds.
0 o Js (5.1.7)
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From (3.1.4), we have
1
DG(-,U)GT! = / uve Gyl dt. (5.1.8)
0
By equating (5.1.7) and (5.1.8), we obtain
1 1 1
/ u,ysGTlds = / (b, +/ Db.(-, [s, r])de)u,,ds. (5.1.9)
0 0 3
Let u, = Iji_. q(s).- Then (5.1.9) gives
t t 1
/ 7:G7lds = / (b, +/ Dbr(-,[s,r])de)ds. (5.1.10)
t—e t—e s

If we divide both sides of (5.1.10) by ¢, and then let € | 0, we obtain {5.1.5).

By using the identities (5.1.2), (5.1.5) and Bismut’s integration by parts formula

(2.3), Follmer obtains the following explicit expression for the drift b,:
5t = ‘E{bt + ag i -7?':]
where

[4 1
ay =%(W,”— /0 / Db, (-, [s,r])dWds)

+ Db, [t,r]) AW, (5.1.11)
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5.2. Time Reversal Under the Original Measure.
Consider a standard Poisson process N = {V; : 0 <t < 1} on (Q,F, P). We
take Ny = 0. Let {F;} be the right-continuous, complete filtration generated by .V.

Let GY = o{N,:t <s <1} and {G,} be the left-continuous, completion of {G?}.

THEOREM 5.2.1. Under P, N is a reverse tin:c G,-quasimartingale, and it has the

decomposition:

'N
N¢=N1 +JM(—/ -s—a dS,
t

where M is a reverse time G-martingale.

Proof. Since N is Markov, we have, for € > 0,

E[Ng_e - Ng i Gt] = E[.’Vt_c - .‘Ng I lVg]

l
I
\
3
2
o
N
—

(see [4] and [7]). Thus
/tEIE[N,_, — N, | G,]lds = O(¢).

By Stricker’s theorem [9], IV: is a reverse time G¢-quasimartingale. Considering
approximate Laplacians we see it has the decomposition
1
Ng = Nl + Mt + / a,ds (522)
t
where from (5.2.1) and (5.2.2),
1 t
a¢ = lim- / Ela, | G¢]ds
t—e

el0 €

.1 ,
= I:ﬁ)lEE[A't—e — N | Gy}
Ne
rof



5.3. Time Reversal After A Change of Measure: The Markov Case.
Consider a process h, = h(V;) which satisfies: There exist positive constants A,
K > 0 such that 0 < A < A(V;) < K for all ¢, a.s.

Define the family {A,, 0 < ¢ < 1} of exponentials:

Ae= [T (14 (A(Nuz) = 1)AN,) exp (/Ot(l — A(Nu-))du).

0<ut

Then A is an (F;)-martingale under P, and is the unique solution of the equation
t
Ay =1+ / Ay_(AR(Ny_) — 1)(dN, — du).
0.

Define a new probability measure P* by

dp*
—d—l—)— = A;.

t
Then under P*, the process H, = N, —/ h(N,_)du is an (F;)-martingale (see [2]).
0

Let B(t) = /Oth(Nu_)du so that 3 is positive and increasing in ¢t. Write
»(t) = B7(2)
N{ = Ny
Fi = Fu-
LEMMA 5.3.1. (N]) is a Poisson process under (Q, F, (F;), P?).

Proof. Since H; = N, — 3(t) is an (F;)-martingale under P?, H| = Hyu) =

Ny(ty — t is an (F;)-martingale under P*. By Ité’s rule,

t
H}? =2/ H._dH' + ANy(s)?
t A Z( w(e))

<t

t
= 2/ H,_dH, + Ny(.
0
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Hence HZ ,)—t is also an (F;)-martingale under P*. Therefore, {V{} is Poisson

by Lévy’s characterization (Theorem 12.31 in {1]). a
LEMMA 5.3.2. N is Markov under P".

Proof. Consider any ¢ € C§°(IR). For ¢t > s, b=~ Baye’s formula,

E{A(N,) | F
E[A: | F§)

EM@(Ny) | Fo] =
= E[A (V) | Fi
= E[;\:(ﬁ(zvg) I ;Vs],

because N is ... ~kov under P, where

Ao T (1 (v - 1)aN,) exp ([(1 — h(Ny))du).

s<u<t
Hence
EMg(Ne) | Fo] = EM[¢(N:) | Ny
and N is Markov under P*. a
Note that

1
Ht = H] + 1V¢ - .Nl -+ / h(N,,)ds. (5.31)
t

Thus H, is a reverse time G,;-quasimartingale unider P! if and only if N, is.
To determine the reverse time decomposition we again investigate the approximate

Laplacians, as in [3].

THEOREM 5.3.3.

1.4 . N,
o —e— N = — _1)—_—t . .3.
lim=E*[Ni—e = N¢ | Gi] = —E [h(N, 1)f0‘ R |N,] (5.3.2)
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Proof. By Lemma 5.3.2,
Eh[f\’t - ]Vt_, I Gt] = Eh[lvt et lVg_e I ANvt]-

Consider a bounded, differentiable function ¢ on IR and its restriction to Z (the
range of V). By Itd’s rule,

¢(Ne) = ¢(Ne—e) + ¢'(No=)dNg + Y ($(N,) = $(N,-) — ¢'(N,_)AN,)

t—e t—e<a<t

t

=¢(Ne—e) + | (#(Ne= +1) — (V,_))dN,.

t—c

So
S(N)(Ne — No_) = /t_ (Nae = Ni_ o )($(Noe + 1) — ¢(N,—))dN,

t
+ [ smidn s Y asan,
t—e

t—ec<s<t

t

= [ (Nee = NeC ) (SN 1) — $(N,_))dN, + /_ $(Noe + 1)dN,.

t—e

Since
t
Hi =N, - / h(N,)ds
0

t
=N, - / h(N,_)ds
o]

is a martingale under P*,

E"‘[¢(N¢)(1V¢ - N._.)]

=E" [ (Noo = Nee )Ny + 1) = (N, ))A(N,)ds]

t—e

+B"| t $(No- + 1)A(N,-)ds|. (5.3.3)

t
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Now, if |¢| < C,

2| (Nae = Nee )6V + 1) — §(N =) Jh(N,- )ds]

t—e

IA

t
ch/ EM|N,_ — No_.[Jds
t—e

g

< 2KC/:_€E" (| Vo = Moo - t_:h(Nu_)duH + E" H/::h(Nu_)dqus
< QKC/;{ [E*|Noe = N - t:h(Nu_)duIz]l/Q + Kelds

t t 1/2
< 21{0/ {E* [/ R(Nu-)du| ' + Ke}ds
t—e tl—e
t
< 2KC/ ((Ke)'/? + Ke)ds
t—e

SK’€3/2 +K"€2.
Thus from (5.3.3),

lim = E*[$(NO(N: — Ni-o)] = E(WNew + DA(Ne-)

= E*¢(N, + 1)R(N,))]. (5.3.4)

However,

E*@(Ne + 1)R(NY)] = E*[$(Nysryy + DR(Nysen))
= E*¢(Njy + 1)R(Npeoy))

= E* [EM@(Npy + 1)A(Npy) | B
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And

k o—B(t)
EM@(Njpy + DA(NGy) | 3(8)] = Z ok + 1)h(k)ﬁ@—-—

k=0

_ >, B(t)te= A ¢
= ; p(E)h(€ - 1) 7 O]

= B [$(Nj)h (Ve — 1) ﬁ"gg’ | A(t)]

= EM[g(N)R(N: — 1y e ﬂ(t) | ﬂ(t)]

Hence,
N
h _ ph e ) —t
ER$(Ne + L)(N)] = E [¢(N,)h(N, 1)f0‘ h(Nu)du]. (5.3.5)
Thus from (5.3.4) and (5.3.5),
: h ('Nt — lvt—e) _ bk _ ___JV_E____
liga E [¢(Nt)——-—z_———] = B [$(N)R(N: — 1) A du],
or
. Ni_e — N N,
lim E* [—T_ | Gt] = _Eh [h(Nt - 1)1_7121\;_)[ | N,].
O

By Theorem 5.3.3 and an argument similar to that in [3], we see that N, and
hence H, is a reverse time G¢-quasimartingale under P?, and it has the decompo-
sition

1
Ht = H1 <+ Mg + / atdt. (5.3.6)
t

Moreover, we have the followilg expression for a;:



THEOREM 5.3.4. The integrand «, that appears in (5.3.6) is given by

N
a; = h(N,) — E" (N, = 1)————— | N,|.
t ( t) [( t )foth(Nu)dullt]

Proof. From (5.3.1) and (5.3.6),

E*H._. — Hi| G = E* [/‘

t—e

ayds | Gt]

= Eh [N,_, ~ N, | G,] + Eh [/t h(N,)ds | Gt].
t—e

Thus
1 t
ay = 1:{{)1 < E ['/t‘-easds | Gt]
1
=lim = E*[N,_, — N; | G¢]| + h(IV}).
£}0 €
From Theorem 5.3.3, «; has the stated form. O

5.4. Time Reversal After a Change of Measure: The Non-Markov Case.
Suppose {N: :0 < t < 1} is a Poisson process with jump times T1 A 1,...,Th A
1,.... Let {u:} be a real predictable process satisfying;:
(1) {u:} is positive and bounded a.s.
{(ii) There exists a bounded interval, say, [0, b], such that u,(w) = 0 a.s. if s ¢ [0, ].
For € > 0, consider the family of exponentials:

Af = J] (1 +eu,0N,)exp ( - /.;teuérls).

0<s<t
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Then {A{} is an {F;}-martingale with E[A§] = 1. See io*er 3. Define a proba-

bility measure P¢ on F; by

dPs
aF =M
Set
t
(1) = / (1 4+ eu,)ds
0
and write

Ye(t) = o7 (2)

¢ 1
= / —_—ds
0 1 + Eud’c (3)
Fi = Fye(vy-
Then the process Ny = Ny, (1) is Poisson on (,F,(Ff), P*) with jump times
¢ (Th)AL,...6.(Tu)A1,.... See Chapter 3.

¢
For {u.} satisfying (i) and (ii) above, set U; = / usds. Suppose gs(w) is an

0

{Fi}-predictable function on [0,1]. Then for 0 < s <Ti A1,
ga(w) = g(s),
and in general, for T,_; A1 < s < T, A1,
gs(w) =g(8,THh AL,..., Ty A1)

Note that by setting ¢,(0,0,...) =g(s) for 0 < s < Ty A1, g,((s—T1)VO,... (s —
Tp-1) Vv 0),0,0...) for T,_; Al < s < T, Al, etc., such a g can be written in the
form

gs(w) =g,((s —T1) VO, (s—=T2) VO, ...), s € [0,1]. (5.4.1)
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Therefore, we shall consider a predictable function g of Lthis form, and further assume

that if
g = gs(t11t21-",\'a

then all the partial derivatives %%1 exist for all s, anzd there is a constant K > 0

such that

Jgs
0%

< K for ali 4, and for all s. (5.4.2)

We now define the analog of tiie Fréchet derivative for functionals of the Poisson

process.
Write
gs =gs((s — ¢ (T2 VO, ..., (s—d(Ty))VO,...).
Then
a9; - 0 \ /Ti
s = ~ (s =THVO, ..., (s=Tn rdrlT <. (5.4
Oc le=0 ;atig((s ) ' (s =Tw)V O ) 0 urdrlz <o (5.4:3)
Define
. = dg,
pldt) = — Bt I, <s61;(dt)
1==1 ¢

=iy o0 &= is the point mass at T;. Then

J : e t .
a s

o Jo
8
= [ w(lr,sDurdr
g ©0
dgs .
= - I Uyl
0 ; refice 8 | l

= A " Dgs (e [ s])undr,



*shere
Dg,(., [r, S]) = — Z Ir_<_j';<8—-:-.
Write
8
Dg,(-,U) = / Dg,(-.[r.s))u.dr.
0
Note that

t—1 T

Ogr, [

Dgr.(,U) = - Y ==
-U) 2~ 5,

updr. (5.4.4)
0

DEFINITION 5.4.1. .. process {g,} of cjze form (5.4.1) is said to be differc..tiable if
it satisfies (5.4.2) and {5.4.3) for all u satisfying (i) and (ii} above, and for all s. Ve
call Dgs(-,U) the derivative of g, in the direction U. It is cf interest to note that
this concept of differentiability of a functicn of a Poisson process is an analog of
the Fréchet derivative of a function of a continuous process. See Follmer [5], where

similar formulae arise using the Fréchet derivative.

Now suppose {k,} is a bounded, {F}}-predictable process of the form given by
(5.4.1), which satisfies:
(a) his ditterentiable in the sense of Definition 5.4.1.
(b) le?. exists, and there exists a constant A > 0 such that I%‘;’-l < A for all s,
a.s.
(c) There are constants B > 0, C > 0 such that 0 < B < h, < C for all s, a.s.
It is easy to check that h, = h,((s —T1) VO, (s —~T,)V 0,...) is predictable.

Consider the family of exponentials:

G: = H (14 (hs —1)AN,)exp (/t(l——hs)ds) (5.4.5)

0<s<t

(11 ht) exp (/ﬁtu - h,)ds).

0<T; <t
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Then {G.} is a martingale with E{G,] = 1. Since for each fixed w, if Th—1(w) <
t < Ta(w), G.is a function of (t,T1(w),...,Th—1(w)), we see as above that G can

be considered to be of the form
Gg =Gt((t—T1)VO, ceey (t—Tn)\/O, )

THEOREM 5.4.2. (G.) defined in (5.4.5) is differentiable in the sense of Defini-

tion 5.4.1.

Moreover,

1
DG, 0IGT = [ vuiGrlds
0
1 1 6}13 — ahs 1 ,
- [ G 3Ty <o G+ Dol )] o dNasedr
1 p1
— / / Dh (- Ir sDdsu.dr a.s. (5.4.6)
0 r
where
Vs = —-iI3<T-<1iG1((1 —-T)VO,..., (1—=Ta)VO, ...).
i=1 - ati ) ’ ’ ’

Proof. The first identity follows from the definition and properties of the

derivative. To determine DG(-,U) we calculate the derivative of G; at ¢ = 0.

Tite

e = ho((s — ¢e(TL))VO,...,(s = ${T)) VO,...),



=]

(]

S0
/ t
G; = H (1 + (k5 = 1)AN,, (s)) exp \/ (1 - h;)ds)
0<s<t 0
= ¢¢(Tu)) exp (/ (1 - h )dS
0<¢,(T)<t
t
=( I romy)exr (/ (1 = h)ds).
0STi<we(t) 0
Then
log G§ = ZIT <p () logh, (1) + / (1 — h$)ds. (5.4.7)

=1

Differentiate (5.4.7) with respect to €, and then set £ = 0, to see

DG U)——Z{IT.Q 2 | Cuar g (/T'“rd"—/on wdr)| 7o}

T;

t
- / Dhe(-,U)ds a.s.
0

From (5.4.4) this is

> i—1 T
Z {IT»<t [ahT /0 updr + ; %’f— /0 urdr + Dhr, (-, U)] %}

=1

t
_/ Dh,(-,U)ds
4]
¢ Oh, [* o Oh, R
_/0 ["é"s'/o urdr+21{n<s}57/ urdr + Dhy(, U))| ——dN
j=1 J
t
— / Dh,(-, U)ds. (5.4.8)
1)

(Formally, the differentiation of the indicator functions IT, <y, (¢) introduces Dirac

measures 6(¢ — T;). However, P(T; = t) = 0 and we later will take expectations, so



these can be ignored.) From (5.4.8).

L)

’ = oh, [°
-1 __ ) s , , Yits -
DGI("U)GI “’/0’ L s '/0 drdr—r-ZI{Tj<3} atjA urds
=1
1 3
+/ Dh,(-,{r, s])ur dr}—d'\f / / Dhy(-, [r, s])urdrds
0 Jo

dhs 1 = Oh, 1
= / To<r<s<a ———u, + 1 T <s} A Uro—
/ ’ A, /—~1 <) B¢, 7T

2
j= N

+ Dhy(-, [, s])uro—
-1/
_/01 [ Dhy(-,[r, s])dsurdr,

which is (5.4.6). O

™ }drdN' j / In<r<s<1 Dhy(-, [r, s])urdrds

on,
TS

+ Dhy(-, [, s])] El-dNaurdr

Consider the family of exponentials defined by (5.4.5) and define a new prob-

ability measure P* on F; by:

dP*
P

= G,.

Then (see [2]) the process

t
Zt = .’Vt - / hsds
0

t
Q: — /Z (hs — 1)ds, (5.4.9)

where Q; = N, — t, is an (F,)-martingale under P*. We want to show that Z, is a

reverse time G,-quasimartingale under P*, having the decomposition

1
Zt = Z] -+ A’It -+ / aads. (54.10)
t



From (5.4.9), we can write

1
Zy= 2, +Q¢—Q1+/ (hs — 1)ds.
¢

lim X E L (h —1)ds | G,] =E*hy — 1] Gy

£|l0 &£
Hence, to show that Z; has the decomposition given by (5.4.10), it again suffices to

consider approximate Laplacians as in [3] and show that

hm— EMNQi-c — Q¢ | G]

exists.

THEOREM 5.4.3.

lelﬁ)l; Eh[Ot‘ Qi-c |Gt]——E"{Qt+at |G, — E [bt | Gi (5.4.11)
where
t A1
= s Ok, _ 1
ag '/0 J{ L or i<r} 6tj + Dhr( ’ [S,T‘])] hrdN"ds
t 1
— / / Dh,—(-, [S,T])rv
0 s
and

<r}§,’j + Dh,(-, [ty )] -d

-]

f‘

1
- / Dho(-,[t,r])dr.
t
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Proof. First we note that if H((1 - Ty)VvO0,...,(1 —Tn)V0,...) is a square

integrable functional and its first partial derivatives are all bounded by a constant,

then, using a similar argument as in Chapter 3, we have the integration by parts

formula

1
E[(/ u,dQ,)H] = ~E[LH(-,U)j (5.4.12)
0 d
where DH(-,U) is the derivative in direction U of Definition 5.4.1.

A direct consequence is the product rule
E[FH(/O1 u,dQ,)] = —E[FDH(-,U)] — E(HDF(-,U)). (5.4.13)
Let H = G; be the Girsanov deunsity, then (5.4.13) becomes
E" [F /01 u,dQ,] = —EMDF(-,U)] — EMFGT'DG\(-, U)]. (5.4.14)

Now fix t5 € (0,1). Write Ti(?o) for the k-th jump time of N greater than t,.
Suppose F is a bounded and G:, measurable function. Furthermore, we suppose

that F is a differentiable function (in the seanse of Definition 5.4.1) of the form
F((l - Tl(tO)) \ 0’ s 7(1 - Tk(tO)) vVo,... )s

and that the derivatives of F are bounded. Then the measure DF(-,dt) is concen-

trated on [#g, 1] and (5.4.14) holds for such an F. Take u, = I[¢;—.,]($) in (5.4.14).

Yor such an F

to
DF(-,U) = DF(-,[r,1])dr
to—e
¢o
- DF(',[to,I])dT
to'—e

= €DF(', [tO’ 1])'



Therefore, we have from (5.4.14)
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E*(Qty — Quo-c)F] = — :E"DF (-, [to,1])]
to OO"
+ E*|FGr? / ZIKT(I%% ds].
to—¢ =1 : (5.4.15)
From (5.4.13),

Lim g (Qts = Qto—e)F] = — EMNDF(-, [to,1))]

o =]
oG
+ E* [Fal_l ZIto<T-<l L)
Using (5.4.15) again with

s o (5.4.16)
= tg = t, we have
—E*DF(-[t,1])] = l ERQ.F]— ——Eh FG" ZI < 6G1 ds] (5.4.17)
[RAS} n t s<T; < 8t Sz
Now let u, = Ijp 4(s) in Theorem 5.4.2 to obtain

/ (ZI,<T<1 96 )Gl lds

_ / / Oh

} ,I{T <r} o a1, + Dh(-, s, r])} E—dN ds

1
-j/ / DR, (-, [s, ])drds.
0 3
Hence (5.4.17) becomes

_Eh[DF<'= [t’ 1] ]

ﬂ\b—-*

EMQ.F)+ = E"[a,F] (5.4.18)
Now take u, = Ij;_. ¢(s) in Theorem 5.4.2 to obtain

_[‘ (iI,ST;<laGl>G lds
€ =1

t

_ ~Oh,

ok,
) [ ZI{T:“}at + Dh,(+[s, r])] o dNrds

_ /t: / " Dho([s r])drds.  (5.4.19)
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Multiply both sides of (5.4.19) by F', and then take expectations
h aG’I 1 h ¢ 3 .
-E F (}:I,<T,<1 )G1 ds ] =E [F byds|. (5.4.20)
t—e iy t—e

Divide both sides of (5.4.20) by ¢, and then let € | 0, to obtain

—E* [F(}oi.r,gp_.ﬂaGl)G1 ] E"b,F). (5.4.21)
i=1

Combining (5.4.16), (5.4.18) and (5.4.21), we have

lim = E*((Qc ~ Qe—)F] = - E*{(ac + Q)F] — E*[b,F).

|0 £
Thus we have proved (5.4.11). O
A: a consequence of Theorem 5.4.3, Z; is a reverse time G¢-quasimartingale

naving the deccmposition given by (5.4.10). It foll~vs immediately that the inte-

giard a, in {5.4.10) is given by

1 .
g = EPbe + hy — 1| Ge] - _t.,;- Qe Gl
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