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ABSTRACT

After a review of general field theory including the construction of various Green's
functions and the quantisation of the scalar field, we move on to the external field
problem. An overview of some of the work done on the external field problem is
then presented with an emphasis given to the problems associated with defining
the vacuum relevant to the quantised field. In the third chapter we demonstrate
how one can define a vacuum fr.r a scalar field coupled to an external source which
vanishes rapidly in any direction. This vacuum is then shown to be a more ap-
propriate vacuum for the interacting field than the vacuum for the in-coming free
field, as the energy of the interacting field is lower in this vacuum. Chapter «+ is
a review of the gravitational external field problem which is the area in which one
can hope to understand things such as Hawking radiation. It is this discovery by
Hawking in 1975 which has caused many people to try and develop a more tkorough

understanding of the external field problem in general.
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CHAPTER ONE

INTRODUCTION TO FIELD THEORY

1.1 Introduction

In this chapter we introduce all the basic tools required to understand Chapters 2
and 3. We start with an introduction to the classical real scalar field and with this
ficld develop most of the analytic tools required, including the Green’s functions
associated with the Klein Gordon field and how these can be used to find various
c-number solutions to the fcld equations. We also discuss how these functions can
be used to construct the Klein Gordon propagator which describes how the field

evolves.

We then deal with the quantised scalar field and introduce some operators,
which allow us to shift both the operators that make up the ficld and the field itself

by o e-number . These operators will be of use to us in chapters two and three.

The last section of this chapter is an explanation as to why one wants to
study the external field problem, and explains some of the unanswered questions

involved with the external field problem.

1.2 Classical Scalar Field

\What follows is a basic introduction to the classical Klein Gordon field and the
associated Green's functions. This introduction is basically the same as that found
i any standard introductory field theory text such as Roman [1] or Bjorken and

Drell [2]. The real Klein Gordon field is characterised by the Lagrangian density

L(x)= %auo(.z:)a“cb(.r) - %m%z(r) + p(z)d(zx). (1.1)



Here, o(r) is the field we will be investigating and p(r)o(r) is the interaction part
of the Lagrangian. Therefore if p(r) = 0 the field is said to be a free ticld, e, free
of any interaction. Applying the Euler-Lagrange equation we tind the cquation of

motion for this field to be

(G +m*o(r) = plr), (1.2)
where 3 is the d'Alambertian operator detined as.

0=9,0"=9; - V" (1.3)

By investigating the Green's functions of (1.2) we can find solutions to the classical
ficld equation (1.2). These solutions will be of use later when we are dealing with

a quantised field interacting with a c-number source.

To look at the Green's functions G(r —y) of (1.2) we want to look at solutions
of
(0; + m*)G(r — y) = &8(r — y). (1.4)

For now we will not concern ourselves with the solution to the homogencons part
of this equation but will just note that this part of the solution contains terms like
¢** and e~'*, where ko = wy = Vm? + k2, so that these are what the free fields
contain. We can immediately see that the particular solution to this equation can

be written as

1 etk(z-v) }
g(r—y)=(2”)4/m2_k2d4k. (1.3)

We note that the integrand has two poles involved with the kq, integration so we
must specify how our contour will go around these poles. We can do this in one of
two ways. When we are integrating we can alter our contour either above or below
each pole or we can move our poles by an infinitesimal amount up or down in the
complex plane. We choose the second approach here as it allows us to write different

Green's functions explicitly and we don’t have to carry around any labels with the

(V)



different Green’s functions about Low to deform the contour of integration for each
one. The two simplest and most useful Green's functions are the retarded Green'’s
function, A.(r), and the advanced Green's function A,(x). These Green's functions
have hoth their poles moved in the same direction. moved up. as in the casc of the

retarded Green's function, or down, as in the case of the advanced Green's function.

Now having these Green's functions at our disposal we can construct explicit

solutions of the particular part of (1.2) i.e
= [dG(z - voty). (16)

where we must ensure that the proper Green's function is used so the correct bound-

ary conditions are recovered for the field ¢(z).

We now write out these different functions explicitly and then investigate
some properties of these Green's functions and find out why they are appropriately
called the advanced and retarded Green'’s functions. The retarded Green's function
as mentioned carlier has both of its poles displaced in the positive ¢ direction. We

therefore want the poles of the retarded Green's function to be at
ko = wi + ¢ and ko = —wy + i€ (1.7)

We can write the retarded Green’s function now as

Az = 5 )4/44 k2+zeko (1.8)

We can now evaluate (1.8) to see some of the properties of the retarded Green's

function. If we evaluate (1.8) for zo < 0 we realise that the integral is calculated
most casily by closing the contour in the lower half plane when doing the k, in-
tegraiion so that the infinite semicircle doesn’t contribute to the integrai. In the
retarded Green's function the poles have both been displaced in positive imaginary
direction. This means that there are no poles enclosed in the contour so the integral

is zero; therefore

Afz)=0 when 79 < 0. (1.9)



We now note that as (1.8) is obtained from (1.5) simply through a deformation of
the contour, and (1.5) is a covariant statement then (1.9) is not only true for ry < 0
but is true in general for % < 0, i.e. any spacelike argument. This means that the
rctarded Green's function is zero for any space like vector & i.c. outside the light
cone. We also n:te that that in doing the integral in (1.8) we didn’t impose any
conditions on x so the integral would also be zero if r* > 0.ry < 0. Therefore the

retarded Green's function is only nonzero in the future light cone,

A (z)#0 only if >0 and ry>0. (1.10)

Similarly for the advanced Green's function we can deform the contour of
integration by displacing both poles below the real axis in the complex plane by

just changing the sign of the “shift” of the poles, thus

1 eikr
Aa(‘r):(?_w-);./qum"—kz—ieko' (1.11)

We can also integiate this expression as we did for the retarded Green's function

and find that the advanced Green’s function only has support in the past light cone,
N, (z)#0 only if >0 and 1 < 0. (1.12)

We can therefore now write a causal solution to (1.2) using the retarded Green'’s
function A,(z) ,

8(z) = [ dyA(z - y)oly), (1.13)

As of yet we haven't mentioned the homogeneous part of the solution to (1.2),
except to say that it contains terms like e*** and e~'** where kg = wi. Although we
leave writing these fields out explicitly until we talk about the quantised version of

these fields we can now introduce two free fields ¢;x(z) and @,,:(x), which satisfy

(D + mz)éin.out(x) =0. (114)



If we now impose a restriction on p(z) so that the problem at hand can be regarded
as a scattering problem we can then make physical sense of the incoming and out-
going free ficlds as being the fields before there is any interaction and after there
is any interaction respectively. A sufficient condition on p(z) is that it vanishes
rapidly in any space-time direction. Recalling the propertiec of the retarded and

advanced Gicen's functions we can now write the complete solution of ¢(r) as
8(z) = dunl) + [ Ay (e = Yo(y) (1.15)

or

8(z) = doul2) + [ dyBa(z = y)o(y). (1.16)
We can immediately see that these solutions have the correct boundary conditions
in the remote past and future as the retarded Green’s function has no support in
the remote past and conversely the advanced Green's function has no support in

the remote future, i.e.

lim8(z) = pour(2) (1.17)

At this time we can also introduce another useful function, the Schwinger

function which is denoted simply by A(z) and is defined as
A(z) = () — A (2). (1.18)

We can see that this function also allows us to write a simple expression relating

the in and out-fields just introduced. With the help of (1.15) and (1.16) we can

now write

boul2) = din(2) = [ YA = yly) (1.29)

Recalling our definitions of the retarded and advanced Green'’s functions we

can see that the Schwinger function is just

1 eik:
AE) = o f dh——r, (1.20)



where the integral is taker. on a closed path which run’s clockwise and encloses both

poles.

The Sctwinger function will be very useful to us later so we now discuss
this function in more detail. So far we haven't written out the Schwinger function
explicitly so that it would be useful for calculations. It can be shown that with the
usc of the function

€(ko) = 0(ko) — 6(—ko), (1.21)

where 8(ko) is the standard step function, that we can write the Schwinger function
as

-1

(27)1 /qu‘(ko)b'(kz —m?)e*s, (1.22)

where we have used the identity

AN(z) =

6(k* = m?) = ;:;{5(ko—wk)+5(ko +wi )} (1.23)

At this point we can also take note of some properties of the Schwinger function.
We can see directly from how we defined the Schwinger function that it only has
support in the light cone and also that it is a solution to the homogencous Klein

Gordon equation,
(O+mdHA(zx) = 0 (1.24)
A(z) = 0 for 22 <0,
We can also show, by calculating the Schwinger function from (1.22) that
G A ()] ;=0 = 6(x). (1.25)

This last property of the Schwinger function can be written in proper covariant
form as

| do*@)0u0: -y =1 i yeo (1.26)
where ¢ is sorae spacelike surface. We can now demonstrate the most important

use of the Schwinger function. It can be used as the Klein Gordon propagator for



the free Klein Gordon field. This can be understood best as the famous Cauchy
initial valuc problem. In this problem we would like to be able to determine the
value of a field at a later time, or more formally, at a later space-time point, if we
know the value of the field and its derivatives on an initial spacelike surface. The

following holds true basically by construction,
4) = [ do*(@)A( - 2) 8, (=), (1.27)

where

a(z) 3, b(z) = a(2)8,b(z) — a(z) B, H(<) (1.28)
We can immediately sce that this is the proper solution. Firstly we can see that ¢(y)
is a solution to the free Klein Gordon equation because when we act on the right
side of (1.27) the only y variable is in the Schwinger function which is a solution
to the free Klein Gordon equation. Secondly we can see that due to (1.26) both
the value of the field ¢(z) and its derivative 0,¢(z) recover their proper values on
the original spacelike surface. We also know that this solution is causal when we
consider how the Schwinger function was ccastructed originally from the advanced

and retarded Green’s functions.

The only thing that we haven’t done that would be of use to us later is to
write out the solution to (1.2) explicitly, this we will save until the next section when
we will deal with the field constructed with creation and annihilation operators. To
recover the classical field from the one that is going to be introduced in the next
section one just has to interpret the expansion coefficients as c-numbers, instead of

as q-numbers as they will be introduced.

1.3 The quantised Klein Gordon Field

We now want to consider the Klein Gordon field as a g-number instead of a c-

number as we have done so far. For simplicity we will illustrate the quantisation



procedure for the free Klein Gordon field. We first note that with our Lagrangian

(1.1), with p(z) = 0, we can construct a Hamiltonian,

H(z) = w(z)6ho ~ L(x) (1.29)
where
__0L(=») -
w(r) = wa(aoasu)) = o(r). (1.30)

This Hamiltonian written in terms of the field ¢(z) and its derivatives is
1 | .
H(z) = 5 {m*¢(2)6(z) + Vé(2) - Vo(z) + d(2)6(2)} . (1.31)

As we now have a Hamiltonian and operators, ¢(r) and 7(z), we now must cnsure
that the Heisenberg equations of motion are satisfied and are consistent with the

field equation for free fields (1.14). The Heisenberg equations for the operators are
Gom(z) = —i[n(z), H(z)] (1.32)

and

Bod(z) = —i [d(z), H(x)]. (1.33)

We find that we can construct a consistent algebra by assuming the equal time

commutation relations,

[6(2), T(Y)]lzgmy, = 6(x~y) (1.34)
[6(2), 6V lzomyy = [T(2)s 7 (W));,=y, = O-

These commutation relations can be seen to agree in appearance with the normal
quantum mechanical commutation relation between position and momentum, they
also allow us to write the total Hamiltonian in a way that allows us to introduce
an obvious particle interpretation. This will be done shortly; first we will write out
the field explicitly and then we will rewrite the Hamiltonian to illustrate this point.

By performing a Fourier transform of the field and applying equation (1.14) we can



sce that the field must look like

binlz) = =
" v2(2r)3

/ %:2 {aim(p)e " + al,(p)e?*}. (1.35)

with
Do = Wp. (136)
As the only parts of this field that are not c-numbers are the a;,(p) and a!,(p), we

can calculate the comrnutation relations of these operators

[a(p).a'(q)] = wpé(p~—q) (1.37)
[a(p),a(q)] = [a'(p),al(q)] =0.

It is now instructive to rewrite our Hamiltonian in terms of these operators

a(p) and a'(p), the total Hamiltonian H is,
H= / PeH(z) (1.38)
writing this in terms of the a(p) and a'(p) we find,
dp 1
H = [ZEuz (aplal(p) +a'(p)a(p) (1.39)
o 12
d3p w
= [S2o (d@ate) + 7).
It is at this point that we are led to a particle interpretation of the field in terms of
the operators a(p) and a!(p). We first note that the total Hamiltonian H commutes
with what we will call the number operator af(p)a(p). We can show that this
operator has eigenstates of the usual Fock space built on the cyclic vacuum |0)

defined by
a(p)|0) =0 Vp. (1.40)

We now notice that our total Hamiltonian diverges even if we look at its

expectation value in the vacuum due to the factor of % multiplying the frequency



wp. As this is unacceptable we must somehow eliminate this divergence. This is
normally done in one of two ways. We can either subtract out the divergence so that
the vacuum expectation value is now zero or we can do something called norinal
order the Hamiltonian. What we mean by normal ordering is that any product of
annihilation and creation operators, a(p) and af(p) respectively, arc ordered with
the annihilation operator to the right of the creation operator, we sce that this also
eliminates the divergence problem with the vacuum. We can now write the normal
ordered Hamiltonian as

H = —w—Bwp a'(p)a(p). (1.41)

We now introduce two operators. One of these operators shifts the creation
and annihilation operators by a given c-number function and its complex conjugate
respectively and the other shifts the value of the field by a time independent term.
To illustrate how these operators work we first introduce some relationships which
have operators as part of the exponential. The following relationships can be proven

by expanding the exponentials as a series.

If [A,B]=c a c—number, (1.42)
then
eteB = eBedet (1.43)
[4,€%] = ce® (1.44)
B = eAeBemic, (1.45)

We can now construct the first operator we mentioned earlier, the unitary operator
S,
d’p .
S =ezp (— / — {h(p)afu(p) —h (p)a.-n(p)}) (1.46)
P

using the relationships just introduced it is straightforward to show that

S7'ain(P)S = ain(p) + h(P) (1.47)

10



and
S-'al,(p)S = al.(p) + A*(p). (1.48)

Using this S operator we can now easily express the out-field introduced earlier in

terms of the in-field using (1.19),

S in(2)S = Pous(T) (1.49)
with
h(p) = _;/fl /dyoﬁ(yo,p)e‘w“"’, (1.50)

where j(yo, P) is the three dimensional Fourier transform of the source p(y). We

also see that this operator can be used to get the out-vacuum from the in-vacuum,

these vacuums are defined as,
ain(p)10im) =0 VY p and aou(p)(Oou) =0 V p. (1.51)
With these definitions it follows that
571 0in) = [Ooue) - (1.52)

We also introduce a second operator U(zo) which shifts the «ld by a time

independent term. With

Uzo) = ¢~ Jipmsz, TVCWIBinlv) (1.53)

U= (20)din(z)U(z0) = din(z) + C(x). (1.54)

For this relationship we have used the commutation relations (1.35).

1.4 The external field problem

The problem of a quantum field coupled to an externally prescribed source has been

studied almost since the dawn of quantum field theory. Although originally most

11



of the work in this area was done involving the Dirac field coupled to an external
electromagnetic field, recently people have started looking into this problem in
the context of quantum fields in curved spacetime. In this area there are still
many unanswered questions, as can been seen in Fulling’s recent book “Aspects of

quantum field theory in curved spacetime” [3].

As more work is done with the more complicated problem of quantum fields
in curved space it has become clear that even the problem of quantum fields coupled
to simpler external sources is not well understood. As was pointed out as recently
as 1978 [4] “the present status of quantum field theory in external fields must be
regarded as unsatisfactory”. H. Rumpf et al. [4] mention that the main ditficulty
of the external field theory approach is describing what the physical states of the
quantised field are. For us to approach this problem the most natural thing to
try and do is to try and define a relevant vacuum for these states to be built upon,
however this problem was not really addressed until the 70’s [5] and there is still not
overwhelming agreement as to how this should be done. Even in what many people
refer to as the most up to date textbook on quantum field theory (6] where there is
an entire chapter dealing with quantum fields interacting with external ficlds there
is no mention of this vacuum which we would like to have, and very little written
on anything but the asymptotic fields, before and after the interaction has taken
place. Rumpf et al. in the paper mentioned earlier [4] go on to mention that the
problems inherent in the external field problem may not attract a lot of attention as
the external field problem is an approximation to the fully quantised theory which
at least in the case of electromagnetism, already exists to a considerable extent.
However as was mentioned in Ruijsenaars Ph.D. thesis [7] for the most part the
theory for interacting quantised fields are for various reasons purely formal from a
mathematical point of view. The main reason for this mathematical problem is that
the field equations are nonlinear. Even for the case of quantum electrodynamics,

the fully quantised theory is not as yet engraved in stone, let alone for the case

12



of coupling to a general quantised field. We can hope and expect, however, to
learn a lot about what might happen in fully quantised theories by looking at what
happens in the case of fields coupled to externally prescribed sources. In a first
approximation we can also treat these external sources as classical. We are forced
to treat the gravitational field as classical since we don't as yet have a quantum

mechanical description of gravitation.

We should expect many reasonable results from the treatment of external
sources, both classical and quantised, in the same way that the Schrédinger equation

gave many recasonable results for situations where it was a good approximation.

13



CHAPTER TWO

A REVIEW OF THE EXTERNAL FIELD PROBLEM

2.1 Introduction

Work done in the past on the external field problem can be grouped with relative
ease into one of three groups. The earliest work in this area was done trying to couple
a quantised field to a classical time independent source. This area of research goes
back to 1940 8] and for this reason we will first give an overview of some of the

work done in this area.

The other two areas of research share one common aspect in that they both
involve time dependence of some sort. The first area of research in this second group
involves looking at only the fields and states before and after the interaction has
taken place. Therefore in this area the object of most interest is the S matrix or S
operator which connects the two asymptotically free regions, normally referred to

as the in and out regions.

The third area of interest is work done with a time dependent interaction
where the fields of interest are not the asymptotically free fields but the fields that
are interacting with the time dependent source. For these fields the d;vision of
the field into positive and negative frequency parts is not casily done in a causal
manner, and thus the definition of the vacuum in terms of the positive frequency
part of the field is also not easily obtained. This third area of research is the one
that has received the least amount of attention and also is the area of interest in

chapter 3.

In this chapter we only concern ourselves with spin 0 and % fields there are

enough problems with these fields that are not well understood without going to

14



higher spin-ficlds. For some of the problems associated with higher spin-fields one

can refer to [10] where problems such as noncausal propagation are investigated.

2.2 Time independent external fields

As was mentioned earlier the external field problem for time independent external
ficlds was studied as early as 1940 [8],[9]. There is cae major advantage and one

disadvantage in looking at the time independent problem.

The major advantage as mentioned by Fulling [11] is that in the time inde-
pendent theory the division of the fields into positive and negative frequency parts
is done with relative case, this does not however mean that this division is unique.
In the case of time dependent problems there is largely still no agreement as to
how this division should be done. Unfortunately even in Fulling's case the notion
of positive frequency is still not unique as it can be different for different coordinate
systems. This disadvantage for the time dependent model will be discussed later in

this chapter and is also the topic of interest in chapter 3.

The disadvantage to this time independent model is on some levels much
more fundamental. Because in this model our interaction is time independent there
are no asymptotically free fields and therefore no natural Fock spaces to build the
theory on. As was pointed out by Labonté [12] there exists the possibility of differ-
ent quantisations leading to different Fock-Hilbert spaces. These quantisations were
only shown lead to the same Fock-Hilbert space for certain special potentials. In
particular in the case of a Dirac field minimally coupled to an electromagnetic po-
tential Moses and Friedrichs [21] [22] were only able to show that this problem didn't
arise for certain scalar potentials without any magnetic field present. This problem
with the magnetic field unfortunately appears in many places when people try to

couple the Dirac field to an electromagnetic potential whether time independent or
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dependent.

As was mentioned earlier the consensus in the literature is that the frst
work on the external field problem was done in 1940 in two papers by H. Suyder,
J. Weinberg and L.I. Schiff, (8] , [9]. In these two papers the authors discuss some
problems that they encounter studying a charged scalar ficld minimally coupled to
an electrostatic field. In these papers the authors study the fields associated with

the Lagrangian density

L(z) = {0, —ieV(x)} ¥*(z) {0, + ieV(x)} ¥(z) - V¥*(z) - C¥{r) - Y (r)W(r)
(2.1)

where we have set the mass m = 1.

When one applies the usual quantisation procedure to this Lagrargian one
demands that the Heisenberg equations are satisfied so the time dependence for any
function made up of the field, it’s complex conjugate, and their respective conjugate

momenta is determined from

(9,0 . )(z) = [f(P, 9", 7.77)(x), H|. {

1o
)

When we then construct the charge density,
p(r) = 1e(7*(z)¥(z) - m(z)¥(z)) (2.3)
we find that the total charge ¢ is a constant of the motion i.e.
ig=[q, H]=0. (2.4)

Because of this we should be able to diagonalize both ¢ and H simultaneously
and thus have states of definite charge and energy. Unfortunately because of our
electrostatic term V in the Lagrangian one also finds this “extra” term in our
conjugate momenta expressions. Because of this the normal quantisation procedure

is quite difficult as one normally imposes commutation relations between the fields
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and their conjugate momenta. For this reason the authors perform the quantisation
in a different manner and then later show that the two procedures are equivalent.

To perform this different quantisation the authors first calculate the field equations

from the Lagrangian density (2.1),
(8 +ieV(x))? ¥(z) = V2¥(z) — (). (2.5)

They now perform a time Fourier transform on this field equation and find that the

time Fourier transformed fields satisfy,
(Ex — eV(x))’ Te(x) = Ti(x) — V?Wi(x) (2.6)
where
U(x.t) = / dE e~ R0, (x) (2.7)

If we now use Green's theorem and assume that the fields go to zero at infinity
we find that the ¥,’'s are not orthogonal to one another but satisfy a modified

orthogonality relation of the form
/ BzUs(x) (Ex + Ei — 2eV) U((X) = exbu (2.8)

where €, = £1. The meaning of ¢ can be seen if we calculate the total charge and

Hamiltonian, for these we find
g = Zialaiey (2.9)

and
H = SialayErer. (2.10)
It is now evident that the division of the ¥, into states of positive and negative ¢

correspond to states with positive and negative charge.

To calculate the commutation relations for the a; and al we calculate the
time derivative of these operators in two different ways and require that both meth-

ods give the same result. The first way one can calculate this time derivative is to
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notice that one can write out any ¥(x.t) as a scrics expansion over the ¥y,
\IJ(x,t) =3, (lk\I/k(X). (2.11)

The only time dependence on the right hand side of this equation must come from

the a; therefore we thus must have
ay = —iEvay. {2.12)

If one now also calculates the time derivative using the Hamiltonian and the Heisen-

berg equations (2.4) one finds that one must have,

Su

[ak, a]] = (2.13)

If we use these commutation relations to calculate the commutation relations be-
tween the fields and their conjugate momenta we find that we must impose condi-
tions involving the ¢’s as well as the fields if these commutation relations are to
agree with the usual equal time commutation relations imposed on the fields. This
quantisation procedure is then shown to be equivalent to the usual one by construct-
ing the evolution of the fields in terms of Green’s functions. It is then found that
for these evolution equztions to reproduce the required boundary conditions on the
field and it’s derivative the same conditions must be imposed on the fields and the
€x’s. We can see that from (2.13) that if ¢, is +1 then a; is the usual annihilation
operator and a}: is the usual creation operator. If however ¢ is —1 then their roles
are reversed. At this point the authors then find a canonical transformation to
get from the old field quantities to some new field quantities such that the charge
operator and Hamiltonian will be in diagonal form. In the second paper on basi-
cally the same subject the authors point out that it is not possible to perform these
canonical transformations if any of the frequencies E; go complex. In this situation
our Hamiltonian is no longer self-adjoint and one must find a self-adjoint extension
before finding the appropriate transformations. Unfortunately it is shown that this

can occur even for the simple model of a sufficiently deep well.
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This same problem involving strong interactions is later discussed by Schroer
et al. [18] where they show that for a time independent interaction, if the interaction
is strong enough, one must cither introduce an indefinite metric or do without
a vacuum state. The type of interaction that the authors look at involves the
interaction of the charged scalar field with an external scalar interaction V(x) such

that the relevant field equation is
(82 - V2 + m(m - V(x))) A(z) =0. (2.14)

The authors then look for the stationary solutions to this field equation in the usual
way by expressing the field as a Fourier transform. Unfortunately they find that
the only way in which they can construct a Fock space consistently is to introduc.

an indefinite metric. What one finds is that for the imaginary energy modes the

commutation relations are

[a,b!) =i (2.15)

and ali other commutators are zero. From this point the only way of then con-

structing a Fock space consistently is to introduce an indefinite metric such that,

al0) =5]0) = 0

a'0) = |a) b'10) = |b)
(ala) = (b]b) = 0
(a]b) = 1 (2.16)

With this construction it is then possible to show that both the energy and charge
are conserved although the number operators for the imaginary energy modes must

be different from the positive energy ones which are of the usual form, the number
operators for the imaginary energy states are,

N, = iald

N,, = —ibla,. (2.17)
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For the positive energy operators the usual Fock representation is the only
possibility. However, for the imaginary energy operators there is an alternative to
the representation requiring an indefinite metric as briefly outlined above. Schroer
et al. show that if one introduces different canonical variables one can have a Fock-
Space representation for the imaginary energy modes with a positive definite metric,
however part of the Hamiltonian describes repulsive oscillators. For this reason it
is therefore impossible to have a particle like interpretation for these modes as they
are without a vacuum state, i.e. no lowest energy state exists. Schroer et al. also
mention that these are the only two possible quantisations for the Hamiltonian at

hand because the continuous part of the Hamiltonian has the form
[ &k wn(Nalk) + Ny(k)) (2.18)

and therefore the Hamiltonian uniquely selects the Fock representation of the a(k)
and b(k) so that the Hamiltonian makes sense as a self adjoint operator in the
representation space. We are therefore left with one of two choices, abandon the
usual structure of quantum theory and introduce an indefinite metric, or introduce

a positive definite metric and do without a vacuum state.

As mentioned earlier much attention has been given to the areas of rescarch
involving external fields due to the interest in quantum field theory in curved space-
time. Many of the problems one encounters when trying to interpret the physics
of this problem were discussed or at least alluded to in a paper by S.A. Fulling
in 1973 [11]. In this paper Fulling discusses some of the ambiguities which arise
when one tries to construct a quantum field theory in a background metric which
is not Minkowskian. It is Fulling’s goal to follow the most common strategy and to
choose, if possible, a coordinate system where the field equations are separable and
to then quantise the resulting normal mode structure in close analogy to what is
normally done in the standard quantisation of a free field in Minkowski spacetime.

Fulling also proposes a test for any quantisation prescription which supposedly is
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applicable to static metrics. The quantisation prescription must yield physically
reasonable results if it is applied to a flat spacetime equipped with an unusual co-
ordinate system. It is hoped that this test may be used to eliminate some of the

ambiguities by eliminating incorrect theories on physical grounds.

To demonstrate this quantisation procedure Fulling quantises a scalar field
on a Riemannian manifold of dimension n which is equipped with a metric tensor

Guv- It is assumed that there is a coordinate system in which the metric is static

i.c.
009, =0 (2.19)

and

Goj =0 for j#0 (2.20)
The generalisation of the Klein Gordon equation in this situation is
(Qc + m?)¢(z) = 0 (2.21)
where
0. = |g|"8,(l9|59"*8,) and g = det {g,..} . (2.22)

When the metric is static the field equation (2.21) can be solved by separation of

the time variable,
o(t,x) = ¥;(x)e*Er, (2.23)

With this substitution one obtains the eigenvalue equation,
19172 90001(l91* 9% B ¥ ;(x)) + goom?¥;(x) = K'¥;(x) = E7%;(x). (2.24)

Fulling then shows that K is hermitian and its expectation values are positive which
implies that all the E? are non-negative. For convenience it is assumed that the
numbers in the spectrum can be classified as either being part of a point spectrum

0y Or a continuous spectrum o, and that a complete set of eigenfunctions exists such
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that the Hilbert space can be expanded as

F) = [ du()F()e () (2.25)

where [du(j) means to sum over the point spectrum and to integrate over the -
continuous spectrum. We can now write the general solution to the ficld equation
(2.21) as

du(j . o
é(t,x) = -(%J))% [aj‘Il,-(x)e"E" + a}\Il,(x)e""”] . (2.26)
~&j

At this point one can normal order the operators and in analogy with normal free

field theory in flat spacetime this eliminates the problem of an infinite c-number

contribution to the vacuum energy.

As this procedure should be applicable to any static metric Fulling then
applies this to the two dimensional Rindler space wedge. With this procedure
Fulling is able to find the eigenfunctions of the appropriate field equation and writes

these eigenfunctions in terms of the Rindler coordinates v and z,

¥;(z) = 77 [2jsinh(n})]? Kiy(ms2),

—_
5\3
™
-1

~—

where the A;; are the modified Bessel functions of imaginary order. One is now
able to write out an expansion of the field in terms of creation and annihilation
operators

o(v,z) = /dj(%ﬁwj(z)(e-‘ivaj +eval). (2.28)
Problems now arise if one writes out the positive frequency part of this field, in terms
of Rindler coordinates, and compares this quantity to the positive frequency part of
the free field quantised in terms of cartesian coordinates in Minkowski space. If one
relates these two different fields one finds that .he positive frequency part of one of
these fields has to be expressed in terms of both the positive frequency and negative
frequency parts of the other. Because of this fact the two quantisations are different.

The subtleties of the problem at hand can partially be illustrated by studying the
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problem of generalising to a Riemannian manifold the Green'’s functions associated
with the Klein Gordon equation. Although some of these functions are determined
solely by the manifold and restrictions on their supports, some are not. The positive

frequency part of the Schwinger function can be defined as

A*(z,y) = (0] $(z)¢(v) [0}, (2.29)

however this definition obviously requires a unique vacuum or a notion of positive
frequency. Unfortunately we have seen that this is not a trivial object to find even
in the time independent problem. Of course the problem is even more difficult with
the time dependent interaction as has been mentioned before. Fulling goes on to
point out that the two quantisations giving different vacuums is reminiscent of a
Casimir type effect, as the quantisation in Rindler space can be interpreted as that
appropriate to the physical situation of an impenetrable wall located on the light
cone. He then reminds us of this point by showing that the vacuum state and the
energy density of a free field in a box with periodic boundary conditions differ from

those of a region of the same size in infinite space.

Perhaps the most comprehensive discussion on the external field theory prob-
lem was given in 1975 by G. Labonté [12], although most of the paper deals with
the time dependent model he does mention some interesting results for the time
independent problem. Labonté finds that “exactly as in free field theory: i) the
field is always a well defined operator valued distribution on the same Fock-Hilbert
space as determined at one time. ii) There exists a self adjoint, non-negative defi-
nite, energy operator, the eigenvalues of which are simply the sums of the energies
of all the individual energy quanta contained in the system. iii) At all times, the
system can be completely described in terms of these and none of these are ever
created nor annihilated ”. Labonté also investigates the case where the potential is
a good c-number scattering potential. The scattering matrix is obtained with the

LSZ formalism [20] and it is found that any (anti)particle bound in the potential
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remains bound and any (anti)particle with enough energy scatters individually in
the potential. As this is for the time independent potential there is no creation
or annihilation of (anti)particles only a distortion of the individual wave functions.
Labonté illustrates that for the time independent model the problem is completely
analogous to the quantised free field. The physical interpretation of this problem
is just that implicit in the Furry representation [19] . Landau and Lifshitz [19]
refer to the Furry representation as being intermediate between the Heisenberg and
interaction representation. It should be noted that in this treatment by Labonté
there is a restriction on the potential such that the energy operator remains self

adjoint.
2.3 The S operator

With regards to the external field problem there has been a lot of successful work
done in finding the S operator and its properties. We can recall from chapter 1
(1.49) that the S operator connects the incoming and outgoing fields and also the

incoming and outgoing states,
bout(z) = (S7"¢inS)(z) (2.30)

S |aout) = lain) - (2.31)

As can been seen from above the S operator can be understood as inducing a trans-
formation between the in creation and annihilation operators and the out creation

and annihilation operators. Therefore,

tou(k) = S7ain(K)S = [ dga(k,q)ain(a) + Bk, qlal(@)  (232)
atulk) = 57 (K)S = [ dga’(k,q)al(a) +B7(k, Q)ain()

In this way it can be seen how the S matrix can be used to calculate the number of

particles which have been created during the interaction. To calculate the number
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of particles created one just has to calculate the expectation value of the number

operator. Before the interaction,
(0in] al,(K)ain(k) [0i) = 0 (2.33)

however after the interaction the relevant operators are a,, and al,; so when one

finds the expectation value of the number operator one finds, using (2.33)
(Oinl 0hus (K)aane(K) [0) = [ &' |8k, X" (2.34)

so that number of particles created is related to the amount of mixing there is
between positive and negative frequencies of the in and out-fields. This is one of
the physically interesting things one can do with the S operator and is therefore
prevalent in the literature. Of course all of the physics comes into the problem as
to how one arrives at these transformations (2.33). As one can see at this point the
problems are not with interpreting one’s results after one has found the S operator
or S matrix but actually showing that the operator or matrix exists and that it is

unitary so that the two Fock spaces {in and out} are unitarily equivalent.

In this respect R. Seiler [15] has shown the existence and uniqueness of the
3 matrix for two different models. He has shown these properties for the 5 ma-
trix for the scalar field coupled to an external scalar source and for the Dirac field
coupled to an external electromagnetic source. Capri [16] has shown similarly the
existence and unitarity of the S matrix for the Dirac field coupled to an external
clectromagnetic field and in this way has shown that the in-fields and out-fields are
unitarily equivalent. As both the in-fields and out-fields satisfy the same commuta-
tion relations it was sufficient for Capri to show that there exists a vacuum for the
out-field in the Hilbert space of the in-field i.e. some combination of the in-states

yields the out-vacuum.

An interesting point was raised by Labonté in his 1975 paper [12] about

the uniqueness of the asymptotic vacua. As one would expect there are problems
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in defining unique asymptotic vacua if there arc any bound states. This can be
best understood by looking at the scattering particles which are the only thing we
have to define the asymptotic vacua in terms of. The bound state particles create
problems for us here because they do not interact with the scattering particles as
we only regard the particles as interacting with the external potential. In this sense
our asymptotic vacua could contain any number of bound particles or antiparticles
and this would not affect our definition of the free vacua. We avoid any problems
which would be associated with bound states as we only consider potentials which

vanish rapidly in any spacetime direction.

More recently (1975) R.M. Wald [13] has also shown that the .S matrix
exists for a gravitational field of compact support and has calculated the number
of particles created. In a later paper [14] Wald shows that a sufficient condition
for an S matrix to exist, and for it to be unique is that a certain operator B,
which connects certain in and out one particle Hilbert spaces, is Hilbert-Schmidt
(trB'B < o0). This condition is related to there only being a finite number of

particles created during the interaction.

2.4 The interpolating field

Although this is not the approach that we will be using in chapter 3 in our investi-
gation of the interpolating field there has been much work done in trying to use the
S matrix to construct the interpolating fields, unfortunately this procedure is not
unique and not very straightforward. In fact in the second Lehmann, Symanzik,
and Zimmerman (L.S.Z.) paper on the formulation of quantised field theories [20]
the authors show that for any given S matrix there exist many invariant fields A(z)
which tend asymptotically to A, (z) and A;,(z) for ¢ — oo respectively. The
reason that different fields can tend asymptotically to the correct limit is shown in

this paper to be related to extrapolating various functions (k) off the mass shell.
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The fields constructed from these functions reproduce the in and out-fields as these
ficlds only depend on the functions evaluated on the mass shell. This ambiguity
ariscs because there isn’t a unique prescription for extrapolating these functions off
the mass shell. To attempt to eliminate some or all of this ambiguity the authors in-
troduce the concept of a causal scattering matrix by requiring that the interpolating

ficld be causal, the authors call an operator causal if,
[A(z),A(y)] =0 for (z—y)?<0O. (2.35)

In terms of these functions mentioned earlier the k(k), this means that a particular
scattering matrix is causal if there exists at least one continuous extrapolation of
these functions off the mass shell such that the commutator (2.35) is satisfied.
Unfortunately the authors then leave the question open as to whether any such
scattering matrix exists which is causal in this sense or whether this is too stringent
a demand. It should be recalled at this time that when we talk of the S matrixor §
operator we are talking about the operator which connects the asymptotically free
fields and that the problems mentioned above are not problems with the S matrix

or operator but with trying to use it to find the interpolating fields.

Instead of this approach we will use the Green’s functions mentioned in
chapter 1 to investigate the interpolating fields. Capri [16] also used this approach
in dealing with a Dirac field minimally coupled to an electromagnetic field and
was able to show that the anticommutator of the field evaluated at two different
points yvields a Schwinger type function with the same properties as the Schwinger
function introduced in chapter 1. Capri actually expressed the fields in terms of
the field operators smeared with test functions and therefore the relationship that

Capri actually proved was,

{2(£), ¥(9)} = iSR(f,9) - iS4(f.9) (2.36)

where f and g are the test functions and SB(f,¢) and S§(f,g) are the retarded and

advanced Green’s functions respectively.
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Of c~urse in the simple model we introduced in Chapter 1 showing that
the interpolating fields are local is easy as the interpolating fields satisfy the same
algebra as the free fields. This is because of the simple way in which we have coupled

the scalar field to the c-number source.

Problems with the interpolating scalar field have also been looked at by R.
Seiler and others in two papers [15] [17] where the potential is coupled to the scalar
field in a slightly different way than we have looked at thus far. they look at the

scalar field satisfying the field equation,
(O +m)é(z) = V(2)o(z) (2.37)

In these two papers the authors discuss problems related to the time evolution
operator which takes the field from a time ¢, to some other time ¢, as long as
t1 < t;. They manage to construct a unitary operator in the Fock space generated
by the in-field by showing that a certain Hilbert-Schmidt condition of the classical
time-evolution kernel is satisfied. The problem of this operator being in the Fock
space generated by the in-fields is then equivalent to showing the existence of a
vacuum for the creation and annihilation operators a(t), a'(t) at any time ¢ in the

Fock space of the in-fields.

Although some of our discussion would lead one believe that the only prob-
lem at hand is finding a time evolution operator to induce a Bogoliubov transforma-
tion to connect the creation and annihilation operators from one time to another,
Labonté and Capri pointed out that for the situation of the interpolating field inter-
acting with a time dependent source this is not the case. For the interpolating field
in this case it is not even clear how one is supposed to causally identify the positive
and negative frequency parts of the field and in this way identify the annihilation

and creation operators of the field respectively. There are two straightforward ways
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of identifying the positive frequency part of the interpolating field,
8% (t,x) = % [ dkob(ko)e™st [ at'e=g(x',x) (2.38)

or

#*(2) = 6h(2) + [ dy(BR) Pz = )o(y) (2:39)
Both of these definitions are however acausal. The first one is acausal as the ¢
integral runs from —oo to +o0 so one has to know the field at all times before one
can define the positive frequency at one time. In the second definition the positive
frequency portion of the retarded Green'’s has support in both the future and past
light cones and is therefore also acausal. To get around this problem Labonté and
Capri introduce an auxiliary field which is coupled to a time independent source
which matches the time dependent source at a particular time. One can then use
information about this auxiliary field to deduce information about the interpolating
field at that particular time. This is the procedure that we will now use in chapter
3 to define the vacuum relevant to the interpolating scalar field interacting with a

time dependent source introduced in the first chapter.



CHAPTER THREE

VACUUM FOR AN INTERACTING FIELD

3.1 Introduction

From our discussion in Chapter 2 we saw that only in the last twenty years has the
question of instantaneous vacuum definition for the time dependent external field
problem been addressed. The most straightforward way of defining a vacuum for
a quantised field is to somehow extract the positive frequency part of the field and
thus define the vacuum as the state which is annihilated by this part of the field.
Unfortunately if the interaction we wish to study is time dependent the positive

frequency part of the field is not easy to come by in a causal way.

We show that by introducing an auxiliary field, similar to that introduced
by G. Labonté and A.Z. Capri [5], we can define a vacuum at any time during
the interaction. This auxiliary field is coupled to a time independent source which
matches the time dependent source at a particular time. Thus the equations for the
auxiliary field are time-translation invariant and the field may be decomposed in a
causal manner into positive and negative frequency parts. Futhermore the auxiliary
field is matched to the Heisenberg field (coupled to the time dependent source) ot
that particular time. We then define the vacuum for the auxiliary field and this
is then also the vacuum for the Heisenberg field at that particular time. We find
this vacuum and show that it is a more appropriate vacuum for the interacting field
than the vacuum for the incoming free Heisenberg field in the sense that the energy
of the field is lower in the vacuum we propose as compared to the energy of the field

in the vacuum for the incoming Heisenberg field.
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3.2 Auxiliary Field

We consider the simple model consisting of a real scalar field () coupled to a time
dependent c-number source. An auxiliary field ®,(z) is introduced to match this
field at a particular time 7 and since the Heisenberg field at time r coincides with
the auxiliary field ¢, at time 7 we can deduce things about the Heisenberg field
at time 7. The source is assumed to vanish rapidly in the remote past and future
and therefore the Heisenberg field is asymptotically a free field. This is also what
was assumed by G. Labonté and A.Z. Capri [5] for the Dirac field coupled to a time

dependent clectromagnetic field.

The equations of motion of the Heisenberg and auxiliary fields are respec-

tively
(O+m*)®(z) = p(z) (3.1)
(O4+m?)&,(z) = p(r,x) (3.2)

with the boundary conditions

Jim_3(z) = () (33)
®.(2) |z0=r = (I)(z)l_-co:r (3.4)
(a()@,.(:l:)) |:=o=1' = (6()@(:!:)) |=o=T (3.9)

We can immediately write the field ®,(z) in terms of the Heisenberg field &(z)
by using the boundary conditions imposed on ®.(z) with the usual Klein Gordon
propagator and a c-number term due to the source. Thus,

®,(z) = /w _PyA(z - y) & B(y) + S() (3.6)

where the c-number function S(x) satisfies the inhomogeneous part of the equation

of motion and the following boundary conditions
S(z) I:r:o=1' =0 (3.7)
aros(x) Iro=f =0. (3.8)
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We can find 5(x) explicitly by expressing the field ®,(z) as a three dimensional
Fourier decomposition and imposing the boundary conditions (3.7) and (3.8). The

three dimensional Fourier transform of S(z), 5‘(.r0, k), can then be written as

- P~(T,k) ciwk(.ro—r) c—iwk(ro—r)
$(zo.k) = ” {1— - — (3.9)

where p(7,k) is the three dimensional Fourier transform of the time independent

source. Thus, the auxiliary field can be written as

~ B .
8.(z) = [ Pyi(z —y) & () +/ $(ro k)e~ k. (3.10)

o7 (2m)3
If we now write the Heisenberg ficld ®(y) as
B(y) = Din(y) + [ d'=Or(y - 2)p(2) (3.11)

and
1

d3 —ip-r ipr
\/2(2#)3/:,,2{(1‘"([))6 7+l (p)” } (3.12)

we can then write the auxiliary field as

Q|'n(:1:) =

2.(s) = [ r\/‘iﬁ—ﬁ—) {(ain(®) + h(p)) == + (al.(p) + h(p)) €™} + C(x).
(3.13)

Here

1 ( dko ﬁ(kOa p)(wp + ko) e—i(wp—ko)'r p(T7 p)e—iupr) (3.14)

h*(p) = /2273 (2m) (w? — k§ + ieko) Wp
and
d? ~
Cx) = [ E(—;:r_):,ﬁ("'vp)e_'p'x- (3.15)

3.3 Vacuum Definition

The Heisenberg field is defined on the Fock space H;, of incoming states with the

cyclic vacuum |[0;, ). To define the vacuum for the auxiliary field ®,(z), (which is
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to be the vacuum for the Heisenberg field ®(z) at time zo = 7), in terms of the
states in H;, we first express the field, ®,(z), in terms of the incoming field, ®;,(x).

This is accomplished by using two operators S and U(z,) such that
&.(z) = U (20)S ™ ®in(2)SU(z0) (3.16)

where S and U(zy) are given by

S =ezxp [/?{h(p)afn(p) - h‘(p)asn(p)}J (3.17)
and
Ulzo) = ezp [—i /w =x°d3yC(y)6o<I>.-n(y)] (3.18)

Here S shifts the operators aix(p) and al (p) by h(p) and h*(p) respectively while
U(zo) shifts the entire field by the time independent term C(x). Although the
operator U(zg) shifts the field by a time independent term it is operating on the
time dependent field ®;,(z) and for this reason must have time dependence for the
net result not to have any time dependence. We can now define a vacuum for the
field ®.(z) by looking at the positive frequency part of the field given in equation
(3.13). For now we ignore the time independent term C(x). This vacuum is thus
defined by:

a.(k)|0,) =0 Vk (3.19)

where

a,(k) = ain(K) + h(k) (3.20)

This vacuur: can be obtained from the in-vacuum using the S operator introduced

carlicr as,

O ) (3.21)

0, )= S

To show that this vacuum is a more appropriate vacuum for the field ®.(z), than
the vacuum for the incoming field, and thus a more appropriate vacuum for the

Heisenberg field ®(z) at time zo = 7, we calculate the energy of the field in both
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vacuums and show that the field has a lower energy in the vacuum we have proposed.
We thus calculate the expectation value of the total hamiltonian in both vacua and

compare. The easiest way to do this is to just calculate

E= / &z (0 |H,

where H.(z) is the Hamiltonian density of the field ®.(z) given by

—

SH, ()57 0in) | oes (3.22
Ho(2) = 3 (@ ()7 4 (8:(2) + (VE.(0))) = plr. )8, (x). (3.23)

Note that at zo = 7 this coincides with H(z), the hamiltonian density of the

Heisenberg field ®(z). To calculate E it is convenient to first rewrite h*(p) as

= 1 ﬁ(TV p) -1 )
h = d(p) - ————e™"" 3.24
(p) m ( (p) w, € ( )
where
dkqg A(ko, P) —i{wp—k
= , k Hwp—ko)r
d(p) ) (<2 + ieko)(u” + ko)e |
= —i / dzob(T — £0)3(zo, p)e™ 7. (3.25)
Now most of the terms can be made to look like
dp p"(7,p) AT P) i) iwyso
— 3 —lWPT lhlpl' C)
/ 2027w, 4(p) wp ¢ ¢ (3.26)
or its complex conjugate. If we now rewrite p(7,x) as
~ik. ~. ik
p(7, %) = /22P Ar K)e™ % 4 (. k)e'k®) (3.27)

we find that when the energy difference E is evaluated at zo = 7 almost all the
terms cancel leaving,

2
E= /‘F”{ } (3.28)

and therefore as this difference is positive definite the energy of the field is lower in

/dIog(‘r - zo)p(zo,p)e iwpTo + P(T» P)e_.»wp,

Wp

the vacuum |0,) than in the in-vacuum |0;,).
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So far we have ignored the time independent term in the auxiliary field
®.(z). If we try and include this term in hopes that a vacuum that incorporates
this term will somehow be better, a possible thing to do is to break it up so that

part contributes to our new annihilation operator a/(k) and the rest to the creation

operator a't(k).
An obvious way of breaking up C(x) is to write it as

1
2273

€0 = s [ £2 {3 e 4 po(r,p)e), (3.29)

in this way the two parts of C(x) are each other’s complex conjugate and thus the
new annihilation and creation operators are still the hermitian conjugates of each

other. We can now define a new vacuum |0,) as
a,(k)l0})y=0 Vk (3.30)

where

@ (k) = ain(k) + h(k) + \/i_(lﬁﬁ";;p). (3.31)

If we again calculate the difference of the energies in the different vacua

E' = [ &% ((0in |Ho(2)| 0) = (04 |Ho(2)] 0))) leomr (3.32)

we find that
, d’p
E = / 2(27)3 {

and is thus less than the energy difference (E) calculated earlier. This means that

~ 2
i/dIDoG(T - xo)ﬁ(zo, p)e_‘-“’on + p(T’ p)e—iw,r
Wp

ﬁ(r,p)'z}

(3.33)

the energy of the interacting Heisenberg field has a lower energy in the first vacuum

|0,), defined by equation (3.19), than in the second vacuum |0 ), defined by equation
(3.30).
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3.4 Conclusion

We have therefore shown that since the energy difference defined by equation (3.28)
is positive definite that indeed the vacuum we have proposed |0.), as defined in
equation (3.19), is a more appropriate vacuum (in the sense that the energy of
the field is lower in this vacuum) for the auxiliary ficld ®.(z), and thus a more
appropriate vacuum (in the same sense) for the Heisenberg field ®(z) at zo = r,
than the in-vacuum for the incoming Heisenterg field ®;.(z). We have also shown
that the obvious choice of vacuum for the field is better than the vacuum defined by

trying to incorporate the time independent term of the field into a new vacuum.
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CHAPTER FOUR

QUANTUM FIELD THEORY IN CURVED
SPACETIME

4.1 Introduction

Quantum field theory in curved spacetime has received much interest since 1975
following Hawking's discovery of particle creation by black holes [23]. Unfortunately
this theory is still not well understood and many people are still working to try and

comprehend some of the details of the theory.

When studying quantum field theory in curved spacetime pecple’s work can
normally be grouped into one of three categories, with some papers dealing with
topics of interest involving more than one group. The main interest of this thesis
has been in the category that one could label as formalism and this will be the first
topic dealt with in this chapter. Here one wishes to find a procedure to build a
quantum field theory in curved space in a manner very similar to what one does
in Minkowski space. We would like to construct a Fock space with the use of
creation and annihilation operators which would then lead one to a particle concept
similar to what we know and understand in Minkowski space. With this particle
concept in place one could then hope to better understand exactly how a strong
gravitational field can create particles and how we may be able to mimic this type of
effect in experiments we could perform ourselves. It is also hoped that if one had a
better understanding of the physics of quantum fields in curved space one could also
have a more physical understanding as to which techniques make physical sense for
the regularisation and renormalisation of the stress tensor and other observables .

The second and third category therefore contain those papers dealing with particle
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creation and those dealing with the regularisation and renormalisation of the stress

tensor.

4.2 Formalism

The first thing that one must do before dealing with some of the interesting questions
which arise when talking about quantum field theory in curved spacetime is to
generalise our Lagrangian and thus our field equations from Minkowski space to a
more general spacetime. After this of course we will have to deal with the question

of how to quantise the solutions to these field equations.

The simplest Lagrangian we could generalise to curved space is the free

version of the Lagrangian we introduced at the beginning of chapter 1 (1.1),

£(2) = 50,8()0"4(z) ~ 3m76(x). (41)
We can rewrite the first term in this expression as
S7"0,8(2)8,9(), (42)
which can be generalised to
59 0,8(2)0,9(2). (43)

If we now generalise the partial derivatives to covariant derivatives ( 8, — V., ) we

can see that the expression
£(z) = 30"V,8(z)V,8(z) — i (z) ~ ER()4(z) (44)

reduces to the Lagrangian given earlier (4.1) in Minkowski space. This is the most
general Lagrangian quadratic in ¢ that is invariant under general coordinate trans-
formations and not coupled to R,, but only to R. Here £ is a dimensionless constant
and R(z) is the Ricci scalar curvature. One now has to question why we have in-

cluded the scalar curvature in this wey and only in this way. There are actually at
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least two reasons [24]. The first reason is that when m = 0 and £ has a particular
numerical value (1/6 for 4 Dim.) the action and equation of motion exhibit con-
formal invariance. This means that a solution in a spacetime with metric g,,(z) is
also, after a simple rescaling, a solution in the metric Q(z)g,.(z) where Q is any
given positive function [25]. The second reason is that it is known that the renor-
malisation of an interacting field in curved spacetime will involve a counter term
proportional to R#?. In this way £ can be regarded as a coupling constant which

will then be renormalised.

With this Lagrangian at our disposal we can now find the generalisation of

the free Klein Gordon equation for a general spacetime,
O.¢(z) + (m® + £R(z))$(z) = 0 (4.5)

where
1

V9

which is an explicit expression for ¢g**V,V ,¢.

O.4(z) = a“[g“"\/f]-auqﬁ(z:)], (4'6)

Once we have our field equation we now wish to construct a Fock represen-
tation of the Hilbert space in which the solutions to these field equations will be
said to act when quantised and viewed as operators. One wishes to construct this
Fock space with creation and annihilation operators in analogy with what one does
in normal quantum field theory in Minkowski space. To identify these operators
the most natural thing to attempt to do is to try and decompose the field into two
parts and identify one part with some generalised notion of positive frequency and
the other with some generalised notion of negative frequency. Unfortunately as was
illustrated in chapter 2, even in the case of a static metric there isn’t an agreed

upon unique prescription for performing this decomposition.

The problem with performing this decomposition of the field into “positive

and negative” frequencies is that in general spacetimes unlike Minkowski space we
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do not have the Poincaré group as a symmetry group of the spacetime [26]. In some
special classes of spacetime (such as de Sitter space) there exist many “natural”
coordinates associated with the Killing vectors but unfortunately they do not enjoy
the same central physical status in curved space as their counterparts in Minkowski
space. In these special spacetimes with many symmetries and thus many Killing
vectors there may be many local, or global timelike Killing vectors to associate a
“natural” time with and thus no “natural” means of performing the positive and
negative frequency decomposition. If the metric is not static but time dependent in
some way then the question becomes even more confusing as to how one could go

about defining an appropriate time.

There have been attempts to in some way define a time in curved space
which could then be used to perform the decomposition into positive and negative
frequency parts of a free field propagating in a curved background. In 1975 Ashtekar
et al. [26] proposed a means of decomposing fields by using the global timelike
Killing field and an energy condition which then picks out the complex structure
of the field and thus the decomposition. In the case of a static metric where the
timelike Killing fields remain timelike the procedure picks out tl:= “correct” complex
structure by requiring that the classical energy of the field agrees with the energy
calculated for the quantised Hamiltonian in the one particle Hilbert space. The
authors thus require “that our complex structure be so chosen that the energy
of each one particle state equals that of the corresponding classical field.” The
decomposition is characterised by a selection of the complex structure J, such that
J¢ = i¢p* — i¢~ where ¢* are the positive/negative frequency parts of the field.
It can be seen by writing J this way that for models involving a time dependent
external interaction the J could also become time dependent and this is where
frequency mixing would come from causing particle creation. Of course this could
only happen in the case where the underlying spacetime is not stationary and there

is not a global timelike Killing field. The procedure outlined above must however
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be modified if the timelike Killing field does not remain timelike everywhere and
thus the spacetime is not stationary. In this case a timelike hypersurface orthogonal
unit vector field £2 is introduced on the given spacetime. Once again the energy
condition picks out our now time dependent complex structure J(t). Unfortunately
there does not seem to be a unique means of picking out our vector field £* even
though different choices will lead to different decompositions and thus different
physics. One could interpret the elements of a particular Fock space which is chosen
as being the quantum states of particles as seen by the observers following these
Killing trajectories. Ashtekar et al. [26] thus conclude that the definition of a
particle in this situation is natural only in so far as the motions along Killing
trajectories are natural. Even in the static case one could have selected a different

vector field and have obtained a completely different notion of particles.

This complex structure approach to decomposing a field into its positive and
negative frequency parts can be shown to yield similar results to methods which
scek this decomposition by using the Feynman propagator. As was mentioned by
Fulling [35] some Green’s functions can be characterised by their support proper-
ties in spacetime, namely Ggay,Gre: and different combinations of these. However
other Green’s functions such as the positive and negative frequency parts of the
commutator and combinations of these (such as the Feynman propagator) “have
definitions which hinge on the decomposition of solutions into positive and nega-
tive frequency parts.” There have been attempts to perform a decomposition of the
field into positive and negative frequency parts by imposing physically reasonable
boundary conditions on the Feynman propagator. Of course some sort of boundary
conditions are required to define this propagator uniquely as it is the solution to
a differential equation. The problem is generalising these boundary conditions to
curved space. For a free field in Minkowski space where we have a positive and nega-
tive frequency decomposition we can impose “causal” boundary conditions; positive

frequencies are propagated into the future while negative frequencies are propagated
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into the past. Panangaden [31] shows that if a spacetime has asymptotically static
regimes and one can define complex structures in the past and future, Jp and J;
respectively, one can then construct Feynman propagator in terms of these comiplex

structures where the Feynman propagator is given by the Schwinger representation,

Oout| T[é(z), $(2")] [0in)
<Ooutl Oin )

We are then able to calculate the S matrix in a much more straightforward manner

Gr(z,z') = z'( . (4.7)

as compared the how we would have calculated in the original formalism of the
complex structure J which was done with a * algebra approach to quantum ficlds

in curved space.

One can also find approximations for the Feynman propagator. Birrell and
Davies [36] illustrate the procedure for obtaining an adiabatic expansion of Gy In
some appiications only the high frequency behaviour of the field are of interest as
the high frequency components only probe the immediate vicinity of the spacetime
point where the metric only changes a small amount. In this case one is then
interested in Gr(z,z’) in the limit where z — z’. Unfortunately for questions of
a more fundamental nature such as frequency decomposition this does not solve
the problem. Because we have not imposed global boundary conditions on the
differential equation defining the Feynman propagator the adiabatic expansion of
the propagator does not determine the particular vacuum states in (4.7). This
procedure of imposing boundary conditions in natural regions of spacetime is an
approach which is usually used by people trying to demonstrate particle creation
in a certain physical situation. In this approach “natural” boundary conditions are
imposed upon the states or operators in certain regions (i.e. horizons, past infinity
etc.) and then it is shown that in one of the regions (i.e. future infinity) there are
particles and therefore particle creation. There are many papers dealing with this
topic and thus we will leave this topic until the next section when we deal with

particle creation.
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There have also been a number of attempts to decompose the field based
on the diagonalization of the Hamiltonian or energy operator at each instant of
time. In this way the particle definition is implicit in the quantisation procedure
as the Hamiltonian can now be regarded as the sum of the individual energies of
cach particle at each instant. Although this procedure sounds reasonable at first
there are many ambiguities which arise in performing calculations. In fact the Fock
representations at different times can be unitarily inequivalent, even though the
asymptotic representations of the in and out fields are equivalent. Fulling in 1979
[27] illustrates that if one uses this procedure the prescription is loose enough to be

mnade consistent with any ansatz you wish including unphysical ones.

In the mid 70’s P. Hajicek [28] [29] proposed another way of defining positive
and negative frequency for fields in curved space. In these papers Hajicek concludes
that our notion of particles must be slightly “fuzzy” in curved space.. In this way
P. Hijicek gives some credit to those people that believe that there is little or no
hope of us ever having a complete notion of a particle in curved space. For example
P.C.W. Davies [37] believes the particle concept becomes useless in curved space and
therefore one should not be looking to define particles. He suggests that perhaps
the energy momentum tensor should be playing the role of the central observable.
Héjféek proposes that because any point in curved space has a neighborhood which
is almost flat one can then distinguish the positive and negative frequencies in the
usual way if one requires that the states of the field be localized to such an extent
that only these neighborhoods are sufficient for their definition. In this way one can
sec that the definitions reached through this means can only be approximate as these
are only neighborhoods we are dealing with and not exactly pieces of Minkowski
space. Of course one could also question how different our notion of particle is in
this case because we are limiting the space in which we are defining our states. In
this way we could be introducing boundary typ= effects which are not really there

in the physics we are trying to understand.
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More recently Capri and Roy [30] have proposed a means of defining a unique
time and vacuum for a given observer in a curved spacetime. The goal of this paper
is to define “the” instantaneous vacuum as well as “the” dircction of time in a
coordinate independent manner. The geometry of the spacetime and the observers
position and velocity are the only things that are used to define a unique vacuum
for a given observer. The direction of time is chosen in the following way. If there
is a single globally timelike Killing vector in the spacetime, this vector defines the
direction of time. “If there is more than one such globally timelike Killing vector
then the time direction is chosen to be that Killing vector which defines a symmetry
generator which commutes with at least one other generator.” In this way one can
pick out the generator of time translations which commutes with the generator of

space translations and is thus distinguished from the Lorentz boost generator.

Unfortunately, in general one does have not spacetime symmetries which will
provide us with global timelike Killing vectors. In this case one then constructs a
spacelike hypersurface from the spacelike geodesics which pass through the observers
position. The direction of time is then given by the normal to this surface. If
one now constructs a subspace using this normal and any one of the spacelike
geodesics one has a surface with Poincaré symmetry. The Killing vector associated
with time translation on this surface then gives us the parametrisation along this
timelike normal vector. The vacuum for an observer at this point is then given by
extracting the annihilation operator by defining positive frequency in terms of this

time variable.

4.3 Particle creation

Particle creation by a time dependent gravitational field is of course the niost in-
teresting effect one can demonstrate when studying quantum fields in curved space.

The easiest way one can see this particle creation is a model of a quantised field
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coupled to a classical gravitational field of compact support. For example Wald in
1979 [14] showed the existence of the S matrix for the model of a field coupled to
an external gravitational field of compact support. Another model in which one can
demonstrate particle creation which is perhaps a little more reasonable as a physical
model, as one doesn’t really cxpect a gravitational field to have compact support,

is that of a two dimensional Robertson-Walker universe with the line element,
ds? = dt® — a®(t)dz>. (4.8)
Introducing n as a new time parameter where dn = dt/a and
t= [ a(n)an’ (4.9)
we can 1iow write our line element as
ds® = a®(n)(d*n — d*z). (4.10)
If we now choose a(7n) such that
a*(n) = A + Btanh(pn) (4.11)

where 4, B, and p are constants then in the remote past and future the spacetime

becomes Minkowskian as,
lim,_.+0a*(n) = A+ B. (4.12)

It can be shown [38] that because in the asymptotic past and future the positive
frequency modes over which one expands the field are different this necessarily
means that there is going to be frequency mixing in the Bogoliubov transformations
connecting the operators associated witk these modes and thus there will be particle
creation. It should be mentioned here that there is an interesting subtlety in this
model which involves particle creation. “There is only particle creation when the
conformal symmetry is broken by the presence of a mass which provides a length

scale for the theory” [39).
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Hawking’s discovery of particle creation by black holes (23] was revolutionary
because the presence of a black hole can cause the locally negligible effects of particle
creation to add up and actually cause particles to be emitted to infinity. In this way
the particles emitted to infinity avoid the problems of particle definition in curved
space as at infinity the spacetime becomes asymptotically flat and one can use one's
knowledge of Minkowski space to define the particles unambiguously. In this paper
Hawking studies a massless scalar field propagating in the spacetime cxterior to a
collapsing star. The metric describing the space where the field is then propagating

in is the Schwarzchild metric,

ds* = (1 - g;7}/—[)dt2 —(1- 2;_ﬂ)"dr2 ~ r¥(d? + sin%0d¢?) (4.13)
where there is a coordinate singularity at r = 2M due to a bad choice of coordinates.
The solutions to the field equations involving this metric must satisfy physically
reasonable boundary conditions and have a definite positive and negative frequency
decomposition in the regions where we wish to define particles if we are to predict
particle creation. To determine the field completely we must specify the ficld on a
complete Cauchy surface so we have a well defined Cauchy problem. Because for a
massle:s field past null infinity (Z~) is one of these surfaces at this surface we can

decompose the field just as we do in Minkowski space,
¢ = Zi(fiai + faal). (4.14)

Here the {f;} form a complete orthonormal set of positive frequency modes at
I-. In this way the operators a; and a! have the usual interpretation of being
the annihilation and creation operators for ingoing particles (particles at past null
infinity). Because massless fields are completely determined by their data on 7~ we
can express the field ¢ in the form (4.14) everywhere. If we wish to also describe
outgoing particles (particles at future null infinity) we must also describe our field

completely on some complete Cauchy surface involving future null infinity. However
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hecause of the presence of the horizon (loosely speakirg a sort of hole) our complete
Cauchy surface includes both the event horizon and future null infinity. As the field

in the region outside the event horizon is determined completely from this data we

can also express ¢ in the form,
¢ = Zi{pibi + Bib! + qici + gicl}. (4.15)

Here the {p;} are a complete set of positive frequency solutions on future null
infinity (Z%), ihey also have zero Cauchy data on the event horizon. In this way
the operators b; and b! have the usuii irterpretation of being the annihilation and
creation operators for outgoing particle.. The {¢;} are a complete set of solutions
on the event horizon and have zero Cauchy data on future null infinity. The choice
{g:} does not affect the final results so we do not complicate things by trying to
also impose some sort of positive frequency condition on them to try and limit this
choice. Because both of our expansions for the field are in terms of complete sets
we can express the {g;} and {p;} as linear combinations of the {f;} and {f;}. This
then allows us to compute the Bogoliubov transformation relating the a; and al
and the b; and b,t . One can then define the incoming vacuum in terms of the a;
and compute the number of outgoing particles just as was done in earlier examples
using the S matrix. In this way Hawking shows that a black hole emits particles as
if it were a hot body with temperature hx/2wkp where « is the surface gravity of

the black hole.

Although the calculations done by Hawking indicate that the effects on the
particles emitted by the details of the collapse process decay exponentially, some
people wish to try and do away with the collapse process. This led people like Boul-
ware [32] Unruh [33] and Hartle and Hawking [40] to try and study particle creation
by primordial black holes. Unfortunately this means one can no longer avoid the
problem of defining positive frequency in regions which are not Minkowskian, a

problem which Hawking didn’t have to deal with in his original paper. These three
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papers immediately led to the definition of three different “vacuum" states, the
Boulware vacuum [0p}), the Unruh vacuum |0y), and the Hartle Hawking vacuum
|05). These different states are defined by choosing a coordinate system which leads
to a st~ - metric and then defining positive and negative frequency with respect
to the time coordinate of this system. The confusion which arose as to which of
these “vacuum” states are reasonable or not lead Fulling to write a paper entitled
“Alternative vacuum states in static spacetimes with horizons” (34]). These differ-
ent vacua are introduced to try and satisfy different boundary conditions which the

authors believe to be physically reasonable.

The first vacuum state introduced, the Boulware vacuum was constructed in
terms of the coordinates (¢, 7,6, ¢), the coordinates in terms of which we originally
wrote the Schwarzchild metric(4.13). Thus Boulware is able to describe particles
at infinity where the spacetime is basically Minkowskian. Unfortunately as we
mentioned when we introduced this metric, in the form we wrote it, there was a
coordinate singularity at the event horizon. This singular behaviour also plagues
calculations such as expectation values of operators calculated in this state. This
singular nature can be easily traced to the fact that the Killing vector with respect

to which positive frequency was defined becomes null on the horizon.

The other two vacua do not suffer from any singular nature but do describe
similar physical situations. Both describe a thermal flux of particles emitted by
the black hole and observable at future infinity. The difference between these two
states is at past infinity. Here the Unruh vacuum predicts a void of particles even
though the black hole is forever present. The Hartle Hawking vacuum however
has a thermal bath of particles at past infinity. In this way the Hartle Hawking
state really describes a black hole in equilibrium with a thermal bath of particles.
Although it is interesting to calculate different expectation values in these states and

in this way eliminate some states on physical grounds and say a particular state is
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physically reasonable or not there are still questions which must be answered. The
question of whether there is a unique vacuum with which some physical predictions
can be made is not addressed by these papers. Unfortunately these states appear to

he constructed using a coordinate system which gives them the answer they believe

to be true.

We have mentioned earlier that particles may not be defined precisely encugh
to be useful observables with which physical insight can be gained. The expectation
value of the stress tensor however is defined locally and therefore does not suffer
the same global problems that plague particles. Calculating the renormalised ex-
pectation value of the stress tensor is a topic in itself which we address in the next
section. There are many people who believe that putting a particle detector into
one’s physical system is a reasonable way of avoiding the problems of particle defi-
nition or the regularisation and renormalisation of calculations involving the stress
tensor. It could however be argued that the very presence of the detector may inter-
fere with the physics of the system and cause the system to appear differently than
it would without the detector. This sort of thinking lead Hajigek to ask the ques-
tion “is it possible to distinguish particles created by the gravitational field from
particles “created” by the detection process?” [28]. The particle detector does how-
ever give one a means of making predictions, one can predict how often a particle
detector will “click” and as long as one is not overly concerned as to where the click
came from there is no real problem with using particle detectors to describe some
physical situations. Some authors have made interesting predictions involving their
detectors. For example Unruh {33] predicts a detector will click when accelerated
through Minkowski space in the same way as if it were stationary and exposed to a
thermal bath of particles. The calculation of the renormalised stress tensor however
in this situation is zero just as it is in Minkowski space (the acceleration in this case
is mimicked by a coordinate transformation). Unfortunately the particle detector

approach in curved space has some of the same problems as our original approach
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of trying to decompose the field into positive and negative frequency and then con-
struct a Fock space. When one calculates the detector response function one finds
that although it is independent of the details of the detector it is dependent on
the positive frequency Wightman function [36] something one needs an appropriate

notion of vacuum to define.

4.4 The stress tensor

The stress tensor T,,,(z) appears to be an entity which avoids many of the problems
associated with other possible observables one might be tempted to evaluate. The
“fuzziness” of the particle definition and the fact that time dependent external ficlds
can create particles implies that the particle number operator may not be a well
defined observable, the particle detector on the other hand by its very presence and
the fact that it is explicitly coupled to the field suggests that there may be a problem
with using a detector to describe the physics of the system without the detector
there. The stress tensor evaluated at a point T),,(z) seems to be an object which
might escape these problems. This object when calculated in terms of a quantised
field is itself an operator and therefore one wants to look at expectation values of
this operator. There are two problems with this. The first problem is that the
the operator when formally calculated contains objects such as, {¢(z)¢(z)) being
the multiplication of two operator valued distributions evaluated at the same point.
The second point unfortunately is the same problem that we have been seeing all
along. We still must decide which expectation value should be taken (i.e. which
state), a problem that will once again cause --oblems because of our inability to

understand what global boundary conditions are relevant in curved space.

The first problem is of course not specific to quantum field theory in curved
space but is also a problem in Minkowski space as well. What can be done to

give some meaning to this entity is to look at the regularised quantity (¢(z)é(z’))
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after the subtraction of the vacuum contributions look at the limit as '’ — z. The
second problem can not be dealt with in the same way as we did in Minkowski
space. When we calculated the vacuum expectation value of the energy in chapter
1 we found that we could discard the vacuum contribution using a process where
we normal order our creation and annihilation operators. The reasons we can't do
this in curved space is obvious as we don’t have any natural operators to use. In
fact we can’t even remove the vacuum contributions using Minkowski type terms,
it can be shown that even in a simple Robertson-Walker type universe the energy

cannot be renormalised using Minkowski type terms [41].

Of course in the gravitational context one must be very careful about how
one renormalises the stress tensor. Although in nongravitationl physics all that
matters are energy differences, in the gravitational problem energy, just like mass,
is also responsible for gravitational effects. In this case a more elaborate scheme

involving the dynamics of the gravitational field is required.

Regularisation involves redefining the expectation value cf the stress tensor
in terms of a parameter ¢, the value is finite for € # 0 and is infinite or ill defined
when € = 0. The expression is then modified so that in the end the limit ¢ — 0
can be taken without any problems such as divergences. There are three different
regularisation, renormalisation schemes which are common in the literature with
regards to curved space, dimensional regularisation, split point regularisation, and

adiabatic regulansation.

Bunch in 1979 {42] showed that by using a dimensional regularisation scheme
one can regularise and renormalise the expectation value of the stress tensor in
curved space. He also illustrated in this paper that one can understand the renor-
malisation process as moving the divergent part of the expectation value from the
right side of Einstein’s field equation to the left side by renormalising the coupling

constants in the equation. The dimensional regularisation scheme then involves
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calculating the expectation value of the stress tensor in n dimensions. Therefore
in terms of the general regularisation prescription we mentioned carlier e = n — 4
if one wishes to calculate the renormalised expectation value in four dimensions.
Bunch also mentions that the expression for the divergences are equivalent to the

divergences calculated by Christensen [43] using the point splitting technique.

Split point regularisation is the technique which we mentioned earlier where
one looks at expressions like (¢(z)é(z’)) in the limit z’ — z . In this prescription
¢ represents the distance between these two puints. There is an ambiguity which
arises here because the second point z’ can be taken any direction if we don't limit it
in some way. Davies and Fulling [44] specify that these points can be connected by
any non-null geodesic. The detailed behaviour of (T, (¢)) depends on the direction
of the approach of z’ to z, to eliminate this dependence and also renormalise the
expectation value Davies and Fulling discard all of the terms in the expectation value
which depend on € or t#, the tangent vector at r along the geodesic connecting z

and z'.

Adiabatic regularisation is actually a subtraction scheme which in some re-
spects sounds similar to the subtraction process induced through normal ordering in
Minkowski space. Once again one tries to identify the vacuum contributions which
are then subtracted. One major advantage of this procedure is that the subtraction
can be done mode by mode before the sum over modes is performed. In this way
only finite integrals are performed. Bunch has shown [45] that calculations of the
renormalised stress tensor using adiabatic regularisation agree with those done using

point splitting but the adiabatic approach is “much simpler and more elegant”.
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