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ABSTRACT This paper develops an adaptive robust cubature Kalman filter (ARCKF) that is able to
mitigate the adverse effects of the innovation and observation outliers while filtering out the system and
measurement noises. To develop the ARCKF dynamic state estimator, a batch-mode regression form in the
framework of cubature Kalman filter is first established by processing the predicted state and measurement
data information simultaneously. Subsequently, based on the regression form, the outliers can be detected
and downweighted by the robust projection statistics approach. Then, the adverse effects of innovation
and observation outliers can be effectively suppressed by the generalized maximum likelihood (GM)-
type estimator utilizing the iteratively reweighted least squares approach. Finally, an adaptive strategy
is developed to adjust the state estimation error covariance matrix under different conditions. Extensive
simulation results obtained from the IEEE New England 10-machine 39-bus test system under various
operating conditions demonstrate the effectiveness and robustness of the proposed method, which is able
to track the transients of power system in a more reliable way than the conventional cubature Kalman
filter (CKF) and the unscented Kalman filter (UKF).

INDEX TERMS Dynamic state estimation, cubature Kalman filter, robust estimation, outliers, power system
stability.

I. INTRODUCTION
Accurate and reliable dynamic state estimator (DSE) is grad-
ually becoming more and more important for the secure and
stable operation of power systems, since it can provide the
essential information for power system real-time monitor-
ing and control [1]–[5]. To cite a few, in [6], based on the
estimated results of generator’s angle, a modified out-of-
step detection approach for generators was proposed. On the
other hand, in [7], the dynamic state estimation results were
leveraged for the design of series compensated transmission
line protection. These wide ranging applications of DSE have
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effectively enhanced the stability and reliability of power
system.

The dynamic state variables of power system can be
estimated in real-time by utilizing the measurement data
from high-level phasor measurement units (PMUs) [8].
To date, for effectively tracking power system dynam-
ics, various DSEs have been proposed and investigated
in [11]–[15]. For instance, by utilizing the available measure-
ment data measured by PMUs, the DSE based on Kalman
filter (KF) methods were investigated in [9] and [10]. Fol-
lowing their work, in [11], a modified extended Kalman
filter was proposed. In [12], by assuming the mechanical
torque is known, the work of [11] was further extended
to a decentralized DSE, which only requires the local
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measurement information. However, due to the first-order
approximation errors in the linearized process of nonlinear
function, EKF method could only be utilized for a mild
nonlinear system [13]. To circumvent the linearization errors
of EKF, by utilizing the multi-step adaptive interpolation
technique, an improved EKF method that enhanced the state
estimation accuracy to a certain extent was proposed in [14].
Moreover, in [15], an extended particle filter was proposed
which leveraged the Monte Carlo simulation to propagate
the mean and covariance matrices of states, thus a much
better state estimation accuracy than the EKF approach
could be obtained. In addition, some derivative-free Kalman
filters based DSE were also proposed to achieve more accu-
rate system monitoring, such as the unscented Kalman fil-
ter [16]–[18] and the cubature Kalman filter [19], [20].

These previous efforts have greatly promoted the level of
power system monitoring undoubtedly. However, it should
be noted that all the aforementioned methods work well
only when some assumptions are satisfied [21], [22]. First,
the measurements are assumed to be obtained accurately
without any large deviations. Second, both the system and
measurement noise are assumed to be Gaussian [23]. In fact,
for a practical power system, either assumption can be often
violated due to the existence of observation and innova-
tion outliers. Therefore, as demonstrated in [24], the per-
formance of conventional Kalman-type filters is degraded
sharply in the presence of outliers due to their lack of
robustness.

In general, for an actual power system, the observation
outliers can arise from the biases in PMU measurements that
are mainly caused by instrument failures, impulsive com-
munication noise or infrequent calibration [25]. Therefore,
the observation outliers seriously affect the measured value.
As for the innovation outliers, they are often introduced by
the undesirable system process impulsive noise or inaccurate
approximations in the state prediction model, which might
corrupt the predicted state estimates. To address these issues,
some robust dynamic state estimation methods were pro-
posed. Specifically, by utilizing the least absolute value esti-
mator, a robust distributed DSE against observation outliers
was developed in [26]. However, the vulnerability of DSE
to innovation outliers is not tackled. Then, in order to mit-
igate the adverse effects of observation and innovation out-
liers, a robust iterated extended Kalman filter was developed
in [24], but it may suffer from the divergence problem while
the systemmodel exhibits strong nonlinearity. As a result, sig-
nificantly biased estimation results might be obtained. To deal
with this problem, a modified UKF approach was proposed
in [27] that just expanding their own work in the similar
structure of [24]. However, it is worth pointing out that the
convergence of this method may be affected by the sampling
methods of Sigma points and is not quite suitable for the high
dimension system [28]. More importantly, the calculation of
its state estimation covariancematrixmaybe too conservative,
where too much emphasis was placed in accommodating the
worst case at the expense of optimality.

To deal with the aforementioned challenges, by resorting
to robust statistics, this paper develops an adaptive robust
cubature Kalman filter that is able to suppress the outliers
and achieve a high estimation accuracy. At first, a batch-
mode regression form is introduced to enhance the measure-
ment data redundancy. Subsequently, based on the regression
form, the robust projection statistics approach is introduced
to detect and downweight the outliers. Then, the robust
GM-estimator is utilized to mitigate the adverse effects of
outliers. Finally, an adaptive strategy is proposed to adjust
the state estimation error covariance matrix under various
conditions, which can balance the robustness and accuracy
of the proposed method.

The remainder of this paper is organized as follows.
In Section II, the state-space model for tracking power system
state dynamics is established and presented. In Section III,
the proposed ARCKF method is developed and introduced in
detail. In Section IV, extensive simulations are carried out on
the IEEE 10-machine 39-bus test system to demonstrate the
efficacy of the proposed method, and finally the conclusions
are drawn in Section V.

II. DYNAMIC STATE ESTIMATION MODEL
In this part, based on the fourth order transient generator
model and the modified Euler approach [29], the discrete-
time state-space model of a synchronous generator for track-
ing the state dynamics is presented.

A. FOURTH ORDER TRANSIENT MODEL
For a synchronous generator, the 4th order differential equa-
tions in the local d − q reference frame can be expressed as
follows [14], [30]

dδ
dt
= ω − ω0

dω
dt
=
ω0

2H

(
Tm − Te −

KD
ω0

(ω − ω0)

)
de′q
dt
=

1
T ′d0

(
Efd − e′q −

(
xd − x ′d

)
id
)

de′d
dt
=

1
T ′q0

(
−e′d +

(
xq − x ′q

)
iq
)
,

(1)

where δ denotes the rotor angles;ω denotes the rotor speeds in
per-unit, ω0 = 2π f0 represents the rated value of the angular
frequency; H and KD are respectively the inertia constant
and the damping factor; the parameters Tm and Te represent
the mechanical torque and the electric air-gap torque, respec-
tively; Efd indicates the internal field voltage; the variables
e′d and e′q denote the transient voltages along the local d and
q axes, respectively; the parameters T ′d0 and T

′

q0 indicate the
open circuit time constants along the directions of d and q
axes, respectively; xd and xq are respectively the synchronous
reactance along d and q axes, respectively; x ′d and x ′q are the
associated transient reactance at d and q axes, respectively;
id and iq are the stator currents in the directions of d and q
axes, respectively.
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For the sake of notation, (1) can be rewritten as a general
state-space form {

ẋ = f c(x,u)+ wc
y = hc(x,u)+ vc,

(2)

where c represents the continuous-time model, x denotes the
state vector that consist of ω, δ, e′d and e′q; f c(·) indicates the
nonlinear state transition function, hc(·) is the measurement
function; wc and vc are respectively the process and mea-
surement noise, which are usually assumed to be Gaussian
white noise with covariance matrices Q and R, respectively;
the input vector u and the output vector y are respectively [30]

u =
[
Tm Efd iR iI

]T
, (3)

y =
[
δ ω eR eI

]T
, (4)

where iR and iI represent the stator currents along the R and
I axes, eR, eI are the associated stator voltages.
To transform (1) into the state transition function f c(·)

in (2), id , iq and Te need to be written as functions of x and u
utilizing (5)-(7)

id = iR sin δ − iI cos δ, (5)

iq = iI sin δ + iR cos δ, (6)

Te =
(
e′d + iqx

′
q

)
id +

(
e′q − idx

′
d

)
iq. (7)

Similarly, to implement the measurement function hc(·)
in (2), eR and eI need to be written as functions of x and u
using (8)[
eR
eI

]
=

[
sin δ cos δ
− cos δ sin δ

] [
e′d
e′q

]
−

[
cos δ − sin δ
sin δ cos δ

] [
x ′d id
x ′qiq

]
. (8)

B. DISCRETE STATE-SPACE MODEL
Similar to [30], to track the dynamic state variables of genera-
tors utilizing the measurements, the continuous systemmodel
in (2) needs to be further discretized into the discrete form{

xk = f (xk−1,uk−1)+ wk−1
yk = h (xk ,uk)+ vk ,

(9)

where k indicates the time instant at k1t , and 1t represents
the sampling interval; wk and vk are the process and measure-
ment noise with covariance matricesQk and Rk , respectively.
To be specific, the state transition function f c(·) is dis-

cretized by applying the modified Euler technique [29]

χ̃k = xk−1 + f c (xk−1,uk−1)1t, (10)

f̃ =
f c
(
χ̃k ,uk

)
+ f c (xk−1,uk−1)
2

, (11)

xk = xk−1 + f̃1t, (12)

and the measurement function hc(·) can be directly dis-
cretized as follows

yk = hc (xk ,uk)+ vk . (13)

FIGURE 1. Framework of the proposed ARCKF method.

Based on the received measurements at each time instant,
the discrete state-space model expressed in (9) can be utilized
to track the state dynamics of power system.

III. PROPOSED ARCKF METHOD
In this section, the proposed ARCKF method is developed
and its overall framework can be found in Fig. 1.

A. DERIVATION OF THE BATCH-MODE REGRESSION
FORM
1) CUBATURE POINT GENERATION
Given the estimated state vector x̂k−1 ∈ Rn×1 and
the corresponding state estimation error covariance matrix
P̂k−1 ∈ Rn×n at time instant k − 1, 2n cubature points
that capture the statistical properties of x̂k−1 can be gener-
ated [19], [20]. Formally, we get

X i,k−1 = x̂k−1 + ξ i

√
P̂k−1, i = 1, · · · , 2n (14)

where X i,k−1 is the i th cubature point of x̂k−1, n indicates
the dimension of state variable,

√
(·) represents the operation

of Cholesky decomposition, ξ i denotes the i th column of the
basic data point set that defined as follows

ξ i =

{√
n[e]i, i = 1 . . . n
−
√
n[e]i−n, i = n+ 1 . . . 2n,

(15)

where e represents a unity matrix of size n× n.

2) STATE PREDICTION
Here, the cubature points are instantiated via the state tran-
sition function f (·) in (9). Then, the predicted state and the
associated state error covariance can be calculated by

X∗i,k = f
(
X i,k−1,uk−1

)
, i = 1, · · · , 2n (16)

x̃k =
1
2n

2n∑
i=1

X∗i,k , (17)

P̃k =
1
2n

2n∑
i=1

X∗i,k
(
X∗i,k

)T
− x̃k x̃Tk + Qk−1, (18)

where X∗i,k indicates the transformed cubature points, x̃k is
the predicted state, P̃k is the corresponding error covariance,
the superscript T represents the matrix transpose operation.
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3) REGRESSION FORM CONSTRUCTION
To construct the batch-mode regression form, the relation
between the predicted state x̃k and the true state xk is uti-
lized [27]

x̃k = xk − ηk , (19)

where ηk represents the prediction error.
In addition, by applying the statistical linearization tech-

nique [31] to the measurement function h(·) at x̃k , the follow-
ing can be derived

yk = Hk (xk − x̃k)+ h (̃xk)+ vk , (20)

whereHk = (Pxy,k )T (P̃k )−1 represents the statistical regres-
sion matrix, and the cross covariance matrix Pxy,k can be
calculated by

ỹk =
1
2n

2n∑
i=1

Y i,k , (21)

Pxy,k =
1
2n

2n∑
j=1

X∗i,kY
T
i,k − x̃k ỹ

T
k , (22)

where Y i,k = h
(
X∗i,k

)
, i = 1, · · · ,2 n.

Then, (19) and (20) can be written into a matrix form as
follows[

yk +Hk x̃k − h(̃xk )
x̃k

]
=

[
Hk
I

]
xk +

[
vk
−ηk

]
, (23)

which can be further rewritten as a compact form

Ỹ k = H̃kxk + ẽk , (24)

where the covariance matrix of ẽk can be derived as follows

6k = E
[̃
ek ẽTk

]
=

[
Rk 0
0 P̃k

]
= SkSTk , (25)

where Sk can be calculated by the UD factorization or the
Cholesky decomposition technique [32].

Finally, the ẽk needs to be prewhitened [32], which can be
realized bymultiplying S−1k on the both sides of (24), yielding

S−1k Ỹ k = S−1k H̃kxk + S−1k ẽk , (26)

which can be expressed in a compact form as

zk = Ckxk + ζ k . (27)

Remark 1: In this part, by utilizing the statistical lineariza-
tion approach [31], a batch-mode regression form in the
framework of CKF was firstly developed by processing the
predicted state and measurement data information simultane-
ously, resulting an enhanced measurement data redundancy.
This measurement data redundancy is very important and
necessary for our estimator to mitigate the adverse effects
of the innovation and observation outliers. In addition, it is
worth pointing out that the designed batch-mode regression
form inherits the benefits of CKF, which can give a systematic
solution for high-dimensional nonlinear filtering issues and
the parameter settings are simple.

B. OUTLIER DETECTION AND DOWN-WEIGHT
In order to suppress the large deviation of state estimation
results that might be caused by observation or innovation
outliers, the outliers need to be detected and downweighted
effectively. To detect them, based on the research in [24]
and [27], a two-dimensional matrix Z that contains the inno-
vation vector and the prediction state vector need to be estab-
lished as follows

Zk =
[
yk−1 − h (̃xk−1) yk − h(̃xk )

x̃k−1 x̃k

]
, (28)

where the subscripts k and k − 1 represent the time instants;
yk−1−h (̃xk−1) and yk−h(̃xk ) are respectively the innovation
vector at time instant k − 1 and k; x̃k−1 and x̃k indicate the
prediction state. Then, the robust projection statistics (PS)
estimator can be applied to the matrix Z to detect the inno-
vation and observation outliers, the PS estimator is defined
as follows [35], [36]

PS j = max
‖`‖=1

∣∣∣lTj `− medi (lTi `)∣∣∣
1.4826medκ

∣∣lTκ `− medi (lTi `)∣∣ , (29)

where lTj , l
T
i and lTκ are respectively the j th, i th and κ th row

of the matrix Zk , and i, j, κ = 1, 2, . . . ,m+ n.
Once the PS values of Zk are obtained, the innovation or

observation outliers can be detected by comparing the PS
values with a given threshold. Due to the PS values of Zk
roughly obey the chi-square distribution with 2-degree of
freedom [24], therefore, the outlier detection threshold ϑ can
be set as χ2

ν,β = χ2
2,0.975. Then, the outliers with PS values

exceed the threshold value can be detected and downweighted
via

$i = min
(
1, d2/PS2i

)
, (30)

where $i represents the down-weight will be utilized in the
next part, and the parameter d is usually set as 1.5.

C. ESTIMATED STATE UPDATE
The state estimation result against outliers can be obtained by
minimizing the following objective function as follows

J (x) =
m+n∑
i=1

$ 2
i ρ
(
rSi
)
, (31)

where $i denotes the weight that is calculated by (30);
rSi = ri/(s$i) represents the standardized residual;
ri = zi − cTi x̃ indicates the residual, and cTi denotes the i th
row vector of Ck ; s = 1.4826 ·bm ·mediani |ri| represents the
robust scale estimate, and the bm indicates a correction factor
to acquire unbiasedness for a finite sample of sizem+n under
the Gaussian distribution; ρ(·) represents the convex Huber
function defined as follows [32]–[34]

ρ
(
rSi
)
=


1
2
r2Si , for

∣∣rSi ∣∣ < λ

λ
∣∣rSi ∣∣− λ2/2, elsewhere ,

(32)
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where λ is usually set as 1.5 to achieve high statistical effi-
ciency.

To minimize the objective function (31), by equating its
first partial derivativeswith respect to xk to zero, the sufficient
and necessary condition for optimality can be obtained

∂J (xk)
∂xk

=

m+n∑
i=1

−
$ici
s
9
(
rSi
)
= 0, (33)

where 9
(
rSi
)
= ∂ρ

(
rSi
)
/∂rSi , ci represents the i th column

ofCk . Then, by dividing and multiplying rSi on the both sides
of (33), we obtain

CT
k � (zk − Ckxk) = 0, (34)

where � = diag
{
q
(
rSi
)}

and q
(
rSi
)
= 9

(
rSi
)
/rSi .

Algorithm 1 Adaptive Robust Cubature Kalman Filter

1: Initialization: Set initial values for x̂0, P̂0, Q0, R0, and
the total execution time Nt ;

2: Input: Tm, Efd , iR, iI and measurement yk ;
3: while k = 0 to Nt do
4: step 1: calculate the predicted state and the correspond-

ing error covariance matrix at time instant k utilizing the
Eqs. (14)-(18)

5: x̃k ← 1
2 n

2n∑
i=1

X∗i,k ;

6: P̃k ← 1
2 n

2n∑
i=1

X∗i,k
(
X∗i,k

)T
− x̃k x̃Tk + Qk−1;

7: step 2: construct the batch-mode regression form and
pre-white the noise according to the Eqs. (19)-(27)

8: zk ← Ckxk + ζ k ;
9: step 3: detect the outliers and calculate the down-weights

by the Eqs. (28)-(30)
10: $i← min

(
1, d2/PS2i

)
;

11: step 4: update the state estimation according to the Eqs.
(31)-(35)

12: while
∥∥∥̂x(j+1)k −x̂(j)k

∥∥∥
∞

> 10−2 do

13: x̂(j+1)k =
(
CT
k �

(j)Ck
)−1

CT
k �

(j)zk ;
14: end while
15: step 5: calculate the state estimation error covariance

matrix using Eqs. (37)-(39)
16: if max (PS i) ≤ χ2

2,0.975 then
17: P̂k ← P̃k−KkPyy,kKT

k ;
18: else
19: P̂k ← µ

(
CT
k Ck

)−1 (
CT
k �$Ck

) (
CT
k Ck

)−1
;

20: end if
21: step 6: output x̂k , P̂k and time instant update
22: k ← k + 1;
23: end while

Then, by utilizing the iterative reweighted least-squares
method, the state estimation at the j th iteration can be cal-
culated via

x̂(j+1)k =

(
CT
k �

(j)Ck

)−1
CT
k �

(j)zk . (35)

D. ADAPTIVE UPDATE OF ESTIMATION
COVARIANCE MATRIX
It is worth pointing out that the calculation of the estimation
covariance matrix is closely related to the performance of
DSE [30]. To enhance the robustness of the proposed method
against outliers, by utilizing the total influence function tech-
nique in [24], the estimation error covariance matrix can be
derived and updated as follows

P̂k = µ
(
CT
k Ck

)−1 (
CT
k �$Ck

) (
CT
k Ck

)−1
, (36)

where �$ = diag
{
$ 2
i

}
, the coefficient µ is set to be

1.0369 when λ = 1.5.
However, it should be noted that the utilization of (36)

might be too conservative, where too much emphasis is
placed in accommodating the worst condition (with inno-
vation or observation outliers) at the expense of optimality.
In order to improve the robustness of the proposed method
without decreasing accuracy, an adaptive strategy is proposed
to adjust P̂k in response to the dynamically changing environ-
ment

P̂k =


P̃k−KkPyy,kKT

k if max (PS i) ≤ χ2
2,0.975

µ
(
CT
k Ck

)−1 (
CT
k �$Ck

)(
CT
k Ck

)−1
otherwise,

(37)

where P̃k indicates the state prediction error covariance
matrix at time instant k; χ2

2,(·) represents the chi-square distri-
bution with 2 degrees of freedom; χ2

2,0.975 denotes the value
of χ2

2,(·) at the significance level of 97.5 %, which is chosen
as the outliers detection threshold ϑ in this paper; Pyy,k rep-
resents the covariance matrix of the predicted measurement
and Kk denotes the Kalman gain that can be respectively
calculated by

Pyy,k =
1
2 n

2 n∑
i=1

Y i,kYT
i,k − ỹk ỹ

T
k + Rk , (38)

Kk = Pxy,kP−1yy,k . (39)

Finally, for convenience, the proposed ARCKF approach
for power system dynamic state estimation against outliers is
fully summarized as Algorithm 1.
Remark 2: To deal with the outliers, by utilizing the

M-estimation method, a robust Kalman filter was proposed
in [32]. Then, following this work, the improved EKF and
UKF methods with the similar structure were proposed
in [24], [27]. In these methods, the approach in (36) is utilized
for updating the estimation error covariance matrix to acquire
the strong robustness against outliers. However, it is worth
pointing out that the utilization of this method might be too
conservative, due to the overemphasis of accommodating the
worst condition (with large outliers) at the cost of optimality
of the method. Thus, in order to improve the robustness
of the proposed method without decreasing the accuracy of
state estimation under normal condition, a novel adaptive
strategy that makes P̂k adapt to the dynamically changing
environment is proposed in (37).
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FIGURE 2. Single-line diagram of 10-machine 39-bus test system.

Remark 3: With the specific design in (37), while the out-
liers existing, the state estimation error covariance matrix of
P̂k will be set as (36) to acquire the strong robustness against
outliers and avoid the proposed method divergence; on the
other hand, while there are no outliers, P̂k will be set as
P̃k−KkPyy,kKT

k , so that more accurate state estimation results
can be achieved.

IV. NUMERICAL RESULTS
In this part, extensive simulations have been conducted on the
IEEE 10-machine 39-bus system to evaluate the efficiency
of the developed ARCKF method. The single-line diagram
of this test system is presented in Fig. 2, whose detailed
data can be acquired from [37]. Here, the transient stability
simulation is performed to generate the simulated PMUmea-
surements and true state variables. The simulation consists of
the following steps: a three-phase fault is applied to bus 16 at
t = 0.5s to simulate a large system disturbance, where the
fault impedance is 0.001pu and the fault is cleared at t = 0.7s;
the simulated values of the measurement variables in (4) are
corrupted by additive noises to simulate the realistic PMU
measurements; note that the sampling frequency of measure-
ments is 50 frames per second. For the state initialization,
the steady-state power flow solutions are utilized. In addi-
tion, the standard deviations of the measurement and process
noise are assumed to be 10−2. More importantly, the conven-
tional UKF method [18], the conventional CKF method [19],
and the robust generalized maximum-likelihood unscented
Kalman filter approach (GM-UKF) proposed in [27] are also
performed, based on the same model and measurements,
so as to effectively evaluated the efficacy of the proposed
ARCKFmethod under different case studies. Note that all the
following tests are performed on a computer with Intel Core
CPU i5-6500 @ 3.2 GHz and 8-GB RAM.

To comprehensively assess the performance of the
proposed method against outliers and the computational

FIGURE 3. Estimated results of δ and ω for Gen. 8 in the Case Study 1:
Normal operating condition.

efficiency, the following five comparative experiments are
implemented in the test system:
Case Study 1: The conventional UKF method [18], CKF

method [19], GM-UKF method [27] and the proposed
ARCKF approach are implemented in the test system under
the normal condition without innovation and observation out-
liers, where the state estimation accuracy of each method is
investigated and compared in detail.
Case Study 2: The performance of all the four discussed

approaches with measurements data missing that might be
caused by the momentary loss of communication link is
investigated and analyzed.
Case Study 3: The effects of observation outliers on the

state estimation performance of the discussed methods are
investigated.
Case Study 4: The efficacy of each discussed approach

against the innovation outliers that might be caused by
the impulsive system process noise or imperfect dynamical
model are compared.
Case Study 5: The computational efficiency of all the dis-

cussed approaches under the case studies 1-4 is investigated
and analyzed.

A. CASE STUDY 1: NORMAL OPERATING CONDITION
In this case, the performance of the proposed ARCKF
approach under normal operating condition is investigated.
Specifically, a zero mean Gaussian noise with standard devi-
ation 10−2 is assumed for both the process and measurement
noise; the initial state estimation error covariancematrix of all
the discussed approaches are set to 10−5I4×4. The tracking
results of each method for Gen. 8 are shown in Figs. 3 and 4
(actually, the methods have been tested in each generator of
the test system, and the simulation results are consistent with
the test results of Gen. 8. However, due to the page limit, only
the results of Gen. 8 are presented).

VOLUME 7, 2019 105877



Y. Wang et al.: ARCKF for Power System Dynamic State Estimation Against Outliers

FIGURE 4. Estimated results of e′
q and e′

d for Gen. 8 in the Case Study 1:
Normal operating condition.

It is observed from these figures that all the four discussed
approaches can estimate the system states accurately under
this ideal condition. However, it should be noticed that the
state estimation accuracy of UKF is lower than that of CKF,
especially in estimating the state of e′d . Similar observations
have been noticed in [13]. This is due to the fact that CKF
utilizes the spherical-radial cubature rule, which can achieve
a higher approximation accuracy of nonlinear system. The
GM-UKF method in [27] can achieve better performance
than the conventional UKF and CKF methods, due to its
high measurement redundancy and the estimated states can
be revised many times by the IRLS method. More impor-
tantly, as expected, the proposed ARCKF approach achieves
much better performance than the GM-UKF method, due
to its state estimation covariance matrix shown in (37) can
be dynamically adjusted to the best status according to the
changing environment, which could achieve a high estimation
accuracy. These comparisons demonstrate and confirm the
superior performance of the proposed method.

B. CASE STUDY 2: MOMENTARY MEASUREMENT MISSING
For a practical power system, the momentary measurement
data missing may occur due to cyber-attacks, device failures,
and communication interruptions, to cite a few [24]. In this
case, the measurements eR and eI of Gen. 8 are assumed to
be momentary missing from t = 2.2 s to t = 2.3 s. Thus,
the corresponding measurements are unavailable during this
time period and their values are set as zero for simulation
purpose.

Figs. 5 and 6 display the estimated results of Gen. 8 by
using the discussed methods. From these test results, it can
be easily found that both the standard UKF and CKF are not
capable of tracking system dynamic states while the momen-
tary measurement missing, whose estimated results deviate
greatly from their true values. By contrast, the GM-UKF

FIGURE 5. Estimated results of δ and ω for Gen. 8 in the Case Study 2
with the measurements missing from t = 2.2 s to t = 2.3 s.

FIGURE 6. Estimated results of e′
q and e′

d for Gen. 8 in the Case Study 2
with the measurements missing from t = 2.2 s to t = 2.3 s.

method and the proposed ARCKF can suppress the adverse
effects of the measurement missing. However, the pro-
posed ARCKF method can achieve a much better statistical
efficiency than GM-UKF [27], which exhibits a stronger
robustness.

C. CASE STUDY 3: OCCURRENCE OF
OBSERVATION OUTLIERS
In this scenario, the effects of observation outliers on the
performance of all the discussed methods are investigated
and compared, where the measurement ω of Gen. 8 is con-
taminated with gross errors from t = 2.2 s to t = 2.4 s
by changing its value to 1.028 pu, simulating an impulsive
communication noise.

The estimated results are shown in Figs. 7 and 8. It can
be observed that both the standard UKF and CKF are not
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FIGURE 7. Estimated results of δ and ω for Gen. 8 in the Case Study 3,
where the measurement ω of Gen. 8 is contaminated with gross errors
from t = 2.2 s to t = 2.4 s.

FIGURE 8. Estimated results of e′
q and e′

d for Gen. 8 in the Case Study 3,
where the measurement ω of Gen. 8 is contaminated with gross errors
from t = 2.2 s to t = 2.4 s.

robust to observation outliers, due to the yield significantly
biased results at the time while observation outliers occur.
In contrast, the GM-UKF approach [27] can achieve more
accurate estimation results than the conventional UKF and
CKF methods, which can suppress the observation outliers
to some extent. However, the GM-UKF [27] can not dynam-
ically adjust the mismatched estimation covariance to the
changeable conditions, its estimation errors are still large.
By contrast, with the utilization of the GM-estimator and the
adaptive state estimation error covariance matrix technique,
the proposed method is not only effectively mitigate the
adverse effects of the outliers but also achieve a higher esti-
mation accuracy. These comparisons prove the strong robust-
ness of the proposed method against observation outliers.

FIGURE 9. Estimated results of δ and ω for Gen. 8 in the Case Study 4,
where the predicted value of e′

q is changed into 0.9 pu from t = 2.4 s to
t = 2.6 s.

FIGURE 10. Estimated results of e′
q and e′

d for Gen. 8 in the Case Study 4,
where the predicted value of e′

q is changed into 0.9 pu from t = 2.4 s to
t = 2.6 s.

D. CASE STUDY 4: OCCURRENCE OF
INNOVATION OUTLIERS
As previously stated, for a practical power system, the inno-
vation outliers are often introduced by the undesirably impul-
sive system process noise or inaccurate approximation in the
state prediction model. To investigate the performance of
each discussed approach under this situation, the predicted
values of e′q are changed to 0.9 pu between t = 2.4 s and
t = 2.6 s.
The comparison results are presented in Figs. 9 and 10.

As expected, due to the non-robustness of UKF and CKF
methods, their performances are degraded sharply when the
innovation outliers occurs, yielding unreliable tracking trajec-
tories. Both the proposed ARCKF method and the GM-UKF
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TABLE 1. Average computing time of the each discussed method.

approach [27] outperform the conventional UKF and CKF
approaches, due to their robustness against the innovation
outliers. However, ARCKF achieves much better statistical
efficiency than the GM-UKF method. These comparisons
further prove and confirm the superior performance of the
proposed method.

E. CASE STUDY 5: ASSESSMENT OF
COMPUTATIONAL EFFICIENCY
In the design of DSE, computational efficiency is another
important factor to be considered, due to a state estimation
approach must be fast enough to catch up with the measure-
ment data flow. To verify the applicability of the proposed
ARCKF approach to on-line dynamic state estimation with
a PMU sampling rate 50 samples/s, its computational effi-
ciency is investigated and compared to that of the GM-UKF,
the standard CKF and the UKF in the case studies 1-4. The
average computing time of each method required for one
iteration is displayed in Table I.

It can be seen from the table that all the four discussed
approaches have comparative computational efficiency.
Specifically, the CKF method owns the fastest computing
speed, followed by the UKF. This is due to the fact that
UKF engages one more sigma point for each state, yielding
in larger matrices. Both the proposed ARCKF method and
GM-UKF approach [27] require more execution time than
the standard UKF and CKF methods, due to they contain
more equations. However, although the execution time of
the proposed ARCKF approach is slightly longer than the
other discussed methods, it is still much lower than the PMU
sampling period (20ms), demonstrating its ability to track the
dynamic system states in real-time.

V. CONCLUSIONS
This paper proposed an adaptive robust cubature Kalman
filter for power system dynamic state estimation against inno-
vation outliers and observation outliers. The method has the
following excellent features
• based on the statistical linearizaition technique, a batch-
mode regression form in the framework of CKF was
developed by processing the measurement data and
predicted state information simultaneously, yielding an
enhanced observation data redundancy. This redundancy
is necessary and important for the designed dynamic
state estimator to suppress the innovation outliers and
observation outliers;

• the innovation and observation outliers can be detected
and downweighted by utilizing the robust projection
statistics, based on which, the adverse effects of the
innovation and observation outliers can be effectively
suppressed by solving the robust GM-estimator;

• an adaptive strategy that makes the state estimation error
covariance matrix adapt to the dynamically changing
environment was designed, which can further enhance
the robustness of the proposed method without decreas-
ing the accuracy of state estimation under normal
condition.

Extensive simulation tests carried out on the IEEE New
England 10-machine and 39-bus test system under vari-
ous operating conditions demonstrated the effectiveness and
robustness of the proposed method.
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