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ABSTRACT

The purpose of this study was to employ a constructivist model of learning
in the investigation of the Direct, Meaning, and Problem Process Teaching
approaches. The Direct Teaching approach emphasizes the algorithmic structure of
matkematics content. The Meaning Teaching approach extends the Direct approach
by ernphasizing the representations of, and relationships between mathematical
ideas. The Problem Process Teaching approach further extends the Meaning
approach by adding a problem solving component at the beginning of each class in
which generalized process skills are addressed.

A constructivist model of learning was built around three major
components, including propositional knowledge, procedural knowledge, and
cognitional knowledge. Propositional knowledge is defined as the meaningful
relationships and connections drawn between mathematical concepts. Procedural
knowledge is defined as the collection of computational procedures related to a
mathematics topic, and cognitional knowledge is defined as a general knowledge
form which enables and facilitates the development of both propositional and
procedural knowledge.

The study was conducted under a pretest—post test-retention test design. A
total of nine teachers and 240 students participated in this study. The teachers were
asked to deliver the grade eight percent unit according to an assigned teaching
approach: three teachers were assigned to each of the teaching approaches.
Development of prepositional knowledge was assessed using the scructured tree

recall task, a card sorting and memory task in which students place together words



that "go together.” Development of procedural knowledge was assessed using a
diagnostic-performance test built around the objectives in the Alberta grade eight
percent unit. Fifteen clinical interviews were also conducted to assess the levels of
cognitional knowledge expressed by those students who had shown gain in both
propositonat and procedural knowledge structures during instruction.

It was found that: (a) the Meaning Teaching approach facilitates the
development of propositional knowledge, (b) the Direct and Problem Process
Teaching approaches facilitate the development of procedural knowledge, (c)
propositional and procedural knowledge grow independently, and (d) cognitional
knowledge (particularly identification and synthesis) is related to a students’ ability

to construct propositional and procedural knowledge.
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CHAPTER ONE

Introduction of the Study

Davis (1983) argues that teachers historically have not been teaching
mathematics in a meaningful way, but instead are teaching through rote instruction.
He contends that students construct knowledge even when active meaningful
construction of knowledge is not supported by the teacher; he argues that this may
be an important source of students’ misconceptions. Davis also claims that the
intuitive understandings children hold prior to instruction are the foundation for the
building of powerful mathematical ideas:

This view holds an important implication both for curriculum and

for diagnosis and evaluation: the job of an instructional program is

to make solid contact with the mental representations that a student

already possesses and to provide those experiences and

interpretations that will help the student develop his or her

representational capability further, hence becoming able to represent

mcre complex mathematical situations and mathematical knowledge

(pg. 108).

Davis concludes his argument by stating that students could learn significantly more
mathematics if it were taught from a constructivist perspectve.

Iripositionism is the opposite to constructivism. The primary goa! of
impositionism is the achievement of a given student performance ability. The
primary goal of constructivism is individually constructed knowledge systems
which empower students to complete generalized tasks. Imposiﬁonism might best
be described as predominantly rote leaming or learning through drill and practice.
According to Cobb (1988), under impositionism students are forced to adhere to

prescribed methods of task completion, and thus develop these perceptions: (a)

mathematics is basically arithmetic procedures which are to be memorized, (b)



specific facts and skills are really isolated goals, (c) teaching occurs only by direct
explanation and the completion of large amounts of homework, and (d)
instructional failures are met with the repetition of familiar instructional cycles.

The issue that these researchers address is the relationship between
instruction and student leamning, a theme adopted by the present study. The general
problem this study pursues is to employ a cognitive science framework to

investigate the teaching and learning of mathematcs.

A HISTORICAL PERSPECTIVE

Romberg and Carpenter (1986) have provided a good historical review of
the projects which have culminated in recent research on mathematics students’
cognitive constructions and the teaching processes which affect these constructions.

In the 1920s, research on instruction was primarily conducted by
behaviorists such as Thorndike who believed that through reinforcement students
could learn to perform mathematical processes more effectively. Attempts to
implement behaviorist principles into models of instruction failed, and were later
replaced with an emphasis on providing students with more meaningful learning
experiences.

Authors and researchers such as Brownell in the 1930s, 1940s and 1950s
advocated rooting fundamental mathematical ideas in student experiences and
providing more meaningful experiences by enabling students to generalize abilities
from one content area to another. The goal under this format of instruction was for
the student to achieve a level of "meaningful habituaton,"” which means o achieve
a high level of understanding with the ability to recall and use information in an

almost automatic manner. Brownell (1987, a reprint of much earlier work)



advocated the use of drill to achieve this automatic recall ability. He recommended
that these drills be implemented after a high level of student understanding was
achieved.

The research and work of Piaget became quite prevalent in the 1950s.

Piaget was not intending to directly investigate the leaming processes in
mathematics through his research, but many of the principles and constructs he
described did seem to directly relate to this subject discipline. It was difficult to
derive implications for classrooms from Piaget's work as he was primarily
concerned with describing general stages and processes of student learning, not in
relating these stages to teaching processes.

In the 1960s, Gagné provided more specific guidelines on how mathematcs
may be taught in order to enhance student learning. He employed a task analysis
model which enabled the mathematics curriculum to be broken down into a
hierarchy of discrete concepts and processes which could then be reassembled into
a curriculum. It was believed that if the curriculum was presented in proper
sequence and with appropriate pacing, then it would be easy for students to learn
and digest. The difficulty with this model was that it did not account for the
individuality of students and presumed that the ability of students to learn
mathematics was limited primarily to the pacing and sequencing of instruction.

The 1970s and 1980s were characterized by a shift toward an information
processing model of instruction which gave greater recognition to the individuality
and unique learning styles and abilites of different students. Under the information
processing model, the human mind was attributed three major memory components:
sensory buffer, short term memory, and long term memory (Shavelson, 1974 and

Frederiksen, 1984). The sensory buffer retains information only for a very short



period of time, just long enough for it to be classified, coded, stored, or ignored by
the short term memory. Long term memory stores information virtually
permanently. During instances of learning, information in the long term memory
interacts with new knowledge. Information is stored within the long term memory
as the collection of nodes and interconnections between nodes. When knowledge is
retrieved from long term memory it is recalled in the form of chunks, or groups of
nodes which have been stored together by virtue of their interconnectedness. The
short term memory contains the information that is currently being used. It is also
responsible for monitoring the flow of information from the senses to the long term
memory and vice versa to allow processing. In the average adult the short term
memory may only contain five to seven items at one time.

Romberg and Carpenter (1986) state that research conducted under the
precepts of the information processing model can be divided into two groups:
research striving to better understand the components within the information
processing system, and research striving to better understand the functioning of the
system during the learning of specific content. In various forms, the information
processing model is still accorded much discussion today.

The current models of learning and teaching appear to be direct descendants
of the 70 year history briefly « _scribed above. Individuals store information in
long term memory in chunks and networks. The manner in which information is
stored is critical to how effectively it may be recalled and used. Thus, the limiting
variable of long term memory is the accessibility to inforrnation. One variable
influencing recall is metacognition, which is one's awareness of one's own mental
processes and the ability to control these processes. Students "are not passive

learners who simply absorb knowledge. Children come to school with rich



informal systems of mathematics. They actively structure incoming information
and attempt to fit it into their established cognitive framework"” (Romberg and
Carpenter, 1986, pg. 858). Current models of learning place a great deal of
emphasis on the individual's ability to construct knowledge or assemble ideas in
meaningful ways. Current models of teaching attribute to the teacher the role of
pointing students toward new and important experiences through which ideas may
be accommodated and assimilated by students into existing cognitive structures.

These beliefs have led to concrete guidelines pertaining to how classroom
instruction should be delivered, how curriculum may be interpreted, and how
research may be conducted. Romberg and Carpenter (1986) state:

In general, it appears that it is important to stress relationships

between concepts, especially higher-order relationships that are

related to ways the concepts may be used to solve problems. The

analysis of conceptual maps constructed by experts in a field

provides a framework for organizing instruction to emphasize

important correspondences between related concepts, and the

analysis of students' conceptual maps provides a means to evaluate

their level of understanding of a topic (pg. 857).
Teachers should: attempt to link and relate concepts; strive to help students develop
processes which enable them to provide meaning to their learning through the
interaction of new ideas with those stored in long terrn memory; not overwhelm the
limitations of the short term memory (Romberg and Carpenter, 1986); and,
recognize that misconceptions are the direct product of incorrectly structured
schemata, and not a cos:sequence of absent schemata (Davis, 1983). Curriculum
should be prepared for instruction through proper sequencing which enables
concepts to be built up or constructed by individual students rather than imposed by
teachers (Cobb, 1988). Research should be conducted that will link learming and

teaching theories. Despite what is now known about how and what students learn,

Romberg and Carpenter argue that research has not employed this knowledge in



investigating teaching processes, and that the issues of student learning have not
been directly addressed. They state that "We currently know a great deal more
about how children learn mathematics than we know about how to apply this
knowledge to mathematics instruction” (pg 859), and that "current theories have
very little to say about classroom organization or interaction with students” (pg.
859).

Romberg and Carpenter (1986) conclude their article with several research
recommendations. One recommendation states that "Research is needed that blends
the strengths of current cognitive science research with a concern for the realities of
the classroom and focuses on students’ learning from instruction over extended
periods of time" (pg. 868). A second recommendation states that "The kind of
teaching study that needs to be done would bring together both notions about the
classroom, the teacher, and the student's role in that environment, and how
individuals construct knowledge" (pg 868). The present study has attempted to
implement these recommendations.

The present study is an investigation of the relationship between the
teaching and learning of mathematics, specifically the effect of different teaching
approaches on the construction of knowledge by students. In this study we will
derive and present a constructivist model of learning and employ components of
this learning model in the investigation of three teaching approaches. This
application of a constructivist perspective of learning will also speak to the
effectiveness of such a perspective as a means to make classroom decisions. We
have adopted Romberg and Carpenter's (1986) recommendations in applying recent
developments in the field of cognitive science in real mathematics classrooms for

the general purpose of investigating the relationship between teaching and leaming.



PARENT STUDIES

Two major works have served as the parent studies to the present research:
the Missouri Mathematics Effectiveness Project (MMEP) conducted by Good,
Grouws and Ebmeier (1983), and the Meaning in Mathematics Teaching (MMT)
Project conducted by Sigurdson and Olson (1988, 1989a, 1989b). The Missourn
Mathematics Effectiveness Project was designed to investigate and describe the
nature of effective mathematics teaching. The secondary purpose of this study was
to determine if teachers could be taught how to deliver effective mathematcs
instruction given the results of the first phase of the project. The Meaning in
Mathematics Teaching Project was designed to investigate the effect of three
different teaching approaches on the general achievement, attitude and probicm
solving abilities of grade eight Alberta students. The MMT employed the findings

of Good, Grouws and Ebmeier in their design of the teaching approaches.

Missouri Mathematics Effectiveness Project

The Good, Grouws, and Ebmeier (1983) project was conducted in the mid
1970s and early 1980s. It was characterized by a series of smalier research projects
imbedded within a larger structure intended to study and identify the qualities of
effective mathematics instruction. A variety of naturalistic and experimental study
designs were employed. Their project evolved from a concern that though many
studies had been conducted to identify the qualities and attributes of effective
instruction, there appeared to be little consistency among the findings.

The first phase of the Missouri Mathematics Effectiveness Project (MMEP)



involved identifying the qualities of effective teachers. This phase of the project
was conducted in approximately 100 grade three and grade four classrooms. The
researchers began by identifying nine teachers who had proven themselves to be
effective over at least two consecutive years, and nine teachers who had proven
themselves to be ineffective over at least two consecutive years. Teacher
effectiveness was defined as: "student performance (residual gain) on a
standardized achievement test” (pg. 6), and was measured by tabulating student
scores on the Jowa Test of Basic Skills. Teachers whose students showed high
residual gain scores were considered effective. The researchers then randomly
selected another 23 classrooms (to protect the identities of the subjects) and with the
help of researci assistants visited all 41 classrooms approximately seven times. On
each visit the following data was recorded: time spent on instruction, time spent on
development, time spent on practice, teacher-student interaction patterns, teacher
behavior and managerial style, materials employed, and homework assignments.
The researchers discovered
high residual mean scores appeared to be strongly associated with the
following teacher behaviors: (1) large-group instruction; (2) generally clear
instruction and availability of information to students as needed (process
feedback, in particular); (3) a nonevaluative and relaxed leaming
environment which was task focused; (4) higher achievement expectations
(more homework, faster pace); and (5) classrooms which were relatvely
free of major behavior disorders (pg. 8).
From these generalizations the authors were able to develop a program of
instruction which could be prepared and implemented by other groups of teachers.
The second phase of the MMEP was designed to investigate whether
teachers could alter existing instructional approaches in order to implement the

qualities of effective instruction listed above. This phase involved a sample of 40

fourth grade teachers who were random!y assigned to treatment and control groups.



The treatment group was provided with two workshops to introduce the specific
model of instruction which was a product of the first phase of the study (see Figure
1). These teachers were then asked to implement this model. The researchers made
six visits to each classroom to evaluate the degree to which the model was being
implemented, and tested students' achicvements and changes in attitude. The
researchers state: "At this point the most reasonable interpretation is that the total
instructional treatment program, when implemented, had a positive impact upon
mean student achievement" (pg. 91). The second phase of the MMEP proved that
teachers could change instructional patterns, and that these changes couid result in
improved student performance on standardized tests and on verbal problem solving
tasks.

In the third and final phase of the MMEDP, the researchers attempted to
determine if the same results could be achieved when working with junior high
rather than elementary school teachers. A sample of 19 volunteers was found, and
these grade eight teachers were randomly assigned to control and treatment groups.
Each teacher was observed a total of twelve times. Again the researchers
considered the teacher's abilities to implement the instructional model and the
achievement levels of his or her students. The researchers report that the teachers
could implement the instructional model, and that this instructional model had
desirable outcome effects on student achievement, attitude, and problem solving

ability.

Meaning in Mathematics Teaching Project

The second major work which served as a parent study to the present

research was conducted by Sigurdson and Olson (1988, 1989a, 1989b).



Figure 1: Good, Grouws, and Ebmeier (1983) model of instruction: key

instructional behaviors

Daily Review (first 8 minutes except Mondays):

1.

Review the concepts and skills associated with the homework

2. Collect and deal with homework assignments
3. Ask several mental computation exercises

Development (ubout 20 minutes):

1.
2.

3.

4.

Briefly focus on prerequisite skills and concepts
Focus on meaning and promoting student understanding by using lively
explanations, demonstrations, process explanations, illustrations, etc.
Assess student comprehension

a. Using process-product questions (active interaction)

b. Using controlled practice
Repeat and elaborate on the meaning portion as necessary

Seatwork (about 15 minutes):

nalb ol e

Provide uninterrupted successful practice

Momentum - keep the ball rolling - get everyone involved, then sustain
involvement

Alerting - let students know their work will be checked at end of period
Accountability - check students' work

Homework Assignment:

1.
2.
3.

Assigned on a regular basis at the end of each math class except Fridays
Should involve about 15 minutes of work to be done at home
Should include one or two review problems

Special Reviews:

1.

Weekly review/maintenance
a. Conduct during the first 20 minutes each Monday
b. Focus on skills and concepts covered during the previous week

2. Monthly review/maintenance

a. Conduct every fourth Monday
b. Focus on skills and concepts covered since the last monthly review

According to these researchers "The major objective of this study is to compare

these three instructional approaches, using as a criterion for this comparison,
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mathematical achievement and attitude” (Sigurdson & Olson, 1989, pg. 1). The
general areas of interest in the MMT study included: (a) the mathematical
achievement of students under the three models, (b) the students' attitude toward
mathematics under the three models, (c¢) the performance of high and low achieveis
under the three medlels, and (d) the ability of teachers to imaplement the treatments
(Sigurdson & CGlson, 1988).

In the MMT, three different instructional models and one control group
were desigred by the researchers and implemented in 54 grade eight mathematics
classrcoms: conventions] textbook instruction (control group - CTT), the direct
model (DI), the meaning model (MI), and the problem process model (PPI).
Thirteen teachers were assigned to the CTI group, 13 to the DI group, 14 to the MI
group, and 14 to the PPI group. Approximately 1200 students were enrolled in
these 54 classes.

The Direct Teaching Approach. The Direct Teaching approach is a lesson
delivery format which incorporates the instructional pattern described by Good,
Grouws, and Ebmeier (1983, summarized in Figure 1). Teachers who implement
this model of instruction will: avoid any explicit attempts to link new ideas to past
learning, avoid the use of manipulatives, address problem solving only in an
attempt to unveil correct solution processes (but will not attempt to describe or
summarize these processes), and concentrate mainly on enabling students to
correctly employ and carry out algorithms. Development of concepts under this
model will typically entail several instances of teacher demonstration of algorithms
followed by teacher guided episodes of student practice. Under the Direct Teaching
approach, it is assumed that students will independently generate relationships

between mathematical concepts even though the teacher will make no explicit
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attempts to address such relatior Given that students are active interpreters of
their own environments, and are actively and independently involved in the
construction of mathematical knowledge, this teaching approach is a viable
classroom approach.

I'he Meaning Teaching Approach. The Meaning Teaching approach is also
a lesson delivery format which incorporates the Active Mathematics Teaching
lesson format described in Figure 1. Under the Meaning Teaching approach, the
teacher tries to: enable students to make links between present learning and past
ideas, provide applications of mathematical ideas thus relating these ideas to the
lives of the students or to the "real world," provide manipulative experiences which
enhanced a sense of 'acceptance,’ generalize processes to enable transfer to novel
situations, engage in a great deal of discussion with much student input, and ask
many process questions which force students to articulate relationships between
mathematical concepts.

Teaching methods under this approach involve attending to prerequisites,
artending to relationships, attending to representations, and attending to perceptions
(Good and Grouws, 1987). Attending to prerequisites means that the teachers will
ensure that students have mastered important form elements prior to developing the
interconnections or understanding elements which constitute a new concept.
Attending to relationships means that ideas must always be linked to similar or
related ideas rather than being presented in a vacuum. Attending to representation
implies that teachers must make clear what the symbols used in instruction
represent. Attending to perceptions means that teachers will help students "become
aware of the relevant aspects of the mathematical concept under study” (pg. 29).

Students should also become aware of other aspects that may be present but are not

12



relevant. Such awareness enables students to develop a mental image of the
mathematical concepts under study, and use this image to relate to previous learning
and to generalize to further contexts.

Under the Meaning Teaching approach, the teacher is responsible for
explaining why algorithms work, not just introducing them and having the students
practice them. Teachers are also responsible for showing how skills and ideas are
interrelated as well as showing how concepts can be distinguished one from
another. The teacher also provides labels for concepts and provides extensions and
applications of mathematiczl ideas in order to facilitate transfer (Good and Grouws,
1587). Other specific behaviors the teacher may engage in include the employment
of concrete manipulative materials, and the linking of syntax, language and
mathematical principles to these manipulatives.

Rathmell (1986) provides a list of some specific teacher behaviors which
should be avoided when striving to teach for meaning: fail to check for student
understanding of prerequisites, employ a rule-example-practice approach without
supplying any explanation, fail to use models and provide only a symbolic
explanation, use models without clear explanations, use models without correct
thinking, use models without connecting them to the symbolic work, use
inappropriate numbers for examples, ask questions but fail to answer or explain,
fail to clearly explain how to write the algorithm, develop an idea but fail to relate it
to the topic, fail to prepare students for transition to seatwork, and fail to ask
questions to check for understanding.

The Problem Process Teaching Approach. The Problem Process Teaching
approach is an extension of the Meaning Teaching approach described above except

time is provided (approximately 8 to 10 minutes usually at the beginning of a

13



period) to solve given problems and to articulate the processes required to solve
these problems. The Problem Process Teaching approach involves both the
construction of meaning and the development of problem solving processes through
specifically designed exercises. In the MMT project, the actual selection of
problems was left to the teacher; however, workshops were conducted by the
researchers with the teachers to discuss the major principles of this teaching
approach, and some problems were constructed and organized during the workshop
sessions for instructional purposes. Some of the major principles of problem
solving instructic.: discussed with the teachers at the workshop sessions are
described by Charles and Lester (1984) and Good and Grouws (1987).

Effective methods of problem solving instruction are not clearly understood
(Charles and Lester, 1984), but three principles are generally accepted: (a) students
must solve problems in order to become good problem solvers. Students do not
develop problem solving skills solely from experience with heuristics or the
development of specific skills such as translation. These skills and heuristics must
be drawn together through more generalized and complete first-hand experiences.
(b) ability in problem solving develops over a prolonged period of time. Students
do not become goed problem solvers during one or two week courses, the specific
skills involved take longer than that to develop, and (c) the program in which
problem solving is taught must be systematically planned. The skills and concepts
must be consciously and regularly introduced and practiced in order for efficient
learning to occur.

Good and Grouws (1987) suggest that the teacher should ask students how
they received their answers, should provide more exercises in mental computation

and estimation, and should place more attention on the multiple methods of problem
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solving. Asking students how they received their answers encourages them to
focus more clearly on the process than on the product, while the mental
computation and estimation skills provide students with a way of checking,
evaluating and monitoring their work. Attention to the multiple methods of problem
solving helps students develop an awareness of the variety of available problem

solving strategies and heuristcs.

Each of the three treatment group teaching approaches were asked to use the
Missouri Mathematics lesson format (see Figure 1). This lesson format was
implemented in an attempt to standardize the teaching models. Sigurdson and
Oilson (1989a) state:

In this way, the major differences between the instructional models

{were] the approach to the mathematics content in the lessons:

algorithmic-practice in the DI, meaning in the MI, meaning and

problem processes in the PP1. By using the Missouri Mathematics

Project lesson format, many instructional variables, such as student-

teacher interaction, amount of homework, use of review and the

like, would be held constant. An additional element of control was a

common text across all classrooms in the study (pg. 3).

Severzl workshop sessions were held in order to assist the teachers in implementing
the lesson format and their randomly assigned instructional model. The workshop
session delivered to the DI teachers focused on the Missouri Mathematics Project
lesson format, as well as means to teach algorithms and procedures clearly. The
workshop sessions delivered to the MI teachers also addressed the lesson format,
but ways to implement a meaning focus were also discussed. The teachers spent
some time in developing and sharing appropriate classroom activities. The
workshop sessions delivered to the PPI teachers were similar to that received by the

MI teachers, except time was also spent on developing appropriate problem process

activities (Sigurdson & Olson, 1989a).
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Data was collected in the Meaning in Mathematics Teaching Project using
the following research tools: (a) trained observers visited each classroom a
minimum of five imes and recorded the sequence of events during class periods to
assess the teachers' abilities to implement the models as i:istructed; (b) pre, post and
retention tests were developed and administered to students to test a “range of
knowledge, comprehension and problem solving items" (Sigurdson & Olson,
19893, pg. 5); (¢) an attitude scale was developed and delivered to students both pre
and post reatment; and (d) a questionnaire was administered and several teachers
were interviewed to assess teachers' perceptions of the models they implemented.

Many important conclusions were drawn and organized around six
fundamentai questons. The first question involved comparison of student
performance in the group of control teachers with the students taught by teachers in
the innovative models. The researchers found that all three models (DI, MI, and
PPI) produced statistically significantly higher student achievement scores, but no
statistically significant difference between the three innovative instruction groups.
The second research question involved comparison of the performance of students
by ability level. The researchers found that high achieving students benefitted
equally from the direct and meaning teaching models, but did not seem to venefit
from the problem process wreatment. The researchers also found that:

Low achieving students are the only group who do not lose from the

problem process approach (when compared to the meaning group).

One thing is clear, something different is going on in the Problem

Process approach than in the other two, and this "something" is of

ng;.eﬁt to low achieving students (Sigurdson & Olson, 1989b, pg.
The researchers later reanalyzed their data eliminating low implementers from each

group (i.e., those teachers who had shown the least tendency to implement their

innovative teaching model effectively). The researchers were then able to report
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that only medium and high ability students benefit under the meaning model, while
all students benefit under the problem process model. This observation was a
strong endorsement of the problem process model.

In their third research question, the researchers attempted to compare the
efiectiveness of the instructional models (DI, M1, and PPI) in above and below-
average classes. They found that the below-average classes, in general, did not
benefit from the meaning or problem process models, and thus concluded that the
extra effort required to implement these models could not be justified in classes of
general low ability. The fourth research question attempted to investigate the effect
of the four teaching approaches on six attitude factors, including: the ease of doing
math, independence from the teacher, the importance of studying math, the fun of
doing math, the meaning of math, and the relationship between math and problem
solving. No significant results were found. The same comparison was employed
in the fifth research questic involving only students from general high ability
classes, and it was found that students in the problem process model found
mathematics to be more enjoyable and fun.

The sixth research question intended to determine if teachers could
implement their assigned model of instruction. The researchers found that the
models were not of equal ease to implement, that is, teachers had less difficulty
implementing the direct model than the meaning model. Teachers also had less
trouble implementing the meaning model than the problem process model. Asa
consequence of this discovery, the researchers were forced to conclude that (a)
though the meaning model was adequately implemented in low achieving
classrooms, it seemed to have little positive effect on the students, and (b) the low

implementation level of the problem process model may have prevented the
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demonstration of the full potential or effectiveness of this model.

In their entrely, the results of the Meaning in Mathematics Teaching project
present a srong endorsement of the problem process model. As stated in the final
report (Sigurdson & Olson, 1989b):

The above conclusions taken together support the problem process

approach. When implemented to a high degree, it does not lag

behind the meaning approach; in above-average classes although

lagging behind meaning in achievement, it benefits the low students

as well as the high and medium; and finally it transmits a more

positive attitude to learning mathematics. While it does seem 1o have

the greatest potential, it also offers the greatest difficulty for

implementaton (pg. 67).

These results also provide a strong endorsement of the Missouri Mathematics

Project lesson format (Sigurdson & Olson, 1989a).

In general, the Meaning in Mathematics Teaching Project conducted by
Sigurdson and Olson may be characterized as an attempt 1o look at achievement at a
gross level. There exists a deeper level at which achievement or learning may be
investigated: the level at which knowledge is constructed. The purpose of the
present study is to investigate students’ construction of knowledge, and to
investgate the affects of the three defined teaching approaches on the knowledge
constructed. This investigation attempts to draw links between approaches to
teaching and leaming processes, necessitating the adoption of a particular process
or description of learning. The constructivist perspective has been adopted as a
current, widely-accepted description of learning (Davis, Maher & Noddings,
1990).

The results of the MMT show clearly that the three different teaching models
did have different affects in terms of gross measures of student learning, but given

the tools employed, this finding says little about the manner in which the
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mathematics was learned, or the differental affects of the teaching models on the
knowledge that was constructed. The MMT was ultimately a curriculum
implementation study, whereas the present study deliberately adopts a constructivist
perspective on learning and employs this perspective to investigate the teaching
approaches. In turn, this application of a constructivist learning model will act as a
means to test its viability, i.e., its potential to describe the processes involved in the
learning of mathematics in a classroom environment.

The present study and the MMT are similar in that both are teaching
experiments, but they do differ in a number of dimensions. First, the present study
employs only nine of the 54 teachers involved in the MMT. Second, because this
project is build around a particular model of student learning and mathematical
understanding, it has adopted instrumentation appropriate to this model. In the
present study the purpose is to investigate the construction of knowledge, thus
specific tests have been adapted and employed to measure forms of knowledge
constructed. The major purpose of the MMT was to investigate students'
achievement and attitudes, thus different tests appropriate to this purpose were
employed. Finally, the present study was conducted over the course of a single
teaching unit, while the MMT was conducted during the better part of a full school
year. Because the purpose of this study was to investigate students’ knowledge
construction, it was necessary to limit the investigation to a particular context and

content area (as recommended by Hiebert and Wearne, 1988).

LIMITATIONS AND DELIMITATIONS

Limitations are defined as the variables over which a researcher has no

control. The primary limitation of this study is that there currently exists no way of
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definitively and directly measuring students’ cognitive structures. The development
of more reliable and valid measures is a current research interest. The fact that no
such measures exist is primarily a consequence of two variables: (a) any cognitive
structure is affected by emotions, and (b) all cognitive structures are undergoing
constant change as new information is assimilated and accommodated. Because of
the dynamic nature of cognitive constructions and the unpredictable affect of
emotions on these constructions, any attempt to investigate cognitive constructions
must be recognized as somewhat limited. Tests do exist for providing momentary
descriptions (called cognitive maps) of students' constructions, but these maps
must be considered simply snapshots (or even reflections) of students' cognitive
networks.

An unfortunate second limitation to this study exists. In the design of this
study fifteen interviews were planned. All fifteen interviews were conducted, but
only eleven of the interviews were fully transcribable: three interviews were lost,
and one was only partially transcribable. These interviews were lost due to
technical failure of the recording apparatus. The loss of this data was unfortunate
but unavoidable.

Delimitations are the variables or dimensions which the researcher chooses
not to address or include within a study. Three delimitations exist: (a) this study
does not directly attempt to examine learning in any other content domain than the
grade eight percent unit. This decision was made based upon the limited resources
of the researcher, the time at which the unit was taught, the time commitment of the
teacher participants, and the need to provide a specific content domain. (b) this
study attempts only to investigate student knowledge construction despite the fact

that many other outcomes of learning exist, including: students' attitudes, students’
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sense of efficacy, and students' social development. These other outcomes were
considered in the Meaning in Mathematics Teaching Project and thus are not
considered here. (c) this study does not attempt to investigate the degree to which
the teachers implemented their respective instructional models. The teachers who
participated in this study were selected according to their level of implementation as
determined by their participation in the MMT study (i.e., they were all high
irnplementers). Furthermore, because the question of the ability of teachers to
implement a given model was a research interest of the MMT, it was not pursued
here, and an assumption was made that teachers were in fact following the
instructional format to which they had been assigned.

The percent teaching unit was investigated for three reasons: (a) the time of
year in which it was taught, and the fact that this time coincided with the
researcher's opportunity to undertake the research, (b) the percent unit is a general
unit in that it may be easily related to other math topics and units such as data
management, fractions and decimals, and ratio and proportion. Its close
relationship with many other topics permits many interconnections to be developed.
Furthermore, its close relationship to these topics implies that if students perform
well in this unit they are likely to perform well in the related units, and (c) the study
attempted to compare the influence of three instructional approaches on student
learning, and in so far as all three are viable approaches to instruction, it is
irrelevant which unit is chosen; thus, the arguments of accessibility and
generalizability prevail.

The actual topics which were to be addressed during the instruction in this
phase of the study were entirely determined by the parameters of the Sigurdson and

Olson (1988) study, but even within that study, topics were primarily determined
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by the demands of the Alberta curriculum and the resources made available through
the adopted textbook. In the Joumneys in Math 8 text, the percent teaching unit
contains the following topics in order: meaning of percent, expressing fractions
and decimals as percents, percents as decimals and fractions, finding a percent of a
number, percent and circle graphs, finding a number when a percent of it is known

Y

discount, sales tax, simple interest, percent gain, and percent loss.
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CHAPTER TWO

Review of the Literature

The purpose of this study is to investigate three teaching approaches
through the application of a theoretical model of learning derived from constructivist
principles. The purpose of this chapter is to summarize the literature which
describes and summarizes the constructivist perspective. Several teaching
experiments attempting to relate teaching method to leaming outcomes will be
reviewed. This chapter concludes with a description of the theoretical constructivist
learning model which will be used to analyze the Direct, Meaning, and Problem

Process Teaching approaches.

CONSTRUCTIVISM AND INSTRUCTION

Plunkett (1981) has argued that knowledge must he constructed in the
learming of mathematics. To try to separate 'mathematics’ from 'self' and demand
that math exists objectively in the world and therefore must be learned in some
objective form, makes mathematics unlearnable. Plunkett asks:

What is mathematics? ... I think that the question is the wrong one.

It assumes that there is a thing called mathematics which has some

sort of objective existence, and thus a nature which can be defined.

But there is no such thing: we are deceived into thinking that there

is by our inveterate habit of using nouns ... treating mathematics as

a human activity rather than an ontological problem has the distinct

advantage that we can feel we are dealing with an answerable

question (pg 47).

Plunkett goes on to argue that all that can be known about mathematics is what
people do when they do mathematics. If this reasoning is accepted, then it must be

concluded that individuals construct their own mathematical realities as a result of
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their own experiences. This is the fundamental precept of the constructivist

perspective.
Cobb (1988) contends that there are two forms of instruction:
constructivism and impositionism. He defines the constructivist position:

From this perspective, mathematical structures are not perceived,
intuited, or taken in but are constructed by reflectively abstracting
from and reorganizing sensorimotor and conceptual activity. They
are inventions of the mind. Consequently, the teacher who points to
mathematical structures is consciously reflecting on mathematical
objects that he or she has previously constructed. Because teachers
and students each construct their own meanings for words and
events in the context of the ongoing interaction, it is readily apparent
why communication often breaks down, why teachers and students
frequently talk past each other. The constructivist's problem is to
account for successful communication. ...Similarly, teachers and
students who might be said to share mathematical meanings are each
making imperceptible accommodations in their ways of knowing.
From this perspective, the process of successfully sharing or
exchanging mathematical thoughts and ideas is not viewed as one of
transmission. Instead, it is characterized as a dynamic continually
changing fit between the meaning-making of active interpreters of
language and action (pg. 89).

According to Cobb's description, the major principles of constructivism are: (a)
individuals create their own mathematical understandings through the processes of
abstraction and reorganization from sensorimotor and conceptual data, (b) the
teacher serves the function of pointing or directing the students to manifestations of
new concepts, (c) communication is an essential and problematic element in helping
students construct knowledge, and (d) learning is characterized as a dynamic
activity, embodied in language and action, in which students and teachers develop a
fit between constructed meanings of their collective and individual experiences.
Noddings (1990) has argued that constructivism has many strengths as a
pedagogical view. She reiterates Cobb's (1988) assertion that knowledge is a
constructed entity, but goes on to provide a summarized list of the major principles

of constructivism, including:
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1. All knowledge is constructed. Mathematical knowledge is
constructed, at least in part, through a process of reflective
abstraction.

2. There exist cognitive structures that are activated in the processes
of construction. These structures account for the constructon,;
that is, they explain the result of cognitive activity in roughly the
way a computer program accounts for the output of a computer.

3. Cognitive structures are under continual development.

Purposive activity induces transformation of existing structures.
The environment presses the organism to adapt.

4. Acknowledgement of constructivism as a cognitive position leads
to the adoption of methodological constructivism (pg. 10).

It could be argued that Noddings' second point is somewhat deterministic and thus
inappropriate as it relates to learning situatons. The element of predictability
associated with programming cannot be generalized to learning contexts. Her intent
(that what students bring in the sense of conceptual networks to the learning context
affects the process of knowledge construction) remains a critical precept of the
constructivist perspective. Noddings does however support the notion of the
dynamic nature of cognitive structures and the importance of the environment in the
learning context. She concludes by stating that adoption of constructivist principles
necessitates adoption of particular teaching methods commesurate with those
learning principles.

A common theme to the works of Cobb (1988) and Noddings (1990) is the
importance of the environment or context in which construction occurs. Sigurdson
(1988) argues that context is the means whereby a teacher can talk about
mathematical ideas with students. He contends that mathematics is difficult to
discuss once devoid of context. The learner will retain only that information which
is linked within a knowledge network, and linking may occur through

demonstration models, manipulative models, pictures, diagrams, and application
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stories (word problems). Sigurdson's discussion contributes a means whereby
students may construct knowledge.

Doyle (1988) argues that the tasks that teachers assign their students
constitute the context in which instruction (and thus knowledge construction)
occurs. He defines a task as having four components: (a) a goal state or end
product to be achieved, (b) a problem space or set of conditions and resources
available to accomplish the task, (c) the operations involved in assembling and
using resources to reach the goal state or generate the product, and (d) the
importance of the task in the overall work system of the class.

Plunkett (1981), Cobb (1988), and Noddings (1990) have provided an
overview and description of constructivist principles as they apply to instructional
situations. We have seen that the learner acts as a mediator in his or her own
learning, and that the learner is an active participant in the learning situation,
reflectively abstracting from and generalizing to his or her environment. We have
also seen that the environment constitutes the context in which construction takes
place, that the teacher (also an active interpreter and constructor of knowledge) acts

within this frame as an important component of the context.

EVIDENCE FOR CONSTRUCTIVISM

The constructivist perspective claims that learners act as constructors or
builders of their own knowledge. In order to substantiate this claim it must
therefore be shown that learners do act as "active interpreters of language and
action” (Cobb, 1988, pg. 89), and as mediators in their own leaming activities.
Several researchers have attempted to validate this constructivist principis.

Winne and Marx (1982) completed a study using the stimulus-recall
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technique. The study involved five teachers and 113 pupils in grades four through
seven. Teachers had ten lessons videotaped in a variety of content areas. After
each taped lesson, the teachers were interviewed to determine the times during the
lesson at which they intended the students to think in particular ways, and to
identify several incidents about which students should be interviewed. Following
the teacher interview, students were interviewed in groups (as small as two students
and as large as six) using a standardized process. The researchers were able to
surmnmarize a list of cognitive behaviors that teachers intended for their students.
Whenever either the student or the teacher reported that a particular way of thinking
was necessary or implied by the teacher behavior, the researchers looked for an
identifiable instructional stimuli for that thought process. It was found that many
instructional stimuli could be used to cue the same student thought process.

The research methodology which Winne and Marx (1980) employed
allowed them to draw several interesting conclusions, namely: (a) there was no
direct correspondence between the instructional stimuli which teachers intended and
the cognitive responses of the students, (b) there was an inverse relationship
between the amount of information students needed to process and the effectiveness
of the teacher stimulus, (¢) students could respond more easily to a teacher stimulus
when it demanded a well-developed cognitive response, (d) mastery over content
would limit the effectiveness of the teacher stimulus to evoke desired cognitive
processes, i.e., student content mastery was a prerequisite to activation of cognitive
processes by a teacher stimuli, and (e) students played a role in determining
whether specific cognitive process would be evoked. This final conclusion is vital
as it implies that "students will construct meaning for classroom activities regardless

of whether the teacher (or an instructional theory) does” (Winne and Marx, 1982,
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pg. 515). The authors draw the general conclusion that this study supports the
major principle: students' cognitive processes mediate instructional outcomes.

Peterson, Swing, Braverman and Buss (1982) and Peterson and Swing
(1982) also used the stimulated recall methodology to investi gate students' thought
processes during instruction. In this study 72 fifth and sixth grade students of
medium ability were taught a two day course on simple probability. Lessons were
delivered in the first hour of 2 three-hour sessions each moming. The classes were
observed and each students' behavior (whether he or she was on or off task) was
recorded every 20 seconds. Students were interviewed after each lesson using the
stimulated recall format. The results of the study were: (a) students who indicated
a higher degree of attention during class time scored higher on achievement
measures. Students' claim to having paid attention was a better predictor of
achievement than was the observational data, (b) students’ reports of understanding
were significantly and positively related to performance measures, (¢) students who
could articulate the specific strategies that they employed during instruction
performed better than those who could only describe general learning strategies.
The specific learning strategies that were identified include:

repeating and reviewing information to oneself, relating information

to prior knowledge, anticipating an answer to a teacher's question,

trying to understand the teacher or figure out a problem, checking

one's answer with a teacher or a student, reworking a problem in

one's head or on paper if the answer was incorrect, reading or

rereading directions or problems, and motivating oneself with self-

thoughts (pg. 487).
(d) two specific learning strategies were most advantageous if employed: relating
information to past knowledge, and trying to understand the teacher or problem,

and (e) students who reported motivational self-thoughts tended to have more

positive attitudes toward mathematics at the end of the session regardless of initial
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motivation levels.

In another study intended to replicate the one describec above, Peterson,
Swing, Stark and Waas (1984) found that the same effects held true, but they also
concluded that atitude was an important variable in student learning:

independent of students' mathematics ability, students’ reports of

negative evaluative self-thoughts were negatively related 1o students’

seatwork scores and to students' achievement scores and attitude

posttest scores ... motivation may affect academic outcomes because

of the student's willingness to engage in a task or to persist in

engagement or because of the degree of processing the student

engages in (pg. 511).
The authors state nicely that simply artending to the lesson is not the most important
mediating process, but that the "actual cognitive processes involved in processing
the mathematics information presented during classroom instruction ... may be as
important or possibly even more important than the quantity of that time" (pg. 512).
Again, these studies point out that students are mediators in their own learning.

Leinhardt (1988) conducted two studies within the topics of subtraction and
fractions. The first study was conducted with two high, four medium, and two low
ability grade two students. The students were interviewed once before, once after,
and twice during instruction. The researcher also conducted pre and post tests. In
the fractions study, the researcher used three high, five medium, and three low
ability grade four students. These students were interviewed twice before
instruction and once afterward. An in-class think aloud session was conducted
once with each student, and each also received a stimulated-recall interview. The
researcher found that the students were able to maintain a high level of
periormance, but upon probing, misconceptions in students' cognitive networks

apreared. Leinhardt states:

We have started a description of how and what children learn during
instruction. We have seen that in some cases at least, they enter into
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the process of instruction with some fairly powerful intuitive

concepts. During instructicn, however, neither the texts nor the

teachers seemed to capitalize on this knowledge as a basis for either

instruction or explanation of new material. We have also seen that

two children in di‘ferent classes learned the computational portions

of their math to a high level of skill, and it is important to not

underestimate that accomplishment in itseif. However, when we

probed in a somewhat elaborate way the concrete representations

and computational skills, we found that gaps still existed in both the

computational and concrete systems of knowledge (pg. 140).

In the fractions study it was found that students' intuitive knowledge was
suppressed by the memorization of algorithms. Three important conclusions may
te drawn from this study: (a) the student is seen as one who constructs
knowledge, (b) knowledge may be linked to intuidve understandings of the world,
and (c) in general, teachers make no attempt to link mathematical knowledge to
intuitive knowledge.

In a project conducted by Steffe (1983) six children, all seven years of age,
were interviewed and two (Scenetra and James) were selected for detailed analysis
due to their different (operative vs. formative) counting schemes. Operative
schemes involve internal mental operations, while formative schemes do not.
During the interviews the students were given addition questions. For example,
seven blocks would be placed on the table and the student would verify the numnber.
The blocks would be covered with a handkerchief, and then four more blocks
would be added. The student would be asked to tell how many blocks there were
altogether, and the child's method of determining the solution would be noted.
Scenetra, possessing an operative counting scheme, simply counted on the
remaining four to achieve a total of eleven. She knew that by counting to seven by
imagining the blocks she would reach seven again, therefore she needed only to

start at eight. James, on the other hand, possessing a formative counting scheme,

had 1o reconstruct the original seven by starting over at one and counting up to
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eleven. Scenetra had, in fact, created «n algerithm for counting which related the
words for the numbers to the quantity itself. James had not. Steffe states: "child
generated algorithms should be viewed as comprising a substantive part of the
child's arithmetical knowledge. They should be nurtured and allowed to grow into
increasingly powerful and sophisticated schemes" (pg. 119). Children do create
their own schemes as they build complex knowledge systems from intuitive
knowledge. From this perspective, the student i the mathematics classroom can be
seen as one who actively constructs kn. -~ iedge through learning experiences.

In summary, there appears to be a good deal of theoretical and research
evidence to support the claim that as a consequence of being mediators in their own
learning, students must perceive and interpret stimuli from teachers, draw
relationships between present knowledge and intuitive knowledge or past learning,
and build meaningful representations of concepts from varied contexts. Children

are active constructors of knowledge.

TEACHING EXPERIMENTS

The studies summarized and reviewed below are all teaching experiments in
that they attempt to investigate the changes evoked in studems' learning which are a
consequence of teaching methods. The studies can be divided into three groups:
(a) those that deal only with analyzing or investigating representations of students’
cognitive structures, (b) those that attempt to analyze or investigate the differential
affects of alternate teaching approaches, and (c) those that attempt to describe the

cognitive tools that empower knowledge construction.
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Investigations of Cognitive Structures

Fensham, Garrard and West (1981) provide an overview of studies
completed prior to 1981. They state that traditional cognitive mapping teaching
experiments have involved three stages. The first stage is identified by data
gathering. Historically many different forms for data collection have been
employed including: word associatior:, sentence writing, defining, card sorting,
essay writing, writing descriptions, interviewing, and solution articulating. The
purpose of this stage is to gain data from learners regarding concept associations.
The second stage is characterized by data analysis. The authors state: "Here the
researchers organize these data into a variety of structural forms using various
procedures that include coding, qualitative categorizing, quantitative scoring, and
dimensional scaling” (pg 122). The final stage is depicted by data feedback. In this
stage the researcher will report student concept organization to the cooperating
teacher for purposes of remediation and planning for instruction. The authors note
that the third stage is often omitted.

Fensham et al. (1981) describe a teaching experiment conducted with grade
eleven chemistry students. Although few details of their study are reported, the
authors identify a list of seven key instructional concepts for each week of the three
week study. They asked the students to identify the degree of relationship between
pairs of the instructional concepts. The students were also asked to list how each
concept was associated to classroom activities. The information was represented to
the students by means of a two dimensional cognitive map. The students were
asked to write descriptive words on linkage lines which showed where associations

had been identified. The authors present this experiment as an example of how
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cognitive mapping may be used as an effective instructional process in traditional
classrooms.

Shavelson (1972) investigated changes in students' cognitive structures
through a study in which 40 high school students (28 experimental subjects and 12
control subjects) accepted instruction in select topics in physics. The key question
of the study was "To what extent does the structure in the student's memory after
learning, correspond to the structure in the instructional material” {pg. 225). The
study was conducted under a pre and post test design in which only the
experimental group subjects received instruction. Analysis of students’ cognitive
structures was completed through a word association task and an achievement tes:.
Analysis of the programmed materials was completed through digraph analysis to
chart structure and relationships between key concepts and words. The researcher
found that: (a) achievement of the experimental group increased significantly, (b)
cognitive structures of the experimental group were significantly affected by
instructi- 1d these structures changed to resemble more closely the structures
inherent within the instructional materials, and (c) subjects in the experimental
group reported significantly more associations between key concepts after
instruction.

Geeslin and Shavelson (1975) repeated the Shavelson (1972) study but
used grade eight mathematics students as their sample. As in the earlier study, their
intent was to compare students' cognitive structures with content structure after
instruction. The authors summarize their study:

The study investigated learning of mathematical structure. Eighth

grade students (N=87) were assigned randomly to read either a

programmed text on probability (experimental group) or one on

prime numbers (control group). The subject matter structure of the

probability text was mapped with the method of directed graphs.
Structure in students' memories, cognitive structures, was
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investigated using a word association technique. Cognitive structure

and achievement data were gathered at pretest, posttest, and

retention test. The directed graphs provided an interpretable map of

subject matter structure (pg. 21).
The results of the Geeslin and Shavelson study replicated those of Shavelson's
earlier study in that (a) students in the experimental group leaied to solve
significantly more problems than those in the control group, and (b) cognitive
structure changed as a consequence of instruction. The cognitive structure in
students’ memories changed to more closely approximate the content structure.

Hewson and Hewson (1981) investigated the role student prior knowledge
played in the development of scientific conceptualizations. Their study was
conducted using a pre and posttest design with a sample of 90 grade nine students.
The sample was divided in haif to form a reatment and a control group as described
by Hewson (1981):

The research involved the development of experimental and control

materials used with two similar student groups ... A test designed to

assess whether students possessed scientific or alternative concepts

for mass, volume and density served as both pre- and post-test. The

alternative concepts were those previously identified in an equivalent

group of students (pg. 3).
Instruction in the treatment group entailed: extrapolation, instantiation, and
elaboration to integrate new concepts with existing concepts; introduction of
conceptual conflicts to encourage exchange of existing concepts with new concepts;
and, provision of examples to clarify concepts. Instruction in the control group
was described as "traditional.” Both groups were taught the same four instructional
units in four class hours. The researchers found that: (a) some concepts held a
strong resistance to change, and (b) where students’ prior knowledge was
considered in instruction, these students achieved greater gains in scientific

conceptions. Hewson and Hewson explain this finding by claiming that for

conceptual change to occur, a new concept must be seen as intelligible, plausible
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and fruitful. They argue that attention to students’ prior knowledge provides
concepts with a sense of plausibility thus increasing the potential for conceptual
change to occur.

Champagne, Gunstone and Klopfer (1983) conducted two studies to
investigate conceptual changes during instruction in mechanics. The first study was
conducted in Pittsburgh, while the second study was conducted in Victoria,
Australia. The Pittsburgh sample consisted of 23 academically gifted middle school
students (thirteen students in the experimental group and ten students in the control
group). The study employed a pre and post test design in which changes in
students' cognitive structures were measured. Instruction in the experimental group
was delivered via class discussions in which students were given opportunity to
argue their perceptions of specific scientific problems and events both before and
after demonstrations. Instruction was delivered one day per week over the course
of eight weeks.

Champagne et al. (1983) employed five research measures including a free
sort task, a tree construction task, and a word association task. The subjects were
also asked to complete a conSAT task and areal event task. The conSAT task
consisted of a taped interview in which subjects were given a series of words
placed on index cards. The subjects were asked to sort the cards and explain the
formed groups to the interviewer. In the real event task a series of events was
described, and the subject was asked to predict the outcome. The event was then
enacted, and the subject was asked to describe the finding and any differences
between his or her prediction and the outcome. The real event task was also tape
recorded.

Champagne et al. (1983) reported that the cognitive structures of the
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experimental and control groups were similar both prior to instruction and after
instruction, and that little change in cognitive structure had occurred in either group.
The researchers were forced to conclude that these cognitive structures were highly
resistant to change. More promising findings were reported in the Victorian phase
of the study.

The students employed in the Victorian sample included six undergraduate
science majors enrolled in a teacher training program. These students volunteered
to participate in the study based upon a feeling that their knowledge of mechanics
was limited. These students were given five full days of instruction, and completed
the same five pre and post test tasks as did the Pittsburgh sample. The Victorian
group was given the added task of reflecting upon their learning experiences in
writing by keeping a journal. Champagne et al. (1983) state that the greatest
evidence to support the claim of conceptual change came through the real event task
where after instruction students gave much more precise descriptions and employed
a greater number of physical principles to support predictions. The researchers
reported a 29% increase in word associations as well as an increase in accuracy on
this task.

Champagne et al. (1983) caution that three major differences exist between
the Pittsburgh and Victorian sample groups: (a) age, (b) motivation levels - the
Victoria group felt their knowledge in mechanics was limited and that this
knowledge was necessary for their future teaching careers, and (c) prior knowledge
level - the Victoria group had a higher level of general science knowledge prior to
instruction. The authors conclude that

... we have then changed cognitive structures in a content area for

which we have found this process to be very difficult. However we

have achieved this only with mature and motivated students with a
reasonable store of existing propositional knowledge, and not for all
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students (pg. 24).
Although the researchers recognized the limitations of their findings, they claimed
success based upon the fact that their modest results were obtained over the short
period of five days, optimistically implying that much more could be done over a

longer time span.

Investigations of the Differential Effects of Alternate Teaching “orms

Dunn (1983) identified six different instructional approaches (see Figure 2)
and used these approaches to teach a contrived concept to 230 university chemistry
students who were divided into six groups. The contrived concept was a 'mib' and
was defined as "a right triangle with an external segment or line perpendicular to the
center of the shortest side"” (pg. 648). Two tests were used to evaluate the students'
understanding of the contrived concept: a 20 item multiple choice test, and the
construction of a written definition of a mib. Dunn found that the students taught
through the prototype and combination instructional approaches were: less
distracted by nonrelevant attributes, more likely to include more critical attributes of
a mib in their definitions, and more consistent in applying their definitions to
correctly identify mibs. Dunn also found that students taught through the discovery
approach had the lowest performance level. The author concludes that the most
effective models of instruction are the prototype and combiz:ation instructional
approaches.

Stiff (1989) investigated the effects of relevant knowledge, teaching
strategy, and strategy length on the learning of a contrived concept. He defines
relevant knowledge as "known inforr~tion about subordinate concepts and

relationships that should be useful to the learner” (pg. 228). The teaching strategies
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Figure 2: Dunn modeis of instruction.

Method Treatment Components
Discovery Identifying mibs through Trial and Error +
Feedback on Correctness
Expository (A) Definition + Pictorial Example + Drawing Task
Expository (B) Definition + Selection Task

Prototype Development  Definition + Explanation of Examples and
Non-Examples

Interrogatory Definition + Questions related to Illustration

Combination Combination of Prototype Development and
Interrogatory without Selection Task

were defined as a series of E (exemplification) and C (characterization) moves. An
E-move entails the giving of examples and non-examples. A C-move entails the
giving of definitions and analogies. An example teaching strategy is an ECE
strategy which would be comprised of a series of E-moves followed by a series of
C-moves followed by a second series of E-moves. Stiff contends that high levels
of relevant knowledge are necessary for C-moves, but not so for E-moves.

Stff (1989) used a 'mat’ as the contrived concept. A mat was defined as an
ordered pair of positive integers where the sum of the coordinates is even, and at
least one coordinate is divisible by three. An example mat is (6,8). The researche:
also defined a del, tag and terse: "A mat is a del whose tags are terse. A tag is the
first or second coordinate of an ordered pair, a del is an ordered pair of positive
integers in which a coordinate is divisible by three, and tags are terse if they have
the same parity"” (pg. 230). The mat, del, tag and terse represent the concepts

which were taught during the instructional component of the project.
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Stiff's (1989) project involved 326 senior high students enrolled in
advanced mathematics courses. These students were divided into 18 weatment
groups based upon two different teaching strategies, three levels of relevant
knowledge, and three degrees of strategy length. Instruction occurred through
programmed materials over a single class period. Three different criterion tests
were administered immediately after instruction to evaluate student achievement:
true and false questions to identify mats (Test A), questions where examples of
mats had to be provided by the subjects (Test B), and questions where subjects
identified paraphrased definitions of mats (Test C). Stiff found that: (a) students
with medium and high relevant knowledge performed significantly better on Tests
A and C; (b) students with high relevant knowledge performed better on Test B
than did students with medium relevant knowledge who in turn performed better
than students with low relevant knowledge; (c) C strategy instruction produced
higher means on Tests A and B, while E strategy instruction produced higher
means on Test C; and (d) there was no significant difference among groups on the
strategy length. Stiff concludes that an increase in relevant knowledge leads to
increased learning, and teachers should select the best teaching strategy depending
upon the relevant knowledge levels of the students.

Mayer and Greeno (1972) investigated the learning outcomes produced
from two different instructional approaches in the learning of binomial
distributions. Their research was motivated by the idea that "different instructional
procedures may result in learning outcomes that are qualitatively or structurally
different” (pg. 165). The aspect of the instructional approach varied was the
sequencing of activities. One group of students was taught the elements of the

general binomial distribution formula prior to the joining of these elements into a
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cohesive formula, while the second group was introduced to the general formula
first followed by a detailed discussion of each of the elements. The researchers
completed three studies, but only two provided useful results. In the first study 20
paid female volunteers were divided into two groups, Group G and Group F. The
instruction for the two groups differed in that "the material given Group G included
more discussion of concepts, while the booklet for Group F had the character of a
set of instructions and could be likened to a computer program for finding a
numerical answer" (pg. 167). The performance of the two groups was measured
on four different types of problems. Type F (familiar) problems were identical 10
those used in instruction, while Type T (transformed) problems were identical in
deep structure but involved a novel context. Type U (unanswerable) problems
could not be solved, while Type Q (question) problems were those which involved
the discussion of general principles or properties. Mayer and Greeno found that
Group F performed significantly better on Type F and Type T problems, while
Group G performed significantly better on Type U and Type Q problems.

The second study completed by Mayer and Greeno (1972) was intended to
extend the results found in the first study. In the second study the researchers
included gender as a variable (32 female and 32 male subjects), and introduced two
new instructional approaches. Instruction occu: “ed through prograrnmed materials.
Along with Group G and Group F, there was a Group G/F and a Group F/G.
Group G/F worked through both booklets completing the Group G book first
followed by the Group F book. Group F/G also worked through both booklets but
in reverse order. The researchers found that there was a significant interaction
between performance on the four question types and the instructional model, but

also found that Group G females did not perform as well as females in the other
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groups.

One major contribution of the study completed by Mayer and Greeno (1972)
was that different instructional approaches can produce qualitatively different
learning outcomes. They summarize their results:

One explanation of the difference that seems straightforward is that

subjects in the different instructional treatments encoded the

information presented about the binomial formula in different ways.

One reasonable hypothesis is that the booklets emphasizing general

concepts tended to activate structures in the subjects’ previous

knowledge involving concepts familiar to them in general

experience, while the booklets emphasizing the formula tended to

activate structures involving the ideas and techniques associated with

arithmetic and mathematical calculations ... For subjects who

received the formula emphasis, the new ideas would be assimilated

to schemas involving calculational techniques, while for subjects

receiving emphasis on general concepts, the new material would be

assimilated to ideas of a more general kind, involving the subjects’

experience with random events (pg. 171).

A second major contribution of this study is evidence of two different forms of
learning cutcomes: a performance ability, which is apparently easily addressed and
investigated under many instructional approaches; and a recognition of
relationships, which enables the learner to employ and recognize the underlying
properties and relationships of given concepts in a general way.

Mayer (1977) completed a series of three studies to investigate the claim that
different instructional methods will result in different learning outcomes. In each
study Mayer taught the subjects to count through the first nineteen numbers in base
three. In the first study Mayer divided 24 university students into swo groups. The
first group (Group Letter) was taught base three where each digit O, 1, and 2 had
been replaced by a single letter (i.e., O=w, 1=d, and 2=r). The second group
(Group Number) was taught base three using the digits 0, 1, and 2. The
achievement variables Mayer investigated included speed of learning as well as the

number of errors made while learning and the ability to generalize to addition and
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subtraction problems. Group Letter found the learning process to be more time
consuming, made more mistakes while learning, and was not as successful with the
transfer problems. It was found that Group Letter tried to learn by rote memory
while Group Number generalized from a knowledge of base ten.

The second study completed by Mayer (1977) also involved instruction in
base three. In this study 24 university students were divided into two equal
groups, but both groups were taught base three in the letter form (i.e., where letters
were substituted for the numerals). The first group (Group Before) was given a
conversion table prior to instruction, while the second group (Group After) was not
given the table until after instruction. Mayer found that prior exposure to the table
made Group Before more efficient leamners, and enabled them to relate their learning
to previously held constructs.

The third study completed by Mayer (1977) essentially attempted to replicate
the findings of the second study except further limitations were introduced: the
sample was entirely comprised of females, a shorter counting sequence was
employed, and a time limit was imjosed on responses. Mayer found that the group
given the conversion table after instruction made significantly more errors in the
iearning process, while the group given the conversion table before instruction
performed significantly better in the transfer and counting tasks.

Mayer's (1977) three studies may be summarized to a few general
conclusions. First, Mayer has shown that different forms of instruction produce
qualitatively different learning outcomes indicated by subjects' differential abilities
tc s~rform on transfer tasks. Second, Mayer provides evidence of two different
learning sets. The rote learning set "involves stimulus learning, response

production, and formation of associations among stimuli” (pg. 544). The
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meaningful learning set "involves relating the presented materials to an integrated
set of existing knowledge" (pg. 544). Finally, Mayer has shown inat the context in
which the learning occurs establishes the rote or meaningful learning set. He
concludes: "...instructional objectives should be sensitive not only to what
behavior is learned but also to hov it is learned and structured in memory" (pg.

545).
Investigatons of the Cognitive Tools of Learning

Peterson has provided a description of the knowledge forms for classroom
learning and the knowledge forms for classroom teaching and how they interact
within the classroom as student’s thinking and cognitions mediate between teacher
behavior and student achievement:

Cognitive science researchers have shown that children develop
informal systems of mathematics outside of the classroom, and they
do not simply absorb what they are :aught. They saructure and
interpret the presented mathematics curriculum and irsouction in
light of their existing knowledge (pg. 11).

Peterson identified eight different forms of knowledge (summarized in Figure 3).
In a general discussion of the forms of knowledge students employ in their
learning, Peterson states:

To learn effectively in a classroora, a student needs to have both
general knowledge of strategies for learning and acquiring
information during classroom instruction, and content-specific
knowledge of strategies that enable him or her to learn the specific
subject matter content. More sophisticated and effective learners
may have an additional level of knowledge which consists of a self-
awareness of both the general and content-specific cognitive
processes and strategies for learning and acquiring information in a
classroom (pg. 7).

Peterson describes four forms of knowledge for classroom learning. General

cognitional knowledge is evident when the student possesses such processes as
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Figure 3: Peterson model of cognitional and meta-cognitional knowledge.

Cognitional Knowledge Metacognitional Knowledge
For classroom General Content General Content
learning Specific Specific
For classroom General Content General Content
teaching Specific Specific

summarizing, organizing, and r -lating. Contem-specific cognitional knowledge
would entail the prerequisite principles and mathematical concepts necessary for
learning a given concept. General meta-cognitional knowledge is evident in the
student’s ability to selectively call upon and use the cognitional knowledge
described above. Students who employ this form of knowledge will (publicly or
privately) consciously make such statements as: "it is ime to look back and
summarize what I have done so far." Content-specific metacognitional knowledge
is employed when students selectively call upon and use the mathematical principies
related to immediate content. An example is provided by the student who
consciously decides that the correct operation to use in a given problem is
multiplication rather than addition.

In a study reported by Peterson (1988), involving 30 classes of grade four
students, half of the teachers were given inservice training on teaching specific
cognitional knowledge to their students. This knowledge included: defining and
describing, comparing, thinking of reasons, and summarizing. The other half of

the teachers vers given workshops on improving engage time and academic



learning time. It was found that the treatment group showed "significant ability-by-
treatment interactions for  udents' high level mathematics achievement, conceptual
rnathematics achievement, and for achievement on story problems” (pg. 9). The
lower ability students benefitted greatly from the instruction, while the higher ability
students benefitted only marginally. The study implies that general cognitional
knowledge and general metacognitional knowledge are valuable assets in learning,
and that these knowledge forms may distinguish between low and high ability
students. Direct instruction in these skills may provide a remedial effect for certain
learning skills.

In contrast to Peterson's list of cognitional knowledge forms developed and
listed through research conducted in classrooms, Sierpinska (1990) provides a
generalized theoretical analysis of the notion of understanding. It is important to
note that Sierpinska'’s notion of understanding is consistent with the notion of
mearingful leaming as found in constructivist literature. Sie:;iinska argues that
understanding may be conceptualized both as a process and as a set of acts.
Through a theoretical analysis of the works of such scholars as Skemp, Dewey,
Lakatos, Ricour, Herscovics and Bergeron, Locke, and Hoyles she provides a
categorization of the acts of understanding. Sierpinska asserts that there are four
acts of understanding: identification, discrimination, generalization, and synthesis.
Identification has been defined as the "identification of objects that belong to the
denotation of the concept (related to the concept in question), or: identification of a
term as having a scientific status” (pg. 39). Discrimination involves the separation
of two concepts which the individual had previously confused. Generalization is
described as "becoming aware of the non-essentiality of some assumption or of the

possibility to extend the range of application” (pg. 39). Finally, synthesis is
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defined as the recognition of "relations between two or more properties, facts,
objects and arranging them into a consistent whole" (pg. 39). Sierpinska contends
that these four acts both constitute understanding, and serve as the mechanism by
which knowledge is constructed.

Confrey (1981, 1982 and Confrey and Lanier, 1980) has adopted a list of
problem solving behaviors from the works of Krutetskii (1976) and Erlwanger
(1974), and has argued that these problem solving behaviors relate to students’
abilities to understand mathematics (Confrey and Lanier, 1980). The researchers
conducted a study which was designed to investigate "the abilities and strategies of
general mathematics students and their resulting conceptions of mathematics"” (pg.
549). They conducted a series of clinical interviews with grade nine students in

which the students’ responses to the given problems were analyzed according to the

categories established by Krutetskii: information gathering (the collectic:: « " .ia
germane to a particular problem), generalization (the ability to trans”™_. : - e
context to another or recognize the similarity between given con:. - <) - versibility

(the ability to mentally reverse operations - e.g., know that the diffe: -nce between
50 and 34 :s 16 given that the sum of 34 and 16 is 50), curtailment (the ability to
regenerate skills and knowledge prerequisite to a given concept on demand), and
flexibility (the ability to switch between problem solving strategies when necessary
and not be limited by an initial mind set). Several implications for the teaching of
general mathematics classes were derived, including: (a) investigation of these
cognitive strategies will provide for more informed teaching, i.e., teachers will
become aware of the thought processes these students employ in learning
mathematics, and this should enhance the learning opportunities of these students;

(b) teachers will be able to reconsider the assumptions they make about the leaming
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capabilities of their students; and (c) the teacher may address the specific abilities

these students lack.

There exists a remarkable similarity between the forms of cognitional
knowledge described by Peterson (1988) and the acts of understanding as described
by Sierpinska (1990). Peterson's notion of defining and describing corresponds
with Sierpinska's notion of identification. Similarly, comparing corresponds vith
discrimination and summarizing corresponds with generalization or synthesis
depending upon the nature of the summary. Peterson's fourth form of cognitional
knowledge, thinking of reasons, is less specific than the first three, and may
contain elements of identification, discrimination, synthesis or generalization.
Because of the similarity between Peterson's cognitional knowledge forms and
Sierpinska'’s acts of understanding only _:.e needs to be pursued, and due to the
more robust descriptions provided by Sierpinska, the terms identification,
discrimination, synthesis and generalization for forms of cognitional knowledge are
adopted in this study.

Confrey and Lanier's (1980) four problein solving behaviors do not
correspond well with Sierpinska's acts of understanding. Generally, Sierpinska'’s
acts might be described as a learner's attempt to classify and cluster concepts,
whereas Confrey and Lanier's behaviors might be described as the learner's
manipulations of these concepts (via mental processes). Upon a close inspection,
the reader will find that some relationships do exist between Sierpinska's acts and
Confrey's problem solving behaviors. For example, flexibility (the ability to
switch from one strategy to another within a given problem solving context) must

surely involve aspects of identification (e.g., recognition of a problem as being of a
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certain type thus appropriately solved via a given strategy) and discrimination (e. £
recognition of the difference between two possible strategics one being more or less
viable than another). Collectively, Peterson (1988), Sierpinska (1990), and
Confrey and Lanier (1980) have supplied a list of the cognitive tools associated

with the leaming of mathematics.
Summary

Thus far research has been able 0 show that students do act as mediators in
their own leaming experiences, :nd furthermore are active participants and
interpreters of their environments. We have also noted that the knowledge and
attitudes with which students enter into learning sequences have an influence on that
which is learned. We also know that teachers constitute an integral part of the
learning context. Perhaps most importantly, research has been able to show that
learning is a dynamic activity, that cognitive structures are constantly undergoing
change (Noddings, 1990) as new concepts are added to existing structures or as
new concepts replace those determined faulty. Finally, we have seen that there
exists a "toolkit” (Davis, Maher & Noddings, 1990) of cognitional knowledge that
monitors and facilitates the construction of knowledge.

The research evidence before us necessitates the conclusion that the
constructivist perspective is a viable perspective from which to interpret classroom
learning events. We know that learner's cognitive constructions can be affected by
instruction, and that these constructions can be differentially affected by different
forms of teaching. However, we have not yet begun to describe the nature of that

which is constructed during these learning sequences.
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A CONSTRUCTIVIST VIEW OF LEARNING

The present study represents an attempt to employ a constructivist model of
learning as a tool to investigate three different instructional models. In order to
complete this task it is necessary to derive such a model of learning. The model
described below represents a concatenation of current constructivist literature and
current ideas in the field of cognitive psychology.

Cognitive psychologists have been able to show that the learner is an active
participant in the learning process, that is, he or she is not a passive recipient of
knowledge (Davis, Maher & Noddings, 1990). We know that students act as
interpreters of language and action (Cobb, 1988), and we know that students
construct their own knowledge regardless of the teacher's attempts to facilitate or
thwart these constructions (Winne and Marx, 1982; Davis, 1983). Significantly
less is known about the actual processes involved in knowledge construction
(Cobb, 1988}, but many attempts have been made to describe and classify the many
products of construction.

Skemp (1971, 1987) and Frederiksen (1984) have both provided
descriptions of the processes involved in cognitive constructions. Skemp has
attempted to describe meaningful learning (where relationships are formed through
the association of common objects) in a way that would inform instructional
processes. Frederiksen employs a more technical approach consistent with
psychological research.

Skemp (1971, 1987) describes learning through the processes of abstracting
and classifying. The process of abstraction requires identifying the major
properties of an object or class of objects, while the process of classifying entails

placing or associating an object within its class. Thus a concept is interpreted as the
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awareness of the relatdonship between an object and its class. Primary concepts are
those which are derived from our sensory and motor experiences of the world,
while secondary concepts are those that have been built up from the primary
concepts. Skemp (1971) states:

A concept is a way of processing data which enables the user to

bring past experience usefully to bear on the present situation.

Without language each individual has to form his own concepts

direct from the environment. Without language, these primary

concepts cannot be brought together to form concepts of higher

order. By language, however, the first process can be speeded up,

and the second is made possible (pg. 28).

Language plays an important role in this model, for it is through language that we
devise symbols and thus classify objects. This process is completed by 'delta 1’
(see Figure 4) which is the mecha:.:.m of cognitive activity. Delta 1 is monitored
and controlled by 'delta 2' which might be considered the mechanism of
metacognition. The networks that are built up from the primary concepts are called
schemas, and understanding involves relating information to an appropriate
schema.

According to Skemp (1971, 1987) many variables may inhibit the
construction process. Students who possess a poor attitude are unwilling to
participate in this process. This poor attitude may be a product of boring rote
learning (memorization). Rote learning does not provide the student with the
necessary precursor concepts to construct higher order understanding. In
summary, Skemp's model of the intellect is one in which perceptions are drawn
from the environment and used to build concepts through the processes of
abstraction and classification. These concepts are used to build up schemas.

Frederiksen (1984) describes three kinds of memory: sensory buffer, short

term, and long term (see Figure 5). The sensory buffer retains information only for
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Figure 4: Skemp model of cognitive activity.
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Figure 5: Frederiksen model of cognitive information processing.
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a very short period of time, just long enough for it to be classified, coded, stored,
or ignored by the short term memory. Long term memory stores information
virtually permanently. During instances of learning, information in this memory
interacts with new knowledge.

Information is stored within the long term memory as nodes and the
interconnections or relationships between these nodes. When knowledge is
retrieved from the long term memory it is recalled in the form of chunks, or groups
of nodes which have been stored together by virtue of their interconnectedness.

The short tt:im memory (STM) contains the information that is currently being
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used. It is also responsible for monitoring the flow of information from the senses
to the long term memory and vice versa to allow processing. In the average adult
the STM may only contain five to seven items at one time.

Frederiksen (1984) identifies two forms of information processing:
controlled and automatic. Controlled processing requires the attention of the
individual, and this rapidly overwhelms the short term memory, thus limiting the
number of operations which can be carried out. Automatic processing does not
require the attention of the individual, enabling many more operations to be carried
out simultaneously. Those operations which require control can become automatic
through practice. Repetitive practice allows the learner to become proficient at a
single operation, while varied practice enables the learner to transfer skills. In this
model, the learner is seen as one who receives information from the environment,
links the information in stored networks, and then recalls information in chunks
when required.

Smock (1976) has drawn from Piaget's work in an attempt to describe this
linking of chunks as being achieved through the processes of accommodation and
assimilation. In accommodation past cognitive constructions must be adapted,
deconstructed, or replaced to permit the linkage of new learnings. Accommodation
occurs when new learnings are found to be incompatible with (i.e., they contradict)
past learnings. Assimilation is employed when new leamings are compatible with
past learnings, but the new learnings are of a more complex level. In this case the
new cognitive constructions are simply added to past cognitive constructions to
create more complex cognitive networks.

These conceptualizations of the processes involved in the construction of

knowledge have much in common. First, cognitive networks are formed through
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the recognition of similarities and differences between objects and through the
recognition of the representations of these objects in the environment. Second,
both researchers present their theories so as te imply that these cognitive processes
which enable the construction of cognitive schemas and networks are innate. That
is, in the works of Skemp (1971, 1987), Frederiksen (1984) and Smock (1976) it
is assumed that these acts of knowledge construction are natural and unschooled
acts in which all learners engage.

Cognitive psychology has not addressed the linkage between the
construction of cognitive networks, and the actual creation of knowledge. That is,
they have not articulated how the processes of accommodation, assimilation,
abstraction and classification create particular knowledge formms. However, many
authors have attempted to provide descriptions of the knowledge forms which are
constructed (see for example Kieren, 1988 and Lienhart, 1988).

What does it mean when one claims to understand mathematics or to
understand a particular mathem:atical concept? Or more directly, when one
understands a mathematical concept, what knowledge forms have been constructed?
According to Romberg and Carpenter (1986),

Understanding involves fitting information into the learner's existing

cognitive framework. This means taking into account the

knowledge of the mathematics under consideration that the leamer

brings to the situation, connecting semantic knowledge and

procedural skills, and encouraging integration of related concepts

(pg- 859).

In their discussion, Romberg and Carpenter recognize two components of
understanding: semantic knowledge and procedural skills. These components
correspond closely to Shavelson's (1981) notion of propositional and procedural

structures:

The propositional structure of a subject matter refers to the meaning
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of mathematical concepts and operations. More accurately, it refers

to the verbal and visual representation of meaning ... Procedural

structure refers to a set of rules and heuristics that specify, at least

partially, the step-by-step procedures leading from the specification

of a particular task to a goal state (pg. 25-27).

Therefore, when we refer to understanding (and thus the deveiopmer.t of
understanding or the learning of a new concept), we recognize that it contains the
organization and sequencing of individual concepts along with the structures
relating the concepts and the processes and procedures to which they may be
applied. These two forms of constructed knowledge have been recognized us early
as 1977 by Mayer who employed two differsnt measures of learning in his teaching
experiments: the development of performance criteria and associations between
concepts.

More recent authors have begun to argue for a form of cognitional
knowledge which facilitates the meaningful learning of mathematics (and thus the
construction of propositional and procedural knowledge). According to Noddirgs
(1990; Davis, Maher & Noddings, 1990):

It is assumed that learners have to construct their own knowledge -

individually and collectively. Each learner has a tool kit of

conceptions and skills with which he or she must construct

knowledge to solve problems presented by the environment (pg. 3).
Noddings does not articulate the nature of this tool kit of conceptions and skills, but
other authors have provided more complete descriptions. Peterson (1988, whose
research confirmed that these conceptions and skills are teachable and are related to
students’ achievement levels) lists the following: defining and describing,
comparing, thinking of reasons, and summarizing. Confrey (1981, 1982) and
Confrey and Lanier (1980) have also argued that there exists a set of cognitive skills

which discriminate between capable and less capabie leamners. Their list includes:

information gathering, reversibility, generalizaton, curtailment, and flexibility.
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And finally, Sierpinska (1990) in her attempts to describe understanding argues for
the following acts: identification, discrimination, generalization, and synthesis.
Peterson is the only author who specifically nan.es these conceptual processes, and
thus her term (cognitional knowledge) will be adopted in this study along with the
forms of cognitional knowledge as described by Sierpinska and Confrey and
Lanier. Beyond these forms of cognitional knowledge Peterson has presented a
description of metacognitional knowledge which is the ability to control and engage
in cognitonal knowledge.

Both Confrey (1980, 1981) and Peterson (1988) set about to deliberately
address cognitional knowledge through instruction in their studies. Thus we know
only that cognitional knowledge is not innate (as evidenced by the fact that not all
learners poss=<« i*\_ it is teachable, and it is related to learners' successes. We do
not know whether cognitional knowledge is constructed only through instruction
explicitdy intended to address it (i.e., the - «. er sets out to address cognitive skills
in identification, synthesis, flexibility and 1.7 like), or whether cognitional
knowledge develops concurrently with instruction centred around mathematical
topics (i.e., if cognitional knowledge develops concurrently with instruction in
percents, fractions, regrouping or other mathematical topics).

It is reasonable to ask what relationship exists between cognitional
knowledge and the cognitive behaviors as described by Skemp (1971, 1987) and
Smock (1976), as it remains a possibility that they are simply the same thing.
Peterson (1988) and Confrey (1981, 1982) specifically argue that cognitional
knowledge discerns between effective learners and less effective learners, and that
cognitonal knowledge can be developed through instruction. That cognitional

knowledge can be taught was confirmed by both researchers in their work with
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schoolchildren. No claim has been made that abstraction, classification,
accommodation, or assimilation (as they have been defined by Skemp and Smock)
are teachable, or that the ability to engage in these differentiates the capability of
learners. Abstraction and classification are descriptions of processes in which
learners manipulate sensory and perceptual data. Accommodation and assimilation
are descriptions of mental processes through which learners reorganize conceptual

networks in long term memory.

A Constructivist Model of Learning

In the preceding literature we have argued for four basic elements of a
constructivist model of learning, including: (a) the act of constructing knowledge
involves the innate mental behaviors of abstraction and classification (of perceptual
and sensory data taken from the environment), and assimilaticn and accommodation
(occurring between existing conceptual structures and new concepts). By innate we
mean that all learners engage in these processes, (b} the knowledge forms
constructed include propositional knowledge, procedural knowledge and
cognitional knowledge, and that thesc cannot be considered innate as teaching
experiments have shown that different individuals construct these krowledge forms
differently, (c) cognitional knowledge acts as a facilitating and controlling
mechanism whereby propositional and procedural knowledge are constructed, and
(d) metacogritior:al knowledge is an awareness of cognitional knowledge and
enables the conscious engagement of cognitional knowledge in a learning situation
or problem solving task. These elements are organized into the diagram shown in

Figure 6.

In this study, this leaming model will be used to investigate the Direct,
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Figure 6: A constructivist model of learning.
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Meaning, and Problem Process Teaching approaches. Furthermore, the learning
model itself can be investigated by studving relationships between propositional
knowledge and procedural knowledge, as well as relationships between cognitional

knowledge and propositional and procedural knowledge.
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CHAPTER THREE
Research Methodology

In this study we investigate the Direct, Meaning, and Problem Process
Teaching approaches through a constructivist model of learning. This model of
learning (presented in the preceding chapter) is essentially comprised of three
components: propositional knowledge, procedural knowledge, and cognitional
knowledge. The leamning model is built upon the argument that propositional and
procedural knowledge are constructed during leaming events, and that cognitional
knowledge facilitates and enables such construction. In this study we investigate
the change 1n students’ propositional and procedural knowledge using the teaching
approach under which the percent unit is delivered as the basis of comparison. It is
necessary therefore to develop and present techniques of measuring the
propositional and procedural constructions expressed by the students under the
three teaching models. We present here the structured tree recall task as a measure
of students’ propositional constructions, and the diagnostic-performance test as a
measure of procedural constructions.

In applying this constructivist model of learning to the investigation of
teaching approaches, much may be learned about the viability and usefulness of the
learning model itself. It has been argued that cognitional knowledge facilitates and
monitors the construction of propositional and procedural knowledge. If this
assertion is valid, we would expect that students who have shown gains in both
propositional and procedural knowledge would also possess higher levels of
cognitional knowledge. In order to investigate the relationships between

cognitional knowledge and the other knowledge forms, a series of problem solving
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tasks were administered. We present here the clinical interview as a means

veoe - 4y students’ cognitional knowledge may be investigated.

THE STRUCTURED TREE RECALL TASK

This research methodology is founded upon a theory of organization of
cognitive structures. The purpose of the structured tree recall technique within the
present study was to provide an image of students’ cognitive structures as measured
by associations students draw between major concepts taught within a given
curriculum unit. According to Naveh-Benjamin et al. (1986), the structured tree
recall task

... is based on a theory of mental organization which assumes that

single concepts or sets of concepts are mentally organized into a

hierarchy whose lowest level terminal nodes represent the single

concepts and non-terminal nodes represent a mental code that stands

for its constituents. The technigue capitalizes on the fact that people

have a tendency to recall all items of one chunk of information

before moving on to the next chunk. Chunks, then, are inferred by

inspecting all trials for groups of items that appear together from a

set of cued and uncued trials, an algorithm efficiently finds the set of

all chunks for each subject and represents this set as an "ordered

tree.” The obtained ordered tree may be considered to be a

representation of a subject's knowledge st cture (pg. 131).

The purpose of this methodology is to provide an image of a subject's organization
of concepts based upon the assumption that individuals recall information in related
units called chunks. This image constitutes a measure of students' propositizsnal
knowledge in that (by definition) chunks are collections of concepts that are linked
and stored together in lcng term memory due to the relationships a subject perceives
between them. For example, it is reasonable to expect that the general concepts
'fraction’ and 'decimal’ may be found together, linked in a chunk, due to their

common ability to represent ‘a part of a whole." The linking of concepts together
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bused upon similarity or common attributes is the construction of propositional
knowledge, therefore a test measure which attempts to provide a model or image of
this linking effectively also provides an image of a subjects' propositional
knowledge. The structured tree recall task is such a test measure.

The structured wree recall technique involves the sorting, memorization, and
recall of a list of given words. The number of words which were given to the
subjects was determined by the pilot study and reports of related research. Reitman
and Rueter (1980) completed two studies using this technique. In the first study
subjects were given 24 words to memorize; in the second study, subjects were
given 16 words. In an experiment comnpleted by McKeithen et al. (1981), subjects
were asked to memorize 21 words. Naveh-Benjamin et al. (1986) argues that such
long lists of words creates a performance effect in that some subjects do not
possess the necessary memory capabilities. In the pilot study students were given a
list of only 10 words, and it was found that all students, regardiess of general
ability level could easity memorize the list. In the present study it was decided to
use 16 words in order to increase the challenge for the highly talented students
without making the task impossible for the less talente i students. Increasing the
aumber of words had the added effect of increasing all subjects’ dependence upon
the meaningful sorting or clustering of words.

To begin the structured tree recall ask, subjects were asked to remove a set
of 16 cards from the given envelopes (see Appendix A for copies of structused tree
recall task materials). On each card was a different key word taken from the grade
eight percent unit {distractor words are marked wiih an asterisk in the following
list). The words were: *adjacent, cost, decimal, denominator, discount, fraction,

hundredths, interest, markup, part, percent, ratio, sale price, sales tax, *square,



*zero. The subjects were asked to spread the 16 cards out in front of them and sort
the cards by placing together words that naturally go together. The phrase "go
together” was heavily stressed in the instructions and repeated several umes thus
encouraging students to look for words that were somehow related. In order to
encourage sorting of the words based upon associations, four different examples
were provided to each class (adapted from Shavelson, 1974):

A HORSE is like a PONY.

A RAKE and a FLOWER may both be found ina GARDEN.

A POODLE is a type of DOG.

The AREA of arectangle equals its LENGTH multplied by its WIDTH.
Students were informed that if they had the words HORSE and PONY they may
want to put them in a group together because the two words describe things that are
‘alike.' Similarly RAKE, FLOWER, and GARDEN may make a good group
because they describe objects that are often 'found together.' The students were
told that they could sort the words any way they wished, - nd were told that they
could have any number of groups of any size.

After sorting, the subjects were asked to memorize the words in the sorted
groups. Ten minutes was allowed for this task. The subjects were told that they
could not work together, and that a good way to memorize the words was 10
practice repeating them silently so as not to disturb the others sitting around them.

Finally, the students were asked to return the cards to the envelope, take out
the recall sheets, and to record the memorized words in their sorted groups. This
task was completed eight times on eight separate pages. After completing one page,
the subject was to turn it over and not look back at it. Of the eight recall sheets, six
represented cued trials while two represented uncued trials. In a cued trial, one of

the 16 words was given and the subjects were to respond by giving the remainder

of the group in which the word had been placed when the cards were sorted. After
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listing the entrety of that group, the students were to list the remaining groups untl
all 16 words had been recalled. The purpose of the cued trials was to encourage
variety and force the recall of words in clusters. In an uncued trial the subject could
begin with any word he or she wished. Uncued trials were necessary to enable the
analysis of all structures including the root or terminal node.

The decision to employ eight trials was made through pilot testing and
through analysis of the technique as described in the literature. In their first study,
Reimnan and Rueter (1980) used each of 24 words as a cue word thus asking
subjects to repeat the recall task 24 times. In their second study they asked their
subjects to recall the word list (uncued) once on each of ten successive days, thus
illustrating a second way to reduce stereotypy. McKeithen et al. (1981) asked their
subjects to repeat the recall task 25 times: each of 21 words was used once to cue
one mial, with four interspersed uncued trials. Naveh-Benjamin et al. (1986)
argued that liitle more could be leamed by having the subjects repeat the task many
times than could be learned by having the subjects repeat the task four times.
Naveh-Benjamin et al. administered only two cued and two uncued tials. In the
pilot study it was found that one ambiguous structure resulted even after five trials,
thus Naveh-Benjamin's assertion was rejected and more repetitions were added.
Reitrnan and Rueter used approximately half as many task repetitions as the number
of words in the word list, thus eight cued repettions was deemed ample for the
present study.

Once data for all trials was collected, the word sequences were entered into
a computer program (see Appendix B) to identify chunks according to the algorithm
specified by Reitman and Rueter (1980). The computer program functioned by

accepting the recalled words in a matrix in sequence. The program then searched
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for combinations of words which occurred together in any order in all trials. These
clusters of words were output as chunks. This process is presented as a flowchart
in Appendix B. Chunks were defined as groups of words which occurred together
on all cued and uncued trials, except in cases where a member of that chunk
occurred as the cue word. Once chunks were identified, structurt d trees were
drawn and assigned a PRO (possible recall order) score according to the complexity
of the tree. PRO scores could range from zero to 30.67, with zero denoting a
highly structured tree. Similarity scores were used to compare students’ structured
trees determined prior to instruction with their structured trees found after
instruction. Similarity scores range from O to 1 with 0 showing no correspondence
and 1 showing perfect correspondence. The algorithms used to calculate PRO and
Sim scores are defined and demonstrated beiow.

Naveh-Benjamin, Lin, McKeachie, and Tucker (1986) provided a succinct
definidon of the PRO score:

Amount of organization was measured by the possible recall order

(PRO), which is the natural logarithm of the number of different

written orders that can be obtained by traversal of a given structure,

or alternatively, of the number of written orders that contain its

chunks. For example, if words were listed randomly each time, the

number of possible recall orders would be great; on the other hand,

a subject's structure that listed all of the concepts in the same order

on every trial could be created by only one possible order...In

general, the smaller the PRO, the more organization in the structure

(pg. 133).
The similarity score was described as a measure of the similarity between two
structures, and is defined as "the natural logarithm of the total number of chunks the
two trees have in common plus one, divided by the natural logarithm of the total
number of chunks in both trees +!us one” (pg. 133). A high value (near 1.00)

indicates high similarity between the content structure of two trees.

As an example, consider the following data obtained from one student
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during the pilot study. For purposes of this discussion, each word was replaced by
a letter. The student recalled the ten given words in the following order (underlined

letters shoxv cued trials):

1: A B CDEFGHI]
2:] HI GE FDABZC
3: G DEFABU CHTI]
4: H1 J F D GEUCBA
5: F GEDABTU CHIIJ
6 HI1JFDGEATBTZC
7.1 HJ GFEDCBA
8: CB AFDGEMHI]IJ

The above data was entered into a computer program, and the following word
clusters were identified: ABC, ABCDEFG, ABCDEFGHIJ, BC, DEFG, HI, and
HIJ. From these clusters, the structured tree shown in Figure 7 was drawn.

In a structured tree, each cluster can be either uni-directional, bi-directional,
or non-directional. Cluster ABC is bi-directional, meaning it is always recalied by
the subject either in the order ABC or the order CBA. Cluster HIJ is uni-
directional, meaning the subject always begins with the word specified by the letter
H and follows through with I and J in sequence. Cluster DEFG is non-directional,
meaning the subject begins on different trials with different words and recalls the
rensaining words in different orders. A uni-directional cluster is indicative of the
highest degree of structure, while a non-directional cluster is indicative of the
lowest degree of structure.

The PRO score of a given tree is calculated as the product of the number of
possible recall orders of its substituent parts (as shown in Figure 7). Similarity
score is a measure of the similarity between comparable trees. Assume that the tree
shown in Figure 8 was provided by the same student prior to instruction. In

comparing the trees shown in Fie . ™ ....d4 Fivure 8, it is found that the trees have



Figure 7: Example structured tree from given data on pilot test.

A B C D E \F G H I J
PROuyee =1n ( PROA.c x PROAG x PROD.G x PROA.j x PROH.J)
=In[2)x ) x@Hx2)x(1)]
= In (192)
= 5.26

Figure 8: Example tree to demonstrate similarity score.

A B C D E F G H I J
Similarity Score =In(2+1)/In(9+1)
=In (3)/In (10)
= (0.48

chunks HIJ, and DEFG in common. The two trees have a total of two chunks in
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common, with a total of nine different chunks in both tree*: (the root node is not
counted). The similarity score of the trees is shown in Figure 8. In the present
study the PRO score was used to describe the amount of structure in students’
trees. The similarity score was used to compare the content and structure of
students’ trees before and after instruction.

The purpose of the Naveh-Benjamin et al. (1986) and the Reitman and
Rueter (1980) studies was to investigate the feasibility and usefulness of the
structured tree technique as a research methodology. Naveh-Benjamin et al. report
that subjects found the act of organizing words to be a meaningful task as it made
them think about the meaning of the words. These authors found a significant
interaction between subjects’ grade point average and tree complexity. In their
study, Naveh-Benjamin et al. report (while working with 154 university
psychology students) that the median PRO score decreases during instruction,
indicating an increase in tree complexity and knowledge structure. With respect to
their experimentation, Reitman and Rueter conclude: "We have shown here that our
technique provides reliable, interesting descriptions of some of the regularities in
recall and represents them as an ordered tree” (pg 578). Collectively these studies
show that the structured tree recall technique is a viable means to investigate student

learning.

THE DIAGNOSTIC-PERFORMANCE TEST

The diagnostic-performance test is a paper and pencil survey test (Underhill,
Uprichard and Heddens, 1980) comprised of questions drawn from topics in the
Alberta junior high mathematics curriculum and the Journeys in Math text series.

The purpose of the diagnostic-performance test within this study was to serve as an
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indicator of procedural knowledge. Acquisition of procedural knowledge has been
described as the acquisition of the set of rules and routines which enable a subject to
complete a specific task. In the diagnostic-performance test emphasis is placed on
subject ability to recall algorithms not on subject ability to transfer between
contexts, thus reducing the possibility that confusion resulting from a new context
would mask ability to recall rules and procedures. As a result the questions on the
diagnostic-performance test are stated in simple, clear language, often in chart form
and virtually devoid of context (as opposed to the format typically found in familiar
achievement tesis). The diagnostic-performance test measured students' simple
knowledge of calculation algorithms.

The diagnostic-performance test was developed by the researcher according
to the following process: (a) a list of all grade seven, eight, and nine objectives in
the percent unit was obtained from the Alberta Junior High Mathematics Curriculum
Guide (1988), (b) objectives addressed in the Journeys in Math 8 (1987) text
chapter were added 1o this list in sequence to get a complete objective list, (c) for
each of these objectives three test questions were constructed and used as a pilot
study test, (d) the questions were sequenced: in increasing order according to grade
level, to reflect the probable order of instruction, and in increasing order of
complexity, (e) three test forms were piloted with 18 grade nine pupils, (f) from the
performance of the students on the pilot study tests the appropriate question
difficulty level was determined, (g) the final version of the diagnostic-performance
test was constructed by selecting questions from the piloted versions and by
devising new comparable questions which employed comparable number values
(typically drawn from the set of whole numbers), (h) in the final version each

objective was represented by two questions, and (i) alternate test forms were
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created by changing only the given numbers in each question; the format was held
constant as was the magnitude of the number values given in each question. A
sample of diagnostic-performance test form A is found in Appendix C. Underhill et
al. (1980) recommend the use of three questions for each objective, but it was
found during the pilot study that such a test was too long to be administered in a 40
minute period. A test of this length would have imposed a time factor, and by
definition, the test was not to be timed (Underhill et al., 1980).

In order to demonstrate mastery of a given objective, the student had to
correctly answer both of the given questions. The student was assigned a score on
the diagnostic-performance test (called an objective score) according to the number
of objectdves over which he or she had shown mastery. Scores could range froma
low of 0 to a high of 27, although no student scored below 2 on any of the test

forms, and no student scored higher that 26 on any test form.

ANALYSIS OF THE STRUCTURED TREE RECALL TASK AND
DIAGNOSTIC-PERFORMANCE TEST

After completing the first structured tree recall (STR) task, students were
sorted from highest to lowest according to their possible recall order (PRO) scores.
The top fifth were denoted as high ability studerts, the middle fifth as medium
ability students, and the bottom fifth as low ability students. The same process was
used to assign students to high, medium, and low groups according to their
performance on the first diagnostic-performance (D-P) test. Student identification
numbers, model under which they were taught, scores from the tests, and student
ability level were entered into a large matrix in the Statview™ and SPSS programs

for analysis. A multivariate analysis of covariance to compare means between
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groups was run in which student ability and teaching approach were used as
independent variables and post test scores were used as dependent variables.
Pretest scores were used as covariates. Correlations between test scores were also

calculated using the Statview software package.

THE CLINICAL INTERVIEW

In the constructivist learning model it was claimed that cognitional
knowledge acts as a mechanism that monitors and facilitates the construction of
propositional and procedural knowledge. If this is true, then we should expect that
those students who have shown changes in propositional and/or increases in
procedural knowledge, should also demonstrate more frequent incidents of
cognitonal knowledge. Thus, a tool was necessary for the investigation of the
relationship between the three knowledge forms. The clinical interview was
instituted for this purpose.

The clinical interview was designed by Piaget to investigate the creative and
erroneous answers given by students on standardized tests. According to Piaget
(discussed in Ginsburg, 1981), the clinical interview may have three purposes:
discovery of cognitive activities, the identification of cognitive activities, and the
evaluation of competence levels. The first purpose enables the researcher to
elucidate students' error patterns and ways of thinking during instances of problem
solving. The second purpose enables the researcher to investigate more completely
patterns of behavior in a variety of problem solving situations. The final purpose
enables the researcher to elucidate the highest mathematical level at which the
subject is able to perform. The clinical interview may focus on any one or more of

these purposes in a given interview or series of related interviews. Within the
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present study the clinical interview was used 10 identify students' cognitive
acuvities, specifically their demonstrated forms of cognitional knowledge.

Ginsburg (1981) describead the clinical interview as "an unstructured and
open-ended method intended to give the child the opportunity to display his ‘natural
inclination™ (pg. 6). Confrey (1981) states: "by clinical interviewing, I am
referring to task-oriented, flexible interviews between a student and interviewer
wherein the interviewer is expected to follow and pursue the student's thinking,
asking questions until the student's reasons for response are understandable to the
interviewer” (pg. 6). The main qualities of the clinical interview include: (a) it is
unstructured, that is, the direction the interview takes is largely contingent upon the
responses given by the subject, (b) it is based upon some given task through which
the students’ cognitions and the origins of such cognitions are made known to the
interviewer.

The interviewer's role in this methodology is 1o present problems which are
challenging but not impossible for students to solve, and to ask questions to
identify students’ knowledge structures, processes in problem solving, and
confidence. Confrey (1981) states:

A clinical interview aims to ... ascertain what a student believes,

why s/he believes, how s/he came to believe it and what predictions

s/he might make as a result of those beliefs. Both the interviewee

and the interviewer assume active roles in the process, with the

student for the most part guiding the inquiry. At times, the

interviewer strives to clarify the meaning of the interviewee's

statements, while at other times, s/he is more interactive, actively

hypothesizing about the implications of the students' responses,

posing new questions to test those hypotheses (pg. 15).

In order to achieve these purposes the questions must be selected carefully.

Confrey states that the initial questions must be good, disturbing, and compelling,

but should consider the appropriate difficulty level for the students interviewed,

70



their fairiliarity with the topic area, and the intent of the study.

In the p.esent study, each interview consisted of twelve problems as snown
iz Appendix D. The interview problems were de.ived using the structure defined
by Mayer and Greeno (1972), who were attempting to show that different cognitive
constructions result froim alternate teaching approaches. They adopted four types of
problems which they believed would induce variery in the testing situaton and
would test the variety of different concepts students may have constructed.

Learning was evaluated using four types of test problems: (a)

familiar problems (Type F) which were stated in the same way as

example problems given during training; (b) problems requiring a

transformation (Type T), usually of an algebraic nature. to be put

into the familiar form; (c) unanswerable problems (Type U) which

luoked like fas::iliar problems but actually set up inconsistent or

otherwise impossible conditions, and (d) questons (Type Q) where

the subject was required 1o give a property of the formula or a

constraint on situations in which the formula can be applied, rather

than a computational answer (pg. 166).

To ensure that the Type F problems were indeed familiar to the students, these
problems were taken from the Joumngys in Math text series being used by all the
teachers in the study. These problems were typically identical in intent, structure
and even context to those found in the text, but the number values were changed.
The type F problems in the clinical interviews included: conversion problems,
balloon problem, growth problem, and sales tax problem (see Appendix D).

Type T problems are best described as those which require some transfer in
order for students to recognize that they can be reduced to a familiar structure. Two
formis of Type T problems were included: those that related directly to the grade
¢izht percent unit, and those that related 1o sister units such as ratin and proportion,
or fractions and decimals. Problems chosen from related units were selected

because they provided students with thie opportunity to generalize knowledge

structures from their studies of ratios and rational numters. Repetitive application
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of a known formula was required in the first form of the Type T problem. Type T
problems that required repetitive application of a known formula included:
bouncing ball problem, and interest problem. In the second form of the Type T
problems, subjects needed to translate from fractional or proportional
representations of values to percent representatiens. There were five Type T
problems used in the interview, including: smarties problem I, smarties problem II,
smarties problem III, pizza problem, and photocopier problem.

In the clinical interviews conducted in this study, one unanswerable
problem was given. An unanswerable problem involves the introduction of a set of
conditions that can not exist. The unanswerable problem was the circlegraph
prooiem wnich read: “Jane spent SU% of her allowance on a movic, 30% on a new
pencil case, and 30% on flowers for her mother. Draw a circlegraph and explain
your drawing.” Although this problem looks like a traditional problem we might
find in a textbook, the percentages have a sum which exceeds 100%. The reader
should note that there are two ways of interpreting this problem. In the first
interpretation, Jane has a fixed amount of money which is her allowance, and she
partitions it as described and thus spends : nore than she has. This interpretation
introduces an inconsistency (to spend 110% of a fixed amount). In the second
interpretation, Jane's allowance is simply used as a marker to describe the total
amount spent. In this sense it seems quite reasonable for Jane 10 spend more than
her allowance through the addition of external funds. In this second interjretation,
110% of Jane's allowance becomes the fixed cost used to construct the circlegraph.
Because of the multiple interpretations possible for this problem, it also served as a
Type Q problem where students were expected to discuss properties rather than

make computations.
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In addition to the criterion described by Mayer and Greeno (1972), three
other conditions were imposed 1o ensure that the interviews remained manageable
and interesting: (a) the interview should not exceed two hours in length, (b) if
possible, questions should enable the use of a physical object so that the object may
be made available to the student, and (c) all problems should be pilot tested to
ensure that they were of appropriate difficulty and interest to students of a grade
eight level.

In the prese=. study ot all 241 students were interviewed. The purpose of
the clinical interview was 1o determine if there was a relationship between
procedural and propositional knowledge. Therefore students were selected
according to their changes in propositional and procedural knowledge during the
study using the steps described below.

Step 1. Students whose scores showed large improvement on the
diagnostic-performance test and large increases in cognitive structure on the
structured tree recall task during instruction were identified. See Figure 9.

Step 2. These students were divided into four categories as defined in
Figure 10 according 1o their performance on the initial structured tree recall task and
their initial diagnostic-performance test score. The definition for 'beginning low’
was a score in the bottoia 33 percentile. The definition for ‘beginning high' was a
score in the top 33 percentile.

Step 3. In =ach of the four categories shown in Figure 10, the three
students who best typified the descriptors of the category were selected fcr
interviewing, however, due to mechanical failure one interview from each of
groups A, C and D was lost. One interview from group B was only partially

transcribable.
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Figure 9: First step in the selection process for clinical interviews.

Change from pre to post
test on STR task

I 1
Improvement No Improvement
Subject Group
Change from pre | mprovement (12 Students)
10 post test on
D-P Test No Control Group
Improvement (3 Students)

Figure 10: Classifications of students showing improvement on both test forms.

Performance on initial

STR task
! 1
Began Low Began High
Began Low A B
Performance on
inidal D-P Test
Began High C D

Step 4. For comparison purposes, three students were selected who did not
improve on either the diagnostic-performance test or the structured tree recall task
(the group marked as the control group in Figure 9). A total of 11 viable interviews
were collected.

In the selection of the students, no consideration was given to: the gender
of the student, the teaching approach under which the student was being taught, or
the location or socio-economic status of the school. Teachers were consulted

regarding the student selections to ensure that students were willing to be
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interviewed, and to ensure that students would cooperate to the best of their abilides
during the interview.

On the day of the interview, each student was paired with one classmate of
the same sex. This pairing helped to eliminate stress on the students, as well as
provide someone with whom the student could discuss and share ideas. According
to Noddings (1982), clinical interviews performed in small groups have the
following advantages: (a) they remove the interviewer from a position of authority,
(b) they reduce the amount of necessary interrogation by the interviewer, (c) they
allow the individual to talk aloud and talk to him or herself without appearing rude,
(d) they permit more rzflexive talk that may reveal odd and interesting heuristics not
normally seen in the presence of an zuthority, and (e) they allow students to learn
from each othe:. The partners were selected for each student by that student's
teacher according to the following criterion: (a) the students should get along
although not necessarily be good friends, and (b) the student should be of a general
lesser mathematical ability. The second criterion was stipulated to ensure that the
majority of problem solving would actually be done by the student selected
according to the steps listed above.

Interview times were pre-arranged with the teacher, and interviews were
typically conducted during regularly scheduled math periods. Interviews ranged in
time from a length of one hour to one and one-half hours. The interviewer went to
the students’ ciassroom and walked with them to the location of the interview,
which i1n each case was either a school counsellor's office or a school sick room.
These locaticns were chosen to maximize privacy and to minimize external
distractions. If students became particularly irritated or frustrated by a problem, the

problem was set aside with the students’ consent, and was left to a later time in the
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interview.

Each interview was begun by asking students to provide their full names.
The students were informed that the researcher was very interested in their results
from one or more of the tests recently completed, and thus was interested in how
they would solve some varied word problems. The students were informed that the
interviews would be tapec using a small recorder so that the reseuarcher could
remember exactly what the students had done while solving the problems. The
.. coblems were randc:nly sequenced for the first interview, but this sequence was
then maintained for the remaining interview ~. Each question was presented to the
students one at a time on laminated cards, and each question was read aloud by the
interviewer. S-ndents were told that they could work together, and were given
several pieces of scrap paper as well as calculators and pencils. Where possible,
‘nanipulative activities were rnade available to help illustrate problems. Generally,
students seeme disinterested in the manipulatives and chose not to use them. The

interviews were not iimed.

ANALYSIS OF THE CLINICAL INTERVIEWS

One of the initial concerns a researcher faces (when employing verbal data
such as that found in a clinical interview) is a concemn for the reliability and validity
of the emerging data. Swanson et al. (1981) argue that: (a) verbal data do have a
place in cognitive research, (b) there are important limits and constraints on their
use: the level of questioning imposed upon subjects must be restricted to that at
which answers can reasonably be provided; f .r example, subjects cannot
reasonably be aske ' to comment on their neural functioning, (¢) effective use of

verbal data requires paying careful attention to these limits and cunstraints, (d)
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provided this is done, any of the remaining problems with using verbal reflections
are the same as those which apply iu traditional research methods. From this
perspective the authors argue that the clinical interview is a viable research
methodology.

After the completion of all fifteen interviews, the tapes were ranscribed and
analyzed according to the procedure documented by Confrey (1982): (a) randomly
select 2/3 &f the in5rviews, (b) construct summary sheets of the students’ cognitive
proce s and inst.nces of demonstrated cognitional knowledge for each problem in
the iny: . '2='v. 0 o nstruct a description of the instances of displayed cognitional
knowleug. i these first 2/3 of the students interviewed (including identification,
discrimination, generalization, synthesis, reversibility, curtailment and flexibility),
(d) read the remaining transcripts and construct summary sheets as in the third step
above, {e) decide if the lists of cognitional knowledge adequately describe the
remaining transcripts, (f) revise the list if necessary, and (g) re-read all ranscripts
to ersure that the revised summary list of student cognir~nal knowledge conforms

'n all transcript data.

RESEARCH QUESTIONS

The purpose of this study is to employ a constructivist view of learning to
the investigation of three different teaching approaches. The three teaching
approaches include the Direct Teaching approach, the Meaning Teaching approach,
and the Problem Process Teaching approach. A model to describe learriing has
been derived employing constructivist principles. This learning model contains

three basic components including propositional knowledge, procedural knowledge
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and cognitional knowledge. It has been argued that as leamers construct
knowledge they construct propositional and procedural knowledge, and that
cognitional knowledge performs a monitoring and facilitating role in this learning
process. We can then use the development of, or change in both prupositional and
procedural knowledge as a measure of the differential outcomes o. he three
learning models. Furthermore, knowing that cognitional knowledge is described as
providing a monitoring and facilitating role in the constricuiion of propositionai and
procedural knowledge, we can therefore use this theoretical relationship as one
measure of the viability of the learning modei.

The questions that are posed below function as the specific guiding
questions of this study. They can be classed into two groups. The first set of
questions pertain to the investigation of the three teaching models through the
evaluation of the growth and change in propositional and procedural knowledge.

Questis ++ - Under which teaching approach do students make the greatest
changes in propositonal knowledge?

Question 2: Under which teaching approach do students of different ability
levels make the greatest changes in propositional knowledge?

Question 3: * nder which teaching approach do siude -, m -~ . e greatest
gains in procedural knowledge?

Question 4: Under which teaching approach ¢ - students of different ability
levels make the greatest gains in precedural knowledge?

Question 5: Under which teaching approach do stuc '..s best retain their
changes in propositional knowledge and/or gains in procedural knowledge over a
ten week time period?

In an attempt to expand and investigate the derived constructivist model of
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learning, a second set of two questions is established that pertain to the viability of
the learning model.

Cugstion 6: Do changes in propositional knowiedge correlate with gains in
procedurai knowledge?

Question 7: Do students who have shown changes in propositional
knowledge and gains in procedural knowledge also demonstrate cognitional

knowledge as described by Sierpinska and Confrey?

To answer the questions listed above, this study was conducted under a
pretest, post test, retention test design and thus was completed in three phases: the
Pre-Instructional Phase, the Instructional Phase, and the Post-Instructional Phase
(see Figure 11).

The Pre-Instructional Phase. In this phase of the study nine teachers were
selected from among those participating i the Sigurdson and Olson (1988)
Meaning in Mathematics Teaching Project. These teachers were selected according
to the following criterion: (a) they were willing to participate (volunteers), (b) they
were identified by the observers in the Sigurdson and Olson study as teachers who
were effectively and accurately implementing their assigned instructional model, (c)
they had more than one class of grade eight mathematics students, and (d) exactly
three teachers in each model were selected. In selecting the teachers, no
consideration was given to: the socio-economic status of the public served by the
school in which they taught, the gender of the teacher, ~r the size of his or her
classes.

One class for each teacher was identified as the group that would participate
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Figure 11: Study timeline.
PRE-INSTRUCTIONAL PHASE (two weeks):

- Select nine teachers as participants, three f. .1 each model: direct,
meaning, and problem process.

- Administer: Structured Tree Recall Task (STA)
Diagnostic-Performance Test Form "A" (DPA)
INSTRUCTIONAL PHASE (four weeks):
- Percent unit is taught (three weeks).

- At conclusion of unit, administer: Structured Tree Recall Task (STB)
D-P Test Foriv» "B” (DPB)

- Identify 15 students for participation in clinical interviews.

- Administer clinical interviews (one week).

POST-INSTRUCTIONAL PHASE (eight to ten weeks):
- Classroom teaching in other units resumes.

- After about ten weeks, administer: Structured Tree Recall Task (STC)
D-P Test Form "C" (DPC)

- Data Analysis

in this project. Two stipulations affected the selection of this class: the class could
not be the same class as i . ne participating in the Meaning in Mathematics
Teaching Project, and the class must not have been identified as a unique clasz
(such as special remedial or special gifted class). A total of 245 students were
enrolled in the nine chosen classes. The smallest class had an enroliment of 26
students while the largest class had an enroliment of 32 students. The average class
size was approximately 27 pupils per class. Students could choose not to

participate in the study thus there were a total of 241 pupils who participated in at
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least one of the three phases of the study.

Within a two week time span, the first Structured Tree Recall Task (STA)
was administered to each of the nine classes. On the next consecutive school day,
the Diagnostic-Performance Test Form "A" (DPA) was administered to the same
classes. In each case these tests were administered within one week prior to the
start of the y*=rcent unit. All tests were administered by the researcher. Each
student was assigned a number code for purposes of identification, and the scores
of each student were stored in the form of a computer spreadsheet for later analysis.

Instructional Phase. In this phase of the study the teachers taught their
planned percent units to their respective classes employing their specific
instructional format. The length of time spent teaching the percent unit was
generally related to the iength of time allotted to this topic under the Sigurdson and
Olson (1988) project: approximately three weeks. Teachers were instructed to
notify the researcher as soon as they knew the date they would be finished their
unit. At that time a second round of testing comp:ised of both the structured wree
recall task (STB) and the diagnostic-performance test (DPB) was completed. The
purpose of this second set of tests was to assess the changes in students’
propositional and procedural knowledge which were a result of instruction.

These tests (STB and DPB) were administered to each class on two
consecutive days. All nine classes were tesied within a two wzek time span. All
tests were administered by the researcher. Tests were score immediately after their
administration in order that students could be selected to participate in the clinical
interviews.

Post-Instructional Phase. Approximately ten weeks after the conclusion of

the unit the researcher returned to each of the nine classes to administer one final
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structured tree recai: task (STC) and the diagnostic-performance test (DPC). This
time lapse was dictated by the pacing of the individual teacher, so it was not
possible to give each class the exact same number of school days between the
second and third test sets. The purpose of the post-instructional phase was to

assess student retention of constructed knowledge.
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CHAPTER FOUR

Results: The Teaching Approaches

The purpose of this study is to investigate three ditfferent teaching
approaches through the application of a constructivist model of learning. One of the
three teaching approaches is the Direct Teaching approach in which the mathematics
content is portrayed to students with no specific attempt made to connect new ideas
to previously learned ideas. Emphasis in the Direct Teaching approach is placed on
showing students how to complete specific, isolated tasks through the application
of algorithms. In the Meaning Teaching approach much emphasis is placed on
connecting concepts by showing relationships between them. In the Meaning
Teaching approach representations for concepts are developed and used to define a
context in which the concepts may be added to existing cognitive networks. In the
Problem Process Teaching approach students receive the same form of teaching as
is found in the Meaning Teaching approach except a portion of class time (eight to
ten minutes at the beginni g of each period) is sct aside to solve teacher selected
problems. LCuring this time of problem solving teachers carefully describe, model,
and lead students through the processes which are involved in solving the problem.

The constructivist model of lcarning derived for the analysis of these
teaching approaches contains three major components: propositional knowledge,
procedural knowledge, and cognitionzal knowledge. Propositicnal knowledge is the
collection of reiationships that students construct between concepts. Frocedural
knowledge is the collection of ruic., mieps and algorithms wurcciated with the
completion of a defined task. Thes: cons*s Luns ore siore’ . ~mauy 20 chunks

and are recalled in chunks. It h.:s been argued that when students icarn mathematics
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they build up or construct both propositional aid procedural knowledge (regardless
of the teaching approach). Cognitions:  ~owledge is the collection of cognitive
skills which enables and facilitates ¢ “rruction of propositional and procedural
knowledge. The construction of dropuscaonal and procedural knowledge has been
used in this study as a means to in-+‘1pate the differential effects of the Direct,

Meaning, and Problem Process Teaching appreaches.

QUESTION ONE
Under which teaching approach do students make the greatest changes in

propositional knowledge?

In this question we deal with change rather than improvement or gain. In
the constructivist perspective, the manner in which studenis draw relationships is a
matter over which they alone have control, thus it would be inappropriate to label
their constructions as either correct or incorrect. However, student constructions
can be compared to traditionally accepted mathematical relationships (e.g., tractions
are like decimals) where such relationships are well defined, and individual
cognitive networks can also be compared to the cognitive nctworks of other
individuals such as teachers or other students (as was done by Naveh-Benjamin, et.
al, 1986). In this study we are primarily interested in how individual student
constructions are affected by varied teaching approaches thus comparisons arc made
b-tween each student’s cognitive networks before and after instruction in percents.

We have adopted two different measures of propositional knowledze within
the structured tree recall task. The first measure is the Possible Recall Order (or

PRO) score. This score provides a measure of the structure in a subject's cognitive
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network. The second measure is the called the Similarity (or Sim) score. This
measure is a measure of change, and reflects the amount of change in both structure
and content of a subject’s cognitive network from one task event o the next. Both
measures are reported here because they measure different elements of the
structured tree. The PRO score is determined only by the complexity and degree of
organization of the structured tree, while the Sim score is determined by both the
complexity of the tree structure and the manner in which specific concepts arc
arranged.

In order to measure change in structure and complexity of students’
structured trees, a multivariate analysis of covariance was calculated using teaching
approach and student ability as independent variables, post test PRO as the
dependent variable, and pretest PRO as covariate. The mean adjusted PRQO score
by tcaching approach and student ability level is shown as a chart in Table | and as
a bar graph in Figure 12. No statistically significant differences were found by
teaching approach (F=1.97, df=2/79, p>.05). This result shows that the teaching
approaches did not have a differential affect on the degree of structure found in
students’ structured trees.

The PRO score is a measure of the complexity of the structured tree only,
whereas the similarity score is a measure of both the complexity of the tree and the
content of the tree (i.e., the actual relationships drawn between concepts). The
mean similarity scores under the Direct, Meaning and Problem Process Teachin g
approaches were 0.35, 0.17, and 0.34 respectively. In this case, a significant
difference was found between the three teaching approaches (F=5.56, df=2/78,
p<.01): the students in the Meaning Teaching approach made greater changes in

their tree structure and content than did the studcnts in the other tcaching.
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Table 1: Mean pretest and adjusted post test PRO scores by teaching approach and
student ability.

Adjusted

N Pretest Post Test
DIRECT 26 18.41 11.85
High 6 2.33 1.89
Medium 8 13.96 13.43
Low 12 29.41 15.78
MEANING 33 12.46 10.58
High 15 2.39 4.51
Medium 9 13.14 13.97
Low 9 28.58 17.28
PROB PROC 30 16.92 15.26
High 7 3.76 11.61
Medium 12 13.35 10.90
Low Il 29.17 22.33
HIGH 28 2.72 5.72
MEDIUM 29 13.45 12.55
LOW 32 29.09 18.45
TOTAL SAMPLE 89 15.70 12.52

approaches.
These results may at first appear contradictory, but it is important to
remember the difference between the PRO score and the Sim score. The PRO score

measures only organizational complexity in the structured tree whereas the Sim
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Figure 12: Bar graph of mean adjusted PRO scores on post tests by waching
approach and student ability.
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score measures both complexity and content. Taken together, the results above
imply that the Meaning Teaching approach may result in greater changes in student
propositional knowledge than do the Direct and Problem Process Teaching
approaches. Furthermore, because we were able to identify change in content, but
not in complexity, this implies that the nature of the changes includes the re-sorting
and reorganization of concepts, not an increase in the rigidity or structure of these
concepts in memory. In short, it appears that the Meaning Teaching approach
encourages students to exchange one mathematical idea for another resulting in a
new arrangement of mathematical ideas, but not necessarily a more or less
complicated arrangement.

Perhaps we should not be particularly surprised by the effect of the Meaning
Teaching approach on students’ construction of propositional knowledge, after all,

this approach was specifically designed to address representations of, and
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connections between concepts. However, we should therefore expect similar
results from the students in the Problem Process Teaching approach given the
similarity between these two approaches; such results did not materialize. We are
left to conclude that either the Problem Process teackers did not follow the model as
it was intended, or that the problem solving component included at the beginning of
the lesson in some manner interfered with the construction of propositional
knowledge and the reorganization of concepts within cognitive structures. It may
be that the time required to deliver the problem solving component at the beginning
of the class introduced a time restriction on teachers thus pressuring them to revert
to a rather direct mode of instruction. A second possibility is that the problem
solving component became a virtual "how to" session and was thus perceived by
the students in a manner similar to Direct instruction.

We are left to conclude that the Meaning Teaching approach has the greatest
impact on students’ construction and reorganization of propositional knowledge.
Furthermore, we know that the nature of these constructions entails the
reorganization or restructuring of concepts, not the institution of new, firmer
structures. We also know that the addition of the problem solving component in the
Problem Process Teaching approach probably reduces the tendency of students to
construct propositional knowledge as was evidenced in the Mezning Teaching

approach.

QUESTION TWO

Under which teaching approach do students of different ability levels make

the greatest changes in propositional knowledge?
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In this question, ability level refers to the students' ability or tendency 1o
construct propositional knowledge or to relate concepts and form clusters. In this
study, this form of student ability was determined from the initial structured tree
task. To determine student ability level, students were sorted from lowest to
highest according to their PRO scores on the pretest. A low PRO score represents a
high degree of structure in an individual's cognitive network, while a high PRO
score indicates very little structure in an individual's cogniiive network. Students
with PRO scores in the first 20th percentile were defined as the high group.
Students with PRO scores in the middle 20th percentile were defined as the medium
group, and students with PRO scores in the last 20th percentile were defined as the
low group.

We used two different measures of change in propositional knowledge: the
PRO scores and the similarity scores. A multivariate analysis of covariance was
calculated on post test PRO scores using teaching approach and student ability as
independent variables and pretest PRO as covariate. We failed to achieve a
significant student ability by teaching approach effect (F=1.46, df=4/79, p>.05),
thus we can not report that a particular teaching approach had a differential effect on
students of a particular ability level (results are reported in Table 1 and Figure 12
shown above).

However, some interesting patierns result from an inspection of Table 1. In
this table it can be seen that while medium ability students made relatively few
changes in the complexity of their cognitive structures (a change from a mean PRG
score of 13.45 to an adjusted mean of 12.55), the low ability students demonstrated
a large increase in the structure of their cognitive networks (a change from a mean

of 29.09 to an adjusted mean of 18.45), and the high ability students showed a
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decrease in structure (the mean PRO score rose from 2.72 to 5.72). In fact, the
high ability students in the Problem Process Teaching approach ended with
cognitive structurcs comparable in degree of structure with the Problem Process
medium ability students. This result implies that low ability students are those
students who have made very few links between concepts, i.e., they have very
loose organizational structures in which conrcepts are stored, and the construction of
more rigid cognitive structures is an important process they undergo in leaming
situations. It is not clear why high ability students show a decrease in structurs, but
this may be a product of the structure tree task itself, that is, a ceiling effect.

The second measure of change in propositional knowledge is the similarity
score. An analysis of variance was conducted on Sim scores in which student
ability and teaching approach were used as independent variables. Mean similarity
scores by student ability level and teaching approach are shown in Table 2. We
failed to achieve a statistically significant difference between similarity scores by
student ability and teaching approach (F=2.09, df=4/78, p>.05). Thus we cannot
report that the teaching approaches had a differential effect on the construction of
propositional knowledge according to student ability level. More simply phrased,
we cannot say (for example) that the construction { propositional knowledge was
facilitated for low ability students by the Meaning Teaching approach. Likewise,
we cannot say that any teaching approach facilitated the construction of
propositional knowledge for students of any particular ability level.

It is interesting to note however that a statistically significant difference
between similarity scores was found with respect to student ability level (F=11.18,
df=2/78, p<.001). Remembering that a low score indicates change, from Table 2

we can see that low ability students made the greatest changes in cognitive network
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Table 2: Mean similarity scores denoting change from pre 1o post test.

Student Ability Level

High Medium Low Mcan

Direct 0.50 0.60 0.08 0.35
Meaning 0.13 0.34 0.05 0.17
Prob Proc 0.39 0.38 0.25 0.34
Mean 0.28 0.42 0.13 0.27

structure and content. The high ability group made more changes than did the
medium ability group. This result is somewhat surprising as we would probably
expect that the high ability group would make the greatest number of changes in
their propositional knowledge as they would appear to have the greater general
ability to construct propositional knowledge.

A possible ceiling effect in this data would cnable low ability students to
make large changes while restricting high ability students to small changes.
However, if we accept this explanation, then the observation that the high ability
students made more changes in propositional knowledge than did the mediem
students seems all the more surprising. The possible evidence of a ceiling effect
does not adequately describe this data. This result implics that one attribute which
truly separates high ability students from all others is their ability to construct and
reorganize propositional knowledge, regardless of the teaching approach. This
observation can be extended to conclude that all students regardless of ability level
or teaching approach made changes to their existing cognitive networks. This

observation is consistent with the constructivist perspective which claims that

91



students will construct knowledge regardless of the teachers' attempts to facilitate or

thwart this construction (Winne and Marx, 1982).

The learning model employed in this study specifies two forms of
mathematical knowledge which are constructed during learning events. The
structured tree recall task was used as a tool to investigate propositional knowledge,
the first of the two knowledge forms. The diagnostic-performance test was used to
investigate the second knowledge form, procedural knowledge. The diagnostic
-performance test was scored by counting the number of objectives over which a
student had proven mastery. This score was called the objective (Obj) score. Two
variables were considered in the analysis of Obj scores including teaching approach

(Direct, Meaning cor Problem Process Teaching approach), and student ability.

QUESTION THREE
Under which teaching approach do students make the greatest gains in

procedural knowledge?

A muliivariate analysis of covariance was calculated on post test objective
scores using teaching approach and student ability as independent variables and
pretest objective scores as the covariate. The mean objective score by teaching
approach and ability level is reported as a chart in Table 3 and as a bar graph in
Figure 13. Although the Meaning approach students did not show as great an
increase in procedural knowledge as did the students in the other teaching models,
an analysis of these means shows that the differences do not reach significance

(F=2.35, df=2/79, p>.05). This statistic implies that though a trend favoring the
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Table 3: Mean pretest and adjusted post test objective scores by tcaching approach
and student ability.

Adjusted

N Pretest Post Test
DIRECT 24 9.92 14.15
High 6 15.83 15.39
Bl um 12 9.42 14.73

| Low & 500 11.74
MEANING 3*(‘)*-r B l‘(-)w.‘93 12.80
High 12 16.50 16.53
Medium 9 9.78 12.08
Low ) 4.67 8.53
PROB PROC 35 9.17 13.67
High 9 16.89 16.90
Medium 11 9.36 13.43
Low 15 4.40) 11.92
HIGH 27 16.48 16.40
MEDIUM 32 9.50 13.54
LOW 30 4.60 10.86
TOTAL SAMPLE 89 9.97 13.51

Direct and Problem Process Teaching approaches exists, we cannot statistically
claim that one teaching approach has a greater effect on student construction of

procedural knowledge.

In one sense, this result is somewhat surprisin £, as onc would expect that
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Figure 13: Bar graph of mean adjusted Obj scores on post tests by teaching
approach and student ability.

20
: 2
§ 10 7 g é z D Meaning
.[3-: Z % é Prob Proc
il

0 - : é N A 4

High Medium Low
Students (by Ability)

the siudents taught under the Direct Teaching approach would show a substantial
increase in procedural knowledge compared to students in the other teaching
models. It should be realized however that all of the teachers in each of the models
would be addressing some form of procedural knowledge. The very nature of what
happens in classrooms is that teachers want students to demonstrate their learning
through applications on given tasks. Hence, the teachers would not have been
satisfied under any of the teaching approaches if the students had not shown some
increase in procedural knowledge. Increase in procedural knowledge is a widely
recognized measure of learning, thus it is natural for teachers to ensure that students
have shown increases in procedural knowledge before proceeding further in the unit
or course. The emphasis teachers are likely to place on procedural knowledge
would reduce the likelihood of reaching a statistical difference on such a test

measure.
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In considering the trends evident within the data, there is one major
surprise. We would probably expect that the students in the Mecaning Teaching
approach would perform at a level comparable (0 the students in the Problem
Process approach. Instead we find that the students in the Problem Process classes
performed almost equally as well as the Direct group stuGuents on measures of
procedural knowledge. Assuming the tecaching approaches were delivered as
intended, this result implies that the problem solving component included at the
beginning of each class in the Problem Process Teaching approach had an important
effect in the development of procedural knowledge, allowing these students to
perform on measures of procedural knowledge as ably as the students in the Direct

Teaching approach.

QUESTION FOUR
Under which teaching approach do students of different ability levels make

the greatest gains in procedural knowledge?

Student ability was determined by student performance on the first
diagnostic-performance test. To determine student ability level, students were
sorted from highest to lowest, and those students whose objective scores were in
the top 20th percentile were assigned to the high group. The students who fell in
the middle 20th percentile were assigned to the medium group, while the students
who scored in the lowest 20th percentile were assi gned to the low group.

A multivariate analysis of covariance was conducted on post test objective
scores using teaching approach and student ability as independent variables, and

pretest objective scores as covariate. No significant difference between students of
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varying ability levels was found between teaching approaches (F=1.18, df=4/79,
p>.05). Thus, we are not able to conclude that students of a given ability level are
more likely to show an increase in procedural knowledge under a given teaching
approach. Stated as an example, we are unable to claim with confidence that low
ability students show greater increases in procedural knowledge under the Direct (or
any other) Teaching approach.

Some trends do exist within the data (see Table 3 and Figure 13). Two
interesting trends emerge: (a) medium and low ability students in the Direct and
Problem Process Teaching approaches seem to show the greatest increase in
procedural knowledge, (b) high ability students in general show little or no gain
across the three teaching approaches.

The first trend would imply that the Direct and Problem Process Teaching
approaches seem to facilitate procedural knowledge construction for students of a
general lower ability level. Consider first the nature of the three instructional
approaches. In the Direct approach, algorithms are directly and simply taught as
steps and rules. This form of instruction would require little interpretation of
classroom events on the part of the learner. The ability to interpret teacher
presentations is probably not a skill most lower ability learners possess (see Winne
and Marx, 1980), thus this skill may be circumvented in the Direct approach
allowing the low ability learner to be successful. The Meaning and Problem
Process Teaching approaches both require a greater degree of interpretation of the
mathematical environment. However, unlike the Meaning approach, the Problem
Process Teaching approach attempts to address this interpretational ability through
the inclusion of a problem solving component. Thus, we could expect that lower

ability students would perform least effectively under the Meaning Teaching
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approach where no attempt is made to address the cognitive skills they lack. We
could also expect that lower ability students would perform relatively better under
the Direct and Problem Process Teaching approaches where the need for these skills
are circumvented (as in the case of the Direct approach), or specifically aadressed
and developed (as in the case of the Problem Process approach).

The second trend found in the data (that high ability students show little or
no gain across instructional approaches) should also be explained. The existence of
a possible ceiling effect may account for this rend. The diagnostic-performance
test was constructed using objectives from the grade seven, cight, and nine
curricula. We should expect that after instruction students would demaonstrate
mastery over the grade seven and cight objectives, but it is unreasonable 10 expect
them to demonstrate mastery cver the grade nine objectives: these objectives were
not taught by any of the teachers. Therefore, those hi gher ability students who
could answer all of the grade seven and many of the grade eight level gixstions on
the pretest did not have the same opportunity for improvement as the lower ability
students who could answer relatively few questions on the pretesi. Alternatively,
the static performance across teaching approachcs by the high ability students may
be accounted for by the sheer ability of these students. That is, high ability swudents
are likely to develop procedures for task completion regardless of the teaching
approach. In discussing these results with one of the teachers in the study, she
commented that high ability students are likely to learn "in spite of instruction, not
because of it.” In other words, one characteristic of these students is their ability to

learn, that is, construct procedural knowledge under any teaching approach.
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QUESTION FIVE
Under which teaching approach do students best retain their changes in
propositional knowledge and/or gains in procedural knowledge over a ten week

time period?

In the design of this study, three test sessions were conducted witk cach
class: a pretest, a post test, and a retention test. The change noted in propositional
knowledge and procedural knowledge between the pre and post tests was used to
answer questions one through four. In this question, change between the post and
retention tests as well as the change between pre and retention tests (net change) are
considered. The change from post to retention test provides an indication of change
resulting from memory decay. The change from pre to retention test provides an
overview of total change which is a product both of instruction and decay.

To answer question five several different analyses were conducted. To
investigate cognitive structure change due to memory decay, three tests were
conducted: (a) a multivaniate analysis of covariance was calculated on retention test
PRO scores using teaching approach and student ability as independent variables
and post test PRO scores as covariate, (b) an analysis of variance was calculated on
simil _rity scores (found by comparing retention test and post test structured trees)
using teaching approach and student ability as independent variables, and (c) a
multivaniate analysis of covariance was caiculated on retention test objective scores
using teaching approach and student ebility as independent variables and post test
objective scores as covariate. To investigate cognitive structure change due to both
instruction and memory decay, tests (a) and (c) above were repeaied, substituting

pretest scores as covariates. An analysis of variance was also calculated on
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similarity scores (found by comparing retention test and pretest structured trees)
using teaching approach and student ability as independent variables. The results of
these statistical tests are reported in Table 4.

The only score with which we were able to reach significance is the net
change objective score which was calculated by conducting a multivariate analysis
of covariance on retention objective scores using pretest objective scores as
covariate (F=5.69, df=2/79, p<.01). This result indicates that there was a
significant difference in net change between teaching approaches. As can be
inferred from Table 5, the students under the Direct Teaching approach made an
average adjusted gain of 3.81 objectives, while the students in the Problem Process
Teaching approach made an average adjusted gain of 3.33 objectives. This may be
held in contrast to the students in the Meaning Teaching approach who showed an
average adjusted net gain of 0.08 objectives. This statistic indicates that the Direct
and Problem Process Teaching approaches were most effective with respect to net
gain and retention of procedural knowledge.

However, on this same score there was also a significant interaction
between teaching approach and student ability level (F=2.51, df=4/79, p<.05).
That we reached significance on this statistic implies that the three teaching
approaches did produce statistically significant differences in procedural
knowledge, but that this is only true for students of particular ability levels. From
Table 5 we can determine that it was only the medium and low ability students in
the Direct and Problem Process Teaching approaches that made large positive
changes in procedural knowledge. Table S shows that high ability students showed
decreases under each of the teaching approaches. This result may indicate a ceiling

effect as described earlier. Of interest is the fact that none of the ability groups
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Table 4: Effect of teaching approach on retention and net change scores.

Retention Scores

PRO F=0.02 df=2/79 p>.05
Sim F=1.46 df=2/77 p>.05
Obj F=2.88 dr=2/79 p>.05

Net Change Scores

PRO F=1.04 df=2/79 p>.05
Sim F=1.69 df=2/76 p>.05
Obj F=5.69 df=2/79 p<.01

under the Meaning Teaching approach showed large positive increases. This result
implics that specific attempts to address representations and connections between
concepts does not result in a more rigorous or better retained system of procedural
knowledge. Most importantly, this statistic affirms that these teaching approaches
do have a differential effect on the construction of procedural knowledge for

students of medium and low ability.

CONCLUSIONS AND IMPLICATIONS FOR TEACHERS

In this study we are investigating three different teaching approaches using a
constructivist framework for learning. Our purpose is not to determine the ‘best’
tcaching approach, but to determine if the teaching approaches have a differential
cffect on the knowledge forms students construct. Some differences are evident.

First, the Meaning Teaching approach has the greatest effect on
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Table 5: Mean objective scores on pre and retention tests by teaching approach and
student ability.

Adjusted
N Pretest  Retention Test

DIRECT 24 9.92 13.73
High 6 15.83 15.29
Medium 12 9.42 14.30
Low 6 5.00 11.02
MEANING 30 10.93 11.01
High 12 16.50 14.92
Medium 9 9.78 9.19
Low 9 4.67 7.60
PROB PROC 35 9.17 12.50
High 9 16.89 13.63
Medium 11 9.36 13.71
Low 15 4.40 10.94
HIGH 27 16.48 14.57
MEDIUM 32 9.50 12.66
LOW 30 4.60 995
TOTAL SAMPLE 89 9.97 12.33

propositional knowledge. In this study we notice that on average the students in the
Meaning approach have much lower similarity scores (from pre to post test) than do
the students in the other two instructional approaches. Given that we do not see a
change in PRO scores, we note that the change in propositional knowledge is a

reorganization of concepts within cognitive structures as opposed to the
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Figure 14: Bar graph of mean adjusted Obj scores on retention tests by teaching
approach and student ability.
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construction of new structures. To the teacher of mathematics these observations
should imply that attention to representations of, and connections between concepts
does result in differential learning outcomes. The students exposed to this form of
teaching will apparently undergo greater instances of conceptual exchange (Hewson
& Hewson, 1981).

Second, a comparison between the three levels of student ability shows that
the greatest changes in propositional knowledge occur within the low ability group.
For these students we notice that the change involves both content and structure. It
is clear then that low ability students undergo a process of conceptual capture
(Hewson & Hewson, 1981) where new concepts are assimilated in the creation of
new conceptual structures. To the mathematics teacher this result will demonstrate
a difference between the low and high ability student. Whereas the low ability
student is undergoing a process of conceptual capture, the high ability student is

undergoing a process of conceptual exchange. This difference highlights the need
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to begin with first principles when teaching any new concept to lower ability
students and to develop these principles carefully linking into students past
understandings and representations of concepts.

Third, it has been determined that teaching approach does differentially
effect construction of procedural knowledge. Students of low and medium ability
developed and retained significantly more procedural knowledge under the Direct
and Probler: Process Teaching approaches. This significant difference is not due to
instruction alone, but due to both instruction and retention. To the mathematics
teacher this result should imply that particular forms of instruction can facilitate the
development of procedural knowledge.

On the surface, it is somewhat surprising that the Direct and Problem
Process Teaching approaches would both serve this purpose. Both Peterson
(1988) and Confrey (1981, 1982) have determined that there exists a form of
cognitional knowledge which is related to student ability. The Problem Process
Teaching approach may address this knowledge through generalized preblem
solving contexts. That is, in the Problem Process Teaching approach the tcacher
employs and addresses skills such as synthesis, flexibility, and generalization, and
if low ability students are in turn developing these skills, then it is reasonable to
expect that their performance on measures of procedural knowledge will be
enhanced. In the Direct approach, no attempt is made to address these skills, but
given the nature of the Direct approach, these skills are also not required: the Direct
Teaching approach effectively circumvents the necessity for these cognitive skills
thus allowing low ability students (who do not have these skills) to be successful.
The teacher should therefore realize that it is possible to teach both the collection of

rules and algorithms required for completing mathematical tasks, and the set of
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cognitive skills which are characteristic of high ability learners. Toward this end,
these results serve as a strong endorsement of the Problem Process approach.
Finally, we have seen that once propositional knowledge structures are
formed after instruction, there appears to be comparable change and/or decay in
these structures across teaching approaches. We found significant differences
between the similarity scores of the three teaching model groups immediately after
instruction, but this significance did not generalize to the retention period. This
observation is a testimonial to the ever-changing nature of these cognitive
structures. Propositional knowledge structures may be held in contrast to
procedural knowledge structures. We did not find significant differences between
the objective scores of the three teaching approaches immediately after instruction,
but we did find significant differences after the retention period. Perhaps this rcsult
should not be surprising. All of our teachers (regardless of teaching approach)
would have addressed some method of solving specific mathematical tasks,
therefore the real test of procedural knowjedge becomes its resistance to decay some
time after instruction (as confirmed by Cobb, 1988). To the teacher of mathemaiics
these observations should imply that it is necessary to be continually addressing
representations of, and connections betweer. mathematical concepts, as conceptual
structures should not be considered static but constandy changing. Teachers should
also be aware that the true test of the development f proceduzal knowledge
structures is the ability of students to employ these structures after a significant time

lapse.

In summary, we have shown that teaching approach does differentially

cffect students’ construction of both propositional and procedural knowledge. We
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have shown that where attention is paid to the representation of, and relationships
between concepts (as in the Meaning Teaching approach) then propositional
knowledge is effected. We have also shown that where attention is paid to
algorithms and generalized problem solving skills, procedural knowlcdge is
effected. Finally, we have seen that none of the Direct, Mecaning, or Problem
Process Teaching approaches seems to simultancously address both propositional

and procedural knowledge.
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CHAPTER FIVE

Results: The Constructivist Leaming Model

This project has applied a constructivist model of learning to the
investigation of three different teaching approaches. The three different teaching
approaches have been found to have different effects on students’ learning
outcomes. The application of the constructivist learning model to this investigation
allows some observations to be drawn with respect to the learning model itself.

The constructivist learning modei contains three major components:
propositional knowledge, procedural knowledge, and cognitional knowledge.
Propositional knowledge was defined as the collection of representations and
relationships which students construct between given concepts during learning
sequences. Procedural knowledge was defined as the collection of rules and
algorithms which enable the completion of a given mathematical task. Cognitional
knowledge was defined as the cognitive mechanisms which facilitate and enable the
development of both propositional and procedural knowledge. Sierpinska (1990)
has argued that there exists a variety of acts of understanding, and these acts both
constitute mathematical knowledge and the mechanism whereby mathematical
knowledge is constructed. Both Confrey (1981, 1982) and Peterson (1988) have
argued that there are teachable forms of cognitional knowledge. Sierpinska's acts
of understanding correspond closely to the cognitional forms described by Peterson
and include: identification, discrimination, generalization, and synthesis. Like
Sierpinska, Confrey provides a list of four forms of cognitional knowledge:
reversibility, generalization, curtailment, and flexibility.

The purpose of this chapter is to reflect upon the derived constructivist
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learning model using the results obtained through the structured tree recall task and
the diagnostic-performance test. However, because we arc primarily interested in
the mental processes in which students engage (i.e., their cognitional knowledge), it
is necessary to employ a further research tool to investigate these skills. In this
study we have employed the clinical interview in which students are given a variety
of word problems and asked to verbalize their thinking processes as they undertake
a search for the solution. Through the clinical interview the cognitional knowledge
forms demonstrated by selected students can be reported.

In this chapter we will look primarily at two elements of our constructivist
learning model. Romberg and Carpenter have stated that "Understandin g involves
... connecting semantic knowledge and procedural skills, and encouraging
integration of related concepts” (pg. 859). If semantic knowledge and procedural
skills are outcomes of learning, and are to be connected by a student during learning
events, then it seems reasonable that change in propositional knowledge should
correlate with gain in procedural knowledge. In this chapter the relatonship
between propositional and procedural knowledge will be investigated. It has also
been claimed that there exists a relationship between cognitional knowledge and
propositional and procedural knowledge (as evident in the work of Confrey 1981,
1982 and Peterson, 1988). To validate this claim, it is necessary to show that those
students who have shown both a change in propositional knowledge and a gain in
procedural knowledge also possess certain forms of cognitional knowledge. These

issues are pursued in the two questions that follow.

QUESTION SIX

Do changes in propositional knowledge correlate with gains in procedural
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knowledge?

In the design of this study, students completed both a pre and post test
separated by a two-week period of instruction in percents. Measures of change in
propositicnal knowledge included the similarity score and possible recall order (or
PRO) score obtained by completion of the structured tree recall task. The measure
of gain in procedural knowledge was an objective score obtained through
completiorn f the diagnostic-performance test. To answer this question change in
similarity score was corrzlated to change in objective score from pre to post test.
Likewise change in PRO score was correlated to change in objective score. These
correlations are listed in Table 6.

The correlations in Table 6 are small and negative, and neither is statistically
significant. The negative correlation is easily understood as a low similarity score
and a low PRO score represent an increase in propositional knowledge, while a
high objective score indicates an increase in procedural knowledge. The small
correlation is somewhat disappointing, but perhaps not surprising as Geeslin and
Shavelson (1975) were also unable to show a similar relationship. They state: "A
comparison of word association, achievement, and attitude data indicated that
learning of structure may differ from learning measured by achievement tests” (pg.
21). In their study, word association tasks were used to measure conceptual
relationships drawn by subjects, and achievement tests were used to measure
general problem solving abilities. These researchers were unable to verify that
changes in conceptual relationships correlated with changes in general problem
solving abilities.

The inability to draw a relationship between change in propositional
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Table 6: Correlation of change in propositional knowledge and gain in procedural

knowledge.
Variables Correlaton N *1 p
Sim Ob;j -0.03 144 -0.36 p>.05
PRO Ob;j -0.13 146 -1.57 p>.05

knowledge and gain in procedural knowledge is an important result as it implies that
teachers cannot, indeed must not, assume that students have developed more
sophisticated representations and relationships between mathematical concepts
based solely on their ability to perform more sophisticated or complex
computations. Likewise, it cannot be assumed that students who have developed
more sophisticated representations of mathematical concepis will necessarily be able
to perform given computations or follow given algorittms. This result nnplies that
teachers must therefore address both propositional knowledge and procedural
knowledge in learning sequences.

The data presented in Table & represents the scores obtained from all
students under three teaching appreaches. However, it is possible that greater
correlations can be found under one teaching approach than under the others. Such
a correlation would provide a strong endorsement of that approach as it would
imply that both propositional and procedural knowledge can be simultaneously
addressed under that approach. To test this hypothesis the correlations were

recalculated taking the Direct, Meaning, and Problem Process teaching approaches
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separately. No statistically significant results were found (see Table 7) thus
supporting and extending Mayer and Greeno's (1972) conclusion: changes in
propositional knowledge do not necessarily translate into gains in procedural
knowledge regardless of teaching approach (Direct, Meaning, or Problem Process),
and changes in procedural knowledge can not necessarily be attributed to changes in
propositional knowledge. To the classroom teacher this should imply that: (a) none
of the three approaches to instruction considered here simultaneously enable
development of both propositional and procedural knowledge, and (b) where the
teacher wishes to address the erroneous conceptions of students, specific attempts
must be made to do so; it cannot be assumed that misconceptions will be addressed
through drill and practice in correct procedures, i.e., propositional knowledge will
not necessarily be affected by the explicit attempts of a teacher to address procedural

knowledge; the reverse is also true.

QUESTION SEVEN

Do students who have shown changes in propositional knowledge and gains
in procedural knowledge also demonstrate cognitional knowledge as described by
Sierpinska and Confrey?

In order to answer this question, students who had shown an increase in
both propositional and procedural knowledge were selected to undergo clinical
interviews. Because we were unable to establish a correlation between
propositional knowledge change and procedural knowledge gain, it was necessary
to select a relatively wide variety of students for the subject group. We selected

students from four categories: those who had started high in both propositional and
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Table 7: Correlation of change in propositional knowledge and gain in procedural
knowledge by teaching approach.

Variables Correlation N *t p

g Sim Obj -0.03 41 -0.19 p>.05
A | PRO Obj 0.10 42 0.64 p>.05
£ 1 Sim Obj -0.11 51 -0.77 p>.05
=
< | PRO Obj -0.20 51 -1.43 p>.05
2 . .
& | Sim Obj -0.07 52 -0.50 p>.05
L
£ 1 PRO Obj -0.25 53 -1.84 p>.05

*t=r IN-2

1-1r2

procedural knowledge (Jason and Derek, Kristine and Erin, and Cec and Sheriden),
those who had started low in both propositional and procedural knowledge (Linda
and Lyanne, Connie and Megan, and Teresa and Jennifer), those who had started
high in propositional knowledge but low in procedural knowledge (Kenya and
Paula, Patricia and Marcie, and William and J.J .), and those who had started low in
propositional knowledge but high in procedural knowledge (Steve and Matthew,
Brad and Chris, and Carl and Kevin).

The purpose of this question within the present study is to verify that the
forms of cognitional knowledge described by Sierpinska (1990), Confrey (1981,
1982) and Confrey and Lanier (1980) are in fact demonstrated, and found in the
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cognitive activity of students. A total of 175 instances of cognitional knowledge as
described by Sierpinska were found in the interviews with the students who had
demonstrated change in both propositional and procedural knowledge. A total of 67
instances of cognitional knowledge as described by Confrey were found in the
interviews of the same group. Where possible, several examples of each formi of
cognitional knowledge are provided below.

Identification. Identification has been given a two-fold description as the
"identification of objects that belong to the denotation of the concept (related to the
concept in question), or: identfication of a term as having a scientific status”
(Sierpinska, pg. 14). Identificadon is readily found in students’ problem solving
actions, and appears to be one of the most common of Sierpinska's acts of
understanding. A total of 54 instances of identification were found in the cognitive
behaviors of the interviewed students.

The first forin of identification occurs when a student provides an alternate
representation for a concept, object or idea. This process most often occurs when
students make statements of equality or similarity. Some examples are listed below.
The first set of examples shows where students have substituted a single value or
number for simple computation, these substitutions typically all follow the format:
A is {equal to} B.

Mathew: ... 10% of one hundred is 10 ...

Kristine: ... 30% of one nundred is 30 ...

Jason: ... She spends 50% of her allowance on a movie, and that's haif ...

Connie: That would make it three cut of three, so that would be one ... a
hundred [percent]...

Because of the ease of the computation, students find it easier to communicate in

terms of the number the phrase represents rather than in terms of the phrase itself,
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such as 10% of 100. In one example above, a student has substituted the word
'half for 50%. Certain percentages (such as 100%, 50% and 25%) seem so
common to students that they will substitute the fractional equivalents for these
percentages.

The more complicated forms of identification involve 2 substitutive process
in which students replace or define a concept with a more familiar concept or
definition. Some examples are given below:

Jason: ... 300 cm equals 250% of the inflated balloon ... and the original
size was 100%.

Jason: ... Because if it's just her allowance, she has 100%, that's all of it
and if you add them all up it's 110% in all, and she can't have 110% of
her allowance.

Kevin: One whole [pizza] is 100% ...

Jennifer: [At] 180 cm tall he's 100% fully grown, like at two years he was
45% and 1 think he was 180 cm tall he was full grown so that he's
100% fully grown...

In each of these examples the students are attempting to define a percentage in terms
of a physical object. This fixes the percentage in terms of a concrete representation
which is easier to conceptualize. Often the student is looking to establish an
equivalent for 100%. In the first example the student has identified 100% as being
a deflated balloon, while in the second example 100% is the whole amount of the
allowance, and therefore 110% of the whole, fixed amount is impossible. In the
third example the student represents 100% as one whole pizza, while in the fourth
example the height of 180 cm is established as 100%. The ability to establish a
fixed representation of one hundred percent is an important skill as it enables the
construction of ratios as one route to the solution of a problem.

The second form of identification occurs when students use a known word

to represent a new idea or object. For example, a student might state "20% of the
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smarties in set one are red. That is its color. We must get the same color in set
two." In this case the word ‘color is actually used as a way of defining a particular
ratio or proportion between different colored smarties in a set. Such definitions
often expedite discussion and communication when shared between cooperating
partners. There are very few examples of this form of identification in the clinical
interview data. One example appears when students begin to use the word "drop"
as a noun to define each stage of the bouncing ball problem.

Jason: I justtimes it by ... 100 by 60 and the percent equal. And then I got
60% of 60 in the same way. [Eventually] it came to 21.4 and you take
1 down and that would be 4 times ... like it would be 4 drops [to get to]
20 cm.

Jennifer: ... When you bounce it and then it comes back up and then it
bounces again ... it needs as much space between the 60 cm and the
third drop as it did between the 100 and the first and second bounce.

In the first exampie the student is saying that you must caiculate 60% of a number
four times, and each calculation represents one drop. In both examples the students
use the word 'drop' to define the successive bounces of the ball. Instances of this
second form of ic tification are difficult to report as students rarely preface
comments with statements such as "let's define this as..." More commonly,
students simply introduce and begin to use words without fully defining or sharing
iheir constructed representations.

In the examples listed above, the students have attempted to simplify their
communication through the substitution of a single word or phrase to represent a
more complex idea or process. The ability to complete such a substitution indicates
an ability to recognize and categorize objects and ideas. In this sense, identification
becomes a form of cognitional knowledge.

Discrimination, Sierpinska's second act of understanding is discrimination.

She defines it as the "discrimination between two objects, properties, ideas that
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were confused before” (pg. 39). This definition implies that an act of
discrimination involves an identification (throu gh behavior or verbal comment) of
objects, properties or ideas in which confusion plays a role, followed by a second
act of identification in which the two entites are separated, re-established, and
clarified. A total of 5 instances of discrimination are found in the interviews of the
students who had demonstrated a change in both propositional and procedural
knowledge.

In the first example of discrimination, Paula confuses the words deflated
and inflated in the balioon problem. Paula is uncertain as to whether the respective
volumes associated with those words should be larger or smaller than the given
volume. Paula knows that she has been given the inflated volume (however she
does not understand ‘cubic centimeters’ and so converts 300 cubic centimerers to
900 cm by multiplying 300 by 3) but believes that the deflated volume of the
balloon will be larger than the inflated volume; she multiplies by 2.5 (having
converted 250% to 2.5).

Paula: Igot ... 2,250.

How did you get that?

Paula: What I did first was 300 x 3 and multiplied by 2.5 ... equals 2,250.

Does that answer sound reasonable to you?

Paula: Yes, because I also tried dividing and 900 divided by 2.5 is 360.

OK. (Pause)

Paula: That doesn't sound very good since ...

Since what?

Paula: No, that's totally wrong. I just feel like ...

OK. Tell me about it.
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Paula: Irealize like you want the deflated volume, if the volume is 900
when it's inflated then it's got to be 360 at its smallest point.

Paula’s initial calculations show that she is looking for the largest value possible by
multiplying the numbers available in the problem. She changes her mind however
when she realizes that a deflated volume must be less than the initial volume of 900,
and thus reverts to an earlier calculation where she divided 900 by 2.5. Initially
Paula has confused the respective magnitudes of the volumes associated with the
words inflated and deflated, but has resolved her confusion by comparing the
meanings of the words inflated and deflated with the values she has calculated.

A second example of discrimination is provided by Connie and Megan.
They have been presented with two sets of colored smarties. In the first set there is
one red and two green smarties. In the second set there are four red smarties and
six green smarties. The students have been asked to add or remove only green
smarties from the second set in order to get the percent of red equal in the two sets.
One student asks: "Well, if you have four reds, how can that equal the other [set]?"
Here we can see that the students are confusing the empirical count of the red
smarties with the percentage of red in the entire set. Connie and Megan do resolve
their confusion by shifting their focus away from the number of reds in the two sets
to a comparison of the ratios between colors in the sets.

A third example of discrimination is provided by Chris and Brad who are
working together on the same problem as described above with Connie and Megan.
Brad has decided that he should remove four green smarties from set two to
establish a 2:1 ratio in both sets.

Brad: I'd take away 4 from there, from set two.

Why?

Brad: Cause it's half of the red ... it'd be 2 greens and 4 reds, so that'd be
half ... and there's 1 red and 2 green which is also half [in the other
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set].
At this point in the problem solving process, Brad has confused getting a
representation of a 1:2 ratio in both sets with getting an equal percent of a particular
color in each set. The resolution of Brad's confusion is shown later after he pairs
cach red smartie with two green smarties. Brad concludes that rather than taking
away 4 green smarties, two should be added to complete the grouping process. In a
later statement Brad demonstrates his understanding that the proportion of colors
must be comparable:

Brad: ... there's half as many smarties in each set cause there's 8 greens in
set two and 4 reds in set two, so ... the same with that one [set one] ...
there's 2 greens and 1 red.

In this example Brad resolves his confusion over looking for comparable ratios in
each set to looking for comparable ratios between the two sets.

The three examples of discrimination given above show how students either
individually or in cooperation with their interview partners come to recognize that
they have two ideas or objects confused and are thus able to separate the ideas
again. This separation of ideas often enables the students to correctly complete their
given problems. It is interesting to note that there are other instances which could
not be labeled as acts of discrimination because the students were not successful in
distinguishing between ideas or objects that had been confused. For example, one
student confused the calculation of a ratio with the calculation of an arithmetic mean.
In each of these cases the students cither stated their confusion or were visibly
frustrated. These students were unable to follow through to a correct problem
solution, thus implying that the inability to discriminate between confused ideas and
objects acts as significant barrier to the effective solution of given problems.
Teachers may therefore wish to encourage their students to describe their processes,

describe what they believe is expected from them in a given problem, and to
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describe what they believe to be the root of their confusion. The ability to engage in
such descriptions may constitute a first step leading toward the ability to effectively
discriminate.

Generalization. Sierpinska's third act of understanding is generalization.
She describes it as "becoming aware of the non-essentiality of some assumption or
of the possibility to extend the range of applications"” (pg. 39). Like identification,
generalization may also be expressed in one of two ways. The first form of
generalization requires the student to make a verbal or non-verbal assumption (non-
verbal assumptions are evidenced in student action), and eventually come to a point
in the problem solution where it becomes obvious that the assumption is not valid or
not necessary. When this realization takes place, the student makes some statement
or takes some action demonstrating the rejection of the assumption. A total of 14
instances of generalization were found in the interviews of the students who had
shown a change in both propositional and procedural knowledge.

The first example of generalization is provided by J.J. who was trying to

solve the pizza problem which reads:

51/a pizzas are to be split between three people. What percent of a pizza
does each person get?

J.J.'s first idea was to take all of the pizzas and divide them up into quarters and
then begin to distribute quarters to each of the three people. J.J. immediately

however makes another suggestion which provides a shorter route to the solution:
L1.: There's five pizzas ... one to each ... that leaves 21/4 left.

J.J. goes on to solve the problem by dividing the remaining pizza into nine quarters

and thus distributing three quarters to each person. The realization that not all of the

pizzas need to be split into quarters, that in fact an easier solution is available when
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a larger equal portion could be given to each person, constitutes an example of
Sierpinska's notion of generalization.

Brad provides two examples of generalization. The first example arises
during the solution of the bouncing ball problem, while the second example arises
during the solution of the sales tax problem. The bouncing ball problem reads:

A rubber ball bounces back up to 60% of its original height when it is

dropped. If the ball is dropped from a height of 1 m how many bounces

before its height is less than 20 cm?
Brad's initial assumption is that the ball drops 40 cm from bounce to bounce. After
a short discussion, Brad concludes that the ball loses 40% of its decreasing height

after each bounce.

Brad: Okay so it bounces and it stops at 60% so each bounce it would really
drop about 40% I think ... and so after 60 it would go down to 20, I
think.

Chris: Does it lose 60% of uise hundred each time, or 60% of the bounce it
took to hit the floor?

I'll let you discuss that with Brad.

Brad: Yeah, because like you'd bounce from there and go up and then take
it from there right from where it's the highest point so it'd go down.

So what's your idea Brad? How does this work?

Brad: I...like you drop the ball from the original height and it hits the
ground and goes back up to it's highest point which is 60% of the
original, and then you just take from there ... 60% ... so it will hit the
ground and just go up the 60% of the 60.

It is interesting to note that Brad makes a shift from talking about the amount of
decrease between bounces to talking about the height the ball returns to after each
bounce. In so doing Brad correctly conceptualizes the problem and goes on to
correctly solve the problem. In this problem Brad makes an incorrect assumption

(that the ball will lose 40% of its height, or 40 cm, after each bounce), but comes to

realize that this assumption is incorrect and moves to a correct conceptualization of
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the problem (that the ball returns to 60% of the height of its previous bounce).
Brad's awareness of the non-essentiality of his assumption constitutes an example
of Sierpinska's notion of generalization.

The second example of generalization which Brad provides is found in his

solution to the sales tax problem, which reads:

The Canadian government is about to impose a 9% sales tax. If you bought

a $20 T-shirt, a $5 pair of socks, and a $50 pair of jeans, how rnuch sales

tax would you have to pay?

Brad's method of solving this problem is to take each item separately, add 9% to it,
and then add them together:

Brad: You'd have to do for each thing you buy ... you'd have to do it
separately so you go 20 plus 9%, you get your answer ... then you do
the next orie 5 plus 9%, then 50 plus 9% and then you add them all
together.

His interview partner believes that you must add all of the items together first, and
then take 9% of the total in order to calculate the sales tax. The boys work
separately and upon completing their calculations and comparing their answers, iind
they have reached the same solution. This is a surprise to Brad as he believed that
calculating the sales tax for each item separately would give a smaller tax:

Brad: If you add all the costs together the percent would be increased I
thought, but if you did it separately I thought it'd be slightly lower ... if
you work it out from putting them altogether.

Brad's shift from his first erroneous assumption (that you can achieve a decreased
total tax by calculating tax for each item separately) to a correct understanding (that
you pay the same amount of tax whether you calculate the tax based on the total
price of the purchases or based on the price of each individual itern) represents a
third example of generalization.

Jason provides a further example of generalization as he solves the

photocopier problem. In this problem, the student is shown a line 10 cm in length.
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The student is told that when run through the photocopier, this line shrinks in length

from 10 cm to 7 cm. The student is then told that a square 10 cm on a side is

created and run through the same photocopier. The student is asked to express the

area of the square produced by the photocopier as a percent of the area of the

original square. Jason solves the problem, but seems uncertain of his solution.

Jason: I'm not sure how much it would be decreased, like I think every side

would decrease by 3 cm ... and each line would come out to 7 cm ...
and then you just ... 49 cm square. Like I just ... the square would be
7 cm instead of 10. I'm not sure what it would work out to.

Jason goes on to take his answer of 49 square cm and subtract it from 100 to

receive a final answer of 51 square centimeters. When asked why, he responds

Jason: Well it seems so small ... like compared to the first one. It seemed
like so much less.

Jason apparently feels that the answer 49 simply seems too small, and so he
subtracts it from 100 in order to get a slightly larger answer. He does eventually
overcome the deception of the size of the solution and does conclude that the correct
answer is 49 square centimeters.

Jason: Itis 49, cause I was taking 49 out of 100, but it should be 49
because if each side is 7 cm then 7 x 7 is 49 and not 51. 51 is just
what's ... what was left after taking away, I think.

When asked if his answer surprises him, Jason states:

Jason: Sort of. It does a bit.

Why?

Jason: Because I thought it would be larger 'cause I thought it wouldn't be
like ... I thought the percent would be more than that left ... I didn't
think that much would be left after taking away just a percentage from
each side.

The original assumption under which Jason is operating is thar. removing 30% from

each side of a square would not significantly reduce the area of the square.

Probably Jason senses that the final answer should be about 70% of the original
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area of the square (this is a common solution given by many of the other
interviewed students, and incidentally also given by Jason's interview partner
Derek). As Jason becomes more confident in the picture he has drawn, he becomes
convinced that his answer is correct and that his assumption (that the reduction of
the square would reduce the area of the square only marginally) is incorrect. This
shift in perception constitutes an example of generalization.

Synthesis. The final of Sierpinska's four acts of understanding is
synthesis. According to Sierpinska, synthesis is "grasping relations between two
or more properties, facts, objects and organizing them into a consistent whole” (pg.
39). To constitute an act of synthesis, the student must show (either verbally or
through action) an awareness of at least two properties, facts or objects, and must
show (either -erbally or through action) that the two are employed together in a
consistent manner. It is not uncommon for the joining of these entities to create a
new idea or a new process which may lead to a correct solution. A total of 102
instances of synthesis were evident in the interviews of the students who had
shown a change in both propositional and procedural knowledge.

Sierpinska's notion of synthesis is apparently an extremely common form of
cognitional knowledge as there are many examples available in the clinical
interviews. The pizza problem proved to provide an excellent opportunity for
students to link together their notions of dividing and distribution with their

knowledge of fractions and parts of a whole. Paula chose to distribute one whole

pizza to each person, leaving her with 21/4 pizzas left to share. She then divided the
two whole pizzas into halves and distributed one half to each person. This
effectively left her with one half of one pizza and one quarter of one pizza. The half

pizza was further split into quarters so that each individual could be dealt one
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quarter. In this manner Paula was able to determine that each person received 13/4
or 175% of a pizza. Her solution process is diagrammed in Figure 15. Four other
students independently employed a limited successive division strategy to solve the

pizza problem. In this solution the students distributed one whole pizza to each

individual, leaving a remainder of 21/4 pizzas. The two whole pizzas were split into
quarters to obtain a total of nine quarters. These quarters could then be distributed
evenly to the three people named in the problem. This solution process is also
diagrammed in Figure 15. Both of these solutions illustrate how the students have
drawn together the notions of 'division into successively smaller parts’ and
'distribution’ in order to solve the problems. The students also had to link visual
representations of parts of a whole with the fractions and percents that they
represent in order to complete the problem. The linking of these concepts
constitutes synthesis under Sierpinska's definition.

Several examples of synthesis were also evidenced in the solutions
employed in the bouncing ball problem. Jennifer and Matthew describe their

solutions to the problem:

ennifer: So if it bounced and it was 60% of the metre stick then it ... then
when it bounced again it would be 60% of what the number it bounced
up to before. So you have to find out what, how many cm is 60% of
the metre stick ...So it would be 60 on the metre stick where it bounced
and it would go up to 60 on the metre stick ... like 60% on the metre
stick, 60 cm ... 60 over 100. Then it bounces again from that height
and ... 60% of 60.

Matthew: That is equal to 100 cm ... so 60% of 100 cm is 60 ... 60% of 60
is 36 and 60% of 36 is 21 ... it would take 4 [bounces].

In her solution Jennifer has drawn together several concepts (percent of a number,
measurement on a metre stick, relationship between metres and ccmtimeters, and

repetition of a process) in order to create a new and appropriate strategy for the
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Figure 15: Solutions to the pizza problem.

(a) Successive division shown by Paula:
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(b) Limited successive division:

calculation of the number of bounces required. The same relationships can be seen
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in the coinments made by Matthew.

The balloon problem also served as an environment to elicit some responses
indicative of synthesis. The balloon problem states: When inflated, a balloon is
250% of its deflated volume. If its inflated volume is 300 cubic centimeters, what
is its deflated volume? Brad describes his solution process:

Brad: You could divide that ... 300 cm cubed by the 250% and you'd get
the centimeters cubed of the deflated volume of the balloon.

How do you know? How do you know to divide?

Brad: Cause if you multiply it would be greater ... it would be a greater
number than it is inflated so you'd have to do the opposite of
multiplying ... just divide.

In Brad's response to the question 'how do you know to divide?' he draws together

his kncwledge of the effect of multiplication with his knowledge of the expected
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volunie (based on his understanding of the concepts inflated and deflated). The
resultant strategy leads him through to a correct solution to the problem.

During the solving of the growth problem Kristine also provides an example
of synthesis. Kristine has calculated that Bob must have been 81 c¢m tall when he
was 2 years old. Kristine is asked to comment on whether her answer seems to be
correct. She states:

Kristing: [the answer would] have to be less than half of 180.

Why do you say that?

Kristine: ... 45% is less than 50%, so it'd have to be less than half of 180
fcm]. Half of 180 is 90.

In this example, Kristine has drawn together her understanding of the concept of
half (half of 180 is 90) and .he relationship of 45% to 50% (45% is less than 50%)
to express confidence in her answer. Her answer of 81 cm seems correct as it is
less than half of 180 cm.

In each of the cases described above, the students have drawn together one
or more facts, concepts or representations to create a new, consistent whole. In this
manner the examples above show that students do in fact engage in this form of
cognitional knowledge as described by Sierpinska.

Reversibility. Confrey and Lanier (1980) have adopted this definition of
reversibility: "the ability to restructure the 'direction’ of a mental process, to change
from a direct to reverse train of thought" (pg. 551). To constitute an example of
reversibility then, the student must clearly identify or employ a specific process, and
thereafter clearly identify or employ a reverse process. Confrey and Lanier provide
an example of students who do not possess reversibility: "when given repeated
problems of the variety, 17 x 13 = 221 what is 221 + 13, in which their attention is

called to the first statement, they persisted on undertaking the entire calculation
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rather than simply reversing” (pg. 552). In this sense, reversibility is the ability to
recognize and employ related subtraction and division equations to addition and
multiplication situations. The students that were interviewed provided 15 examples
of reversibilisy, some of which are presented below. Th- first example is provided
by Chris and Brad while solving the first smartie problem.

Chris: We're going to find out how many different colors of smarties there
are and divide it into the total.

Chris and Brad go on to determine that there are eight different colors of smarties
and so divide eight into 100 to determine the number of reds in the box of 100
smarties. Later Chris is asked how he could check his answer, he responds

Chris: 12.5 times the total number of [cclors of] smarties.
In this instance Chris has recognized and employed the two equations 100 divided
by 8 equals 12.5 and 12.5 multiplied by 8 equals 100. Another example is
provided by Matthew and Steve who have just calculated the 9% sales tax on $75 to
be $6.75. When asked if they could check their answer the following exchange

occurs:

Matthew: What'd we say the sales tax was? ... $6.75 ... So, if we put 6.75
divided by the sales tax ... by 0.09 ...

Steve: [We would end] up with your beginning price of $75.
In this example Matthew and Steve have recognized the reverse relationships of the
two statements 75 multiplied by 0.09 is 6.75, and 6.75 divided by 0.091s 75.
Confrey and Lanier's interpretation of reversibility could be considered quite
narrcw as it includes only computational processes and not mental processes. More
general cognitive processes may also be indicative of reversibility. For example ina
problem such as "There are three green simarties and 1 brown smartie in a set. What

percent of the set is green?" the student may recognize that the percent of green
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smarties and percent of brown smarties have a special relatonship (they mus: 10wl
100%). Thus, the student may prefer to calculate the percent of brown smarties
(because 1 of 4 is easily recognized as 25%) and find the percent of green smarties
by subtracting 25 from 100. Ir this sense, the student has recognized a reverse
relationship between properties within a given context. This form of reversibility
was evidenced by three groups of students who chose to deal with the 40% drop
rather than the 60% recovery between bounces in the bouncing ball problem.

Carl: Well, whenever it bounces it loses 40% of its bounce, and the ball
comes up only 60% of its height, which is the same ...

Paula: Ithought ... it would only drop 40% because it bounces back 60%
of its original height.

Teresa: Maybe like you go 60 out of 100 cm ... it's 40 in between so you
Jjust go down 40.

To reverse the calculation as these students have done creates a more difficult
solution process because it requires a greater number of steps, 1.e., to calculate 60%
of a number requises only one multiplication (x 0.6), whereas to reduce a number
by 40% requires one multiplication (x 0.4) and a subtraction (the result must be
subtracted from the original number). Drawing an analogy from photography,
reversibility in this context occurs when students seem more readily cognizant of the
negative image of an object rather than the object itself.

A second example of this form of reversibility is provided by Carl as he
completes the photocopier problem. In his solution Carl calculates the area that is
lost in the reduction and subtracts that from 100, rather than makin g the simpler
calculation of finding the area of the reduced square.

Carl: Soif it would become 3 shorter going both ways and in lengthwise
that would 51 shorter that'd be about ... yeah ...'it'll be 51.

How did you come to 51?
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Carl: Well 3 lines of 10 up here is 30 plus 7 lines of 3 that's 21, so ... okay
. that's 51.

The question asks you to express the area of the final square as a percent of
the original square.

Carl: 49%.

In his soluton Carl has imagined that the original square (10 cm on a side) is made
up of 100 tiny squares. To complete the problem Carl mentally removes 3 lines of
10 squares each from each side and then calculates the total number of tiny squares
removed (see Figure 16). This number is subtracted from 100 to find the correct
final answer. In this example of reversibility Carl has chosen to deal with the area
lost by the reduction rather th: ;- he final area resulting from the reduction, but his
ability to employ this strategy is dependent upon his recognition of the
complementarity of the two areas.

There is a third type of reversibility which these students einployed in their
problem solving attempts. In this type of reversibility students reverse a complex
mental process to calculate or verify an answer. After solving the bouncing ball
problem Chris and Brad were asked how they could check their answer.

Chris: Just redo the question. Sort of double check it making sure of your
calculations.

Any other ideas?

Brad: Just do it from the opposite ... start from the bottom.
In this case the students were willing to accept the end condition (20 cm) as 60% of
some number and then repetitively apply this calculation to find how many bounces
would be necessary to reach the given condition (100 cm). In essence, the students
were starting at the end point of the problem and working backward. This
recognition of a backward process constitutes a third form of reversibility. Two

groups of students recognized this method as a means 1o solve the problem.
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Figure 16: Carl's solution to the photocopier problem.
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Because of the extremely complex nature of these types of solutions (they require
the reversal of many calculations or many stages of the problem) it was rarely
employed.

In the examples listed above, the students have readily shown their ability to
reverse not only simple computations, but complex mental processes. The students
have demonstrated three forms of reversibility: reversibility of simple
computations, reversibility based upon recognition of shared properties, and
reversibility of complex sequences.

Generalization, Confrey and Lanier's description of generalization differs
from that of Sierpinska. In Sierpinska's definition of generalization, the individual
recognizes that some assumption under which he or she is working is not essential.
In this sense generalization becomes a looking back process involving analysis and
evaluation of earlier thinking in light of later conclusions. Sierpinska also
recognizes a second form of generalization in the ability to see how a concept may
be applied in a different context. To Confrey, generalization is a grouping process

involving the recognition of similarities and likenesses: the individual may
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recognize the general case from a collection of single cases, or recognize the single
case exemplifying the general case. Confrey and Lanier define generalization as "a)
the ability to subsume a particular case under a known general concept; b) the ability
to see something general from particular cases, to form a concept” (pg. 551). In the
first instance of generalization, the individual refers to a general known case while
trying to solve a specific problem. A total of 21 instances of generalization are
found in the interview data. Some examples are discussed below.

In the first example, Connie has been asked to give the equivalent percent to

the fraction 3/10. She correctly answers "30%." When asked how she found that
answer she replies

Connie: Like over ten. Anything over ten ... like say it was four, it would
be forty. That's how I do it.

In this instance Connie recognizes that "anything over ten" may be easily converted
to a percent simply by adding a zero to the digit in the numerator. She has applied a
known rule to a specific case in order to explain her answer. A similar example is
rr~<*Jed by Paula. She has been asked to convert a series of fractions to their

ey, . valent percents. After completing three conversions correctly she states

Paula: No, we all do it the same. Just divide by the bottom and do long
division if you can't use the calculator.

To Paula, all fractions can be converted to equivalent percents simply by dividing
and moving the decimal (a process she never fully describes, but repeatedly
employs). Paula's repeated use of this division algorithm exemplifies how a
generalized process may be employed in the resolution of a specific task.

Confrey and Lanier's first form of generalization may be expressed by
students in another way. In this form of generalization the individual will create an

analogy between a given and a known context. The known context is more familiar
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to the individual and so properties from that context may be borrowed and applied

in the given context. Carl provides an example while solving the growth problem:
Carl: Okay ... I usually do it by tests because it seems easier.

Carl goes on to use the analogy of tests, that is, he pretends he is solving the

problem by working with test sccres rather than with height measurements. He

thinks of 50% as being a bad score and then uses 50% of 180 as a starting point to

find 45% of 180. Paula also uses an analogy to create a simple solution to a given

problem. She has been asked to give a percent equivalent to /4. After correctly
answering 25% she is asked to explain her answer:

Paula: If you think about coins, you have four of them make a dollar, so if
you take one of them, or a fourth you have 25 cents, so 25%.

In this example Paula has borrowed the context of money in order to help her solve
a problem. In neither of the examples listed above do the students actually state a
general case, but rather they draw an equivalence between a given (but relatively
unfamiliar) context and a known context. The ability to draw this analogy requires
the ability to recognize (although not necessarily verbalize) a general case. In this
sense, the students have provided examples of generalization.

No students provided spontaneous examples of Confrey and Lanier's
second form of generalization. In this form of generalization, students would have
to link together several specific cases in order to generate a new concept. In the
clinical interviews conducted during this study, students were only given one of
each type of problem, with one exception. In this case the student did create a new
concept. The example is provided by Brad and Chris.

This is the sales tax problem. The Canadian Government is about 10 impose

a 9% sales tax. If you bought a $20 T-shirt, $5 pair of socks, and a

$50 pair of jeans, how much sales tax would you have to pay? Brad
what's your idea?
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Brad: You'd have to do for each thing you buy ... you'd have to do it
separately so you go 20 plus 9% you get your answer then you do the
next one 5 plus 9% then 50 plus 9% and then you add them all together.

Alright, you go ahead and start on that and I'll ask you now Chris. What's
your idea?

Chris: I'm not sure but I'm pretty sure that when they add sales tax it's on
to the total of the bill so I think you'd add them together and then add
the sales tax.

So you'd do it differently then.

Chris: Yes.

(Some time passes while the students calculate.)

So you did get the same answer. Does that surprise you?

Chris: A little bit ... I thought it'd be different.

Brad: If you add all the costs together the percent would be increased 1
thought, but if you did it separately I thought it'd be slightly lower if
you work it out from putting them altogether.

Okay. Let's say its 10% sales tax in Saskatchewan and let's say you but a
$50 shirt and a $50 pair of jeans. Now would it be different if you took
them separately than if you took them together?

Chris: It would be the same.

How do you know?

Chris: Well, it's the same in this one ... so that gave me a clue ... 10% of

100 which is 50 plus 50 is $10 so then 10% of 50 would be S and 10%
of 50 would be 5 and 5 plus 5 is $10 again.

Initially both Brad and Chris believe that the total tax calculated by taking the cost of

each item separately will be less than the total tax calculated by taking the total cost

of the items. After solving a second problem similar in nature to the first, Chris

states that the same sales tax will be calculated either way. A more powerful

concept is created through the analysis of two similar problems. Due to an attempt

to standardize the clinical interviews, there are very few instances where

spontaneous problems were presented (o students, thus few examples of Confrey's
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second form of generalization are available.

Cuntailment. Confrey and Lanier define curtailment as "the shortening of
mathematical processes which can be recalled and explained in detail upon request”
(pg. 552). Few instances of curtailment were reported in the clinical interviews.
This is probably a product of the restrictive definition of curtailment. This
definition requires the following three events to occur: a identifiable process must
be evidenced, a request must be made for an explanation of the process, and the
student must provide a clear explanation of his or her process. In rigidly applying
these criterion, many possible instances of curtailment cannot be reported, i.e.,
students will not be able to provide a clear explanation of the processes they
employed. Of the 15 recorded examples, a few are described below.

The most common examples of curtailment occur while students are trying

to calculate percents equivalent to given fractions. For example, Kristine has been

asked to describe her process for knowing that 1/4 is equal to 25%. She states

Kristine: I've always known, but divide 1 by 4 and you'd get 0.25 ... and
then multiply by 100 and get 25.

In this example Kristine does not initially regenerate the relationship between 1/, its
decimal equivalent, and its percent equivalent until specifically asked to do so. She

has curtailed this process and recalls it only when needed. Jennifer provides a

second example when she is asked to express 4/25 as a percent.
Jennifer: 4 goes into 100 25 times, right? ... Yes it does. It's ... 16%.
How did you come to that answer?

Jennifer: Because 25 goes into 100 four times so you multiply 4 times 25 to
get over 100 and if you do the same to the top as what you did to the
bottom ...

A third example is given by Carl. He is working with a set of 2 red and 3 green
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smarties and has just been asked to descrilx: whai would happen to the percent of
reds if one more green smartie is added.

Carl: The reds would go down to 50% of the greens.

And how do you know?

Carl: Well 2 is half of 4, and just times it by 5 ... 8 ... no, 25 I guess, and
you get 4 is a hundred and then 2 becomes 50.

In each of the examples listed above, the students have curtailed the process of
translating a simple fraction into its percent equivalent.

Curtailment can also occur on a more complex level, where students rely
upon a known principle, and thus do not feel the need to complete a calculation. An
example is provided by J.J. and Williarn working together on the first smartie
problem. In this problem the boys have been given two sets. In the first set there is
one red and two green smarties. In the second set there are four red and six green
smarties. The boys have been asked to add or remove green smarties from the
second set to get the percentage of red in each set equal.

William: We're not supposed to touch this set, but we're supposed to make
that set's red even to the percentage of this one. But it also says ...

1.J.: But we can add them though, we can just add 2 more green ones. It
would be the same as 2 to 1, it would be 8 to 4.

William: Yeabh, it would too.

And would that make the percentages the same?
William: Yup.

How do you know?

William: It would be like 2 to 1, here it would be 8 to 4. All you have to do
is to round it down, or whatever you say.

In this example of curtailment, the boys do not feel the need to actually calculate the

percent of red in both sets in order to prove that the percents are equal. They are
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convinced of the equality because they know they can 'round it down' (i.e., reduce
4/8 to 1/2). They know the fractions must represent equivalent percents because

they recognize 4/8 and 1/2 to be equivalent fractions. In this case the computation
process has been curtailed by the introduction of the notion of equivalent fractions.

Flexibility. Confrey and Lanier define flexibility as the ability to "accept a
variety of methods, to remember each one distinctly and to develop ease and
efficiency when given a variety of methods” (pg. 552). Confrey and Lanier report
that less able problem solvers commonly confuse various problem solving methods,
and in fact prefer to restrict themselves to one method. The students interviewed in
this study seemed quite ready to employ more than one problem solving strategy
and to switch between them when necessary, especially at a point of confusion. A
total of 16 examples of flexibility were found in the interview data.

The pizza problem served to provide several examples of flexibility. Carl
first calculates the percent of a pizza that each person would receive by dividing the
pizza using a pictorial representation, he then goes back and verifies his solution
through numerical computations.

Carl: Times S by 4 equals 20 then you'd add on another one which
becomes 21. You divide by 3 ... equals 7.

In this solution Carl calculates that there are a total of 21 quarters in 51/4 pizzas. By
accepting a basic unit of quarters, he is free to concentrate on 21 pieces which ¢
knows can be divided evenly three ways. In his first conceptualization of the
problem Carl employs a pictorial distribution algorithm, while in his second
conceptualization he employs a known math fact (21 + 3 = 7). Two students, Jason
and Jennifer, did the opposite of Carl in that they switched to the pictorial

representation after completing computations. Jason's example is given below.
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Jason: I'll find the ratio here ... and divide 5.25 by 3 and figure the percent
each person geis.

As illustrated above, Jason's first solution is entirely computational. Later Jason is
asked it he can think of another way to soive the problem. He begins to work with
the diagram:

Jason: ... first get a pizza for each person since there's only 3 people and
then with 21/4 left divide those between 3 people ...

How would you do that?
Jason: Like, okay ... Maybe draw the two extra circles into quarters, no

Jjust wait ... into 4 quarters and then just draw up another quarter and
that would be 9 quarters altogether.

Jason actually goes on to provide a third solution, which entails dividing the 51/4
pizzas into quarters right from the start. This solution is similar to Carl's above.
Diagrams were also commonly used in the bouncing ball problem. Kristine
solved the ball problem initially by multiplying 100 by 0.6, and taking that answer
and multiplying by 0.6, etc. until she reached 20 cm. This gave her a total of 4
bounces. As a way of keeping track of the number of bounces (i.e., the number of
times she had to multiply by 0.6) she created a chart like the one shown in Figure
17. In this chart she was able to ensure that her successive answers were smaller
than previous answers, and it was also easy to go back and count the number of
answers that had been computed. Jason also provided examples of how pictures
could be used to help solve the bouncing ball problem. In his first attempt he draws
a series of sticks to represent the heights of each bounce (see Figure 17). The sticks
are never employed in any further problem solving approach, but are used simply as
a means to better understand the intent of the problem. Jason later suggests another
diagram which could be used more effectively to calculate the number of bounces:

Can you think of a different way?
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Figure 17: Solutions to the bouncing ball problem.

(a) Chart used by Kristine to keep track of her answers.

height 100 | 60 l 36 I 21.6 | 12.96
bounces I

1|2|3|4

(b) Stick diagrams drawn by Jason to help him visualize the problem.

(c) Diagrammatic solution devised by William based upon line lengths.
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Jason: Like a chart. Like a picture. First do 1 m and calculate ... and then
draw 60% of that and 60% of the ne»t one, 60% of the next one until
you get below 20 cm.

Jason does not actually complete this drawing, but William does. The exploded
diagram William creates is also found in Figure 17. In this diagram, William draws

a line approximately 10 cm in length. This line is then divided in half, and then
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each half is divided into 5 equal sections. William then draws a new line which is
the same height as six sections of the previous line. He repeats this process,
finding the correct height of each bounce by pictorially taking 60% of the previous
line. William knows he has drawn enough lines when his last line is less than two
sectons of the very first line (where each section represents 10 cm). This strategy
can lead to a correct solution of the problem without any computations ever being
performed.

Chris and Brad also provide an example of flexibility while solving the
second smartie problem. They have already concluded that they need to add two
smarties to set two to get an equal percent of red in both sets when they are asked
how they could check their answer. The boys decide that they could pair the
smarties to verify their solution. They find that they are missing two green smarties
and therefore conclude that the addition of two green smarties would produce equal
percent of reds in both sets.

The guess and test strategy was commonly employed or at least suggested
by most of the interviewed students. It was regularly employed by students who
had forgotten or were confused by the routine to calculate the percent of a number.
These students would guess a value, calculate its percent, and then adjust their
guess. In this example Carl is solving the bouncing ball problem. He has just
calculated that 60% of 100 is 60, and 60% of 60 is 36. He is uasure as to how to
find 60% of 36. Carl implements a guess and check strategy:

Carl: When it drops [to] 60 cm, when it bounces again it goes to 36 cm so
we ... you divide ...keep your number and you divide by 36 and when
you get your 60% you know its right. I think.

Show me what numbers you are going to punch into the calculator now.

Carl: Oh, I'm trying 21 at the moment ... [divide by] 36 ... 58, so [ry] 22
... two zeroes ... divided by 36 is 61. So you'd have to go to 20.5 ...
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Several students employ guess and test as an alternate method when they get stuck
in a problem, but rarely does it seem to lead to a solution. In Carl's case he became
quickly confused and was not able to complete the queston.

As has been shown, the students did in fact employ a broad variety of
problem solving strategies, and regularly suggested alternate methods of solving a
problem or checking an answer when asked. These examples verify that the
students interviewed in the clinical interviews had mastery over a variety of
techniques and were able to employ them at will. This ability is consistent with

Confrey's noticn of flexibility.

While the preceding evidence (that cognitional knowledge is present in
students’ cognitive activities) does provide some face validity to these knowledge
forms, it does not demonstrate that there exists a relationship between cognitional
knowledge and propositional and procedural knowledge. To address this
relationship a comparison must be made between those students who have shown a
change in propositional and procedural knowledge (subject group) and those who
have not. In order to complete this comparison an additional three sets of clinical
interviews were conducted with students who did not show changes or
improvements in propositional and procedural knowledge (see Figure 9). These
interviews were conducted with Kyle and Trevor, Claudia and Corinne, and
Shawna and Karen. These interviews are used in this study to constitute a control
group. The frequency with which students engage in each type of cognitional
knowledge is summarized in Table 8.

From this table a few observations may be made. First, all cognitional

knowledge forms appear more frequently in the problem solutions of the subject
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Tabi> 8: Frequencies of instances demonstrating cognitional knowledge.

Subject Group

Control Group

Sierpinska Confrey
Student IDE DIS GEN SYN REV GEN CUR FLE
Coinie 9 1 4 3 1 0 0 0
Jennifer 11 0 1 9 1 2 1 1
Carl 8 0 2 14 4 4 2 2
Brad 3 2 2 10 3 3 2 0
Matchew* 2 0 0 5 2 1 2 2
Paula 8 1 0 16 2 3 1 2
J.J. 4 1 2 8 1 1 3 2
Kristine 5 0 16 1 3 2 3
Jason 9 3 16 0 4 2 4
AVE, 6.6 0.6 1.6 11.3 1.7 2.3 1.7 1.8
Kyle 1 0 0 2 0 1 1 0
Claudia 4 0 0 0 0 0 1 0
Shawna 6 0 0 4 0 2 0 0
AVE. 3.7 0.0 0.0 2.0 0.0 1.0 0.7 0.0

|

* This interview was only partially transcribable.

group thar in the control group. Due to the sample size, it would be inappropriate

to conduct a statistical test of these differences, but it seems quite reasonable to
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claim that the differences imply a relationship between cognitional knowledge and
propositional and procedural knowledge: those students who have shown changes
in both propositional and procedural knowledge do seem to demonstrate a greater
number of instances of cognitional knowledge. Note that we have not determined
causality in this investigation. We have simply observed that where propositional
and procedural knowledge were developed, cognitonal knowledge was also present
in those leamers. Peterson (1988) and Confrey (1981, 1982) have argued that
these cognitional knowledge forms can be taught. Therefore, given that these
knowledge forms relate 1o the development of propositional and procedural
knowledge, it starids to r:..xon that this cognitional knowledge should be
specifically addressed in ihe m::hematics curriculum.

A second observat:on is that within the subject group the average number of
occurrences of synthesis is approximate?y twice that of identification; within the
control group the reverse is rue. This observation implies that though the control
group is apparently capable of formulating representations of mathematical
properties they seem less disposed toward joining those representations thus
forming more complex structures. The inability to create these structures may be an
impertant factor in the inability of the control group students to engage in
propositional and procedural knowledge construction.

Third, the most common forms of cognitional knowledge in which students
engage are identification and synthesis. Given that identification and synthesis are
the two forms of cognitional knowledge most frequenty associated with knowledge
construction, teachers should employ these knowledge forms in classroom activities
to facilitate their development. Teachers could employ these knowledge forms by

clearly labeling and discussing any objects, pictures or symbols used in instructon,
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and by clearly articulating each nroperty, principle or idea used in the development
of a concept. The teacher should explain where each concept was last found, and
why the concept or property is important, necessary, or helpful in the present
context. These discussions may help students build representations for new
concepts (identification), and may assist students in drawing relationships between
new and previously learned concepts (synthesis). The teaching behaviors which are
described are those employed within the Meaning and Problem Process Teaching
approaches. In this sense, this observation serves as an endorsement of the
Meaning and Problem Process approaches to teaching.

Fourth, we notice that there is a much greater tendency to engage in the
cognitional knowledge forms as described by Sierpinska than in those described by
Confrey. However, it is important to note that the higher frequency for the
Sierpinska forms is a product primarily of the large number of instances of
identification and synthesis. The infrequency of discrimination and generalization
may be a product of their definitions.

Sierpinska describes discrimination as the "discrimination between two
objects, properties, ideas that were confused before” (pg. 39). In this definition the
student must clearly identify two objects, properties and ideas, as well as show that
these ideas have been confused. The student must also shown that he or she has
resolved this confusion by clearly separating them again. Discrimination contains
three major components: identification, confusion, and resolution. In holding to
this definition rigidly, it was difficult to find instances of discrimination in the
clinical interviews as students would frequently omit one or more of the
components. The most commonly omitted component was resolution, as students

tended not to be abie to separate concepts once confused. This may have been a
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product of the limited time of the interview; students had little time to leisurely
reflect even though they were never rushed. Typically students would become
frustrated when confused and opt to try a different problem.

Like discriminaticn, the definition of generalization limited the frequency of
its use: generalization is "becoming aware of the non-essentiality of some
assumption or of the possibility to extend the range of applications” (Sierpinska,
1990, pg. 39). In the first form of generalization, students had to name or identify
an assumption, employ that assumption in some train of thought, and recognize that
the assumption was not helpful, fruitful, or was simply incorrect. Generalization
entailed three compor.cnis: identification, use, and rejection. Like discrimination,
generalization was infrequent as students tended to omit one element: rejection.
Students would occasionally make non-essential assumptions, but tended to stick
with an assumption once made. The second form of generalization (that of
extending the range of applications) was also limited in that the interviev's -vee
comprised of specific questions placed on laminated cards. No sty '. -r made a
comment regarding the application of a concept to a different coniext « .t that
described or implied on the card (such spontaneous transfer is proc:tiv more likely
to occur when new concepts are formed rather than when previously formed
concepts are employed as was the case in these interviews). It is interesting to note
that the students occasionally employed a reverse form of transfer in that they would
borrow from other contexts to help explain a present context (for example, using
percentage scores on a test to help understand the magnitude of a given percent in a
problem not involving test scores as a context).

In contrast to the large disparity in frequencies among Sierpinska's forms of

cognitional knowledge, the Confrey forms of cognitional knowledge are much more
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uniform: all four of Confrey's forms of cognitional knowledge have approximately
equal frequencies. The Sierpinska forms of cognitional knowledge were
spontaneously expressed by students in their problem solving activities (during the
clinical interviews), but the Confrey forms were not: the interviewer had to
specifically ask questions such as "Can you think of another way?" to ascertain
flexibility, and "How do you know?" to ascertain curtailment. The uniformity
among the Confrey forms is probably due to the questioning role the researcher had
to take in the interview. Given that the Sierpinska forms were spontaneously
provided while the Confrey forms were not makes the Sierpinska forms more
effective as a research tool: they do not require interference on the part of the
researcher to encourage engagement in cognitional knowledge. The Sierpinska
forms of cognitional knowledge are a more natural expression of students' cognitive
processes.

The large disparity amor.; .::z Sierpinska cognitional knowledge forms, and
the large difference between the Sierpinska forms and the Confrey forms implies
that only two of the eight cognitional knowledge forms investigated in this study do
discriminate well between students who do and students who do not readily
construct knowledge. These two cognitiori! knowiedge forms are identification
and synthesis. In surveying the eight cognitional knowledge forms, it is not
surprising that identification and synthesis are the most frequent as these two forms
seem tc correspond well to the act of construction: identification may be
conceptualized as the identification of knowledge building blocks, while synthesis

1s the assembly of these blocks into larger structures.
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In conclusion, the resuits of this study imply that the cognitional knowledge
forms as described by Peterson (1988), Sierpinska (1990), and Confrey (1981,
1982) can be found in the cognitive behaviors of students. Furthermore, our results
show that those students vho demonstrate a change in propositonal knowledge and
a gain in procedural knowledge, may demonstrate more frequent instances of
identification and synthesis. These observations provide some insight into our
derived constructivist model of learning. First, we have found that propositional
and procedural knowledge may be independent knowledge forms, and that they
may develop independently. Second, we have seen a relationship between
cognitional knowledge and the other two knowledge forms. We have also found
that the most frequently displayed and employed forms of cognitional knowledge
are identification and synthesis. This observation would imply that the most
important cognitional knowledge students bring to their leaming experiences is that
which enables them to code (acts of identification) and relate the information that

they perceive (acts of synthesis).

145



CHAPTER SIX

Reflections and Directions for Future Research

This study employed a constructivist model of learning in the investigation
of three different teaching approaches. Having completed the investigation, it is
now appropriate to reflect back on the work done and summarize the findings of
our investigation and discuss the implications of these findings. Given that this
study was conducted within the confines of a parent study (the Meaning in
Mathematics Teaching Project), we will compare our findings with those of the
MMT. We will also reflect on the constructivist learning model which provided a

framework for this study.

REFLECTIONS ON THE TEACHING APPROACHES

The three teaching approaches which were investigated included the Direct,
Meaning, and Problem Process Teaching approaches. In the Direct approach an
emphasis was placed on the teaching of algorithms and rules which would enable
students to perform mathematical tasks. The Meaning Teaching approach built
upon the Direct approach with emphasis on the representations of, and relationships
between mathematical concepts. In the Meaning Teaching approach teachers tried
to relate new concepts in a unified network, as well as link new learning to past
learnings. The Problem Process Teaching approach was a further extension of the
Meaning approach in which a problem solving component was added at the
beginning of each math period. During this problem solving component teachers

would engage students in an activity in which mathematical processes could be
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discovered, modeled, and developed. The general problem this study pursued was
to determine if these instructional approaches had differential effects on students'
learning as described by a constructivist view.

The three teaching approaches were investigated by testing their effect on
students’ propositional and procedural knowledge. By propositional knowledge
we mean the representations that students create for mathematical concepts, and the
relationships that they draw between them. By procedural knowledge we mean the
series of steps and procedures which enable the completion of a defined
mathematical task. The constructivist learning model posited that change in
propositional knowledge and gain in procedural knowledge were outcomes of
learning. It was found that chanze in propositional knowledge was facilitated by
one teaching approach, while gain in procedural knowledge was facilitated by the
other teaching approaches. Thus, the results of this study imply that students’
cognitive constructions can be influenced by an instructional approach. Perhaps
more importantly, this effect has been found in an actual classroom environment;
earlier studies were conducted either in laboratory settings or with contrived
concepts or both (see for example Shavelson, 1972; Geeslin and Shavelson, 1972;
Mayer and Greeno, 1972; Mayer, 1977; Dunn, 1983; and Stiff, 1989).

Whereas the present study attemrted to draw comparisons between the three
approaches to teaching, the Meaning in Ma hematics Teaching Project compared the
three teaching approaches to a conventional classroom settin g (where emphasis was
simply placed on following textbook activities). In the Meaning in Mathematics
Teaching Project, Sigurdson and Olson (1989) found that there was a significant
difference between the conventional classroom teachin g approach and the three

reatment teaching approaches; however, they were unable to show a statstically
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significant difference between the three reatment models on measures c.
achievement. That is, the conventional classroom approach was significantly
different (and less effective than) the three treatment approaches, but there was no
difference between the Direct, Meaning, and Problem Process approaches. The
present study found that there were differences between the three treatment
approaches: the Meaning Teaching approach apparently influenced propositional
knowledge more so than did the Direct ana Problem Process approaches, while the
Direct and Problem Process Teaching approaches influenced procedural knowledge
more so than did the Meaning approach. It is important to remember however, that
the Meaning in Mathematics Teaching Project used general achievement as a means
to compare the teaching models, and this is quite different from measuring specific
knowledge forms. Measures of general achievement encompass both measures of
propositional and procedural knowledge. In essence, the MM 1" showed that
something different was happening in the treatment groups than was found in the
conventional teaching group. The results reported here support that finding by
suggesting that in the Meaning Teaching approach students made significant
changes in propositional knowledge, while in the Direct and Problem Process
approaches, students made significant gains in procedural knowledge.

Both the Meaning in Mathematics Teaching project and the present study
investigated whether the treatment teaching approaches had an impact on student
learning for students of varied ability level. The two studies showed some
similarities and some differences in these investigations. The present study finds
that: (a) the development of propositional knowledge may be facilitated for high
and medium ability students in the Meaning Teaching approach, but not facilitated

by the iirect or Problem Process Teaching approaches, (b) the development of
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propositional knowledge may be facilitated for low ability students by all three
teaching approaches, (c) the development of procedural knowledge may be
facilitated for medium and low ability students in the Direct and Problem Process
Teaching approaches, but not facilitated by the Meaning Teaching approach, and (d)
the development of procedural knowledge may not be facilitated for high ability
students in the Problem Process Teaching approach, but is marginally facilitated by
the Direct and Meaning Teaching approaches. These observations are summarized
in Figure 18.

The MMT project included two different forms of data analysis. First,
Sigurdson and Olson (1989a, 1989b) labeled their classes as relatively high ability
or low ability classes and looked for differences in measures of achievement
between these classes according to teaching approach. They were unable to find
any statistically significant differences, bu: Jid find that the Meaning Teaching
approach seemed to consistently provide the highest means for high ability classes.
Sigurdson and Olson (1989b) also found that "High achievement students do not
benefit much more from a meaning than a direct approach but they do seem not to
gain from the Problem Process treatment"” (pg. 43). Note that classification at this
level of analysis was based on class means and not individual student performance.
The second level of analysis in the MMT project involved identifying which
students within these classes contributed to the performance of the whole class. In
this analysis individual students were labeled as high, medium and low ability.
Sigurdson and Olson found that "medium and high students benefit from a meaning
approach. However the Problem Process approach allows all students to benefit”
(pg- 47).

Some of the findings of the MMT project are similar to the findin gs of this
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Figure 18: Facilitation of knowledge forms by teaching approwch for students of

varying ability level.

Direct Meaning Prob Proc
High no yes no
Medium no marginal no
Low yes yes marginal
Procedural Knowledge
Direct Meaning Prob Proc
High marginal | marginal no
Medium yes no yes
Low yes no yes

Propositional Knowledge

study: (a) high ability students do seem to perform well under the Meaning
Teaching approach, and (b) low ability students perform quite poorly under the
Meaning Teaching approach. There are some differences however: (a) in the MMT
project low ability students performed quite poorly under the Direct Teaching
approach, while these same students performed very well on ireasures of both

propositional and procedural knowledge in this study, (b) in the MMT project



medium ability students performed well under the Meaning Teaching approach,
while in this study medium ability students performed poorly on measures of
procedural knowledge, and (c) in the MMT project students of all ability levels
performed well under the Problem Process Teaching approach, while it was found
that high ability students did not perform v.ell under the Problem Process approach
in this study. The MMT project concurred with our results only on measures of
high class performance not measures of individual student performance. To a large
extent these differences can be explained 'y the differences in that which was
measured. Measures of general achievement will contain elements of both
propositional knowledge and procedural knowledge, and will employ elements of
cognitional knowledge through the application of concepts to new contexts. This
study attempted to separate measures of propositional and procedural knowledge as
well as eliminate elements of transfer.

Assuming that the mathematics teacher wishes to address both propositional
and procedural knowledge, a few general observations may be made from Figure
18. When a teacher is working with relatively high ability students, then the
Meaning approach to teaching may be a viable method and may provide the greatest
opportunity to address both propositional and procedural knowledge. The results
of this study imply that the Problem Process approach to teaching with high ability
students may offer the least potential as we observed little growth in procedural
knowledge. The Direct approach with high ability students may be viable from the
perspective of development in procedural knowledge, but this approach shows
small change scores on measures of provnsitional knowledge. When working with
medium ability students, either the Direct (1 Problem Process methods of teaching

seem to offer approximately equal potential. It is worth noting that while both
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teaching models were found to have similar influence on procedural knowledge, the
Problem Process approach may hold greate) potental in its ability to influence
propositional knowledge. Medium ability students do not seem to gain in
procedural knowledge under the Meaning Teaching approach indicating this
approach (in general) may have little potential in the instruction of these students.
The results of this study also imply that when working with lower ability students,
the Direct approach to teaching may be most appropriate. We found that low ability
students in the Direct Teaching approach showed a great deal of change in both
propositional and procedural knowledge. The general poor performance of low and
medium ability students in the Meaning Teaching approach on our measures of
procedural knowledge may show that the effort required to deliver the Meaning
approach . these students might not be justified. In short, this study found that
where the teacher is attempting to mz.: . %ze effect on both propositional and
procedural knowledge, the Meaning ‘I sching approach may be most appropriate
with high ability students, the Problem Process approach may be most appropriate
with medium ability students, and the Direct Teaching approach may be most
appropriate with low ability students.

Not withstanding the implications listed above, it is important to note that
the purpose of this study was not to describe or identify particular teaching
approaches for students of varying ability levels. We have not shown, or attempted
to show that particular methods of instruction are categorically more effective with
students of defined ability levels. To investigate the effectiveness of particular
teaching approaches on particular students requires a different study design than the
one employed here, including the constitution of highly controlled, statistically

comparable subject groups. In this study we employed somewhat atypical notions
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of ability (i.e., we defined ability as the tendency to make representations of
concepts, to draw connections between concepts, to recall algorithms, and to
employ algorithms) and applied them to students who were selected for this study
because they were enrolled in a particular teacher's class, not because of any
individual or personal attribute. That is, we did not select students based upon
more typical, externally derived notions of ability, and did not attempt to select
comparable classes of comparable ability levels. Therefore, in interpreting the
specific conclusions drawn above, the reader should merely observe that different
teaching approaches may have different leaming outcomes for students of differing
ability levels. More importantly, the reader should observe that meaning structures
can be addressed for all students of all ability levels, and that certain classroom
activities may help in facilitating the development of such structures.

The results of this study imply that there are different learnin £ outcomes
which may be attributed to the Meaning Teaching approach than to the other two
models. No evidencs is available however to show tha differences exist between
the Direct and Problem Process Teaching approaches. This observation is
somewhat disappointing given the nature of the three teaching approaches. We
would expect the Direct and Problem Process results to be the least similar with the
results from the Meaning approach somewhere inbetwesn. Sigurdson and Olson
(1989b) found that the Problem Process T=aching appro~ch was the most difficult
of the approaches to deliver, followed by the Meaning and finally the Direct
approach. Given this finding and the similarity between the Direct and Problem
Process Teaching approaches, a shadow of suspicion is cast over the Problem
Process approach. Either it is not a viable approach in itself (due to teachers'

general inabiiity to implement it well), or the problem solving component it contains
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acts as a detriment to the development of propositional knowledge as evidenced
under the Meaning approach. In either czse, some reservations must be expressed
with regard to the Problem Process Teachiag approach. Of interest, the MMT
project came to the opposite conclusion and {5 and this approach to be the most
effective for all students across ability levels once poor implementers had been

removed from the subject group.

REFLECTIONS ON THE LEARNING MODEL

In the constructivist learning model presented in Chapier Two, we adopted
four basic principles synthesized from earlier research, including: (a) the act of
constructing knowiedge is an innate act involving abstraction and classification of
perceptual and sensory data taken from the environment, (b) the knowledge forms
constructed include propositional, procedural, and cognitional knowledge, (¢)
cognitional knowledge acts as a facilitating and controlling mechanism whereby
propositional and procedural knowiedge are constructed, and (d) metacognitional
knowledge is an awareness of cognitional knowledge and enables the conscious
engagement of cognitional knowledge. Our study specifically employed the second
and third postulates only.

In our application of the learning model we observed that: (a) change in
P~ sitonal knowledge and gain in procedural knowledge do not correlate
implying that these changes occur indep2adently, (b) those students who had
shown both a change in propositional knowledge and an increase in procedural
knowledge were also the same students who demonstrated particular forms of
cognitional knowledge, and (c) synthesis and identification were the two most

important or common forms of cognitional knowledge employed by these students.
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The first observation is strangely unsatisfying. We have long recognized
that students can be trained to complete algorithmic functions through simple drill
and practice techniques. But, we have more recently come to believe that students
must develop representations of math concepts and draw relationships between
these concepts if routines are to be learned and retained in a meaningful way.

This result is of critical import to classroom teachers both in terms of
instruction and evaluation. We have historically emphasized the mastery of
computational algorithms at all grade levels, and this emphasis has been reflected in
our testing instruments. We have left the development of representations of ideas
and relatonships between concepts to the student, assuming that propositional
knowledge will develop in accordance with gain in procedural knowledge. The
results in this study would imply that we can no longer make this assumption. To
the classroom teacher this result implies that specific attempts should be made to
address both propositional and procedural knowledge.

The Meaning Teaching approach may provide one avenue for addressing
propositional knowledge. The type of activities that these teachers employed
included: using manipulatives, reviewing to recall past leamnings, having students
engage in discussions encorporating new concepts, and having students discuss
applications of new concepts. Within discussions teachers would help students talk
about how ideas relate, how they are similar or different from other ideas or
processes, and how routines can generalize from one context to another. In
working with manipulatives, teachers would carefully describe how physical
objects represent abstract concepts, carefully labeling manipulative pieces while
encouraging questioning, language development, and verbal skills.

While the Meaning Teaching approach works well to address propositional
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knowledge, the Direct or Problem Process Teaching approaches can be employed to
address procedural knrowledge. There is ar: issue of practicality which becomes
important however. The Problem Process Teaching approach and the Meaning
"~ .." ing approach are more alike than are the Direct Teaching approach and the

aning Teaching approach. Given the tme restrictions placed on teachers by the
demands of the curriculum content, teachers may want to opt for the Problem
Process Teaching approach over the Direct Teaching approach. In the Problem
Process Teaching approach, teachers spent the first 8 to 10 minutes in problem
solving situations with their students. The problems should be carefully selected
such that they relate to the content being addressed (and thus also function as
review), and encourage discussion from students. The problem solving session
could be aliowed to end in a formal summary as one would find under the Direct
Teaching approach. In this way we have borrowed the best from each teaching
approach to address both propositional and pcedural knowledge. One cautionary
note: in this study we found that the Problem Process Teaching approach
functioned much more like the Direct Teaching approach than the Meaning Teaching
approach thus implying that the problem solving component added in the Problem
Process Teaching approach negated the effects of the Meaning Teaching approach.
Teachers must therefore be careful to ensure that full ime and effort is accorded to
the lesson development component where the Meaning Teaching approach exerts its
greatest influence.

Our second observation with respect to the learning model is that those

students who showed a change in propositional knowledge and a gain in procedural
knowledge also demonstrated particular forms of cognitional knowledge. Peterson

(1988) has argued that these cognitional knowledge forms relate to the general
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mathematical ability of students. Confrey (1981, 1982) and Sierpinska (1990) have
gone so far as to argue that these cognitive behaviors are those through which
understanding is developed. The relationship between propositional and procedural
knowledge and cognitional knowledge is an important finding of this study: it
shows that where students are active constructors of knowledge there may exist a
body of cognitional knowledge related to the ability to construct knowledge.
Peterson and Confrey have determined that this cognitional knowledge is teachable.
Their conclusions together with the findings in this study constitute an important
implication for classroom teachers: during instruction, teachers may want to
address this cognitional knowledge, for by addressing this knowledge lower ability
students may be assisted in becoming more effective builders of matheriacical
concepts. The question is, how can this be done? This study did not set about to
test changes in cognitional knowledge as a consequence of instruction, rather our
purpose was to investigate a possible relationship between cognitional knowledge
ard propositional and procedural knowledge. Hcwever, Confrey (1981) has
provided a very specific model:

1. Identify relevant concepts to be taught.

2. Determine students’ alternative, private conceptions of the
concepts, perhaps through their response:; to a problem.

3. ldentify terminology and symbols artached to those public
concepts, and to those private conceptions.

4. Propose possible routes from private to public concepts through
a series of development stages — these should be both conceptual
and linguistical stages.

5. Apply a theory of conceptual change. One possible method is to
construct or search out problems that unite the concepts to be
learned and to pose these as challenges. To be effective
problems for the students it's likely that these should conflict
with the students’ privately held conceptions.
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6. Devote attention to the processes necessary to form the concepts,
such as generalization, prediction, abstraction, curtailment, etc.

7. Assess the students on problems that involve flexible and

original instances of the concepts, and that require problem

solving strategies as well as recall of previous instances (pg.

12)
Within this model it is clear that reversibility, generalization, curtailment, and
flexibility have been addressed. Likewise identification, discrimination, and
synthesis (Sierpinska's forms of cognitional knowledge) may also be addressed.
The Problem Process Teaching approach as described in this study holds the
greatest potential to encorporate the suggestions made * y Confrey in that its
problem solving component may serve as an effective and efficient time to present
the problems mentioned in stages two, five and seven above.

The third major observaton with regard 10 the learning model employed in
this study, is that iwo forms of cognitional knowledge were most prevalent in the
cognitive behaviors of students showing changes in propositional knowledge and
gain in procedural knowledge: identification and synthesis. This observation is
important in its implications for teachers. During instruction siudents may benefit
when teachers specifically address representations and relationships between
mathematical concepts. Identification is the ability to develop representations of
mathematical concepts. If we address these representations, we may assist those
students who are slow to develop (or unable to independently develop)
representations thus enabling them to link new concepts to past conceptual
networks. Furthermore, by the consistent employment of identification we may
facilitate the development of this behavior in all students. Synthesis is the ability to
develop relationships or connections between mathematical concepts, that is, to link

concepts together into a consistent whole. The teacher may find it easiest to

specifically address identification and synthesis in the Meaning and Problem
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Process Teaching approaches where representations of concepts and relationships
between concepts are stressed.

Within this study we did not assess the effect of the teaching approaches on
the development of (or change in) cognitional knowledge. Confrey (1981, 1982),
Confrey and Lanier (1980) and Peterson (1988) have all shown that cognitional
knowledge can be addressed and developed through classroom instruction, but it is
stll unclear whether cognitional knowledge is only affected when deliberate
auemnpts are made to address it, or whether its development is a by-product of
instruction in other content. In short, Confrey, Confrey and Lanier, and Peterson
have verified that cognitional knowledge is a constructed knowledge form, but the
manner in which it is constructed and the teaching approaches which best influence
this construction have not been pursued.

In our constructivist learning model we also argued that cognitional
knowledge acts as a facilitating and controlling mechanism whereby propositional
and procedural knowledge are constructed. This postulate has been argued by
Sierpinska (1990) more generally in her assertion that identification, generalization,
discrimination and synthesis act 55 the means whereby knowiedge and
understanding are demonstratec. YWe chose not to pursue a causal link in this
study, but to pursue instead the more fundamental and necessary first step of
reaffirming the relationship Confrev (1981, 1982) and Peterson (1988) found
between the presence of cognitional knowledge and the development of
propositional and procedural knowledge. We have observed such a relationship,
and our findings imply that further research in this area may be a fruitful endeavor.

We did not find inconsistencies within the learning model that would

challenge its viability. However, further research is needed to verify certain
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relationships within the model, such as to determine if there exists a causal link
between propositional and procedural knowledge and cognitional knowledge, and
to determine if there does exist a correlation or other verifiable reladonship between
propositional knowiedge and procedural knowledge. Bewond msearch into the
model itself, it is difficult to recommend this learning medel as a tool for further
teaching experiments: it is probably more useful as a mean ; to understand and
develop curriculum appropriate for the learning of individual children.

The constructivist perspective is founded upon the notion that children build
their own mathematical knowledge through their interactions with their
environments. Therefore, regardless of the teaching approach, we would expect to
see changes in both propositional and procedural knowledge as children undertake
these constructions. No research methodology currently available lets us into the
child’s mind to determine whether these constructions are productive or valuable
constructions. Until such time as such a tool exists we are unable to determine the
effectiveness of a teaching appreoach with respect to the fruitfulness of a child's
constructions. The learning model is helpful however in providing insight into the
knowledge forms which are being constructed and employed by mathematics
students. We know that from a curriculum and classroom perspective we must
address all of propositional, procedural and cognitional knowledge. In this sense,
the constructvist learning model provides more guidance in terms of understanding
the learning of individual students than it provides a means of evaluating the relative

effectiveness of instruction.

REFLECTIONS ON THE STRUCTURED TREE RECALL TECHNIQUE

Measurement of propositional knowledge, or more generally, the
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measurement of students’ internal cognitive constructions is a continuigg problem
for the cognitive scientist. Many different methods have been tried (see Shavelson,
1974; Fensham, Garrard and West, 1981; Champagne, Gunstone and Klopfer,
1983), but the method chosen for this study was that which had been subjected 10
the highest degree of scrutiny (see Reitman and Rueter, 1980: McKeithen, et al.,
1981; Naveh-Benjamin, et al., 1986). However, several problems were
encountered in implementing this research tool.

In completing the structured tree recal! task, the students were asked to
recall the word list eight separate times. Naveh-Benjamin, et al. (1986) have
argued that not much more can be learned from having the students recall the words
four times than c¢un be learned from having them recall the words many umes. We
srongly disagree. We found that even after eight recall events, there were still
some students whose structured trees could not be determined (these students were
subsequently dropped from the subject pool). This difficulty not only led to the
unfortunate loss of some data, but it casts doubt on the effectiveness of the
structured tree to provide an accurate mapping of students' cognitive structures.

A second major difficulty was encountered with the interpretation of the data
from the structured tree recall task. Similarity scores are a measure of change in a
subject’s structured tree, but change can be either positive or negative. The
similarity score does not differentiate between the student who begins with a very
unstructured tree and moves to a highly structured wee and the student who begins
with a highly structured tree and moves to a highly unstructured tree. Surely the
first scenario is that which is intended in instruction, yet the second scenario was
observed with some students in this study. Both the students exemplified above

would show low similarity scores, and thus the similar coding of students with
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highly different learning outcomes confounds the calculation of a correlation. It
was not possible to delete those students who showed massive degeneration of
conceptual structures, as this would simply be an arbitrary decision on the part of
the researcher (for the degeneration of cognitive structures may be one possible
outcome of a given teaching approach). We were therefore limited to looking at
change in general as opposed to improvement in cognitive networks. The similarity
score associated with the structured tree recall task assumes students will make
productive changes in cognitive networks, but this study has found that this
assumption is questionable. An alternative to the method employed in this study
would entail comparing students’ structured trees to an external tree rather than to
their own previous trees. For example, the siudents' structured trees couid be
compared to one provided by their teacher (as was done by Naveh-Benjamin, et al.,
1986), or to a content map constructed using an analysis of textual materials (as
was done by Shavelson, 1972). Either of these methods would allow the
researcher to describe how the subjects’ cognitive networks were changing toward
a likeness of a defined structure.

A third difficulty was found with respect to the structured tree recall
technique: some students were found 10 employ mnemonic devices in memorizing
the key words. For example, some students chose to memorize the words in
alphabetical order. Though the inability to employ a more productive means of
sorting and memorizing the key words does say something about students'
cognitive networks, it should imply that these students recognize few meaningful
associations between major concepts. Instead, those students who memorized and
recalled the words in alphabetical order performed in a very consistent manner and

were therefore shown to have highly complex and highly structured cognitive trees.
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Those students who were found to have recalled the wosds in alphabetical order
were eliminated from the data, but it is impossible to know how many other
students employed a variety of other different mnemonic devices. These students
apparently believed that the task was really one of memory, and not one of
demonstrating relationships between known concepts. It cannot be known how
many students, if any, employed mnemonic devices other than alphabetization, but
the suspicion remains that not all trees provide a representation of the relationships
students perceive between concepts. The easiest way to alleviate this difficulty in
future research is to forego the memory element of the structured tree recall
technique. One could simply have students paperclip together the word cards in
groups that go together. These groups could then be compared to previous
groupings or to other external structures as described above.

In reflection on the structured tree recall task, we believe that the nature of
this task does not facilitate the correlation of propositional and procedural
knowledge. There were three groups of key words chosen for use in this task:
concept words, application words, and distractor words. Procedural knowledge
relates to the ability to emiploy rules and algorithms to achieve a mathematical task,
but there were no words available that could be assembled to represent a formula or
algorithm (for example, words like interest, principal, rate and time when placed
together resemble a formula). There may be subtle ways to demonstrate procedural
knowledge in this task, for example a student may place together 'sales tax' and
interest’ because they both require the computation of the percent of a number.
However, the stu:dents may also have put them together merely because the words
reminded them of a store or bank. A different task to illustrate the relationship

between propositional and procedural knowledge was needed. In future research,
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one possibility includes asking the siudents to describe or justify the sorting of
words thus forcing and elaborating on the meaningful association of concepts (see
Champagne, Gunstone and Klopfer, 1983 on the conSAT task; see Fensham,
Garrard and West, 1981 on the use of cognitive maps in instruction).

We have listed four important difficulties with respect to the structured tree
recall task, and each of these difficulties would confound the computation of a
correlation between propositional and procedural knowledge. We maintain that the
structured tree recall task was appropriate for comparison between teaching models
as each of the difficulties listed above had an approximately equal probability of
occurring under each of the teaching models. Assuming our sample size was
sufficient to support this claim, the comparison between teaching approaches
maintains some validity. In short, the structured tree recall task is probably a more
etfective tool for comparing between teaching approaches than it is for comparing
between knowledge forms within the learning model.

The concerns listed above describe specific implementational and
interpretational difficulties of the structured tree recall task. A further concern exists
with respect to the ability (or viability) of the structured tree recall task to adequately
and completely describe propositional knowledge. This study has adopted the
definition for propositional knowledge as given by Shavelson (1981):

The propositional structure of a subject matter refers to the meaning of

mathematical concepts and operations. More accurately, it refers to the

verbal and visual representation of meaning (pg. 25).

In this definidon we notice that propositional structures entail both verbal and visual
representations of meaning. The structured tree recall task could be conceptualized
as a task which primarily measures representation of meaning in a verbal form. At

least, the task itself is built around the recall of definitions and relationships as
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stored in memory under given words or simple phrases. In this sense, the
structured tree recall task predominantly measures one aspect of propositional
knowledge: verbal representaton. But, waat do we mean by the visual
representation of meaning? An example has been given for us in William's solution
to the bouncing ball problem (see Figure 16 in Chapter Five). In his solution to the
problem, William constructs a detailed pictorial representation of the problem,
accurately drawing lines the lengths of which represent the height of the ball on
each consecutive bounce. William's solution leads him through to the correct
answer without making a single computation. This solution is bcth highly visual in
nature, and demonstrative of William's ability to constnict meaning for the problem
conditions. Is it reasonable to expect that the student who is able to construct such
complex meaningful representations of concepts would also demonstrate this ability
through the structured tree task? It is important to observe that though this task may
provide one measure (a verbal measure) of propositional knowledge, the visual
dimension of propositional knowledge is not addressed.

Knowing that the structured tree task predominantly measures the verbal
representation of meaning, it is fair to ask what implications may be drawn for the
results of this study. First, we found that no correlation existed between
propositional and procedural knowledge, but it may be that there exists a
relationship between procedural knowledge and the visual dimension of
propositional knowledge. Is it possible that a link may be found between visual
representations of meaning and procedural knowledge, especially insofar as visual
representations often imply a solution route within problem solvin g situations?
Second, we failed to identify a teaching approach which clearly addresses both

propositional and procedural knowledge, but this conclusion may have to be further
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investigated accounting for the visual representation of meaning. Future research
may wish to reconsider the design and intent of the Meaning and Problem Process
approaches to clearly account for both the verbal and visual representation of
meaning. Some questons remain: Would we have achieved the same findings if
we replaced or supplemented the structured tree task with a visual representation of
meaning? and How do verbal and visual representations of meaning correspond or

differ, especially as applied within a problem solving context?

CONSTRUCTIVISM IN THE CLASSROOM

Noddings (1990) has presented four major principles of the constructivist
perspective, including:
1. All knowledge is constructed. Mathematical knowledge is
constructed, at least in part, through a process of reflective
abstraction.

2. There exist cognitive structures that are activated in the processes
of construction ...

3. Cognitive structures are under continual development.
Purposive activity induces transformation of existing structures.
The environment presses the organism to adapt.

4. Acknowledgement of constructivism as a cognitive position leads
to the adoption of methodological constructivism (pg. 10).

These four principles have many implications for teachers of mathematics.

First, knowing that all mathematical knowledge is constructed shifts the
collective responsibilities of teacher and student. Under impositionism, where the
teacher is perceived as the one who owns and imparts all mathematical knowledge,
correct transmission of knowledge is the responsibility of the teacher. Where the
student is accepted as one who constructs knowledge, the student shares the

responsibility of effective communication which facilitates knowledge construction.
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Under constructivism the teacher is responsible tor manipulation of the environment
in order to challenge students' prior conceptinns and thus encourage conceptual
exchange. Itis also the teacher's responsibility to manipulate the environment so
that students will have maximal opportunity to link new concepts to prior
conceptions and thus facilitate conceptual capture. The constructivist perspective
places responsibility for knowledge construction on the shoulder of the student
while placing responsibility for manipulation of the environment on the shoulder of
the teacher. This constitutes a shift in roles where the teacher is no longer perceived
as being directly responsible for the ransmission of knowledge. We believe that
this shift in responsibilities aids in maintaining the integrity of the teache-, the
student, and the learning environment.

Second, certain teaching behaviors and activities will be adopted by the
teacher who recognizes that cognitive structures exist and that these structures must
be activated in learning sequences. Teachers will need to attend to past learning.
The teacher will not want to merely present a new concept in isolation without
discussing or having students discover how new concepts are like or different from
past concepts. Given that these conceptual structures must be activated, the teacher
will not want to merely present ideas to students. Students must be challenged, and
encouraged to encounter and reflect upon mathematical properties, and this can only
be accomplished when students are involved by way of discussions and
questioning. Other ways of activating structures include challen ging problem
solving activities where students must apply known concepts within new contexts,
thus encouraging both transfer and application. Adoption of the constructivist
precepts implies a very active form of instruction. Traditionally an effective teacher

is defined as one who possesses good teaching skills, primarily good
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communication skills. Constructivism implies that good teaching involves the
ability to manipulate classroom environments zuch that students may challenge past
structures, link new concepts to existing structures, and thus build more powerful
cognilive netv orks.

Third, the constructivist perspective is useful to the classroom teacher as it
provides an alte:nate means to characterize the curriculum. The constructvist
perspective specifies particular forms of knowledge which are constructed. This
study has argued for three such forms including proposidonal knowledge,
procedural knowledge, and cognitional knovledge. The results of this study imply
that different fcaching approaches have differential affects on the construction of
propositional and procedural knowiedge, and imply that a relationship exists
between propositional and procedural knowledge and cognitional knowledge.
Therefore, the teacher who adopts the constructivist perspectivz .aay wish to atiend
to .he propositional, procedural, and more general cognitional knowledge structures
of any given topic or unit. By propositional strictures we mean that teachers
should address the representations of concepts as well as the relationships between
concepts, specifically how students are ‘seeing’ miathematical ideas and how
students are drawing connections between them. By procedural structures we mean
the collection of algorithms and processes which enable computations. Cognitional
knowledge structures are more general cognitive processes which enable students to
classify new concepts, discriminate between concepts, link concepts, think
flexibility, as well as reverse and curtail mental operations.

Histonically, mathematics teachers have focused almost exclusively con the

wcedural knowledge dimension of the curriculum to the exclusion of the

propositonal and cognitional knowledge ~omponents: we have taught half the
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curriculum, and probably not the most important half. Consider again the solution
William provided to the bouncing ball problem (see Figure 16). Through William's
powerful understanding of the problem (that ss, his ability to represent the event and
draw relationships between the concepts inherent within the problem) he was able
to effectvely solve the problem without making a single calculation: William's
solutdon provides evidence of the power and importance of propositional
knowledge structures. Propositional knowledge may be the comnerstone of
constructivism as it constitutes the meaningful association of concepts to fonn
powerful ideas.

Finally, adoption of the constructivist perspective represents a challenge o
the classroom teacher: a challenge to identify the ‘tool kit' (Davis, Maher and
Noddings. 1990) of cognitional knowledge which facilitates concept construction,
and a chailenge to identify those teaching approaches which facilitate the
construction of all three knowledge forms. In this study we have found that none
of the Direct, Meaning, or Problem Process Teaching approackes in isolation are
able to address both propositional and procedural knowledge for students of all
ability levels. The teacher's challenge is to find a combination of teaching
approaches which enable the simultaneous construction of propositional and
procedural krowledge while enabling th:: development of cognitional knowledge
structures. Constructivism challenges the teacher to focus not only on what

knowledge is built, but on how it is built, and who is building it.

DIRECTIONS FOR FUTURE RESEARCH

Our previous summaries have implied a research agenda. We huve already

noted that there remains the challenge of verifying a link between propositional and
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procedural knowledge, and the challenge of determining the nature of the
reiationship of cognitional knowledge 1o the other two knowledge forms. We have
also already noted the need for continued research into the visual nature of
propositional knowledge, and development of a valid methodology to investigate
students’ cognitive constructions. These research directions are a direct result of
the findings and frustrations within this study.

(a) In this study we found that propositional knowledge could be more
highly influenced by the Meaning Teaching approach than the Direct and Problem
Process approaches, and .nat nrocedural knowledge could be more highly
influenced by the Direct =+ ProlLlem Process Teaching approaches than the Meaning
approach. Can a single teaching approach be developed that influences all of
proposizional, procedural, and cognitional knowledge?

(b) This project did not find a relationship between change in propositional
knowledge and growth in procedural knowledge. The investigation of the
relationship between propositional and procedural knowledge may entail a study of
error patterns, as the consistent errors students make while employing algorithms
may be indicative of inconsistent or flawed propositional knowledge structures.
Can change in propositional and procedural knowledge structures be accounted for
through the study of student error patterns?

(¢) In this study we attempted to determine if a reladonship exists between
the three knowledge forms, specifically if cognitional knowledge is related to the
other two knowledge forms. Using only descriptive statistics, we found such a
relationship. Confrey (1981 1982) and Peterson (1988) have both verified that
cogniuonal knowledge is a teachable knowledge form. However, both researchers

set out to deliberately teach cognitional knowledge. Ts cognitional knowledge
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simply constructed as one product of instruction, or must it be directly addressed in
instructional sequences?

(d) The observation that cognitional knowledge may be associated with
students’ ability to construct propositional and procedural knowledge provides a
strong impetus for further research into cognitional knowledge. The scope or
variety of cognitional knowledge forms should also be pursued. This study
considered oniy those previously described by Confrey and Lanier (1980, and
Confrey 1981, 1982) and Sierpinska (1990). The question remains, do other

forms of cognitional knowledge exist?

CONCLUSION

The purpose of this study was 10 empioy a constructivist model of learning
as a means to investigate the Direct, Meaning, and Problem Process Teaching
approaches. The constructivist model of learning was comprised of three major
components: proposiuunal knowledge, procedural knowledge, and cognitional
knowledge. Propositional knowledge and procedural knowledge were presented as
outcomes of learning. Cogniticnal knowledge was presented as a mechanism that
conwols and facilitates the development of propositional and procedural knowledge.
Measures of propositional knowledge and nrocedural knowledge were used to
compare the three teaching approaches. We found that the Meaning Teaching
approach had the most influence over the construction of propositional knowledge.
We also found thar the Direct and Problem Process Teaching approaches had the
most influence over the construction of procedural knowledge. In short, these
results imply that alternate teaching approaches when employed in actual classroom

situations do have differential affects on students’ cognitive constructions.
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A secondary purpose of this study was to reflect upon the constructivist
learning uiodel in light of its application to the investigation of the teaching
approaches. In this study we did not find a correlation between the development of
propositional and procedural knowledge; however, we did find that there may exist
a relationship between cognitional knowledge and the other two knowledge forms.
We found that those students who showed a change in propositional knowledge
and a gain in procedural knowledge demonstrated a greater number of instances of
cognitional knowledge during problem solving events. This study did not attempt
to validate this synthesized constructivist model of learning.

in the evolution of cognitive psychology, inicreasing emphasis has been
placed on developing plausible descriptions of student learning within teaching
environments. This study has attempted to draw a connection between the Direct,
the Meaning, and the Problem Process Teaching approaches and the manner in
which students construct knowledge, and we have attempted to make this
connection within actual teaching environments. Much more needs to be done to
develop more effective research methodology, and more needs to be done to further

define, refine, and validate the constructivist learning model.
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APPENDIX A

Structured Tree Task Materials

Recall Form:
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Cards:

adjacent cost decimal
denominator| discount fraction
hundredths interest markup
part percent ratio
sale price sales tax square

YA LS
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APPENDIX B

BASIC Program for the Cluster Analysis of Structured Recall Form Data

10 REM Written by A. Craig Loewen

20 REM CLUSTER: Analysis of Structured Ordered Tree Forms
30 REM October 27, 1988

40 INPUT "Array length: ";al

50 INPUT "Array width: ";aw

60 DIM a(aw,al)

70 REM Input Da:a

80 FOR x = 2 TO aw: Print "row: ";x
9OFORy=1TOal:a(l,y)=y

100 PRINT "(";x;",";y;")""INPUT a(x,y)

11ONEXT y

120 NEXT x

130 PRINT "***MATRIX*******************************"
140 FOR x=1 TO aw: PRINT "ROW"x"; ":
150FORy=1TOal

160 PRINT a(x.y)" ";

170 NEXT y: PRINT: NEXT x

180 PRINT "******************************************"
190 INPUT "Errors? <y/n>: ":a$

200 IF a$="n" THEN 240

210 INPUT "Row, Column: ";r.c

220 INPUT "Entry: ";e

230 a(r,c) =e: PRINT: GOTO 130

240 PRINT "BEGINNING ANALYSIS ---cccmmmcmmeeee "
250 PRINT "Chunk Listing:"

300FORx=1TOal -1

310FORy=x+1TOQal

320 low = a(1,x)

330 high = a(l,y)

340 wid = y-x+1

350 flag =0

360 FOR row =2 TO aw

370 FOR col =1 TO al - wid + 1

380 FOR z =col TO col + wid - 1

390 IF a(row,z) < low OR a(row,z) > high THEN 420
400 NEXT z

410 flag = flag + 1: GOTO 430

420 NEXT col: GOTO 450

430 NEXT row

440 IF flag = aw - 1 THEN PRINT "chunk: ";low;"-";high
450 NEXT y

460 NEXT x

470 PRINT "END ANALYSIS - meeemmn e "
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APPENDIX C

Diagnostic-Performance Test

Form “A”
Name:
School:
Teacher:
Date:
FOR RESEARCH USE ONLY:

Split-Half Scores - A: B:

Please leave the test closed until you are told to begin.

186



Diagnostic-Perforrnance Test - Form “A”

Instructions: Write your answers in this booklet in the spaces provided. Please
be neat, otherwise your responses cannot be counted. The questions will get
increasingly more difficult as you progress through the booklet. /7 is very
important that you artempt the questions and problems in the order in which they
are given. If you know how to solve a problem, then solve it and place vour
answer in the blank provided. If you do not even know how to start a problem,
then skip it and go on to the next one. You may find you cannot answer all the
questions in this booklet. This is to be expected, so do not be discouraged!
There is no time limit, but you should work as quickly and accurately as you can.
You may use a calculator if you wish. Please use the margins and the backs of
the pages as scrap paper.

(1) Shade in the correct number of boxes:

A. Shaded : Whole=2:3

B. Shaded : Whole=3:4

(2) Place a check (V) in the box if the statement is true:

A 12 =6 B. 1 =21
10 5 15 30

(3) Find the missing number:

A. 2 = 40 B. 3 =3
12 48 ? 6
Answer: Answer:
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(4) Shade in the correct number of boxes:

A. 25 B. 60

100 100

(5) Complete the chart:

Fraction Percent Decimal

A. 4/s

9/25

(6) Complete the chart:

Fraction Percent Decimal
65% 0.65
B. 4% 0.04

(7) Calculate:

A. Find 2% of 1300. ]
Answer:

B. Find 15% of 120.

Answer:
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(8) Calculate:

A. 7 is what percent of 10?

Answer:

e

B. 15 is what percent of 257

Answer:

(%) Give two examples of situations where it is possible to have a percent greater
than 100%.
Explain your answers.

A.

(10) Complete the chart:

Fraction Percent
A. 11/a
210
(11) Complete the chart:
Fraction Percent
A. 150%
225%
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(12) Calculate:

A. 60is 125% of what number?
Answer:
B. 15is 60% of what number?
Answer:
(13) Complete the chart:
Percent Discount Regular Price Sales Price
25% $120
B. 20% $250
(14) Complete the chart:
Sales Tax Rate Regular Price Total Cost
A. 5% $120
B. 8% $350
(15) Complete the chart:
Principal Annual Rute Time Interest
310 10% 1 year
B. $300 12% 9 menths
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(16) Calculate:

2
A. Increase 120 by 40%. Answer:
B. Increase 200 by 150%.
Answer:
(17) Calculate:
A. Decrease 40 by 20%. Answer
B. Decrease 8000 by 75%.
Answer:
(18) Complete the chart:
Percent Discount Regular Price Sales Price
10% $54
B. 25% $135
(19) Complete the chart:
Sales Tax Rate Regular Price Total Cost
10% $33
B. 15% 3161
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(20) Calculate:

A. A rumber was increased by 30% to get 260.
Find the number.

Answer:

TR TR M S e A e M S T e e e e e T oan e e e e M YR M e e e o e e M e em oar e e mm e e

B. A number was increased by 70% to get 51.
Find the number.

Answer:

(21) Calculate:

A. A number was decreased by 20% to get 40.
Find the number.

Answer:;

B. A number was decreased by 5% to get 285.
Find the number.

Answer:
(22) Complete the chart:
Percent Decimal
A. 87 2%
B. 56 3/4%
(23) Complete the chart:
Percent Fraction
A. 12 12%
31 /4%
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(24) Complete the chart:

193

Principal Annual Rate Time Interest
$50 1 years $6
6% 6 months $9
(25) Complete the chart:
Sales Commission Pay
20% 315
$800 $56
(26) Complete the chart:
Cost Price Selling Price Percent Profit
$15 $45
$200 150%
(27) Complete the chart:
Cost Price Selling Price Percent Loss
$90 50%
$180 10%
END OF TEST




APPENDIX D

Clinical Interview Questions

(1) Students are presented with a single box of smarties candies and are asked to
open the box and spread the candies out on the tabletop.
Smarties Problem I: If you had a box of 100 smarties with the same colors
in the same ratio as your box, how many red ones would there be?
(2) Students are given two loops. One red and two green smarties placed inside of
the first loop (set I). Four red and six green smarties are placed inside of the of the
second loop (set II).
Smarties Problem II: How many green smarties should be added or
removed from the second set to make the percent of red in each set equal?
(3) Students are given one loop. Two red and three green smarties are placed
inside the loop.
Smarties Problem ITI: What would happen to the percent of red smusics if:
(a) one green smartie was added? (b) one red smartie was added? (c) one
red and one green smarties was added?
(4) Swdents were presented with a high-bounce rubber ball and allowed to bounce
the ball a number of times and describe the behavior of the ball.
Bouncing Ball Problem: A rubber ball bounces back up to 60% of its
original height when it is dropped. If the ball is dropped from a height of 1
m how many bounces before its height is less than 20 cm?
(5) The students are shown a card with a series of five ratios placed in fraciion

form.
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Conversion Problems: Express each of the following ratios as a percent:

1 A 3 18 L
4 25 10 24 30

{6) The students were presented with a balloon and were asked to blow it up and

then to let the air out of it again.

Balloon Problem: When inflated, a balloon is 250% of its deflated volume.

If its inflated volume is 300 cm3, what is its deflated volume?

(7) No physical or manipulative material was presented with this problem.
Growth Problem: At two years of age a child is 45% of the height he will
be when full grown. Bob grew up to be 180 cm tall. How tall was he
when he was 2 years old?

(8) No physical or manipulative material was presented with this problem.
Inierest Problem: Kelly puts $100 in the bank. At the end of cach year
Kelly gets 10% interest which is added directly into the account. After 3
years, how much money is in the account?

(9) No physical or manipulative material was presented with this problem.

Sales Tax Probiem: The Canadian government is about to impese a 9%
sales tax. If you bought a $20 T-shirt, a $5 pair of socks, and a $50 pair of
jeans, how much sales tax would you have to pay?

(10) A diagram like the one shown below was presented to the student along with

this problem.

PBizza Problem: 5.1/4 pizzas are :c cc split among 3 people. What percent

of a pizza does each person get?
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(11) A diagram consisting of two large circles was presented to the student along
with this problem.
Circlegraph Problem: Jane spent 50% of her allowance on a movie, 30%
on a new pencil case, and 30% flowers for her mother. Draw a circlegraph
and explain your drawing.
(12) Three cards were presented along with this problem. On the first card a line 7
cm in length had been drawn. The second card contained a line 10 cm in length,
and the third card contained a square 10 cm on a side.
Photocopier Problem: A 10 cm long line is drawn on a piece of paper and
then reduced with a photocopier. The photocopied line comes out 7 cm
long. A square (10 cm on a side) is constructed and reduced using the same

machine. Express the area of the final square as a percent of the original

square.
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APPENDIX E
Data Tables

Table 9: ST task means by class and teaching approach.

Sample

PRO-Pre
M n

sSb M

PRO-Post

PRO-Ret

n SD M n SD

Class 11
Class 12
Class 13

14.3
19.2
20.0

21
22
22

9.35
8.49
10.17

13.7
17.4
12.2

22 9.82
23 8.4]
20 9.44

11.7
18.9
13.4

21 9.86
20 10.15
18 12.10

Class 21
Class 22
Class 23

18.2
9.8
13.9

22
24
24

11.48
7.27
9.61

12.3
12.0
13.6

21 9.69
26 10.17
22 9.65

11.6
9.4
14.2

22 96.82
26 8.50
21 11.19

Class 31

Class 33

Class 32 ’

18.6
16.9
15.6

22
27
22

8.10
7.47
11.21

15.8
12.8
14.7

23 10.16
22 6.73
27 10.72

13.9
13.9
13.9

21 10.51
22 9.20
24 10.62

Direct
Meaning

Pr Proc

179
13.9
17.0

65
70
71

9.55
10.01
8.92

14.6
12.6
14.5

65 9.33
69 9.74
72 9.43

14.7
11.6
13.9

59 10.96
69 9.85
67 9.98

Total

16.2 206 9.61

13.9 206 9.50

13.3

19510.28
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Table 10: D-P test means by class and teaching approach.

Sample Obj-Pre Obj-Post Obj-Ret
M n SBD M n SD M 1 SD

Class 11 |10.8 24 520 {14.5 25 5.39}13.4 25 570
Class 12 110.0 25 3.70 |11.7 24 4.i9}12.2 25 5.22
Class 13 | 8.4 25 4.00{13.4 21 5.05|11.0 23 5.30
Class 21 {10.3 23 4.04 {15.7 21 495|144 21 5.16
Class22 {10.4 28 4.43 |12.8 27 5.58| 9.8 28 4.40
Class23 | 8.3 27 3.31 |10.0 25 4.36]| 9.5 24 5.19
Class 31 {10.3 24 5.09 {14.5 24 567 |13.5 24 492
Class32 | 9.0 28 3.77 |11.8 24 444|119 23 4.03
Class33 | 8.3 25 4.70 |12.3 26 6.00|11.1 22 4.62
Direct 9.7 74 439 (13.2 70 498]12.2 73 5.43
Meaning | 9.7 78 4.02 [12.7 73 542 (11.0 73 5.29
1 Pr Proc 9.2 77 453|129 74 5491122 69 4.58
Total 9.5 229 4.31 1129 217 5.29]11.8 215 5.13
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Table 11: ST task means by ability groups.

Sample

PP - Hi
Med
Low

Direct
Meaning
Pr Proc
High
Medium

Low

Total

f=]

12
15

12
11

26
33
30

28
29
32

89

PRO-Pre PRO-Post PRO-Ret
M 2D M SD M SD
23 208 1.7 1.41 5.7 9.18
14.0 1.34 | 13.4 7.62 99 9.83
29.4 1.67 | 16.0 12.03 } 18.5 11.68
24 233 4.3 4.52 6.2 8.94
13.1 1.18 | 13.9 942 {13.0 9.32
28.6 1.74 | 17.5 11.27 | 19.0 10.19
38 272 {114 11.10 9.7 8.68
134 097 | 109 6.02 } 133 7.20
25.2 1.53 | 22.5 7.56 | 23.1 10.57
18.4 1136 | 119 10.68 | 129 11.58
12,5 1115 | 105 989 | 11.6 10.59
169 1033 | 15.3 9.51 | 16.1 10.28
2.7 2.37 55 7.18 7.0 8.74
13.5 1.15 } 12.5 7.49 | 123 8.46
29.1 1.63 | 18.7 10.54 }20.2 10.76
157 11.18 | 12.5 10.10 | 13,5 10.83
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Table 12: D-P test means by ability groups.

Sample
D - Hi
Med

M-Hi
Med

PS - Hi
Med

Direct
Meaning

Pr Proc

High
Medium
Low

Total

1=

12

12

27
32
30

89

Obj-Pre Obj-Post Obj-Ret
M SD M SD M SD
158 172 | 17.2 585 | 177  5.82
9.4 052] 145 162|141 1.68
50 08| 97 327 | 90 443
16.5 329 | 193 475 | 17.6 5.33
9.8 044] 120 397 | 91 3.69
47 112 63 235 54 246
169 293 | 198 259 | 164 4.19
9.4 051] 132 366|135 281
44 099 96 4.64 | 87 3.11
9.9 406 | 141 446 | 137 4.79
109 547 | 132 668 | 114 6.68
2 5321 133 562|122 461
16.5 282 19.1 433|172 4.93
95 051|133 322|125 3.42
46 100| 86 401 | 7.8 3.48
100 5.07 | 13.5 568 | 12.3 5.45
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Table 13: Similarity score means by ability groups.

Sample

PP - Hi
Med
Low

Direct
Meaning

Pr Proc

High
Medium
Low

Total

Note: A similarity score which was undefined resulted in a reduced sample size.
Instances where this occured are marked with an asterisk. The number of

n
6

8
12
15

9

9

7
12
11

26
33
30

28
29
32

89

Sim Sim Sim
Pre/Post Post/Ret Pre/Ret
M SD M SD M SD
0.50 0.30 0.34 0.27 0.41 0.39
0.60 0.15 0.43 0.24 0.39 0.23
0.08* 0.19 0.22* 0.23 0.20%*0.42
0.13 0.23 0.19 0.21 0.08 0.14
0.34 0.23 0.58* 0.32 0.27 0.21
0.05 0.14 0.15 0.19 0.24 0.35
0.39 0.20 0.49 0.24 0.32 0.16
0.38 0.37 0.47 0.19 0.33 0.28
0.25* 0.36 0.26* 0.28 0.05* 0.16
0.35* 0.31 0.32* 0.25 0.32%*0.36
0.17 0.24 0.28* 0.29 0.18 0.24
0.34* 0.33 0.41*% 0.25 0.23* 0.25
0.28 0.28 0.30 0.26 0.21 0.26
0.42 0.29 0.49*% 0.24 § 0.33 (.24
0.13*¥0.26 0.21**0.24 D.19%**0.33 :
0.27**0.30 0.23%%%().28

0.33***(0.27

asterisks represents the number of undefined scores.
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Table 14: Proportions of students correctly answering questions on D-P test.

Pre Test Post Test Retention Test
Questdon n=229 n=217 n=215
Raw To Raw % Raw Yo
1 165 72.1 143 65.9 154 71.6
2 216 94.3 197 90.8 200 93.0
3 184 80.3 173 79.7 167 77.7
4 224 97.8 213 98.2 212 98.6
5 176 76.9 187 86.2 175 81.4
6 142 62.0 158 72.8 162 75.3
7 73 319 172 79.3 143 66.5
8 159 69.4 150 69.1 137 63.7
9 46 20.0 77 355 73 34.0
10 137 59.8 136 62.7 141 65.6
11 135 59.0 139 64.1 128 59.5
12 58 25.3 108 49.8 90 41.9
13 87 38.0 162 74.7 130 60.5
14 73 319 167 77.0 140 65.1
15 18 7.9 36 16.6 64 29.8
16 60 26.2 116 53.5 98 45.6
17 67 29.3 120 55.3 106 493
18 11 4.8 30 13.8 25 11.6
19 7 3.1 28 12.9 20 9.3
20 11 4.8 31 14.3 22 10.2
21 13 5.7 32 14.7 23 10.7
22 60 26.2 113 52.1 106 4.3
23 14 6.1 32 14.7 14 6.5
24 3 1.3 18 8.3 7 33
25 17 7.4 52 24.0 40 18.6
26 4 1.7 6 2.8 2 0.9
27 19 8.2 15 6.9 10 4.7
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