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Abstract. The focus of this study is the development and evaluation of a new partially supervised 

learning framework.  This framework belongs to an emerging field in machine learning that 

augments unsupervised learning processes with some elements of supervision.  It is based on 

proximity fuzzy clustering, where an active learning process is designed to query for the domain 

knowledge required in the supervision.  Furthermore, the framework is extended to the 

parametric optimization of the kernel function in the proximity fuzzy clustering algorithm, where 

the goal is to achieve interesting non-spherical cluster structures through a non-linear mapping.  

It is demonstrated that the performance of kernel-based clustering is sensitive to the selection of 

these kernel parameters.  Proximity hints procured from domain knowledge are exploited in the 

partially supervised framework.   

The theoretic developments with proximity fuzzy clustering are evaluated in several interesting 

and practical applications.  One such problem is the clustering of a set of graphs based on their 

structural and semantic similarity.  The segmentation of music is a second problem for proximity 

fuzzy clustering, where the aim is to determine the points in time, i.e. boundaries, of significant 

structural changes in the music.  Finally, a time series prediction problem using a fuzzy rule-based 

system is established and evaluated.  The antecedents of the rules are constructed by clustering 

the time series using proximity information in order to localize the behavior of the rule 

consequents in the architecture.  Evaluation of these efforts on both synthetic and real-world 

data demonstrate that proximity fuzzy clustering is well suited for a variety of problems. 
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1. INTRODUCTION & MOTIVATION 
An important and growing area of research is the field of computational intelligence (CI).  It is a 

collection of paradigms and algorithms used by scientists and engineers to accomplish tasks such 

as classification, clustering, approximation learning and prediction.  CI is a hybrid of fuzzy sets, 

neural networks and evolutionary optimization that form an integral part of the design of an 

intelligent system, c.f. [102][158].  The algorithms and paradigms stemming from CI have the 

important property of being able to learn from data.  A vast majority of these algorithms fall 

under the traditional dichotomy of unsupervised and supervised learning [102].  These 

frameworks are illustrated in Figure 1. 

 

Figure 1. Unsupervised learning and supervised learning 

The distinctive feature of supervised learning is that there are outputs which are needed to build 

an input-output mapping.  Unsupervised learning on the other hand does not use outputs in the 

learning process but rather employs self-directed learning that discerns structure in data. 

A third paradigm of learning that is gaining increased interest enhances traditional self-directed 

learning, i.e. unsupervised learning, by making use of some hints that guide the learning process, 

cf. 

[157][26][161][162][16][34][4][22][208][122][43][46][25][179][13][217][135][218][33][80][117][5

2][74][165][166].  Undoubtedly, this is a highly promising and practically feasible direction in 

clustering that has the potential to enrich the learning process by accommodating domain 

knowledge [161].  As an example, we can consider a music recommendation system where the 

objective is to personalize the recommendation of music for each user based on their 

preferences.  The problem is depicted in Figure 2. 



 

  

 

2 

 

 

Figure 2. Partially supervised personalized music recommendation system 

The idea is to request a small number of hints from the user in order to construct a model of the 

data that describes the user’s preferences.  Due to the enormous amount of music available, it is 

unrealistic and expensive to request the user to form a large training data set required of a 

conventional classifier to build the model.  Hence, a partially supervised architecture is better 

suited for this task.  Figure 3 illustrates the general framework of a partially supervised learning 

system. 

 

Figure 3. Partially supervised learning 

Several outstanding research questions remain that need to be addressed in this area of partially 

supervised learning.  One of the prominent questions remaining is one of a philosophical point of 

view:  what is the best way to exploit this domain knowledge in a partially supervised 

framework?  Despite the ubiquity of domain knowledge in common real-world data analysis 

problems, knowledge hints are rarely considered due to a lack of meaningful and algorithmically 

sound mechanisms available to incorporate them.  Part of the issue lies with the many different 

forms of domain knowledge available.  For example, there are constraint labels of many different 

forms, class labels, proximity labels, output labels, time stamps, etc, all depending on the 

problem at hand.  Therefore, it is imperative that algorithmic frameworks for partially supervised 

learning be both well-supported and inspired by practical applications.  It is with that reasoning 

that novel developments presented in this research will be two-fold, involving both theory and 

the application of partially supervised learning. 

Second, the selection of the distance function and its parameters is a considerable challenge in 

clustering and has important implications on the shapes of the clusters.  Partially supervised 

learning can be effective in adapting the parameters of the distance function and thereby play an 

integral role in any unsupervised learning framework.  This leads to an important research 
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question regarding how it is best to exploit knowledge hints in order to adapt the distance 

function to a given problem.  It is common to see the Euclidean distance in many clustering 

approaches; however, this metric tends to form hyper-spherical cluster geometries.  While 

various distance functions have been introduced to address this restriction by providing 

increased flexibility, there often lacks mechanisms to determine the optimal parameters of these 

functions.  The kernelization of clustering algorithms is one of the latest trends in producing 

flexibility distance functions, cf. [77][76].  Partial supervision is of prime interest in this 

application since the hints can be used to determine the optimal parameters for a particular 

kernel function. 

A third important question deals with the selection of the user hints.  Specifically the problem is 

in finding a small amount of data that need to be labeled.  This area of research is called active 

learning and has received significant attention in problems where the objective is to select a 

small training data set from a large repository of data to discover a model for classification or 

regression purposes.  The goal is to obtain high accuracy and strong generalizability on a concise 

training data set.   Active partially supervised learning is a related problem with a slightly 

different objective:  to determine what hints will be most beneficial in the learning.  Often it will 

be the case where we have the ability to request some hints either from a human expert or 

automatically from a machine.  However, since labelling is a taxing process, it is important to 

include an active component in the learning that is able to choose a small yet highly informative 

set of patterns to be labelled. 

The aim of this study is to address many of these challenges presented in partially supervised 

learning by developing a partially supervised framework capable of exploiting proximity domain 

knowledge to benefit the clustering.  Specifically, these objectives are to 

• develop a partially supervised learning framework for clustering with proximity hints 

(domain knowledge), 

• present an approach to learning the parameters of the proximity function using 

proximity hints, 

• introduce an active learning framework for selecting the labeled patterns that is 

applicable to partially supervised learning, and 

• outline a framework for clustering with multiple sources of proximity information. 

The main points of the theoretic developments are discussed.  Firstly, a proximity fuzzy clustering 

framework forms the basis of this research.  It clusters data according to a proximity function 

that returns the degree of similarity between patterns – a concept highly related to kernel 

functions and kernel methods.  The parametric optimization of the proximity function is the 

second accomplishment.  A third novelty is an active learning framework that selects the optimal 

set of patterns to be labeled according to a measure of fuzziness.  Finally, multi-proximity fuzzy 

clustering that reconciles proximity information coming from multiple sources is formulated. 

Several real-world applications demonstrate how the new framework improves upon the current 

state-of-the-art.  Several important applications of partially supervised clustering which will be 

expounded upon in the thesis are the 

• adaption of the distance function and kernel function, 

• prediction and clustering of time series, 

• clustering of graphs in software development, and 

• segmentation of music into meaningful structural sequences. 

When learning the distance function (and kernel function), active learning is employed to select 

the patterns for which we require proximity hints.  Most existing approaches in semi-supervised 

metric learning do not develop an active learning mechanism in their approach.  Additionally, 



 

  

 

4 

 

most assume the available domain knowledge consists of pair-wise constraints (must link and 

cannot link) that dictate whether or not patterns should be in the same cluster.  However, these 

constraints are Boolean and very limiting.  A more general approach is to make use of proximity 

hints that indicate the degree of similarity between patterns. 

The next problem of time series prediction is well studied and boasts numerous prediction 

architectures, each with advantages and disadvantages.  A popular architecture is the fuzzy-rule 

based system since it provides a way to combine the predictive power of several simple local 

prediction models.  The construction of the antecedents in these rules is important for 

constructing effective local models in the consequents.  A system is presented and evaluated that 

constructs the antecedents with proximity fuzzy clustering.  The benefits of the approach are a 

significant reduction in the number of rules in the architecture. 

The third application is the clustering of a collection of graphs and is an important research 

problem in computing science.  One of the main novelties in this application is the measure of 

proximity used between graphs since it is based on both their structure and semantic similarity.  

The semantics of the graphs come from feature trees in computing science which describe the 

properties or features of a software product based on a requirements specification. 

Finally, the segmentation of music into a structural partition, namely intro, verse, chorus, is an 

area of research that could eventually facilitate more effective indexing and searching of a large 

database of music.  The idea is to determine the structural information in a song using proximity 

fuzzy clustering aided by some temporal domain knowledge hints. 

With each of these applications, how the partially supervised framework improves upon 

traditional clustering frameworks is investigated.  Furthermore, the benefits procured by 

incorporating knowledge hints in the clustering are demonstrated. 

The common nomenclature used throughout this document is provided in Table 1.  We use 

standard matrix notation and set notation.  We will use non-italicized capital letters to denote 

matrices, bold-face non-italicized lower-case letters to denote vectors and bold-face, italicized 

capital letters to denote vector spaces. 
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Table 1. Common nomenclature 

Symbol Description 

Feature space, e.g.  

N Number of data 

d Dimensionality of data 

 Data set 

c Number of clusters 

K Number of classes 

 Clusters 

 Partition matrix 

 Set of prototypes 

 Kernel space (higher dimensional space) 

 Non-linear mapping to kernel space 

K(·,·) Kernel function 

p(·,·) Proximity 

d(·,·) Distance 

 

where  

Proximity matrix of patterns to clusters 

 Proximity matrix of patterns 

M Number of labeled patterns 

 Data set of labeled patterns 

 Minimum 

 Maximum 

 Euclidean norm 

 Mahanabolis norm for positive semi-definite 

matrix A 

 
Frobenius matrix norm 

 Labeling function of a single pattern 

 Relational labeling function of two patterns 
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2. BACKGROUND 
In this chapter, a background in the traditional learning dichotomy of unsupervised and 

supervised learning is given.  The most common frameworks, architectures and algorithms in 

unsupervised and supervised learning are outlined to provide a basis on which to discuss a 

partially supervised approach in subsequent chapters.  There are many algorithms available in 

unsupervised learning including 

• k-means clustering, 

• Fuzzy C-Means (FCM) clustering, 

• agglomerative & divisive hierarchical clustering, 

• minimum entropy clustering (k-nearest neighbor), 

• relational fuzzy clustering, 

• kernel clustering, and 

• spectral clustering. 

There are numerous well-known supervised architectures that will also be briefly discussed 

including 

• feed-forward neural networks, 

• recurrent neural networks, 

• radial basis function neural networks, and 

• support vector machines (SVMs). 

2.1. UNSUPERVISED LEARNING 

The basic clustering (i.e. unsupervised) problem aims to partition data into clusters, i.e. learn the 

structure.  The various algorithms are designed around minimizing a particular criterion 

(objective function).  Each algorithm will be discussed in terms of the objective function 

minimized and the benefits and issues surrounding its design and implementation. 

The data used in most existing clustering frameworks is a set of real-valued d-dimensional 

vectors, i.e. 
d
RF = .  The goal of a clustering algorithm is to produce "c" clusters Ci, i=1...c, that 

form a partition of the data X.  The definition of a partition from set theory imposes the following 

conditions on the clusters, i.e. 

1

C C , , 1... ,

C X

i j

c

i

i

i j c j i∅

=

=∩ ∀ = ≠

=∪
 (2-1) 

 

In [19], the author discusses clusters where degrees of membership are allowed in the partition. 

U [ ],  [0,1],  1... , 1...
ik ik
u u i c k N= ∈ = =  

(2-2) 

 

Here, uik designates the membership of the kth pattern to the ith cluster.  We will use the term 

partition (denoted by the matrix U) throughout the document to describe a partition with 

degrees of membership (fuzzy partition). 

2.1.1. AGGLOMERATIVE HIERARCHICAL CLUSTERING 
One of the most common and oldest unsupervised learning approaches is hierarchical clustering, 

cf. [53][141][95][46][17][81].  While there are two forms of hierarchical clustering – 
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agglomerative and divisive – agglomerative hierarchical clustering is the predominant method 

and is the focus of this section.  The objective of hierarchical clustering is to obtain clusters Ci, 

i=1...c, with minimal cluster variance. 

The algorithm is initialized by assigning each pattern to its own cluster, i.e. Ci={xi} for all i=1…N.  It 

proceeds to merge the two closest clusters together and continues to merge the two closest 

clusters until the desired number of clusters is reached.  The closeness of clusters is measured 

using a distance function.  Some of the common distance functions are illustrated in Figure 4. 

 

Figure 4. Cluster distance measures 

The single linkage distance function returns the distance between the two closest patterns in 

each cluster.  The complete linkage is the opposite and returns the distance between the two 

furthest patterns in each cluster.  The average linkage distance function returns the average of 

the distances between the patterns in each cluster.  The expressions for common distance 

functions are given in Table 2, cf. [53]. 

Table 2. Common hierarchical clustering distance functions 

Single linkage ( )
1 1 2 2

min 1 2 1 2
,

, min
C C

d C C
∀ ∈ ∈

= −
x x

x x  The distance between clusters C1 

and C2 is the distance between 

their nearest patterns 

Complete 

linkage 
( )

1 1 2 2

max 1 2 1 2
,

, max
C C

d C C
∀ ∈ ∈

= −
x x

x x  The distance between clusters C1 

and C2 is the distance between 

their furthest patterns 

Average 

linkage ( )
1 1 2 2

avg 1 2 1 2

1 2

1
,

C C

d C C
C C ∀ ∈ ∀ ∈

= −∑ ∑
x x

x x  
The distance between clusters C1 

and C2 is the average distance 

between each of their patterns 

The merging can be described by a hierarchy, viz. a dendogram.  An example of a dendrogram is 

given in Figure 5. 
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Figure 5. Dendrogram example 

The agglomerative hierarchical clustering algorithm is described in pseudo-code, cf. [53]. 

Agglomerative Hierarchical Clustering 

Input: X, cdesired 

Output: Ci for i=1…cdesired 

1. Form initial set of clusters for k=1…N 

a. Ck = {xk∊X} 

2. c = N 

3. Do 

a. Find the closest pair of clusters, Ci and Cj 

b. Merge clusters Ci and Cj 

c. Delete cluster Cj 

d. c = c - 1 

4. Until c = cdesired 

One of the advantages of the hierarchical clustering algorithm is its simplicity.  A variety of 

different distance functions can be used providing many useful variations.  However, the 

computational complexity of the algorithm is fairly high, O(N
3
), and thus scales poorly to large 

data sets. 

2.1.2. K-MEANS CLUSTERING 
Like hierarchical clustering, K-Means clustering is one of the first clustering algorithms to be 

developed, cf. [17][53].  The problem partitions data using a set of mean vectors, aka prototypes, 

belonging to each cluster and aims to minimize the variance with each cluster.  The objective 

function minimized by K-Means is given by the expression 

 
2

1 Ci

c

i

i

Obj
= ∈

= −∑∑
x

x v  (2-3) 

 

which is optimized with respect to the prototypes vi (or the mean of the clusters) and pattern-to-

cluster assignments Ci, i=1…c. 

This objective is minimized by an iterative calculation of prototypes and cluster assignments.  The 

expression for prototypes vi is given by 
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C

1

ii

i
C ∈

= ∑
x

v x  (2-4) 

 

which is the mean of the patterns that belong to the ith cluster, i=1…c.  The cluster assignments 

are then determined by selecting the prototype that is closest.  In summary the algorithm 

determines the clusters in the following steps [53]. 

K-Means 

Input: X, c 

Output: V, Ci for i=1…c 

1. Initialize the set of prototypes vi for i=1…c 

2. Do 

a. Assign each pattern in X to the cluster with the closest prototype (i.e. mean) 

b. Recompute the prototypes using expression (2-4) 

3. Until convergence in prototypes, i.e. 
1

( ) ( 1)
c

i i

i

iter iter ε
=

<− −∑ v v  

Note that ε  is a small constant that determines the tolerance level in the change of prototypes 

allowed before halting the algorithm.  A significant advantage of K-Means is that it is 

computationally efficient, O(Ncd).  However, it suffers from imposing clusters on the data that 

are roughly equal in size and have hyper-spherical geometries.  These assumptions are rarely true 

in real-world data. 

2.1.3. FUZZY C-MEANS (FCM) CLUSTERING 
K-Means was extended to clusters with grades of membership by Bezdek with the introduction of 

the Fuzzy C-Means (FCM) algorithm [19][162][163].  Like K-Means, the aim of FCM is to 

determine structure in the data represented by a set of “c” prototypes.  Patterns are assigned 

membership values, i.e. a partition matrix U, to the clusters based on their distance from the 

prototypes.  With FCM, one is concerned with discovering the prototypes and partition matrix U 

that minimizes the objective 

 
2

1 1

c N
m

ik k i

i k

Obj u
= =

= −∑∑ x v  
(2-5) 

 

where m>1 is the fuzzification coefficient that controls the fuzziness of the partition.  The 

minimization of (2-5) is subject to the constraint 

 
1

1
c

ik

i

u
=

=∑  
(2-6) 

 

k=1…N.  The constraint is handled by introducing a Lagrange multiplier λ  thereby resulting in the 

objective 

 ( )
11 1

2

1

1
c N

m

ik

N c

ik

k

i

i i

k

k

Obj u uλ
= = ==

= − + −∑∑∑∑ x v  
(2-7) 

 

The minimum of (2-7) with respect to the prototypes is found by computing the gradient  

i
Obj∇ =v 0  and solving for vi 

 ( )
1

2
i

N
m

ik k i

k

Obj u
=

∇ = − =∑v x v 0  
(2-8) 

 

The expression for the prototypes is thereby given as 
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 1

1

N m

ik kk

i N m

ikk

u

u

=

=

=
∑
∑

x
v  (2-9) 

 

for i=1…c.  In a similar manner, the partial derivative of the objective with respect to membership 

is given by 

 
21 0m

ik k i

ik

Obj
mu

u
λ−∂

= − − =
∂

x v  (2-10) 

 

Solving for uik produces the expression 

 

1

1

2

m

ik

k i

u
m

λ − 
 =
 − x v

 
(2-11) 

 

By making use of the constraint in expression (2-6), the Lagrange multiplier is eliminated from 

the expression resulting in the formulation of the membership grades 

 
1

12

21

1
ik

m

c k i

j

k j

u

−

=

=
 − 
 − 

∑
x v

x v

 
(2-12) 

 

The FCM algorithm is an execution of the expressions (2-9) and (2-12) iteratively until the 

partition does not change significantly, cf. [19].  In summary the algorithm determines fuzzy 

clusters in the following steps. 

FCM 

Input: X, c, m 

Output: V, U 

1. Initialize membership U satisfying expression (2-6). 

2. Do 

a. Calculate the cluster prototypes V using expression (2-9) 

b. Calculate the membership U using expression (2-12) 

3. Until convergence in the membership U, i.e. 
F

U( ) U( 1)iter iter ε− − <  

Note that ε  is a small constant that determines the tolerance level in the change of the 

membership matrix allowed before halting the algorithm.  The benefit of FCM is that the 

partitioning allows for grades of membership.  FCM also has a significant advantage in terms of 

computational efficiency, i.e. O(Ncd).  However, the Euclidean metric often used with FCM is 

somewhat limiting as in many problems this metric may not be an appropriate choice. 

2.1.4. GUSTAFSON-KESSEL FUZZY CLUSTERING 
In order to alleviate the limitations of the Euclidean distance, a weighted Euclidean distance can 

be used to permit greater flexibility in the clusters.  Gustafson-Kessel FCM, cf. [114][116][6][84], 

provides this increased flexibility by making use of the Mahanalobis distance.  The aim of 

Gustafson-Kessel FCM is to determine a membership matrix U and “c” prototypes that partitions 

the data.  The Gustafson-Kessel FCM algorithm minimizes the following objective function 

 
2

A
1 1

i

c N
m

ik k i

i k

Obj u
= =

= −∑∑ x v  
(2-13) 
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where Ai is a positive semi-definite matrix in the Mahanalobis distance.  The minimization of 

(2-13) is subject to the standard FCM constraint in expression (2-6).  The matrix Ai is computed 

from the inverse of the fuzzy covariance matrix Covi for i=1…c. 

 ( )
1

1A Cov Covd
i i i i

ρ −=  
(2-14) 

 

The value 
i

ρ  is a positive scaling parameter.  It is common to encounter 1
i

ρ = .  The calculations 

of the fuzzy covariance matrix are governed by the expression 

 
( )( )T

1

1

Cov

N m

ik k i k ik

i N m

ikk

u

u

=

=

− −
=
∑

∑
x v x v

 (2-15) 

 

Following the same derivation as with FCM, the expression for the prototypes is formulated by 

finding the gradient of (2-13) with respect to vi equal to zero, i.e. 
i
Obj∇ =v 0 .  The expression for 

computing the prototypes is identical to FCM, see (2-9).  The membership matrix is found by 

determining the partial derivative 0
ik
u

Obj∂
∂

=  with respect to ui,, i.e. 

 
1

12

A

21

A

1

i

j

ik

m

k ic

j

k j

u

−

=

=
 − 
 

− 
 

∑
x v

x v

 
(2-16) 

 

In the worst case scenario, there is no inverse for Covi in which case the matrix Ai reduces to the 

identity matrix and Gustafson-Kessel FCM becomes identical to FCM.  The algorithm proceeds in 

the following steps 

Gustafson-Kessel FCM 

Input: X, c, m,  ρ  

Output: V, U 

1. Initialize membership U subject to expression (2-6) 

2. Do 

a. Calculate the cluster prototypes V using expression (2-9) 

b. Calculate the fuzzy covariance matrix Covi using expression (2-15) 

c. Calculate the Mahanalobis matrix Ai using expression (2-14) 

d. Calculate the membership u using expression (2-16) 

3. Until convergence in the membership U, i.e. 
F

U( ) U( 1)iter iter ε− − <  

Gustafson-Kessel has a significant advantage over FCM in that elongated cluster geometries are 

possible.  However, Gustafson-Kessel only benefits when there exists an inverse for the fuzzy 

covariance matrices. 

2.1.5. FUZZY C-VARIETIES 
Traditional FCM uses prototypes that are specified by a point in the feature space.  Bezdek, et al 

extend the concept of a point prototype to a hyper-plane variety, cf. [20][21].  The idea is to 

allow for line-clusters as opposed to spherical cluster shapes discovered using standard FCM.  

The problem involves computing a membership matrix U and the variety of each cluster.  A 

variety is an r-dimensional hyperplane where r≤d.  The objective function minimized in Fuzzy C-

Varieties (FCV) is 
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 ( )2

A

1 1

,
c N

m

ik k ri

i k

Obj u d Var
= =

=∑∑ x  
(2-17) 

 

where m is the fuzzification coefficient, c is the number of clusters, N is the number data, U={uik} 

the membership, and Varri  is the cluster variety for i=1…c.  The objective function is subject to 

the same constraints as standard FCM, i.e. (2-6).  The distance between data and varieties is 

given by 

 ( ) ( )222 T

A A
1

, ( ) A
r

k ri k i k i ij

j

d Var α
=

= − − −∑x x v x v b  (2-18) 

 

using the Mahanabolis distance with positive semi-definite matrix A by projecting patterns onto 

bij.  The parameter [0,1]α ∈  controls the effect of the variety on the cluster shape, vi is a 

prototype point on the variety (hyper-plane) and bij is a normal vector to the variety for j=1…r, 

i=1…c, and k=1…N.  When 0α =  the variety reduces to a single prototype and when 1α =  the 

variety is a line of infinite length.  For 0 1α< < , the variety is an ellipsoid. The parameter r 

controls the dimensionality of the variety.  FCV reduces to standard FCM when either r=0 or 

0α =  since the variety reduces to a point.  When r=1, the variety is a line, and when r=2, the 

variety is a plane.  For r>2, the variety is a hyper-plane. 

The algorithm for Fuzzy C-Varieties is summarized by the following pseudo-code. 

Fuzzy C-Varieties Algorithm 

Input: X, c, m, r, α  

Output: V, U 

1. Initialize membership U subject to expression (2-6) 

2. Do 

a. Calculate the fuzzy varieties ( )1; , ,ri i i irVar …v b b  for i=1…c 

i. Determine the ith prototype 

 1

1

N m

ik kk

i N m

ikk

u

u

=

=

=
∑
∑

x
v  (2-19) 

 

ii. Determine ith fuzzy within cluster scatter matrix Si 

 ( )( )
1 1

T
2 2

1

S A A
N

m

i ik k i k i

k

u
=

 
= − − 

 
∑ x v x v  (2-20) 

 

iii. Determine the r largest eigenvalues ijψ  and associated eigenvectors 

ijφ  for j=1…r from the cluster scatter matrix Si and i=1…c 

iv. Determine the normal vector bij for j=1…r of the fuzzy variety Vari 

 
1

2
ij ijA

−
=b φ  (2-21) 

 

b. Calculate the membership matrix using ( )2

A ,k rid Varx  from expression (2-18) 

 

( )
( )

1
2 1

A

21
A

1

,

,

ik
m

c k ri

h
k ri

u

d Var

d Var

−

=

=
 
  
 

∑
x

x

 
(2-22) 

 

c. Calculate 

3. Until convergence in the membership U, i.e. 
F

U( ) U( 1)iter iter ε− − <  
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Fuzzy C-Varieties (FCV) offers the ability to form many interesting cluster shapes that are not 

possible with FCM, unfortunately, at the cost of increased computational complexity.  The choice 

of r is not trivial and requires careful consideration in its selection. 

2.1.6. RELATIONAL FCM 
Relational Fuzzy C-Means (FCM) produces a partition U when provided with relational data, cf. 

[1].  Relational FCM accepts a matrix of relationships between objects as its input.  We denote 

this matrix by R ][ ijr=  for j,k=1...N.  Relational FCM minimizes the standard FCM objective 

function, i.e. 

 
2

1 1

c N
m

ik k i

i k

Obj u
= =

= −∑∑ x v  
(2-23) 

 

which is subject to the same constraints as FCM, i.e. (2-6).  It was shown in [1] that we can 

rewrite the distance in terms of the relational matrix R such that the patterns xk, k=1...N, are not 

needed in its determination.  By Theorem 2 in [1], the authors show that the distance can be 

rewritten as 

 ( )2 1
R R

2
i ii ik

− = −v wx w w  
(2-24) 

 

where R=[rij], 
2

ij i j
r = −x x  for , d

i j ∈x x R  and i,j=1…N, and wi is determined by the expression 

T

1 2 3

1

, , ,
m m m m

i i i iN

i N m

ikk

u u u u

u
=

 … =
∑

w  (2-25) 

 

i=1...c.  Finally, the membership matrix is computed using the same expression from standard 

FCM, i.e.  

 
1

2 1

21

1
ik

m
c

ik

j
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u

d

d

−

=

=
 
  
 

∑

 
(2-26) 

 

i=1...c and k=1...N. 

The algorithm is described using the following pseudo-code. 

Relational FCM 

Input: R, c 

Output: V, U 

1. Initialize a membership matrix U subject to expression (2-6) 

2. Do 

a. Determine c-mean (“prototype”) vectors for i=1…c using expression (2-25) 

b. Calculate distances for i=1…c and k=1…N using expression (2-24) 

c. Calculate membership matrix for i=1…c and k=1…N using expression (2-26) 

3. Until convergence in the membership, i.e. 
F

U( ) U( 1)iter iter ε− − <  

The advantage of relational FCM is that it can be applied to a broad class of problems whose 

objects are ill-defined in a 
d
R  feature space.  Unfortunately, relational FCM suffers from a 

serious shortcoming since the relationships are Euclidean distances, i.e. 
2

ij i j
r = −x x  for 

, d

i j ∈x x R  and i,j=1…N when in fact this may not be the case in general.  An extension to 
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relational FCM was made in [2] for the general case when relationships are not a metric, i.e. 

when expression (2-24) does not satisfy the requirements of distance, i.e. 

 

  (symmetry)

0  (identity)

0  (non-negative)

  (triangular inequality)

ij ji

ii

ij

ik kj ij

r r

r

r

r r r

=

=

≥

+ ≥

 

(2-27) 

 

for all i,j,k=1...N.  The authors in [2] accomplish this by adding a constant β to all elements in R 

except for the diagonal to ensure R does not have negative values. 

2.1.7. KERNEL-BASED FUZZY CLUSTERING 
Kernel-based fuzzy clustering is a relatively new area of fuzzy clustering.  The motivation is to 

overcome the limitations of the Euclidean distance by introducing a kernel function in the 

calculation of the distance.  The kernel function performs an arbitrary non-linear mapping Φ  

from the original d-dimensional feature space F to a space of higher dimensionality H (i.e. the 

kernel space) - possibly of infinite dimensionality, cf. [88][148].  Kernel methods originally 

appeared in classification frameworks such as Support Vector Machines (SVMs).  The objective is 

to map the data to higher dimensional kernel space where the data was more likely to be linearly 

separable [88][148].  When kernelizing clustering algorithms, such as FCM, the objective is to 

seek non-hyper-spherical cluster geometries via the non-linear mapping.  In other words, the 

clusters become “warped” through the inverse non-linear mapping 
1Φ−

.  An example motivating 

the kernel trick is illustrated in Figure 6. 

 

Figure 6. Kernel Example 

By making use of a polynomial kernel and moving from a 2D feature space to a 3D kernel space, 

the ring data set become more suitable for classification algorithms since it is linearly separable 

as shown in Figure 6.  The kernel space is also better suited for the problem of clustering 

compared with the original feature space. 
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Kernels takes advantage of the fact that dot products in the kernel space can be expressed by a 

kernel function K given by 
T( , ) Φ( ) Φ( )K ≡x y x y  where , d∈x y R .  Distances in the kernel space 

that can be expressed in terms of dot products (inner products) such as the popular Euclidean 

distance are easily calculated using the kernel function without explicitly knowing Φ .  This is 

commonly known as the kernel trick.  A positive semi-definite symmetric function is a kernel 

function [4].  Some common kernel functions are given in Table 3, cf. [148]. 

Table 3. Common kernel functions 

Kernel Name Kernel Function 

Gaussian 

( )
2

2

,K e σ

−
−

=
x y

x y , 2 0σ >  

Polynomial ( ) ( )T,
p

K θ= +x y x y , p∈N ,  0θ ≥  

Sigmoidal ( ) ( )( )T,
p

K κ θ= +x y x y , ,κ θ ∈R  

Inverse 

Multiquadratic ( )
2

1
,K

θ
=

− +
x y

x y

, 0θ ≥  

 

There are two major forms of kernel-based fuzzy clustering. The first one positions prototypes in 

the original feature space.  These clustering methods will be referred to as KFCM-F (with F 

standing for the feature space).  In the second category, abbreviated as KFCM-K, the prototypes 

are arranged in the kernel space where an approximation of the inverse mapping is used to 

determine their location in the original feature space. 

KFCM-F minimizes an objective function subject to the same constraints as FCM (2-6), cf. 

[77][76]. 

 ( )
2

1 1

Φ Φ( )
N c

m

ik k i

k i

Obj u
= =

= −∑∑ x v  
(2-28) 

 

The advantage of the KFCM-F clustering algorithm is that the prototypes reside in the feature 

space and are implicitly mapped to the kernel space through the use of the kernel function as 

depicted in Figure 7. 

 

Figure 7. KFCM-F feature space and kernel space 

By constraining ourselves to the Euclidean distance in ( )Φ Φ( )k i−x v , the squared distance is 

computed in the kernel space using a kernel function such that 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 T T T
Φ Φ( ) Φ Φ 2Φ Φ Φ Φ

, 2 , ( , )

k i k k k i i i

k k k i i iK K K

− = − +

= − +

x v x x x v v v

x x x v v v
 (2-29) 
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If we confine ourselves further to the commonly used Gaussian kernel, then ( ), 1K =x x  and 

( ) ( )( )2

Φ Φ( ) 2 1 ,
k i k i

K− = −x v x v .  The optimization of the partition matrix U involves the use 

of the technique of Lagrange multipliers to handle the constraint given in (2-6).  By solving the 

partial derivative of the objective with respect to membership, as with the derivation of the 

membership expression with FCM, one obtains 
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j
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∑
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x v

 (2-30) 

 

for i=1, 2, … c and k=1, 2, … N.  The calculation of the prototypes vi for i=1, 2, … c is determined by 

solving the derivative of the objective equal to zero; however, the prototypes cannot be 

separated from the kernel hence we use an approximation by employing the prototypes from the 

previous iteration, producing the expression 
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v

v
 (2-31) 

 

The sequence of steps in the minimization of (2-28) is elaborated. 

KFCM-F Algorithm 

Input: X, c, m, σ
2
 (Gaussian kernel width) 

Output: V, U 

1. Initialize membership U subject to expression (2-6) 

2. Initialize prototypes (0)
i

v  for i=1…c 

3. Do 

a. iter=iter+1 

b. Calculate the cluster prototypes V(iter) using expression (2-31) 

c. Calculate the membership U using expression (2-30) 

4. Until convergence in the membership U, 
F

U( ) U( 1)iter iter ε− − <  

In [76] it is observed that the performance improvements offered by KFCM-F are not vast 

improvements compared with FCM and Gustafson-Kessel FCM.  The reason for the lackluster 

performance of KFCM-F may be due to the restriction of the prototypes in the feature space. 

A second approach to kernel-based fuzzy clustering, called KFCM-K, allows for greater flexibility 

with the prototypes since they are positioned in the higher dimensional kernel space.  The 

objective function minimized by KFCM-K is subject to the constraint given by expression (2-6).  

KFCM-K minimizes the following objective function  

 ( )
2

Φ

1 1

Φ
N c

m

ik k i

k i

Obj u
= =

= −∑∑ x v  
(2-32) 

 

where 
Φ

iv  for i=1…c are the implicit prototypes in the kernel space, cf. [77][76].  This approach 

provides increased freedom in the placement of the prototypes; however, the prototypes must 

be explicitly mapped back to the original feature space, see Figure 8. 
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Figure 8. KFCM-K feature space and kernel space 

The implicit prototypes are determined by solving the gradient of expression (2-32) equal to the 

zero vector, i.e. 
i

ObjΦ∇ =
v

0 , producing the expression 
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for i=1…c.  The membership can be found in the same manner by solving 0
ik

Obj

u

∂
=

∂
.  The 

membership is computed via the expression 
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(2-34) 

 

for i=1…c and k=1…N.  However, the kernel mapping must be removed explicitly from the 

calculations.  To do this we focus on the squared distance ( )
2

ΦΦ
k i
−x v  in expression (2-34) and 

through substitution of expression (2-33), obtain a new expression with the kernel function. 
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(2-35) 

 

where ( 1)
ik
u iter −  for i=1…c and k=1…N are the values of the membership in the previous 

iteration of the optimization. 

KFCM-K Algorithm 

Input: X, c, m, σ
2
 (Gaussian kernel width) 

Output: U 

1. Initialize membership U(0) subject to expression (2-6) 

2. Do 

a. iter=iter+1 

b. Calculate the membership U(iter) using expression (2-35) using the previous 

values U(iter-1) 

3. Until convergence in the membership U, 
F

U( ) U( 1)iter iter ε− − <  
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The inverse mapping of the implicit prototypes in the higher dimensional kernel space to explicit 

ones in the original feature space is an open problem.  One method proposed in [227] minimizes  

 ( )
2

Φ

1

Φ
c

i i

i

O
=

= −∑ v v  
(2-36) 

 

with respect to vi where 
Φ

iv  for i=1…c (the implicit prototypes) is defined in expression (2-33) and 

vi for i=1…c is the set of explicit prototypes.  An iterative solution to the optimization is found by 

solving the gradient equal to zero, i.e. 
i
O∇ =v 0 .  The expression for determining the explicit 

prototypes depends on the choice of kernel function [76], see Table 4. 

Table 4. Expressions for determining explicit prototypes 

Gaussian Polynomial 
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The algorithm for computing the prototypes is described in the following pseudo-code. 

KFCM-K Prototypes Algorithm 

Input: U, X, c, m, σ
2
 (Gaussian kernel width) 

Output: V 

1. Initialize prototypes vi(0) 

2. Do 

a. iter=iter+1 

b. Calculate the prototypes vi(iter) using the appropriate expression in Table 4and 

the previous prototypes vi(iter-1) 

3. Until convergence in the prototypes V, 
1

( ) ( 1)
c

i i

i

iter iter ε
=

− − <∑ v v  

The prototypes are calculated after the KFCM-K algorithm has determined a partition matrix U.  

The advantage of KFCM-K is that the prototypes are not restricted in the feature space since they 

are in the kernel space.  However, both KFCM-F and KFCM-K require parametric tuning of the 

kernel function as investigated in [76]. 

2.1.8. SPECTRAL CLUSTERING 
Spectral clustering is highly related to kernel clustering, c.f. [58][138].  It interprets the problem 

of clustering through a graph representation where data points are vertices and the similarities 

between vertices are weighted edges.  The graph is complete, weighted and undirected.  It is 

formalized by the tuple Graph(Vertices, A) where Vertices={x1, x2, …. xN} and A is an N N×  

symmetric matrix called an affinity or adjacency matrix.  The adjacency matrix, sometimes called 

a proximity matrix, represents the weight of the edges in the graph.  It is common to compute 

the entries of matrix A from a function ( ),
i j

h x x  (such as the well-known Gaussian function) that 

measures the similarity between patterns [58]. 

 
( ),   

0           

i j

ij

h for i j
a

otherwise

 ≠
= 


x x
 (2-37) 

 

for i,j=1…N.  An example of a simple graph is shown in Figure 9. 
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Figure 9. Example graph 

It is possible to solve this graph clustering problem by constructing a Laplacian matrix L from the 

adjacency matrix A.  There are several types of Laplacian matrices that can be fashioned; 

however, the traditional unnormalized Laplacian is given by 

 L ADiag= −  

(2-38) 

 

where Diag is the diagonal matrix of the degrees of the vertices, i.e. 

 
1

N

ii ij

j

Diag a
=

=∑  (2-39) 

 

for i=1…N.  Other types of Laplacian matrices are given in [58].  From the Laplacian matrix L, one 

can create the spectral decomposition which provides insight into the structure of the graph and 

can be used to form clusters of vertices.  The most common approach [138] determines the “c” 

largest eigenvalues of L and their corresponding eigenvectors denoted by s1, s2, … sc.  The N c×  

matrix S is constructed by concatenating the eigenvectors forming the columns of S, i.e. 

S=[s1;s2;…sc].  The K-Means clustering algorithm with the number of clusters equal to “c” is 

applied to S by treating the rows which are also of dimensionality “c” as separate data points. 

Spectral Clustering Algorithm 

Input: X, c 

Output: Ci for i=1…c 

1. Calculate the affinity matrix A using (2-37) where ( ),i jh x x  is commonly 

 ( )
2

2

1

,
i j

i jh e σ
− −

=
x x

x x  (2-40) 

 

2. Calculate the unnormalized Laplacian matrix L from (2-38) 

3. Compute the “c” largest eigenvalues and their associated eigenvectors {s1,s2,…sc} 

4. Construct the N c×  matrix S where the eigen-vectors form the columns, i.e. 

S=[s1;s2;…sc] 

5. C = K-Means(S,c) 

Like relational FCM, spectral clustering discovers the structure in data from a set of relationships.  

However, with spectral clustering, the relationships are similarity values.  Therefore, spectral 

clustering does not suffer from the same disadvantages as relational FCM.  By restricting the 

similarity values to proximity values which are on the interval [0,1], spectral clustering becomes a 

method of clustering with proximity information.  A serious disadvantage is that the prototypes 



 

  

 

20 

 

produced by the K-Means clustering lack useful meaning.   In addition, the computational 

complexity is poor with large data sets due to the eigenvector computation. 

2.1.9. MINIMUM ENTROPY CLUSTERING 
Clustering can also be performed from an information-theoretic point of view, cf. [128][125].  

Information theory was first introduced by Shannon in 1948 [182] where he showed that the 

amount of information contained in a variable could be quantified using entropy.  The entropy of 

a random variable xrand is mathematically given by the expression 

 ( ) ( )( ) logrand rand b rand

x

H x p x p x
∀

= −∑  
(2-41) 

 

where ( )randH x  is the entropy, xrand is the random variable, ( )rand
p x  is a probability function, 

and b is the base of the logarithm, cf. [182].  Entropy measures the amount of disorder of a 

variable and is also termed self-information [125].  It was originally used in communication to 

measure the amount of information contained in a stream of data in order to maximize the 

amount of information sent per message with the fewest number of characters, i.e. data 

compression. 

The concept of entropy can be applied to clustering by viewing the measure of entropy as a 

measure of uncertainty in data.  Lower values of entropy indicate lower degrees of uncertainty 

(i.e. higher degrees of certainty).  This is useful in clustering as we can maximize the entropy 

H(x|C) of data X∈x  given a particular partition C.  This type of entropy is referred to as 

conditional entropy.  Clustering can be performed using posterior probabilities as done in [125] 

where the entropy maximized is denoted by H(C|x). 

2.1.10. ENSEMBLE CLUSTERING 
Ensemble clustering, also known as consensus clustering, combines the results of several 

partitions by reconciling differences in their cluster structure to form a global structure.  The 

concept is depicted in Figure 10. 

 

Figure 10. Ensemble clustering framework 

Many of the ensemble-based clustering algorithms are based on the mechanism of voting where 

the principle is to select the cluster assignment with the most votes.  There are several different 

approaches to ensemble clustering, including cluster-based similarity partitioning algorithm 

(CSPA) [191] and evidence accumulation clustering (EAC). 

The CSPA approach builds a single similarity matrix by concatenating the partitions U
(1)

,U
(2)

,...U
(H)

 

column-wise into a single partition block matrix U=[U
(1)

 | U
(2)

 | ...U
(H)

] where H is the number of 

partitions.  It is typically assumed that the partitions are Boolean [191].  The co-association 

similarity matrix is constructed from the expression  
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 T1
S UU

H
=  

(2-42) 

 

where S is an N N×  matrix denoting the similarity between each pattern.  Any relational 

clustering approach can be used to cluster the similarity matrix S including spectral clustering, 

hierarchical clustering or relational FCM. 

Cluster-based Similarity Partitioning Algorithm (CSPA) 

Input: U, H, c 

Output: Ci for i=1…c 

1. Calculate the similarity matrix S using expression (2-42) 

2. C = RelationalClustering(S, c) 

 

A popular method of ensemble clustering based on voting is evidence accumulation clustering 

(EAC), cf. [200][59].  EAC constructs a co-association similarity matrix S using voting.  The co-

association similarity matrix is given by 

 S | , 1
ij

ij

n
s i j N

H

 
= = = … 
 

 (2-43) 

 

where ijn ∈N  is the number of times xi and xj are the in the same cluster considering all H 

partitions.  As with CSPA, any relational clustering algorithm can be used to cluster the similarity 

matrix S.  The authors in [59] cluster the similarity matrix via single-link hierarchical clustering.  

Evidence Accumulation Clustering (EAC) Algorithm 

Input: U, H, c 

Output: Ci for i=1…c 

1. Calculate the similarity matrix S using expression (2-43) 

2. C = RelationalClustering(S, c) 

One of the primary disadvantages of these algorithms is that voting does not perform well with 

only a handful of partitions.   

2.1.11. EVALUATION OF CLUSTERING PERFORMANCE 
Evaluating the clustering result is important for measuring the quality of the partition.  A 

common approach is to compare the partition to a ground truth partition such as the Normalized 

symmetric Mutual Information (NMI) criterion based on information theory and entropy.  The 

performance index [51] is given by the expression  

 
( , )

( ) ( )

I C T
NMI

H C H T
=

+
 (2-44) 

 

where C is the partition produced by the clustering algorithm satisfying (2-1) and T is the ground 

truth partition (also satisfying (2-1)).  The I(C,T) is a measure of information and measures the 

congruency of the two partitions C and T.  H(C) and H(T) denote the entropy of the clustering and 

the ground truth, respectively.  The computation of NMI commences by constructing a 

contingency matrix (sometimes called confusion matrix) denoted by G=[nij] for i=1…c and j=1…K 

where “c” is the number clusters produced by the clustering algorithm, K is the number classes in 

the ground truth partition and nij is the number of patterns that are labeled with class j and fall 

into cluster i.  With the ground truth partition given by the sets Tj for j=1…K the contingency 

matrix is formalized as 
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 [ ],
ij ij i j

G n n C T= = ∩  
(2-45) 

 

, i=1…c and j=1…K.  The information content between the two partitions is computed from the 

contingency matrix G using 

 
1 1

1 1

( , ) log
c K

ij ij

c K
i j

ij ij

i j

n n N
I C T

N
n n

= =

= =

 
 
 =           

∑∑
∑ ∑

 

(2-46) 

 

where N is the number of patterns in the data set.  The entropies are calculated with the 

expressions 

 
1 1 1

( ) log
c K K

ij ij

i j j

n n
H C

N N= = =

   
= −    

   
∑ ∑ ∑  (2-47) 

 

 
1 1 1

( ) log
K c c

ij ij

j i i

n n
H T

N N= = =

   
= −    

   
∑ ∑ ∑  (2-48) 

 

Large values of NMI indicate excellent performance while small values indicate poor 

performance.  The NMI produces values on the interval [0,1] where 1 is a perfect match between 

the two partitions. 

Another common performance index is the classification rate and is a measure of accuracy taken 

from classification problems.  Unfortunately since clustering is unsupervised, there is no way to 

label the clusters with class labels.  The most common tactic of assigning clusters with class labels 

is to select the class with the maximum count in the cluster. In this way, the classification rate 

can be computed directly from the contingency matrix using the following expression 

 
1...

1

1
max

K

ij
i c

j

CR n
N ∀ =

=

= ∑  (2-49) 

 

The classification rate is on the unit interval [0,1] where . 

There are a plethora of other performance measures that evaluate the quality of the clustering 

result without a ground truth partition, cf. [83][203].  One approach sometimes used for 

evaluating FCM clustering is the reconstruction error.  It reconstructs the patterns using the 

prototypes V=[vi] and membership values U=[uik] for i=1…c and k=1…N, cf. [163].  The process 

involves reconstructing patterns based on the codebook (i.e., a collection of already constructed 

prototypes) and the computed membership values of the original patterns to the elements of the 

codebook [163].  The reconstructed patterns kxɶ , k=1, 2, … N are calculated as follows: 

 1

1

c
m

ik i

i
k c

m

ik

i

u

u

=

=

=
∑

∑

v

xɶ  
(2-50) 

 

The error between the reconstructed pattern and the original one quantifies the quality of 

reconstruction provided by the fuzzy clustering (and a collection of the prototypes, in particular). 

The reconstruction error is expressed in the form of the following sum of distances 
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(2-51) 

 

Smaller values for the reconstruction error “r” indicate better clustering results (in terms of the 

reconstruction criterion introduced above). Clearly a lower number of prototypes implies higher 

values of the reconstruction error. As the number of prototypes gets closer to the number of 

patterns, the reconstruction error gets closer to zero.  The reconstruction error is unlike the 

classification rate since it does not measure accuracy.  Instead the reconstruction error measures 

the encoding and decoding performance of the patterns with respect to their prototypes and 

membership values.  Visually, the reconstruction error is a measure for the spread of the 

prototypes across the feature space.  In particular, the reconstruction error decreases as 

prototypes are situated centrally within dense regions of patterns in the feature space.  Hence, 

reconstruction error measures the quality of the prototypes with regards to its representation of 

the data in terms of clusters. 

There are a number of other unsupervised measures.  Two of the most popular are described the 

Davies-Bouldin (DB) index, and the Dunn index.  Both indices are based upon the dual objective 

of minimizing intra-cluster cohesiveness while maximizing inter-cluster separation.  The DB index 

is calculated from the expression 
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(2-52) 

 

where the bottom term ( ),
i j

d v v  measures the distance between clusters (inter-cluster 

separation) and the top term measures the average distance within the cluster to the cluster 

prototype.  The Dunn index is given by the expression 
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(2-53) 

 

2.2. SUPERVISED LEARNING 

In this next section we discuss some common supervised learning algorithms including classic 

feed-forward neural networks, radial basis function neural networks, and support vector 

machines. 

2.2.1. NEURAL NETWORKS 
The neural network is a powerful architecture that is particularly effective at approximating 

continuous functions.  Its popularity is due to a theorem proved by Kolomogorov [102].  It states 

that a feed-forward artificial neural network with a hidden layer consisting of non-linear 

activation functions is capable of approximating any continuous function to an arbitrary degree 

of accuracy – termed universal approximation.  Interest waned when it became clear that a 

trained neural network was a black-box architecture and thus could not be interpreted easily.  

Still neural networks are popular today in many difficult applications such as time series 

prediction and speech recognition, to name a few. 

A neural network is comprised of many interconnected neurons.  Although these neurons are 

simple computation units by themselves, together they are capable of exhibiting more 

complicated behavior.  Each neuron encapsulates a simple computational operator and 
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activation function which serves to “squash” the output feed to other neurons.  Typically this 

activation function is a non-linear function such as the popular sigmoid function.  The structure of 

the network dictates how the neurons are connected together and thus how they interact.  The 

most common structure is a feed-forward neural network where neurons are organized into 

layers.  There are also recurrent neural networks, fully-connected neural networks and many 

other types of structures.  In Figure 11, we show the structure of the standard feed-forward 

neural network with one hidden layer. 

 

Figure 11. Feed-forward neural network architecture 

The most common way to learn the weights of the feed-forward neural network is to use the 

back-propagation learning algorithm which uses gradient descent to minimize an error criterion 

(often mean squared error or MSE), cf. [102].  However, gradient descent is plagued by its 

susceptibility to initial conditions and is often gets caught in local minima.  To alleviate this 

difficulty, evolutionary approaches have been fashioned using genetic algorithms (GA), 

differential evolution (DE), particle swarm optimization (PSO) and others to determine the 

optimal weights.  Although the feed-forward network is a universal approximator, the network 

has its disadvantages.  One of the most important disadvantages is that there is no meaningful 

interpretation of the weights.  Also, the network is susceptible to over-learning, where the ability 

of the network to generalize to unseen data diminishes as it becomes over specialized on the 

training data. 

2.2.2. RADIAL BASIS FUNCTION NEURAL NETWORKS 
The radial basis function neural network is a modification of the standard feed-forward neural 

network where radial basis functions (RBF), sometimes called kernel functions, are the activation 

functions used in the first layer (hidden layer) of the network.  The benefit of using an RBF in the 

hidden layer is that the neuron has a localizing effect on the input; that is, the neuron fires (or 

outputs high values) when inputs lie within its receptive field.  The idea is to specialize parts of 

the network according to regions in the feature space.  This allows the network to learn and 

generalize more effectively. 
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Figure 12. Radial basis function (RBF) neural network architecture 

  The overall network shown in Figure 12 is expressed by 

 ( )
1

ˆ
RBFn

k i i

i

y w f
=

=∑ z  (2-54) 

 

for k=1...m outputs where [ ]1 2
, ,

n
z z z= …z  is the input vector, and nRBF is the number of radial 

basis functions, i.e. receptive fields.  The most common RBF neural activation function is the 

Gaussian function given by the expression 

 ( )
2

2

1
i

i

if e
σ

− −

=
z v

z  (2-55) 

 

where vi is the receptive field center (prototype) and 
2

iσ  controls the width of each RBF 

receptive field i=1...nRBF.  Another common receptive field function is given by the FCM 

membership expression 
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(2-56) 

 

where m is the fuzzification coefficient. 

Typically the learning is divided into two stages: 

1. Determine the RBF centers and widths 

2. Learn the weights from the RBF layer to the output layer 

The learning of the RBF centers is usually done using unsupervised clustering such as k-means 

clustering or FCM.  The prototypes become the RBF centers.  The widths are usually fixed for all 

receptive fields [15], i.e. 
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 (2-57) 

 



 

  

 

26 

 

Another method of learning the RBF centers is through conditional FCM, cf. [160].  The main 

advantage of conditional FCM over traditional approaches is that the learning of the RBF centers 

includes the output information. 

The second stage is accomplished via supervised learning where the weights are either learned 

via gradient descent or direct numerical optimization.  If the activation function of the output 

neuron(s) is linear, the mean squared error (MSE) criterion can be easily solved directly by 

numerical means (i.e. matrix inversion). 

2.2.3. SUPPORT VECTOR MACHINES (SVMS) 
A non-linear supervised learning architecture that is becoming more popular in the literature is 

the support vector machine (SVM).  SVMs are fairly new and have been used in a number of 

different fields especially pattern recognition problems (classification), cf. [30].  We start by 

describing the linear SVM and then the kernelized version.  The SVM aims to find a decision 

boundary that divides data  Xi ∈x   into two classes labeled as { }1, 1iy ∈ − +  for i=1...N where N is 

the number of data points.  The decision boundary is linear and must satisfy 

( )T 1 0
i i
y b+ − ≥x w  , 1i N∀ = …  

(2-58) 

 

where w is the weight vector and forms the normal of the hyper-plane, and b is the bias.  

Extensions to SVM have been made to handle multi-classes that are not linearly separable.  The 

objective is to maximize margin, i.e. the distance between the closest positive pattern to the 

hyper-plane plus the distance between the closest negative pattern to the hyper-plane, cf. cf. 

[30].  The margin is given by the expression 

1 1 2
margin = + =

w w w
 (2-59) 

 

The SVM determines the hyper-plane that maximizes margin subject to the constraint given in 

expression (2-58) by minimizing 

 ( )2 T

1

1 1

1

2

N N

i i i i

i i

Obj y bα α
= =

= − + +∑ ∑w x w  
(2-60) 

 

where 0iα ≥  for i=1...N are the Lagrange multipliers [30].  The data points xi, where 0iα > , are 

called support vectors for i=1...N.  As shown in [30], this problem has a dual formulation; that is, 

minimizing (2-60) is exactly equivalent to maximizing 
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subject to a different set of constraints  
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(2-62) 
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This formulation is more useful as it can be kernelized by replacing the inner product with a 

kernel function that satisfies Mercer's condition [30].  In other words, the problem becomes the 

maximization of 
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 ( )3

1 1 1

,
N N N

i i j i j i j

i i j

Obj y y Kα α α
= = =

= −∑ ∑∑ x x  (2-64) 

 

where ( ),
i j

K x x  is the kernel function.  Many different numerical optimization algorithms can 

be used to maximize (2-64) subject to constraints (2-62) and (2-63), cf. [30].  The advantage of 

the SVM is that non-linear decision boundaries are possible through the kernelization. 

2.3. EVOLUTIONARY OPTIMIZATION 

In this section, the evolutionary minimization of an objective function through differential 

evolution is described. 

2.3.1. DIFFERENTIAL EVOLUTION 
Differential evolution is a simple population-based evolutionary optimization technique that 

minimizes an objective function much like the popular genetic algorithms, c.f. [190].  Differential 

evolution uses mutation and crossover operations; however, differential evolution is specialized 

for objective function Obj(θ) whose population vectors are real, i.e. n∈θ ℝ  where n is the is the 

size of population vector.  The primary difference between genetic algorithms and differential 

evolution (DE) is that the mutation operation in DE is based on the difference between two 

population vectors.  We denote the population of vectors by the set 1 2{ , ,... }Pθ θ θ  where P is the 

size of the population.  Differential evolution is expressed via this short pseudo code algorithm: 

Differential Evolution 

Input: P, G, pcr 

Output: θ
(Best)

 

1) Initialize Population of size P randomly (uniform) and within a pre-described hyper-cube 

in  
n
ℝ  

2) Loop 

a) For i=1…P 

i) Select three different parameter vectors at random with no preference: θ
(1)

, 

θ
(2)

, θ
(3)

 

ii) Generate a mutant vector mutanti= θ
(1)

+G[θ
(2)

- θ
(3)

] [Mutation] 

iii) Generate trial vector crossi=crossover(mutanti, θi) [Crossover]  

iv) If Obj(crossi) < Obj(θi) then replace θi with crossi 

3) Until maximum number of iterations reached 

The real-valued parameter G is the differential gain factor and controls the amount of mutation 

(or exploration of the parameter space).  The values of G typically range from 0 (no mutation) to 

4, c.f. [190].  The crossover operation is very similar to crossover available in genetic algorithms 

and is performed at random with a probability of pcr.  The crossover operation combines two 

vectors θ1 and θ2 by swapping the elements of the vectors with a probability of pcr.  Formally, 

crossover is accomplished by selecting a random vector r of 0’s and 1’s of length n, where the 

probability of occurrence of 1 is pcr.  In this array, 0 indicates “do not crossover” and 1 indicates 

“crossover.”  The crossover vector crossi is computed by 

 ( )= × + × −cross θ r mutant 1 r  
(2-65) 

 

where ×θ r  is element-wise vector multiplication. 
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3. RELATED WORK 
Partially supervised learning is introduced in this chapter as a viable method of exploiting domain 

knowledge.  The focus is to outline the benefits and drawbacks of the current state-of-the-art 

algorithms in the field.  A discussion on current clustering frameworks that make use of proximity 

information is provided followed by a thorough history of partially supervised learning.  The 

literature review starts with the initial papers in this relatively new field and concludes with the 

most recent developments and trends in partially supervised learning.  Following the literature 

review, a section is devoted to the rather limited yet pertinent developments in selecting the 

data samples to be labeled called active learning.  Finally, in order to adequately cover the 

background required for the application of partially supervised clustering to time series 

clustering, prediction and segmentation, several sections are devoted to reviewing their recent 

advances. 

3.1. FORMS OF DOMAIN KNOWLEDGE 

Before reviewing partially supervised learning, one must consider the various forms of domain 

knowledge that can be used to aid clustering.  The form of the domain knowledge depends on 

the problem.  We divide the types of available domain knowledge into two parts to form a 

taxonomy as depicted in Figure 13. 

 

Figure 13. Taxonomy of domain knowledge 

The first type of domain knowledge comes in the form of outputs where each labeled element in 

the data has exactly one output associated with it.  The second kind of label is a binary relation 

where labels are relationships between two elements in the data.  For example, the user rating of 

a song in a music database would be a regression label.  Similarly, the degree of similarity 

between songs, in terms of their genre, would be a proximity label.  The output labels are 

described by 

 ( ) y=xℓ  
(3-1) 

 

where ℓ  is a mapping between data point x and label y.  The mapping ℓ  may represent a 

process for automatically labeling data by a machine or may represent a human operator that 

manually assigns labels to the data.  For regression labels, ℓ  is defined as the mapping where the 

outputs belong to the space of real numbers, i.e. :Xℓ ֏ R� .  Similarly for class labels, ℓ  maps 

data to nominal outputs often represented by integers, i.e. { }:X 1,2, K…ℓ ֏�  where K is the 

number of classes in the problem.  Many supervised learning algorithms use this output domain 

knowledge in learning. 
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Labels that are binary relations are given by  

 ( )1 2 12
, r=x xL  

(3-2) 

 

where r12 is the label associated with the relationship between the data point x1 and point x2, and 

( ),• •L  is the mapping between a pair of data points and the label. 

There are several types of binary relations:  proximity relations, distance relations, constraint 

relations and membership relations.  When dealing with distance relations, the mapping given in 

(3-2) is called the distance function and therefore must satisfy the well-known properties of the 

distance function, i.e. 

( )1 2
, 0≥x xL  (non-negative) 

( )1 1
, 0=x xL  (identity) 

( ) ( )1 2 2 1
, ,=x x x xL L  (symmetry) 

( ) ( ) ( )1 2 1 3 2 3
, , ,≤ +x x x x x xL L L  (triangular inequality) 

(3-3) 

 

where 1 2 3, , X∈x x x .  The labels produced by the distance function are sometimes called 

distance labels or distance relationships. 

Proximity relations on the other hand are produced by a proximity function and therefore the 

mapping in (3-2) must satisfy the properties of a proximity function, i.e.  

 ( )1 1
, [0,1]∈x xL  

( )1 1
, 1=x xL  (identity) 

( ) ( )1 2 2 1
, ,=x x x xL L  (symmetry) 

(3-4) 

 

where 1 2 3, , X∈x x x .  The corresponding labels are typically referred to as proximity labels.  Link 

constraints are a special class of proximity labels where the proximity function is Boolean, i.e. 

( )1 1
, {0,1}∈x xL .  The Boolean 1 denotes the pair of patterns that are strongly associated and 

must be linked together.  The Boolean 0 denotes the pair of patterns that are strongly dissociated 

and must not be linked together.  An example of these constraints is depicted in Figure 14. 

 

Figure 14. Example of must-link and cannot link constraints 

From this example, it can be seen that the purpose of the constraints are to aid in the 

identification of the clusters.  Must-link and cannot link constraints are very common in partially 

supervised learning, cf. [43][46][13][218][33][80][117][52].  The reason for its popularity is that 

these constraints are a natural form of domain knowledge for aiding clustering algorithms since 

they specify that patterns either must or cannot be placed in the same cluster.  Unfortunately, 

this domain knowledge is highly restrictive since the constraints are Boolean. 
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The final type of domain knowledge described in this section is a membership relation designated 

by the mapping 

 1 1( , )i iu=x v ɶL  

(3-5) 

 

where 1iuɶ  is the membership grade of pattern x1 to the prototype vi from cluster i=1...c where c 

is the number of clusters in the data.  Clearly, membership labels of this form, dictate the 

number of clusters.  This type of data can be transformed into proximity hints eliminating the 

need to assume the number of clusters “c” equals the number of classes “K,” i.e.  

 ( )
1

c

kj ik ij

i

p u u
=

= ∧∑ɶ ɶ ɶ  
(3-6) 

 

where ∧  is the minimum t-norm operator for j,k=1...N. 

3.2. PARTIALLY SUPERVISED LEARNING 

Numerous augmentations to a number of common clustering algorithms, including FCM 

[157][26][161][162][16][179][33][80][117][166], k-means [13][218][52], and agglomerative 

clustering [43][46][80][73], have appeared in the literature to exploit domain knowledge of 

various forms in clustering.  Several partially supervised algorithms are described in this section, 

with special attention given to fuzzy and kernel-based clustering. 

3.2.1. PARTIALLY SUPERVISED FCM 
Membership hints have been exploited in several variations of the FCM algorithm, cf. 

[157][26][161][162][16][195].  These algorithms accomplish partial supervision by augmenting 

the standard FCM with a supervised term that penalizes the objective function when a labeled 

pattern is assigned to the wrong cluster.  One variation is introduced in [157][162] where generic 

FCM is modified with a cost factor that minimizes the difference between the labeled 

membership and clustering membership.  The objective function to be minimized with regards to 

the membership and prototypes is given by the expression 

 ( )2 2

1 1 1 1

c N c N
mm

ik k i ik ik k k i

i k i k

Obj u u f bα
= = = =

= − + − −∑∑ ∑∑x v x v  
(3-7) 

 

subject to the well-known constraint 

 
1

1
c

ik

i

u
=

=∑  
(3-8) 

 

where the matrix F=[fik] is the desired membership levels (i.e. hints), and bkϵ{0,1} indicates 

whether the kth pattern is labeled or not, i=1…c, k=1…N.  The parameter 0α ≥  controls the 

weight of the partially supervised information in the clustering.  The fuzzification coefficient is 

assumed to be m=2 in order to find expressions for membership and prototypes that minimize 

(3-7).  The expression for updating the membership values is found by solving the partial 

derivative of (3-7) equal to zero, i.e. 0ikObj u∂ ∂ = , using a Lagrange multiplier to deal with the 

constraint.  The membership is thus computed by  
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(3-9) 

 

Similarly, by solving the gradient of (3-7) with respect to prototypes equal to the zero vector, i.e. 

i
Obj∇ =v 0 , the prototypes are computed using the expression 
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(3-10) 

 

The algorithm for minimizing (3-7) is as follows. 

Partially supervised FCM 

Input: F, b, X, c, α 

Output: U, V 

1. Initialize membership satisfying constraint (3-8)  

2. Do 

a. Compute prototypes V with expression (3-10) 

b. Compute membership U with expression (3-9) 

3. Until convergence in the membership U, i.e. 
F

U( ) U( 1)iter iter ε− − <  

Note that ε  is a small constant that determines the tolerance level in the change of the 

membership matrix allowed before halting the algorithm.  The Euclidean distance in (3-7) can be 

replaced by the Mahanabolis distance as done in [166] where the fuzzy covariance matrix is 

calculated based on the labeled data.  The Gustafson-Kessel partially supervised FCM was tested 

on Gustafson’s cross and EKG data and performs well compared with standard FCM. 

A second partially supervised FCM algorithm is given in [195] where the distance function is 

modified by adding a positive penalty factor when labeled patterns are assigned to the wrong 

cluster.  The objective function minimized by this partially supervised FCM algorithm is given by 

 ( )2

1 1 1 1

1
c N c N

m m

ik k i ik k ik

i k i k

Obj u f b uα
= = = =

= − + −∑∑ ∑∑x v  
(3-11) 

 

The minimization of (3-11) with respect to membership U and prototypes V is subject to the 

same constraint in (3-8).  The parameter 0α ≥  controls the amount of repulsion when labeled 

patterns are assigned incorrectly.  An expression for membership is determined by solving the 

partial derivative of (3-11) with respect to membership equal to zero.  The membership is 

computed with 
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 (3-12) 

 

The algorithm proceeds in the same manner as FCM by alternating evaluation of the expression 

for membership (3-12) and the expression for prototypes that is taken from standard FCM. 
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Partially supervised FCM (#2) 

Input: F, b, X, c, α 

Output: U, V 

1. Initialize membership satisfying constraint (3-8)  

2. Do 

a. Compute prototypes V with the standard FCM expression (2-9) 

b. Compute membership U with expression (3-12) 

3. Until convergence in the membership U, i.e. 
F

U( ) U( 1)iter iter ε− − <  

Unfortunately, the clustering performance is highly sensitive to the choice of α.  The authors 

report improved performance on a single data set when compared with standard FCM. 

Another variation of the FCM algorithm sets the membership equal to the labeled partition for 

the labeled patterns and otherwise calculates the membership using standard FCM for the 

unlabeled data, cf. [16].  The objective function minimized is the nearly the same as standard 

FCM, 

 ( ) 2

1 1

1
c N

m

k ik k ik k i

i k

Obj b f b uα
= =

= − + −∑∑ x v  
(3-13) 

 

subject to the standard FCM constraint (3-8).  The partition is therefore obtained using the 

standard FCM membership expression for the unlabeled patterns (bk=0).  For labeled data (bk=1), 

the membership is directly substituted by the known membership, i.e. 
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(3-14) 

 

for i=1…c, k=1…N.  Prototypes are computed identically with standard FCM except where both 

the labeled and unlabeled data is used to complete them, i.e. 
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(3-15) 

 

In this approach, the labeled data is used to initialize the prototypes, i.e. 
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(3-16) 

 

The algorithm is described as follows. 
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Partially supervised FCM (#3) 

Input: F, b, X, c, α 

Output: U, V 

1. Initialize prototypes with expression (3-16) 

2. Do 

a. Compute prototypes V with expression (3-15) 

b. Compute membership U with expression (3-14) 

3. Until convergence in the membership U, i.e. 
F

U( ) U( 1)iter iter ε− − <  

The authors test this algorithm on MRI (Magnetic Resonance Images).  In [52], the authors apply 

this same algorithm to an image data set to identify textures in images. 

Often some known class information is used to generate the membership hints F.  As a result, a 

serious disadvantage of using the partition matrix for domain knowledge in each of these 

partially supervised algorithms is that the number of clusters and the number of classes are 

assumed to be equal.  An inherent problem with this is that more complicated class structure, i.e. 

where there are several clusters in each class, cannot be encapsulated by this clustering 

paradigm. 

Other works in partially supervised fuzzy clustering have been produced that are briefly 

mentioned.  In [161], a unified framework for partially supervised fuzzy clustering is developed 

for knowledge-based guidance of clustering using proximity hints, labels, or uncertainty 

(entropy).    The author also discusses the suitability of partially supervised clustering for real-

world applications such as website clustering, where data is heterogeneous or the feature space 

often incomplete.  Authors in [26] explore different distance measures for partially supervised 

clustering including Euclidean, Mahanalobis distance, weighted Euclidean, Gustafson-Kessel’s 

distance based on fuzzy covariance, and a kernelized Euclidean distance.  They introduce a 

modification to typical partially supervised FCM by adding a second membership matrix which is 

minimized according to the provided label information using gradient descent.  The difference 

between membership matrices is minimized by adding a penalty term to the standard FCM 

objective function, cf. [8].  A partially supervised fuzzy clustering algorithm that uses genetic 

algorithms (GA) is developed in [135], where FCM is augmented to reduce the variance between 

the membership matrix and desired membership matrix.  They test the algorithm on a data set 

consisting of web pages from computing science departments at four universities by comparing 

the results to support vector machines (SVM) and partially supervised FCM. 

3.2.2. KERNEL LEARNING: PARTIALLY SUPERVISED LEARNING 
The parametric optimization of the parameters for the kernel function has received recent 

attention, cf. [180][88][148][179][74][183].  Kernel-based clustering, a relatively new clustering 

paradigm, maps data from the original feature space through a non-linear mapping to a higher 

dimensional space (referred to as the kernel space in this study to avoid confusion in 

terminology).  Traditionally, the purpose of going to higher dimensions is that the data is more 

likely to be linearly separable [88][148].  However, the objective of clustering is slightly different 

than that of classification where the aim in going to higher dimensions is to facilitate the 

discovery of structure in the data by allowing more flexible cluster geometries through the non-

linear mapping.  Unfortunately, as discussed by Graves and Pedrycz in [74][77], kernel-based 

fuzzy clustering requires parameter tuning for optimal clustering performance.  Hence a few 

approaches to learning the kernel parameters using partial supervision have been developed in 

recent literature. 

Optimization of the kernel is a well discussed topic in supervised machine learning algorithms, 

e.g. Support Vector Machines (SVMs) [42][213][120].  A common technique with SVMs is the 

minimization of the kernel alignment criterion 



 

  

 

34 

 

 
1 2 F

1 1 2 2F F

,

, ,

K K
Align

K K K K
=  (3-17) 

 

where K1 and K2 are kernel (Gram) matrices, K2 is the target kernel (ground truth) and 1 2 F
,K K  

is the Frobenius inner product, i.e. 

  

 ( )1 2 1 2F
,K K trace K K=  

(3-18) 

 

A very important question with optimizing the parameters of the kernel function that produces 

the Gram matrix K1 is how to select the target kernel K2.  The choice of K2 is not obvious.  The 

most common approach with two class problems is to compute K2 via 

 T

2K = yy  
(3-19) 

 

where y is the vector of all the class labels, i.e. y=[yk], ykϵ{-1,1} for k=1…N.  Various 

implementations of kernel target minimization for the optimization of the kernel parameters 

have been implemented including semi-definite programming, cf. [120].  They report good 

performance on the several synthetic and real-world data. 

Parametric optimization of the kernel function (in the context of clustering) however have been 

largely overlooked in the literature [35][202][7][220][226].  Gradient descent has also been used 

to optimize the kernel parameters, c.f. [35][202], since the parameters are often intractable for 

direct methods.  The authors in [35] develop a unified optimization framework for kernel 

functions based on pair-wise within-class and between-class scatter matrices.  Their approach 

uses gradient descent to optimize the parameters of the kernel and evaluate their method using 

a kernel-based k-nearest neighbor classifier.  Their results show significant improvements on 

several of their data sets.  Methods of learning the kernel are given in [202] using kernel-based 

possibilistic fuzzy c-means clustering where the parameters are learned via iterations of gradient 

descent.  Some improvements in prototypes are shown as well as small improvements in 

classification rate on the Machine Learning wine data set.  Authors in [7] perform kernel-based 

learning in a semi-supervised kernel-based clustering environment where must-link (ML) and 

cannot-link (CL) constraints are used to optimize the kernel parameters using Semi-Definite 

Programming (SDP). The disadvantage of SDP is that computational performance scales poorly 

with large data sets.  Their experimental results report the Rand performance index and show 

their method is better (statistically) than other kernel-learning methods.  The width parameter of 

the Gaussian kernel for a semi-supervised kernel-based k-means algorithm is learned in [220] 

using gradient descent and exploiting CL constraints.  A semi-supervised kernel-based Fuzzy C-

Means (FCM) clustering algorithm is developed by minimizing classification error on the labeled 

data in [226].  The width parameter for the Gaussian kernel function is learned using gradient 

descent. 

The idea of adapting parameters of the distance function to the data is not new.  The problem of 

metric learning has been a popular research topic in clustering that aims to accomplish a very 

similar task to kernel learning.  Metric learning of the Mahanalabolis distance falls under the 

umbrella of kernel learning since the matrix in the Mahanalabolis distance is positive semi-

definite (and thus a kernel).  Metric learning with biological data is presented in [33] where the 

hints are provided in the form of “must-link” and “cannot-link” constraints.   The Mahanalabolis 

distance with a non-zero diagonal is employed (i.e. weighted Euclidean distance).  The algorithm 

minimizes the variance of must-link patterns and maximizes the separation of cannot-link 
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patterns with simulated annealing (SA).  Authors employ gradient descent in [212] for parametric 

optimization of the Mahanalabolis distance.  The problem they solve is identical to the one 

presented in [33].  Pair-wise constraints are again exploited in partially supervised learning in [80] 

where the authors extend standard FCM with competitive agglomeration and partial supervision.  

The competitive agglomeration eliminates the need to pre-select the number of clusters.  The 

authors use the Mahanalabolis distance calculated using the fuzzy covariance matrix and report 

improved performance on the Iris data set and an image data set. 

3.2.3. SUPERVISED CLUSTERING 
There are a number of clustering algorithms where all data is labeled with hints, cf. 

[73][165][188][159][160].  One algorithm based on FCM is called Conditional FCM [159] where 

auxiliary data (conditional variable) is provided to help guide clustering.  Conditional FCM reveals 

structure by considering the output space (conditional variable).  Its aim is to minimize the 

standard FCM objective function with respect to membership U and prototypes V 
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subject to the constraint 
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where fkϵ[0,1] is the amount of involvement of the kth pattern in the clustering for k=1…N.  Thus, 

the constraint forms a conditioning on the clustering.  Conditional FCM is applied to the design of 

RBF neural networks in [160], where fuzzy sets (linguistic contexts) defined in the output space 

form the conditional variable.  A relevant issue of conditional FCM clustering is that the algorithm 

does not provide any way to generate the fuzzy sets in the output space; hence, in [160] the 

fuzzy sets are constructed manually by an expert. 

Supervised fuzzy clustering for the training of radial basis function (RBF) neural networks is 

developed in [188] based on FCM clustering where output labels are used to enforce 

homogeneity in the output space when determining the prototypes of the RBF neurons.  The 

algorithm extends the FCM by adding a penalty term to the distance function for the difference 

between the actual output and predicted output.  The output is predicted based on a sum of 

several local linear models.  The authors report improved performance compared with standard 

radial basis function neural network training techniques and conditional FCM.  Pedrycz 

developed a supervised clustering algorithm using knowledge hints via a proximity matrix of 

patterns, c.f. [165].  Graves and Pedrycz supplied knowledge hints in the form of discrete (class) 

and continuous output labels for supervised agglomerative hierarchical clustering [73].  

Supervised hierarchical clustering discovers class structure explicated as the number of clusters 

per class. 

3.3. ACTIVE LEARNING 

In partially supervised learning, not all the data is labeled.  How to select the data to be labeled is 

an important research question.  Active learning is a field of machine learning that aims to 

automatically query the labels of particular patterns that would be useful to the problem.  Often 

active learning is used to determine a concise training data set for a supervised learning 

algorithm while maintaining high accuracy.  Active learning, sometimes called query learning, 

generates a set of queries for advising what data should be labeled either by a human expert or 

the machine.  The motivation is that the process of labeling can be prohibitively expensive for 

large data sets; thereby active learning aims to curb the cost of labeling.  The benefit of active 
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learning is that it provides a means to justify the training data set used in the learning by allowing 

the algorithm to decide the patterns to include in training. 

A survey of active learning methods is given in [181].  The most common method of active 

learning is based on uncertainty sampling [201][197][127][181][124].  The active learner uses a 

probabilistic model to annotate each pattern with a degree of uncertainty.  This is often a trivial 

extension for probabilistic methods of classification.  The uncertainty measure is then used to 

select the data to label based on the principle of least confidence [181].  Under the least 

confidence strategy, the pattern x with the smallest probability under the model is selected for 

labeling, cf. [201][197][181].  One method seeks to find the pattern with the minimum 

confidence expressed by 

 ( )
1

1 max ( | )i
i

Conf p y
κ= …

= −x x  
(3-22) 

 

where Conf(x) is the confidence of data point x in the data set.    Here we use the standard 

notation to denote the conditional probability, ( | )
i

p y x , to be the probability of having the class 

label yi for i=1…K (where K is the number of classes) assigned to the pattern x.  The probabilities 

are subject to 
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(3-23) 

 

Therefore, when the label of a pattern x is uncertain, the conditional probabilities will be evenly 

distributed, e.g. 1 2( | ) ( | ) 0.5p y p y= =x x  for a problem with K=2.  The least confidence strategy 

of active learning will favor selecting patterns where all probabilities are distributed equally 

across all the classes.  The principle of least confidence is also employed in [127].  In general, the 

algorithm for active learning with confidence, provided in [127], starts with a small initial labeled 

set X̂ init , often selected at random from the data with equal preference (uniform random 

selection).  The algorithm is given by the following sequence of steps where L is the target 

number of labeled patterns. 

Confidence-based Active Learning 

Input: X̂ init , X, L 

Output: X̂  

1. ˆ ˆX Xinit=  

2. X̂M =  

3. Construct a model with training data set X̂  

4. Do 

a. Use the model to determine labels for the unlabeled data set X 

b. Compute the confidence level for each unlabeled element 

c. Label the pattern with the least confidence 

d. Add the pattern with the least confidence to the training data set X̂  

e. M=M+1 

f. Retrain the model with the updated training data set X̂  

5. Until M=L 

This general algorithm is a commonly used framework for active learning with Support Vector 

Machines (SVMs) and other classifiers.  The strategy of finding the pattern with the least 

confidence can be easily replaced with other approaches including finding the pattern with the 
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minimum of some other measure of uncertainty or finding the patterns with the maximum 

entropy. 

A second approach that will be discussed is active learning based on the measure of entropy, i.e. 

 
1

( ) ( | ) log ( | )i i

i

H p y p y
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=

= −∑x x x  
(3-24) 

 

where H(x) is the entropy of data point x in the data set.  The idea is to request a label for the 

pattern with the maximum entropy, i.e. the most unexpected pattern.  The maximum entropy 

active learner follows the same procedure as with confidence-based learning except where step 

4(b) is replaced by the computation of the entropy.  Steps 4(c) and 4(d) are also replaced with the 

labeling of the pattern with maximum entropy and adding it to the training data set. 

A third type of uncertainty-based active learning is based on the classification margin where a 

probabilistic decision-making model is not available [216][173].  Another method of active 

learning queries a pattern based on the expected model change and is highly applicable to 

optimization problems involving gradient descent.  The idea is to label the pattern which will 

result in the largest magnitude change in the gradient [181].  For these types of active learning, 

the algorithm must query one or more patterns at a time and repeat the procedure until the 

desired number of labeled patterns has been reached.  However, this is not necessary as many 

patterns can be selected for labeling simultaneously in a process called batch active learning 

aimed to reduce redundancy [91]. 

Another strategy for active learning is called committee-based active learning [145], where 

multiple models are allowed to determine a structure in the data, e.g. via clustering, on the same 

data set as depicted Figure 15. 

 

Figure 15. Committee-based active learning 

The aim of committee-based active learning is to select the patterns where the structures 

produced by the models have the most disagreement. 

Active learning in clustering is successfully developed and applied to the selection of data from a 

large data set [89].  Their objective is to select a set of data from a large data set in order to form 

a partition quickly since many clustering algorithms do not scale well.  They select data based on 

the principle of expected value of information.  With this principle, the data that is expected to 

provide the more information is selected for clustering.  They compare their method of active 

learning to selecting data at random (with uniform probability) using the problem of texture 

segmentation and report better performance with active learning. 

An interesting active learning approach is developed in [79] for selecting the pairs of data must 

be labeled by must-link (ML) and cannot-link (CL) constraints.  They use the active learning 

methodology to select which constraints are needed in the pair-wise constrained competitive 

agglomeration (PCCA) semi-supervised clustering algorithm.  Their approach selects patterns 

from the least well-defined cluster, more precisely, the cluster that is not compact and well 
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separated from its neighbors.  The criterion they use is called the fuzzy hyper-volume computed 

using the determinant of the cluster’s fuzzy covariance matrix, cf. [79], i.e. 

i iFHV Cov=  
(3-25) 

 

where iCov  is the determinant of the fuzzy covariance matrix found by expression (2-15) for 

i=1…c, and c is the number of clusters.  The authors choose to label the pattern belonging to the 

cluster with the lowest FHV and with membership closest to a threshold value.  They report 

successful results on an image classification data set.  A method of active learning based on 

confidence scores is presented in [201] for the problem of speech classification.  Their approach 

requests labels for the samples for which there is least confidence in their classification.  They 

conclude that active learning with speech classification allows for faster learning on a smaller 

training data set for similar accuracy as other methods 

3.4. PROXIMITY CLUSTERING APPROACHES 

Currently there is a growing number of clustering algorithms that cluster with proximity 

information [165][24][169][164][143].  Pedrycz, et. al. [165] developed a proximity-based fuzzy 

clustering algorithm that makes use of auxiliary knowledge in the form of proximity hints in fuzzy 

clustering.  The approach uses the membership grades to determine a proximity matrix Pɶ  with 

expression (3-6).  The membership values that imply the proximity matrix are optimized via 

gradient descent to minimize the squared difference from the proximity hints.  This optimization 

is nested within each iteration of FCM clustering.  The approach is evaluated by clustering web 

pages where proximity information is available as additional domain knowledge.  The conclusion 

is that the algorithm exploits the proximity information fairly well. 

Another approach to proximity clustering is taken in [29] where objects are mapped to points in a 

space of specified dimensionality that preserves the proximity information.  Fuzzy C-Means 

(FCM) clustering is then applied.  The author evaluates their method on several synthetic and 

machine learning data using several measures of cluster validity indices. 

Authors in [169] formulate a method of clustering proximity data and solve the optimization 

problem using a procedure which they term “deterministic annealing” which combines elements 

of a deterministic method with simulated annealing as their optimization vehicle.  Their method 

is compared to Gibbs sampling, where the algorithm is applied to two problems:  texture image 

segmentation and document clustering.  They conclude that partitioning cluster algorithms can 

be applied to problems where only proximity data is available, i.e. where data is not necessarily 

presented in vector form.  A fuzzy proximity clustering algorithm is introduced in [24], where 

movie critic opinions are clustered together based on a similarity or proximity index.  However, 

limited experimentation is conducted.  A clustering algorithm introduced in [143] makes use of 

belief functions.  The authors successfully apply their algorithm to cortex data from the brain of a 

cat and protein data.  A fuzzy clustering algorithm is developed in [164] that uses additional 

knowledge available from other clustering results.  A proximity matrix is determined from the 

membership grades via expression (3-6) on an initial data set.  The proximity information is then 

used to guide the process of clustering a new related data set. 

 

 

3.5. TIME SERIES CLUSTERING 
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Time series clustering is a relatively hot topic given the quantity of time series information 

available from wireless sensor networks, environmental and weather instruments, seismic 

instruments, video cameras, audio microphones, and many other data sources [105][94][104].  

Thus time series analysis tools for clustering are becoming increasingly important.  Clustering is 

an important time series analysis tool for example in temporal rule discovery [177][87][36], 

finding temporal patterns [155][194][152][41], and clustering time series 

[131][153][133][8][176][100][67][50][204][146][129][23][12][130][66][147][214][72][140][187][2

25][3][97][39][38][9][37][10][199][142][119][82][186][18][57]. 

A number of temporal clustering algorithms have been developed 

[153][133][8][176][23][66][214][140][187][225][3][38][10][199][142][119][186][18][99].  Many of 

these algorithms incorporate different distances to account for time information such as 

Pearson’s correlation coefficient [130], cross-correlation [176][130][66][10], Euclidean distance 

[130], dynamic time warping [153][31][199] and principle components analysis (PCA) [140][186].  

Many clustering algorithms that have been explored for clustering time series including 

hierarchical clustering [176][38][199], fuzzy c-mean clustering [66][140], self-organizing maps 

(SOMs) [142][119], k-means clustering [133][8] and expectation-maximization (EM) [57][170]. 

There are two major approaches to time series clustering: 

• Single time series  (often streaming or real-time) often used for discovering motifs 

• Several time series (often short and of equal length) 

Time series clustering can also be broken down into three different approaches: 

• Model-based clustering (HMM, ARMA, polynomial, etc) 

• Distance-based clustering 

• Global feature-based clustering 

A survey in [130] shows many different clustering algorithms have been used in the literature 

including relocation clustering, agglomerative clustering, divisive clustering, k-means clustering, 

FCM clustering, and self-organizing maps (SOMs).  They also report that many different distance 

measures have been used including Mikowski (generalization of Euclidean) distance, Pearson’s 

correlation coefficient, short-time series distance, DTW distance, Kullback-Liebler distance (based 

on Markov chain transition probabilities) and its symmetric version, cross-correlation and few 

others.  They also provide a few common cluster evaluation methods.  One of mention is the 

cluster similarity which is a measure based on a provided ground truth. 

The most common streaming time series clustering available is to generate several small 

overlapping subsequences from the original time series and cluster using the second approach as 

though each subsequence was its own time series as depicted in Figure 16. 
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Figure 16: Subsequences of a time series 

Unfortunately, as discussed in [131] the temporal dependency of overlapping subsequences 

produces problems when clustering.  If using a partition clustering algorithm such as k-means or 

Fuzzy C-Means (FCM) then the prototypes will be sinusoidal with little information about the 

motifs in the time series.  Some attempts have been made to correct this problem 

[67][50][37][82]. 

The work done in [67] indicates that the prototypes produced by streaming time series 

clustering, although sinusoidal, are not entirely meaningless by using a different measure of 

distance between clustering results called cluster shape distance.  The authors in [50] apply 

kernel density estimation clustering to time series.  They report that their algorithm is more 

meaningful than standard k-means based on a meaningfulness measure of internal cluster 

dispersion divided by between cluster dispersion.  Performance of kernel density estimation 

compared with other methods in time series clustering is not reported.  The research conducted 

in [37] indicates that other distance metrics than Euclidean distance can produce meaningful 

results.  They introduce an interesting way of clustering STS by clustering in the delay space with 

specified lag factor.  The results show promise although very little experimental evidence is given 

and the accuracy is not reported.  The results of the research show however that this type of 

clustering is meaningful. 

Clustering of several time series is a very common approach to time series clustering for example 

clustering several ECG readings, several stock prices, etc.  The idea of clustering several time 

series is depicted in Figure 17. 
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Figure 17: Clustering of many time series 

The work done in [176] uses online hierarchical clustering of many streaming time series.  The 

online hierarchical clustering is a divisive-agglomerative algorithm that first divides the set of 

streams into many streaming clusters and then allows for rejoining to handle non-stationary time 

series.  The distance measure used is based on the Pearson’s correlation coefficient.  They 

provide several experimental data sets and show that their real-time is fairly effective compared 

with a non-real-time k-means clustering approach.  Although the performance is slightly 

improved as measured by the Dunn’s validity index and the modified Hubert’s statistic; however, 

the main advantage is real-time clustering of time series.  Work done in [204], approaches the 

time series clustering problem by first discretizing the time series via clustering and then FCM is 

used with the Kullback–Liebler distance.  The results are compared with HMM clustering and 

show comparable performance via classification rate.  They also compare the Kullback-Liebler 

distance with Euclidean distance and show small improvements in clustering performance.  HMM 

and DTW are common methods of clustering time series [153].  In [153], the authors use both to 

cluster time series by using DTW hierarchical clustering to form an initial set of clusters followed 

by HMM clustering to refine the clusters.  The experimental evidence in [153] is limited to a 

single artificial data set.  They do not quantify the results of their clustering algorithm with a 

performance measure.  They do however provide the resulting clusters for the synthetic data set.  

Authors in [12] apply hierarchical clustering with the Hausdorff distance to financial stock data.  

They conclude that the resulting hierarchical partition provides economically meaningful 

information in the form of evolution hints for stock prices.  Clustering of time series using auto-

regressive moving average (ARMA) mixture models is developed in [214].  The authors provide 

extensive experimental results using a cluster impurity performance measure and a cluster 

similarity performance measure.  The results show comparable performance to other time series 

clustering methods.  They used the Bayesian Information Criterion (BIC) to select the number of 

clusters.  An approach given in [18] aims to find motifs in a set of time series by clustering with a 

scale-invariant version of FCM.  The algorithm relies on the time series being pre-aligned.  They 

experimental show through a few real-world examples, such as heart beat anomaly detection 

(ECG), that the clustering algorithm capable of detecting clusters of different ECG patterns.  They 

plot the prototypes of each cluster for comparison.  In [98], a new distance measure is used 

where upper and lower boundaries from one time series are defined for each sample in time.  If a 

second time series being compared crosses those boundaries, the distance is the squared 

difference from the closest boundary.  The authors introduce a symmetric distance that is the 

distance measure is based on the distance between the boundaries of the two time series.  They 

introduce a validity index to measure the performance of their clustering against DTW clustering 

and Euclidean distance clustering.  They also look at the silhouette width of each cluster.  They 
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use only two data sets for experimental evidence.  They conclude with little experiment that their 

method is better. 

Thus far, clustering has been discussed in the context of static clustering where the number of 

clusters does not change with respect to time.  However with temporal information, especially 

streaming or real-time sequences, the number of clusters may in fact change with time, hence 

dynamic clustering is needed, cf. [156].  The reconstruction error can be used to evaluate the 

quality of each cluster in FCM clustering and using a threshold cut-off error, clusters can be split 

as needed.  The objective function for FCM is monitored as well and when the objective function 

falls below a threshold cutoff value, clusters are merged as needed.  The result is dynamic 

clustering [156] where the number of clusters change with time as the structure of the time 

series evolves.  Some experiments are conducted on a synthetic data set and some stock data set 

where the evolving number of clusters and their prototypes are depicted. 

Clustering long time series is very difficult due to high dimensionality of data.  Hence several 

attempts to find ways of representing the key features of time series also called granulation [11] 

or characterization of time series [84].  In [204], the authors develop a clustering scheme based 

on global features of a time series.  The global features capture the following characteristics of 

time series:  trend, seasonality, serial correlation, non-linearity, skewness, kurtosis, self-similarity, 

chaos, and periodicity for a total of 13 features.  They evaluate clustering with several clustering 

algorithms including hierarchical clustering, k-means, FCM and self-organizing maps.  They 

evaluate their results on many data sets including the popular UCR data set [105].  The results 

indicate similar performance to clustering with the entire time series.  The main advantage is the 

dimensionality reduction of the feature. 

3.6. TIME SERIES SEGMENTATION 

Time series segmentation is a very important topic with temporal information processing as long 

time series need to be broken down into relevant segments.  Another related problem to time 

series segmentation is time series labeling; once a time series has been segmented the problem 

of labeling the segments remains.  Hence there are two problems in time series segmentation 

• Segmentation 

• Automatic segment labeling 

It is important in any problem to both segment and label the resulting segments in order be 

complete.  Automatic segment labeling too date depends highly upon the context of the 

problem.  The problem of segmentation has not been solved with high accuracy in the literature 

hence most of research conducted in the literature focuses on the segmentation aspect and 

leaves the labeling to be done later. 

Time series segmentation is accomplished in [60] using genetic algorithms to linearize an ECG 

time series.  The fitness function minimizes the variability between the maximum and minimum 

slopes for each consecutive sample within the proposed segment.  The number of segments is 

determined beforehand.  The experiments are conducted on ECG signals which show a fairly 

good match on the data, i.e. little information appears to be lost during segmentation (also 

dimensionality reduction in this case). 

There are three very common classical segmentation algorithms in the literature: 

• Bottom-up 

• Top-down 

• Sliding-window 
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Unfortunately high segmentation accuracy is not always achieved on most data sets and there is 

no one method superior to the others.  Generally speaking, experimental evidence has shown 

top-down to be the least performer [104].  The three algorithms are described very simply in 

[104].  All three have an error threshold where they stop segmenting once the error is exceeded.  

Bottom-up starts with each sample in its own segment, much like agglomerative hierarchical 

clustering.  The difference between bottom-up and agglomerative hierarchical clustering is that 

segments are merged only if they are adjacent in terms of time such that each segment is 

contiguous.  A merge cost is calculated for each adjacent segment and the segments with the 

smallest merge cost are joined together.  This continues until all merge costs exceed the pre-

determined error threshold. 

Top-down is similar to divisive hierarchical clustering in that the entire time series is the only 

segment.  Each segment is broken down into smaller segments until the error for each segment is 

less than the error threshold. 

Sliding-window is a real-time segmentation algorithm that starts with the first sample and 

extends the segment with each new sample until an error threshold is exceeded, at which point 

the algorithm returns the boundary point and starts the procedure again from where it left off.  

The error threshold for all three methods is clearly important as it will determine the number of 

resulting segments. 

3.6.1. MUSIC STRUCTURAL SEGMENTATION 
As described by Peeters, c.f. [154], there are approximately two general approaches to the 

problem of musical segmentation for discovering the structure of music:  the state approach and 

the sequence approach.  The author investigates musical segmentation of structural components 

using Mel Frequency Cepstral Coefficients (MFCC) and compares the sequence approach 

(chroma) of structural segmentation with the state approach (HMM) and concludes that the 

state approach is more robust and computationally efficient.  The evaluation of the performance 

of musical segmentation in the literature is done by comparing the resulting segments with an 

expert labeled song, where a human listener has determined the boundary locations for the 

individual segments in each song. 

Musical segmentation was performed by [122] using MPEG-7 features, c.f. [111], and constrained 

clustering based on K-Means roughly follows the state approach.  Overall, the approach was fairly 

successful although their experiments demonstrated that there is still a significant amount of 

room for improvement.  A disadvantage is that the number of clusters used in clustering is not 

determined automatically.  Likewise, there is a one-to-one correspondence between a cluster 

and class (structural type) meaning that a class cannot have more than one cluster assigned too 

it, which prohibits determining the structure in complex clusters.  They use the 

AudioSpectrumProjection features described in the MPEG-7 standard, which are log-spectra 

projected onto principle component basis functions, to build a hidden Markov model (HMM) 

with Gaussian state modeling, c.f. [170].  A single vector-valued Gaussian distribution was used 

for each state.  The number of states was set to M=80 since the authors in [122] show that an 

HMM has great difficulty in capturing the high-level structural information of music.  It is argued 

by the authors that many states in the HMM can allow the model to capture a sequence of states 

that corresponds to a structural segment in the music.  Their results show that the statement is 

justified.  The authors also employ beat detection using [44] in order to set the frame rate to the 

beat of the music such that each state in the HMM corresponds to a beat in the music.  A local 

distribution of the states at each frame is clustered using constrained k-means clustering.  The 

must link constraints introduced into k-means clustering are generated automatically by 

constraining neighboring local state distributions to belong to the same cluster.  Cannot link 

constraints are not used in the research.  The research achieve are reported to be better then 

several other similar clustering techniques on many popular Western-style music databases.  
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They use two performance indices in the evaluation of their results including the pair-wise f-

measure and the boundary retrieval performance (also an f-measure). 

Goto, c.f. [71], follows the sequence approach and develops a method called RefraiD that detects 

the chorus sections of music and can even detect key changes in choruses using a 12-dimensional 

chroma feature vector.  The approach was successful in that 80 of 100 of their test songs were 

able to retrieve the chorus sections correctly.  The chorus detection algorithm finds the similarity 

between two chroma feature vectors producing a two-dimensional sequence of similarity values 

with time being the first dimension and lag being the second.  Using the similarity measure, the 

algorithm finds repeated sections in the song.  Then using a set of assumptions, the algorithm 

determines which segments belong to the chorus.  The performance is evaluated using the f-

measure for boundary retrieval on the chorus. 

Authors in [154] propose a method of musical segmentation by detecting boundaries first, 

followed some aggregation in a two-phase approach.  The approach was relatively successful but 

still has room for significant improvements in performance.  The first phase involves detecting 

possible boundaries using MFCC and sub-band energy features.  The boundaries are found by 

first calculating frame similarity matrices with a cosine similarity index for each feature.  The 

correlation of the similarity matrices is found and the 40 highest local maxima are chosen leading 

to a set of potential structural boundaries in the song.  For phase two, the feature set consists of 

zero crossing rate, spectral centroid, spectral flatness, spectral roll-off, spectral flux, RMS, low 

bass energy, and high-medium energy.  The mean of these features are calculated for each 

segment and the between segment similarity is calculated.  The potential boundaries from phase 

one are then combined according to the segment similarity if the similarity is less than some pre-

defined threshold.  The performance measure is the f-measure for boundary retrieval and they 

allow 3 seconds (approximately 1 bar of music) in the boundary error before considering a 

boundary incorrect. 

Abdallah et. al., c.f. [1], build a musical segmentation architecture based on a Bayesian 

framework.  Overall, the experimental results for the small database of music used do not 

indicate how well the architecture performs against existing segmentation methods.  The 

method trains an HMM on a dimensionality-reduced log-frequency log-spectra based on the 

MPEG-7 AudioSpectrumProjection, as done by authors in [122].  Dimensionality reduction is done 

by principle component analysis (PCA).  The HMM consists of many states such as 40 or 80 states 

and pair-wise clustering is performed to cluster the local state histograms as in [122].  The 

difference between what was done in [122] and what was done in [1] is the clustering algorithm 

employed.  In [122], the clustering algorithm is constrained k-means while in [1] the clustering 

algorithm is based on maximizing a log-likelihood using deterministic annealing.  They evaluate 

on 14 popular songs from Sony’s catalogue (audio down-sampled to 11 kHz) and determine that 

the segment boundary intersection rate is about 80%.  The measure the performance via the 

directional Hamming distance compares the expert boundaries with the segmented boundaries 

by finding the boundary segments with maximal overlap. 

The authors in [123] conduct musical segmentation in order to generate thumbnails for music.  

They suggest a possible method of selecting the chorus of the song for automatic thumbnail 

generation.  The authors in [61] perform musical segmentation by training an HMM on three 

different feature spaces:  linear predictor coefficients (LPC), LPC-derived cepstral coefficient 

(LPCC), and MFCC.  The results show that LPCC and MFCC are fairly close in performance.  After 

segmentation, identification of the segments is performed where the accuracy is about 90% for 

both LPCC and MFCC. 

Segmentation is also widely used to separate speech from music in audio such as in 

[68][136][115][2][210].  The problem of separating speech and music in audio is simpler 
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compared with isolating musical structure since each musical component though different is 

usually not vastly different; hence, performance of music/speech discrimination is generally 

good.  The authors in [68] outline a method of separating speech in an audio signal with music.  

Unfortunately, the test results shown are very limited.  The results shown for one of the data sets 

shows that the segmentation finds clusters fairly effectively; however, the results are not 

quantified nor compared with any other existing methods.  The algorithm outlined is a 

supervised method that involves performing linear discriminant analysis (LDA) on training data.  

A dynamic program is then applied to identify sequential clusters in the data. 

The support vector machine (SVM) has also been used to separate speech from music, c.f. [136].  

The results reported are quite good with average accuracies around the mid-90 percent.  The 

technique involves doing some pre-processing by calculating mel-frequency cepstral coefficients 

(MFCCs) and some perceptual features.  The support vector machine with a Gaussian kernel is 

trained on this combined feature space. 

Segmentation of speech and music is accomplished in [2] where a multilayer perceptron (MLP) 

neural network is used to compute the probabilities of phonemes for each input frame.  From 

these probabilities, entropy and dynamism features are computed and an HMM is trained on the 

estimated probability density function (PDF).  The HMM is a two-state model where one state is 

non-speech and the other state is speech.  Hence non-speech and speech segments are 

determined.  The performance is fairly good with classification rates close to 90%. 

The authors in [210] describe an audio segmentation scheme that does not require the number 

of segments to be specified.  In particular, it used the minimum descriptor length (i.e. code word 

length from coding theory) to determine when to stop the segmentation process.  Segmentation 

is performed by splitting the audio into multiple change points that define boundaries for 

segments where segments have differing feature means and co-variances.  The segmentation 

process is a top-down hierarchical segmentation process that iteratively breaks segments into 

sub-segments by finding the largest abrupt change in the means and co-variances in the features.  

The feature space used is MFCC’s.  The performance of the method outlined in [210] is decent on 

the test data sets.  The false alarm rate (FAR) and missed detection rate (MDR) are the 

performance measures used in the research, where the rates are decent but could still allow 

significant room for improvement. 

An approach for speaker segmentation that differentiates different human speakers in an audio 

signal uses features derived from both wavelets and Fourier transforms, c.f. [198].  The approach 

uses a combination of a number of different features and report fairly good performance.  A 

support vector machine (SVM) is then used to detect (classify) the speaker in each frame.  The 

performance measure is the classification rate (frame-by-frame) as compared with a ground 

truth human-labeled signal.  The reported accuracies range from 86% on an audio signal with 8 

different speakers to up to 100% on an audio signal with only 2 different speakers. 

An approach for segmenting audio that contains speech, music and background noise is outlined 

in [126].  The authors report very good performance on their test data.  They use both temporal 

and spectral features.  Frames are classified into speech and non-speech using a k-nearest 

neighbor (KNN) approach and linear spectral pairs (LSP) that are pre-trained and stored in a 

speech codebook.  The LSPs from the test audio data are compared with those in the codebook 

and using a threshold value are determined to be speech or non-speech.  A rule-based is used to 

distinguish the different sounds for non-speech.  The performance is measured using 

classification rate and is very good on the speech but is not as good on the environmental sounds 

and music for their test data. 

A review of speaker segmentation is discussed in [115].  A common method used in speaker 

segmentation is Bayesian information criterion (BIC).  The most common feature spaces for 
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speaker segmentation are MFCC, and MPEG-7 features.  Several different segmentation methods 

are employed in the literature according to the review in [115] including model-based 

segmentation (e.g. HMM) and metric-based segmentation. 

Speaker segmentation is also addressed in [48] where they use the Bayesian Information 

Criterion (BIC) for segmentation of speech audio containing several different speakers.  Their 

approach is a two-pass approach where they first use distance to select possible candidate 

boundary points and then the second pass involves using BIC to keep or discard the candidate 

boundary points.  The performance of the algorithm is measured by false alarm rate (FAR) and 

missed detection rate (MDR).  The authors report moderate performance with some significant 

room for improvement as the false alarm rate is still relatively high in their experiments. 

A hidden Markov model (HMM) is used to estimate the key of a song by using 24-states where 

each state represents the 24 major and minor chords in music in [151].  They report good 

performance with their HMM key determination scheme.  A system is developed in [172] for 

improving the accuracy of querying a music database using a sung or hummed phrase using 

relevance feedback in which queries are reformulated and feedback as new queries through the 

optimization framework of genetic algorithms.  The optimization is a function of a measure of 

relevance of returned music. 
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4. KERNEL FUNCTIONS AND PROXIMITY FUNCTIONS 
Kernel functions are well-known in mathematics and have been used in many different 

applications including non-linear regression, modeling, and learning.  Some of the technical 

background materials in kernel functions are discussed in this chapter along with a thorough 

evaluation of kernel-based fuzzy clustering algorithms.  It is demonstrated that kernel-based 

fuzzy clustering promises substantial improvements in the clustering.  However, there is the need 

for parametric optimization of the kernels. 

4.1. INTRODUCTION 

One of the most popular areas of kernel research is in the field of Support Vector Machine (SVM) 

– a problem involving the determination of decision boundaries for classification purposes.  With 

SVM, the data is non-linearly mapped to a higher dimensional, possibly an infinitely dimensional 

space, through the use of a kernel function in the distance where a standard and well-known 

linear discriminator is learned by maximizing margin.  The obvious question arises:  why map to a 

higher dimensional space?  The reason is that it can simplify the structure of the data allowing a 

large category of simple linear machine learning algorithms, including a broad range of classifiers 

and clusterers, to function as non-linear learning algorithms.  With the SVM example, a linear 

classifier is transformed into a more powerful non-linear one by kernelizing the algorithm. 

An obvious question is why kernel functions are not more popular in machine learning.  The 

reasons are as follows: 

• Kernelization of algorithms are restricted to ones where the comparison function is 

expressed solely using inner products 

• Very little work has been done in developing a diverse collection of kernel functions 

• Little work has been done on optimal selection of the kernel structure and its associated 

parameters 

Many algorithms have been kernelized but very little research has been conducted on providing a 

suitable framework for determining the best kernel function (structural optimization) and its 

associated parameters (parametric optimization).  It is shown in this chapter that structural 

optimization and precise parametric optimization of kernels is required to obtain the boasted 

improvements with kernel clustering methods.  

4.2. KERNEL FUNCTIONS: THEORY 

As alluded to earlier, a kernel function is also an implicit mapping of data X to a higher 

dimensional inner product space which we call the kernel space H  (H  stands for high 

dimensional space).  In typical kernel literature, the kernel space is also called the feature space 

[163].  However, we refrain from using this terminology since it is also used in the clustering 

literature with a different meaning.  Instead we choose to apply the term kernel space to the 

higher dimensional space H .  We call the lower dimensional inner product space F which is 

called the original feature space.  The mapping is given by the expression 

 ( )Φ : Fx ֏H  
(4-1) 

 
where Φ  is the non-linear mapping of data X F∈ ⊂x  to the higher dimensional kernel space.  

Note that F and H   are both inner product spaces and thereby are Euclidean metric spaces (ie. 

spaces where the Euclidean metric is defined); thus X d≡ R  and Hd≡ RH  where d is the 

dimension of the original feature space and 
H
d  is the dimension of the kernel space, cf. [30].  
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Since the higher dimensional space H  is an inner product space, there exists a kernel function 

( ), : F FK ×x y ֏ R�� such that 

 ( ) ( ) ( )T
, Φ ΦK =x y x y  

(4-2) 

 

where , X∈x y  and ( ) ( )T
Φ Φx y  is the inner product.  Thus the kernel function is in fact an inner 

product in H .  Thereby, one can compute inner products in H  implicitly by simply computing 

( ),K x y  (even if H  is infinitely dimensional).   The well-known Mercer kernel condition provides 

the necessary conditions required of a function in order to exhibit the property in expression 

(4-2).  Mercer’s condition [30][148][179] states that there exists a mapping ( )Φ ∈x H  where 

expression (4-2) is satisfied if and only if the following condition is true 

 ( ) ( ) ( ), 0K g g d d ≥∫ x y x y x y  
(4-3) 

 

for all the possible functions ( ) : Fg x ֏ R  where the L2-norm of ( )g x  is finite [30], i.e. 

( )2

2L norm g d− = ∫ x x    is finite 
(4-4) 

 
Note that in some cases, it may be difficult to assess whether or not a function K(x,y) is a kernel 

function since condition (4-3) must hold true for every possible function g(x) that satisfies (4-4).  

Often kernel functions are instead constructed from known kernel functions using a number of 

known rules, cf. [30][64]. 

In addition to kernel functions, there are also kernel matrices which are more commonly referred 

to as Gram matrices [180].  A kernel matrix represents an inner product in a higher dimensional 

space H  but for a finite number of data points X F∈ ⊂x .  Any symmetric positive semi-definite 

matrix G of size N-by-N is also a kernel (Gram) matrix [148], i.e. 

TG 0≥z z ,  0, N∀ ≠ ∈z z R  
(4-5) 

 
Note that this condition is equivalent to saying that all the eigenvalues 

i
λ  of G are non-negative 

[180], i.e. 0
i
λ ≥ , for i=1…N.  A kernel matrix can also be constructed from a kernel function by 

evaluating the function on a finite number of data points in X∈x . 

4.3. TYPES OF KERNEL FUNCTIONS 

The popular Mercer kernel function was described in the previous section.  However, there are a 

number of different types of kernel functions including positive definite kernels and conditionally 

positive definite kernels.   

A very general definition for kernel satisfies the condition of positive definiteness [64], i.e.  

1 1

( , ) 0
N N

i j i j

i j

a a K
= =

≥∑∑ x x  
(4-6) 

 



 

  

 

49 

 

for all ,i ja a ∈ℝ  and all patterns ,i j X∈x x  where K(xi,xj) is a symmetric function.  Note that all 

Mercer kernels satisfy (4-6) and thus are positive definite.  However, the converse is not 

necessarily true.  In this way, one may choose a symmetric function K(xi,xj) that is positive semi-

definite (and thus a kernel) for a given data set X.  It is a kernel despite the fact that the function 

does not need to satisfy Mercer’s condition (4-3).  A broader class of kernels is the conditionally 

positive semi-definite kernel, cf. [90].  These kernels must satisfy the condition of (4-6) for only 

those values of ai and aj that gratify the constraint 

1

0
N

i

i

a
=

=∑  
(4-7) 

 
There are several categories of positive definite kernel functions [64]: 

• Stationary 

o Isotropic stationary 

� Compactly supported isotropic stationary 

• Non-stationary 

o Locally stationary 

o Separable non-stationary 

A kernel is termed stationary if it only depends on the difference between the arguments.  A 

stationary kernel must satisfy the following condition 

( , ) ( )StationaryK K= −x y x y  
(4-8) 

 
for all , X∈x y .  The notation ( )K −x y  indicates that the kernel function depends only on x-y 

and is therefore stationary.  A kernel is isotropic stationary if and only if the kernel is a function of 

the magnitude of the difference between its arguments, i.e. 

( , ) ( )IsotropicK K= −x y x y  
(4-9) 

 

for all , X∈x y  where −x y  is the distance between x and y.  Thereby, the Gaussian kernel is an 

isotropic stationary kernel.   

An isotropic stationary kernel function is said to be compactly supported if and only if the kernel 

function ( ) 0IsotropicK − =x y for some threshold distance, i.e. threshold− ≥x y , cf. [64].  

Compact kernels are advantageous since a number of efficient algorithms are available that 

exploit the sparseness of the Gram matrix. 

Not all kernels need to be stationary however.  Locally stationary kernels satisfy the condition 

( )1( , )
2

StationaryK K K
+ = − 

 

x y
x y x y  

(4-10) 

 

where ( )1 ( ) / 2K +x y  is a non-negative function, cf. [64]. All stationary kernels are locally 

stationary kernels (i.e. when K1 is a positive constant). 

Finally, there is a general class of kernels called non-stationary kernels.  For example, the 

polynomial kernel is not stationary.  Genton in [64] summarizes the general form of non-
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stationary kernels which is beyond the scope of this work.  Worth mentioning is a large group of 

non-stationary kernels called separable non-stationary kernels have the form 

( ) ( )1 2( , )K K K=x y x y  
(4-11) 

 
where K1 and K2 are stationary kernels that are calculated at x and y respectively. 

A list of a number of the known positive semi-definite kernels are given in Table 5. 

Table 5. Positive semi-definite kernel functions 

Name Type Description 

Gaussian Isotropic Stationary 2

2

1
( , ) expK

σ
 = − − 
 

x y x y ,σ ∈ℝ  

Generalized Gaussian Isotropic Stationary 

( )
1

( , ) exp
2 1

K
r r

τ

τ

τ
τ

 = − − Γ  
x y x y

,
0, 0r τ> >  where ( )Γ •  is the 

gamma function 
Laplacian Isotropic Stationary 

2

1
( , ) expK

σ
 = − − 
 

x y x y ,σ ∈ℝ  

Cauchy Isotropic Stationary 
2

1
( , )

1

K

σ

=
−

+

x y
x y

, 0σ >  

Quadratic Isotropic Stationary 2

2
( , ) 1K

θ

−
= −

− +

x y
x y

x y
, 0θ ≥  

Multi-quadratic Isotropic Stationary 2
( , )K θ= − +x y x y , 0θ ≥  

Inverse multi-quadratic Isotropic Stationary 

2

1
( , )K

θ
=

− +
x y

x y

, 0θ ≥  

Generalized histogram 

intersection 

Non-stationary ( )
1

( , ) min ,
n

a b

i i

i

K x y
=

=∑x y ,

0, 0a b> >  where ,
n∈x y ℝ  

Polynomial Non-stationary ( )T( , )
p

K θ= +x y x y , 0, pθ ≥ ∈ℕ  

ANOVA [189] Non-stationary 2

2
1

1
( , ) exp

n
d

k k

k

K
σ=

 = − − 
 

∑x y x y ,

, 0,d nσ ∈ > ∈ℝ ℕ  

The function exp(u) denotes the exponential function e
u
.  Some conditional positive semi-definite 

kernels are shown in Table 6. 

Table 6. Conditionally positive semi-definite kernel functions 

Name Type Description 

Log [90] Conditionally positive 

semi-definite 
( )( , ) log 1

d
K = − − +x y x y , 0d >  

Sigmoid [30] Conditionally positive 

semi-definite 
( )T( , ) tanhK θ= +x y x y ,θ ∈ℝ  
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4.4. PROXIMITY FUNCTIONS 

Another useful function closely related to kernels is the proximity function and is a mapping 

( ), : X X [0,1]p ×x y ֏  that satisfies the following requirements [165]: 

Symmetry:  ( ) ( ), ,p p=x y y x  
(4-12) 

 

Identity:  ( ), 1p =x x  
(4-13) 

 
An example of a proximity function is the commonly encountered cosine-law function.  Recall 

that 
T

cosθ=
x y

x y
 where cosθ  is restricted to the interval [-1,+1].  By scaling the output to the 

interval [0,1] through a linear transformation, the cosine-based proximity function becomes 

 ( )
T

1
, 1

2
p

 
= +  

 

x y
x y

x y
 (4-14) 

 

where 
T=x x x  is the Euclidean distance.  A summary of common proximity functions is given 

in Table 7. 

Table 7. Common Proximity functions 

Name Proximity Function 

Gaussian 

( )
2

2

,p e σ

−
−

=
x y

x y , 2 0σ >  

Cosine 
 ( )

T
1

, 1
2

p
 

= +  
 

x y
x y

x y
 

Correlation 

( )
{ } { }1

, 1
2

E E
p

µ µ

σ σ

 − −
 = +
 
 

x y

x y

x y
x y  

where { }Eµ =x x , and 

( ){ }2
Eσ µ= −x xx  

It is easy to see that some kernel functions also satisfy the properties for proximity functions 

including the Gaussian kernel function.  However, not all kernel functions are proximity 

functions.  Despite this, we can transform any kernel function into a proximity function using the 

cosine kernel by mapping all data points X∈x  to a higher dimensional kernel space ( )Φ ∈x H . 

 ( ) ( ) ( )

( ) ( ) ( ) ( )

T

T T

Φ Φ1
, 1

2 Φ Φ Φ Φ

p

 
 = +
 
 

x y
x y

x x y y

 (4-15) 

 

Since these are inner products in H , they can be replaced with a kernel function.  The proximity 

function then becomes 
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 ( ) ( )
( ) ( )

,1
, 1

2 , ,

K
p

K K

 
 = +
 
 

x y
x y

x x y y
 (4-16) 

 
This measure of proximity is very general as it is a normalized kernel function providing a strong 

link between proximity and kernel functions.  This is exploited in subsequent chapters. 

 

  

Fuzzy “X” (a) Parabolic (b) 

  
Ring (c) Zig-Zag (d) 

  
Density (e) Line (f) 

Figure 18. Synthetic data sets 
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4.5. MOTIVATION: KERNEL CLUSTERING CASE STUDY 

In order to evaluate the potential benefits offered by kernel methods and motivate their use in 

unsupervised learning, two distinct kernelizations of the FCM objective function (KFCM-K and 

KFCM-F) are compared against standard FCM, see [74], [77], and [76] for further details.  The 

objective is to determine the potential performance gains offered by kernelizing fuzzy clustering 

and to motivate the need for automated kernel selection.  The performance is evaluated in terms 

of classification rate.  First, a suite of synthetic experiments is conducted on the data sets shown 

in Figure 18. 

The clustering algorithms were run over different values for the clustering parameters including 

the number of clusters c, the fuzzification coefficient m, and the corresponding kernel 

parameters.  The number of clusters c was set to the number of known classes in the data set.  

The fuzzification coefficient m was varied over the pre-selected set of values {1.2, 1.4, 1.7, 2.0, 

2.5, 3.0} for FCM and {1.4, 2.0, 2.5} for the kernel methods.  The Gaussian kernel parameter σ
2
 

was selected manually and varied over the set {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8, 12, 16, 20, 25, 

30, 40, 50, 75, 100}.  The polynomial kernel parameters (θ, d) were varied over the Cartesian 

product of the set of θ values {0, 2, 4, 7, 10, 15, 20, 30, 40, 50} and the set of power d values {2, 

4, 8, 12, 16}.  For each set of parameters the algorithms were repeated 20 times and the means 

and standard deviations of the classification rate were recorded.  The initial membership matrix 

is generated randomly; hence, the standard deviation of the results quantifies the sensitivity of 

the algorithms to their initialization.  The experimental results are provided in Table 8. 

Table 8. Results of Synthetic data sets 

Data Set 

Name 

Algorithm Parameters Classification 

Rate (%) 

Reconstruction 

Error 

Fuzzy “X” FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=2, m=2.5 

c=2, m=2.5, σ
2
=2 

c=2, m=1.4, σ
2
=2 

c=2, m=2.5, θ=2, d=2 

50.8±0.4 

69.5±0.8 

52.0±0.7 

75.6±0.7 

1.50±0.00 

1.78±0.02 

1.92±0.07 

2.59±0.64 

Parabolic FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=2, m=2.5 

c=2, m=1.4, σ
2
=1 

c=2, m=2, σ
2
=1 

c=2, m=2.5, θ=10, d=12 

87.4±0.0 

88.2±0.0 

89.0±0.0 

87.8±0.0 

0.68±0.00 

0.75±0.00 

0.91±0.00 

0.96±0.07 

Ring FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=2, m=1.2 

c=2, m=2, σ
2
=0.05 

c=2, m=2.5, σ
2
=8 

c=2, m=2, θ=15, d=8 

51.5±0.6 

76.3±16.9 

100.0±0.0 

100.0±0.0 

1.35±0.00 

2.81±0.75 

2.00±0.00 

2.00±0.00 

Zig-Zag FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=3, m=1.4 

c=3, m=1.4, σ
2
=0.01 

c=3, m=1.4, σ
2
=0.5 

c=3, m=2.5, θ=0, d=2 

66.0±0.0 

76.2±12.6 

100.0±0.0 

80.4±0.0 

0.17±0.07 

0.20±0.08 

2.78±0.77 

1.99±0.00 

Density FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=2, m=1.2 

c=2, m=2.0, σ
2
=2 

c=2, m=2.0, σ
2
=0.25 

c=2, m=2.0, θ=20, d=2 

93.5±0.0 

94.5±0.0 

100.0±0.0 

93.0±0.0 

0.16±0.02 

0.17±0.02 

2.93±2.01 

1.09±0.32 

Line FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=2, m=2.5 

c=2, m=1.4, σ
2
=0.01 

c=2, m=2.5, σ
2
=0.25 

c=2, m=2.0, θ=10, d=2 

80.0±0.0 

82.5±6.4 

100.0±0.0 

80.0±0.0 

0.15±0.00 

0.18±0.00 

3.00±0.94 

0.15±0.00 

In a number of cases, the kernel methods provide considerable improvement in the performance 

in some cases with the right selection of kernel parameters.  Although the reconstruction errors 
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are higher for the kernel methods, the classification rate is in many cases better than standard 

FCM.  The higher reconstruction error may be explained by differences in the placement of the 

prototypes since the reconstruction error is sensitive to the placement of the prototypes in the 

data.  The boundaries of the clusterings as well as the prototypes are shown in Figure 19 for the 

fuzzy “X” data set. 

  
FCM (a) KFCM-F (Gaussian) (b) 

  
KFCM-K (Gaussian) (c) KFCM-K (Polynomial) (d) 

Figure 19. Boundaries produced by FCM, KFCM-F and KFCM-K on the Fuzzy "X" data set 

Clearly, kernelized fuzzy clustering offers potentially significant benefits compared to standard 

FCM.  However, an important question is how much does this performance depend on the 

selection of the kernel parameter.  We demonstrate in Figure 20 how the classification rate 

changes drastically with the kernel parameters on the ring data set. 
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We conclude that an accurate procedure for optimizing the parameters of the kernel parameters 

is needed on many of these synthetic data sets. 

The next suite of experiments involves the performance on a handful of UCI Machine Learning 

data sets [5] to demonstrate the need for kernel optimization on real-world data.  The data sets 

include iris, wine, ionosphere, image segmentation (testing data set only) and SPECT hear data 

(training and testing data sets combined). 

Table 9. UCI Machine Learning Results 

Data Set 

Name 

Algorithm Parameters Classification 

Rate (%) 

Reconstruction 

Error 

Iris FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=3, m=2 

c=3, m=2.5, σ
2
=100 

c=3, m=2.5, σ
2
=4 

c=3, m=2.5, θ=15, d=8 

84.0±0.0 

84.0±0.0 

85.3±0.0 

88.7±0.0 

0.89±0.00 

0.90±0.00 

1.52±0.03 

1.94±0.40 

Wine FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=3, m=1.4,  

c=3, m=1.2, σ
2
=2 

c=3, m=1.4, σ
2
=12 

c=3, m=1.4, θ=20, d=2 

96.6±0.0 

96.1±0.0 

97.8±0.0 

97.8±0.0 

6.81±0.00 

8.74±0.00 

8.18±0.00 

6.90±0.00 

Ionosphere FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=2, m=1.2 

c=2, m=1.4, σ
2
=50 

c=2, m=1.4, σ
2
=40 

c=2, m=1.4, θ=30, d=8 

64.1±0.0 

70.7±0.0 

74.6±0.0 

72.7±0.0 

32.10±0.02 

26.25±0.00 

26.85±0.00 

34.62±1.44 

Segment. FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=7, m=1.7 

c=7, m=2, σ
2
=50 

c=7, m=1.4, σ
2
=40 

c=7, m=1.4, θ=10, d=2 

69.8±1.3 

71.2±0.0 

66.8±2.8 

66.5±1.6 

8.22±0.00 

8.77±0.00 

8.00±0.12 

7.88±0.08 

SPECT FCM 

KFCM-F (Gaussian) 

KFCM-K (Gaussian) 

KFCM-K (Polynomial) 

c=2, m=1.2 

c=2, m=2.5, σ
2
=0.1 

c=2, m=2.5, σ
2
=0.05 

c=2, m=1.4, θ=50, d=2 

79.4±0.0 

80.4±2.0 

84.3±0.0 

79.4±0.0 

17.87±0.00 

32.14±5.11 

30.67±2.00 

18.89±0.00 

There is a definite performance increase on the iris, wine, ionosphere, and SPECT data sets.  

KFCM-F does slightly better than FCM on the segmentation data set; however, KFCM-K does 

poorly compared to FCM.  Looking more closely at the ionosphere data set, which is of relatively 

 
 

KFCM-K (Gaussian) (a) KFCM-K (Polynomial) (b) 

Figure 20. Classification rate (a) versus σ
2
 for Gaussian KFCM-K, and classification rate (b) 

versus polynomial kernel parameters for polynomial KFCM-K on the ring data set (c=2) 
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high-dimensionality, there is a statistically significant increase in the classification rate for all the 

kernel clustering algorithms.  Plots of the classification rate and reconstruction error with respect 

to kernel parameters and the fuzzification coefficient m are given in Figure 21. 

 
 

KFCM-K (Gaussian) (a) KFCM-K (Polynomial) (b) 

Figure 21. Classification rate (a) versus σ
2
 for Gaussian KFCM-K (c=2) and classification rate (b) 

versus polynomial kernel parameters KFCM-K (c=2) on the ionosphere data set 

It is observed that the classification rate varies more than 10% versus the kernel parameters of 

the Gaussian and polynomial kernels on the ionosphere data set.  Thus it is concluded that the 

parameters of the kernel function in kernelized clustering require an accurate selection 

procedure in order to obtain optimal performance (optimal in the sense of classification rate).  

An automated optimization procedure is introduced in the next chapter to address this issue. 
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5. PARAMETRIC OPTIMIZATION OF KERNELS 
The kernelization of fuzzy clustering poses many unanswered questions, particularly the 

structural and parametric optimization of kernel functions in the presence of some available 

domain knowledge.  As demonstrated in the previous chapter, there is important motivation to 

exploit hints in order to optimize the parameters of the kernel function.  There is still a question 

of how these hints are attained and, in particular, how the labeled patterns are selected (i.e. via 

active learning).  The specifics of the active learning process are deferred to Chapter 7.  For now 

it is assumed these hints are provided.  A promising form of domain knowledge that can be used 

to optimize the kernel function parameters is a set of proximity relationships.  In this chapter a 

novel approach for optimizing the parameters of a kernel function using proximity hints is 

introduced. 

5.1. OPTIMIZATION FRAMEWORK 

The evaluation of kernel-based fuzzy clustering provided in the previous chapter prompts the 

development of a framework under which the parameters of the kernel function can be 

optimized.  The overall framework is described in Figure 22, where the objective is to acquire the 

optimal kernel mapping for the data. 

 

Figure 22. Kernel Function Optimization Framework 

Using the semantic link established between kernel functions and proximity functions with 

expression (4-16), the parameters of the kernel function can be learned through partial 

supervision where the domain knowledge consists of a number of proximity hints.  Given a 

labeled data set X̂  of size M with dimensionality d, where M<N where X̂ X⊂ , the hints are 

represented as a matrix of proximity values, P̂  satisfying expressions (4-12) and (4-13).  The 

parameters of the kernel function are then determined by minimizing the objective 

 ( )( )2

1 1

, ˆ
M M

i j i j ij

i j

Obj w p pw
= =

= −∑ ∑ x x  (5-1) 

 
where wi is a positive weight for each sample i=1…N.  This optimization does not depend on the 

fuzzy clustering and can therefore be accomplished before executing kernel-based fuzzy 

clustering.  Thus, in the proposed approach, the kernel-based fuzzy clustering is performed post-

kernel learning. 

5.2. DOMAIN KNOWLEDGE: PROXIMITY 

An important question is where do the proximity hints P̂  come from?  For the moment it is 

assumed that the data set to be labeled has already been selected (i.e. via active learning).  
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Obviously, one may obtain proximity hints directly from the available domain knowledge.  For 

example, a human expert might assign a small number of proximity hints to pairs of patterns, see 

Table 10. 

Table 10. Example of proximity hints of songs 

 Song 1 Song 2 Song 3 Song 4 

Song 1 1.0 0.7 0.3 0.1 

Song 2 0.7 1.0 0.2 0.4 

Song 3 0.3 0.2 1.0 0.8 

Song 4 0.1 0.4 0.8 1.0 

These proximity hints can be subjective as in this example.  However, it may not be easy to 

obtain these hints for many kinds of problems.  Therefore, it is necessary to determine a method 

to transform other forms of domain knowledge into proximity hints.  Particularly an approach for 

transforming fuzzy sets in the output space to proximity knowledge is presented.  Three types of 

knowledge are considered: 

(a) Membership 

(b) Class labels 

(c) Fuzzy sets in the output space 

For the first type of domain knowledge, the proximity matrix P̂  can be computed from a partial 

membership matrix ˆ
iku , i=1…c, k=1…M, via expression (3-6).  For the second and third type of 

domain knowledge, the treatment is the same:  fuzzy sets ( )i kf x  are constructed in the output 

space, i=1…n (n is the number of fuzzy sets) and k=1…M.  In the case of class labels, the fuzzy sets 

are given by the characterization function ( ) { }0,1i kf ∈x  where 

 ( )
1         

0                             

k

i k

if belongstotheithclass
f

otherwise


= 


x
x  (5-2) 

 

for i=1…K (K is the number of classes) and k=1…M.  In the general case, ( ) [0,1]k if ∈x , i=1…n (n is 

the number of fuzzy sets) and k=1…M.  Using an expression similar to (3-6), the proximity values 

are computed via the output fuzzy sets 

 ( ) ( )( )( )
1

ˆ max min ,kj i k i j
i n

p f f
= …

= x x  
(5-3) 

 
for k,j=1…M.  Expression (5-3) can be generalized by replacing {min, max} with any t-norm and 

co-t-norm combination. 

5.3. METHODOLOGY: EVOLUTIONARY OPTIMIZATION 

A second important consideration is how to minimize expression (5-1).  Unfortunately, when 

solving for the parameters of a specific kernel function, such as Gaussian or polynomial, an 

analytical solution when setting the derivative with respect to the parameters equal to zero is 

intractable.  Therefore, one must employ other optimization vehicles to solve the problem such 

as differential evolution (DE) [190] or particle swarm optimization [103].  To demonstrate, let us 

consider a proximity function given by the Gaussian kernel; thus expression (5-1) becomes 

 
2

2

2
1

1 1

ˆ
i j

M M

i j ij

i j

pObj w w e σ
− −

= =

 
= −  

 
∑ ∑

x x

 (5-4) 
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where the problem involves finding the value for σ  that minimizes L all other values constant.  

One approach is to analytically find a solution by solving 0
Obj

σ
∂

=
∂

.  After taking the partial 

derivative, the expression obtained is 

 
2

2

1

1 1

ˆ 0
i j

M M

ij

i j

e pσ
− −

= =

 
− =  

 
∑∑

x x

 (5-5) 

 
which further simplifies to  

 
2

2

1

1 1 1 1

ˆ
i j

M M M M

ij

i j i j

pe σ
− −

= = = =

=∑∑ ∑∑
x x

 (5-6) 

 
Unfortunately, there is no known way to separate σ  from the left hand side of expression (5-6) 

since it is part of the exponent; thus, an analytical solution for the Gaussian kernel is intractable.  

This is true of many kernels including the polynomial kernel.  Thus, the use of an optimization 

vehicle, such as differential evolution or particle swarm optimization, is well motivated.  The 

differential evolution (DE) is used in our approach. 

5.4. DIFFERENTIAL EVOLUTION 

Differential evolution (DE) is a population-based evolutionary global optimization vehicle for 

determining the minimum of an objective function with real-valued parameters.  Differential 

evolution is particularly suited for complex objective functions that have many local minimum, cf. 

[190].  In this case, DE is useful when no known analytical solution exists to determine optimal 

kernel parameters with expression (5-1). 

The idea of DE is to find the best solution in a population of candidate solutions.  The objective 

function evaluates the fitness of a candidate solution, a.k.a. population vector.  DE mutates a 

population vector by subtracting two vectors from each other.  Crossover is performed on the 

mutated vectors, see section 2.3.1 or [190] for more details. 

The representation of the kernel parameters as a real-valued population vector is an important 

concern.  With the Gaussian kernel, the real-valued population vector consists of a single 

parameter [σ] where σ is the Gaussian kernel width parameter.  With the polynomial kernel, the 

real-valued population vector consists of two parameters [α1,α2], where the polynomial shift 

parameter θ=| α1| and the polynomial power parameter p=round(|α2|+1).  The round function 

returns the integer nearest to its argument.  The reason for requiring the power to be a positive 

integer is that polynomial functions with powers of a fractional degree are not necessary positive 

semi-definite, and hence not kernels, cf. [134]. 
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6. PROXIMITY-BASED FUZZY CLUSTERING 
The new proximity fuzzy clustering framework is established in this chapter with the goal of 

clustering data described by proximity relationships.  The overall approach of the partially 

supervised learning framework follows three basic steps: 

1. Select a small number of patterns to be labeled with proximity hints (active learning) 

2. Determine the optimal kernel mapping using the available proximity hints 

3. Perform proximity-based fuzzy clustering 

 

The specifics of step 1 are deferred until Chapter 7.  The last chapter presented step 2.  In this 

chapter, the details of clustering with proximity information (step 3) are discussed. 

6.1. CLUSTERING FRAMEWORK 

Traditionally, methods such as FCM minimize the Euclidean distance between data X={xk|k=1…N} 

and prototypes V={vi|i=1…c} where N is the number of data points and c is the number of 

clusters; however, when clustering a set of objects, we are provided only with a measure of 

proximity between pairs of objects.  In many cases the concept of prototypes may be ill-defined.  

A more appealing approach is to embed the prototypes in an inner product space (i.e. kernel 

space) and thus never explicitly computed.  The benefits of doing so are that  

(a) each cluster’s geometry can be non-ellipsoidal, depending on the proximity 

function, and  

(b) the prototypes are not explicitly required in the clustering. 

The latter is important for problems where the prototypes are ill-defined, e.g. cluster of graphs.  

Therefore, we introduce a quantity  
T

ij j i
q = x v  that implies the prototypes within an inner 

product space, i.e. kernel space.  In order to embed the prototypes in a higher dimensional space 

we replace the inner product with a proximity function, that is also a kernel function, and thus 

proximity fuzzy clustering aims to minimize the difference between proximity ( ),k jp x x  and 

( , )ij j iq p≡ x v  for all k,j=1…N, and i=1…c.  Since the prototypes may be ill-defined, the matrix 

{ | 1 , 1 }ijQ q i c j N= = … = …  is computed explicitly and is called cluster proximity values.  The 

inputs and outputs of the clustering framework are depicted in Figure 23. 

 

Figure 23. Proximity fuzzy clustering architecture 

The generality of the framework allows for the clustering of objects that cannot be described in a 
d
R  feature space.  The outputs are the values to be optimized in the minimization of the 

proximity fuzzy clustering objective function.   

Formally the problem calls for the determination of the optimal membership values uik and 

optimal proximity to cluster values qij for i=1…c and j,k=1…N so that the following performance 

index is minimized. 
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 ( )( )2

1 1 1
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= − 

 
∑∑ ∑ x x  (6-1) 

 
subject to the constraint 

 
1

1
c

ik

i

u
=

=∑  
(6-2) 

 
for all k=1…N.  The constraint is handled by introducing a Lagrange multiplier λ.  An expression 

for the cluster proximities ijq  can be found by solving the equation 0ijObj q∂ ∂ = . 
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(6-3) 

 

Similarly, membership uik is found by solving 0
ik

Obj u∂ ∂ = , i.e. 

 ( )( )2
1

1

, 0
N

m

ik k j ij

jik

Obj
mu p q

u
λ−

=

 ∂
= − − = 

∂  
∑ x x  

 

( )( )( )

1

1

2

1
,

m

ik
N

k j ijj

u

m p q

λ
−

=

 
 

=  
 −
 ∑ x x

 

 

(6-4) 

 

We use expression (6-2) to determine the value of the Lagrange multiplier. 
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Substituting expression (6-5) in expression (6-4) yields the result 
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The clustering algorithm proceeds by iteratively evaluating expression (6-3) and expression (6-6). 
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In some problems, one may still require prototypes to be produced by the clustering algorithm.  

These prototypes can be estimated most-mortem clustering by returning the pattern with the 

highest proximity to the implied prototypes via the following expression 

 
1

  arg max
ii k i ij

j N
wherek q

∀ = …
= =v xɶ  

(6-7) 

 

Note that, unlike FCM, the prototypes are patterns that exist in the data.  This method of 

computing prototypes is beneficial in problems where it is not possible to calculate centroids in 

the data, e.g. graph clustering problem.  The proximity-based fuzzy clustering algorithm is 

summarized as a sequence of the following steps: 

Proximity Fuzzy Clustering Algorithm 

Input: X, c, m 

Output: V, U, Q 

1. Generate a random initial membership matrix uik subject to the constraint (6-2) 

2. Do 

a. Update qij from expression (6-3) 

b. Update uik from expression (6-6) 

3. Until convergence in membership values has been observed, i.e. 

F
U( ) U( 1)iter iter ε− − <  

4. Estimate prototypes using expression (6-7) 

Since, the proximity function can be expressed as a kernel function via expression (4-16), 

proximity fuzzy clustering is a kernel-based clustering algorithm.  We provide an example with 

the zig-zag data set to motivate proximity fuzzy clustering. 

From Figure 24 we can see that the boundaries produced by FCM are very limiting for this 

problem.  The large dots represent the prototypes formed by the clustering.  The boundaries 

produced by proximity fuzzy clustering can be of various shapes, including the circles shown in 

Figure 24(b). 

6.2. EVALUATION CRITERION 

Proximity fuzzy clustering offers a simple and effective (unsupervised) performance index using 

the membership matrix U produced by the clustering.  The index is called the reconstruction 

error given by 

 ( )( )2

1 1

,
N N

j k jk

k j

r pe p
= =

= −∑∑ x x ɶ  
(6-8) 

where P [ ]jkp=ɶ ɶ  is the proximity matrix reconstructed from the membership matrix U post-

mortem clustering, j,k=1…N.  The reconstruction error is calculated from the expression 
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,
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i

p min u u
=
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(6-9) 

, j,k=1…N. 
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6.3. EXPERIMENTAL RESULTS 

The following experiments were conducted by means of manual selection of the kernel 

parameters in order to determine the performance with respect to the parameters.  The 

parameters evaluated for the Gaussian parameter σ
2
 are taken from the set {0.01, 0.05, 0.1, 0.25, 

0.5, 1, 2, 4, 7, 10, 25, 50}.  The set of parameters for θ is {0, 1, 2, 4, 7, 10, 15, 20, 25, 50} and the 

 
(a) Boundaries produced by FCM 

 
(b) Boundaries of Proximity Fuzzy Clustering 

Figure 24. Example cluster boundaries 
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set of parameters for p is {1, 2, 3, 4, 5, 6}.  The fuzzification parameter m is run for the set of 

parameters {1.2, 1.4, 1.7, 2.0, 2.5, 3.0}.  The reason for choosing these sets of parameters is to 

see the performance across a wide range of the parameters where the performance tends to 

change the most.  For instance, the fuzzification coefficient m can take on values greater than 1 

but for values larger than 3, the performance was observed to be fairly consistent. 

6.3.1. SYNTHETIC DATA 
The synthetic data is the same synthetic data shown in Figure 18.  The results on the synthetic 

data are given in Table 11 where “cr” is the classification rate expressed in terms of percentage, 

and “params” is the set of parameters.  The experiments were run for several different values of 

the number of clusters.  Intuitively, increasing the number of clusters improves performance; 

however, it is not an easy task given the plethora of performance indices available to determine 

how many clusters one must have for optimal performance on a given data set.  We aim to show 

the performance where the number of clusters equals the number of classes to demonstrate that 

kernel methods outperform traditional clustering methods such as FCM by allowing non-

spherical cluster shapes.  The results in Table 11 are recorded using the mean classification rate 

and its standard deviation for 20 runs. 

Table 11. Synthetic data without kernel parameter learning 

Data Sets c Cosine Gaussian Polynomial 

Params cr Params cr Params cr 

Parabolic 2 m=2.5 87.5±0 m=3,σ
2
=1 88.8±0 m=2,p=6,θ=1 88.4±0 

Line 2 m=2.5 80.0±0 m=3,σ
2
=0.01 100.0±0 m=1.4,p=2,θ=0 93.2±0 

Density 2 m=2.5 97.0±0 m=3,σ
2
=1 100.0±0 m=2.5,p=6,θ=1 100.0±0 

Ring 2 m=2.5 50.1±0 m=3,σ
2
=1 100.0±0 m=2,p=6,θ=0.5 100.0±0 

Zig-zag 3 m=1.4 65.8±0.2 m=2.5,σ
2
=0.5 100.0±0 m=2.5,p=6,θ=0.5 83.6±0 

Fuzzy “X” 2 m=3 51.2±0 m=2,σ
2
=25 52.0±0 m=3,p=2,θ=0.5 94.1±0 

Results for standard FCM clustering and Gustafson-Kessel FCM are given in [77] for the same 

synthetic data sets.  A summary of those results are given in Table 12. 

Table 12. Synthetic data with FCM and Gustafson-Kessel FCM 

Data Sets c FCM Gustafson-Kessel FCM 

Params cr Params cr 

Parabolic 2 m=2.5 87.4±0 m=3 88.5±0 

Line 2 m=3 80.0±0 m=3 100.0±0 

Density 2 m=1.2 93.5±0 m=3 90.5±0 

Ring 2 m=1.2 51.5±0.6 m=1.2 52.5±1.9 

Zig-zag 3 m=1.4 66.0±0 m=3 68.8±0 

Fuzzy “X” 2 m=2.5 50.8±0.4 m=3 93.4±0 

The proximity fuzzy clustering results show a significant improvement over the results from 

standard fuzzy clustering approaches.  Interestingly the Gaussian kernel outperforms the 

Polynomial kernel on the line data set and the zig-zag data set.  However, the Polynomial kernel 

beats the Gaussian kernel significantly on the fuzzy “X” data set. 

The prototypes for the different kernel functions are given in Figure 25. 
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Cosine Gaussian Polynomial 

(a) Parabolic 

 
Cosine Gaussian Polynomial 

(b) Line 

 
Cosine Gaussian Polynomial 

(c) Density 

 
Cosine Gaussian Polynomial 

(d) Ring 

 
Cosine Gaussian Polynomial 
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(e) Zig-zag 

 
Cosine Gaussian Polynomial 

(f) Fuzzy “X” 

Figure 25. Prototypes of synthetic data sets for cosine, Gaussian and polynomial kernel 

functions 

The locations of the prototypes for the line, zig-zag and fuzzy “X” data sets are very poorly 

selected when using the cosine kernel.  However, when using more versatile kernels, such as the 

Gaussian or polynomial kernel, the prototypes are better situated in these data sets.  A plot of 

the convergence of proximity fuzzy clustering on the zig-zag data set is provided in Figure 26. 

 

Figure 26. Convergence of proximity fuzzy clustering on the zig-zag data set with the Gaussian 

kernel (m=2.5,σ
2
=0.5) 

The performance in terms of classification error and reconstruction error are shown with respect 

to the number of clusters on the zig-zag data set in Figure 27. 
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(a) Cosine kernel function 

 
(b) Gaussian kernel function 

 
(c) Polynomial kernel function 

Figure 27. Classification error and reconstruction error on the zig-zag data set for (a) cosine, (b) 

Gaussian, and (c) polynomial kernel functions 
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The anticipated number of clusters is c=3 in the zig-zag data set.  The Gaussian kernel does an 

excellent job of achieving high accuracy (high classification rate) for c=3.  However the other 

kernel functions do not perform as well.  As expected, there is a general decreasing trend in 

classification error as the number of clusters increases. 

6.3.2. MACHINE LEARNING DATA 
Several Machine Learning data sets [5] were used to evaluate the performance of the clustering. 

Table 13. Machine learning data without kernel parameter learning 

Data Sets c Cosine Gaussian Polynomial 

Params cr Params cr Params cr 

Breast 2 m=2 97.2±0 m=3,σ
2
=10 96.6±0 m=2.5,p=1,θ=0 97.2±0 

Ionosphere 2 m=2.5 68.9±0 m=2.5,σ
2
=50 73.8±0 m=1.7,p=1,θ=50 75.5±0 

Iris 3 m=2 83.3±0 m=2,σ
2
=50 90.0±0 m=1.4,p=1,θ=20 90.7±0 

Wine 3 m=2.5 93.8±0 m=3,σ
2
=10 97.8±0 m=1.2,p=5,θ=20 97.8±0 

Diabetes 2 m=1.7 69.7±0 m=1.4,σ
2
=10 69.4±0 m=1.2,p=1,θ=10 72.0±0 

SPECT-F 2 m=2 79.4±0 m=3,σ
2
=25 79.0±0 m=2,p=6,θ=0.5 79.4±0 

Experimental results with FCM and Gustafson-Kessel are provided in [77].  A summary is given in 

Table 14. 

Table 14. Machine learning data with FCM and Gustafson-Kessel FCM 

Data Sets c FCM Gustafson-Kessel FCM 

Params ce Params ce 

Breast 2 m=1.2 95.7±0 m=2.5 94.7±0 

Ionosphere 2 m=1.2 64.1±0 m=1.2 64.1±0 

Iris 3 m=2 84.0±0 m=1.7 95.3±0 

Wine 3 m=1.4 96.6±0 m=1.4 71.4±5.3 

Diabetes 2 m=2 71.3±0.1 m=1.2 65.2±0.3 

SPECT-F 2 m=1.2 79.4±0 m=1.2 79.4±0 

The classification errors of the kernel-based methods are lower than the classification errors for 

FCM and Gustafson-Kessel FCM clustering.  The exception is Gustafson-Kessel clustering on the 

Iris data set, where the classification error is considerably lower.  Also, the performance is 

consistently very similar among the different algorithms on the SPECT-F data set. 
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7. ACTIVE LEARNING 
A novel framework for systematically selecting the most informative patterns to be labeled is 

developed and evaluated in this chapter.  The goal is to produce a small yet effective set of 

labeled patterns since it is often expensive to label data.  Recall our approach consists of the 

three basic steps 

1. Select a small number of patterns to be labeled with proximity hints (active learning) 

2. Determine the optimal kernel mapping using the available proximity hints 

3. Perform proximity-based fuzzy clustering 

 

The first step is the focus of this chapter.  Active learning is often overlooked in partially 

supervised learning and thus this work is an important question to consider in the construction of 

any partially supervised learning framework. 

7.1. INTRODUCTION 

Partially supervised fuzzy clustering is still a relatively new paradigm in the realm of machine 

learning, where the aim is to address the often overlooked availability of domain knowledge that 

can be exploited to guide and improve the learning.  An outstanding research question is how to 

determine which data should be labeled.  A well-studied area of research is active learning.  

Unfortunately, most active learning approaches focus on answering a slightly different research 

question – how does one choose a small yet effective training data set?  Typical active learning 

approaches follow the general scheme of determining the training data set of a (fully) supervised 

learning algorithm.  However in this study, we are concerned with a slightly different research 

problem of selecting the data to be labeled for a partially supervised learning algorithm.  The 

proposed active learning process is illustrated in Figure 28. 

 

Figure 28. Active learning 

The existing active learning literature uses a measure of uncertainty to select patterns to be 

labeled which is well-founded and motivated in the many statistical models available.  The 

principle of least confident is then employed since the patterns with the most uncertainty will be 

more informative in the learning.  Of particular interest in this study is active learning for partially 

supervised fuzzy clustering, where the partition is given in terms of grades of membership in the 

clusters.  However, statistical models are not well suited for application to fuzzy clustering.  We 

require an alternative that uses the available degrees of membership from fuzzy clustering to 

identify the most informative patterns that need to be labeled.  The primary objective of our 
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study is to develop an active learning framework that can be used with partially supervised fuzzy 

clustering.  The general framework of our approach is depicted in Figure 29. 

 

Figure 29. Proposed active learning framework 

Although several methods of learning the parameters of the kernel function has been developed, 

very little work has been done on how to determine which patterns in the data should be labeled 

in order to conduct parametric optimization.  Labeling all the data is generally expensive.  

Thereby, in this study we propose a new active learning framework in this study where the data 

to be labeled are automatically selected via active learning.  It is the active learning component 

that is the focus of this study.  The novelty in this approach is two-fold: 

• we develop an active learning framework that is directly applicable to partially 

supervised clustering algorithms 

• we base our active learning framework on fuzzy logic since the most prevalent clustering 

algorithms, e.g. FCM, produce partitions with degrees of membership 

Our method of active learning will be applied to proximity fuzzy clustering which employs a 

special class of kernel functions called proximity functions.  We choose to evaluate the proposed 

active learning framework with proximity fuzzy clustering since labeling the data with proximity 

hints (domain knowledge) is relatively simple to obtain.  The proximity values are reflective of 

domain knowledge expressed in the form of congruency between objects (data) in the unit 

interval [0,1] where the lower and upper bounds of possible values indicate completely different 

and identical patterns, respectively.  The proximity hints are well suited to form a reference 

kernel and hence the kernel function can be readily optimized using the approach outlined in the 

previous chapter. 

7.2. FCM-BASED APPROACH 

In this section, we introduce our own methodology of active learning that is readily applicable to 

fuzzy clustering algorithms.  The goal is to provide advice to an expert on which data samples 

should be labeled in order to improve upon the quality of the partially supervised clustering.  

There could be patterns prepared (identified) by experts but that is a manual approach:  we are 

interested here in some systematic way. 

The approach starts with a very small initial set of patterns to be labeled of size M, which can be 

simply one pattern, and adds more patterns to be labeled based on a degree of fuzziness in the 
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clustering.  Subsequently membership values are calculated for the unlabeled data set.  The 

patterns that are very “poorly” explained by the data are selected for labeling and subsequently 

added to the pool of patterns to be labeled.  Hence, the objective is to determine a small set of 

labeled patterns that best explains the data.  The membership values are calculated using the 

standard FCM expression, that is 
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where mɶ  is the fuzzification coefficient, ˆˆ X Xk ∈ ⊂x  is the set of patterns that will be labeled, 

D X
k
∈ ⊂x  is the set of unlabeled data with L<N elements, and G=[gik] is the membership matrix 

for i=1…M and k=1…L.  The value of M will increase from its initial value (the number of initial 

patterns with labels to be assigned) to a target number of labeled patterns Mtarget.  Likewise, the 

value of L will decrease in exactly the same amount as unlabeled patterns are removed from D 

and added to Y.  The degree of fuzziness of the assigned membership grades is calculated 

according to the expression 
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k=1…L.  Other measures of fuzziness in membership values can be used as well, cf. [34]. 

The inputs to the active learning approach are the data set X, and initial data set to be labeled 

X̂ init  and a fuzzification coefficient mɶ  that controls the fuzziness of the membership values in G.  

The output consists of a data set of patterns to be labeled X̂ .  These labeled patterns are 

queried for labeling either automatically or manually by a human expert.   The approach is 

summarized as the following sequence of steps: 

FCM-based Labeling Algorithm 

Input: X, X̂ init , Mtarget, mɶ  

Output: X̂  

1. ˆD X/ Xinit=  

2. ˆ ˆX Xinit=  

3. X̂M =  

4. DL =  

5. Do 

a. Calculate gik using expression (7-1) for k=1…L and i=1…M 

b. Calculate fk using expression (7-2) for k=1…L 

c. Determine pattern z with smallest fuzziness fk 

d. Add z to X̂  and remove z from D 

e. M=M+1 

f. L=L-1 

6. Until M=Mtarget 

7. Return X̂  

The returned data set X̂  is a subset of the original data set X and contains all the patterns that 

need to be labeled.  One of the benefits of this approach to active learning is that it is directly 
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applicable to fuzzy clustering, and particularly partially supervised fuzzy clustering in this 

research. 

An important question remains on how to initialize the labeled data set.  One method which we 

propose in this study is to use FCM clustering to determine a small number of centroid points in 

the data.  These centroid points are the points closest to the prototypes and form the initial 

labeled data set. 

7.3. EXPERIMENTAL EVALUATION 

The performance of the newly developed active learning approaches is evaluated in the context 

of partially supervised proximity fuzzy clustering, where the proximity labels P̂  are constructed 

from characteristic functions describing the class labels via expression (5-3).  Note that since the 

proximity labels P̂  and constructed from characteristic functions, the proximity values in these 

set of experiments are Boolean.   The objective is to use this proximity information to aid in the 

learning of the parameters of the kernel function in proximity fuzzy clustering using objective 

function (5-1).  The weights in the objective function are determined according to class balance 

by the expression 
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 (7-3) 

 
where M is the number of labeled patterns, and ˆ

ijp  is the proximity value for patterns i,j=1…M.  

Thus under-represented classes will receive higher weights and over-represented classes will 

receive smaller weights. 

All experiments are repeated 20 times and the mean and standard deviation are recorded.  We 

report the standard deviation to two decimal points.  The stopping criterion used is convergence 

in the membership values where ε=1.0e
-8

.  The number of initial patterns labeled is equal to 2 

since this is the minimum number of initial labeled patterns need for the active learning 

algorithm.  The fuzzification coefficient was set to be equal in active learning and proximity fuzzy 

clustering, i.e.

 

m m= ɶ . 

We use differential evolution (DE) to minimize (5-1) and determine the optimal selection of 

kernel parameters.  The population vectors in DE are real-valued thus the Gaussian kernel has 

only one search space parameter (kernel width σ) and the polynomial kernel has two parameters 

(θ and d).  The differential gain (G), the size of the population (P) and the crossover rate (pcr) are 

the most important parameters [190].  The values of DE parameters used for the Gaussian kernel 

are Gfactor=0.1, Psize=20, and pcr=1.  The maximum number of iterations of DE was set to 500 

iterations.  The DE parameters for the polynomial kernel are Gfactor=0.5, Psize=50, and pcr=0.7.  The 

polynomial kernel requires a larger value for the maximum number of iterations of DE since there 

are two kernel parameters compared with one for the Gaussian kernel thus the maximum 

number of iterations was set to 1,500.  The values of the DE parameters were selected manually 

by observing the performance (i.e., classification rate) for the final solution of DE. 

7.3.1. SYNTHETIC DATA 
This section describes the experimental results for kernel parameter learning on the synthetic 

data sets with the Gaussian kernel.  The classification rate (cr), reconstruction error (re) and 

normalized mutual information (nmi) were calculated from the partition produced by proximity 

fuzzy clustering with the learned kernel parameters for each run.    Our synthetic data is given in 

Figure 18. 
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Table 15. Synthetic data – Gaussian kernel parameter learning (no active learning) 

Data Sets M Uniform Random 

m σ2 cr re nmi 

Line (c=2) 3 
5 
10 
20 
50 

1.4 

1.4 
1.4 
1.4 
1.4 

99.2±356.3 
12.6±47.6 
12.6±52.0 
1.05±0.24 
1.04±0.10 

89.8±9.5 
83.3±7.0 
82.0±6.2 
80.0±0.0 
80.0±0.0 

0.52±0.35 
0.32±0.30 
0.22±0.10 
0.19±0.02 
0.18±0.01 

0.55±0.38 
0.30±0.26 
0.26±0.25 
0.18±0.00 
0.18±0.00 

Density (c=2) 3 
5 
10 
20 
50 

1.4 

1.2 
1.2 
1.2 
1.2 

73.2±312.5 
3.59±1.78 
4.21±1.63 
4.55±1.02 
4.97±0.48 

95.8±6.0 
97.4±1.3 
96.8±1.3 
96.3±0.9 
95.8±0.6 

0.20±0.10 
0.10±0.04 
0.092±0.026 
0.082±0.007 
0.077±0.002 

0.83±0.16 
0.85±0.06 
0.83±0.06 
0.81±0.03 
0.79±0.02 

Ring (c=2) 3 
5 
10 
20 
50 

2.5 

2.5 
2.0 
2.0 
2.0 

0.971±0.808 
141.1±624.1 
1.90±0.31 
1.95±0.10 
2.03±0.07 

88.0±18.5 
100±0 
100±0 
100±0 
100±0 

0.48±0.35 
0.22±0.03 
0.19±0.01 
0.19±0.00 
0.18±0.00 

0.73±0.39 
1.0±0.0 
1.0±0.0 
1.0±0.0 
1.0±0.0 

Zig-zag (c=3) 3 
5 
10 
20 
50 

1.2 

1.2 
2.5 
1.4 
1.2 

20.7±89.4 
1.77±4.72 
0.908±0.550 
0.722±0.103 
0.775±0.074 

79.2±13.7 
88.8±15.5 
96.8±8.0 
99.9±0.5 
99.9±0.2 

0.57±0.37 
0.42±0.30 
0.27±0.05 
0.25±0.03 
0.28±0.01 

0.54±0.29 
0.76±0.33 
0.92±0.15 
0.99±0.02 
1.00±0.01 

Table 16. Synthetic data – Gaussian kernel parameter learning (active learning) 

Data Sets M FCM-based Approach 

  m σ2 cr re nmi 

Line 
(c=2) 

3 
5 
10 
20 
50 

2.5 
1.7 
1.7 
1.4 
1.4 

157.9±342.8 
1.26±0.00 
1.36±0.01 
0.883±0.002 
0.823±0.005 

88.9±9.6 
80.0±0.0 
80.0±0.0 
80.0±0.0 
80.0±0.0 

0.42±0.32 
0.17±0.00 
0.16±0.00 
0.20±0.00 
0.21±0.00 

0.36±0.14 
0.18±0.00 
0.18±0.00 
0.18±0.00 
0.18±0.00 

Density 
(c=2) 

3 
5 
10 
20 
50 

2.0 

1.4 
1.4 
2.5 
1.4 

2.30±0.02 
2.54±0.00 
7.34±0.08 
5.88±0.01 
4.58±0.01 

98.0±0.0 
98.0±0.0 
95.5±0.0 
95.5±0.0 
96.5±0.0 

0.094±0.001 
0.10±0.00 
0.069±0.000 
0.34±0.00 
0.69±0.00 

0.88±0.00 
0.88±0.0 
0.78±0.00 
0.78±0.00 
0.81±0.00 

Ring 
(c=2) 

3 
5 
10 
20 
50 

1.2 

2.0 
2.0 
2.0 
2.0 

1.90±0.01 
2.93±0.02 
2.27±0.01 
2.16±0.00 
2.12±0.00 

100±0 
100±0 
100±0 
100±0 
100±0 

0.20±0.00 
0.16±0.00 
0.18±0.00 
0.18±0.00 
0.18±0.00 

1.0±0.0 
1.0±0.0 
1.0±0.0 
1.0±0.0 
1.0±0.0 

Zig-zag 
(c=3) 

3 
5 
10 
20 
50 

1.7 

2.0 
2.0 
1.2 
1.2 

0.00303±0.00216 
0.741±0.001 
0.755±0.000 
0.803±0.001 
0.979±0.007 

70.8±4.3 
100±0 
100±0 
100±0 
98.8±0.0 

0.99±0.01 
0.24±0.00 
0.24±0.00 
0.28±0.00 
0.23±0.00 

0.31±0.13 
1.0±0.0 
1.0±0.0 
1.0±0.0 
0.95±0.00 

Interestingly, all methods had difficulty learning the kernel parameter for the line data set; 

however, the kernel parameter was learned more accurately when using the FCM-based labeling 

approach for the other synthetic data sets.  There is notable improvement for the zig-zag data set 

in particular.  The standard deviations are much lower with FCM-based active learning approach.  

Figure 30 shows the labeled patterns (represented by large dots) chosen by FCM-based active 

learning. 
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(a) Line data set (b) Density data set 

  
(c) Ring data set (d) Zig-Zag data set 

Figure 30. Labeled patterns in synthetic data sets 

The parameters used in the production of these plots are M=10 and m=2.  It is observed that the 

labeled patterns cover the data set very thoroughly as well as cover points at the extremes.  

Table 17 and Table 18 enclose the results with the polynomial kernel. 
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There are notable improvements in the performance for the FCM-based active learning 

approach, especially for a small number of labeled patterns.  The FCM-based results are very 

consistent as well.  In many cases standard deviations of zero are shown in the table.  This is a 

byproduct of the fact that the standard deviations are too small to be reported for the number of 

significant digits given in the table.  In many cases, the standard deviations were not exactly zero 

Table 17. Synthetic data – polynomial kernel parameter learning (no active learning) 

Data Sets M Uniform Random 

m θ d cr re nmi 

Line (c=2) 3 
5 
10 
20 
50 

3.0 

3.0 
3.0 
3.0 
3.0 

1.1±1.8 
0.8±1.5 
0.5±1.1 
0.0±0.0 
0.0±0.0 

4.7±3.7 
5.7±3.1 
6.4±2.7 
6.1±2.0 
5.6±1.3 

81.7±3.5 
83.9±4.5 
86.1±3.7 
87.4±2.6 
87.4±2.5 

0.028±0.005 
0.028±0.007 
0.027±0.006 
0.024±0.003 
0.023±0.001 

0.27±0.13 
0.35±0.17 
0.44±0.14 
0.49±0.09 
0.49±0.09 

Density (c=2) 3 
5 
10 
20 
50 

3.0 

3.0 
3.0 
3.0 
2.5 

0.8±1.8 
0.0±0.0 
0.0±0.1 
0.0±0.1 
0.0±0.0 

3.3±3.9 
1.7±2.3 
2.5±3.0 
1.2±0.6 
1.2±0.6 

97.6±0.9 
97.2±0.6 
97.5±0.8 
97.1±0.3 
97.1±0.3 

0.023±0.021 
0.013±0.007 
0.015±0.011 
0.011±0.002 
0.010±0.002 

0.86±0.05 
0.85±0.03 
0.86±0.04 
0.84±0.01 
0.84±0.01 

Ring (c=2) 3 
5 
10 
20 
50 

2.5 

1.2 
2.5 
2.5 
3.0 

1.8±1.9 
1.5±1.4 
3.2±0.9 
3.4±0.3 
3.5±0.2 

5.9±4.2 
9.1±3.1 
11±2.2 
11±0.3 
11±0.4 

80.7±20.3 
84.0±19.6 
100±0 
100±0 
100±0 

0.11±0.06 
0.17±0.04 
0.057±0.001 
0.056±0.000 
0.056±0.001 

0.53±0.46 
0.62±0.45 
1.0±0.0 
1.0±0.0 
1.0±0.0 

Zig-zag (c=3) 3 
5 
10 
20 
50 

1.2 

3.0 
3.0 
3.0 
3.0 

0.5±1.1 
0.2±0.6 
0.1±0.3 
0.1±0.3 
0.0±0.0 

4.9±3.9 
8.8±3.4 
10±1.2 
10±1.2 
11±0.7 

72.7±8.0 
81.6±9.6 
87.0±3.7 
87.7±0.9 
88.0±0.3 

0.15±0.05 
0.059±0.015 
0.069±0.012 
0.066±0.005 
0.069±0.003 

0.36±0.04 
0.59±0.12 
0.65±0.05 
0.66±0.01 
0.67±0.00 

 

Table 18. Synthetic data – polynomial kernel parameter learning (active learning) 

Data Sets M FCM-based Approach 

m θ d cr re nmi 

Line (c=2) 3 
5 
10 
20 
50 

2.0 

3.0 
3.0 
3.0 
2.0 

3.7±1.8 
0.1±0.0 
0.1±0.0 
0.0±0.0 
0.1±0.0 

6.2±3.0 
4.0±0.0 
4.0±0.0 
6.0±0.0 
5.9±0.4 

80.4±1.6 
89.2±0.0 
88.8±0.0 
88.4±0.0 
88.0±0.1 

0.068±0.029 
0.024±0.000 
0.023±0.000 
0.023±0.000 
0.053±0.000 

0.21±0.07 
0.54±0.00 
0.53±0.00 
0.52±0.00 
0.51±0.00 

Density (c=2) 3 
5 
10 
20 
50 

2.0 

1.2 
2.5 
1.7 
2.5 

0.0±0.0 
0.0±0.0 
0.0±0.0 
0.0±0.0 
0.1±0.2 

1.2±0.6 
1.3±0.7 
1.1±0.8 
3.0±0.0 
1.2±0.6 

97.1±0.3 
97.2±0.4 
97.2±0.4 
98.0±0.0 
97.1±0.3 

0.015±0.003 
0.036±0.010 
0.011±0.002 
0.034±0.000 
0.010±0.002 

0.84±0.01 
0.84±0.02 
0.84±0.02 
0.88±0.00 
0.84±0.01 

Ring (c=2) 3 
5 
10 
20 
50 

1.7 

3.0 
3.0 
3.0 
3.0 

2.8±1.8 
4.3±0.2 
3.8±0.1 
3.9±0.1 
3.8±0.1 

6.9±3.4 
11±0.4 
11±0.4 
11±0.2 
11±0.2 

96.1±10.2 
100±0 
100±0 
100±0 
100±0 

0.12±0.04 
0.052±0.000 
0.054±0.000 
0.054±0.000 
0.054±0.000 

0.89±0.26 
1.0±0.0 
1.0±0.0 
1.0±0.0 
1.0±0.0 

Zig-zag (c=3) 3 
5 
10 
20 
50 

1.4 

1.2 
3.0 
3.0 
3.0 

0.0±0.0 
0.0±0.0 
0.0±0.0 
0.0±0.0 
0.0±0.0 

6.3±2.5 
11±0.8 
11±0.4 
11±0.0 
11±0.0 

78.6±9.2 
87.6±0.3 
88.0±0.1 
88.0±0.0 
88.0±0.0 

0.12±0.03 
0.19±0.00 
0.068±0.001 
0.065±0.002 
0.066±0.002 

0.55±0.11 
0.66±0.00 
0.67±0.00 
0.67±0.00 
0.67±0.00 
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but they were very small as a result of consistent pattern selection via active learning.  The 

polynomial kernel performs much better for the line data set than the Gaussian kernel. 

7.3.2. MACHINE LEARNING DATA 
Here we describe the experimental results for kernel parameter learning on the machine learning 

data sets [5] with Gaussian kernel.  As before the results were averaged over 20 runs. 

Table 19. Machine Learning data – Gaussian kernel parameter learning (no active learning) 

Data Sets M Uniform Random 
m σ2 cr re nmi 

Breast (c=2) 3 
5 
10 
20 
50 

3.0 

2.5 
1.2 
1.2 
1.2 

244±673 
14.4±7.2 
20.2±8.6 
20.4±4.5 
21.1±2.7 

89.3±11.8 
91.9±11.0 
96.2±0.5 
96.2±0.2 
96.3±0.2 

0.29±0.35 
0.19±0.34 
0.097±0.013 
0.091±0.003 
0.089±0.006 

0.61±0.23 
0.68±0.21 
0.76±0.02 
0.76±0.01 
0.76±0.01 

Ionosphere (c=2) 3 
5 
10 
20 
50 

1.4 

2.0 
3.0 
3.0 
3.0 

78.5±242.1 
46.5±32.4 
50.1±30.3 
79.2±27.9 
90.0±12.5 

70.0±4.3 
70.8±3.6 
72.9±0.6 
72.3±0.6 
72.2±0.5 

0.50±0.38 
0.30±0.32 
0.15±0.05 
0.13±0.09 
0.098±0.018 

0.14±0.10 
0.16±0.07 
0.17±0.03 
0.16±0.04 
0.15±0.01 

Iris (c=3) 3 
5 
10 
20 
50 

2.0 

1.4 
1.4 
1.7 
1.7 

2.2±2.8 
3.4±2.6 
3.7±1.3 
3.4±0.7 
3.9±0.4 

63.8±24.7 
80.8±10.7 
84.1±3.0 
84.0±0.0 
84.0±0.0 

0.53±0.43 
0.14±0.21 
0.068±0.007 
0.054±0.007 
0.049±0.002 

0.42±0.35 
0.61±0.14 
0.67±0.00 
0.67±0.00 
0.67±0.00 

Wine (c=3) 3 
5 
10 
20 
50 

1.2 

1.2 
1.2 
1.2 
1.2 

10.5±7.6 
13.9±5.7 
18.4±2.8 
18.2±1.3 
18.8±0.9 

84.9±23.1 
94.6±12.9 
97.6±0.3 
97.7±0.1 
97.8±0.0 

0.35±0.38 
0.17±0.20 
0.11±0.00 
0.11±0.00 
0.11±0.00 

0.70±0.37 
0.86±0.20 
0.90±0.01 
0.91±0.01 
0.91±0.00 

Diabetes (c=2) 3 
5 
10 
20 
50 

3.0 

2.5 
2.0 
2.5 
2.5 

122±521 
14.9±13.4 
15.2±5.9 
19.8±3.3 
21.3±2.3 

66.9±1.9 
68.6±1.3 
69.0±1.1 
69.5±0.3 
69.6±0.1 

0.63±0.37 
0.24±0.13 
0.15±0.08 
0.12±0.03 
0.11±0.02 

0.058±0.051 
0.10±0.01 
0.094±0.009 
0.094±0.003 
0.092±0.004 

SPECT-F (c=2) 3 
5 
10 
20 
50 

1.2 

1.4 
1.7 
2.0 
2.0 

89.5±354.9 
30.1±51.0 
47.1±23.5 
50.0±9.4 
58.9±6.4 

79.4±0.0 
79.4±0.0 
79.4±0.0 
79.4±0.0 
79.4±0.0 

0.68±0.36 
0.50±0.38 
0.19±0.06 
0.16±0.02 
0.13±0.01 

0.057±0.059 
0.072±0.053 
0.10±0.01 
0.091±0.007 
0.89±0.01 
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The results given in Table 19 and Table 20 show that the FCM-based labeling approach performs 

better for a small number of labeled patterns on the breast cancer data set and other data sets.  

This demonstrates that a few well selected labeled patterns can greatly enhance the clustering 

performance.  The results for the polynomial kernel are provided in Table 21 and Table 22. 

Table 20. Machine Learning data – Gaussian kernel parameter learning (active learning) 

Data Sets M FCM-based Approach 

m σ2 cr re nmi 

Breast (c=2) 3 
5 
10 
20 
50 

3.0 

3.0 
1.2 
2.0 
1.4 

15.9±0.1 
15.9±0.0 
24.0±0.0 
28.8±0.1 
34.7±0.1 

96.6±0.0 
96.6±0.0 
96.2±0.0 
95.6±0.0 
95.5±0.0 

0.054±0.000 
0.054±0.000 
0.090±0.000 
0.051±0.000 
0.089±0.000 

0.78±0.00 
0.78±0.00 
0.75±0.00 
0.73±0.00 
0.72±0.00 

Ionosphere (c=2) 3 
5 
10 
20 
50 

1.4 

3.0 
3.0 
3.0 
3.0 

40.6±0.0 
67.4±0.0 
88.7±0.8 
142.7±0.3 
160.6±0.5 

74.1±0.0 
73.2±0.0 
72.1±0.1 
72.1±0.0 
70.7±0.0 

0.20±0.00 
0.14±0.00 
0.097±0.001 
0.052±0.000 
0.045±0.000 

0.22±0.00 
0.17±0.00 
0.14±0.002 
0.14±0.00 
0.11±0.00 

Iris (c=3) 3 
5 
10 
20 
50 

1.7 

1.7 
1.7 
2.0 
2.0 

3.7e-3±3.6e-3 
7.0±0.0 
7.1±0.0 
5.3±0.0 
4.5±0.0 

36.1±0.7 
84.2±0.3 
84.7±0.0 
84.0±0.0 
84.0±0.0 

0.99±0.00 
0.060±0.000 
0.061±0.000 
0.041±0.000 
0.044±0.000 

0.47±0.014 
0.67±0.00 
0.68±0.00 
0.67±0.00 
0.67±0.00 

Wine (c=3) 3 
5 
10 
20 
50 

2.5 

1.4 
1.2 
1.2 
1.2 

11.9±0.1 
11.5±0.1 
21.4±0.2 
26.7±0.1 
24.2±0.0 

97.2±0.0 
97.8±0.0 
97.2±0.1 
96.6±0.0 
96.6±0.0 

0.25±0.00 
0.11±0.00 
0.11±0.00 
0.12±0.00 
0.11±0.00 

0.90±0.00 
0.91±0.00 
0.89±0.01 
0.88±0.00 
0.87±0.00 

Diabetes (c=2) 3 
5 
10 
20 
50 

2.5 

2.0 
3.0 
2.5 
3.0 

273.6±533.2 
10.3±2.5 
31.4±0.1 
57.0±0.0 
52.3±0.0 

66.8±1.9 
68.8±0.3 
69.4±0.0 
69.0±0.0 
69.1±0.0 

0.57±0.49 
0.20±0.04 
0.076±0.000 
0.028±0.000 
0.032±0.000 

0.055±0.037 
0.10±0.01 
0.087±0.000 
0.076±0.000 
0.080±0.000 

SPECT-F (c=2) 3 
5 
10 
20 
50 

1.4 

1.4 
1.4 
1.4 
1.7 

36.7±0.1 
27.6±0.0 
193.7±88.8 
221.6±0.1 
168.1±0.8 

79.4±0.0 
79.4±0.0 
79.4±0.0 
79.4±0.0 
79.4±0.0 

0.22±0.00 
0.25±0.00 
0.10±0.09 
0.059±0.000 
0.053±0.000 

0.10±0.00 
0.12±0.00 
0.079±0.019 
0.070±0.000 
0.073±0.000 
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Table 21. Machine learning data – polynomial kernel parameter learning (no active learning) 

Data Sets M Uniform Random 

m θ d cr re nmi 

Breast (c=2) 3 
5 
10 
20 
50 

2.5 

1.2 
2.0 
2.0 
2.0 

0.6±1.6 
0.5±1.4 
0.3±1.2 
0.0±0.1 
0.0±0.1 

2.1±2.4 
2.2±2.0 
1.5±1.6 
1.5±0.9 
1.2±0.6 

94.9±5.5 
95.3±3.0 
96.9±1.0 
96.6±1.1 
96.9±0.8 

0.027±0.022 
0.087±0.060 
0.032±0.020 
0.034±0.015 
0.029±0.010 

0.75±0.15 
0.75±0.10 
0.80±0.03 
0.79±0.04 
0.80±0.02 

Ionosphere (c=2) 3 
5 
10 
20 
50 

3.0 

1.4 
2.5 
3.0 
3.0 

3.1±8.9 
20±37 
12±26 
32±41 
20±24 

5.0±4.2 
6.6±4.0 
4.3±4.4 
6.4±4.4 
5.3±4.1 

66.2±2.3 
66.7±3.5 
67.7±2.7 
68.1±3.2 
67.7±2.3 

0.086±0.032 
0.18±0.04 
0.066±0.026 
0.070±0.014 
0.071±0.011 

0.17±0.04 
0.19±0.06 
0.17±0.05 
0.21±0.06 
0.21±0.05 

Iris (c=3) 3 
5 
10 
20 
50 

3.0 

3.0 
3.0 
3.0 
3.0 

0.4±0.9 
0.0±0.0 
0.0±0.0 
0.0±0.0 
0.0±0.0 

5.3±4.1 
2.4±2.0 
1.7±1.3 
2.0±1.5 
1.8±1.0 

79.7±7.8 
83.6±0.9 
83.0±0.6 
82.7±0.8 
82.8±0.7 

0.049±0.032 
0.034±0.011 
0.031±0.005 
0.032±0.008 
0.030±0.002 

0.58±0.17 
0.66±0.04 
0.68±0.03 
0.67±0.03 
0.67±0.03 

Wine (c=3) 3 
5 
10 
20 
50 

2.5 

2.5 
2.5 
2.5 
2.5 

0.1±0.3 
0.1±0.1 
0.0±0.0 
0.0±0.0 
0.0±0.0 

1.2±0.5 
1.4±1.2 
1.2±0.6 
1.2±0.6 
1.4±0.8 

93.9±0.3 
92.5±6.0 
93.9±0.3 
93.9±0.3 
94.0±0.5 

0.027±0.013 
0.036±0.048 
0.028±0.013 
0.028±0.013 
0.032±0.018 

0.81±0.01 
0.80±0.07 
0.81±0.00 
0.81±0.00 
0.81±0.01 

Diabetes (c=2) 3 
5 
10 
20 
50 

1.7 

3.0 
2.0 
2.0 
3.0 

1.0±1.6 
1.4±4.1 
1.3±4.7 
1.0±2.6 
0.5±1.3 

4.2±3.9 
5.7±4.3 
5.4±4.0 
5.1±3.8 
4.4±3.4 

67.6±2.2 
67.2±2.0 
67.3±2.0 
67.5±1.9 
67.9±1.5 

0.14±0.09 
0.23±0.03 
0.19±0.08 
0.20±0.07 
0.24±0.02 

0.12±0.04 
0.11±0.04 
0.11±0.04 
0.11±0.05 
0.12±0.02 

SPECT-F (c=2) 3 
5 
10 
20 
50 

1.4 

1.4 
1.7 
1.7 
1.4 

2.4±2.3 
0.9±1.9 
1.3±3.0 
0.1±0.5 
0.0±0.0 

5.4±3.2 
6.1±4.2 
5.6±4.4 
5.8±4.3 
2.4±0.9 

79.4±0.0 
79.4±0.0 
79.4±0.0 
79.4±0.0 
79.4±0.0 

0.19±0.08 
0.18±0.08 
0.16±0.09 
0.17±0.09 
0.086±0.005 

0.15±0.03 
0.13±0.06 
0.15±0.05 
0.14±0.05 
0.17±0.01 
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A significant improvement in clustering performance is reported for a small number of labeled 

patterns with the polynomial kernel. 

7.4. DISCUSSION 

A new active learning framework is presented which is directly applicable to fuzzy clustering 

approaches.  The patterns selected by active learning are subsequently labeled with proximity 

information and used to learn the parameters of the kernel function in proximity fuzzy clustering.  

This provides a way to learn the parameters of the kernel function and support clusters of non-

spherical geometries.  We demonstrated the effectiveness of proximity fuzzy clustering on 

several synthetic and real data sets with two different kernel functions.  There is a significant 

improvement in performance by labeling a few well selected patterns in comparison with 

random selection to learn the parameters of the kernel function.  We concluded that active 

learning in the context of partially supervised fuzzy clustering can great enhance the discovery of 

structure even for a small number of labeled data points.  Also, the patterns selected for labeling 

by active learning are very consistent as demonstrated by the small standard deviations in the 

performance.  Finally, we have demonstrated that proximity-based kernelized fuzzy clustering is 

capable of learning its own kernel parameters using partially supervised learning.  Futurework 

aims to address the issue of kernel selection in partially supervised learning, i.e. structural 

optimization of the kernel function. 

  

Table 22. Machine learning data – polynomial kernel parameter learning (active learning) 

Data Sets M FCM-based Approach 

m θ d cr re nmi 

Breast (c=2) 3 
5 
10 
20 
50 

2.5 

1.2 
1.4 
2.5 
1.2 

0.0±0.0 
0.0±0.0 
0.0±0.0 
0.0±0.0 
0.0±0.0 

1.0±0.0 
1.0±0.0 
1.1±0.4 
1.0±0.0 
1.0±0.0 

97.2±0.0 
97.2±0.0 
97.1±0.6 
97.2±0.0 
97.2±0.0 

0.015±0.000 
0.043±0.000 
0.043±0.013 
0.015±0.000 
0.043±0.000 

0.81±0.00 
0.81±0.00 
0.81±0.02 
0.81±0.00 
0.81±0.00 

Ionosphere (c=2) 3 
5 
10 
20 
50 

3.0 

3.0 
2.5 
2.5 
3.0 

60±1.5 
72±1.8 
95±0.1 
95±3.1 
0.0±0.0 

11±0.2 
11±0.2 
11±0.0 
11±0.3 
2.0±0.0 

71.8±0.1 
71.8±0.0 
72.9±0.0 
72.9±0.0 
69.5±0.0 

0.070±0.000 
0.066±0.000 
0.070±0.000 
0.070±0.000 
0.062±0.000 

0.29±0.00 
0.28±0.00 
0.26±0.00 
0.26±0.00 
0.19±0.00 

Iris (c=3) 3 
5 
10 
20 
50 

3.0 

2.5 
3.0 
3.0 
3.0 

0.0±0.0 
0.0±0.0 
0.1±0.0 
0.0±0.0 
0.0±0.0 

3.0±0.0 
1.2±0.6 
3.0±0.0 
3.0±0.0 
3.0±0.0 

82.0±0.0 
83.1±0.6 
82.0±0.0 
82.0±0.0 
82.0±0.0 

0.033±0.000 
0.029±0.001 
0.028±0.000 
0.031±0.000 
0.033±0.000 

0.63±0.00 
0.69±0.02 
0.63±0.00 
0.63±0.00 
0.63±0.00 

Wine (c=3) 3 
5 
10 
20 
50 

2.5 

2.5 
2.5 
2.5 
2.5 

0.0±0.0 
0.0±0.0 
0.0±0.0 
0.0±0.0 
0.0±0.0 

1.1±0.4 
1.1±0.4 
1.0±0.0 
1.3±0.7 
1.1±0.4 

93.9±0.3 
93.9±0.3 
93.8±0.0 
94.0±0.4 
93.9±0.3 

0.026±0.010 
0.026±0.010 
0.023±0.000 
0.030±0.016 
0.026±0.010 

0.81±0.00 
0.81±0.00 
0.81±0.00 
0.81±0.00 
0.81±0.00 

Diabetes (c=2) 3 
5 
10 
20 
50 

2.0 

1.7 
3.0 
1.7 
1.2 

1.7±2.0 
13±0.5 
13±0.4 
19±0.4 
0.0±0.0 

4.4±2.9 
11±0.4 
11±0.2 
11±0.2 
3.0±0.0 

67.7±1.6 
65.1±0.0 
65.8±0.0 
65.6±0.1 
68.2±0.1 

0.21±0.07 
0.075±0.000 
0.22±0.00 
0.072±0.000 
0.12±0.00 

0.13±0.01 
0.12±0.00 
0.12±0.00 
0.12±0.00 
0.12±0.00 

SPECT-F (c=2) 3 
5 
10 
20 
50 

1.7 

1.7 
1.7 
1.7 
1.7 

0.0±0.0 
0.0±0.0 
0.0±0.0 
0.0±0.1 
1.1±4.7 

1.0±0.0 
1.0±0.0 
1.2±0.6 
1.1±0.4 
1.1±0.2 

79.4±0.0 
79.4±0.0 
79.4±0.0 
79.4±0.0 
79.4±0.0 

0.064±0.000 
0.064±0.000 
0.068±0.015 
0.066±0.011 
0.064±0.003 

0.19±0.00 
0.19±0.00 
0.18±0.01 
0.19±0.01 
0.19±0.01 
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8. MULTI-PROXIMITY FUZZY CLUSTERING 
Proximity fuzzy clustering uses proximity information, i.e. degree of similarity, to cluster a set of 

objects into a partition.  The proximity fuzzy clustering algorithm produces a partition using only 

proximity between pairs of data in contrast to more traditional methods that use distance 

between data and prototypes as done with FCM, K-Means and other clustering algorithms.  A 

logical extension to proximity fuzzy clustering is to consider clustering from several different 

sources of proximity information.  The new approach is termed multi-proximity fuzzy clustering. 

Multi-proximity fuzzy clustering is closely related to ensemble clustering where the objective is to 

form a single partition from “H” views of the data as shown in Figure 31. 

 

Figure 31. Views of data 

Ensemble clustering is a two-step process: 

(a) partition each view of the data, and 

(b) aggregate the partitions into a single partition. 

The problem is that producing the partitions for each view and then aggregating them to form a 

single partition are not independent steps and require some “cooperation” in order produce an 

optimal partition.  Multi-proximity fuzzy clustering thereby combines both steps into a single 

multi-view clustering algorithm thereby allowing the reconciliation of differences in the views to 

occur during clustering rather than at aggregation. 

8.1. MOTIVATION 

Many ensemble methods fail to reconcile partitions when there are only a few sources including 

the CSPA and EAC algorithms.  In this section, it is demonstrated how multi-proximity fuzzy 

clustering out-performs these traditional ensemble clustering approaches on a simple synthetic 

data set.  A simple example where there are two projections (H=2) of a three dimensional data 

set consisting of three clusters is shown in Figure 32.  These views are projections of the three 

dimensional data onto two different planes.  Clearly this is a trivial example but similar situations 

occur where there are different ways of viewing or interpreting similarity between objects.  For 

example, several experts can provide some proximity hints but it is highly unlikely that there will 

be complete agreement among the experts as to their correctness. 
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(a) View 1 (b) View 2 

Figure 32. Demonstration data set of multi-proximity fuzzy clustering 

A close inspection of the plots reveal that there are 10 data points that are close to the left 

cluster in view 1 and these same 10 points are close to the right cluster in view 2.  All the other 

points are the same.  By applying multi-proximity fuzzy clustering one obtains the following 

structure in the data shown in Figure 33 where the clusters obtained are circled in the figure.  

Since the views are the only visual representation available for this data, the cluster structure is 

shown in both views of the data. 

(a) View 1 (b) View 2 

Figure 33. Multi-proximity fuzzy clustering on demonstration data set (m=1.5, c=3) 

Multi-proximity clustering is able to easily pick out the 10 data points (Cluster 2) which appear in 

different positions in each view. 

With ensemble clustering, both the CSPA and EAC algorithms produce the similar cluster 

structure, see Figure 34.  Relational FCM is employed to aggregate the partitions. 
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Ensemble clustering fails to recognize the cluster with 10 points in the data set.  The reason is 

that there are not enough votes available to infer the correct partition. 

8.2. MULTI-PROXIMITY CLUSTERING FRAMEWORK 

In the case where there are multiple sources of proximity information [193], there can be 

significant disagreements on the level of proximity between pairs of objects.  Thus a serious 

downfall of proximity fuzzy clustering is the inability to reconcile proximity information from 

several different sources.  For example, suppose a group of experts independently labeled a data 

set.  How might the multiple proximity sources be clustered and combined effectively?  One 

solution is to cluster the proximity values of each expert labeled data set individually and then 

perform ensemble clustering to combine the results.  Often this involves voting or use of the 

majority principle to reconcile differences in the clusterings.  As shown in the previous section, 

this approach does not always work very well.  However, the downside is that we are reconciling 

differences post-clustering.  We propose an architecture called multi-proximity fuzzy clustering 

that produces a partition by accounting for data from several sources directly in the clustering as 

depicted in Figure 35. 

 

Figure 35. Multi-proximity fuzzy clustering framework 

The inputs and outputs of the multi-proximity fuzzy clustering framework are shown in Figure 36. 

  
(a) View 1 (b) View 2 

Figure 34. Ensemble clustering on demonstration data set (m=1.5, c=3) 
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Multi-proximity fuzzy clustering minimizes the following objective function with respect to 

membership U and cluster proximities Q subject to the constraint (6-2), i.e. 
1
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where H is the number of proximity sources, 

h
w  is the weight assigned to each source,  

( ),h k jp x x  is the proximity hint between objects xk,xjϵX, j,k=1…N, for each source, and 

B { {0,1} | 1 , 1 }
hk
b h H k N= ∈ = … = …  is a Boolean descriptor matrix that indicates the patterns 

that are available (1) or not-available (0) for each source h=1…H.  The Boolean matrix B provides 

a way for multi-proximity fuzzy clustering to consider sources where the proximity information 

may not be complete for all data points.  The minimum of expression (8-1) is found by 

introducing a Lagrange multiplier to handle the constraint. 

The cluster proximity values are found by determining an expression for qij where 0
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An expression for membership uik is derived by finding 0
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where λ  is the Lagrange multiplier for the constraint. 
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Applying the constraint conditions to expression (8-5) yields 

Figure 36. Multi-proximity fuzzy clustering architecture 
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Substituting expression (8-7) into expression (8-5) gives 
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(8-8) 

 

The algorithm is given by the pseudocode. 

Multi-Proximity Fuzzy Clustering Algorithm 

Input: X, c, m, B, w, H 

Output: V, U, Q 

1. Generate a random initial membership matrix uik subject to the constraint (6-2) 

2. Do 

a. Update qij from expression (8-3) 

b. Update uik from expression (8-8) 

3. Until convergence in membership values has been observed, i.e. 

F
U( ) U( 1)iter iter ε− − <  

4. Estimate prototypes using expression (6-7) 

The algorithm is very similar to proximity fuzzy clustering except where H different proximity 

functions are available – one for each proximity source. 

8.3. LEARNING THE WEIGHTS 

A partially supervised method for learning the weights is now described.  This approach labels a 

subset of the data with class labels via active learning.  The set of class labels is denoted as 

Yh={yk|k=1…M} where M<N is the number of labeled patterns in each data source h=1…H.  These 

labels are used to evaluate proximity fuzzy clustering on each of the proximity matrices.  An 

active learning procedure is used to select the most informative patterns to label.  The process is 

depicted in Figure 37. 
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Figure 37. Learning the weights for each view/source 

Once the weights are determined, they are used to execute multi-proximity fuzzy clustering.  The 

idea is to cluster each source/view of the data with the original proximity fuzzy clustering 

algorithm, evaluate the performance of each and then determine a weight proportional to 

performance (larger weight equals better performance).  In this way, the sources where the 

performance is very good are more important in multi-proximity fuzzy clustering.  An active 

learning procedure is used to label a small yet effective data of size M for measuring the 

performance each view. 

Multi-proximity fuzzy clustering which includes the learning of the weights is described by the 

following steps.   

Multi-Proximity Fuzzy Clustering Algorithm with Active Learning of the Weights 

Input: X, c, m, B, M, H, α  

Output: V, U, Q, w 

1. Determine a labeled data set X̂ X⊂  using active learning containing M patterns 

2. For h=1…H 

a. Proximity Fuzzy Clustering with proximity measured by the function ph(xj,xk), 

, 1...j k N∀ =   

b. Determine the classification rate 
h

ω  using labeled data set X̂  

3. Calculate the weights according to the expression 

 ( )h h
w

αω=  
(8-9) 

 
4. Normalize the weights, i.e.  
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(8-10) 

 

5. Perform multi-proximity fuzzy clustering 

Here, [0, )α ∈ ∞  is a parameter that controls the contraction or expansion of the weights.  In this 

approach, the labeled patterns are important for evaluating the clustering.  Hence, the idea is 

select a small number of well-selected patterns to assess the clustering performance for each 

proximity view.  Better performing proximity sources will have a greater weight in the overall 

multi-proximity fuzzy clustering. 
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8.4. EXPERIMENTS 

8.4.1. SYNTHETIC DATA 
The first experiments involve setting the weight of each view to 1 and evaluating the 

performance of multi-proximity fuzzy clustering on synthetic data.  We construct multiple views 

of the data using different combinations of kernel functions and kernel parameters.  Table 23 

shows the parameters and kernel functions that we use for each data set. 

Table 23. Construction of the views on synthetic data 

Data Set H Kernel Function Kernel Parameters 

Ring 10 Gaussian σ
2
∊{0.01, 0.1, 0.5, 1, 2, 4, 8, 16, 25, 100} 

Zig-Zag 6 Gaussian σ
2
∊{0.1, 0.5, 1, 2, 4, 8} 

Zig-Zag (with alternate views) 4 Gaussian σ
2
∊{0.1, 0.5, 1, 2} 

The performance of multi-proximity fuzzy clustering is given in Table 24.  The value of m was 

chosen by changing its value over the set {1.2, 1.4, 1.7, 2.0, 2.5, 3.0} and selecting the value that 

produces the maximum classification rate.  The value of c was set according to the number of 

known classes in the data set. 

Table 24. Performance on synthetic data 

Data Set c m Classification Rate 

Ring 2 2.0 100 

Zig-Zag 3 1.3 83.2 

Zig-Zag (with alternate views) 3 2.0 100 

It was observed that by adding views produced by kernel parameters greater than 2 on the zig-

zag data set significantly reduced the classification rate or accuracy of the clustering.  This 

provides strong motivation for assigning weights to the views which we will analyze with 

experiments in a later section. 

8.4.2. REAL-WORLD DATA 
We continue to hold the value of the weights at 1 and evaluate the performance on real-world 

data.  We construct multiple views of the data using different combinations of kernel functions 

and kernel parameters.  Table 25 shows the parameters and kernel functions that we use for 

each data set. 

Table 25. Construction of the views on real-world data 

Data Set H Kernel Function Kernel Parameters 

Ionosphere 10 Gaussian σ
2
∊{0.01, 0.1, 0.5, 1, 2, 4, 8, 16, 25, 100} 

Iris 12 Gaussian 

Polynomial 

σ
2
∊{0.1, 0.5, 1, 2, 4, 8} 

d∊{2, 3}, θ∊{0, 0.5, 1} 

Iris 5 Gaussian σ
2
∊{10, 25, 50, 75, 100} 

The performance of multi-proximity fuzzy clustering is given in Table 26. 

Table 26. Performance on real-world data 

Data Set c m Classification Rate 

Ionosphere 2 2.0 72.1 

Iris 3 2.0 66.7 

Iris (with alternate views) 3 2.0 84.7 

The performance on the iris data set is quite poor.  This is largely due to the overlapping clusters 

being treated as one cluster and the large number of views that have equal weighting.  The 
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performance improves when we reduce the number of views to 5.  The performance of multi-

kernel clustering on the ionosphere data set has improved performance particularly when 

compared with FCM and Gustafson-Kessel FCM (see Chapter 4). 

8.4.3. EXPERIMENTS ON LEARNING WEIGHTS 
Clearly from these experiments weighting each view equally does not always produce desirable 

performance.  Therefore some procedure for optimizing the weights is necessary such as the one 

outlined in section 8.3.  The FCM-based active learning framework is employed to select the 

labeled patterns.  Performance is evaluated for the values of M={5, 10, 25, 50, 100}.  The value of 

m was chosen by changing its value over the set {1.2, 1.4, 1.7, 2.0, 2.5, 3.0}.  The value of c was 

set according to the number of known classes in the data set.  The value of p which is used to 

determine the optimal set of weights was selected by manually adjusting the value to maximize 

the classification performance.  Each experiment is repeated 20 times.  The multiple views of the 

data are constructed using a kernel function with several different selections for the parameters. 

8.4.3.1. SYNTHETIC DATA 
Table 27 shows the parameters and kernel functions for each data set. 

Table 27. Construction of the views on synthetic data 

Data Set H Kernel Function Kernel Parameters 

Ring 10 Gaussian σ
2
∊{0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16, 30} 

Zig-Zag 10 Gaussian σ
2
∊{0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16, 30} 

The performance of multi-proximity fuzzy clustering is given in Table 28. 

Table 28. Performance on synthetic data 

Data Set c M m p Classification Rate 

Ring 2 5 2.0 1 100.0±0.0 

Zig-Zag 3 10 1.4 10 100.0±0.0 

The weights of the views are provided in Table 29. 

Table 29. Weighting of the views 

Data Set Kernel parameters of each view 

 0.01 0.05 0.1 0.5 1 2 4 8 16 30 

Ring 1.0 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Zig-Zag 0.349 1.0 1.0 1.0 0.349 0.107 0.107 0.107 0.107 0.107 

Excellent performance is observed when actively learning the weights.  In this way, it is not 

necessary to optimize the parameters of the kernel but rather select several different kernel 

functions and parameters and execute multi-proximity fuzzy clustering.  The zig-zag data set 

required a much larger value for p in order to achieve the optimal performance. 

8.4.3.2. REAL-WORLD DATA 
We now conduct experiments on real-world data where the weights of the views are learned via 

the partially supervised learning mechanism.  Table 30 shows the parameters and kernel 

functions that we use for each data set. 
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The performance of multi-proximity fuzzy clustering is given in Table 31. 

Table 31. Performance on synthetic data 

Data Set c M m p Classification Rate 

Ionosphere 2 10 2.5 10 72.4±0.1 

Iris 3 10 2.0 10 87.3±0.0 

Wine 3 10 1.2 10 97.8±0.0 

The weighs of the views are provided in Table 29. 

Table 32. Weighting of the views 

Data Set Kernel parameters of each view 

 0.01 0.05 0.1 0.5 1 2 4 8 16 30 

Ionosphere 0.107 0.107 0.107 0.107 0.107 0.107 0.349 0.349 0.349 0.349 

Iris 1.05e-4 9.77e-4 9.77e-4 9.77e-4 9.77e-4 0.0282 0.0282 0.107 0.107 0.107 

Wine 0.0282 0.0282 0.107 0.0282 0.107 0.107 1.0 1.0 1.0 1.0 

Interestingly, the ionosphere data performs best with a small value of p indicative of larger 

weights and of the need for combining multiple views of the data to achieve high performance.  

The iris data set on the other hand required a large value of p in order to achieve a high 

classification rate.  The classification rate for the iris data set is better than standard FCM 

clustering and KFCM-K clustering with the Gaussian kernel (85.3%) as reported in Table 9.  Since 

we are using the Gaussian kernel, we must conclude that multi-proximity fuzzy clustering is an 

improvement over KFCM-K with the same kernel function.  KFCM-K with the polynomial kernel 

achieves 88.7% which very close to the performance achieved by multi-proximity fuzzy clustering.   

An added benefit over KFCM-K is that there is no need to optimize the values of the kernel 

parameters to achieve these results. 

8.5. DISCUSSION 

The performance of weighted multi-proximity fuzzy clustering is quite good when we construct 

different views using a variety of kernel functions and parameters.  Although the performance is 

competitive with other kernel methods on the data sets provided, the main advantage is that it 

avoids the need to optimize the parameters of the kernel.  It also provides the ability to 

aggregate multiple and very different kernel functions (or proximity functions for that matter) 

together which is very useful when two or more kernel functions provide a view of the data in 

the form of a proximity matrix that are co-essential for accurate partitioning of the data. 

  

Table 30. Construction of the views on real-world data 

Data Set H Kernel Function Kernel Parameters 

Ionosphere 10 Gaussian σ
2
∊{0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16, 30} 

Iris 10 Gaussian σ
2
∊{0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16, 30} 

Wine 10 Gaussian σ
2
∊{0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16, 30} 
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9. GRAPH CLUSTERING 

9.1. INTRODUCTION 

Graph clustering is a common problem encountered in fundamental research and applications, 

cf. [171][28][149][174][211][209][55].  For instance, we can refer here to software engineering 

such as using call graphs to locate faults in software problems [55].  In the studies reported in the 

literature, the term graph clustering is used primarily with regard to clustering the nodes of a 

graph.  In contrast, the focus of our study is on clustering a collection of graphs.  There are a 

number of practical problems where one must find structure in a collection of graphs.  One of 

these problems is in the domain of software engineering where the aim is to find patterns in the 

design of software systems.  This information can form important advice for software engineers 

to facilitate software design reuse.  While being practically relevant, the problems falling under 

this realm of graph clustering are quite challenging. One of the reasons is that clustering of such 

objects is poorly suited for traditional, well-established clustering approaches such as K-Means, 

hierarchical clustering, Fuzzy C-Means (FCM), self-organizing maps, and entropy-based clustering.  

These clustering algorithms assume the data constitute a set of vectors.  None of these 

“traditional” algorithms can be readily applied to a broad class of real-world problems, where 

data are expressed solely by some relational information.  Of particular importance is the 

problem of clustering a collection of directed unweighted acyclic graphs described by proximity 

relationships that quantify the closeness of pairs of graphs.  One can envision that the proximity 

values indicate the closeness of graphs by measuring their “similarity” via the number of 

common nodes and edges in the graph.  Given a way in which the notion of closeness becomes 

articulated, relational clustering seems to be an appealing way to consider. 

One such relational clustering approach is the relational Fuzzy C-Means (FCM) algorithm [86][85], 

which is a well-known in the field of relational clustering.  It works by assuming the relationships 

expressed in terms of Euclidean distances thereby implying that the objects being clustered (in 

our case graphs) can be represented as vectors located in Euclidean space, cf. [85].  A non-

Euclidean version was introduced in [85].  In this method, one transforms non-Euclidean 

relational data into the Euclidean relational ones.  Spectral clustering is a common relational 

clustering algorithm, which determines a Laplacian matrix from the relational data and using the 

principle components of the matrix, forms a vector feature space where traditional techniques 

such as K-Means and FCM are applied, cf. [58][138][211].  This approach is computationally 

expensive.  The shortcomings of current developments in relational clustering give rise to the 

introduction of a new proximity-based fuzzy clustering algorithm in this study. 

Clustering relational data is an important consideration; however, how the relational data are 

produced is equally important.  We represent graphs as a string and measure their distance using 

the graph edit distance, cf. [174][62] , which is determined by considering the minimum number 

of “add” and “remove” operations required to transform one graph into the other.  However, our 

case study involves clustering a set of directed unweighted acyclic graphs, particularly our case 

study includes special properties assigned to the nodes and edges that are specific to software 

engineering.  Thus we necessarily introduce a new measure of distance based on the edit 

distance that accounts for the additional properties on the edges as well as the semantic 

similarity of the text describing the nodes. 

A number of structural graph matching algorithms have been developed, cf. 

[70][137][132][150][106][175].  The authors in [70] utilize a random walk algorithm to find both 

exact and approximate graph matching.  They evaluate their approach successfully with an image 

retrieval problem for inexact graph matching and an isomorphism data set for exact graph 

matching.  An Expectation-Maximization (EM) algorithm is developed to matching graph for 
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inexact graph matching, cf. [137].  They do not consider additional attributes for the nodes and 

edges.  They experiment with image data and conclude that their approach is successful in 

matching graphs based on structure.  The weights of in the graph edit distance is analyzed in 

[150] where self-organizing maps (SOMs) are used to determine the cost of the edit operations in 

graph matching.  They report significant improvement in performance for their approach to 

graph matching based on a nearest-neighbor classifier.  A structural image recognition approach 

is introduced in [106] using the attributed relational graph (ARG) matching technique with 

modified operators in genetic algorithms.  They report improvements in the convergence speed 

of genetic algorithms over the standard operators when applied to some image data sets.  The 

authors in [175] show that the graph edit distance can be computed by first performing seriation 

of the graph to a string and then computing the well-known string edit distance for the problem 

of graph matching.  A kernel function was developed by [149] based on the edit distance for 

classifying a collection of graphs.  They use the nearest neighbor classifier to classify a collection 

of graphs.  They report improved classification performance over support-vector machines 

through the use of the new kernel function. 

A spectral-based clustering method is proposed in [211] for clustering a collection of trees.  They 

embed the trees in a Euclidean space using the ISOMAP algorithm in order to compute distance 

and determine the Laplacian matrix.  They report improved performance over traditional spectral 

approaches.  A graph matching and clustering approach is introduced in [209] based on spectral 

methods, where the authors show that the spectral decomposition of the Laplacian matrix can be 

used to construct a feature space for clustering using a variety of different methods including 

principle component analysis (PCA), multi-dimensional scaling (MDS), and locality preserving 

projection (LPP).  They evaluate their method on several data sets including shock trees and 

object recognition in images and report their method performs well for clustering graphs [209].  

Due to the intrinsic properties of variability models from software engineering, we require a new 

approach to clustering a collection of graphs that differs from any previous approaches in the 

literature. 

Several approaches have been presented as well in a similar field on the discovering of frequent 

sub-graph structures, cf. [93][118][228].  However, due to the intrinsic properties of variability 

models coming from software engineering that are not standard to traditional graphs, we require 

a new approach to clustering a collection of graphs that differs from any of the previous 

approaches in the literature. 

The primary objective of this study is to develop a framework for partitioning a set of graphs 

using relational clustering.  A secondary objective is to evaluate and compare two relational 

clustering approaches: the new proximity fuzzy clustering algorithm and relational FCM.  We 

demonstrate the feasibility of relational clustering to the problem of clustering a set of graphs.  

We evaluate the proposed approach in the domain of software engineering requirements 

analysis, which aims to determine common design components in various software architectures.  

However, due to the additional inherent semantics in nodes of the graphs in software 

engineering requirements analysis, we propose a new measure of proximity between graphs that 

accounts for both the structure and semantics of the nodes.  Thus, we also evaluate the newly 

developed graph clustering framework in the context of software engineering. 

To give a more complete intuition of the problem, consider the collection of graphs in Figure 38.  

These graphs are abstract tree examples. When looking for a partitioning of this collection of 

directed unweighted acyclic graphs, the trees that structure their nodes in a similar manner 

should be grouped together. The distance between the trees in Figure 38 can be easily measured 

using, for example, the edit distance which is the minimum number of “add” and “remove” 

operations of both nodes and links that are required to transform one tree into the other.  
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Using the grey dotted lines, Figure 38 indicates the grouping of these trees by an expert based on 

how the tree structure the nodes a, b, c, e, k, l.  It can be seen that trees 1, 2 and 3 are clustered 

 

Figure 38. A collection of trees  
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together as they are structurally very similar with respect to these nodes: all have node a as root, 

node b as child of node a and node e as child of node b. Note that these trees are also quite 

similar in the way they handle nodes k and l, they are absent in all of the trees. Using similar 

arguments, the expert has also grouped trees 6, 8 and 9 together: all trees have node c as root, 

nodes a and l as children of that root and node e as child of node l.  

Given that the grouping of a collection of graphs based on their proximity is a very labor intensive 

and error-prone task, it is the focus of this chapter to determine the ability of clustering 

techniques to perform the grouping of a collection of graphs based on their proximity. In 

particular, we focus on the application of proximity-based and relational clustering for this 

purpose. 

The novelty presented in this research is a two-fold focus.  We introduce a new proximity fuzzy 

clustering algorithm and the known relational FCM.  The proximity fuzzy clustering algorithm is 

evaluated alongside the relational FCM for comparison.  We also introduce a new proximity 

measure based on the edit distance which is well suited for measuring the proximity between 

variability models in software engineering.  A formal definition of variability models and its 

measure of proximity is given.  An important novelty introduced is that the proposed measure of 

proximity includes both structural and semantic similarity between graphs.  Previous approaches 

mostly focus on only structural similarity.  The problem is applied and evaluated in the context of 

software engineering. 

The notation used follows conventional fuzzy clustering notation where our data set X is a set of 

graphs Gk such that X={Gk|k=1…N} where N is the number of graphs in the data set.  The edit 

distance between two graphs G1,G2∊X is given by d(G1,G2)  while the proximity is denoted by the 

function p(G1,G2).  The output of the clustering is the partition matrix U=[uik] for i=1…c, and 

k=1…N where c is the number of clusters.  The prototypes are denoted by V={vi|i=1...c}.  The 

cluster proximity values produced by proximity fuzzy clustering is expression by the matrix Q=[qik] 

for i=1…c, and k=1…N.  Graphs are indicated by capital letters and nodes are indicated by lower-

case.  We define the Euclidean distance to be ||x|| for any real-valued vector x and we define 

the cardinality using the notation N=|X|.  The Boolean operators ∧ and ∨ are AND and OR 

respectively.  We employ the conventional notation for set operators. 

9.2. BACKGROUND – EDIT DISTANCE OF GRAPHS 

In the problem statement, we have outlined our focus to assess the applicability of various 

clustering approaches for the problem of grouping graphs based on how similar they are with 

respect the nodes they contain and how they are structured, e.g. how they are connected by 

edges. One of the critical components that is required before the grouping of graphs can be 

performed is the possibility to quantify the proximity of graphs. In this section, we outline the 

base concepts of the most well-known technique for such purposes, the edit distance of graphs. 

Within the field of graph matching, the concept of a partial match between two graphs exists. 

This refers to the situation where one graph can only be partially matched to the other, because 

specific nodes, edges or properties do not exist in both thereby preventing a complete or perfect 

match. To quantify the quality of such a partial match, the edit distance [121] is used, which 

initially was computed by counting the minimal amount of re-labeling of nodes and edges 

together with the number of deletions and insertions of nodes and edges to transform a graph 

into another.  A variety of edit distance definitions specializing this initial definition can now be 

found that address incorporate specific properties of graphs into their calculation, such as graph 

topology and the attributes of attributed graphs [62]. 

To give an intuitive illustration of how the edit distance of graphs is calculated, consider the three 

trees depicted in Figure 39. These two trees share a number of identical nodes and edges, but 
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there are differences in how the nodes are structured. Considering a simple edit distance 

calculation that consists solely of “delete” and “insert” operations of edges and nodes, the edit 

distance is the following. 

 

Figure 39. Example trees 

First, we determine the edges and nodes of the leftmost tree that need to be inserted for it to be 

transformed in the rightmost tree. It can be seen that a node labeled “e” needs to be introduced, 

as well as an edge between this new node labeled “e” and the node labeled “a”.  This makes a 

total of two insert operations. 

Second, we determine the nodes and edges of the leftmost tree that need to be inserted for it to 

be transformed in the rightmost tree. It can be seen that only the edge between the node 

labeled “d” and the node labeled “a” needs to be removed. This make a total of one delete 

operation. 

The edit distance from the leftmost tree to the rightmost tree in Figure 39 therefore is equal to 

three operations. This value can be normalized by dividing it by the maximum edit distance 

theoretically possibly for these two trees. This corresponds to deleting all edges and nodes from 

the leftmost tree (seven delete operations) and inserting all the nodes and edges of the 

rightmost tree (nine insert operations), equating to a maximum edit distance of sixteen 

operations. The normalized edit distance then is equal to 4/16 or 0.25. Calculated in similar 

fashion, the edit distance between the left and right tree is 6/16 or 0.375, and between the 

middle and the right tree is 8/18 or 0.44. 

9.3. RELATIONAL CLUSTERING OF GRAPHS  

Clustering of relational data is a growing area in the literature especially when clustering objects 

that lack meaning in a d-dimensional real-valued vector space, i.e. d
R .  Methods such as 

hierarchical clustering, relational FCM [86][85], and spectral clustering [58][138] are common 

tools in clustering relational data.  Spectral clustering is a newer relational clustering algorithm 

that utilizes the graph cut approach to cluster relational data [58][138].  The relational data is 

given as an affinity (or adjacency) matrix A, where the values indicate the level of similarity 

between objects in the data set.  Spectral clustering then computes a Laplacian matrix [58] using 

the affinity matrix A.  There are various types of Laplacian matrices that can be constructing 

including the unnormalized, and normalized versions [58][138].  Spectral clustering then extracts 

the “c” largest eigenvalues and corresponding eigenvectors where “c” is the number of clusters.  

The eigenvectors are arranged in columns and concatenated to form the M×c matrix which is 

then clustered using a standard cluster algorithm such as k-means, or FCM by treating all the 

rows of the matrix as data points [138].  A serious disadvantage of spectral clustering is that is 

scales poorly with large data sets and large number of clusters. 
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Relational Fuzzy C-Means (relational FCM) was introduced several decades ago that is 

computationally efficient and able to produce a fuzzy partition when provided with relational 

data rather vectorial data as with traditional clustering algorithms, cf. [86][85].  Relational FCM 

accepts a matrix of relationships as inputs denoted by [rjk] for j,k=1...N.  This matrix is computed 

from the graphs according the expression 
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=  

(9-1) 

for j,k=1...N where the distance function d() which is based on the edit distance will be 

elaborated in Section 12.4.   

Relational FCM is shown to optimize the same objective function as standard FCM, cf. [85].  

There are two concerns with using relational FCM: 

• The feature space is assumed Euclidean despite the fact that this may indeed not be 

true of all relational data, cf. [85] 

• The algorithm inherits the same drawbacks from FCM including the tendency to form 

balanced clusters, i.e. roughly equal cluster sizes, even when the data set is highly 

unbalanced. 

When clustering feature trees, our problem involves clustering unbalanced data using a set of 

relations that describe the similarity or proximity of each pair of graphs.  The proximity between 

graphs G1,G2∊X is formalized as a function p(G1,G2) that maps to the unit interval and satisfies the 

properties: 

 ( ) ( )1 2 2 1, ,p G G p G G=  

 ( )1 1, 1p G G =  

(9-2) 

When p(G1,G2)=0, graphs G1 and G2 are entirely dissimilar and when p(G1,G2)=1 they are identical.  

The proximity between graphs can also be interpreted as a fuzzy relation denoting the degree of 

similarity between two the graphs G1 and G2.  Proximity fuzzy clustering requires a matrix of 

proximity values which are computed from the proximity function with the expression 
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for j,k=1...N.  The proximity data is then clustered using proximity fuzzy clustering 

9.3.1. DETERMINING THE NUMBER OF CLUSTERS  
An open problem is the choice of the number of clusters “c” and the value of the fuzzification 

coefficient “m.”  Much work has been done in this area, however the approaches are highly 

varied in both design and performance.  However, proximity fuzzy clustering offers a simple and 

effective (unsupervised) performance index using the proximity relations directly. The number of 

clusters and the fuzzification coefficient can be determined by minimizing the reconstruction 

error given by 
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where the a reconstructed proximity based on membership values is given by 

( )
1

,
c

jk ij ik

i

p min u u
=

=∑ɶ , cf [165].  In order to improve the robustness of the selected number of 

clusters and fuzzification coefficient, we look for a set of parameters that satisfies the following 

conditions: 

• No two cluster proximity vectors are the same, i.e. qij≠qlj for i,l=1…c,i≠l 

• No cluster is “empty” where the ith cluster is empty iff 
1

1 , arg max jk
j c

k N i u
∀ = …

∀ = … ≠   

9.3.2. EXAMPLE 
We demonstrate both proximity and relational FCM on the synthetic example given in Figure 38 

and compare to relational FCM.  The proximity values are given in Table 33.  These values are 

computed using the edit distance described in Section 12.2 on the example given in Figure 38. 

Table 33. Proximity values of the synthetic graph data set given in Figure 38 

Trees 1 2 3 4 5 6 7 8 9 10 

1 1 0.83 1 0.4 0.57 0.39 0.46 0.29 0.64 0.67 

2 - 1 0.85 0.46 0.36 0.27 0.36 0.17 0.5 0.46 

3 - - 1 0.31 0.54 0.39 0.46 0.29 0.64 0.53 

4 - - - 1 0.42 0.71 0.33 0.46 0.46 0.43 

5 - - - - 1 0.5 0.77 0.43 0.86 0.8 

6 - - - - - 1 0.46 0.57 0.43 0.44 

7 - - - - - - 1 0.31 0.77 0.57 

8 - - - - - - - 1 0.5 0.4 

9 - - - - - - - - 1 0.8 

10 - - - - - - - - - 1 

Proximity fuzzy clustering detects the number of clusters to be c=3 and the fuzzification 

coefficient to be m=2.6 under the same optimization vehicle discussed in the previous section.  

The structure discovered by proximity fuzzy clustering is given by the sets {Tree 1, Tree 2, Tree 3}, 

{Tree 4, Tree 6, Tree 8}, and {Tree 5, Tree 7, Tree 9, Tree 10}.  The membership values for Trees 8 

and 10 are quite low in their clusters.  Figure 40 demonstrates how the structure of the clusters 

changes with the number of clusters (m is held at m=2.9) for proximity fuzzy clustering.  The 

structure shown in Figure 40 is determined by labeling the graph Gk according to its maximum 

membership, i.e. ( )
1

arg maxk ik
i c

cluster label G u
∀ = …

− =  for k=1…N. 
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Figure 40. Synthetic example: number of clusters 

There is an interesting trend shown in Figure 40, particularly, the consistency of the first cluster.  

In fact, the membership values of Tree 1, Tree 2 and Tree 3 and all close to 1 which is intuitive 

since the graphs are structurally quite similar.  The membership of Trees 5 and 9 are fairly high as 

well.  Otherwise the membership values are much lower.  The structure of the clusters is the 

same with relational FCM.  The membership value of Tree 8 however is very low thus it does not 

belong strongly to any cluster.  Figure 41 shows concisely the membership values for c=3 for both 

proximity and relational FCM approaches. 

 

 

Figure 41. Partition for synthetic example (c=3) 

The plots given in Figure 41 indicate the membership values on a floating bar plot.  The horizontal 

axis consists of the Trees 1-10 from the problem where the vertical bars indicate the 

membership.  The membership values of the clusters are stacked in a bar graph to visually 

indicate the degree of membership for that particular tree in each cluster.  Each cluster is coded 

via, black, gray and light gray.  There is no scaling of the membership values done since the 

membership values must add up to one (due to the constraint on U).  For example, we can see 

that the membership of Tree 1, Tree 2 and Tree 3 are quite high (close to 1) for cluster 1.  This is 

intuitive since Figure 38 shows that these trees have a lot of structural similarity.  The fuzzy 

membership values are mostly the same for both proximity and relational FCM when c=3. 
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The objective function value calculated at each iteration is shown in Figure 42 for proximity and 

relational FCM. 

 

 

Figure 42. Objective function value at each iteration 

Relational FCM appears to have converged slightly faster than proximity fuzzy clustering on this 

data set. 

In summary, we have shown that both proximity fuzzy clustering and relational FCM are suitable 

tools for clustering graphs.  Particularly, the structure formed by the clusters indicates the graphs 

that are most similar, ie. Tree 1, Tree 2 and Tree 3.  The other graphs are much more distinct 

from each other and as a result their membership values are lower. 

9.4. GRAPH CLUSTERING APPLIED TO SOFTWARE REQUIREMENTS 

ENGINEERING 

9.4.1. MOTIVATION: IDENTIFYING BEST PRACTICES IN A KNOWLEDGE BASE OF 

VARIABILITY MODELS 
The motivation for addressing the problem of graph clustering in non-Euclidean spaces originates 

from the current trend in software development to examine the design of software systems that 

are similar to the one under development to identify best practices and standard structures. This 

is done by mining a large body of software designs, typically graph-based models, for frequently 

occurring patterns describing a specific attribute of a software system. The underlying 

assumption for extracting such advice is that the more frequently a particular structure occurs, 

the more relevant this way of structuring is (intuitively, if many different software engineering 

experts use the same structure, it probably is a good way of doing it). 

Here, we focus on this problem in the context of software product lines (SPL), a discipline of 

software engineering aimed at efficiently developing families of software systems.  In this 

discipline, the feature or variability model [101] is used to describe the common and variable 

components of the various software systems that are support by the SPL. In SPL development, 

feature models are a specific type of variability model and other models that capture variability 

exist. To avoid confusion whenever we mention variability model, we refer to a feature model as 

it is used in SPL development.  
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Variability models are used to describe a family of products in a single diagram, effectively 

defining logical constraints on the combination of properties that are allowed in a valid product. 

Consider for example the left-most variability model depicted in Figure 43. This model describes 

a family of cars and the constraints a car should adhere to. For example, there is an exclusive or-

relationship between Automatic and Manual, indicating that a car can have only one of these 

types of transmission. Another example is Air Conditioning that is marked as optional, meaning 

that any car of this family can be fitted with air conditioning, but it is not mandatory. 

 

Figure 43. Variability Models of Automotive Software Product Lines 
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To illustrate to problem of graph clustering in the context of software requirements engineering, 

consider the following example of software product lines for the automotive industry. In Figure 

43, four possible variability models for automotive Software Product Lines are depicted. 

Each of these models describes a set of automotive products and uses a distinct decomposition 

of concepts for this purpose. For example, the top-left model decomposes a car into five base 

concepts of which Air Conditioning and the ability to Pull Trailers is optional. It also prescribes 

that a car can only have either a manual or an automatic transmission. The top-right variability 

model on the other hand describes a more detailed decomposition of the car concept and its 

products are aimed at the high-performance/racing segment. As a result, this model structures 

nodes significantly different, with for example Engine now being a sub-concept of Drive Train. 

When an SPL development team needs to design a new automotive SPL, the decomposition 

knowledge in these variability models can be used to structure the variability model of the new 

SPL. For example, consider the case where the development team is interested in how the 

concepts Car, Engine, Transmission and Air Conditioning should be structured with respect to 

each other. These concepts form the criterion for examining the knowledge base formed by the 

models in Figure 43. 

By determining the most frequently occurring manner of structuring the criterion, the best 

practice can be identified. It can be seen that the two left-most models structure the Engine and 

Transmission concepts directly underneath the Car concept, whereas the two right-most models 

structure these concepts underneath a separate Drive Train concept. Using a function to describe 

the proximity of these models with respect to this criterion, a matrix can be derived that can be 

used to cluster the variability models. 

9.4.2. DEFINITIONS 
We define a variability model to be a labeled, directed, acyclic graph whose nodes correspond to 

(sub-)concepts and whose edges correspond to relations between these (sub-)concepts. 

Moreover, we extend this graph definition to contain the specific properties of variability models. 

We define each node to have a property indicating whether it is mandatory or optional. Also, a 

set of nodes in the graph can be subject to an Xor-constraint or an Or constraint. We use the 

following set-based notation for a variability model ( ) :  , , , ,T Nodes CP Oblig Xor Or . 

In this specification, Nodes is the set of nodes, CP is a set of tuples (a,b) describing that node a in 

Nodes is a child of node b in Nodes.  Oblig is the subset of nodes of Nodes that are mandatory.  

Xor is a set of sets of nodes that are mutually exclusive with respect to each other and Or is a set 

of sets of nodes that are optional with respect to each other. We assume that a node contains a 

textual description of the (sub-)concept of the SPL it represents.  Moreover, we define the 

following: 

1. Knowledge base: A set of variability models 

2. Criterion: A set of node descriptions based on which semantics and structuring 

variability models are compared. 

3. Node similarity: A value on the domain [0..1] indicating the degree to which the sub-

concepts represented by two nodes correspond. This value is determined by a proximity 

function that analyses the textual descriptions of the nodes. 

4. Tree similarity: A value on the domain [0..1] indicating the degree to which two trees 

are similar with respect to a given criterion. This value is determined by the proximity 

function that will be introduced in Section 12.4.3. 
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Figure 44. Process of identifying best practices in software requirements engineering 

Given these definitions, the schematic representation of the steps for deriving best practices 

from a knowledge base of variability models is depicted in Figure 44.  In this figure, a criterion (A) 

and knowledge base (B) are provided.  The proximity of each pair of trees in the knowledge is 

then determined (1) to form a proximity matrix (C). Based on this proximity matrix, the variability 

models are clustered (2). The clustered models (D) are subsequently analyzed (3) to form the 

best practice advice (E).  Note that we refer to best practice as the most common practice in use 

by software engineering experts. 

Activity (1) involves calculating a proximity measure using the function that will be introduced in 

Section 12.4.3.  Activity (3) on the other hand involves ranking the clustered that have been 

derived and ranking them according to the relevance of the best practice advice they provide.  

Although the actual realization of this step is beyond the scope of this thesis, this could for 

example be done by choosing the cluster with the largest cardinality, which corresponds to the 

fact that the pattern in this cluster is the most frequent in the knowledge base and therefore the 

most relevant.  Here, we are primarily concerned with the second step (2) of this process, the 

clustering of variability models based on their proximity degree. 

9.4.3. SPECIFICATION OF THE PROXIMITY FUNCTION FOR VARIABILITY MODELS 
Variability models as they are used in Software Product Line development are not standard 

graphs; they define additional properties that are not found on traditional tree structures, such 

as the optionality of a node or its mutual exclusivity with one or more of its neighbors. As a result 

of these new properties, traditional definitions for the edit distance of tree are insufficiently 

accurate. To perform grouping of a collection of variability models therefore requires the 

definition of a new edit distance measure. In this section, we define this refined edit distance and 

its derived proximity measure and we demonstrate its usage on the automotive example 

introduced in Section 12.4.1. 

We build up the new proximity measure in two stages. First, we introduce the edit distance 

measure that takes into account the structural similarity of the variability models being 

compared. After that, we extend this with the possibility to correct for partial semantic matches 

between the concepts represented by the nodes in the variability models. 
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9.4.3.1. STRUCTURAL PROXIMITY 

One of the most important aspects from the software engineering point-of-view is that a 

developer is typically interested in grouping of a collection a variability models with respect to a 

small recurring pattern, i.e. the proximity generally should not be calculated for the entire graph 

but rather for a sub-graph 

We now define the specialized proximity function for comparing variability models used in 

Software Product Line Development that is inspired on traditional edit distance concepts. Let T 

and W belong to XVM which is a collection of variability models. We then define T and W to be 

identical with respect to criterion S when 

a) All the nodes in S exist in both  T and W 

b) All the nodes in S have the same parents in  T and W 

c) All the nodes in S have the same logical role in  T and W 

d) All the nodes in S have the same siblings that are part of S in T and W 

We consider T and W to be similar when these conditions are only partially fulfilled. Note that 

this definition explicitly considers properties that are specific to the semantic meaning of 

variability models, such as the logical role of nodes (optional, mandatory) and whether nodes are 

siblings (meaning they belong to the same concept, such as a transmission). Also note that a 

proximity definition for the structure of variability models has not been proposed before, hence 

all subsequent definitions original concepts. 

 We define the function pS() which determines the proximity of two variability models T and W 

with respect to criterion S using the amount of operations that are required to T and W equal. In 

our proximity function, we differentiate between four types of operations: operations on nodes, 

edges, logical roles of nodes and siblings of nodes. The calculation of the amount of these 

operations is detailed below. We will illustrate each step of our definitions by applying it to the 

variability models depicted in Figure 45 for S = {a, b, c, d, e, f}. The set based representation of 

these models is as given in Table 34. 

 

Figure 45. Variability Models for Sibling Similarity 
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Edit Operations for Nodes 

The set E contains all the nodes of S that are part of either T or W but not both or neither. 

 ( )( ) ( )( )\
T W T W

E Nodes Nodes S Nodes Nodes S= ∪ ∩ ∩ ∩  (9-5) 

This set corresponds to the notion of “insert” and “delete” operations for nodes in traditional 

edit distance definitions. E in this case corresponds to the nodes that need to be addressed by 

such operations. Determining E for the model I and model II of Figure 45 results in:  

  { , , , , } \ { , , , }  { }E a b c d f a b c d f= = . 

The resulting set corresponds to the fact that f is the only node of the criterion that is present in 

model I but not in model II. Alternatively, E for models II and III is empty as there is no node in 

the criterion that is present in only one tree:   { , , , } \ { , , , }  {}E a b c d a b c d= = . 

Edit Operations for Edges 

The set P that contains all nodes of S that occur in both models but have different parents in T 

and W: 
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( )

( )
( ) ( )

 

\   

 ,

T W

T W T W

T W

x Nodes Nodes S

P Nodes Nodes S suchthat y Nodes Nodes

where x y CP CP

 ∈
 

= ∃ ∈ 
 ∈ 

∩ ∩
∩ ∩ ∩

∩
 

(9-6) 

This set corresponds to the notion of “insert” and “delete” operations for edges in traditional edit 

distance definitions. P in this case corresponds to the edges that need to be addressed by such 

operations. When we determine P for the left and middle model in Figure 45, this results in:  

  { , , , } \ { , , }  { , }P a b c d a c e b d= = . 

It can be seen that the nodes a, c and e are removed from the initial set of criterion nodes 

present in models I and II as they have the same parents in both models. The nodes b and d 

remain as they do have different parents. For models II and II, P becomes the following:  

{ }  , , , \ { , , }  { , }P a b c d a c e b d= = . 

Edit Operations for Logical Roles of Nodes 

Third, the set R contains all nodes of S that have a different logical role in T or W: 

Table 34. Set-based Representations of Variability Models 

 Model I Model II Model III 

Nodes { a,b,c,d,e,f } { a,b,c,d,e } { a,b,c,d,e } 

CP { (e,a),(d,e),(b,e),(c,a),(f,c) } { (e,a),(d,c),(b,c),(c,a) } { (e,a),(d,e),b,a),(c,a) } 

Oblig { a,b,c,d,e,f } { a,c } { a,e } 

Or {} {} { { c,b } } 

Xor {} { {d,b} } {} 
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This set introduces a new concept in the edit distance definition corresponding to whether a 

node has a different logical role in the variability models (for example, it is mandatory in one 

model and optional in another). R in this case corresponds to the nodes whose logical roles need 

to be addressed by “insert” and “delete” operations. When we determine R for models I and II, 

this results in:  

  { , , , } \ ({ , }  {}  {})  { , }R a b c d a c b d= + + = . 

Here, it can be seen that three sets of nodes are removed from the initial set of criterion nodes 

that occur in both I and II. First, the nodes a and c are removed as they are mandatory in both 

trees. Subsequently, the nodes that are part of Xor and then Or relations in both trees are 

removed (both these sets are empty). What remains is b and d as they are mandatory in I and Xor 

in II. When this is done for models II and III, this results in:  

  { , , , } \ ({ }  {}  {})  { , , }R a b c d a b c d= + + = . 

Edit Operations for Sibling Degree 

Fourth, the similarity of how the criterion nodes are structured as siblings in both trees is 

determined. This particular element of proximity relates to the specific semantics of the child 

parent relation of nodes in variability models. When node a is a child of node b in the context of 

a variability model, this means that node a is a sub-concept or specialization of node b. For 

example, in the models of Figure 43 it can be seen that an Engine is a sub-concept of Car and an 

Automatic Transmission is a specialization of Transmission. 

As a result of the semantics of the parent child relation, having the same sibling in both models 

increases proximity as this implies the sibling nodes are related to the same parent concept in 

both models. For example, consider the three variability models depicted in Figure 45. According 

to traditional edit distance definitions, the left and right models are closer than the models on 

the left and in the middle. This as in the left and the right model, only node e has a different 

parent. However, due to their specific semantics the models on the left and in the middle are 

considered closer as nodes d and e are sub-concepts of the same parent in both, even when 

these parents do not correspond. 

To accommodate for this, we enrich the proximity definition with the concept of Sibling 

Similarity. This corresponds to the degree in which a node has the same sibling in the variability 

models that are being matched. For the calculation of the sibling similarity, we assume the 

following two functions exist: 

    • DRT (a): returns the distance of node a to the root in variability model T 

    • DCAT (a, b): returns the distance to the first common ancestor of nodes 

      a and b in variability model T measured from the node that is farthest from 

      the root of T 

    • AT (a, b): returns a Boolean indicating whether node a is an ancestor of 

      node b in tree T 
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Using these functions, we define SibDegT (a, b) to be the degree to which nodes a and b are 

considered siblings in tree T: 

 ( )
( ) ( )
( ) ( )

( ) ( ) ( )( )
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 − 
 − 

 

(9-8) 

The intuition behind this function is that two nodes are siblings to a certain degree when they 

have a common ancestor in the variability model. The result of this function is equal to 0 when 

one node actually is an ancestor of the other and it is equal to 1 if they are proper siblings (have 

the same parent). It is a value between 0 and 1 when the common ancestor is not their direct 

parent but still below the root of the variability model. This corresponds to both belonging to a 

broader concept which is more specialized than the overall concept. For example, in the 

automotive models of Figure 43 the Fuel Tank & Distribution node and the Diesel Engine node are 

not proper siblings, but according to the result from expression (9-8) they are considered siblings 

to a degree 0.5 as their common ancestor is very close-by. 

We then define the set SS
a

T-W which contains all the siblings of node a in T and W: 

( ) ( ) ( ) ( ) ( )( ){ } | a

T W T W T T T WSS x Nodes Nodes x a pt x pt a pt x pt a− = ∈ ≠ ∧ = ∨ =∪   (9-9) 

Using this set, we can define the function SameSibDega(T,W) which returns a value on the 

domain [0..1] indicating the degree to which the node a has the same siblings in variability 

models T and W: 

 ( )
( ) ( )( ), , ,
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a
T W

T Wx SS

a a

T W

min SibDeg a x SibDeg a x
SameSibDeg T W

SS

−∈

−

=
∑

 

(9-10) 

Consequently, the fuzzy set C(x) where x∊S contains all the nodes of the criterion S that occur in 

both T and W to degree to which they have different siblings in both trees: 

 ( ) ( )1 ,  \

0                                   

x
SameSibDeg T W if x S E

C x
otherwise

− ∈
= 


 
(9-11) 

This set corresponds to the notion of operations needed to ensure nodes have the same siblings 

in both models. This is weighted with respect to the distance the siblings are apart in both trees; 

the further they are apart the more severe the edit required. C in this case corresponds to the 

nodes that need to be addressed by such operations.   

en applied to models I and II of Figure 45, nodes a, b, c, and d need to be considered for sibling 

similarity. We illustrate how the membership value of b in C is calculated using the definitions 

above. First the sibling set SS
b

I-II is determined, which corresponds to the siblings of b in either I 

or II: SS
b

I-II = {d}. 
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Next, the sibling degree of b and d is determined in trees 1 and 2 using formula (9-8): SibDegI(b, 

d) = 1 and SibDegII(b, d) = 1.  Using formula (9-10), the membership value of b in C can be 

calculated:  C(b) = 1 – SameSibDegb(I,II) = 1 – 1 = 0.   This calculation can be repeated for the 

other elements of C to result in following set: C = { 0/a, 0/b, 0/c, 0/d } 

Note that this set describes a special case where all the nodes have exactly the same siblings in 

both variability models. When the same procedure is applied for comparing models II and III, the 

set C becomes the following: C = { 0/a, 1/b, 1/c, 1/d }.  In this case, nodes b, c and d have 

completely different siblings in both models, with their original siblings either being far away or 

even changing role (becoming parent instead of sibling). Consequently, their membership in C is 

equal to 1. 

These four sets now enable us to define the amount of operations required as follows:  

 

 ( ) ( ),
S E P R C

x S

d T W w E w P w R w C x
∈

= + + + ∑  (9-12) 

where wE, wP, wR and wC are weightings for the severity of the modifications required for 

elements of the respective sets, which must adhere to 
E P R C
w w w w≥ + + . The reason for this 

constraint is that all nodes of S that are element of E are nodes that are completely missing in 

one of the models being compared. As a result, all the operations are required to correct this (the 

node needs to be inserted, it has to be attached to the right parent, it has to be given the correct 

logical role and it has to be grouped with its correct siblings).  As a result, being an element of E 

corresponds to being part of P, R, C as well as requiring an additional operation. This is reflected 

by ensuring wE adheres to the constraint. When we take wE = 4 and wP = wR = wC = 1, using our 

earlier calculations we get the following: d{a,b,c,d,f}(I,II) = 4*1 + 1*2 + 1*2 + 1*0 = 8 and 

d{a,b,c,d,f}(II,III) = 4*0 + 1*2 + 1*3 + 1*3 = 8. 

Finally, we define the proximity of T and W with respect to S to be: 

 ( ) ( ),
, 1

S

S

E

d T W
p T W

w S
= −  

(9-13) 

When we apply this function to our previous calculations, we get the following proximity results: 

p{a,b,c,d,f}(I,II) = 1 – (8 / (4*5)) = 0.6 and p{a,b,c,d,f}(II,III) = 1 – (8 / (4*5)) = 0.6. 

These results indicate that the proximity of I and II is equal to II and III. When examining Figure 

45, this can be explained from node f. While models I and II appear very similar, they treat node f 

differently. In I it is explicitly included, while II omits it completely. 

9.4.3.2. GRAPH CLUSTERING REVISITED 

In Section 12.3, we grouped the trees depicted in Figure 38 based on their proximity for nodes a, 

b, c, e, k, l. Consider the collection of variability models depicted in Figure 46, which are extended 

versions of the trees depicted in Figure 38. 
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Figure 46. A Collection of Variability Models  
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The variability models in this collection have a number of additional properties as compared to 

the trees in Figure 38.  The nodes have been attributed with properties such as being optional or 

part of an Xor-relation with other sibling nodes.  If a traditional edit distance function is applied 

to determine the proximity of these models, these additional properties would be ignored as 

such a function is not capable of considering them. The results of clustering would be identical to 

the results described in Section 12.3. 

However, the proximity function we have defined in the previous sub-section is capable of 

considering the additional properties introduced into variability models. To illustrate the use of 

this function, we will apply it as part of the clustering of the variability models depicted in Figure 

46.  We set the weights to wP=wR=wC=1 and wE=4 by default unless otherwise indicated in our 

experiments.  First, we calculate the proximities of the variability models with respect to criterion 

a, b, c, e, k, l: 

Table 35. Proximity values of the synthetic graph data set given in Figure 46 

Trees 1 2 3 4 5 6 7 8 9 10 

1 1 0.79 0.96 0.33 0.21 0.25 0.33 0.25 0.46 0.5 

2 - 1 0.75 0.21 0.38 0.21 0.29 0.21 0.42 0.42 

3 - - 1 0.28 0.17 0.25 0.29 0.29 0.42 0.46 

4 - - - 1 0.77 0.49 0.56 0.49 0.39 0.40 

5 - - - - 1 0.42 0.39 0.42 0.33 0.35 

6 - - - - - 1 0.42 0.88 0.63 0.46 

7 - - - - - - 1 0.46 0.33 0.46 

8 - - - - - - - 1 0.67 0.5 

9 - - - - - - - - 1 0.46 

10 - - - - - - - - - 1 

The proximity values given in Table 35 are quite a bit different from the proximity values given in 

Table 33 where the proximity values are lower when using the new measure of proximity.  This is 

intuitive since the nodes are the same in both examples.  The difference comes from the 

additional properties in the graphs that are specific to software engineering such as mandatory 

and optional nodes.  These additional properties will always reduce the proximity when 

compared with the proximity values computed from the traditional edit distance in Table 35. 

When performing proximity fuzzy clustering, the number of clusters detected is c=3 and the 

fuzzification coefficient is selected to be m=2.5 (both c and m are optimized simultaneously by 

minimizing rerror in Section 12.3.4).  The structure discovered by proximity fuzzy clustering is given 

by the sets {Tree 1, Tree 2, Tree 3}, {Tree 4, Tree 5, Tree 7}, and {Tree 6, Tree 8, Tree 9, Tree 10}.  

Figure 47 demonstrates how the structure of the clusters changes with the number of clusters (m 

is held at m=2.5) for proximity fuzzy clustering. 
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Figure 47. Synthetic example: number of clusters 

As with the last synthetic example in 12.3.5, the first cluster consistently appears in the clustering 

regardless of the value of c.  Tree 4, Tree 5, and Tree 7 also form a cluster with high membership 

values.  According to the structure of the graphs given in Figure 46, Tree 10 is very different from 

all the other graphs where it is located in its own cluster by c=4.  When considering relational 

FCM, the structure is nearly identical until c=5 where Tree 7 is taken out of the second cluster 

and placed in its own cluster and Tree 9 is retained in the third cluster.  Figure 48 displays the 

membership values for c=3 for both proximity and relational FCM approaches. 

 

 

Figure 48. Partition for synthetic example (c=3) 

The plots given in Figure 48 indicate the membership values on a floating bar plot.  The horizontal 

axis consists of the Trees 1-10 from the problem where the vertical bars indicate the 

membership.  The clusters are coded via black, gray and light gray.  We can see that the 

membership values of Tree 1, Tree 2 and Tree 3 are quite high (close to 1) for cluster 1 and 

likewise the membership values of Trees 4 and 5 are fairly high in cluster 2 and the membership 

values of Trees 6 and 8 are fairly high in cluster 3.  This is explained by the identical pair of 

siblings present in Tree 4 and Tree 5.  Interestingly, Tree 10 has membership values that are 

roughly 1/c for both clustering techniques meaning that it is very different from all the other 

trees.  The fuzzy membership values mostly the same for both proximity fuzzy clustering and 

relational FCM. 
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Changing the weights wE, wP, wR, and wC can have an effect on the proximity matrix depending on 

the structure and semantics of the graphs.  If we set wR=2 and leave all other weights at their 

default values then the differences in the logical roles of the nodes are emphasized.  The number 

of clusters detected is c=2 and m=2.6 with the clusters being {Tree 1 – Tree 3} and {Tree 4 – Tree 

10}.  Increasing the weight has the effect of reducing the proximity values particularly among 

Trees 4 – 10, resulting in low membership values for those trees.  Setting wC=2 and leaving all 

other weights at their default values significantly reduces the membership values of most of the 

trees particularly Trees 2, 4, 5, 9 and 10; however, the overall clusters are unchanged.  Similarly, 

setting wP=2 with all other weights set to their default values causes no change in the final 

clusters but the membership values are significantly reduced with the exception of Trees 1 and 3.  

Finally, increasing the weight wE to wE=5 with all other weights set to their default values 

produces the clusters {Tree 1 – Tree 3} and {Tree 4 – Tree 10} where Trees 9 and 10 have very 

low membership values.  Most of the other membership values are greater than 0.8 except for 

Tree 5 which is at 0.7. 

In summary, we have shown that both proximity fuzzy clustering and relational FCM are suitable 

tools for clustering variability models which are graphs with very special properties, many of 

which are specific to software engineering. 

9.5. SOFTWARE REQUIREMENT ANALYSIS – CASE STUDY 

9.5.1. OVERVIEW 
As detailed in the previous section, the clustering of graphs based on their proximity is a relevant 

and increasingly prominent problem in software development and in particular in Software 

Product Line development. In addition, in previous section we have illustrated that a variety of 

(fuzzy) clustering techniques can be used to cluster graphs based on their respective proximity to 

each other. 

To demonstrate and analyze the usability and accuracy of these clustering approaches within the 

context of clustering variability models for SPL development, we perform the clustering of a 

variety of variability models of the Crisis Management System (CMS) case, which was first 

published in [113]. In this section, we will first introduce the CMS case and details of its data sets 

that are used in this case study. This is followed by the derivation of proximity values for a variety 

of criteria and the description of the subsequent clustering results. Finally, we examine and 

compare the results of the various clustering methods with respect to the SPL development 

context. 

9.5.2. CASE STUDY: CRISIS MANAGEMENT SYSTEM 
The CMS is a software system that automates the coordination of crisis situations, ranging from 

identifying the occurrence of a crisis, dispatching resources such as ambulances to reporting and 

storing the completion of the crisis. The objective of a CMS when faced with a crisis situation 

such as natural disasters or terrorist attacks is stated as [113]: 

“Crisis management involves identifying, assessing, and handling the crisis situation. A 

crisis management system facilitates this process by orchestrating the communication 

between all parties involved in handling the crisis. The CMS allocates and manages 

resources, and provides access to relevant crisis-related information to authorized 

users of the CMS.” 

The CMS covers a large set of responsibilities and the case description introduces approximately 

35 textual requirements that describe the base functionality and quality of service that is to be 
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Figure 49. Variability Model Fragments of the Crisis management System  
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expected of the CMS. The case description in [113] also makes clear that the CMS case in essence 

describes an SPL, as a typical instantiation of the CMS will be more specialized, e.g. a car crash 

CMS or an airport CMS. To illustrate some of the functionality provided by a CMS SPL, consider 

the variability model fragments depicted in Figure 49. 

In this figure, fragments of three possible decompositions of the CMS SPL are depicted based on 

the requirements specification provided by the case description. The actual variability models of 

the CMS contain a significantly large amount of nodes. Due to size and readability constraints, 

the inclusion of the full trees has been omitted.  It can be seen that the various responsibilities, 

such as Crisis Coordination and Communication Facilities are part of the CMS and depending on 

the viewpoint and reusability needs end up in different segments of the variability models. Each 

of the nodes in these variability models is attributed with a description in natural language 

detailing the responsibilities of the sub-concept. 

9.5.3. CRISIS MANAGEMENT SYSTEM DATA SETS 
As stated in the previous subsection, the CMS case describes a range of crisis management 

systems which can be captured in a single SPL. But as we underlined in Section 12.5.2, there is no 

single correct variability model that contains the right decomposition of concepts for the CMS. 

Developers of the CMS SPL therefore need to access a knowledge base of variability models of 

CMS systems. To represent such knowledge bases, we have compiled two data sets of variability 

models that describe the Crisis Management System. 

Data Set 1  

The first data set consists of 15 variability models of the CMS that originate from various sources. 

Seven have been produced using an automated tool called Arborcraft [207]. Arborcraft was 

provided with the textual description of the CMS case and the derivation process was executed 

with various different parameters. Also, the CMS description was provided to expert software 

designers to provide three variability models. The data set is completed by including variability 

models that result from a related textual description of a more specialized crisis management 

system, which has resulted in one expert-derived and four Arborcraft derived variability models. 

Data Set 2 

The second data set consists of 14 variability models, again a combination of manually and 

automatically derived. The majority again is based the original CMS description and for the 

automated derivation an improved version of Arborcraft is used. Also, three manually derived 

variability models of the CMS description are included. This set is complemented with three 

models from the specialized CMS description. 

The models in these sets have been clustered with respect to three criteria: Logging, Missions 

and Strategies. Each of these criteria defines a number of nodes based on which the proximity of 

the models in the data set is calculated and consequently the clustering is performed. Each node 

in a criterion is represented by a textual description of the sub-concept it represents. 

9.5.4. CLUSTERING RESULTS 
The data sets are clustered using proximity fuzzy clustering which determines the optimal 

number of clusters c and the optimal value for the fuzzification coefficient m automatically.  We 

also perform relational FCM clustering for comparison with the same number of clusters.  The 

results for data set 1 are shown in Table 36 and the results for data set 2 are shown in Table 37.  

The variability models M1-M29 are described in Appendix B. 
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Table 36. Clustering results for data set 1 

Data Set 

1 

Proximity Fuzzy Clustering Relational FCM 

c m Clusters c m Clusters 

Logging 3 2.3 {M15}, 

{M7,M11,M12,M13}, 

{M1,M2,M3,M4,M5,M6,M8,M9,M10,M14} 

3 2.0 {M8,M9,M10}, 

{M7,M11,M12,M13}, 

{M1,M2,M3,M4,M5,M6,M14,M15} 

Missions 3 4.0 {M1,M2,M3,M4,M5,M6,M7,M11}, 

{M8,M9,M10}, 

{M12,M13,M14,M15} 

3 2.0 {M1,M2,M3,M4,M5,M6,M7,M11}, 

{M8,M9,M10}, 

{M12,M13,M14,M15} 

Strategies 2 4.0 {M1,M2,M3,M4,M5,M6,M7,M11}, 

{M8,M9,M10,M12,M13,M14,M15} 

2 2.0 {M8,M9,M10,M12,M13,M14,M15}, 

{M1,M2,M3,M4,M5,M6,M7,M11} 

Table 37. Clustering results for data set 2 

Data Set 

2 

Proximity Fuzzy Clustering Relational FCM 

c m Clusters c m Clusters 

Logging 3 4.0 {M16,M19,M20,M24,M25,M26,M28}, 

{M17,M21,M22,M27}, 

{M18,M23,M29} 

3 2.0 {M16,M19,M20,M24,M25,M26,M28}, 

{M17,M21,M22,M27}, 

{M18,M23,M29} 

Missions 3 2.7 {M16,M17,M22,M23,M27}, 

{M20,M21,M24,M25, M26}, 

{M18,M19,M28,M29} 

3 2.0 {M20,M21,M24,M25,M26}, 

{M16,M17,M22,M23,M27}, 

{M18,M19,M28,M29} 

Strategies 2 4.0 {M18,M19,M20,M21,M24,M25,M26,M28,M2

9}, 

{M16,M17,M22,M23,M27} 

2 2.0 {M18,M19,M20,M21,M24,M25,M26,M28,M29

}, 

{M16,M17,M22,M23,M27} 

The cardinality values (sum of membership values) of the fuzzy clusters are given in Table 38 

Table 38. Cardinalities of the fuzzy clusters 

Data Criterion Proximity Fuzzy Clustering Relational FCM 

Data Set 1 Logging {2.5,4.3,8.2} {4.1,4.6,6.2} 

Missions {5.8,5.0,4.2} {6.4,4.5,4.1} 

Strategies {8.6,6.4} {6.4,8.6} 

Data Set 2 Logging {5.2,4.8,3.9} {5.5,4.6,3.9} 

Missions {4.8,5.0,4.2} {4.8,4.8,4.3} 

Strategies {7.0,7.0} {7.5,6.5} 

The fuzzy membership values for proximity fuzzy clustering and relational FCM are given in the 

Figure 50 and Figure 51. 
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Figure 50. Partitioning of Data Set 1 
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Figure 51. Partitioning of Data Set 2 
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Graphs M14 and M15 in the Logging Data Set 1 have considerably lower membership values with 

relational FCM which results in a significant difference in the overall clusters.  The clustering 

produced by proximity fuzzy clustering is closer to the result expected by an expert since the 

relational FCM is unable to determine that M15 belongs in its own cluster as it is very different 

from the other graphs.  The clustering results of proximity fuzzy clustering and relational FCM are 

otherwise quite similar. 

We also performed a simple synthetic evaluation of proximity fuzzy clustering and relational FCM 

where the proximity matrix was the identity matrix and the number of clusters was equal to the 

number of graphs, i.e. the graphs were all extremely distinct.  Proximity fuzzy clustering placed 

each graph in its own cluster as expected; however, relational FCM was unable to place each 

graph its own cluster since several clusters contained multiple graphs.  As a result, we conclude 

that proximity fuzzy clustering is able to detect single-graph clusters quite well whereas relational 

FCM has difficulty detecting clusters consisting of only one graph.  The situation where we have 

one or two graphs that are very different from each other and thus belong in their own clusters is 

quite common in software engineering. 

9.5.5. CLUSTERING RESULTS IN THE CONTEXT OF SOFTWARE REQUIREMENTS 

ANALYSIS 

9.5.5.1. DERIVING STRUCTURING ADVICE FROM CLUSTERING 

In the previous section, we have demonstrated that relational and proximity clustering can be 

applied to group variability models used in Software Product Line development for a particular 

criterion of interest. The application of these results lies in the structuring advice for new 

variability models that can be derived from the achieved clustering, as detailed in Section 12.4.2. 

In this section we interpret the clustering results of the previous section to demonstrate how 

such structuring advice can be derived from the clustering of the variability models. 

To illustrate the use of the clustering as design advice, we examine the result when Data Set 1 is 

clustered for the Logging criterion. The clustering that results when using proximity clustering is 

the following: 

Cluster 1: {M15} 

Cluster 2: {M7,M11,M12,M13} 

Cluster 3: {M1,M2,M3,M4,M5,M6,M8,M9,M10,M14} 

Each of these clusters contains variability models that structure the nodes described in the 

Logging criterion in a similar manner. It can be seen that the cluster 3 with 10 elements by far is 

the largest cluster. This means the structuring of the nodes in the Logging criterion used in this 

cluster occurs more frequently than the structuring used in the other clusters. 

When we examine the variability models contained in these clusters, we find they all represent a 

distinct way of structuring the nodes in the Logging criterion. The models in cluster 3 contain 

(almost) all the nodes described in the Logging criterion. Moreover, the models invariably group 

these nodes closely together to form an important sub-concept of the variability model. This is 

illustrated by the model fragments depicted in Figure 52.  
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In this figure, fragments of four variability models in cluster 3 are depicted. In each of these four 

fragments, the four nodes of the Logging criterion, Normal Log, Critical Log, Warning and Push 

Broadcast, are grouped closely together. In particular the nodes Normal Log and Critical Log are 

always grouped under the same parent. Also, it can be seen that the node Push Broadcast 

frequently occurs with the sibling node Push. Software developers can interpret this as advice to 

consider including this functionality as it appears to be strongly related to the Logging criterion. 

The models contained in the cluster 2 do not contain any of the nodes in the criterion as they 

describe crisis management systems that do not incorporate facilities for logging activities during 

 

Figure 52. Fragments of Variability Models of Cluster 1 
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crisis management. When analyzing variability models this is likely to occur and it can also be 

interpreted as structuring advice; rather than indicating how the nodes of criterion are to be 

structured, the advice that can be derived from this cluster is to not include logging facilities in 

the new crisis management system. This advice can prevent the inclusion of a surplus of 

functionality and over-engineering of a new Software Product Line. 

The single variability model contained in cluster 1 only contains a small amount of the nodes of 

the Logging criterion which have scattered across the variability model. The lackluster structuring 

hints at a badly designed variability model compared to the other models in the data set. This is 

underlined by the fact that the cluster only contains a single model. Based on the low cardinality, 

the cluster can be dismissed as irrelevant for structuring advice. 

Interesting to note is the difference in clustering that results from relational clustering for the 

Logging criterion with data set 1. In this clustering model M8, M9 and M10 are grouped 

separately. When these models are examined, it is clear that they group the nodes of the Logging 

criterion together, but at a different location in the models (further away from the root). While 

technically this can be seen as different structuring advice, considering the semantics of 

variability models the grouping provided by proximity clustering comes closer to the intuition of 

software developers. 

9.5.5.2. REFLECTING ON STRUCTURING ADVICE FROM CLUSTERING 

The structuring advice that can be derived from clustering results as demonstrated in the 

previous section cannot be seen as sufficient for actual decision making during software 

development activities. Rather, the role of such information lies in providing decision support, 

providing the software developer with potentially interesting pieces of information that can 

trigger new ideas to improve the design and development of the software system. However, it is 

very important that the developer be provided with accurate figures about the quality of the 

structuring advice to consider it accordingly. 

The numerical properties provided by our approach enable the developer to assess the quality of 

the structuring advice. The clustering that results consists of fuzzy sets. The membership degree 

of each variability model in a specific cluster can be used as in indicator for the importance of the 

structuring advice it contains. When a model has a membership value close to 0, its structuring 

advice should be considered less for that particular cluster. In the case study this can be seen by 

examining Figure 52. The fragment at the right top depicts a somewhat different way of 

structuring the logging functionality than the other three fragments in spite of belonging to the 

same cluster. Before merging all the logging concepts, part of the CMS functionality is combined 

with it. As it turns out, the model to which this fragment belongs also has a lower membership 

value than the other three, which means the importance of this fragment for the derived 

structuring advice can be reduced. 

Moreover, the use of fuzzy sets allows us to provide a more accurate representation of the 

cardinalities of the clusters, which is used by the developer to identify the most important 

structuring advice. For example, in Table 36 it can be seen that the clusters for the Mission 

criterion and data set 1 have a cardinality of 8, 4 and 5. However, Table 38 indicates the actual 

cardinalities of the fuzzy sets from which they are derived are 5.8, 5.0 and 4.2, which means the 

choice for the cluster with the highest cardinality is not as trivial as it seems. By including such 

information in the structuring advice, its value and credibility becomes more apparent to the 

software developer. This can then be used by the developer to refine the clustering or further 

examine interesting elements provided by the clustering result. 
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9.6. CONCLUSIONS 

We presented a novel approach to clustering a collection of graphs, particularly we have 

successfully demonstrated the application in the domain of software requirements engineering.  

A novel proximity function, which measures the proximity between pairs of graphs, is also 

presented based on a modified edit distance which includes measuring the proximity between 

nodes (ie. software attributes) in the variability model according to the requirements description.  

We do this in order to produce a more accurate measure of proximity between variability 

models.  Our clustering results closely match the expected partitions produced by an expert who 

independently and manually partitioned the graphs.   

In addition, we demonstrated how this approach can be applied to search for best practices in 

structuring new variability models during Software Product Line development by examining a 

knowledge base of existing models. By clustering the models in the knowledge base based on a 

provided criterion of interest, frequently used ways of structuring the criterion can be identified 

and used to provide decision support to the software developer on how to structure the model. 

Moreover, the quality and reliability of this advice can be communicated to the developer by 

using attributes and performance indicators of our approach, such as the cardinalities and 

cohesion of the resulting clusters. 

Although the data used in our case study is derived from real-world variability models, acquiring 

a complete set of real variability models is rather difficult.  An important future direction of this 

research therefore focuses on acquiring a collection of real variability models.  We aim to apply 

the system in practice in order to evaluate its effectiveness and suitability to software engineers 

in future work.  The tool will be used to provide software developers valuable advice in reusing 

the design aspects of a real software project. 
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10. TIME SERIES PREDICTION WITH PROXIMITY-BASED 

FUZZY CLUSTERING 
Data that changes with time is a very common occurrence in fields such as economics, 

environmental sciences, astronomy, physics, chemistry, biology, and many others.  A common 

question presented is that when given a sequence of time-varying data, are there temporal 

tendencies in the past that provide clues for potential future time series behaviour?  More 

specifically how can historical information be used to effectively predict future data samples?  

The aim of this study is to build a time series prediction model to accomplish that.  

Mathematically the system is described by an expression (10-1) that predicts such data one 

sample into the future 

 ( ) ( ) ( ) ( )( )ˆ 1 , 2 , ,
order

x t G x t x t x t q= − − … −  (10-1) 

where t is the time index of the sample to be predicted, ( )ˆ  x t is the predicted sample, 

( ) ( ) ( )1 , 2 , ,  orderx t x t x t q− − … − are known historical samples in the time series, and G is the 

underlying model of the time series of order qorder.  A logical extension to this system is to predict 

several samples, say n-samples, into the future. 

Traditionally one would use an autoregressive (AR) model in place of F; however, such a model 

has limiting prediction power for several reasons 

1. Model linearity – not able to handle non-linear temporal behavior 

2. Model stationarity – not able to handle non-stationarity in time series 

In order to circumvent these issues, a recurrent neural network can be used in place of F; 

however, a neural network is a black-box with no known way to interpret the meaning of the 

network weights once learned.  Additionally a recurrent neural network often has difficulty when 

learning from a time series with highly varying dynamics since the network needs to learn all 

aspects of the dynamics of the series using only the global model or the “big picture.”  A more 

beneficial approach would be to build several smaller models that exceed well on learning and 

predicting “localized” time series dynamics. 

We propose an architecture that addresses both the transparency issue and the global modeling 

issue using a fuzzy inference system (FIS) designed in such a way to break the model into a 

collection of rules encapsulating local models that exceed at prediction of localized regions in 

time series behaviour [75].  Our goal is to create a fuzzy rule-based system such as the one 

depicted in Figure 53. 
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Figure 53. Example of Fuzzy Rule-based Architecture 

In this example, the recurrent neural networks (RNN) form predictive models that are specialized 

for specific recurring patterns discovered in the time series via clustering.  These recurring 

patterns form the antecedents (or conditions) of the rules.  The motivation behind this 

architecture is that the rules provide important information regarding the structure of the time 

series.  Therefore, discovering structure in the time series via clustering is an important focal 

point in this chapter.  Standard Fuzzy C-Means (FCM) clustering was used in the past to 

determine the antecedents of the fuzzy rules with an Adaptive Neural Fuzzy Inference System 

(ANFIS), cf. [75].  Unfortunately, FCM has serious limitations since it is constrained to using the 

Euclidean distance which is not well suited for measuring the distance between the time series.  

This study aims to address this issue by using an improved FIS prediction architecture that 

replaces FCM with proximity-based fuzzy clustering alleviating this problem. 

We follow the standard notation used in fuzzy modeling, time series and statistics.  The finite 

length discrete-time series is denoted by {x(t)} t=1,2,...,T where T is the number of samples in this 

series.  The predicted values of the time series at instant “t” is denoted by .  A data set X of N 

sub-time series (temporal segments) formed on a basis of {x(t)} is constructed as  

{ }1 2X , , , , ,t N= … …x x x x  where ( ) ( ) ( )
T

1 , 2 , ,t x t d x t d x t= + − + − …  x  is a vector of 

dimensionality d which represents a sub-time series of d samples for n=1,2...T such that the size 

of the data set is N=T-d.  The expectation or mean of a time series taken from statistics is given 

by ( ) ( ){ } ( )
1

1 T

x t

t

E x t x t
T

µ
=

= = ∑ . 

10.1. MODEL ARCHITECTURE 

The topology of individual rules in the TSK (Takagi-Sugeno-Kang) fuzzy model used for prediction 

of time series shares some features that are common to all rule-based models.  There are also 

some features that are specific to the dynamics of the underlying time series.  The general 

architecture of the TSK model is shown in Figure 54.  The underlying rules come in the form 

 ( ) ( ) ( ) ( )( )IF      THEN  1 , ,
t i t i i order
is f y t g x t x t q= − … −x x  (10-2) 
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Figure 54: An architecture of the TSK model 

The network exhibits several layers: 

Input layer. The inputs x(t-1), x(t-2), …, x(t-d) are provided through a tapped delay line of length 

“d.” The length of the delay line is reflective of the dynamics of the time series. 

Layer of fuzzy relations. This layer consists of “c” fuzzy relations (multidimensional fuzzy sets) f1, 

f2, …, fc formed in the Cartesian product of the tapped samples.  At this layer we transform the 

multidimensional samples into the corresponding degrees of activation (degrees of firing) of the 

corresponding rules. 

Conclusion (RNN) layer. The layer consists of local recurrent neural networks of order orderq d≤ , 

RNN-1, RNN-2, …, RNN-c which accept inputs from the input layer.  The local nature of the 

processing here pertains to the fact that the results of processing provided by the RNN-j are 

taken into account by the rule-based system when the corresponding inputs are within the realm 

of the fuzzy relation fi (which triggers acceptance of these results at the degree of activation of 

the condition part fi). 

The sub-models if  for i=1,2,…,c for the rule consequents is a recurrent neuron expressed as 

 ( ) ( ) ( )( ) ( )
1

1 , ,
orderq

i i order i ij

j

y t g x t x t q g b x t j w
=

 
= − … − = + − 

 
∑  

(10-3) 

where g is the activation function, bi is the bias, and wi, j=1,2,…,q are the weights of the time 

delayed input vector.  The details of the recurrent neuron model are depicted in Figure 55. 
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Figure 55: Processing realized by the neuron 

Aggregation layer. At this layer, the results produced by the local RNNs are aggregated given the 

respective levels of “firing” of the condition parts, f1, f2, …, fc.  The aggregation comes in the same 

format as commonly reported in rule-based systems.  More specifically, let zi(t) denote the 

activation level of the i-th condition, that is [ ] ( )i i nz n A= x  while the results 

produced by the networks are equal to y1(t), y2(t), …,yc(t), respectively.  The result of aggregation 

is then taken as a weighted sum 

 ( ) ( ) ( )
1

ˆ
c

i i

i

x t z t y t
=

=∑  
(10-4) 

The aggregation is designed to combine the predictive power of the local models to form a global 

model that performs exceedingly well. 

10.2. NETWORK DESIGN 

The development of the network consists of two main phases.  First, we construct information 

granules – fuzzy sets in the input space which constitute a condition part of the rules.  Second, 

we optimize the parameters (connections) of the recurrent neural networks. 

10.2.1. GRANULATION OF INPUT SPACE THROUGH PROXIMITY FUZZY CLUSTERING 
We introduce a new algorithm for learning the fuzzy relations of the if-then rules by using 

proximity-based fuzzy clustering.  Our goal is to discover clusters in the data through proximity 

fuzzy clustering.  These clusters represent common patterns or behaviour in the time series 

which will then be used to form antecedents in the fuzzy rules.  The granulation of the time series 

is given in terms of the prototypes of the clusters.  The prototypes are therefore commonly 

observed sub-sequences in the time series. 

An important problem is the selection of the proximity function in proximity fuzzy clustering.  The 

commonly used correlation function is an appropriate choice since correlation measures the 

similarity in terms of behaviour between two time series.  In other words, the assumption is that 

highly correlated time series should be placed together in the same cluster.  The proximity 

between two sub-sequence time series 
1 2
,t t ∈x x X  vectors of dimensionality (length) d is given 

by 
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 ( )
( )( ){ }1 21 2

1 2

1 2

1
, 1

2

t t

t t

t t

t t

E
p

µ µ

σ σ

 − − = + 
 
 

x x

x x

x x
x x  

(10-5) 

where the mean is given by { }
11t
tEµ =

x
x  is the expectation value of the time series, and 

( ){ }11 1

2

E
t ttσ µ= −x xx  is the standard deviation of the time series.  The linear transformation 

with the 0.5 constants is used to ensure the proximity values are in the interval [0,1].  Thus time 

series that are highly correlated statistically will have high proximity values close to 1 and time 

series that are highly anti-correlated statistically will have low proximity values close to 0.  This is 

highly desirable as correlated time series have very similar dynamic behaviour while anti-

correlated time series have very different dynamic behaviour.  We demonstrate the benefits 

procured by clustering a simple time series shown in Figure 56 with d=10 using proximity fuzzy 

clustering and Fuzzy C-Means (FCM). 

 

Figure 56. Example Time Series 

The time series was dividing using a horizon length of d=10.  The prototypes produced by 

clustering for c=2 and c=4 is shown in Figure 57 for FCM and proximity fuzzy clustering. 

This simple example illustrates the utility of proximity fuzzy clustering to time series clustering 

including the learning of the antecedents in the TSK time series prediction described in this 

chapter.  The prototypes produced by FCM do not resemble the original time series and exhibit 

the sinusoidal behaviour as discussed in [139].  However, proximity fuzzy clustering produces 

prototypes that are more informative as they more closely resemble the behaviour found in the 

original time series.  When the number of clusters is four, the clusters represent behaviour that 

can be attributed with linguistic descriptions that directly correspond to behaviour observed in 

various parts of the time series, i.e. up, down, peak, valley. 
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(a) FCM c=2, m=2 

 

(b) FCM c=4, m=2 

 

(c) Proximity fuzzy clustering c=2, m=2 

 

(d) Proximity fuzzy clustering c=4, m=2 

Figure 57. Prototypes for clustering with FCM (a) & (b) and proximity fuzzy clustering (c) 

and (d) for c=2 and c=4 respectively 
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We cannot employ FCM as a clustering vehicle since the calculation of the prototypes depends 

on the assumption of a Euclidean feature space.  Thus we employ proximity fuzzy clustering.  The 

prototypes are determined post-mortem clustering by selecting the time series with the 

maximum proximity to the implied cluster prototype qij according to the following expression 

 
1

 where arg max
ii k i ij

j N
k q

∀ = …
= =v x  (10-6) 

for i=1…c.  Hence, the prototypes summarize the time series dynamics captured by the 

antecedent in the rule.  A method of calculating membership fi(xt) post-training is then 

accomplished using the expression 

 ( )
( ) ( )
( ) ( )

( )
( )

2 2

1 1

1 1

1 1

, , 1 ,

, , 1 ,

i t

m m
c ct t t i t i

h h
t t t h t h

f

p p p

p p p

− −

= =

= =
   − −
      − −   

∑ ∑

x

x x x v x v

x x x v x v

 
(10-7) 

for i=1…c given a new input xt.  The level of membership fi(xt) in the antecedent controls the 

strength of contribution of the local models for each rule i=1…c. 

10.2.2. LEARNING OF RECURRENT NEURAL NETWORKS 
The weights of the neurons are determined by off-line gradient descent which consists of several 

iterations of on-line gradient descent.  The mean squared error [139] is the objective function of 

the on-line gradient descent algorithm described as 

( ) ( ) ( )( )2
ˆ

1

2
MSE t x t tx= −  

(10-8) 

where MSE(t) is the squared error at time t.  The update rule for the weights of the neurons in 

the rule consequents is 

 ( ) ( ) ( ) ( )( ) ( )'ij i iw t e t z t g net t x t jη∆ = −  (10-9) 

where η  is the learning rate and ( ) ( ) ( )
1

orderq

i i ij

j

net t b x t j w t
=

= + −∑ , cf. [139]. he term wij(t) denotes 

the weights at the current time “t.”  We have explicitly used the notation wij(t) to emphasize that 

the values of the weights change with any time a new data sample is considered in the 

optimization process.  The update rule described by equation (10-9) governs the on-line learning 

procedure since the weights are updated without seeing the entire time series that is the weights 

are updated using the current sample and previous samples.  It is possible to improve 

convergence by evaluating the update rule given in (10-9) several times when a new sample is 

presented to the system rather than once [139].  The number of times the on-line update rule is 

applied each time a new sample point is presented to the system is referred to as the number of 

adaptive passes. 

Off-line learning is accomplished by successively completing several on-line learning iterations 

over the entire time series.  In this chapter, an on-line learning iteration is referred to as an 

epoch. 
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10.3. EXPERIMENTS 

Several synthetic and real-world experiments are conducted.  The Mackey Glass is a common 

time series prediction benchmark used in literature [96].  The Wolf sunspot time series for years 

from 1749-2005 obtained from [192] is another common time series prediction benchmark.  The 

Lorenz time series obtained from [205] is also used for time series prediction.  Three real data 

sets obtained from the website [94] were used including annual oil prices from 1870 to 1997 

[94], time series of star magnitude brightness [94], and daily IBM stock price from 1980 to 1992 

[94].  The mean is subtracted from the time series and each time series is scaled to amplitude 

values well within the interval [-1,1] due to squashing feature of the activation function.  The 

activation function g used in the following experiments is sigmoid, namely 

 ( ) 2
1

1
u

g u
e

= −
−

 
(10-10) 

To evaluate the overall prediction performance, the mean squared error (MSE) and non-

dimensional error index [96] (NDEI) is used.  The NDEI is the root-mean-squared (RMS) error 

divided by the standard deviation of the test time series being predicted, i.e. 

 

( ) ( )( )2

1

1
ˆ

T

t
x t x t

MSE T
NDEI

σ σ

=
−

= =
∑

x x

 

(10-11) 

where σx is the standard deviation of the test time series x(t).  To avoid including the transition 

region in the error calculations, the test time series is divided in half and the performance indices 

are calculated for the latter half of the test time series. 

10.3.1. EXPERIMENTAL DATA 
The experiment signals used to evaluate the performance of the FIS time series prediction model 

are described here including Mackey glass, Wolf sunspot, Lorenz, oil prices, star brightness and 

daily IBM stock prices.  The mean is subtracted from each time series and the time series scaled 

by a scaling factor to reduce the standard deviation of the time series to less than one.  This is a 

direct result of the inability of the recurrent neural networks to predict values outside of this 

interval due to the activation function. 

MACKEY GLASS 

The Mackey Glass [96] is a commonly used continuous time-delay differential equation in non-

linear prediction that exhibits chaotic behaviour.  The time series is governed by the following 

formula 

 
( )
( )

( )
3

2 4

1

41
a

a x t adx
a x t

dt x t a

−
= −

− −
 

(10-12) 

where 1 2 3 4, , ,a a a a ∈R  are constants.  The values of the parameters most commonly used in 

literature are a1=0.1, a2=0.2, a3=10 and a4=17 where at the initial time t0=0, x(t0)=1.2 [96].  The 

differential equation is approximated by the 4
th

 order Runge-Kutta algorithm with the time step 

equal to 1.  The training time series set consists of 500 samples as done in [96] while the testing 

time series has 2499 samples. 
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WOLF SUNSPOT 

The Wolf sunspot time series for 1749 to 2005 was obtained from 

http://www.spaceweather.com/java/archive.html [192].   The sunspot time series is the monthly 

average number of sunspots on the sun.  The scale factor is 1/500.  The training time series 

consists of the first 1500 samples and the testing time series consists of the last 1581 samples.  

LORENZ 

The Lorenz time series is a long synthetic chaotic time series obtained from 

http://www.physics.emory.edu/~weeks/research/tseries1.html [205].     The time series was 

scaled by 1/50.  The training time series consists of the first 2000 samples and the testing time 

series consist of the last 2000 samples.  There are a total of 16384 samples. 

OIL PRICES FROM 1870 TO 1997 

The average annual price of oil time series is a small data set with 128 samples obtained from 

[94].  The first 64 samples were used for training and the last 64 samples were used for testing.  

The time series was scaled by a factor of 1/50. 

STAR BRIGHTNESS 

The brightness of a star was measured for 600 successive midnights and the data set is obtained 

from [94].  The time series was scaled by a factor of 1/30.  The first 300 samples were used for 

training and the last 300 samples were used for testing.  

DAILY IBM STOCK PRICE FROM 1980 TO 1992 

The daily closing IBM stock price from 1980 to 1992 is obtained from [94].  The time series was 

scaled by a factor of 1/100.  The first 1500 samples were used for training and the last 1833 

samples were used for testing. 

10.3.2. ONE-STEP PREDICTION RESULTS 
A number of experiments were performed on synthetic and real-world data described in the 

previous section.  The optimal parameters were chosen by running each data set 10 times across 

a set of parameters and the mean and standard deviation are reported.  The parameter set was 

determined separately for each data set by manually running experiments to determine 

approximate parameter values.  This information was used to construct a different set of 

parameters for each data set.  The mean squared errors (MSE) and NDEI (shown in parenthesis) 

are given in Table 39 and are compared to the best results obtained in [75]. 
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Table 39. One-step prediction results 

Data set New Proximity Architecture TSK-NFIS1 AR Neural 

Network 

 Train Test Test Test Test 

Mackey-

Glass 

5.94e-6±2.5e-7 

(2.36e-2±3e-4) 

1.17e-5±2.2e-7 

(2.97e-2±3e-4) 

2.18e-5 

(4.06e-2) 

3.20e-5 

(4.92e-2) 

2.89e-5 

(4.66e-2) 

Lorenz 7.36e-7±3.17e-7 

(5.36e-3±1.34e-3) 

1.57e-6±8.2e-7 

(7.62e-3±2.45e-3) 

3.26e-6 

(1.13e-2) 

5.99e-8 

(1.55e-3) 

1.32e-5 

(2.29e-2) 

Wolf 

Sunspot 

1.02e-3±1e-5 

(0.399±0.001) 

1.58e-3±5e-5 

(0.415±0.006) 

1.32e-3 

(0.380) 

1.36e-3 

(0.385) 

2.17e-3 

(0.486) 

Oil Prices 4.76e-3±1.9e-4 

(0.395±0.007) 

2.62e-2±9e-4 

(0.662±0.012) 

2.37e-2 

(0.629) 

2.44e-2 

(0.638) 

2.54e-2 

(0.650) 

Star 

Brightness 

3.04e-4±1e-6 

(5.81e-2±1e-4) 

3.08e-4±1e-6 

(5.88e-2±1e-4) 

3.31e-4 

(6.09e-2) 

3.22e-4 

(6.01e-2) 

3.11e-4 

(5.91e-2) 

IBM Stock 2.01e-4±1e-7 

(4.85e-2±2e-5) 

4.55e-4±1.7e-5 

(0.101±2e-3) 

2.22e-4 

(7.11e-2) 

1.82e-4 

(6.43e-2) 

2.36e-4 

(7.31e-2) 

There is significant improvement on the synthetic data sets (Mackey-Glass and Lorenz) and a 

small improvement on the star brightness data set over the TSK-NFIS architecture; thus, the new 

proximity architecture is a marked improvement in the quality of the prediction.  The results are 

fairly similar for the other data sets with the exception of the IBM stock data where the results 

are notably worse.  An interesting result is that the complexity of the model, i.e. number of rules 

“c,” order of consequent “qorder,” and order of fuzzy relations “d,” is significantly reduced on 

several of the data sets when compared to the architectures given in [75], particularly the 

Mackey-Glass, Wolf Sunspot and IBM stock data sets.  Also, the optimal number of rules is 

consistently c=2 for all data sets where each rule indicates a distinctive trend, i.e. “up” and 

“down.”  This result is intuitive because the Euclidean distance depends greatly on the magnitude 

of the time series amplitude where as the correlation measure is invariant to the total 

magnitude.  This results in much fewer and simpler rules than previous architectures such as TSK-

NFIS for similar and in some cases better performance.  The parameters used in the new 

proximity-based time series prediction architecture are given in Table 40. 

Table 40. Proximity-based time series prediction architecture parameters 

Data set d m qorder c Epochs  η  Activation Function 

Mackey-Glass 5 2 2 2 1000 0.1 Sigmoid 

Lorenz 20 1.3 3 2 500 0.1 Sigmoid 

Wolf Sunspot 20 3 8 2 500 0.1 Sigmoid 

Oil Prices 4 2 4 2 1000 0.1 Sigmoid 

Star Brightness 3 1.7 3 2 1000 0.1 Sigmoid 

IBM Stock 5 1.3 2 2 1000 0.1 Sigmoid 

The cluster prototypes (i.e. fuzzy rule antecedents) produced by proximity fuzzy clustering are 

shown in Figure 58. 

                                                                 
1 The results and associated parameters for TSK-NFIS, AR, and Neural Network models are found 

in [75] 
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Figure 58. Rule antecedents of the proximity architecture for c=2 

The error time series for each data set are shown in Figure 59. 
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Figure 59. Error time series for Mackey-Glass (t=1749–2999) (a); Lorenz (t=14384–16383) (b); 

Wolf Sunspot (t=2249–3080) (c); oil prices (t=64–127) (d); star brightness (t=450–599) (e); IBM 

stock prices (t=2250–3332) (f). 

10.3.3. P-STEP PREDICTION RESULTS 
The next set of experiments were conducted by performing p-step prediction where we use our 

one-step predictor architecture to predict several consecutive samples.  The optimal parameters 

of the architecture are selected in the same manner as one-step prediction.  We report the 

results for the best performance of five runs for each architecture since the performance can 

vary dramatically depending on the initial set of weights.  The results for p-step prediction are 

shown in Table 41. 
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Table 41. p-step prediction results 

Data set New Proximity Architecture TSK-NFIS2 AR Neural 

Network 

 Train Test Test Test Test 

Mackey-

Glass 

1.53e-4 (9.77e-2) 3.77e-3 (0.603) 3.31e-3 

(0.565) 

1.39e-2 

(1.16) 

1.39e-2 (1.16) 

Lorenz 3.99e-3 (0.426) 7.96e-3 (0.557) 8.49e-3 

(0.693) 

1.39e-2 

(0.887) 

1.11e-2 

(0.887) 

Wolf 

Sunspot 

1.41e-3 (0.470) 2.28e-3 (1.09) 1.89e-3 

(0.989) 

4.39e-3 

(1.51) 

3.38e-3 (1.33) 

The parameters of the proximity architecture used in producing the results in Table 41 are 

provided in Table 42.  

Table 42. Parameters for p-step prediction 

Data set d m qorder c Epochs η  Activation Function 

Mackey-Glass 50 3 8 2 120 0.025 Sigmoid 

Lorenz 20 1.1 10 3 75 0.0005 Sigmoid 

Wolf Sunspot 20 3 10 2 400 0.0005 Sigmoid 

It is observed that the performance of the proximity architecture is better than the other 

methods on the Lorenz data set.  The performance on the Mackey-Glass and Wolf Sunspot are 

similar to that of TSK-NFIS and much better than the AR and neural network architecture.  It is 

worth noting that the number of rules with the proximity architecture is significantly smaller than 

the number of rules for TSK-NFIS on all of these data sets.   The number of rules for the Mackey-

Glass, Lorenz, and Wolf-Sunspot is significantly higher for the TSK-NFIS architecture where c=7, 

41 and 16 respectively.  Thus there is much less complexity in the rule-base for the proximity 

architecture with comparable performance.  Also, the p-step test performance of the proximity 

architecture on some of the data sets, most notably the Wolf Sunspot data set, are very 

consistent with each run starting with a different random configuration of weights.  This is unlike 

the results reported in [75] where there was significant variability in performance with each run. 

  

                                                                 
2 The results and associated parameters for TSK-NFIS, AR, and Neural Network models are found 

in [75] 
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11. STRUCTURAL MUSICAL SEGMENTATION 
The application of partially supervised clustering to structural musical segmentation is the central 

theme of this chapter.  Partially supervised learning will be evaluated in a time series 

segmentation problem involving the determination of structural transitions in digital music files, 

e.g. the time at which the verse transitions into the chorus.  Sections are devoted to the problem 

description, formulation of the feature space, and our approach to structural musical 

segmentation.  Finally the proposed approach is compared with several other state-of-the-art 

approaches developed in the literature. 

11.1. PROBLEM FORMULATION AND MOTIVATION 

Music contains high-level structural information in the form of phrases or melodies that are often 

repeated during the song.  In Western styles of music, its structural components consist of intro, 

verse, chorus, bridge, outro, etc.  Much can be gained by using computers to learn the location of 

the boundaries of these structural components in songs through a process called structural 

musical segmentation and herein simply called musical segmentation.  Musical segmentation is 

depicted in Figure 60. 

 

Figure 60. Structural musical segmentation 

The motivation of this research is to improve upon the current advancements in musical 

segmentation: the search for better performing systems is actively on-going.  A potential area of 

improvement is with the modeling and clustering of the features to form the segments.  It is 

assumed that the number of segments is known in this study.  The focus is on the determination 

of clusters which are then interpreted as segments. 

The motivation behind musical segmentation are its many potential applications including music 

thumbnail generation for sampling music from a very large database of music (such as iTunes), 

fast-forward mechanisms for jumping to the next musical component, music information 

retrieval, music summarization, and aiding in search or browse features of a large music 

database.  For example, musical segmentation can aid powerful search queries that look for 

matches of songs with similar choruses.  Consider a query for all the songs in the database that 

have a chorus very similar to “Hey, Jude.”  In order for such a query to be possible, a structural 

musical segmentation algorithm is necessary.  Also, consider the query find all songs with a 

“loud” introduction.  Another possibility is to do a search on songs with a certain sequence of 

structure such as intro, verse, verse, chorus, verse, chorus, solo, outro.  These types of queries 

could be used to narrow searches and help listeners or potential purchasers of music to find 

songs with styles they like.  A segmentation algorithm for music is also essential in thumbnail 

generation since one must find the most representative part of the song, usually the chorus, to 

present a preview of the song for listeners or potential buyers. 

The problem of musical segmentation is far from complete however since most research has only 

been conducted on popular music databases rather than on other styles of music like classical 
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music, Asian music and so on.  As well, the performance of the musical segmentation systems is 

not very high yet.  In addition, expert labeling of the music is subjective since the structural 

boundaries between segments are ill-defined.  Also, nearly all musical segmentation systems 

require the number of segments to be defined a priori which presents problems in real systems 

since this is not easily known beforehand. 

A short conference paper was recently presented regarding musical segmentation, c.f. [145].  

This work is extended in this study by applying proximity fuzzy clustering.  To recap, the MPEG7 

features are used to train a hidden Markov model (HMM) in order to construct a feature space 

for clustering (i.e. a time series of HMM state histograms).  The clustering algorithm used FCM 

with an augmented distance function that is the weighted sum of Euclidean distances between 

the histograms and the time stamps of each sample in the time series, c.f. section 3.6 (FCM-DFS).  

The results are mixed with some songs providing very good results and other songs below 

expected performance when compared to a simple reference clustering technique also used in 

[37]. 

The proposed segmentation procedure is to use proximity fuzzy clustering with some proximity 

hints.  An overview is provided in Figure 61. 

 

Figure 61. Schematic Overview of Musical Segmentation 

The steps are nearly identical to [145] and [37] except where the clustering is replaced by FCM-

DFS in [145] and constrained k-means in [37].  Clearly the construction of the feature space is an 

important research question in itself.  The reason for choosing this approach is that the local 

state histograms (i.e. the feature space) are shown to be well suited for clustering in [37].  

Proximity fuzzy clustering improves upon the approach by replacing constrained k-means 

clustering with partially supervised kernel-based fuzzy clustering. 

11.2. THE FEATURE SPACE 

The MPEG-7 standard, well-known for describing media and its digital storage, is employed in the 

automatic structural segmentation of music.  A considerable amount of pre-processing is 

performed identical to that in [37] and [145].  All music files were converted to mono 

uncompressed wave format and had a sampling rate of 44.1kHz.  A band spacing of 1/8
th

 octave 

is used to construct a series of power log-frequency spectrums called the 

AudioSpectrumEnvelope audio descriptors as outlined in the MPEG7 standard [111].  It is called a 

log-frequency spectrum since the sub-bands are logarithmically spaced.  The hop size (denoted 

hopSize) described in the standard was set to the period of the beat detected in the song.  The 

rationale is that each sample (i.e. spectrum) then corresponds to one beat in the song.  The 

software tool Matlab-XM (http://mpeg7.doc.gold.ac.uk/mirror/index.html) was used to detect 

the beat (hopSize).  This is the same software used in [145].  The authors in [37] report that 

accurately detecting the beat is not essential in the construction of the feature space.  The 

spectrums in the AudioSpectrumEnvelope features are normalized by the L2-norm.  The 
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dimensionality of each spectrum is then reduced to 20 dimensions with principal components 

analysis (PCA) thereby producing a feature vector of 21 dimensions called 

AudioSpectrumProjection in the MPEG-7 standard where the 21
st

 dimension is the relative power 

of the spectrum at that beat. 

The steps in producing the AudioSpectrumProjection features is accomplished according to the 

MPEG7 standard [111].  A hidden Markov model (HMM) is trained on the 

AudioSpectrumProjection sequence where multivariate Gaussian distributions are used to model 

the outputs of the states.  The objective in constructing an HMM is to determine a sequence of 

states in the song with the Viterbi algorithm.  Since each sample in AudioSpectrumProjection 

corresponds to a beat in the music, every beat corresponds to a state produced by the Viterbi 

algorithm.  The authors in [37] convincingly demonstrate that a small number states are unable 

to capture the high-level structural information of the song.  Thus, the number of states used to 

construct the feature space is n=80.  The objective is to use clustering to find patterns in this 

sequence of states.  However, the state sequence lacks any meaningful metrics for clustering.  

Hence, a local histogram of states is constructed denoted by h(t)=[h1(t), h2(t),… hn(t)] for t=1…T 

where n is the number of states, T is the length of the song, and hi(t) i=1…n is the count of the 

number of occurrences that state “i” appears in a window of w samples at time t.  The size of the 

window is set to w=11 samples where this value was determined by manually selecting its value 

and monitoring clustering performance.  The histograms are normalized, i.e. 
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for all values of t=1…T. 

11.3. SEGMENTATION: A PROXIMITY APPROACH 

A novel method of segmenting the local state histograms using proximity clustering is presented 

in this section.  Most segmentation approaches in the literature deal with single variable time 

series.  However, our problem involves the segmentation of a multivariate time series consisting 

of local histograms h(t) at time interval t.  One way to accomplished this is to employ partially 

supervised clustering where the temporal proximity of the histograms is included in the 

clustering as additional domain knowledge.  The goal is to segment the multivariate time series 

of histograms into its structural components in the music, i.e. intro, verse, chorus, bridge, etc.  

Under this framework, clusters produced by proximity fuzzy clustering form segments in the time 

series. 

A common measure of distance between two histograms is the Jensen-Shannon divergence, i.e. 
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where kl-div is the asymmetric Kullback-Leibler divergence computed via the expression 
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The proximity between histograms h(t1) and h(t2) at times t1 and t2 respectively is given by 
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where 2σ  is the kernel width parameter. One can use this measure of proximity to cluster the 

histograms with proximity fuzzy clustering in order to form a series of segments in the time 

series. 

Some additional domain knowledge is required to ensure that the clusters contain histograms 

that are contiguous in time.  Fortunately, there is time information associated with each 

histogram for t=1…T that can be exploited.  One way to measure the temporal proximity of 

histograms is to measure the proximity of histograms with respect to time; for example, h(t) and 

h(t+1) are close in proximity.  Therefore the temporal proximity between two histograms can be 

expressed as 

 ( )
2

2

1 2 1 22
( ), ( ) exptime

hopSize
p t t t t

δ
 

= − − 
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where δ

2
 is the kernel width of the temporal term and the hopSize is the number of seconds per 

beat (or sample).  The two kernel functions can be combined through addition since the sum of 

two kernel functions is also a kernel function, cf. [64].  Thus, proximity is expressed as a convex 

sum of two kernel functions in order to maintain the properties of the proximity function, i.e. 

 ( ) ( ) ( ) ( )( )1 2 1 2 1 2( ), ( ) 1 ( ), ( ) ( ), ( )hist timep t t p t t p t tα α= − +h h h h h h  
(11-6) 

 
where αϵ[0,1] is a parameter that denotes the amount of temporal knowledge used.  Note that 

α=1 results in no contribution from the histogram proximity function and α=0 removes the effect 

of including temporal information from the clustering. 

Finally, proximity fuzzy clustering is invoked using (11-6) as the measure of proximity between 

histograms. 

11.4. EXPERIMENTS 

11.4.1. DATA 
The data used to evaluate the musical segmentation algorithm are ten songs from Coldplay: 

• “Yellow” (S=10) 

• “A Message” (S=8) 

• “Fix You” (S=10) 

• “Swallowed in the Sea” (S=8) 

• “Talk” (S=9) 

• “A Rush of Blood to the Head” (S=11) 

• “In My Place” (S=10) 

• “Politik” (S=9) 

• “God Put a Smile Upon Your Face” (S=11) 

• “The Scientist” (S=9) 

The number of known segments is given in parenthesis (see Appendix C for details).  Each song 

was segmented manually by listening to the songs and the words to determine the points of 

structural change in the music.  The manual segmentation was performed by a trained and well-

versed musician.  The locations of the boundaries between segments described in Appendix C are 

treated as ground truth in this problem.    
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11.4.2. EVALUATION CRITERIA 
A variety of indices are used to evaluate the performance of musical segmentation.  The 

classification rate is used in these experiments, see section 2.1.11.  The boundary f-value is also 

used and is a direct comparison of the boundaries produced by the segmentation algorithm, i.e. 

clustering, and the boundaries given by a human expert in Appendix C. 

There are two steps to calculating the boundary f-value 

a) Determine the location of the boundaries between segments from the partition matrix  

b) Compare these boundaries with ground truth 

The first step in producing the boundary f-value is to determine boundaries from the 

membership matrix U=[uit] produced by the clustering for t=1…T and i=1…c (T is the length of 

song, and c is the number of clusters/segments).  This is accomplished by taking the maximum of 

the membership values according to the expression 
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where Lt is the index of the cluster, i.e. the cluster label.  The boundaries are determined by 

returning all values of t where 1t tL L −≠  for t=2…T.  This expression enforces continuity with 

respect to time in each segment.  The values of t where 1t tL L −≠  are stored in the set of 

boundaries {b1, b2, … bM} .  The number of segments denoted by S is one more than the number 

of boundaries, i.e. S=M+1.  Note that the number of segments “S” does not necessarily equal the 

number of clusters “c” used in the clustering.  When clusters are homogeneous and contiguous in 

time, S=c and therefore the clusters are identical to the segments.  This is a desirable property 

when using clustering algorithms to segment a time series.  However, in some cases S>c, meaning 

that some clusters were divided into more than one segment in different parts of the song as 

illustrated in Figure 62. 

 

Figure 62. Cluster contiguity example 

In this example, although the number of clusters is two, the number of segments is three, i.e. S=3 

and c=2.   It is also possible for S<c.  In this case, one of the clusters is empty. 

The second step in computing the f-value is to compare the boundaries with the ones given in 

Appendix C.  This is accomplished by determining nθ, the number of boundaries that fall with a 

threshold, θ=hopSize*w, of the human expert labeled boundaries in Appendix C.  The boundary 

precision and recall are given by 
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where B is the number of boundaries specified in Appendix C.  The boundary f-value is 
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11.4.3. RESULTS 
The proximity fuzzy clustering algorithm is compared with k-means constrained clustering [37] 

and FCM-DFS [145] on the ten songs.  The number of clusters is set to the number of known 

segments (see Appendix C).  The results are repeated 20 times.  The parameters used in the 

experiments were determined manually by monitoring the performance, i.e. classification rate 

and boundary f-value, and selecting the parameters with the best performance.  The mean and 

standard deviations of the number of boundaries M, classification rate, and boundary f-value (bf-

value) are reported in Table 43. 

Table 43. Musical segmentation performance 

Song Proximity Fuzzy Clustering FCM-DFS K-Means Constrained 

M CR (%) bf-value M CR (%) bf-value M CR (%) bf-value 

1 9.8±1.6 80.1±2.0 0.53±0.09 9.2±0.7 77.5±0.5 0.47±0.02 9.6±1.1 78.8±3.5 0.53±0.11 

2 7.0±0.0 88.8±0.0 0.62±0.00 7.0±0.0 89.2±0.0 0.62±0.00 11.3±1.1 78.2±5.0 0.49±0.07 

3 9.0±0.0 83.8±2.5 0.56±0.09 9.0±0.0 83.0±0.0 0.50±0.00 9.9±1.6 77.4±5.8 0.60±0.08 

4 8.4±0.9 87.8±2.6 0.55±0.12 10.9±2.8 83.4±1.6 0.33±0.10 10.5±1.7 73.2±5.6 0.42±0.12 

5 8.0±0.0 78.7±0.9 0.37±0.05 8.0±0.0 77.4±3.7 0.27±0.14 11.0±1.2 74.0±4.4 0.44±0.07 

6 10.4±1.0 89.1±1.2 0.63±0.07 10.2±0.9 83.6±0.1 0.32±0.07 14.0±1.6 88.0±2.3 0.58±0.08 

7 9.0±0.0 84.6±1.7 0.77±0.06 9.0±0.0 82.0±1.4 0.68±0.05 10.1±0.8 82.4±2.2 0.73±0.04 

8 8.8±1.5 84.0±1.9 0.73±0.06 8.0±0.0 88.3±1.0 0.65±0.05 15.1±1.3 71.2±3.6 0.64±0.06 

9 10.1±0.2 87.0±2.6 0.93±0.05 11.7±0.7 83.9±2.6 0.78±0.05 11.9±1.5 76.7±4.5 0.82±0.08 

10 8.4±1.2 73.8±1.1 0.40±0.02 8.0±0.0 74.7±0.0 0.27±0.00 8.7±1.0 68.6±5.1 0.41±0.08 

The best performances are highlighted in bold.  Proximity fuzzy clustering outperforms the other 

algorithms in nearly every case.  The parameters are reported in Table 44. 

Table 44. Musical segmentation parameters 

Song Proximity Fuzzy Clustering FCM-DFS K-Means Constrained 

m σ
2
 δ

2
 α m α dML σ

2
 λ 

1 1.4 350 400 0.025 1.8 0.1 16 2 0.1 

2 2.0 150 750 0.075 2.0 0.15 16 1 0.1 

3 1.2 200 550 0.05 2.0 0.1 16 2 0.1 

4 2.0 250 750 0.075 1.5 0.05 16 2 0.1 

5 1.3 275 450 0.075 1.4 0.2 24 2 0.2 

6 1.4 275 450 0.03 1.5 0.1 16 2 0.1 

7 1.2 200 600 0.05 1.4 0.15 16 1 0.15 

8 1.4 275 450 0.05 1.4 0.15 16 1 0.15 

9 1.4 250 450 0.025 1.5 0.05 16 2 0.15 

10 1.3 275 450 0.025 1.7 0.05 16 3 0.15 

The neighborhood size parameter dML from K-Means constrained clustering is set to 16 for most 

of the songs as suggested in the author’s work, cf. [122].  Several observations about the 

experiments are noted.  The temporal information was very important for the song “Talk” (song 

5).  FCM-DFS had difficulty accurately detecting the boundaries compared with the other two 

methods.  The K-Means constrained approach generally produced more segments, particularly 
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on the song “A Rush of Blood to the Head” (song 6).   Overall, proximity fuzzy clustering performs 

very well. 

11.5. CONCLUSIONS 

The proximity fuzzy clustering algorithm is shown to perform exceedingly well on segmenting this 

collection of music from various albums of the band Coldplay.  The diverse sounds in the music is 

particularly challenging for segmentation algorithms.  Despite the challenge, proximity fuzzy 

clustering is able to achieve high accuracy in both the classification rate and boundary f-value 

while keeping the number of segments low.  For example, in the some “God Put a Smile Upon 

Your Face,” (song 9) proximity fuzzy clustering is able to very accurately determine the 

boundaries.  K-Means constrained clustering produces more segments than the other methods 

particularly on the song “A Rush of Blood to the Head” (song 6).  Proximity fuzzy clustering 

improves the segmentation performance in nearly all the songs. 
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12. CONCLUSIONS 
The relatively new kernel-based fuzzy clustering algorithm was evaluated in our research.  It was 

demonstrated that non-spherical cluster shapes are possible and that the choice of the kernel 

function and its parameters is critical in accurate performance.  Unfortunately, there are no 

suitable frameworks provided in the literature for optimizing the structure and the parameters of 

the kernel function.  Our results led us to develop and analyze a comprehensive framework in 

partially supervised clustering where some additional domain knowledge, either in the form of 

proximity hints or class labels, is used to improve the clustering performance, achieve non-

spherical cluster shapes, and optimize the kernel function.  

The proximity fuzzy clustering algorithm is a novel approach to clustering where the kernel 

function is embedded in the concept of proximity.  We have evaluated proximity fuzzy clustering 

on several synthetic and widely used real-world data sets in order to better understand the 

benefits of the framework in its ability to automatically determine the optimal kernel parameters 

and to produce non-spherical cluster shapes.  We then successfully applied and demonstrated 

the benefits procured through this relationship of kernels and proximity through several different 

applications including 

• structural musical segmentation 

• time series clustering and prediction 

• graph clustering 

For example, with time series clustering and prediction, the feature space is poorly suited for the 

common assumption that the Euclidean metric is a suitable distance function.  Thus, we are able 

to demonstrate that using proximity to measure the similarity between time series produces 

better performance and simplified models.  We have shown that there is a significant benefit to 

partially supervised learning and proximity fuzzy clustering when compared with traditional 

clustering approaches.  The problem of clustering a set of graphs is an important problem that 

can be solved using proximity fuzzy clustering and relational FCM.  Our approach is successfully 

demonstrated using a case study in software engineering by clustering variability models – a task 

that not been done yet in the literature. 

Our research is significant in both theoretic and practical advances as our proposed framework 

• allows for a variety of non-hyper-spherical cluster geometries 

• reduces the number of clusters 

• improves the accuracy of the clustering performance 

• provides meaningful mechanisms for determining the optimal set of parameters 

• provides a mechanism for active learning 

• reconciles proximity from multiple difference sources 

A serious limiting factor in partially supervised learning is that there are many sources and forms 

of domain knowledge.  Thus, the theoretical developments in partially supervised learning is still 

very much incomplete since a number of open research problems remain including 

• selecting the proximity function (structural optimization), 

• obtaining the proximity labels in partially supervised learning, 

• ensuring the labels given by a human expert are of high quality, 

• developing new frameworks for other forms of domain knowledge 

We envision that while partially supervised clustering can offer substantial advantages over the 

existing “traditional” clustering, it opens up interesting new applications in the future that could 
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otherwise not be contemplated.  The music recommendation system described in the 

introduction (see Figure 2), is an example of a system that is not realizable in a fully supervised 

learning environment due to the diversity of music and the many songs that must be labeled.  

Therefore, the application of partially supervised learning to the problem of recommending 

music is an interesting future application of this research. 
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APPENDICES 

APPENDIX A: INCORPORATING SEMANTIC PROXIMITY OF NODES IN THE 

PROXIMITY FUNCTION 

When the nodes are not perfect matches but exhibit proximity, a combined semantic and 

structural proximity measure can be derived. We define two nodes to be similar when the 

concepts they represent are similar. We assume the function Match(f1,f2) exists, which gives the 

semantic proximity of the concepts of nodes f1 and  f2 expressed on the domain [0..1].  The 

realization of the function depends on the elements that are used to determine the semantic 

similarity of the nodes. While this goes beyond the scope of this thesis, in our approach we have 

used Latent Semantic Analysis (LSA) [1022] for this purpose, a natural language processing 

technique that can determine the similarity of descriptions in natural language that are attached 

to individual nodes in the variability models. 

A.1 MATCHING OF NODES 
We define HS-T to be aet of tuples (na,nb) that represent the matchings of nodes na in criterion S to 

nodes nb in variability model T. Moreover, we define the quality L of match  HS-T  to be: 

 ( ) ( ) ( )
,

,
a b S T

a bn n H

S T

Match n n
L H

S

−∈

− =
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 (0-1) 

 
We define the match H

o
S-T to be the optimal match for S and T, which means there is no match 

for S and T for which the quality is larger than L(H
o

S-T ). 

A.2 ACCOMMODATING SEMANTIC PROXIMITY IN THE PROXIMITY FUNCTION 
To accommodate the semantic proximity in the function when evaluating T and W with respect 

to criterion S, we first define the function Ω: 
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The semantic proximity of nodes is included be redefining the fuzzy set P(x) for x∊S to be the 

following: 

 ( ) ( ) ( )( )1 Ω ,T WP x pt x pt x= −  
(0-3) 

 
In this definition the function ptT returns the parent node of its argument in variability model T. 

The membership of elements in this set corresponds to how semantically similar the respective 

parents are in T and W. With this new definition, the combined semantic/structural distance 

function is defined as: 
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APPENDIX B: VARIABILITY MODELS 

The variability models for data set 1 and 2 are described in the following tables. 

Table 45. Variability Models of Data Set 1 

Name Description 

M1 Model derived from the standard text using the Arborcraft tool with standard 

settings 

M2 Model derived from the standard text using the Arborcraft tool with modified 

settings 

M3 Model derived from the standard text using the Arborcraft tool with modified 

settings 

M4 Model derived from the standard text using the Arborcraft tool with modified 

settings 

M5 Model derived from the standard text using the Arborcraft tool with modified 

settings 

M6 Model derived from the standard text using the Arborcraft tool with modified 

settings 

M7 Model derived from the standard text using the Arborcraft tool with modified 

settings 

M8 Model derived from the standard text by an expert software designer 

M9 Model derived from the standard text by an expert software designer 

M10 Model derived from the standard text by an expert software designer 

M11 Model derived from the specialized text using the Arborcraft tool with standard 

settings 

M12 Model derived from the specialized text by an expert software designer 

M13 Model derived from the specialized text by an expert software designer 

M14 Model derived from the specialized text by an expert software designer 

M15 Model derived from the specialized text by an expert software designer 
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Table 46. Variability Models of Data Set 2 

Name Description 

M16 Model derived from the standard text using the Arborcraft tool with modified 

settings 

M17 Model derived from the standard text using the Arborcraft tool with modified 

settings 

M18 Model derived from the standard text by an expert software designer 

M19 Model derived from the standard text by an expert software designer 

M20 Model derived from the standard text using a modified version of the Arborcraft 

M21 Model derived from the standard text using a modified version of the Arborcraft 

with modified parameters 

M22 Model derived from the standard text using a modified version of the Arborcraft 

with modified parameters 

M23 Model derived from the standard text using a modified version of the Arborcraft 

with modified parameters 

M24 Model derived from the standard text using a modified version of the Arborcraft 

with modified parameters 

M25 Model derived from the standard text using a modified version of the Arborcraft 

with modified parameters 

M26 Model derived from the standard text by an expert software designer 

M27 Model derived from the specialized text using the Arborcraft tool with standard 

settings 

M28 Model derived from the specialized text by an expert software designer 

M29 Model derived from the specialized text by an expert software designer 
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APPENDIX C: MUSICAL SEGMENTATION LABELS 

The “ground truth” labels used in evaluating the musical segmentation results are provided in 

this section for reference.  The time for each song starts at 0s.  The time given in each entry in 

the tables is the time at the end of the segment, i.e. boundary or the point in time when the 

segment transitions into the next segment.  The last entry displays the length of the song in 

seconds.  The number of segments (denoted by “S”) is given in the table caption.  The number of 

boundaries in each song is B=S-1.  The hope size, i.e. number of seconds per sample/beat, is 

denoted by hopSize.  The labels assigned are shown in the following tables. 

Table 47. Structure of the song "Yellow" (S=10, hopSize=0.690s) 

 Intro Chorus Verse Pre Chorus Verse Pre Chorus Chorus2 Outro 

Time (s) 11.16 33.61 88.76 110.80 133.39 171.71 193.75 215.74 249.26 265.59 

Table 48. Structure of the song "A Message" (S=8, hopSize=0.627s) 

 Verse Verse2 Chorus Verse Chorus Bridge Chrous Outro 

Time (s) 32.91 73.77 106.73 147.88 188.79 206.85 246.85 282.29 

Table 49. Structure of the song "Fix You" (S=10, hopSize=0.572s) 

 Intro Verse Verse2 Chorus Instru Verse Chorus Bridge Bridge2 Outro 

Time (s) 13.63 41.39 70.35 91.69 105.12 133.73 154.88 182.19 264.51 192.92 

Table 50. Structure of the song "Swallowed in the Sea" (S=8, hopSize=0.423s) 

 Verse Chorus Verse Chorus Bridge Chorus Chorus2 Outro 

Time (s) 38.37 74.95 102.11 132.72 159.63 186.63 217.08 232.71 

Table 51. Structure of the song "Talk" (S=9, hopSize=0.560s) 

 Intro Verse Chorus Verse Chorus Instru Instru2 Chorus Outro 

Time (s) 36.17 79.20 119.76 163.43 207.59 239.31 255.54 291.61 305.09 

Table 52. Structure of the song "A Rush of Blood to the Head" (S=11, hopSize=0.566) 

 Verse Instru Verse Chorus Instru 

Verse 

Verse Verse2 Chorus Instru 

Verse 

Verse Outro 

Time 

(s) 

58.47 73.48 104.38 146.96 173.83 201.72 233.33 275.52 301.04 328.30 347.03 

Table 53. Structure of the song "In My Place" (S=10, hopSize=0.622s) 

 Intro Instru Verse Chorus Instru Verse Chorus Instru Instru2 Outro 

Time (s) 6.85 34.13 59.82 86.35 100.12 125.98 152.60 179.29 206.04 225.23 

Table 54. Structure of the song "Politik” (S=9, hopSize=0.708s) 

 Intro Chorus Verse Chorus Verse Chorus Instru Instru2 Outro 

Time (s) 3.15 25.64 70.53 104.43 147.71 171.95 244.65 289.91 317.05 

Table 55. Structure of the song "God Put a Smile Upon Your Face" (S=11, hopSize=0.716s) 

 Intro Verse Instru Verse Chorus Instru Verse Chorus Bridge Chorus Outro 

Time (s) 16.61 45.92 62.03 91.34 122.01 138.12 167.26 198.34 227.85 259.44 289.18 
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Table 56. Structure of the song "The Scientist" (S=9, hopSize=0.822s) 

 Intro Verse Chorus Instru Verse Chorus Instru Instru2 Outro 

Time (s) 26.27 79.52 113.12 137.61 190.28 223.60 249.16 288.66 307.10 

*Note: Instru = “Instrumental” 


