
Green Software Engineering:

The Curse of Methodology

Abram Hindle

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada

abram.hindle@ualberta.ca

Abstract—Computer Science often seems distant from its

natural science cousins, especially software engineering which

feels closer to sociology and psychology than to physics. Physical

measurements are often rare in software engineering, except in a

few niches. One such important niche is that of software energy

consumption, green mining, green IT, and sustainable computing,

which all fall under the umbrella of green software engineering.

With the physical measurement of energy consumption comes

all of the limitations of measurement and experimentation that

exist in the natural sciences and engineering. Issues abound, from

attribution of energy use, isolation of components, to replicable

experiments. These get further complicated by cloud computing

whereby systems are virtualized and attribution of resource usage

is a serious issue.

Thus in this work we discuss the current state of software

energy consumption, and where will it go.

I. INTRODUCTION

Fundamentally all computation comes at a cost. It is of no

surprise that electrical measurements of work correspond to

computation as well. With the availability of smart phones,

heavily parallelizable clusters, cloud-mad data centers, soft-

ware and energy interact more readily than ever before. Energy

comes at a cost to generate, to deliver, and to store. Delivery

requires infrastructure, storage requires materials for batteries,

and the by-product of energy consumption, heat, requires

cooling. While hardware primarily consumes energy, it can

only be as efficient as the software that commands it.

Software’s interaction with energy is split among many

contexts. Two important contexts are mobile applications and

software services hosted within data centers. Other contexts

include embedded sensors, the desktop, etc.

a) Data Centers: are limited by energy in terms of power

limits of rack power systems as well as cooling. Typically

energy accounts for 50% to 100% of the cost of purchased

equipment over the equipment’s lifetime [1]. Racks have

limited energy hookups. Only so many power heavy units may

be powered. Furthermore for every unit put in, the wasted

heat must be addressed. A data center with poor cooling will

pay even more in energy consumption due to the excessive

use of the cooling system of each hosted server. Typically

services offered by a data-center are software services and in

many cases the services are dynamically provisioned on virtual

machines or containers.

b) Mobile: applications are slightly different, their avail-

ability is affected by the availability of energy. Without battery

energy left, no application could survive. The energy used

by mobile devices is negligible, usually less than CFL light

bulb while charging – yet the batteries are composed of

potentially toxic and costly materials. Reducing mobile energy

use leads to longer battery lives, combined with reduced

battery replacement, and more availability for the end-user.

c) Embedded/Wireless Sensors: typically run on very low

power computers and sensors that communicate information

infrequently. The availability and reliability of these systems

are directly affected by both hardware and software design.

Just these contexts alone motivate the importance of energy

efficiency and the study of software energy consumption.

Software consumption is inherently multidisciplinary as dif-

ferent engineers serve, rely on, and cater to other engineers.

Hardware creators can only do so much until it becomes the

responsibility of the software developer to develop software

in an energy efficient and sustainable manner. Software engi-

neering researchers have noticed this problem and have taken

up the torch, thus accepting their responsibility for some of

the energy consumption costs of applications.

Thus the audience of this paper is primarily software

engineering researchers and developers, but the impact of this

field is far more broad. End-users are affected by software

energy consumption by the effect of desktop and laptop

energy usage on their energy bills. The availability of end-

user mobile devices is greatly affected by software energy

consumption, whereby an inefficient program can practically

leave some users stranded without the ability to communicate.

Electrical engineers and computer engineers are affected by

software energy consumption as they have to work hand

in hand with software engineers to produce hardware that

enables general purpose computation and yet still provides

methods of achieving energy efficiency. If hardware designers

are aware of the constraints of software developers they can

address the needs of software developers and end-users as

well. Managers and other stakeholders are affected by software

energy consumption because they have to budget for data-

center costs, and poor energy consumption will affect software

sales. Furthermore as carbon taxes are being levied, energy

consumption becomes an important budget item.

In this paper I introduce software energy consumption,



discuss past and present challenges, works, and issues relevant

to software engineering communities. Then I discuss my

predictions for the future of software energy consumption, and

where such research will go in the next decade.

II. BACKGROUND

Energy is the effort expended to complete a task. For

electricity we typically use joules (J), the energy unit of the

International System (SI), to indicate the energy that a task

takes. Power is the instantaneous rate of energy consumption

or the work that is being done. Typically power is measured

in Watts, which is the instantaneous amount of work done.

The multiplication of power by time is energy, or energy

is the integration of power over time. Sometimes energy is

measured as watt-hours (e.g., 1Wh) by electricity providers

where 1kWh = 3600J . For long running services power is

a common measure (average energy use per second), whereas

for tasks with a clear beginnings and ends energy is a common

measure – the cost of a task.

Software energy consumption is a kind of performance

and thus part of the non-functional requirement (NFR) of

efficiency. Generally we want software to consume the least

amount of energy and have low power use. Software energy

consumption testing is typically considered a kind of per-

formance regression testing. This kind of testing typically is

evolutionary [2] and seeks to compare performance between

versions on the tasks of the product.

Benchmarking is another kind of regression testing that

allows comparison between products. Benchmarking is less

about comparing versions, than it is about comparing different

implementations of the same task. Some energy research seeks

to benchmark applications for energy efficiency [3], [4].

III. THE PAST AND PRESENT

There are many issues in energy-aware software engineer-

ing, green software engineering, and green-mining [2] ranging

from the complexity of testing, dependency on hardware,

dependency on the environment, or dependency on software.

The generalizability of this research is hampered by the

complexity, and the lack of availability of tools. All of these

issues compound the difficulty of applying static or dynamic

analysis to software energy traces.

A. Ranking Applications by Energy Efficiency

Consumers tend to lack information about software. When

a consumer buys an oven, the oven is ranked by its energy

efficiency. What if the same ranking existed for software?

Research exists that seeks to rank software in terms of energy

efficiency much in the way that energy stars [5] rates and ranks

consumer products [3].

Three main challenges that face ranking software by energy

efficiency include:

• Software executes more than one task

• Fair benchmarks for multiple products

• Efficiency per platform (Software/Hardware)

The challenges that software faces versus ovens is that

software does multiple tasks and some of these tasks are

quite distinct, for instance email clients retrieve emails, search

emails, and viewing emails. Thus without agreement about

the shared tasks, not every feature or task can be compared

between products. This is complicated by the lack of standard-

ization. Figure 1 demonstrates an example of how application

energy rankings could be integrated into an App store: dif-

ferent apps that fulfill the same tasks could be measured on

a per task basis, as to allow consumers to see the different

efficiencies each app has to offer. Figure 1 shows 2 different

email applications that have been measured for task based

energy consumption. The first app is intended to be sparse in

features, simple email client that due its apparent simplicity is

quite energy efficient. The second app on the right is meant

to be a full featured, easy to use, graphically brilliant email

application that is less energy efficient for reading emails than

the plain and simple email app. The app-store depicts both

apps names, icons, and user ratings, followed by the version

number of the apps. Underneath is a general energy rating

composed of the per-task ratings. The per task ratings are

measured and compared with other apps. The ranking must

be on a per-task basis rather than a holistic basis, as certain

apps will focus on specific behaviours and tune themselves

for it. This kind of ranking should also be done on other

dimensions of performance so that users can compare apps to

each other comprehensively and across multiple dimensions.

This kind of comparison would allow users to determine the

right app for the right occasion – power efficient apps for

energy-constrained travel, and power hungry but slick apps

for home and work. An open question related to this Figure 1

is, “how do we summarize energy consumption when different

tasks occur at different frequencies?”

Not all hardware is created equal and not all software works

the same on all hardware. Thus if software executes differently

on different hardware it must be measured, simulated, or

estimated on that hardware. Thus when one ranks software,

should it be invariant of the hardware? If so how should one

normalize it [3], [6]? Zhang [3] poses a method of normalizing

across platform with linear scaling – this technique is used

by the Green-Miner [6] to normalize measurements from

different smart-phones under test. Our models should address

the hardware dependent performance versus the hardware

invariant performance.

Furthermore software energy consumption is not stable

across versions [2], [7], [8], [9]. Testing a single build of

the software might not be enough, a partial or entire energy

consumption profile should probably be built. Users of an app

will probably care if there is change in energy efficiency [10].

There are three main works which attempt to benchmark

or pose the software energy problem in a similar way to

Energy Star rankings [5]. Amsel et al. [11] discussed green

tracker and compared web browsers for energy consumption

performance. Zhang et al. [3], [12] describe the differences

between applications that do the same tasks yet perform

differently in terms of energy use. They propose software



READ

SEND

RECV

READ

SEND

RECV

Version 10.0.1 (Dec 2015)

Stable for 1 monthStable for 4 months

Version 2.2.6 (Jan 2016)

Energy Energy

Fig. 1. Storyboard mock-up of future App ratings in the App Store

application energy consumption ratings (SAECR)/Green Star,

a method to measure and compare and rank applications

much like Energy Star [5]. Ecodroid [4] employed static and

dynamic analysis to automatically rank applications – they did

not use task based measurement.”

Task based measurement is difficult because a task must

be common across multiple software applications as to be

important enough to be measured. Furthermore there is a

granularity issue, at what level do we measure the task: per

entity, per kilobyte, per task, per feature? When a new kind

of application appears do we compare it to other applications

based on shared features or shared tasks even though the intent

of an application is the same? Task based measurement is a

hard problem with many possible solutions. Sometimes one

just needs to look at the intent, for instance imagine a new

kind of video game, perhaps all that matters is not how the

game operates, but that it provides entertainment – thus we

would probably measure its energy performance for the task

of entertaining.

Other stakeholders, such as manager, product owners, and

developers might be concerned about other kinds of energy

consumption – that of their virtual machines and services in

the cloud and costs of such hosting. Thus not just mobile-apps

should be ranked, but infrastructure software, middle-ware,

operating systems, file-systems, and all of the components

of cloud software distributions ought to be measured. This

information might be less about sales and more about opti-

mization and improved resource utilization. Tasks of service

oriented software would be servicing an end-users session.

Tasks of a middle-ware stack could be publication, delivery,

and notification of workers.

Thus consumers need access to energy performance in-

formation and the app-store might be the perfect place to

display such details, as shown in Figure 1. Whereas managers,

software engineers, and system administrators might need this

information from their OS providers and the software distribu-

tors, such as apt for Debian and Ubuntu Linux distributions.

B. Generalizable Models

One overarching goal of much of the energy consumption

research is to produce a model that generalizes across many

applications. The use-case of such a model is that developers

do not have access to expensive hardware and cannot accu-

rately measure the energy consumption of their applications –

thus they must rely upon estimations based on different kinds

of analyses and models. But these generalizable models suffer

from the range of hardware, operating systems, environment,

software domains, and versions of software.

In the mobile arena the wide-range of screen-sizes, memory

sizes, and kinds of processors tends to hamper generalizable

models. Furthermore the Android ecosystem is considered

fragmented in terms of hardware and software [13]. Server-

side, the difference between different x86 manufacturers chips

can be significant. Thus there is much hardware variation

in terms of primary components. This ignores the range

of peripherals and I/O devices that be prevalent on mobile



devices: GPS, motion sensor, touch sensors, light sensor,

accelerometers, cameras, bluetooth, wifi, etc.

The issue of different operating systems is also relevant,

Windows and Linux do not share the same code base and

handle energy management differently. Android includes cus-

tomizations distinct from Linux as well. Furthermore there

are different versions and distributions of Linux, Windows,

Android, OSX, and iOS. Thus measurements from one envi-

ronment might not hold for another.

Furthermore generalizable models suffer from a lack of data.

Energy traces are not prevalent in the operational data within

Github git repositories or other publicly available repositories.

Continuous integration tools tend not to measure or estimate

energy. One possible repository of energy data, from the

Carat project [14], is not publicly accessible to developers

and researchers. Thus there is a real lack of software energy

data available to researchers and what is available is not very

comprehensive [15].

Too many models are very hardware dependent. For instance

the models of Pathak et al. [16] require arduous component

modeling. Much of the work of Hindle et al. [6] only is

tested on a small subset of Android devices and platforms.

Karan et al. [17], [18] built upon Pathak et al. [16] work

and suggested a rule-of-thumb model based on system calls

that works relatively well: if the system call count signifi-

cantly changes between versions then the energy use between

versions changes significantly. This rule-of-thumb specifically

avoids mis-classifying many of the 90% of changes which do

not affect the energy profile of an application. This model was

extended and generalized as a regression problem by Shaiful

et al. [19] who estimate not only change, but actual energy

usage. The system call based models are general and relative

to the products themselves, they model applications that face

the user quite well. Yet the models fail to account for CPU use

effectively without the use of counters. Models need to address

what is generalizable and stable across subsets of hardware

– what can accounted or controlled for – and what part of

the models are hardware dependent. This knowledge enables

generalization of models to similar devices.

While these models vary in their relevance, usefulness,

and ability to deploy, will programmers want to apply these

models?

C. How knowledgeable are programmers about energy?

While software engineering researchers are interested in

software energy consumption are programmers knowledgeable

or aware? Currently in 2015, the answer is a resounding, “not

really.”

Pinto et al. [20] studied StackOverflow [21], a question-

answer site for programmers. They found that energy related

questions were poorly answered and that many questions were

asked.

Pang et al. [22] followed up and surveyed and interviewed

programmers. Pang et al. found that programmers surveyed did

not have much experience with software energy consumption.

Not only did they lack experience but rarely were they asked to

address software energy consumption. The programmers also

said they would consider energy consumption when buying a

mobile device.

Wilke et al. [10] corroborates the view of these developers.

They found that App ratings on Google Play Store suffered

when user commented on poor energy consumption behaviour.

Khalid et al. [23] have made similar observations.

Many works aim to help developers by finding specific

energy bugs [24]. Manotas et al. [25] provide suggestions

for energy efficient collections. Others have suggested us-

ing genetic programming to optimize already existing pro-

grams [26]. Some works discuss the cost of using libraries

that provide advertisements [27] and some works describe

the costs and benefits of ad-blocking with respect to energy

consumption [28]. Some work aims to optimize display usage

through color choices [29]. While others help to provide

feedback to developers if anything has changed [18].

D. Measurement

Software energy consumption needs to be measured. Many

researchers use time as a proxy but for idle applications this

might not be appropriate [3].

Hindle et al. [6] describes the green miner, a hardware-based

continuous regression test framework. The green miner is a

software queue for tests that enables deployment of tests onto a

series of Android phones, enabling parallel execution of tests.

Figure 2 depicts a screen-shot of a report from the green miner

over a single test-run of an application. The time-line shows

the power usage over time, followed by an energy consumed

per component stacked bar plot. The energy consumed and

power used is broken down by tasks within the test. At the

end meta-data about the test is recorded. A similar work was

presented by Banerjee et al. [30] whereby they use physical

instrumentation.

Li et al. [31] tried to used high frequency measurements

to attribute energy use to particular source lines, while Hao

et al. [32] applied program analysis to estimate energy use.

Gupta et al. [33] attempted to correlate measurements with

library usage.

LessWatts.org from Intel develops and provides the

PowerTop tool to estimate energy use at run-time based on

ACPI information [34].

Thus there are many hardware methods of measuring energy

but many are too complicated for programmers so they opt for

either server hardware with instrumentation or for estimations

from ACPI. Not everyone has electrical measurement exper-

tise, thus when in doubt ask a colleague or an another engineer

about measurement.

IV. IMMEDIATE CHALLENGES

The field is currently immature. There is a lack of:

• Shared tools;

• Shared datasets;

• Benchmarks datasets;

• Agreement on methodology;

• Coherent community;



Fig. 2. Green Miner Example Test Run

• Methodological discussion about addressing threats;

• Lack of agreement on methodological threats.

All of these issues pile up into immediate challenges that

face current software energy research as well as those works

of the future. This section tries to illustrate the potential issues

that the field faces.

A. Lack of Data

Currently there is very little data for researchers to work

with. The current pattern is for researchers to setup a test and

measure everything themselves. This is different than a lot

of mining software repositories [35], [36] research – there is

not a repository available here, unlike other kinds of dynamic

analysis such as crash reports.

Each energy trace, such as the one depicted in Figure 2,

from 1 test-run, contains many measurements of the same test

over time. Typically these tests are re-run to address error in

physical measurement and the environment. The re-running

of the tests leads researchers to summarize the distribution

of measurements leading to a collapse in the amount of

data. 5000 kilobytes of energy measurements can be quickly

collapsed down into 10 to 40 rows of summary statistics about

the test-runs. The data is effectively limited by the researchers

time and ability to run all the necessary tests. As dynamic

analysis and tracing is typically used it takes a lot of run-time

to execute tests.

Thus dynamic analysis takes time, but there is also a

limitation in the number of applications that meet the re-

quirements of the research. For instance if one is focusing

on Android applications with available source code, the set

of testable applications is quite limited. Furthermore given

those applications very few come with tests so tests need to

be generated.

Thus the field lacks data due to a lack of collecting existing

data, a lack of sharing of existing data, a lack of appropriate

applications to test, and a lack of available tests for these

applications to enable dynamic analysis.

B. CPU is not enough

Many works – especially in the area of distributed com-

puting – simply relate CPU time to energy [37], [38], [39],

[40]. While this is correct for CPU bound processes, many

applications are not CPU bound. Some are not even IO bound,

they are event bound. Thus they have an idle cost, but not much

in the way of CPU work. They might induce IO when woken

up but for the most part most user facing applications are quite

idle. Furthermore CPU use does not necessarily represent the

activity of peripherals. In the case of GPU clusters, CPU use

could be almost irrelevant as the GPU would be the dominant

energy consumer.

If processes are CPU bound, optimizing and addressing their

energy consumption is well supported by current benchmark

tools and profilers. For a CPU bound process, improvement to

its single-core run-time performance will usually improve its

energy efficiency as well.

C. Virtualization

If one cares about sustainability [41], [42] and reducing the

global energy consumption of computing, virtualization cannot

be ignored. Many services online are virtualized, running on

a virtual machine in the cloud, or within a container of a

container service.

Measuring VMs and containers is quite difficult as re-

sources are not equally shared [43]. Many clouds use over-

subscription, whereby resources are over promised to many

services with the hope that these services do not need all of

these resources at the same time. With virtual machines CPU

is often over subscribed while for containers both CPU and

memory are oversubscribed.

With most of the world’s services running within data-

centers any savings in the resources used by a service has

a potential for saving energy: when the CPU, memory, or



peripherals such as hard-drives, network cards, and GPUs.

The less use, the less heat, resulting in less cooling and more

savings.

Currently there is some work on attributing energy con-

sumption to virtualized machines [44], [43], but it is just the

beginning of such research. Little to no work has been done

to estimate the energy use of services within containers such

as docker. At the moment it is very difficult to estimate the

energy cost of a task that is virtualized or container-ized.

D. Multi-version analysis necessary

In a software product one change can fundamentally change

the performance of the software [8]. The same is true for

software energy performance. Thus to characterize the perfor-

mance of a product by only its latest version is unfair. Projects

such as Hadoop have had issues with performance regressions

– Hadoop 2 on smaller clusters often performs worse on the

same task than Hadoop 1 due to resource management [45].

Software is more than the just the current version – most

developers exist in a continuously evolving context producing

many builds and many versions at once. Versioning is a

constant problem within software distributions such as De-

bian [46] or Ubuntu.

Thus one change can have a significant effect on perfor-

mance of software, and that change might be required to

address a raft of issues. This performance changing commit

could negate past results [9]. Romansky et al. [9] investigated

if every revision needed to be measured or just some, and

found that the performance changing commits generally were

either immediately corrected or initiated a long plateau of

similar performance across subsequent versions.

For instance if one tests if a refactoring was impactful

and just look at refactoring commits – what happens after-

ward [47]? Is the behaviour stable? Was there a bug? Just

looking at the immediate before and after commits might not

be enough to determine the actual effect of a design pattern

or a refactoring.

Thus multi-version analysis adds more software to analyze,

enables more data to be collected but also adds robustness

against some threats to validity.

E. Non-determinism of hardware state

One problem with modern software is that it runs on

complicated platforms. Furthermore the realistic scenario of

running applications on various hardware can be complex.

One such difficulty is hardware power saving functionality

which enables CPUs to use more or less voltage or to change

clock rates, as well as enable low power or high latency mode

in peripherals. In real world use these options are often on.

Experimentally they are often turned off or set to a constant

setting, but not always, and it is not always beneficial to create

such an artificial setting [3].

Even if we start the CPU in a certain state for a test, the test

input might induce a different CPU state [48]. Thus setting the

CPU power state before a test might not be enough to ensure

equivalent CPU power states during the test. Other sources of

hardware sources of non-determinism are wifi networks and

some disk I/O.

F. Non-determinism of software state

Software can exhibit non-determinism. Mobile platforms are

quite adaptive and small changes in the environment can result

in different behaviour. Furthermore events within the operating

system are not always controllable or deterministic. Network

communication is not deterministic as well, thus one serious

confound is the non-determinism of software state in the OS

alone. When this is combined with long running services non-

determinism abounds.

If software communicates across the network, the network

congestion, time of day, and availability of the access service

could all have an effect. If software writes to a file-system,

the current state of the file-system could determine how

continuous or how fragmented a file is written to disk – more

writes could lead to more fragmentation. Memory allocation

could fragment memory leading to more work and compaction

as time progresses. These issues are hard to address, and

the most common solution, even utilized by micro kernel

architectures, is to simply restart and throw away all that old

state.

G. The need for science

Within this section I have brought up many issues, but how

many have empirical evidence to demonstrate the dangers or

costs of ignoring these issues. What if the measurements are

strong against noise after enough runs are executed? Perhaps

after 40 runs the initial state does not matter. Arcuri and Briand

have provided practical guidelines for statistical tests within

software engineering that are specific too but are still relevant

to performance and software energy consumption [49].

Furthermore in terms of publications regarding energy what

we need is more science. Not every energy consumption paper

can be a tool paper. Sometimes a result or technique could be

integrated into an existing tool or be deployed as tool, but that

is a high bar when most bug prediction work never produces

a deployable tool. Currently for software energy consumption

research the bar is quite high, there is little taste or favour

to scientific publications, such as the work of Li et al. [50],

Romansky et al. [9], or Linares-Vásquez et al. [51], rather than

tool publications such as Green Advisor [18]. Yet communities

such as MSR [36] and ESEM [52] promote this kind of re-

search with other kinds of nonfunctional requirements (NFRs)

such a performance or maintainability have much empirical

work behind them.

H. Community

Not only do we need more science in software energy

consumption, we need more community support. There are

some industry wide groups that discuss Green IT, sustainable

IT infrastructure [53], [54], [55]. As of writing there is a

smattering of specific sustainability and green IT conferences,

none are truly coherent when it comes to software energy con-

sumption, as each venues have different goals [56], [57], [58].



There are workshops such as GREENS [58], but the motivation

to publish at GREENS is low when one can submit papers to

other venues which garner more recognition. Furthermore in

software engineering venues one could perceive there is a lack

of a knowledge regarding software energy consumption, which

mirrors the current reality of programmers’ knowledge [22].

All of these factors lead to a software energy research

diaspora, where sub-communities are made and results are

quietly published but not noticed by other communities. It is

almost as if researchers are publishing into a vacuum whereby

other researchers do not see each other.

I. Impossible bar to reach, or potential paper?

These limitations should not scare anyone away from the

field, in fact for empiricists and experimentalists these are

papers in waiting. Many of these issues might not pose as

significant effect as we think, or their effect might be avoided

or controlled for methodologically. For any of these issues

there is an impactful avenue of research found by asking

the question, “Do we have to address this potential pitfall?”

Potential paper topics that anyone, especially up and coming

PhD students, could address:

• How to model the difference in performance between

OSX, Windows, and Linux, or iOS and Android. What

parts of energy models will change due to operating sys-

tem or hardware, and what parts of the energy models will

stay the same? How can we generalize across platforms?

• The effects of state on repeated tests. Benchmarks are

often performed without restarting or without clearing

caches. Methodologically what do we lose by ignoring

this, versus what do we gain in test performance?

• The effects of differing wifi-state on energy tests. Wifi

cards and radio-based networking tend to operate differ-

ent in different contexts, such as closeness to a router or

interference. How does this affect energy tests?

• Temperature, mobile devices, and energy consumption.

Mobile devices typically lack temperature control mech-

anism and are often stored close to a warm human body,

what is the impact of energy-testing at room temperature

versus body temperature?

• Effective version test selection. How many versions do we

really need to measure? Multi-version testing is expensive

in terms of effort and time [59], what are effective

selection and search strategies to reduce this work?

• Effect of hyper-visors on energy consumption. Much

cloud computing uses virtualization – what is the impact

of the hyper-visor on energy performance of a cloud

server?

• How to control for non-determinism in disk I/O. File-

systems are not necessarily deterministic as repeated

writes can lead to fragmentation [60]. What is the energy

impact of disk and file-system non-determinism on en-

ergy consumption? Does this have an affect on I/O based

tests?

• How to control for non-determinism in network I/O.

Network I/O often occurs out on the wild internet

whereby traffic and congestion change hourly. When we

run energy tests how much should we and can we control

for these factors – and how much do we gain if we do?

• How to account for different background cloud utiliza-

tion. Cloud computers often host multiple clients – how

do different levels of tenancy affect energy consumption

of a single virtual machine or service?

• What is the effect of isolation on our tests? The average

user or cloud service will not be running software in

a clean room environment. How does software energy

consumption respond to the noise of real environments?

• Is there difference between software instrumentation and

human input? If our tests are automated by faking user

inputs, do the inputs and instrumentation use more or less

energy?

• What issues affect ACPI energy estimates? ACPI is often

used to estimate energy consumption but do we need to

control for blind spots in ACPI – can these be addressed

by better models?

• How many energy measurements do I need per version?

When we wish to compare two versions how many

measurements do we really need from each version? Can

we determine the number of measurements dynamically

to reduce work?

• Does the quality of test cases matter when measuring

energy? Does code coverage matter for testing? How

much exercise should a test do in order for its energy

measurement to be representative, meaningful or compa-

rable?

Thus these limitations should spur scientific research into

the effects and costs of addressing and ignoring the issues

brought up in this section. These limitations and proposal for

future work segways into what will be expected in the future,

next.

V. THE FUTURE

In this section I lay out my prediction for the future of

software energy consumption research.

A. Multi-version analysis will be expected

In the future researchers will engage in multi-version anal-

ysis of performance and energy consumption. They will use

multi-version analysis because a primary concern of energy

consumption is performance regression e.g., “has performance

worsened?” Multi-version analysis will also be used to in-

crease the generality and robustness of their research. Instead

of making claims about one snapshot of a program’s perfor-

mance researchers will establish the profile [9] of a program’s

performance. This is especially important in research that

engages in factor analysis as it provides more measurement

of the system but also protects against spurious factors being

reported as significant.

B. An end to developer measurement

In the future we will never expect a developer to physi-

cally benchmark or measure their software. This will be the



realm of technicians and researchers, not developers. Physical

measurement will be avoided by easy to access services,

better models of services and apps, and better software energy

estimation frameworks that appropriately address the needs

and limitations of developers.

a) No hardware Instrumentation: hardware is expensive,

and it requires much knowledge and training to address

hardware measurement. The developer of the future will not

have to rely on expensive testing hardware, or the questionable

measurements of their ACPI chip-sets.

b) Access to Hardware Regression Testing Services: if

developers truly need physical measurement they will be able

to outsource it. We expect in the future that services will be

available that will be like the Green Miner [6] – developers

will submit applications, specify the hardware to test on and

simply wait for a result back from the framework. No awkward

setup, no difficult testing. What physical measurements are

made will probably be integrated into even better models.

For verification programmers will have the option to submit

their application to a continuous integration, testing, and

deployment service that will provide some hardware based

measurement. Yet for the most part the future engineers

need not worry about actually measuring software energy

consumption.

c) Recommender Systems and Agents: Much like

Clippy [61], integrated into Microsoft Office, developers

should be treated with recommender systems and smart agents

that can help guide their software development towards better

energy performance. These systems could be integrated into

IDEs as to provide immediate suggestions and hints to the

developer.

C. Online Shared Repository

The future holds promise as large open shared reposito-

ries of dynamic traces of energy consumption are curated.

Different platforms, different applications, different tests and

different runs all aggregated in large online repositories of

data. These shared repositories would allow the curation of

community tuned models of energy consumption. Much like

the PROMISE repository [62].

The repositories would allow the hours and hours that

practitioners and researchers spend benchmarking and testing

software to be used to develop better models. The variation in

available runs alone would be intensely beneficial. Even the

tests themselves could be shared, enabling further collabora-

tion.

The future is crowd sourced and open shared traces available

to all.

D. Cloud and Container Estimation

One of the largest concerns in the future will be the

sustainability of software services [41]. There will be pressure

from social causes, combined with carbon taxes and worldwide

sustainability pressure to reduce carbon emissions. This will

affect the software as a service market. Furthermore companies

will be asked to estimate their energy use so they can argue if

they are green and sustainable. The requirements of sustainable

engineering will prompt for developer awareness of the issues

and the ability to estimate the impact of services.

Thus all the difficulties mentioned before in Section IV-C

will conflict with the requirement of energy estimation –

programmers of the future will have to estimate or measure

the sustainability of distributed software ecosystems. These

ecosystems might not be fully subscribed to – many will

be relatively idle services – but such estimates of energy

consumption will be required.

Programmers will submit usage scenarios, configuration,

and their software to a testing service that will estimate the

energy usage of their services at different loads. This will

require a new kind of continuous integration and deployment

software to operate. Furthermore such a system will need

measurement instruments to enable measuring, modeling, and

estimation of software energy consumption.

E. Budgeted Software and Energy Requirements

More managers and customers will explicitly request soft-

ware energy consumption be addressed in their applications.

As Lago et al. [42] suggest, sustainability will be perceived

as a software quality issue.

This will imply that not only will energy requirements exist,

but likely services will be granted energy budgets that they

have work within. It is likely that services provided by Amazon

AWS and other cloud providers will start explicitly charging

for energy rather than just CPU, Memory, IO and network

usage. With this change in pricing part of the requirements

elicitation process will be to define the energy budgets of a

service.

F. Education

As Pang et al. [22] found, developers are not very aware of

software energy consumption and thus if they were asked to

act on it, as developers tend not to be very educated on the

causes of software energy consumption. As of writing this,

software energy consumption is a niche topic rarely taught to

computer scientists or software engineers – although somewhat

addressed in electrical engineering and computer engineering

curriculums. Developers of the future will face the demand

for sustainable systems, thus computer science and software

engineering curriculums will change to address green software

engineering.

VI. CONCLUSIONS

Software energy consumption research currently faces many

challenges and threats to validity. Among these are attribution

of energy use to processes, measurement of virtualized or

containerized processes, estimation of energy use, and lack

of freely available software energy tools that do not require

physical hardware.

Methodologically software energy research is plagued by

threats to generalizability regarding OS versions, application

versions, environments, the variety of available hardware,

and a lack of recorded operational data and measurements.



Currently there is a very limited research community who has

done little to share data and tools. This is further compounded

by a fragmentation of the community across numerous small

conferences and workshops. Some of this fragmentation arises

from the fundamental multidisciplinary aspects of software

energy consumption: electrical engineers, computer engineers,

and software engineers should work together to help each other

address energy consumption holistically so that software can

be written to take advantage of hardware advances, and so

hardware can take better advantage of software knowledge for

energy consumption and performance.

The future holds much promise for the field of software

energy consumption as there are many hard challenges that

need to be addressed. The programmers of the future will face

sustainability as a requirement and will have to design software

with energy efficiency in mind. These programmers not only

will receive education, instruction, and training, they will have

at their disposal powerful models and tools that are integrated

into their development environment ever ready to provide them

with software energy awareness when they need it.

ACKNOWLEDGEMENTS

Abram Hindle is funded and supported by a NSERC Dis-

covery Grant.

REFERENCES

[1] M. E. Jed Scaramella, “Solutions for the datacenter’s thermal chal-
lenges,” http://whitepapers.zdnet.com/abstract.aspx?docid=352318, Jan-
uary 2007, iDC white paper.

[2] A. Hindle, “Green mining: A methodology of relating software
change to power consumption,” in Submission to MSR 2012,
http://softwareprocess.es/a/green-change-e.pdf.

[3] C. Zhang, A. Hindle, and D. M. Germán, “The impact
of user choice on energy consumption,” IEEE Software,
vol. 31, no. 3, pp. 69–75, 2014. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/MS.2014.27

[4] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann,
“Ecodroid: an approach for energy-based ranking of android apps,”
in Proceedings of the Fourth International Workshop on Green and
Sustainable Software. IEEE Press, 2015, pp. 8–14.

[5] E. Star, “Energy star: The simple choice for energy efficiency,” 2016.
[Online]. Available: https://www.energystar.gov

[6] A. Hindle, A. Wilson, K. Rasmussen, J. Barlow, J. Campbell, and
S. Romansky, “GreenMiner: A Hardware Based Mining Software Repos-
itories Software Energy Consumption Framework,” in Mining Software
Repositories (MSR), 2014 11th IEEE Working Conference on. ACM,
2014.

[7] A. Hindle, “Green mining: Investigating power consumption across
versions,” in Proceedings, ICSE: NIER Track. IEEE Computer Society,
2012, http://ur1.ca/84vh4.

[8] ——, “Green mining: a methodology of relating software change
and configuration to power consumption,” Empirical Software
Engineering, vol. 20, no. 2, pp. 374–409, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10664-013-9276-6

[9] S. Romansky and A. Hindle, “On improving green mining for energy-
aware software analysis,” in Press of the 2014 Conference of the Center
for Advanced Studies on Collaborative Research, IBM Corp, 2014.

[10] C. Wilke, S. Richly, S. Gotz, C. Piechnick, and U. Aßmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in Green Computing and Communications (GreenCom), 2013
IEEE and Internet of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social Computing. IEEE,
2013, pp. 134–141.

[11] N. Amsel and B. Tomlinson, “Green tracker: a tool for estimating the
energy consumption of software,” in Proceedings, CHI EA. New York,
NY, USA: ACM, 2010, pp. 3337–3342.

[12] C. Zhang, “The Impact of User Choice and Software Change and Energy
Consumption,” University of Alberta, Edmonton, Alberta, Canada, 2013.

[13] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of vendor-
specific bugs,” in Reverse Engineering (WCRE), 2012 19th Working
Conference on, Oct 2012, pp. 83–92.

[14] E. Peltonen, E. Lagerspetz, P. Nurmi, and S. Tarkoma, “Energy modeling
of system settings: A crowdsourced approach,” in Pervasive Computing
and Communications (PerCom), 2015 IEEE International Conference
on, March 2015, pp. 37–45.

[15] C. Zhang and A. Hindle, “A green miner’s dataset: mining the impact
of software change on energy consumption,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014,
pp. 400–403.

[16] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks.
ACM, 2011, p. 5.

[17] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and E. Stroulia, “The
power of system call traces: Predicting the software energy consumption
impact of changes,” in Press of the 2014 Conference of the Center for
Advanced Studies on Collaborative Research, IBM Corp, 2014.

[18] K. Aggarwal, A. Hindle, and E. Stroulia, “Greenadvisor: A tool for
analyzing the impact of software evolution on energy consumption,”
in 31st IEEE International Conference on Software Maintenance and
Evolution. IEEE Computer Society, 2015.

[19] S. A. Chowdhury, L. N. Kumar, M. T. I. M. S. M. Jabbar, V. Sapra,
K. Aggarwal, A. Hindle, and R. Greiner, “A system-call based model
of software energy consumption without hardware instrumentation,” in
Proceedings of the Sixth International Green and Sustainable Computing
Conference (IGSC’15), 2015.

[20] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014, pp. 22–31.

[21] “Stack Overflow,” http://stackoverflow.com, 2008.
[22] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do program-

mers know about the energy consumption of software?” IEEE Software.
[23] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile

app users complain about? A study on free iOS apps,” Accepted to be
published in IEEE Software, 2014.

[24] Y. Liu, C. Xu, and S. Cheung, “Diagnosing energy efficiency and
performance for mobile internetware applications: Challenges and op-
portunities,” Software, IEEE, vol. PP, no. 99, pp. 1–1, 2015.

[25] I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 503–514. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568297

[26] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption
using genetic improvement,” in Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO
’15. New York, NY, USA: ACM, 2015, pp. 1327–1334. [Online].
Available: http://doi.acm.org/10.1145/2739480.2754752

[27] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond,
“Truth in advertising: The hidden cost of mobile ads for
software developers,” in 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Florence, Italy, May 16-24,
2015, Volume 1. IEEE, 2015, pp. 100–110. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2015.32

[28] K. Rasmussen, A. Wilson, and A. Hindle, “Green mining: energy
consumption of advertisement blocking methods,” in Proceedings of
the 3rd International Workshop on Green and Sustainable Software,
GREENS 2014, Hyderabad, India, June 1, 2014, H. A. Müller, P. Lago,
M. Morisio, N. Meyer, and G. Scanniello, Eds. ACM, 2014, pp. 38–45.
[Online]. Available: http://doi.acm.org/10.1145/2593743.2593749

[29] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Optimizing energy consumption of
guis in android apps: A multi-objective approach,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 143–154.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786847

[30] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
“Detecting energy bugs and hotspots in mobile apps,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 588–598.

http://softwareprocess.es/a/green-change-e.pdf
http://doi.ieeecomputersociety.org/10.1109/MS.2014.27
https://www.energystar.gov
http://ur1.ca/84vh4
http://dx.doi.org/10.1007/s10664-013-9276-6
http://doi.acm.org/10.1145/2568225.2568297
http://doi.acm.org/10.1145/2739480.2754752
http://dx.doi.org/10.1109/ICSE.2015.32
http://doi.acm.org/10.1145/2593743.2593749
http://doi.acm.org/10.1145/2786805.2786847


[31] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proceedings
of the 2013 International Symposium on Software Testing and Analysis.
ACM, 2013, pp. 78–89.

[32] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating Mobile
Application Energy Consumption using Program Analysis,” in Proceed-
ings of the 2013 International Conference on Software Engineering, ser.
ICSE ’13, 2013, pp. 92–101.

[33] A. Gupta, T. Zimmermann, C. Bird, N. Naggapan, T. Bhat, and S. Em-
ran, “Energy Consumption in Windows Phone,” Microsoft Research,
Tech. Rep. MSR-TR-2011-106, 2011.

[34] Intel, “LessWatts.org - Saving Power on Intel systems with Linux,”
http://www.lesswatts.org, 2011.

[35] A. E. Hassan, “The Road Ahead for Mining Software Repositories,”
in Proceedings of the Future of Software Maintenance (FoSM) at the
24th IEEE International Conference on Software Maintenance, 2008,
pp. 48–57.

[36] MSR, “Mining Software Repositories,” www.msrconf.org, 2013.
[37] C. Seo, S. Malek, and N. Medvidovic, “An Energy Consumption

Framework for Distributed Java-Based Systems,” in ASE ’07, 2007, pp.
421–424.

[38] ——, “Component-level energy consumption estimation for distributed
java-based software systems,” in Component-Based Software Engineer-
ing. Springer, 2008, pp. 97–113.

[39] R. Joseph and M. Martonosi, “Run-Time Power Estimation in High
Performance Microprocessors,” in Proceedings of the 2001 international
symposium on Low power electronics and design, ser. ISLPED ’01.
New York, NY, USA: ACM, 2001, pp. 135–140.

[40] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee, “Instruction
level power analysis and optimization of software,” The Journal of VLSI
Signal Processing, vol. 13, 1996.

[41] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler,
N. Seyff, and C. C. Venters, “Sustainability design and software: The
karlskrona manifesto,” in 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Florence, Italy, May 16-24,
2015, Volume 2. IEEE, 2015, pp. 467–476. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2015.179

[42] P. Lago, S. A. Koçak, I. Crnkovic, and B. Penzenstadler,
“Framing sustainability as a property of software quality,” Commun.
ACM, vol. 58, no. 10, pp. 70–78, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2714560

[43] F. A. Moghaddam, P. Lago, and P. Grosso, “Energy-efficient networking
solutions in cloud-based environments: A systematic literature review,”
ACM Comput. Surv., vol. 47, no. 4, p. 64, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2764464

[44] F. A. Moghaddam, T. Geenen, P. Lago, and P. Grosso, “A user
perspective on energy profiling tools in large scale computing
environments,” in 2015 Sustainable Internet and ICT for Sustainability,
SustainIT 2015, Madrid, Spain, April 14-15, 2015. IEEE, 2015, pp. 1–5.
[Online]. Available: http://dx.doi.org/10.1109/SustainIT.2015.7101364

[45] A. H. Ivanilton Polato, Denilson Barbosa and F. Kon, “Hadoop branch-
ing: Architectural impacts on energy and performance,” in Proceedings
of the Sixth International Green and Sustainable Computing Conference
(IGSC’15), 2015.

[46] M. Claes, T. Mens, R. Di Cosmo, and J. Vouillon, “A historical analysis
of debian package incompatibilities,” in Mining Software Repositories
(MSR), 2015 IEEE/ACM 12th Working Conference on. IEEE, 2015,
pp. 212–223.

[47] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’14. New York, NY, USA: ACM, 2014, pp. 36:1–36:10.
[Online]. Available: http://doi.acm.org/10.1145/2652524.2652538

[48] S. A. Chowdhury, V. Sapra, and A. Hindle, “Is HTTP/2
more energy efficient than HTTP/1.1 for mobile users?”
PeerJ PrePrints, vol. 3, p. e1280, 2015. [Online]. Available:
http://dx.doi.org/10.7287/peerj.preprints.1280v1

[49] A. Arcuri and L. Briand, “A practical guide for using statistical tests
to assess randomized algorithms in software engineering,” in Software
Engineering (ICSE), 2011 33rd International Conference on. IEEE,
2011, pp. 1–10.

[50] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An empirical
study of the energy consumption of android applications,” in
30th IEEE International Conference on Software Maintenance and
Evolution, Victoria, BC, Canada, September 29 - October 3, 2014.
IEEE Computer Society, 2014, pp. 121–130. [Online]. Available:
http://dx.doi.org/10.1109/ICSME.2014.34

[51] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in Proceedings of
the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 2–11. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597085

[52] International Symposium on Empirical Software Engineering and
Measurment, 2015. [Online]. Available: http://esem-conferences.org/

[53] S. Murugesan, “Harnessing Green IT: Principles and Practices,” IT
Professional, vol. 10, no. 1, pp. 24–33, 2008.

[54] Alliance to Save Energy, “PC Energy Report 2007: United States,”
http://www.climatesaverscomputing.org/docs/Energy Report US.pdf,
1E, Tech. Rep., 2007.

[55] P. Kurp, “Green computing,” Communications of the ACM, vol. 51,
no. 10, pp. 11–13, 2008.

[56] GREENCOM ’12: Proceedings of the 2012 IEEE International Con-
ference on Green Computing and Communications. Washington, DC,
USA: IEEE Computer Society, 2012.

[57] Proceedings of the Sixth International Green and Sustainable Computing
Conference (IGSC’15), 2015.

[58] “Fourth international workshop on green and sustainable software
(GREENS 2015),” 2015.

[59] S. Romansky and A. Hindle, “On improving green mining for energy-
aware software analysis,” in Proceedings of 24th Annual International
Conference on Computer Science and Software Engineering. IBM
Corp., 2014, pp. 234–245.

[60] P. Greenawalt, “Modeling power management for hard disks,” in MAS-
COTS ’94., Proceedings of the Second International Workshop on, Jan
1994, pp. 62 –66.

[61] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse, “The
lumiere project: Bayesian user modeling for inferring the goals and
needs of software users,” in Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., 1998, pp. 256–265.

[62] T. Menzies, R. Krishna, and D. Pryor, “The promise repository
of empirical software engineering data,” North Carolina State
University, Department of Computer Science, 2016. [Online]. Available:
http://openscience.us/repo

http://www.lesswatts.org
www.msrconf.org
http://dx.doi.org/10.1109/ICSE.2015.179
http://doi.acm.org/10.1145/2714560
http://doi.acm.org/10.1145/2764464
http://dx.doi.org/10.1109/SustainIT.2015.7101364
http://doi.acm.org/10.1145/2652524.2652538
http://dx.doi.org/10.7287/peerj.preprints.1280v1
http://dx.doi.org/10.1109/ICSME.2014.34
http://doi.acm.org/10.1145/2597073.2597085
http://esem-conferences.org/
http://www.climatesaverscomputing.org/docs/Energy_Report_US.pdf
http://openscience.us/repo

