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Abstract The mountain pine beetle (MPB) is among the most destructive eruptive6

forest pests in North America. A recent increase in the frequency and severity of7

outbreaks, combined with an eastward range expansion towards untouched boreal8

pine forests, has spurred a great interest by government, industry and academia into9

the population ecology of this tree-killing bark beetle. Modern approaches to studying10
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the spread of theMPBoften involve the analysis of large-scale, high resolution datasets11

on landscape level damage to pine forests. This creates a need for new modelling tools12

to handle the unique challenges associated with large sample sizes and spatial effects.13

In two companion papers (Koch et al., 2020, JRSI; and Koch et al., 2020, EEST),14

we explain how the computational challenges of dispersal and spatial autocorrelation15

can be addressed using separable kernels. In this paper, we use these ideas to capture16

nonstationary patterns in the dispersal flights of MPB. This facilitates a landscape-17

level inference of subtle properties of MPB attack behaviour based on aerial surveys18

of killed pine. Using this model, we estimate the size of the cryptic endemic MPB19

population, which formerly has been measurable only by means of costly and time-20

intensive ground surveys.21

Keywords mountain pine beetle · endemic · nonstationary · redistribution · kernel ·22

modelling23
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1 Introduction54

The mountain pine beetle (MPB) Dendoctonus ponderosae Hopkins (Coleoptera55

Curculionidae), is a tree-killing species of bark beetle native to pine forests ofWestern56

North America. Each year for a short period in summer, adult MPB seek to complete57

their life cycle by attacking a suitable living host pine. During attacks, MPB bore58

into the bark, introducing fungal pathogens in the process, and ultimately girdle the59

tree (Taylor et al. 2006). Death follows swiftly for a pine whose defence systems60

fail to eject these attackers. When an attack succeeds, MPB use the host to feed and61

reproduce, laying eggs in galleries excavated underneath its bark.62

A successful attack often leads to a MPB outbreak, in which local populations rise63

dramatically and large numbers of healthy pine are attacked over a period of several64

years. These outbreaks are major disturbance agents of pine forests, so mathematical65

models to explain their origin and how they spread across the landscape are of great66

interest to forest ecologists.67

With few exceptions, the adult MPB die after reproduction, and their progeny68

emerge as teneral adults the following summer to begin a new life cycle. This semel-69

parity, and the approximately linear relationship between reproductive success and70

host death, are mathematically convenient properties when constructing models to71

track year-to-year changes in MPB populations. For example if a total of � beetles72

have attacked a stand containing � susceptible pines, killing a fraction q(�) of them,73

then a rough estimate of the MPB population emerging in the next year is _q(�)�,74

where _ > 0 represents average per-stem productivity.75
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Modellers sometimes exploit this relationship to project outbreak dynamics ahead76

to future years (Heavilin and Powell 2008), and to explore ecological factors in77

population growth (Aukema et al. 2008). However, two major complications in MPB78

dynamics become apparent when attempting to link the host mortality fraction q(�)79

with the underlying beetle population (Nelson et al. 2008). First, any spatially explicit80

model for q(�) must account for dispersal flights, which allow localized outbreaks to81

spread into nearby areas. Second, q(�) must reflect the eruptive and nonlinear nature82

of MPB population growth. We review these aspects briefly below, before introducing83

a new mathematical approach to the modelling problem.84

1.1 Dispersal flights85

In modelling the evolution of an outbreak over multiple years it is often convenient to86

track the beetle population in discrete time, where �C is the value of � in year C. Such87

models cannot easily relate �C+1 and_q(�C )� without incorporating dispersal. Flights88

of the MPB allow it to escape depleted stands, spark outbreaks in neighbouring areas,89

and expand its range (de la Giroday et al. 2012). By modelling �C as the outcome of90

a spatially explicit dispersal event, we are better equipped to capture these interesting91

and important ecological phenomena, and achieve a higher precision in fitting q(�)92

to data.93

A variety of MPB dispersal models can be found in the literature (e.g. Goodsman94

et al. 2016; Preisler et al. 2012; Aukema et al. 2008; Heavilin and Powell 2008),95

but most make two simplifying assumptions out of mathematical convenience: that96
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movements occur in all directions with equal probability (isotropy); and that patterns97

of redistribution do not vary with spatial location (stationarity).98

The main novelty in the methods presented here is that we drop both of these99

assumptions. Our dispersal model has the flexibility to capture directed and location-100

dependent (anisotropic and nonstationary) events. It is meant as a phenomenological101

alternative to dynamical systems based approaches to the same problem (e.g. Garlick102

et al. 2011; Powell and Bentz 2014; Powell et al. 2018), but with a simpler math-103

ematical representation that borrows computationally efficient methods from spatial104

statistics. Our mathematical approach is based on ideas presented in two companion105

papers; on covariance structure (Koch et al. 2020a), and redistribution kernels (Koch106

et al. 2020b).107

1.2 Colonization curves108

The colonization curve, function q(�), should be highly nonlinear to accommodate109

the distinct behaviours exhibited in different phases of MPB populations (Berryman110

1978). During the incipient-epidemic phase, attacks occur at densities low enough111

to be defended by hosts, so cooperative efforts in overcoming these defences leads112

to a positive density dependence (Allee effect) in q(�) (Boone et al. 2011). How-113

ever, as the number of attacking individuals rises, the MPB enters epidemic and114

post-epidemic phases, in which the density dependence turns negative as a result of115

scramble competition (Woodell and Peters 1992).116

Empirical data on q(�) therefore reveals an S-shaped, or sigmoid relationship117

(Raffa and Berryman 1983). This form is reminiscent of the familiar type-III func-118
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tional responses for parasitism behaviour (Holling 1959), and indeed many aspects of119

MPB population dynamics are well described by this parasitoid-prey systems theory120

(Goodsman et al. 2016). In Section 2, we show how these functions can be adapted121

to model MPB population growth, generalizing the models of Heavilin and Powell122

(2008) and Koch et al. (2020b).123

1.3 Aerial Overview Surveys124

The extent to which a model can be complexified is limited by the amount and quality125

of data available for fitting and validation. Thus while the ideas outlined above lead to126

sophisticated population models, they also demand an unusually large spatial dataset127

for parameter inference. For this reason, we demonstrate our methods in an analysis128

of data from the Aerial Overview Survey (AOS) in British Columbia (BC).129

The AOS maintains an annual record of the spatial patterns of insect damage to130

forests in BC. Operators fly in fixed-wing aircraft over most of the forested land in the131

province each summer, logging the locations of damage (and the presumed cause) as132

polygon and point data on maps, which are then digitized and published online.133

These data are sometimes dismissed as too imprecise for detailed population134

modelling, since the process of visual observation andmanual delineation of damaged135

areas is prone to human error (e.g. Kautz 2014; Wulder et al. 2006). Nevertheless,136

because the AOS covers such an impressively large extent and timeline of forest137

damage patterns in BC, a considerable body of landscape-level MPB research draws138

from the AOS and its predecessor, the Forest Insect and Disease Survey (e.g. Aukema139
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et al. 2006; Robertson et al. 2009; Chen andWalton 2011; Reyes et al. 2012; Sambaraju140

et al. 2012; Chen et al. 2015a,b).141

1.4 Paper Outline142

We show in Section 2 how a generalization of the Heavilin and Powell (2008) model143

allows us to relate data from the AOS with ground surveys of MPB activity. We use144

these ideas in Section 3 to demonstrate the remarkable amount of information that145

can be extracted – with the right modelling tools – from the AOS alone.146

In particular our model accurately estimates the size of the cryptic, low-density147

endemic MPB population using only spatial data on outbreaks. This is remarkable148

given that pine mortality caused by the endemic phase happens at levels far below149

the operational detection threshold of the AOS (Cooke and Carroll 2017). Studies150

of endemic MPB more typically rely on intensive ground surveys of attacked pine151

(e.g. Boone et al. 2011; Bleiker et al. 2014). Our model estimates the rate of endemic152

attacks using only AOS data on outbreak-level pine mortality.153

This is important because, in comparison to more reliable ground survey methods,154

aerial survey programs such as the AOS are a far less expensive and time-consuming155

means of monitoring MPB activity over large geographical areas. Note that similar156

datasets are available for the neighbouring province of Alberta (AB), in which a highly157

consequential MPB range expansion is currently underway.158

Section 2.1 introduces the model by reviewing a popular mathematical repre-159

sentation for the colonization curve q(�), before introducing several refinements in160

Sections 2.2-2.4. Our representation of dispersal flight is then introduced Section161



The signature of endemic populations in the spread of mountain pine beetle outbreaks 9

2.5, and an error model suitable for the AOS dataset is proposed in Section 2.6. We162

demonstrate the model in Section 3 by fitting to data on outbreaks of the MPB in BC163

during the years 2006-2008.164

2 Methods165

Our case study covers a pine-rich region of roughly 10,000 km2, centered over the166

Merritt Timber Supply Area (TSA) of Southern BC (Figure 1). We divided this into a167

1 hectare (ha) resolution grid (sensu Aukema et al. 2006) to form a 1000 x 1000 lattice168

of cells, with matching layers provided by the province (http://www.hectaresbc.org)169

on wildfire, cutblocks, and topography.170
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Fig. 1: Hosts killed byMPB (q8,C�8,C , in stems/ha) in the summers of 2006-2007. AOS

data on damage severity were rasterized to approximate susceptible host mortality

(q8,C ). Host density �8,C was derived from pine volume estimates in Beaudoin et al.

(2014), as described in Appendix 1.1
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Aswe are interested in how dispersal patterns are related to outbreak development,171

weanalysed the attack years 2006-2008, inwhich a large number of pine-leading stands172

would see transitions from endemic to epidemic behaviour (the incipient-epidemic173

population phase). This period captures the peak of an epidemic in the Merritt TSA174

(in terms of basal area damaged) at a time when around one out of four cells in the175

area exhibited crown-fade due to MPB activity.176

Our analysis tracks four state variables, indexed by year (C) and location (8): Only177

two of them are measured in practice: pine mortality (q8,C ) and host density (�8,C ,178

in stems/ha) (Appendices 1.1–1.2); The others, MPB density pre-dispersal �̃8,C and179

post-dispersal �8,C (in females/ha), are latent variables, inferred by the model but180

never directly observed (Table 1).181

location 8 vectorized definition units type

�8,C NC pre-attack susceptible pine density stems/ha
observed

q8,C 5C proportion of �8,C killed by MPB unitless

�̃8,C H̃C emerging MPB density (pre-dispersal)
females/ha latent

�8,C HC MPB attack density (post-dispersal)

Table 1: Notation for state variables in the MPB attack dynamics model. Indexing

is by year C and location 8, and boldface denotes the vector of all = locations, e.g.

5C = (q1,C , q2,C , . . . , q=,C ) ′.

In the remainder of Section 2 we construct a model connecting these four state182

variables. We start in Section 2.1 by extending the red-top model of Heavilin and183
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Powell (2008), interpreting its attack parameters in a new light. We then link this184

attack model to novel submodels describing four important components of MPB185

population dynamics (Nelson et al. 2008): stand susceptibility, endemic populations,186

reproduction, and dispersal (Sections 2.2-2.5, respectively). Finally, in Section 2.6 we187

describe the data and statistical methodology used for fitting the full model, before188

presenting our results and connecting them to empirical findings from the MPB189

literature in Sections 3-4.190

2.1 Attack dynamics (q)191

Our equation for pine mortality q8,C (�8,C ) generalizes the red-top model of Heavilin192

and Powell (2008) to better match the types of colonization curves fitted in Cooke193

and Carroll (2017). The red-top model is best introduced by focusing at first on a194

particular location and year; so for notational convenience we omit the subscripts 8195

and C until they are needed again in Section 2.4. Thus, for 8 and C fixed, we relate the196

attack density � (females/ha) to pine mortality q by:197

proportion of � killed = q(�) = �^

0^ + �^ where 0 > 0, ^ > 0. (1)

Parameter 0 is the half-saturation value, or attack density (in females/ha) at which198

50% mortality occurs, and ^ is a shape parameter controlling the density dependence.199

The special case ^ = 2 recovers the red top model of Heavilin and Powell (2008) (after200

multiplying both sides by �). Other ^ values reflect alternative regimes of density201

dependence. Larger ^ and/or 0 values coincide with a stronger defensive response by202
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pines. When ^ ≤ 1, the Allee effect vanishes, reflecting compromised defences, as203

might occur, for example, during a drought.204

Parameter estimation becomes simpler if Equation (1) can be made linear in its205

parameters. Observing that the odds-ratio of pine mortality q/(1 − q) is (�/0)^ , we206

can take logarithms to get a linear equation on the logit-log scale:207

logit(q) = −^ log(0) + ^ log(�), (2)

where log(�) is the logarithm of attack density, and log(0) the density (on the log208

scale) at which one half of susceptible hosts are expected to be colonized.209

This also happens to be the mathematical form of the colonization curve fitted in210

Cooke and Carroll (2017) to the data reported in Boone et al. (2011) on attacked pines211

in our study area. Their analysis estimated ˆ̂ = 1.66 for the 2 years leading up to 2006.212

In years prior, a much lower value (0.56) was estimated, suggesting that environmental213

stressors on pine may have relaxed the Allee effect and bolstered endemic populations214

to spark the large-scale outbreaks of 2006-2008 (Figure 1).215

Once started, outbreaks are not easily stopped. Irruptions in MPB populations are216

accompanied by behavioural changes in which host-preference switches from stressed217

to healthy pine (Carroll et al. 2006). This allows population growth to continue even218

after pine vigour recovers from a period of stress. Above a certain density threshold,219

�) , the MPB have sufficient numbers to cooperatively attack a healthy pine (a mass220

attack), releasing them from the ordinary pressures of the Allee effect and marking221

the beginning of the incipient-epidemic phase.222

The nature of this density dependence is reflected by the (equivalent) equations223

(1) and (2). The case ^ > 1, corresponding to attacks on healthy pine, is illustrated224
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graphically in Figure 2. We discuss two features of this curve below, the incipient-225

epidemic transition point (�) ) and mass attack number (<�). We report on their226

estimates in Section 3.227

Fig. 2: Host mortality as a function (Equation 1) of MPB attack density � for ^ = 3.

Above the inflection point (��) is a regime of negative density dependence. When

� ≈ 0, the endemic population is too small to mass-attack healthy pine. When �

rises to the incipient-epidemic transition point �) , mass attacks become feasible and

the MPB are released from the endemic phase. At moderate densities, each attacked

pine accounts for ≈ <� beetles. At higher densities, intraspecific competition leads

to diminishing returns and negative density dependence

2.1.1 The incipient-epidemic transition (�) )228

Empirical data from our study area suggest that a density of �̂) ≈ 300-600 females/ha229

is sufficient to initiate the incipient-epidemic phase in an area of ) = 15.3 ha (Carroll230
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et al. 2006). �) is of course scale dependent; Amman (1984) estimated a quite different231

transition point at the ) = 40.5 ha scale.232

However, given any scale of interest, and given the values of ^ and 0, �) can be233

estimated via equation (1). This is done by setting q(�) ) = 1/�) (i.e. assuming a234

single host death in the specified area, )) and inverting (1) to get:235

�) =
0

√̂
�) − 1

. (3)

2.1.2 The mass attack number (<�)236

The number ofMPBaggregating during attacks is carefullymoderated by pheromones.237

This allows the beetle to optimize its reproductive success in mass attacks, by attack-238

ing in numbers high enough to overcome tree defenses, but low enough to avoid crowd239

competition (Taylor et al. 2006). For example, Raffa and Berryman (1983) reported an240

optimum of around 61 attackers/m2, implying that a tree with 5.5 m2 of bark available241

for attack (typical of the pine-leading stands in our study area) would have an optimum242

around 340 females/stem.243

Under ideal conditions forMPB attack, this optimal densitywill presumablymatch244

the average attack density per attacked tree, which we call the mass attack number <�245

(in females/stem). This average is approximated by the slope of q(�) near its inflection246

point �� = 0
√̂
(^ − 1)/(^ + 1) (where q′′(��) = 0), since, at this intermediate247

density, q(�) is nearly linear, and increases with � at rate q′(��) ≈ 1/(<��). From248

(1) we can therefore compute the approximation:249

<� ≈ 1/(q′(��)�) =
4��^

� (^2 − 1)
. (4)
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2.2 Stand susceptibility (0)250

Although (3) and (4) both depend nonlinearly on ^, both equations scale linearly with251

the half-saturation value 0. Stands that are highly susceptible to MPB attack have252

lower values (requiring fewer attacking beetles to initiate an outbreak), and vice versa.253

We can therefore interpret 0 as a simple measure of susceptibility to attack.254

One can expect 0 to vary with environmental factors, such as weather, and stand255

characteristics, such as pine density. These factors have a complex and nuanced256

relationship with susceptibility (Preisler et al. 2012), and a clear biology-based model257

for this relationship is lacking. To avoid overcomplicating our model, we simply take258

the best linear approximation on the logit-log scale, writing x# = −^ log(0) for a set259

of unknown regression parameters # = (V1, . . . V=V ) and covariates x = (G1, . . . G=V ).260

Thus in equation (2) for the mortality log-odds, logit(q), we swap out the intercept261

term with a linear predictor. Similar regression models, such as in Aukema et al.262

(2008) and Preisler et al. (2012), have been useful for identifying environmental263

factors that have a significant (V: ≠ 0) effect on outbreak occurence. For our purposes264

# simply serves as a (location-wise) correction of 0 through which to estimate MPB265

population sizes, so we do not focus on the V: or their effect sizes in our analysis.266

However, interested readers will find the full set of linear regression covariates listed267

in Appendix 1.2.268
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2.3 Endemic populations (n)269

The (aspatial) red-top model of Heavilin and Powell (2008) has no endemic equi-270

librium: low density populations are viewed as unstable, tending to extinction, and271

occuring only by means of immigrations from a reservoir of distant outbreaks appear-272

ing stochastically across the landscape. However, empirical data (e.g. Boone et al.273

2011; Bleiker et al. 2014) suggest that resident endemic populations are widespread274

and persistent. These low-density populations subsist on a small number of defen-275

sively compromised pines and an assemblage of secondary bark beetle species that276

assist in the colonization of weakened trees.277

We introduce a stable endemic equilibrium into the red-top model (Equation 1)278

by adding a small positive term n > 0 (in females/ha) to the post-dispersal MPB279

population (�) in the red-top model at all sites/years prior to attack. Specifically, with280

the addition of endemic beetles the attack function q(�) becomes:281

proportion of � killed = q(� + n) = (� + n)^

0^ + (� + n)^ where n > 0, (5)

which, on the log-scale, produces logit(q) = −^ log(0) + ^ log(� + n).282

This constant introduces a spatially uniform background level of MPB. Should283

an in-flight from a neighbouring outbreak occur, its density is added to the endemic284

cohort n , and the combined population attacks pines according to Equation (1). The285

effect of n is therefore to boost the effective size of spreading populations, increasing286

the likelihood that an incipient-epidemic transition will succeed in sparking a local287

outbreak.288



The signature of endemic populations in the spread of mountain pine beetle outbreaks 17

In the absence of immigrating MPB, the endemic population is too small to attack289

healthy pines, so it instead seeks out defensively weakened trees. Because this pool290

of suitable hosts is ephemeral and extremely small compared to �, these endemic291

MPB incur a much higher flight-establishment mortality cost than do outbreaking292

populations: Taylor et al. (2006) estimates the generation mortality of endemic MPB293

at 97.5%. Assuming most of this loss can be attributed to the search flight, the294

rate of attack on defensively weakened hosts under this model would be (1 − 0.975)n295

females/ha (or slightly above), with the healthy pine population variable � unaffected.296

However, if an endemic population joins with a cohort of immigrating outbreak-297

level MPB, suitable hosts suddenly become abundant, and the flight-establishment298

losses should drop accordingly. The generation mortality in populations capable of299

mass-attacks is thought to lie in the range 80-98.6% (Taylor et al. 2006; Amman300

1984). We assume that these losses mostly occur as a result of tree defences and301

crowd-competition. Unlike search flight losses, the latter are subsumed into q(�)302

under the model (1). Therefore, we estimate the total number of attacking beetles303

at a given site as the sum of n and any MPB (local or immigrant) originating from304

mass-attacked trees.305

2.4 Reproduction (_)306

Reproduction connects subsequent years, so we must now make the dependence of307

our model variables on time and location explicit. In the red-top model, reproduction308

is summarized by �̃8,C = _C−1q8,C−1�8,C−1. This expresses that �̃8,C , the density of309
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(non-endemic) mature MPB emerging in year C at location 8, is proportional to the310

number of mass-attacked stems in year C − 1.311

The productivity parameter _C−1 specifies the average number of female MPB312

brood to emerge from each attacked tree in the year following an attack. This counts313

only those individuals that hatch, survive to maturity, and engage in search flights for314

new hosts. Note that by aggregating demographic information to the level of the tree315

(and year), we forego some precision. However this formulation simplifies the model316

considerably, summarizing in a single constant the manyMPBwithin-tree growth and317

development processes that cannot be observed in aerial surveys (Berryman 1974).318

Under this model, productivity _C is not identifiable from data on q8,C and �8,C319

without knowledge of 08,C . So we instead fixed the value of _C = _ in all years to a320

plug-in estimate of _ = (2/3) (250) = 166.7 (females/stem) suggested by empirical321

productivity data for epidemic phase MPB (Cole, W. and Amman 1969, Fig. 9), and322

assuming a 1:2male-female sex ratio (Reid 1962). This productivity value is consistent323

with a 90%generationmortality rate, calculated using the brood production regression324

in (Safranyik 1988, eq. 14) on the mean diameters (Carroll et al. 2006) and heights325

(Safranyik and Linton 1991) of pine in our study area.326

Although a time (and space) dependent _would bemore realistic, it would compli-327

cate the model considerably. We do however allow all other process model parameters328

to vary with time (e.g. nC , ^C , #C , and the parameters of �C ), estimating them sepa-329

rately for each year in our analysis. Variations in productivity are therefore reflected in330

changing stand susceptibility 08,C , which varies both spatially and temporally through331

#C and the local covariates x8,C (Table 2).332
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submodel vector contents definition units

attack )qC

^C density dependence shape value unitless

_ beetle production per attacked host females/stem

nC emerging endemic MPB population level females/ha

08,C half-saturation / susceptibility value females/ha

#C linear regression coefficients for 08,C -

dispersal )�C �:,C pWMY kernel: angle, shape and range -

error )+C

f2C marginal variance unitless

1C Gaussian autocorrelation range (x and y) km

Table 2: Parameters of the generalized red-top model ()C ), organized into categories of attack ()qC ),

dispersal ()�C ), and error ()+C ). All except for _ are fitted to data separately by year (C). For dispersal,

a 5-parameter product-WMY (pWMY) kernel (Appendix 2) is assigned to each of < = 625 data blocks,

indexed by : = 1, . . . <. A vector of 44 regression coefficients (#C ) defines stand susceptibility through

the linear model ^C log(08,C ) = x8,C#C for local covariates x8,C (Appendix 1.3), where 8 indexes location.

2.5 Dispersal (�̃→ �)333

Dispersal can be represented in population models using redistribution kernels (Neu-334

bert et al. 1995). These are functions, �C , specifying a probability distribution for335

location followingmovement events. If the emergingMPB population �̃C ,8 is observed336

at = spatial locations, �C specifies an = × = matrix (JC ) whose 8, 9 Cℎ entry [�C ]8 9 is337

the expected proportion of the population �̃C , 9 that will move to cell 8 in the course338

of dispersal (Appendix 2). Thus, after adding the endemic MPB, the expected attack339

density is E
(
�8,C

)
= nC +

∑
9

(
[�C ]8 9 �̃C−1, 9

)
. The equivalent matrix-vector equation340
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E (HC ) = nC O + JC H̃C allows us to drop the cumbersome location indices (8), so we341

will use this simpified notation whenever possible.342

The 8Cℎ entry ofE (HC ) estimates the density of attackers, sometimes called beetle343

pressure, at stand location 8 in year C. Beetle pressure is a common feature of MPB344

outbreak risk models (e.g. Wulder et al. 2006; Preisler et al. 2012), where it expresses345

proximity to infestations by a weighted sum of severity values or presence/absence346

indicators in a neighbourhood of the target stand. The weights in this calculation are347

provided by the kernel function �C .348

The choice of �C therefore reflects assumptions about how MPB redistribute in349

search of new hosts. Ad-hoc assignments of weights to [�C ]8 9 often suffices in simpler350

predictive models (e.g. Kärvemo et al. 2014; Kunegel-Lion et al. 2019) but, whenever351

possible, it is desireable to choose a kernel derived from models of the physical flight352

process (Nelson et al. 2008).353

Our flight model approximates the Whittle-Matérn-Yasuda (WMY) kernel family354

(Yasuda 1975), which describes diffusive movements through complex habitat (Koch355

et al. 2020b). Included in this family are a number of distinct isotropic kernels that356

have been advocated in previous studies of similar datasets (e.g. Turchin and Thoeny357

1993; Heavilin and Powell 2008; Goodsman et al. 2016). Figure 3 (middle) is one358

example, arising from diffusion with constant settling.359

We calculate the [�C ]8 9 values using pWMY kernels, which in addition to closely360

approximating theWMY, easily incorporate anisotropic (directed) movement patterns361

(Figure 3, right) as might be expected from the effect of local winds (Ainslie and362

Jackson 2011) and patchy habitat (Powell et al. 2018).363
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sources isotropic kernel

0 4 8km

anisotropic kernel

Fig. 3: MPB density pre-dispersal (left) and post-dispersal (middle and right) for two

models of MPB flight patterns: an isotropic Bessel kernel (middle) with parameters

from Goodsman et al. (2016), and an anisotropic pWMY kernel (right) parametrized

to resemble the Bessel, but with the addition of a northeast-facing directionality

Writing %8 9 =
(
G8 − G 9 , H8 − H 9

) ′ for the vector difference between the x-y coordi-
nates at locations 8 and 9 , the equation of the anisotropic pWMY kernel is:

�C
(
%8 9 ;U, dG , aG , dH , aH

)
= 2�,

(
3G8 9 ; dG , aG

)
�,

(
3
H

8 9
; dH , aH

)
,

where (3G8 9 , 3
H

8 9
) ′ = XU%8 9 , and �, (3; d, a) = (3/d)a  a (3/d) , (6)

where  a denotes the aCℎ order modified Bessel function of the second kind, XU is the364

standard 2D rotation matrix for angle U, and 2 is the kernel normalization constant.365

The parameters of this kernel are explained in detail in Appendix 2.366

Importantly, the pWMY can be computed far more quickly than the WMY. Com-367

putational simplicity allows different dispersal patterns to be quickly fitted at different368

sites within a dataset. In our study area, this revealed a complex pattern of direction-369

ality (nonstationarity) that varies depending on the position of the source population.370
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Nonstationarity in dispersal patterns over a large geographic area is unsurprising371

in light of work by Powell and Bentz (2014), whose differential-equation based move-372

ment model connects environmental cues to direction and motility in MPB flights.373

Recognizing the importance of this nonstationarity, but lacking high-resolution data374

on its cues, we opted for a novel phenomenological model that combines multiple375

stationary (pWMY) kernels to form a nonstationary one.376

We fitted each pWMY kernel to a relatively small square geographical area (a377

block) before combining them by computing a weighted average of their fitted values,378

with weights inversely related to distance from the block centroid (Figure 4). The379

effective contribution of each kernel to beetle pressure E (HC ) is therefore restricted380

to a neighbourhood (dashed outer line in Figure 4, right) of the block over which it381

was fitted (solid line).382

k

0 15 30km

sources

k

k

k

k

k

k

k

k

k

stationary kernels

0 4 8km

nonstationary kernel

Fig. 4: A nonstationary flight pattern estimation scheme: stationary kernels are sep-

arately fitted to small overlapping blocks of data (at left, a block and its centroid).

Expected beetle pressure (detail, at right) is computed as the distance-weighted aver-

age of nearby kernel predictions. Themiddle panel shows the nearest 9 block centroids

and their kernel predictions before averaging
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The resulting nonstationary dispersal model is itself a redistribution kernel, so we383

refer to it as �C (with associated matrix JC ). Its explicit mathematical form is derived384

in Appendix 2.385

The virtue of this approach is that it captures complex (nonstationary) dispersal386

patterns by means of simpler stationary kernels, whose parameters can be fitted387

rapidly by well-established techniques over small neighbourhoods within which a388

stationarity assumption is reasonable. Moreover, there is no requirement for detailed389

environmental data, such as the stand density values used by Powell and Bentz (2014).390

Movement patterns are instead estimated directly from the available attack data.391

Our construction of�C used a total of 625 pWMYkernels in a 25×25 grid arrange-392

ment of blocks, each of size 10 × 10 km. Since each pWMY kernel captures only the393

local flight patterns within its respective block, we chose a distance-weighting func-394

tion (Appendix 5.2) that assigns zero weight beyond the centroid-to-corner distance395

within a block (7.1 km). This scheme tracks movements up to 14.2 km, a reasonable396

upper bound on self-powered dispersal given laboratory studies suggesting fewer than397

10% of MPB are capable of flight beyond this distance (Shegelski et al. 2019).398

To avoid overparameterizing an already complicated model – and lacking data on399

wind patterns – we assumed that atmospherically-driven flight events (such as those400

documented by Jackson et al. 2008)were rare enough to ignore. Furthermore, although401

both block size and the number of blocks can be viewed as tuning parameters for the402

dispersalmodel,we assigned themad-hoc values in this case to (roughly) coincidewith403

the aforementioned self-powered dispersal limitations of MPB, rather than attempting404

to optimize them via model selection.405
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Some edge effects are unavoidable with this modelling strategy. For example,406

[�C ]8 9 values for a location coinciding with a block centroid will be determined407

almost entirely by the data within that single block, whereas for a location halfway408

between block centroids, the [�C ]8 9 values are influenced by data from two (or more)409

overlapping blocks – a much larger geographical extent. We believe, however, that this410

type of inconsistency pales in comparison to the roughcast assumption of stationary411

and isotropic dispersal patterns.412

2.6 Model-fitting413

2.6.1 Data414

Pine densityNC was estimated using the model output of Beaudoin et al. (2014) for the415

year 2001, after adjusting for losses due to wildfire, logging, and pest damage incurred416

during the intervening years (Appendix 1.1). For simplicity we did not attempt to417

model regeneration, but rather assume that changes in density due to growth were418

small enough to ignore over the period 2001-2008.419

Pine mortality data are drawn from the AOS of the Merritt TSA (Figure 1) for the420

attack years 2006-2008. These were rasterized by standard methods (Appendix 1.2)421

to produce a 1000 × 1000 grid of sample locations at a 1 ha resolution, matching the422

geometry of the pine density dataset. To avoid edge effects in dispersal calculations,423

we excluded a ≈10km buffer at the edge of this grid from the response data, forming424

the (logit-transformed) vector 5t from the subgrid of dimensions 893 × 893 centered425

on this region (a within-year sample size of 797,449 points).426
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2.6.2 Statistical model427

A redistribution kernel is a probabilistic model – it connects MPB damage patterns428

to the expected density of attackers arriving next year at each location E(HC ). Vari-429

ations of HC about this mean should therefore be modeled as error. Investigations430

into ecological dispersal by Preston (1948) and Limpert et al. (2001) inform us431

these errors are likely to be lognormally distributed. Assuming,
(
E(�8,C ) − �8,C

) 883∼432

lognormal(0, f̃2C ), we can summarize Sections 2.1-2.5 in the equation:433

logit (5C )︸     ︷︷     ︸
pine mortality log-odds

= ^C #C︸︷︷︸
susceptibility

+ ^C log(nC O + _JC (5C−1 � NC−1))︸                             ︷︷                             ︸
beetle pressure

+ `C ,︸︷︷︸
error

(7)

where ^C = (x′1,C , . . .x
′
=,C ) ′ is the (covariate) data matrix for year C, and `C is the434

vector of process errors arising from HC . The logit and log functions are applied435

elementwise, and the symbol � denotes elementwise multiplication. This slight abuse436

of notation allows us to suppress the location indices 8 and write the complete model437

(7) in terms of length-= vector operations.438

Under the lognormal assumption, `C is mean-zero multivariate normal (MVN),439

with a variance ^C f̃2C that scales with the strength of the density dependence in440

q(�). We assume that measurement error introduces an additional mean-zero MVN441

random vector appearing additively on the logit scale of (7). Since these errors are442

presumably independent of HC , their effect (by standard MVN theory) is to simply443

increase the variance of `C . Thus, ignoring any autocorrelation (for now), we could444

write `C ∼ MVN
(
0, f2C O

)
, where f2C is the sum of the variances from process and445

measurement error.446
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For simplicity we ignored temporal autocorrelation by treating each year of data447

in the analysis as independent, as is commonly done in large-scale MPB outbreak448

analyses (e.g. Heavilin and Powell 2008; Goodsman et al. 2016). While this is not449

ideal, it avoids the difficulties associated with aligning consecutive years of raster450

data containing a large number of slight positional errors (Wulder et al. 2009), while451

simplifying the error model both mathematically and computationally.452

Spatial autocorrelation, on the other hand, is more easily corrected using covari-453

ograms (Chilès andDelfiner 2012). For computational efficiencywe used theGaussian454

covariogram, which generates a covariance matrix \C (to replace f2C O above) based455

on f2C and a pair of correlation range parameters, 1C . In this model, the logarithm of456

the likelihood function for observations of 5C , given 5C−1 and ^C is proportional to:457

L ()C | `C ) = − log (det(\C )) − `′C\
−1
C `C where )C =

(
)qC , )�C , )+C

)
(8)

with `C as defined in (7), and model parameters )C organized into components of458

attack dynamics, )qC = (^C , _, nC , VC ); error, )+C = (f2C , 1C ), and dispersal )�C =459

(�1,C , ...�625,C ); as in Table 2. The model can now be fitted to data by maximum likeli-460

hood estimation (MLE), which finds the maximizer of (8), called )̂C = ()̂qC , )̂�C , )̂+C ).461

Our estimation method for )C is based on the 2-step algorithm described in Cru-462

jeiras and Van Keilegom (2010), but with a blockwise approach to approximating463

the large number of parameters in )�C . Each of the 625 pWMY kernels is fitted in-464

dendently to the data in its block, before being combined to form the nonstationary465

kernel matrix ĴC . By assuming JC ≈ ĴC , estimation of the remaining parameters )qC466

and )+C then becomes straightforward using generalized least squares (GLS) based467
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methods (Chilès and Delfiner 2012). Simulations indicated that our approach yields468

unbiased and reasonably precise estimates of )C (Appendix 3).469

3 Results470

The estimated endemic densities and attack curve shapes in all three years (Figure471

5) matched closely with ground surveys of our study area during the period 2001-472

2005. We estimated nC , the endemic contribution, at 388, 279, and 566 (females/ha),473

respectively, for the years 2006 − 2008. Note that these densities are well above474

what is considered normal for the endemic phase (Safranyik and Carroll 2006), as475

they represent populations before flight-establishment loss. After correcting for this476

loss (97.5%), our estimates suggest a range of 7 − 14 attackers/ha in endemic-only477

populations, similar to the ranges reported in Boone et al. (2011) and Bleiker et al.478

(2014).479

A density dependence in attack was detected in all years, with ^ estimated at 1.69,480

1.32, and 1.67. Note that the estimates in 2006 and 2008 very nearly matched the481

value of 1.66 reported by Cooke and Carroll (2017) for pooled colonization curve482

data from the preceeding years 2002-2003 and 2005 (Figure 5). This indicates that483

not only is density dependence detectable from stand-level AOS data (in the absence484

of failed attack counts) – supporting the findings of Goodsman et al. (2016) on Allee485

effects – but also that the precise shape of the attack curve in (9) can be estimated486

from aerial data on 5C and NC alone. This includes both the Allee and compensatory487

(crowd competition) effects highlighted in Figure 2.488



28 Dean Koch et al.

k

k

k

k k k

97.5% flight−establishment loss

0

200

400

600

2006 2007 2008

attack year

fe
m

a
le

s
/h

a

emerging

attacking

endemic population (ε)

k

k

k

increasing Allee effect

no Allee effect

0.0

0.5

1.0

1.5

2006 2007 2008

attack year

κ

attack curve shape (κ)

Fig. 5: Fitted attack parameters. At left, estimates of the endemic population and

expected attack rates lying within the range (dotted lines) reported in Boone et al.

(2011). At right, estimates of the attack curve shape compared with reference levels

from Cooke and Carroll (2017) (dotted lines)

Estimates of stand susceptibility 08,C varied across the landscape, being spatially489

dependent on x8,C . Locations unsuitable to MPB (such as unforested areas) tended490

to assume extremely large 08,C values whereas areas with optimal habitat for MPB491

assumed much smaller ones.492

Restricting our attention to optimal stands only – i.e. those having a density of 800-493

1500 stems/ha and aged > 80 yrs (Carroll et al. 2006), representing around 150,000494

locations – the observed distribution of susceptibility values can be compared to495

empirical data from similar outbreaks. For example the modes of the estimated <�8,C496

values over these optimal stands were centered at 336, 932, and 480 females/stem,497

for the years 2006-2008 respectively (Figure 6). This is reasonably consistent with498
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the 300-617 females/stem range observed in our study area by Safranyik and Linton499

(1991) during a previous outbreak in 1984.500

2006

fr
e
q
u
e
n
c
y

stand susceptibility (a)

fr
e
q
u
e
n
c
y

incipient−epidemic transition (BT)

fr
e
q
u
e
n
c
y

mass−attack density (mA)

2007

fr
e
q
u
e
n
c
y

fr
e
q
u
e
n
c
y

fr
e
q
u
e
n
c
y

2008

0 1000 2000 3000

ai,t ⋅ 10
−3

(females/ha)

fr
e
q
u
e
n
c
y

0 1000 2000 3000

BTi,t
(females/ha)

fr
e
q
u
e
n
c
y

0 2000 4000 6000

mAi,t
(females/stem)

fr
e
q
u
e
n
c
y

Fig. 6: Histograms of estimated susceptibility (08,C left) in stands optimal for MPB

in the years 2006-2008, and two associated quantities: (middle) the beetle pressure

required for one mass attack per 15 ha, with dotted lines indicating an empirical range

(Cooke and Carroll 2017); and the mass attack number (right), with a dotted line

indicating the optimum of Raffa and Berryman (1983).

Using data on average diameters and attack heights for these optimal stands501

(23cm, Carroll et al. 2006; and 11.36m, Safranyik and Linton 1991; respectively), we502

estimated a typical bark area of 5.5m2/stem (Safranyik 1988, eq. 6). Our typical per-m2503

observed attack density (<�8,C /5.5) therefore lay in the range of 61-170 females/m2.504

Note that the lower end of this range (observed in 2006) coincides exactly with the505

optimal attack density measured by Raffa and Berryman (1983) (Figure 6, right).506
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This shows that 2006 was a year of strong population growth for MPB, with a507

relatively low threshold for outbreak emergence (�) ), and mass attack numbers (<�)508

centred at or near the optimum for brood production. Populations continued to expand509

through the next two years, with a large number of incipient epidemic transition510

events, followed by a collapse. Our model indicates that in optimal habitat, these511

events typically happened when MPB attack densities increased through the range512

427-1114 of females/ha (the modes of the estimated �)8,C by year; Figure 6, middle).513

This agrees with empirical observations by (Cooke and Carroll 2017) of a transition514

point in the 300-600 range during the five years leading up to 2006, and indicates that515

�) values spiked as the epidemic neared collapse in 2008.516

On dividing the �)8,C values in Figure 6 by our estimates for nC , and takingmedians,517

we find that a factor of 2.5 − 3.2 increase in the endemic population was typically518

sufficient to initiate an outbreak. These findings support the observation of Carroll519

et al. (2006) that the incipient-epidemic transition point seems to occur at a level520

slightly above the density required to mass-attack a single pine. Our model expresses521

this quantity by the ratio �)8,C /<�8,C , whose median values (in optimal MPB habitat)522

were 2.2, 0.5, and 2.0 in the years 2006-2008, respectively.523

Flight events under the fitted model are summarized by the block-wise redistribu-524

tion kernel estimates. Our pWMY kernels identified a large number of highly directed525

(anisotropic) dispersal events in all years. The grid of fitted dispersal kernel parame-526

ters ()̂�:,C ) that generate �̂C (Figure 7) resembles a smooth vector field, raising some527

interesting questions as to the driving forces behind these patterns.528
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pWMY kernels (2006) pWMY kernels (2007) pWMY kernels (2008)

infested

Fig. 7: Diffusion ellipses summarizing the angle and effective range corresponding

to each of the 625 fitted pWMY parameter sets used to construct ĴC for each year.

Each ellipse inscribes a contour of constant density for dispersal from its centre. Line

thickness is scaled to match the estimated number of MPB displaced, emphasizing

major outbreak centres. Infestations from the previous year are shaded to indicate the

spatial distribution of source populations. Uninfested areas tended to produce small

ellipses – these should be viewed as uninformative, as the model had no data from

which estimate flight patterns in those blocks.

The combination of these stationary fitted kernels to form the nonstationary kernel529

(�̂C ) brings into focus a complex landscape of MPB movement patterns (Figure 8),530

illustrating how detailed information on beetle pressure can be recovered from AOS531

data by rethinking the usual modelling assumptions about dispersal.532

Note that our model was constructed for parameter inference, rather than predic-533

tions of future outbreak locations. However, our methodology for estimating beetle534

pressure could easily be adapted to serve a forecasting role. We illustrate the idea in535

Figure 9, where the empirical value of �) = 450 (the midpoint of the range reported536

in Cooke and Carroll 2017) is used as threshold for outbreak development. The plot537
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Fig. 8: Heatmaps of log(_ĴC (5C−1 � NC−1)), the fitted beetle pressure values arising

from flight events in the years 2006-2008 (excluding endemicMPB). ĴC is the moving

average of predictions from a 25 × 25 grid of local stationary models, each fitted to a

local subset of the data

shows how our model delineates infested areas under two different scenarios; the first538

with no endemic population, and the second with nC set to its estimated value from539

2006. Notice that neither 08,C , ^C nor )+C is needed for this classification.540

The true positive rate in the training year 2006 was 93.5%, and in the forecast541

for 2007 it improved to 98.0%. By including the endemic population in our beetle542

pressure estimates, the contours of the infestation predictions broadened, sometimes543

by several kilometres. This improved detection rates substantially (true positive rate544

in 2006 without the endemic component: 71%; and in 2007: 84%).545

4 Discussion546

The S-shaped colonization curves that characterize the non-linearity of MPB attack547

dynamics (e.g. Raffa and Berryman 1983; Boone et al. 2011) are usually fitted to field548

data on individual attacked trees, so they relate attack density to the mortality among549
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Fig. 9: Infested locations and next-year forecasts using the equation ĤC = n̂ O + ĴC H̃C

from Section 2.5. Using the fitted values of n̂C and ĴC from the training year 2006

(left), locations were classified as infested (shaded) if the predicted beetle pressure

exceeded �) = 450. Using these same parameters along with the observed attack

damage and pine density in 2006, we then predicted infestations in 2007 (right).

For comparison, an endemic-free estimate is also plotted (darker shaded regions) by

replacing �8,C with �8,C − nC . The effect is to withdraw the contours of infested areas

inward, considerably limiting the estimated spread.

pines undergoing attack. This is a conditional probability model. For example, the550

model of Cooke and Carroll (2017) has the form:551

logit (Pr(pine mortality | attack)) = � + ^ log(#0) = (� − ^ log(2)) + ^ log(�) (9)

where � is an dimensionless intercept; and #0 is the number of stems attacked within552

the study plot, which we expect to scale according to 2#0 ≈ � with the attack density553

� (in females/ha).554
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Our model, however, is based on aerial data, from which failed attacks cannot555

be resolved. In (2), we therefore related � to the unconditional probability of stand556

level mortality Pr(pine mortality | attack) Pr(attack), which we called q. Notice that557

when Pr(attack) = 1, both the red-top model of Heavilin and Powell (2008) and our558

generalization (1) coincide exactly with (9). In reality, attack rates will be much lower,559

so in the high-level description (1) we assumed that the logit-linear relationship (9)560

remains after aggregating mortality data at the 1 hectare scale. Our results supported561

this assumption, with estimates of ^ in close agreement with the field data reported562

by Cooke and Carroll (2017).563

In Section 2.1 we showed how, via stand-susceptibility (0), this ^ value is mathe-564

matically linked to the mass attack number (<�) and the incipient-epidemic transition565

point (�) ). Our comparison of point estimates for these parameters with empirical566

data from previous years showed reasonably good agreement, supporting the theory567

behind formulae (3) and (4). This illustrates one way in which our model can be used568

to study ecological questions about MPB attack dynamics at the level of the individual569

tree, while using only (stand-level) AOS data for parameter fitting.570

For instance, the observed increase in �) in 2008, along with the elevated <�571

levels in 2007-2008, can be attributed to host depletion, asMBP tend to select pine of a572

certain phloem, size, and vigour class for colonization (Shrimpton and Thomson 1985;573

Cole and McGregor 1983; Raffa and Berryman 1983). As the preferred hosts become574

scarce, MPB are thought to balance increasing fitness costs by first intensifying mass575

attacks on the few that remain (Lewis et al. 2010), thus effectively increasing <�576
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above its optimal level. Similarly, a scarcity of suitable mass-attack targets can be577

expected to make spontaneous eruptions from the endemic phase less likely.578

Furthermore, our results on nC shed a mathematical light on how outbreaks might579

sporadically arise across the landscape – if environmental conditions were to double580

or triple the number of injured/weakened pines available to the endemic population,581

this could allow it to grow to the point of exceeding �) in the absence immigrating582

MPB – in accordance with the theory of Berryman (1978), and the explanation of583

Cooke and Carroll (2017) as to the origin of the outbreaks analysed in Section 3.584

In-flights ofMPBare equally important to understandingMPBoutbreak dynamics.585

This is clear from the large number of spatial regression studies pointing to beetle586

pressure as the single most significant factor in outbreak development (e.g. Aukema587

et al. 2008; Preisler et al. 2012; Sambaraju et al. 2012). However there remains588

little consensus in the modelling literature on how best to represent beetle pressure589

mathematically.590

As we explained in Section 2.5, beetle pressure simply expresses our modeling591

assumptions about MPB dispersal; Different modelling approaches handle this prob-592

lem in different ways. With few exceptions (such as Powell and Bentz 2014; Powell593

et al. 2018) forecasting models tend to reconstruct beetle pressure in a heuristic way,594

by defining infestation indicator variables that are summed over local spatial neigh-595

bourhoods (see e.g. Shore et al. 2000; Aukema et al. 2008; Robertson et al. 2009;596

Kunegel-Lion et al. 2019). Many attack dynamics regression models also employ597

this trick (e.g. Zhu et al. 2010; Preisler et al. 2012; Sambaraju et al. 2012; Kärvemo598

et al. 2014), and indeed a stationary and isotropic kernel-based representation (as in599
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Heavilin and Powell 2008; Goodsman et al. 2016) is simply a refinement that finds a600

biology-based shape (and range) for the filter. Our method refined this idea further,601

in a novel way, by introducing directedness and location-dependence by means of a602

weighted combination of stationary kernels.603

As we observed in a previous study (Koch et al. 2020b), the precision gained604

through the use of anistropic kernels appears to far outweigh the drawbacks associated605

with the introduction of additional dispersal parameters. Moreover, we believe our606

refined flight model shows promise not only in formulating beetle pressure (as we607

do here), but as a tool for studying nonstationary dispersal processes more generally.608

Future workmight look for connections between )�:,C and environmental drivers such609

as prevailing wind direction, as a means of studying the dispersal process itself. For610

example, one could analyse whether patterns of directionality might arise in reaction611

to population density, both of beetles and hosts, similar to work by Powell and Bentz612

(2014) (we thank an anonymous reviewer for these suggestions).613

Though we did not analyse the kernel parameters ()�C ) in detail, it is worth re-614

marking that in most of the pWMY kernels a leptokurtic pattern of dispersal was615

favoured over the simpler Gaussian model of bio-diffusion. This highlights the versa-616

tility of the pWMY in modelling different flight mechanisms (Koch et al. 2020b), and617

suggests that a wide range of MPB flight behaviours are realized across the landscape:618

including both the fat-tailed patterns, proposed byGoodsman et al. (2016) and Turchin619

and Thoeny (1993); and the Gaussian, suggested by Heavilin and Powell (2008).620

Note that the model-fitting procedure of Section 2.6 was constructed to study621

attack dynamics (at least) one year after they occur, not to predict them in future622
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summers, nor is our estimate of stand susceptibility 08,C (as a log-linear function of623

local covariates) intended for extrapolation. A more judicious choice of covariates624

whose values can be projected in time (combined with a significance-based covariate625

selection) would be needed in a predictive risk model for MPB damage. Nonetheless626

we think the framework in (7) – and in particular the nonstationary approach to627

dispersal – will be helpful in building model-based solutions to management and628

forecasting problems.629

We illustrated this briefly in the next-year classification example of Figure 9.630

Note that our high detection rates lie near the level mentioned in Fettig et al. (2014)631

for stabilizing outbreaks by mitigation measures (such as cut and burn). However632

with high recall comes a high false positive rate (low precision); Moreover the 2007633

prediction required information on pre-dispersal density that is typically not available634

until after the attack summer being predicted – recall that H̃C is derived from crown635

fade data with a one-year lag. One possible solution would be to iterate equation (7)636

with simulated error to produce a suite of multi-year forecasts under various scenarios637

of stand susceptibility and process error, an idea we plan to explore in future work.638

Figure 9 illustrates an important consequence of the ubiquity of endemic MPB639

in their natural range: it increases the potential for outbreaks to spread. The potential640

for range expansion may be therefore be underestimated if the endemic contribution641

to MPB outbreaks is ignored. This will be of particular relevance in contemporary642

areas of concern, such as the Boreal forest in Alberta (Safranyik et al. 2010). The643

establishment of endemic populations in these areas should be closely monitored, as644
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our results show that they have the potential to accelerate the spread of outbreaks, and645

thus speed the range expansion of the MPB.646
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