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1 Datasets6

1.1 Host density N7

Host density �8,C , or the number of susceptible overstory pine trees within the 1 ha8

square of land in cell 8 in year C, was approximated using variable ℎ8,C , the combined9

above-ground biomass at cell 8 attributed to Pinus species. We calculated this from10

a 2001 baseline estimate supplied in Beaudoin et al. (2014), making adjustments in11

each subsequent year by subtracting losses from wildfire and logging (using data from12

http://www.hectaresbc.org), as well as MPB.13

While raw data in units of live mature stems/ha would be both more realistic and14

convenient, they are typically not available at the scale and resolution that we are15

interested in. We therefore simply rescaled ℎ8 to match empirical distributions of �816

based on ground surveys (Figure 1).17

In a 2006 survey of 28 high-density stands in theMerritt TSA byNigh et al. (2008),18

the highest observed density was 2810 stems/ha, 92% of which was pine. Based on19

that maximum we assigned a scaling factor of Bℎ = 0.92 × 2810/max8 (ℎ8,2006) = 9.120

and fixed �8,C = Bℎℎ8,C . A more cautious approach, for example using mensurational21
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Fig. 1: Heatmap of host density �8,C = Bℎℎ8,C , estimated from rescaled pine volume
data ℎ8,C . At right, the empirical CDF of pre-attack host density in 2006 and 2008
(dashed and dotted lines) are compared against an overstory pine density survey from
2006 by Nigh et al. (2008) (solid line).

projections for the stands in our study area, is possible but was avoided for the sake22

of simplicity. However our linear rescaling produced a reasonably close agreement in23

empirical cumulative distribution (CDF) functions (Figure 1), and the scaling factor24

of ≈ 10- is essentially a linearization of the more carefully constructed nonlinear25

volume-density curve derived in Goodsman et al. (2016) (Appendix S1).26

1.2 Pine mortality 527

Our response variable q8,C is the percent of �8,C killed by pine beetle attack in28

the summer of year C. We derived these values from AOS data comprising two29

types of GIS information collected annually by BC’s provincial forest management30

agency: polygons with categorical damage severity attributes (digitized sketch maps)31

indicating large contiguous areas of infestation; and spot data indicating a small cluster32

of infested stems at a particular location. Because crown-fade typically happens with33

a one-year delay, we refer to year C + 1 in the AOS dataset as the attack year C.34

To convert polygons to raster format we followed a protocol introduced by Chen35

and Walton (2011); the five AOS damage severity categories (corresponding to inter-36

vals of percent mortality: trace <1%, light 1-10%, moderate 11-29%, severe 30-49%,37

very severe >50%) were interpreted by multiplying the midpoint of each interval with38

the percent area of overlap with each cell. Spots were interpreted by defining a quarter-39

hectare circle centered at the point coordinates and assigning it a 30% mortality value40

(reflecting AOS-wide average stand loading and spot infestation levels).41

Some minor modifications of these mortality data were needed to correct obvious42

positional errors and to make our analysis approach feasible: Attack rates >1 (due43

to multiple overlapping damage observations) were truncated to one, and values at44
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locations unsuitable for MPB (water bodies, non-treed areas, etc.) were set to zero.45

We then added the small constant b = 4 × 10−6 (equal to one half the minimum finite46

logit value) to each cell before dividing by 1 + b. This ensured that 0 < q8 < 1, so47

that logit(q8) is defineable all sites. It is also consistent with premise of ubiquitous48

endemic MPB populations, undetectable by the AOS (Wulder et al. 2006).49

1.3 Stand susceptibility covariates50

Beetle pressure is only part of the equation in MPB attack dynamics. Environmental51

conditions before and during an attack, as well as the density, composition, and health52

of the stand influence the ability of a given pine to resist bark beetle attack (Taylor53

et al. 2006; Nelson et al. 2008). These local conditions are often summarized as54

stand susceptibility, a ranking of relative risk (to MPB attack) computed from local55

covariates. The model of Shore et al. (2000), for example, uses the product of four56

covariates relating to: pine dominance; stand density; stand age; and elevation.57

Our model uses a similar product of stand characteristics along with a suite of58

additional microclimate and topography-related covariates, similar to those found in59

Aukema et al. (2008). Local stand characteristics, such as �8 , were derived from the60

Beaudoin et al. (2014) model, and topographical features were drawn from provincial61

government datasets (http://www.hectaresbc.org). Local weather variables, such as62

temperature and precipitation highs/lowswere constructed using the climateBCmodel,63

via elevation-adjusted extrapolations fromweather station measurements and climatic64

norms (Spittlehouse 2006). In total, we compiled 43 such covariates for each of the65

= sites in the study area (=V = 44, including an intercept). These are the rows of the66

= × =V matrices ^C . They are summarized in Table 1.67

2 Redistribution kernels for 2-dimensional space68

Redistribution kernels view dispersal events as moving individuals from a fixed source69

to a random destination. If the coordinates of the 8Cℎ possible destination are s8 =70

(G8 , H8) ′, then we write the movement vector from source ( 9) to destination (8) as71

%8 9 = s8 − s 9 = (XG8 9 , X
H

8 9
) ′, where XG

8 9
= G8 − G 9 and XH8 9 = H8 − H 9 are the components72

of the movement along the G and H axes. Direction (angle U8 9 ) and distance (38 9 ) are73

then given by the identities 32
8 9
= |%8 9 |2 = (XG8 9 )2 + (X

H

8 9
)2, and tan(U8 9 ) = XH8 9/XG8 9 .74

We define the redistribution kernel � (s8 , s 9 ;�) to be the probability mass func-75

tion (PMF) for possible destinations, with parameters �. For simplicity modelers usu-76

ally choose kernels that are spatially stationary (invariant to location), and isotropic77

(invariant to direction). Stationarity means movement probabilities depend only on78

direction and distance, so � can be written � (%8 9 ;�). With the additional assumption79

of isotropy, � becomes a function of distance 38 9 only, or � = � (38 9 ;�). In general,80

we will write � for the function and [�]8 9 for its value with source 9 and destination81

8.82

The (isotropic and stationary)Gaussian is themost common kernel in applications:83

�� (38 9 ; d) = 2 exp
(
−328 9/d

)
, where 38 9 = |s8 − s 9 |. (1)
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Category Name Units Source

topography

altitude m above sea level
provincial topography layers from
hectaresbc.org (accessed 06/2019)

slope ◦ above horizontal
aspect ◦ from true north

lakes indicator binary

stand inventory

treed area % damage-adjusted estimates from
Beaudoin et al. (2014) based on
remotely-sensed data from 2001 (see
Section 1.1)

stand age years
pine density stems/ha

log pine density log(stems/ha)

beetle activity lagged pine mortality % qC and qC�C lagged by one and two
years (see Sections 1.2-1.1)lagged infested stems stems/ha

temperature
minima ◦C

All climatic variables are seasonal, with
separate covariates for: autumn of year
C − 1; winter, spring, and summer of
year C . These are estimated using
climateBC software from (Spittlehouse
2006).

averages ◦C
maxima ◦C

cooling days days below 0◦C ◦C · days
days below 18◦C ◦C · days

warming days days above 5◦C ◦C · days
days above 18◦C ◦C · days

precipitation totals mm / 4 months

Table 1: The 43 covariates included in the linear regression model for stand suscepti-
bility. 31 of these are climatic (four seasons × 8 factors, with the exclusion of degree
days above 18◦ to avoid collinearity problems); Four are lagged state variables (pine
mortality and infested stem counts, lagged by one and two years); Four describe the
local host population; and four are topographical.

2 is a normalization constant, chosen such that with s 9 fixed, the summation of (1)84

over all destinations is equal to one. This normalization is a general requirement of85

any PMF, but in the context of redistribution kernels it ensures that total population86

counts are conserved. More precisely, if we start from local source populations of87

size �̃ 9 , with individuals at each source dispersing independently and according to �,88

then the expected number to arrive at destination 8 is �8 =
∑
9 [�]8 9 �̃ 9 , and the sum89

of the �8 is equal to the sum of the source populations.90

Thus � is sometimes chosen by selecting a function that matches the profile of91

empirical data on �8 . Other times, hypotheses about the movement mechanism lead92

to mathematical derivations. For example, under a quite general set of circumstances,93

diffusion through 2D space gives rise to the WMY kernel family (Yasuda 1975;94

Yamamura 2002; Hapca et al. 2009):95

�,
(
38 9 ;�,

)
= 2

(
38 9/d

)a
 a

(
38 9/d

)
, where �, = (a, d) ′, (2)

with shape parameter a > −1; range parameter d > 0; normalization constant 296

(computed as above); and with  a to denote the aCℎ order modified Bessel function97

of the second kind.98

The Gaussian (1) and 2D Laplace kernels used in Heavilin and Powell (2008),
are limiting/special cases of the WMY (a → ∞, and a = 1/2, respectively). The
Bessel kernel appearing in the bark beetle models of Turchin and Thoeny (1993) and
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Goodsman et al. (2016) is another special case (a = 0). In this sense (2) is robust
with respect to hypotheses about movement. We use an approximation to (2) that is
somewhat more flexible, the geometrically anisotropic product-WMY:

�⊗
(
%8 9 ;�

)
= 2�,

(
3G8 9 ;�

G
)
�,

(
3
H

8 9
;�H

)
, (3)

with � = (U,�G ,�H) ′ , and (3G8 9 , 3
H

8 9
) ′ = XU%8 9 ,

where XU is the standard 2D rotation matrix for angle U and 2 the normalization99

constant. This kernel is similar to the WMY, closely approximating it over much of its100

parameter range, yet it can be computed far more quickly because, like the Gaussian,101

it is spatially separable (Koch et al. 2020b). Moreover it better captures directed102

movements, by means of angle U and the independent shape/range parameter sets, �G103

and �H , representing two orthogonal directions. Thus unlike an isotropic kernel, (3)104

captures ellipsoid patterns of redistribution (see Figure 3 of main text).105

Our nonstationary formulation of � uses a weighted combination of < = 625106

stationary kernels �⊗: (: = 1 . . . <), each of the form (3), and each with its own107

parameter set �: . Each is spatially referenced, with coordinates r: to denote the108

centroid of a 10×10 km block over which �⊗: is assumed to reasonably approximate109

local flight patterns. The predictions of these local kernels are combined by weighted110

averaging, with weights inversely related to distance from the centroid r: to the111

prediction site s8 . For a given weighting function l(3), we define the nonstationary112

kernel:113

� (s8 , s 9 ; )�) = 2 9
<∑
:=1

l ( |s8 − r: |) �⊗:
(
s8 − s 9 ;�:

)
, where )� = (�1, . . . ,�<) ′

(4)
where the (source-dependent) normalization constant 2 9 is computed as the reciprocal114

of the sum of (4) over all 8 (with 2 9 set to 1 in this calculation), ensuring that density115

is preserved.116

We used a bisquare weighting function l(3) =
⌈
1 − (3/A)2

⌉2, with the ceiling117

function dGe enforcing a cutoff distance of A = 7.1 km beyond which zero weight is118

assigned. Centroids r: were arranged in a 25 × 25 grid of overlapping blocks, with a119

spacing of 3.3 km between centroids. This balanced a need for large samples within120

each block (10 × 10 km = 104 points) and high resolution estimates of E (HC ).121

3 Model-fitting and simulations122

Covariograms are in many ways similar to redistribution kenels. We use a geometri-
cally anisotropic Gaussian covariogram, which defines the covariance between errors
at s8 and s 9 to be:

[\C ]8 9 = Cov
(
/8,C , / 9 ,C

)
= f2C exp

(
(3G)2/dG

)
exp

(
(3H
8 9
)2/dH

)
, (5)

where (3G , 3H) ′ = XU |s8 − s 9 |
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with dG , dH > 0 the range parameters, and U the angle of orientation. For reasons of123

computational efficiency we fixed U = 0 so that (5) remains spatially separable (Koch124

et al. 2020a).125

3.1 Estimation126

Supposing beetle pressure is known – either by direct measurement, or by fixing127

biologically reasonable values for nC and )�C
– then equation (5) of the main text128

will become linear in the remaining attack dynamics parameters ^C and #C . The129

maximization problem in equation (6) of the main text then becomes a spatial linear130

regression on stand susceptibility, much like in Aukema et al. (2008) and Zhu et al.131

(2010) except with an explicit (rather than implicit) errormodel. In this situation, using132

generalized least squares (GLS), it is straightforward to find )̂qC and )̂+C numerically133

using a 2-step estimator (Chilès and Delfiner 2012).134

Similarly if )�C
, but not )qC , is known, it remains a relatively straightforward135

1-dimensional optimization problem to find )̂qC and )̂+C by profile likelihood on n136

using GLS as above (Crujeiras and Van Keilegom 2010). However with all three137

components unknown, the inference problem is far more involved. Our solution is138

three stage algorithm that requires an initial estimate of beetle pressure. We used139

n = 0 and the stationary Bessel kernel reported in Goodsman et al. (2016):140

1. Assume \C ∝ O. Estimate #̂C and f̂C by OLS given the initial beetle pressure141

values. Estimate �̂C by blockwise MLE given # = #̂C . Estimate )̂qC by profile142

likelihood on n given �C = �̂C .143

2. Estimate )̂+C by MLE on the model residuals from stage 1. Refine the estimate of144

)̂qC by profile likelihood on n given �C = �̂C .145

3. Assume )+C = )̂+C . Refine the estimate of �̂C by blockwise MLE given # = #̂C146

from stage 2. Refine the estimate of )̂qC by profile likelihood on n given �C = �̂C .147

In stages 1 and 3, "blockwise MLE" for �̂C means the following: we split the148

dataset into square blocks (each containing 104 locations) centered over the 625149

points of a 25× 25 evenly spaced grid covering the study area, and assigned a pWMY150

kernel (with parameters �:,C ) to each one. Fixing #C and \C to their most current151

estimates as specified in stages 1/3, for each block we jointly estimated the seven152

remaining unknown parameters (n , ^, and �:,C ) by numerically maximimizing the153

likelihood function in equation (6) of the main text, under the assumption that �C is154

the stationary kernel (3) with parameters �:,C . We then used the �̂:,C to construct �C155

using (4) (discarding the local estimates of n and ^).156

3.2 Simulations157

Our 3-stage algorithm is similar to one described by Crujeiras and Van Keilegom158

(2010), where )̂qC and )̂�C
are jointly estimated and )̂C is known to be asymptotically159

normal and unbiased. However since ours estimates )̂qC and )̂�C
separately, we have160

no theoretical guarantees of its large-sample properties. Instead we investigated the161

properties of our estimators in simulations.162
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Since our model is computationally intensive, we conducted simulations on a163

smaller spatial scale – 33 × 33 km, covered by a 5 × 5 layout of blocks – and164

generated �C using anisotropic Gaussian (instead of pWMY) kernels. The fitted165

model, however, was as described in the main text, using pWMY kernels to fit �C . In166

each of 100 repetitions, we assigned values to the parameters in Table 2 (of the main167

text) uniformly at random within a biologically reasonable range – e.g. 0.1 < ^ < 25,168

1 < n < 500, and 25 < _ < 1000 – and used covariate data pulled from a randomly169

located subset of the full 2008 data. We then used equation (5) of the main text to170

compute the true response values logit(5), adding them to randomly generated MVN171

errors `C to produce a (simulated) observed response.172

The response and associated covariates were fed into the algorithm of Appendix173

3.1 to yield estimates )̂C separately for each repetition. Errors in estimation for the174

attack parameters )qC and the angles of anisotropy U:,C are summarized in Figure 2.175

For comparison we also report the errors after stage 1, where the `C are assumed to176

be indepedendent in space (a model misspecification).177

Raster plots of the estimated post-flightMPBdensity closely approximated the true178

(simulated) ones. Individual fitted stationary kernels also closely resembled the true179

ones, favouring large shape values (and thus approximating the Gaussian closely), and180

estimating the dispersal orientation angles with remarkable precision. Interestingly181

the autocorrelation correction (stages 2-3) had little impact on these angle estimates,182

so although beetle density estimates differed slightly between stages 1 and 3, the error183

distribution of the U:,C appears largely unchanged (Figure 2).184

However the results for the other parameters highlight some of the reasons wemust185

not ignore spatial autocorrelation: uncertainty is underestimated under an incorrect186

independence assumption, leading to a wider than expected spread of errors and more187

frequent misspecifications of Û8,C . In our case, this imprecision appeared to introduce188

bias in the more sensitive components of the model; Both n and ^ tended to be189

underestimated in stage 1. The stage 3 autocorrelation correction appears to largely190

eliminate this bias and improve precision (peakedness of the density plots).191

The error distributions of the individual V̂:,C showed good agreement with the192

large sample asymptoptic theory in Crujeiras and Van Keilegom (2010), from which193

confidence intervals can be computed by inverting the Fisher information matrix194

corresponding to equation (6) of the main text. Uncertainty in the distributions for195

n and ^, however, was underestimated by this theory; with only 38% (and 42%,196

respectively) of estimates lying inside their nominal 95% intervals. This may be due197

to an inadequate sample size, or a failure to find the values of )̂qC and )̂�C
that198

jointly maximize the full likelihood in stages 1 and/or 3. We therefore omit confidence199

intervals for these parameters in the main text, reporting the n̂ and ˆ̂ simply as point200

estimates.201
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Fig. 2: Relative errors (discrepancy with exact values) in parameter estimation, using
the 3-stage algorithm (Appendix 3.1) in 100 independent simulations (indexed by
C). Results on 44 regression parameters (V1,C . . . V44,C ) and 25 angles of dispersal
anisotropy (U1,C . . . U25,C ) are pooled and displayed as smoothed histograms. Stage 1
estimators ignore autocorrelation. Stage 3 estimators correct for it.
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