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Abstract

In this thesis we will study the robustness property of sub-gaussian random

matrices. We first show that the nearly isometry property will still hold with high

probability if we erase a certain portion of rows from a sub-gaussian matrix, and we

will estimate the erasure ratio with a given small distortion rate in the norm. With

this, we establish the strong restricted isometry property (SRIP) and the robust

version of Johnson-Lindenstrauss (JL) Lemma for sub-gaussian matrices, which are

essential in compressed sensing with corruptions. Then we fix the erasure ratio and

deduce the lower and upper bounds of the norm after a erased sub-gaussian matrix

acting on a vector, and in this case we can also obtain the corresponding SRIP

and the robust version of JL Lemma. Finally, we study the robustness property of

Gaussian random finite frames, we will improve existing results.
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Chapter 1

Introduction

1.1 Motivation

Consider the following problem: In sensor network, we transmit a signal through

independent channels and the centre hub receives observations from each channel

for further analysis. In practice, it is typical that some channels fail to send the

correct measurements, therefore we can only obtain the corrupted data. To deal

with problems like this, methods to reconstruct a signal from sampling

observations are of great interest to researchers in engineering fields. In general it

is impossible to recover the signal if there is nothing known about the signal or the

measurement. However, with prior knowledge to the signal, it is possible to recover

the signal with negligible or even zero error. Over the past years, researchers have

been refreshing their understandings on the relevancy and practicability of the

assumptions, and have developed several powerful tools to study the question.
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1.2 Compressed Sensing

In signal processing, compressed sensing (CS) is a technique for signal recovery via

solving certain linear systems. In compressed sensing without corruption, the

general acquisition setting is represented as y = Ax, where x ∈ Rn is the signal,

y ∈ Rm is the measurement and A ∈ Rm×n is the sensing matrix where Rm×n

denotes the set of all m× n real matrices. In general it is extremely difficult to

recover the signal if we know nothing about x and A. Around 2004, it was shown

by Candés, Romberg and Tao in [6] and Donoho in [10] that if a signal satisfies

certain sparsity conditions plus additional assumptions on the sensing matrix, then

the reconstruction can be accomplished. The ideas of the proofs in these papers

provided the foundations of CS.

The most important concept introduced in compressed sensing is the restricted

isometry property (RIP), which gives a characterization of the almost norm

preserving property of a matrix. This property was first set up by Candés and Tao

in [7], and it is defined as follows:

Definition 1.2.1 (Restricted isometry property). We say that a matrix

A ∈ Rm×n satisfies the restricted isometry property (RIP) of order k if there exists

δ ∈ [0, 1) such that

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2

for all x ∈ Rn with ‖x‖0 ≤ k where ‖x‖0 denotes the number of non-zero

components of x. The RIP constant is defined as

δk = inf{δ ∈ [0, 1) : (1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2, ∀x ∈ Rn, ‖x‖0 ≤ k}.

It turns out that one can exactly recover the signal if a signal is sufficiently sparse
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and the sensing matrix A satisfies certain restricted isometry conditions. The main

theorem was established by Candés and Tao in [7]:

Theorem 1.2.2. ([7, Theorem 1.4]) Let A ∈ Rm×n and k ≤ n
3

be such that the

RIP constants satisfy

δk + δ2k + δ3k < 1.

Let x0 ∈ Rn with ‖x0‖0 ≤ k and put y = Ax0. Then one can exactly recover x0 via

solving the following `1−minimization problem:

(P1) min
x∈Rn
‖x‖1 subjected to Ax = y.

In practice, researchers are interested to know which matrices satisfy RIP with

small RIP constants. Here are some typical examples:

1. If A ∈ Rm×n(m < n) is a random matrix with i.i.d. Gaussian entries with

mean zero and variance 1
m

, then the condition for Theorem 1.2.2 holds with

overwhelming probability if k ≤ O(m/(ln(n/m) + 1)). See e.g. [6] for details.

2. If A ∈ Rm×n(m < n) is a matrix with rows randomly chosen from a discrete

Fourier transform matrix, then the condition for Theorem 1.2.2 holds with

overwhelming probability if k ≤ O(m/ lnn). See e.g. [5] for details.

Later in [2], the author proved the generalized result which connects the RIP with

the concentration of measure phenomenon. Given a random matrix A ∈ Rm×n, we

say that A is strongly concentrated around its expectation if

P{|‖Ax‖2 − ‖x‖2| > ε‖x‖2} < 2e−c0(ε)m, ∀x ∈ Rn, ε ∈ (0, 1), (1.1)

where c0(ε) > 0 depends only on ε. One important class of random matrices
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obeying this property is those with i.i.d. sub-gaussian entries(the formal definition

of a sub-gaussian random variable will be given in the next chapter). The general

result is as follows:

Theorem 1.2.3. ([2, Theorem 5.1]) Let A ∈ Rm×n be a random matrix which is

strongly concentrated around its expectation. Then for every T ⊆ {1, . . . , n} with

|T | < n and δ ∈ (0, 1):

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2, ∀x ∈ Rn with supp(x) ⊆ T

holds with probability at least

1− 2(12/δ)|T |e−c0(δ/2)m,

where |T | denotes the cardinality of T and supp(x) = {i ∈ {1, . . . , n} : xi 6= 0}.

Thus one can conclude that sub-gaussian matrices are good restricted isometries

with high probability. It is also interested to consider the RIP for non sub-gaussian

matrices. There are several literatures regarding matrices with non sub-gaussian

rows or columns, and further details related to the RIP of these matrices are

discussed, see e.g. [1], [13], [20], [21].

The RIP is also closely related to the well-known Johnson-Lindenstrauss(JL)

Lemma. The JL Lemma is about embedding a discrete set of points in a high

dimensional Euclidean space into a low dimensional space in a way such that the

distances between points are nearly preserved. The formal statement of the lemma

is given as follows ([2, Lemma 4.1]):

Lemma 1.2.4 (Johnson-Lindenstrauss Lemma). Let ε ∈ (0, 1). For every

finite set Q of points in RN , let n be a positive integer with n > O(ln |Q|/ε2), there
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exists a Lipschitz function f : RN → Rn such that

(1− ε)‖u− v‖2
`2(RN ) ≤ ‖f(u)− f(v)‖2

`2(Rn) ≤ (1 + ε)‖u− v‖2
`2(RN )

for all u, v ∈ Q.

In [1], it was shown that with high probability, f is a linear map with matrix

representation Φ ∈ Rn×N such that all entries of Φ are drawn from a random

variable with certain moment conditions, see [1] for details of constructing such a

matrix. A sketch of the proof of the JL Lemma is the follows: we first prove that

the random matrix Φ satisfies two conditions:

• Φ is isotropic, i.e. E(‖Φx‖2
`2(Rn)) = ‖x‖2

`2(RN ), ∀x ∈ RN .

• Φ is strongly concentrated around its expectation.

Then applying a union bound argument over all possible pairs of points in Q yields

the result. It is basically the similarity of the RIP and the JL Lemma which

suggests the connection. The following theorem provides explicit relations between

the JL Lemma and the RIP:

Theorem 1.2.5. ([2, Theorem 5.2]) Suppose that n,N ∈ N and δ ∈ (0, 1) are

given. If Φ ∈ Rn×N is a random matrix which is strongly concentrated around its

expectation, then there exist c1, c2 > 0 depending only on δ such that the RIP holds

for Φ with the prescribed δ and is of order k obeying k ≤ c1n/ ln(N/k) with

probability at least 1− 2e−c2n.

Thus from the theorem we see that JL Lemma implies the RIP.

5



1.3 Robustness Properties of Random Matrices

A natural generalization of CS is CS with corruptions. In this case some elements

of the measurement are corrupted. We formulate the model in this setting as

follows: Given a signal x ∈ Rn with certain sparsity condition and a random

projection matrix A ∈ Rm×n. We only receive ATx as the observation where

T ⊆ {1, . . . ,m} is unknown and AT denotes the sub-matrix by keeping the rows of

A with indices in T . In order to reconstruct the signal accurately and efficiently in

this case, it is important to verify whether AT satisfies the RIP. This has led to the

concept of the strong restricted isometry property (SRIP), which characterizes the

norm preserving property of matrices under certain erasure of rows and plays a

central role in the study of robustness of matrices. The definition of the SRIP is

given in [23]:

Definition 1.3.1. A matrix A ∈ Rm×n is said to satisfy the strong restricted

isometry property (SRIP) of order s and level [θ, ω, β] with 0 < θ ≤ ω < 2 and

β ∈ [0, 1) if

θ‖x‖2
2 ≤ ‖ATx‖2

2 ≤ ω‖x‖2
2

holds for all x ∈ Rn with ‖x‖0 ≤ s and all T ⊆ {1, . . . ,m} with |T c| ≤ βm.

In [23] the robustness and the SRIP for matrices with Gaussian entries have been

settled. In [15] further results about the robustness properties of Gaussian random

matrices are proved, and they are used as tools for studying the robust versions of

the JL Lemma and the RIP. It is still of great interest to study whether any other

types of matrices satisfying the SRIP.

Another area closely connected to CS with corruptions is finite frame theory. In

data processing, one commonly used technique is to decompose a given signal
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x ∈ Rn via the following map

x 7→ {〈x, fk〉}mk=1,

where {fk}mk=1 with m ≥ n is a frame in Rn, i.e. span{fk : 1 ≤ k ≤ m} = Rn. In

this interpretation, we can create a more sparse representation of the original

signal, and it might be easier to deal with. Now we consider the following problem:

when transmitting signals through a channel with noise and adversarial erasures, it

is natural to design a frame which is numerically stable so that it is possible to

recover the signal even some data were lost or corrupted. To meet the

requirements, we need to design a numerically erasure robust frame (NERF),

which is a finite frame with bounded condition numbers under a fixed erasure

ratio. This concept was introduced in [11]: Let F ∈ Rm×n(m > n) be a finite frame

such that any n rows form a basis of Rn. Its condition number is defined as

Cond(F ) =
smax(F )

smin(F )
,

where smax(F ) and smin(F ) denote the largest and smallest singular values of F

respectively. For β ∈ (0, 1) such that βm ∈ N, if there exists C > 0 such that

max
T⊆{1,...,m},|T c|=βm

Cond(FT ) ≤ C,

then F is called a numerically erasure robust frame (NERF) of level (β, C).

It turns out that the study of finite frames shares many similarities with CS with

corruptions. Now we are interested in examples of NERF. In [11], the author

proved that if a finite frame has entries drawn from i.i.d. Gaussian distributions

and its size satisfies certain condition, then this frame is a NERF with
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overwhelming probability. Later in [24], it was claimed that the matrix size

condition can be omitted thus the result about Gaussian random frames from [11]

can be improved. Although the result claimed in [24] is true, but there are

problems in the author’s argument. The author tried to prove the following result

which plays an essential role in the estimation of the smallest singular value of the

Gaussian matrix:

Theorem 1.3.2. ([24, Theorem 1.2]) Let A ∈ RN×n(N > n) whose entries are

drawn independently from the standard normal distribution and η = N
n
> 1. Then

for any µ > 0 there exists c > 0 such that

P(smin(A) < c
√
n) < 2e−µn.

To prove Theorem 1.3.2, the author applied an ε−net argument and obtained

P(smin(A) < c
√
n) ≤ (1 + 2ε−1)n

(
2e(c+ εC)

η

)N
2

+ (1 + 2ε−1)ne−
(C−1−√η)2

2
n, (1.2)

where C > 0 depends on η and ε ∈ (0, 1). In order to control the right hand side of

(1.2) by 2e−µn, the author claimed that it suffices to have

− µ ≥ ln(1 + 2ε−1) +
η

2
[ln(2e)− ln η + 2 ln(c+ εC)], (1.3)

− µ ≥ −1

2
(C − 1−√η)2, (1.4)

which is problematic because in fact from (1.3) and (1.4) one cannot conclude that

the right-hand side of (1.2) is bounded by 2e−µn. However if we replace the
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right-hand side of (1.4) by

− µ ≥ ln(1 + 2ε−1)− 1

2
(C − 1−√η)2, (1.5)

then one can conclude that 2e−µn is an upper bound of the right-hand side of (1.2)

from (1.3) and (1.5). Therefore, although using the author’s approach one can

prove Theorem 1.3.2, but the result will be significantly weaker, i.e. the number c

in Theorem 1.3.2 will be much smaller than the one which was provided by the

author, and hence the bounds of condition numbers will be much worse.

1.4 Main Work and Thesis Structure

In this thesis, we discuss the robustness property of sub-gaussian random matrices.

Sub-gaussian matrices share several crucial properties which we have mentioned in

previous sections:

• If a matrix has entries drawn from i.i.d. sub-gaussian random variables, then

this matrix satisfies the RIP with high probability.

• A sub-gaussian random matrix satisfies the concentration inequality (1.1).

Thus sub-gaussian matrices appear frequently in the study of CS. The most special

case is that a matrix has entries drawn from i.i.d. Gaussian distributions. In the

past years, Gaussian random matrices have been studied thoroughly. Therefore,

researchers are interested to know whether it is possible to obtain similar results

for sub-gaussian cases.

In this thesis, we will extend certain results from the Gaussian case to

sub-gaussian cases. The structure of the thesis is organized as follows: Chapter 2

recalls the basic concepts and properties of sub-gaussian random variables,
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including concentration inequalities and order statistics results which are useful in

our study. Chapter 3 will provide the study of robustness properties of

sub-gaussian random matrices. We will focus on the following question: how large

can the erasure ratio β ∈ (0, 1) be so that a normalized Gaussian random matrix

A ∈ Rm×n with βm arbitrarily erased rows has the nearly isometry property with

high probability. In Chapter 4 we will establish the SRIP and the robust JL

Lemma for sub-gaussian matrices. In particular we will see that the results can be

further improved in the case of Bernoulli matrices. Chapter 5 contains the results

related to Gaussian finite frames, we will improve the results in [24] and provide

the implicit forms of the bounds on condition numbers of the reduced matrices.

Finally a summary and further discussion are provided in Chapter 6.
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Chapter 2

Sub-gaussian Random Variables

In this chapter we provide some preliminary background related to sub-gaussian

random variables, including characterizations and the concentration of measure

properties, which play important roles in our study of the robustness of

sub-gaussian random matrices and finite frames.

2.1 Basics

All definitions and results provided in this section are known (see e.g. [4]).

Definition 2.1.1. A real random variable X is called b−sub-gaussian for some

b > 0 if

E(etX) ≤ e
b2t2

2 , ∀t ∈ R. (2.1)

Notation: X ∼ Sub(b2). We will always assume that b is the smallest positive

number so that (2.1) holds, and in this case b2 is called the sub-gaussian moment

of X.

We have the following examples of sub-gaussian random variables:
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Example 2.1.2. (i) Gaussian: If X is a standard normal random variable,

then X is 1−sub-gaussian.

(ii) Symmetric Bernoulli: If X satisfies

P(X = 1) = P(X = −1) =
1

2
,

then X is 1−sub-gaussian.

(iii) Bounded centred radom variables : If X is a random variable such that

there exists b > 0 with |X| ≤ b and E(X) = 0, then X ∼ Sub(b2).

Next we provide the following basic properties of sub-gaussian random variables:

Proposition 2.1.3. (i) If X ∼ Sub(b2), then X is centred, i.e. E(X) = 0.

(ii) If X ∼ Sub(b2), then σ2
X = Var(X) ≤ b2.

(iii) If X ∼ Sub(b2), then for all c ∈ R we have cX ∼ Sub(c2b2).

(iv) If X1 ∼ Sub(b2
1) and X2 ∼ Sub(b2

2), then X1 +X2 ∼ Sub((b1 + b2)2).

Moreover, if X1, X2 are independent, then X1 +X2 ∼ Sub(b2
1 + b2

2).

(v) If X = (X1, X2, . . . , XN) is a random vector such that Xi’s are i.i.d. random

variables with Xi ∼ Sub(b2), then for any α ∈ RN we have

〈X,α〉 ∼ Sub(‖α‖2
2b

2).

Characterization of sub-gaussian random variables: We can define

sub-gaussian random variables in the following equivalent ways:

Theorem 2.1.4. The following are equivalent for a centred random variable X:

12



(i) X ∼ Sub(b2) for some b > 0.

(ii) For all λ > 0, there exists c > 0 such that P(|X| > λ) ≤ 2e−cλ
2
. In fact we

may choose c = 1
2b2

.

(iii) For every ξ > 1, there exists a > 0 depending on ξ such that E(eaX
2
) ≤ ξ. In

fact, we can choose a = ξ−1
2b2(ξ+1)

.

2.2 Concentration of Measure Phenomena

The concentration of measure phenomena is extremely important in the study of

measure and probability theory, and has various applications and consequences in

areas such as Banach space theory and random matrix theory. The concentration

of measure for Gaussian matrices has been studied thoroughly in the past (see e.g.

[17]). The most useful result is the Lipschitz concentration for Gaussian matrices,

which has several applications in the study of CS. In this section we will develop

the Lipschitz concentration property for sub-gaussian matrices.

First we recall the concentration of measure for sub-gaussian random matrices:

Theorem 2.2.1 (Concentration of measure for sub-gaussian matrices).

([9, Lemma 6.1]) Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries

such that each entry obeys Sub(b2) and has variance 1
m

. Then for all x ∈ Rn, we

have:

(i) E(‖Ax‖2
2) = ‖x‖2

2.

(ii) There exists κ > 0 (depending on the distribution) such that for any ε ∈ (0, 1)

we have

P(‖Ax‖2
2 − ‖x‖2

2 > ε‖x‖2
2) < exp(−κε2m),

13



P(‖Ax‖2
2 − ‖x‖2

2 < −ε‖x‖2
2) < exp(−κε2m).

Remark 2.2.2. From [1], if A ∈ Rm×n is a random matrix with i.i.d. standard

normal or symmetric Bernoulli entries, then for all x ∈ Rn we have

P
(

1

m
‖Ax‖2

2 − ‖x‖2
2 > ε‖x‖2

2

)
< exp

(
−
(
ε2

4
− ε3

6

)
m

)
,

P
(

1

m
‖Ax‖2

2 − ‖x‖2
2 < −ε‖x‖2

2

)
< exp

(
−
(
ε2

4
− ε3

6

)
m

)
.

Thus in this case we may take κ = 1
12

.

We now prove the Lipschitz concentration inequality for sub-gaussian random

variables. We borrow the elegant arguments used in the proof of [16, Proposition

2.3]:

Theorem 2.2.3 (Lipschitz concentration inequality for sub-gaussian

distributions). Let X = (X1, . . . , Xm) has i.i.d. entries with Xi ∼ Sub(b2). Let

f : Rm → R be a 1−Lipschitz function, i.e. |f(x)− f(y)| ≤ ‖x− y‖2, ∀x, y ∈ Rm.

Then for all t > 0 we have

P(f(X)− E(f(X)) ≥ t) ≤ exp

(
− t2

5b2

)
,

P(f(X)− E(f(X)) ≤ −t) ≤ exp

(
− t2

5b2

)
.

Proof. By Rademacher’s theorem a Lipschitz map is differentiable almost

everywhere, so it suffices to prove the result for differentiable f . As f has Lipschitz

constant 1, we have ‖∇f‖2 ≤ 1. With out loss of generality assume E(f(X)) = 0.

Let X ′ be an independent copy of X, and let γ : [0, 1]→ Rm be a smooth path
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connecting X and X ′ with

γ(t) = X cos
(π

2
t
)

+X ′ sin
(π

2
t
)
.

Then

γ′(t) =
π

2

(
X sin

(π
2
t
)

+X ′ cos
(π

2
t
))

=:
π

2
Y (t).

Observe that Y has i.i.d. components with Yi ∼ Sub(b2). By fundamental theorem

of line integral we have

f(X)− f(X ′) =
π

2

∫ 1

0

〈∇f(γ(t)), Y (t)〉 dt.

Therefore by Jensen’s inequality and Fubini’s theorem:

E(exp(λ(f(X)− f(X ′))) ≤
∫ 1

0

E exp(
π

2
λ〈∇f(γ(t)), Y (t)〉)) dt.

As ‖∇f‖2 ≤ 1, and Y has i.i.d. Sub(b2) entries, it follows that

〈∇f(γ(t)), Y (t)〉 ∼ Sub(b2).

Thus

E(exp(
π

2
λ〈∇f(γ(t)), Y (t)〉)) ≤ exp

(
b2λ2π2

8

)
.

Therefore

E(exp(λ(f(X)− f(X ′))) ≤ exp

(
b2λ2π2

8

)
.

Note that as X and X ′ are i.i.d. copies, so we have E(f(X)) = E(f(X ′)) = 0, and
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Jensen’s inequality yields

E(exp(λf(X ′))) ≥ exp(E(λf(X ′))) = 1, ∀λ ∈ R.

Therefore

E(exp(λf(X))) ≤ E(exp(λ(f(X)− f(X ′))) ≤ exp

(
b2λ2π2

8

)
, ∀λ > 0.

Thus for all λ, t > 0, we have

P(f(X) ≥ t) = P(exp(λf(X)) ≥ eλt) ≤ E(exp(λf(X)))

eλt
≤ exp

(
b2λ2π2

8
− λt

)
.

By setting λ = 4t
b2π2

(
1 +

√
1− π2

10

)
, we have

P(f(x) ≥ t) ≤ exp

(
− t2

5b2

)
.

Hence the proof is complete.

2.3 Order Statistics

Suppose y1, . . . , ym are i.i.d. random variables such that yj ∼ Sub(b2). Let

S ⊆ {1, . . . ,m}. Define

FS : Rm → R, x 7→
√∑

j∈S

x2
(j),

where x(1), . . . , x(|S|) denotes the non-increasing rearrangements of elements in S in

magnitudes, i.e. |x(1)| ≥ · · · ≥ |x(|S|)|. Then it is easy to see that FS is

16



1−Lipschitz. So for all t > 0, it follows that

P

√ 1

|S|
∑
j∈S

y2
(j) ≥ t+ E

√
1

|S|
∑
j∈S

y2
(j)


=P

√∑
j∈S

y2
(j) ≥ t

√
|S|+ E

√∑
j∈S

y2
(j)


≤ exp

(
−t

2|S|
5b2

)
.

Corollary 2.3.1. Suppose that y1, . . . , ym are i.i.d. random variables with

yi ∼ Sub(b2). Let y(1), . . . , y(m) be non-increasing rearrangements of yi’s in

magnitudes, i.e. |y(1)| ≥ · · · ≥ |y(m)|. Then

E

√√√√1

k

k∑
j=1

y2
(j)

 ≤√2eb2 ln
em

k
.

Proof. Let ξ > 1 and choose t = ξ−1
2b2(ξ+1)

. It follows that:

exp

(
E

(
1

k

k∑
j=1

ty2
(j)

))
= exp

(
1

k

k∑
j=1

E(ty2
(j))

)
≤ 1

k

k∑
j=1

exp(E(ty2
(j)))

≤ 1

k

k∑
j=1

E(exp(ty2
(j))) ≤

1

k

m∑
j=1

E(exp(ty2
(j)))

=
1

k
E

(
m∑
j=1

exp(ty2
(j))

)
=

1

k
E

(
m∑
j=1

exp(ty2
j )

)

=
1

k

m∑
j=1

E(exp(ty2
j )) ≤

1

k

m∑
j=1

ξ (by (iii) of Theorem 2.1.4)

= ξ
m

k
.

17



Taking logarithms on both sides and using Jensen’s inequality, we have

E

√√√√1

k

k∑
j=1

y2
(j) ≤

√
2b2(ξ + 1)

ξ − 1
ln
ξm

k
.

Setting ξ = e yields the result.
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Chapter 3

Sub-gaussian Matrices under

Arbitrary Erasure of Rows with

Small Distortion in Norms

In this chapter we are going to study the robustness property of sub-gaussian

matrices with a small distortion rate in norms. Our main goal is to establish the

robust version of the JL Lemma and the SRIP with a small distortion in norms.

Throughout this chapter, y(1), . . . , y(m) denote the non-increasing rearrangements

of the sequence of random variables y1, . . . , ym.

The corresponding results in this chapter for the Gaussian case have been settled

in [15]. We will extend the results in [15] from Gaussian random matrices to

sub-gaussian random matrices.

Main contributions: Extending the robust version of the JL Lemma and the RIP

from the Gaussian case to sub-gaussian cases.
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3.1 Estimate of the Erasure Ratio

Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries such that each entry

obeys Sub(b2) and has variance 1. Let x ∈ Rn with ‖x‖2 = 1. Then Ax is a

random vector with i.i.d. components such that each component obeys Sub(b2).

For ε ∈ (0, 1), β ∈ [0, 1), define

Ωε,β =

{∣∣∣∣ 1

|T |
‖ATx‖2

2 − 1

∣∣∣∣ ≤ ε for all T ⊆ {1, . . . ,m} such that |T c| ≤ βm

}
.

From the concentration inequality for the sub-gaussian distributions we have

P
(∣∣∣∣ 1

m
‖Ax0‖2

2 − 1

∣∣∣∣ > ε

)
≤ 2 exp

(
−κε2m

)
.

For ε ∈ (0, 1) and α ∈ (0, 1], set

βε,α := sup{β ∈ [0, 1) : P(Ωε,β) ≥ 1− 3e−ακε
2m, ∀m ∈ N}.

By studying the quantity βε,α, we will know how large the erasure ratio can be

under a certain small distortion rate in norms.

Remark 3.1.1. For γ ∈ [0, 1) with γm ∈ N, define

Tγ := {T ⊆ {1, . . . ,m} : |T c| = γm}.

Then it is easy to see that

min
T∈Tβ

1

|T |
‖Ax‖2

2 ≤ min
T∈Tγ

1

|T |
‖Ax‖2

2 ≤ max
T∈Tγ

1

|T |
‖Ax‖2

2 ≤ max
T∈Tβ

1

|T |
‖Ax‖2

2,

for 0 ≤ γ ≤ β < 1 with γm, βm ∈ N.
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Let y = Ax. For β ∈ [0, 1), define γ := bβmc/m. Then γm = k is an integer and

0 ≤ γ ≤ β. Let yT denotes the sub-vector by keeping components of y with indices

in T . It follows that

Ωε,β =

{
1− ε ≤ min

T∈Tγ

‖yT‖2
2

|T |
≤ max

T∈Tγ

‖yT‖2
2

|T |
≤ 1 + ε

}
.

Now we estimate the maximum erasure ration βε,α.

Lemma 3.1.2. Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries such

that each entry obeys Sub(b2) and has variance 1. Let x ∈ Rn with ‖x‖2 = 1 and

let y = Ax. For 0 < α < 1 and 0 < ε ≤ min
(

1, 1−
√
α

5b2ακ

)
, if

0 < β ≤ 1−
√
α

1 + ε
ε and 0 < β ln β ≤ ε

2eb2

(√
1−
√
α−
√

5b2ακε

)2

, (3.1)

then

P(Ωε,β) ≥ 1− 3 exp
(
−ακε2m

)
.

Proof. We borrow the argument from the proof of [15, Lemma 3.1]. It follows from

Remark 3.1.1 that

P(Ωε,β) = P

{
1− ε ≤

‖y‖2
2 − (y2

(1) + · · ·+ y2
(k))

m− k
≤
‖y‖2

2 − (y2
(m−k+1) + · · ·+ y2

(m))

m− k
≤ 1 + ε

}

= P(

{
y2

(1) + · · ·+ y2
(k)

k
≤ ‖y‖

2
2

k
− (1− γ)(1− ε)

γ

}

∩

{
y2

(m−k+1) + · · ·+ y2
(m)

k
≥ ‖y‖

2
2

k
− (1− γ)(1 + ε)

γ

}
)

≥ 1− (P(Bc
0) + P(Bc

1) + P(Bc
2)),
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where

B0 :=

{
1−
√
αε ≤ ‖y‖

2
2

m
≤ 1 +

√
αε

}
,

B1 :=

{
y2

(1) + · · ·+ y2
(k)

k
≤ 1− ε+

1−
√
α

γ
ε

}
,

B2 :=

{
y2

(m−k+1) + · · ·+ y2
(m)

k
≥ 1 + ε− 1−

√
α

γ
ε

}
.

Now we need

P(Bc
0) + P(Bc

1) + P(Bc
2) ≤ 3 exp

(
−ακε2m

)
.

We will estimate three probabilities separately:

• Estimating P(Bc
1): For all t > 0, by Corollary 2.3.1 and Theorem 2.2.3, we

have:

P

√√√√1

k

k∑
j=1

y2
(j) −

√
2eb2 ln

e

γ
> t

 ≤ P

√√√√1

k

k∑
j=1

y2
(j) − E

√√√√1

k

k∑
j=1

y2
(j)

 > t


≤ exp

(
−t

2γm

5b2

)
.

Set

t :=

√
1− ε+

1−
√
α

γ
ε−

√
2eb2 ln

e

γ
.

Observe that by the assumption ε ≤ 1−
√
α

5b2ακ
we have

fε,α :=

√
ε

2

(√
1−
√
α−
√

5b2ακε

)
≥ 0.

Now consider the function

g(x) = 2x2 + 2
√

5b2ακε2x.
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It is easy to see that

g(x) ≤ g(fε,α) = (1−
√
α)ε− 5b2ακε2, ∀x ∈ [0, fε,α]. (3.2)

On the other hand the function h(x) = x ln e
x

is increasing on (0, 1]. Therefore

0 <

√
eb2γ ln

e

γ
≤
√
eb2β ln

e

β
≤ fε,α.

Plugging x =
√
eb2γ ln e

γ
into (3.2) we get

2eb2γ ln
e

γ
+ 2
√

5b2ακε2
√
eb2γ ln

e

γ
≤ (1−

√
α)ε− 5b2ακε2. (3.3)

Dividing both sides of (3.3) by γ and rearranging terms gives

1−
√
α

γ
ε ≥ 2eb2 ln

e

γ
+ 2

√
5b2

γ
ακε2

√
2eb2 ln

e

γ
+

5b2

γ
ακε2

=

(√
2eb2 ln

e

γ
+

√
5b2

γ
ακε2

)2

.

Therefore

√
2eb2 ln

e

γ
+

√
5b2

γ
ακε2 ≤

√
1−
√
α

γ
ε ≤

√
1− ε+

1−
√
α

γ
ε.

Thus

t ≥

√
5b2

γ
ακε2 > 0.
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It follows that

P(Bc
1) = P

√√√√1

k

k∑
j=1

y2
(j) >

√
1− ε+

1−
√
α

γ
ε


≤ exp

(
−t

2γm

5b2

)
≤ exp

(
−ακε2m

)
.

• Estimating P(Bc
2): It is easy to see that

1 + ε− 1−
√
α

γ
ε ≤ 1 + ε− 1−

√
α

β
ε ≤ 1 + ε− (1 + ε) = 0.

Thus

P(B2) = P

(
y2

(m−k+1) + · · ·+ y2
(m)

k
≥ 0

)
= 1.

Hence

P(Bc
2) = 0.

• Estimating P(Bc
0): It is trivial from the concentration inequality for

sub-gaussian matrices that

P(Bc
0) < 2 exp

(
−ακε2m

)
.

Hence combining everything together we have

P(Ωε,β) ≥ 1− 3 exp
(
−ακε2m

)
.

Thus the proof is complete.
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Theorem 3.1.3. Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries

such that each entry obeys Sub(b2) and has variance 1. Let x0 ∈ Rn with ‖x0‖2 = 1

and put y = Ax0. For 0 < α < 1 and 0 < ε ≤ min
(

1, 1−
√
α

40b2ακ

)
, if

0 < β ≤ (1−
√
α)ε

16 ln 4eb2

(1−
√
α)ε

=: η(ε, α),

then (3.1) holds. Moreover:

βε,α ≥
(1−

√
α)ε

32 ln 1
ε

, ∀0 < ε ≤ (1−
√
α)

4eb2
.

Proof. We apply the same argument as in the proof of [15, Theorem 3.2]. We have

0 < β ≤ η(ε, α) ≤ (1−
√
α)ε

16 ln(4eb2)
<

(1−
√
α)ε

2
≤ (1−

√
α)ε

1 + ε
.

Let fε,α be the same as in the proof of Lemma 3.1.2, we have

f 2
ε,α =

ε

2

(√
1−
√
α−
√

5b2ακε

)2

≥ ε

2

[(
1−

√
1

8

)
(

√
1−
√
α)

]2

=
9− 4

√
2

16
(1−
√
α)ε.

For t ≥ ln 4 we have

ln(4et) < (8− 4
√

2)t. (3.4)

By plugging t = ln 1
x

with 0 < x ≤ 1
4

into (3.4), we get

1

ln 1
x

ln

(
4e ln

1

x

)
< 8− 4

√
2 =⇒ x

4 ln 1
x

ln
4e ln 1

x

x
<

9− 4
√

2

4
x.

Recall that for a sub-gaussian random variable, its sub-gaussian moment is always
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great than or equal to its variance. Thus b2 ≥ 1. Hence by taking

x :=
1

4eb2
(1−

√
α)ε <

1

4
,

we conclude that

η(ε, α) ln
e

η(ε, α)
=

x

4 ln 1
x

ln
4e ln 1

x

x

<
9− 4

√
2

4
x

=
9− 4

√
2

16eb2
(1−

√
α)ε

≤
f 2
ε,α

eb2
.

Therefore as x ln e
x

is increasing on (0, 1] we have β ln e
β
<

f2ε,α
eb2
. Hence we’ve proved

that two inequalities in (3.1) hold.

Since η(ε, α) < 1−
√
α

1+ε
ε and η(ε, α) ln e

η(ε,α)
<

f2ε,α
eb2

, then there exists δ > 0 such that

η(ε, α) + δ satisfies (3.1). Thus by definition of βε,α:

βε,α ≥ η(ε, α) >
(1−

√
α)ε

16
(

ln 4eb2

(1−
√
α)ε

+ ln 1
ε

) ≥ (1−
√
α)ε

32 ln 1
ε

, ∀0 < ε ≤ (1−
√
α)

4eb2
.

3.2 Estimate under the Uniform Normalization

For ε ∈ (0, 1) and β ∈ [0, 1), we define the following notion which is closely related

to Ωε,β:

Ω̃ε,β =

{∣∣∣∣ 1

m
‖ATx‖2

2 − 1

∣∣∣∣ ≤ ε for all T ⊆ {1, . . . ,m} such that |T c| ≤ βm

}
.
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In this case, we use the uniform normalization factor 1
m

instead of 1
|T | . This means

we first normalize the original matrix and then erase rows, whereas in the previous

case (where the factor 1
|T | is used) we first erase rows and then normalize the

reduced matrix.

For ε ∈ (0, 1) and α > 0, we may also define the following quantity:

β̃ε,α = sup{β ∈ [0, 1) : P(Ω̃ε,α) ≥ 1− 3 exp(−ακε2m), ∀m ∈ N}.

Moreover, we can use the same argument as in the case of βε,α to estimate β̃ε,α:

Lemma 3.2.1. Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries such

that each entry obeys Sub(b2) and has variance 1. Let x ∈ Rn with ‖x‖2 = 1 and

put y = Ax. For 0 < α < 1 and 0 < ε ≤ min
(

1, 1−
√
α

5b2ακ

)
, if

0 < β ln β ≤ ε

2eb2

(√
1−
√
α−
√

5b2ακε

)2

, (3.5)

then

P(Ω̃ε,β) ≥ 1− 3 exp
(
−ακε2m

)
.

Proof. Set γ = bβmc/m and k = γm. It follows that

P(Ω̃ε,β) = P

{
1− ε ≤

‖y‖2
2 − (y2

(1) + · · ·+ y2
(k))

m
≤ ‖y‖

2
2

m
≤ 1 + ε

}

≥ P
{
y2

(1) + · · ·+ y2
(k) ≥ (1−

√
α)εm and

∣∣∣∣ 1

m
‖y‖2

2 − 1

∣∣∣∣ ≤ √αε}
≥ 1− P(Bc

0)− P(Bc
3),

where

B0 :=

{∣∣∣∣ 1

m
‖y‖2

2 − 1

∣∣∣∣ ≤ √αε} ,
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B3 :=
{
y2

(1) + · · ·+ y2
(k) ≥ (1−

√
α)εm

}
.

We want to control P(Bc
0) + P(Bc

3) by 3 exp (−ακε2m). Note that

E

√√√√1

k

k∑
j=1

y2
(j)

 ≤√2eb2 ln
e

γ
.

Thus for t > 0 we have

P

√√√√1

k

k∑
j=1

y2
(j) −

√
2eb2 ln

e

γ
> t

 ≤ P

√√√√1

k

k∑
j=1

y2
(j) − E

√√√√1

k

k∑
j=1

y2
(j)

 > t


≤ exp

(
−t

2γm

5b2

)
.

Set

t :=

√
1−
√
α

γ
ε−

√
2eb2 ln

e

γ
.

Define

fε,α :=

√
ε

2

(√
1−
√
α−
√

5b2ακε

)
≥ 0.

Then from the proof of Lemma 3.1.2, we have

0 <

√
eb2γ ln

e

γ
≤
√
eb2β ln

e

β
≤ fε,α.

Thus

√
2eb2 ln

e

γ
≤

√
1−
√
α

γ
ε−

√
5b2

γ
ακε2 =⇒ t ≥

√
5b2

γ
ακε2 > 0.
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It follows that

P(Bc
3) = P

√√√√1

k

k∑
j=1

y2
(j) > t+

√
2eb2 ln

e

γ


≤ exp

(
−t

2γm

5b2

)
≤ exp

(
−ακε2m

)
.

It is trivial from the concentration inequality for sub-gaussian matrices that

P(Bc
0) < 2 exp

(
−ακε2m

)
.

Hence

P(Ω̃ε,β) ≥ 1− P(Bc
0)− P(Bc

3) ≥ 1− 3 exp
(
−ακε2m

)
.

This completes the proof.

Theorem 3.2.2. Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries

such that each entry obeys Sub(b2) and has variance 1. Let x ∈ Rn with ‖x‖2 = 1

and let y = Ax. For 0 < α < 1 and 0 < ε ≤ min
(

1, 1−
√
α

40b2ακ

)
, if

0 < β ≤ (1−
√
α)ε

16 ln 4eb2

(1−
√
α)ε

=: η(ε, α),

then (3.5) holds. Moreover:

β̃ε,α ≥
(1−

√
α)ε

32 ln 1
ε

, ∀0 < ε ≤ 1−
√
α

4eb2
.

Proof. Same as Theorem 3.1.3.

29



3.3 The Strong Restricted Isometry Property

and the Robust Version of the

Johnsen-Lindenstrauss Lemma for Small ε

With the estimates of βε,α and β̃ε,α, we can develop the robust version of JL

Lemma and RIP properties for sub-gaussian matrices. We borrow and modify the

arguments in the Gaussian case from [15, Corollary 1.2, Corollary 1.3].

Theorem 3.3.1 (Robust Johnson-Lindenstrass Lemma for small

distortion rate in norms). Suppose A ∈ Rm×n is a random matrix with i.i.d.

entries such that each entry obeys Sub(b2) and has variance 1. For α ∈ (0, 1) and

ε ∈
(

0,min
{

1−
√
α

4eb2
, 1−

√
α

40b2ακ

})
, let N,m, n ∈ N satisfying

m >
ln 3N(N−1)

2

ακε2
.

Then given any set p1, . . . , pN ∈ Rn of N points:

(1− ε)‖pj − pk‖2
2 ≤

1

m
‖AT (pj − pk)‖2

2 ≤
1

|T |
‖AT (pj − pk)‖2

2 ≤ (1 + ε)‖pj − pk‖2
2

∀j, k ∈ {1, . . . , N}, T ∈ Tε,α.

holds with probability at least 1− 3N(N−1)
2

exp(−ακε2m), where Tε,α is defined as

Tε,α =

{
T ⊆ {1, . . . ,m} : |T c| ≤ m

(1−
√
α)ε

32 ln 1
ε

}
.

Proof. Assume p1, . . . , pN are pairwise disjoint. For T ∈ Tε,α we have
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0 ≤ β ≤ (1−
√
α)ε

32 ln 1
ε

. For M ∈ {m, |T |}, from Theorem 3.1.3 we have

P
{∣∣∣∣ 1

M

‖AT (pj − pk)‖2
2

‖pj − pk‖2
2

− 1

∣∣∣∣ ≤ ε, ∀T ∈ Tε,α
}
≥ 1− 3 exp(−ακε2m).

Then by the union bounds estimate:

P
{∣∣∣∣ 1

M

‖AT (pj − pk)‖2
2

‖pj − pk‖2
2

− 1

∣∣∣∣ ≤ ε, ∀T ∈ Tε,α, j 6= k

}
≥ 1−3N(N − 1)

2
exp(−ακε2m) > 0.

provided m >
ln

3N(N−1)
2

ακε2
.

Next we are going to deduce the robust version of the restricted isometry property

for sub-gaussian matrices. We’ll need the following fact (see e.g. [18]):

Lemma 3.3.2. Let S ⊆ {1, . . . , n} with |S| = s. Set

Sn−1
S = {x ∈ Sn−1 : supp(x) ⊆ S}.

Then for any ε > 0 there exists an ε−net QS,ε ⊆ Sn−1
S satisfying

• Sn−1
S ⊆

⋃
q∈QS,ε B

ε
8
(q) .

• |QS,ε| ≤
(

24
ε

)s
.

Theorem 3.3.3 (Strong restricted isometry property with small

distortion rate in norms). Suppose that A ∈ Rm×n is a random matrix with

i.i.d. entries such that each entry obeys Sub(b2) and has variance 1. For α ∈ (0, 1)

and ε ∈
(

0,min
{

1−
√
α

4eb2
, 1−

√
α

40b2ακ

})
, let s,m, n ∈ N satisfying

s ln
24en

εs
< ακε2m− ln 3.
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Then

(1− 2ε)‖u‖2
2 ≤

1

m
‖ATu‖2

2 ≤
1

|T |
‖ATu‖2

2 ≤ (1 + 2ε)‖u‖2
2

holds for all s−sparse vector u ∈ Rn and T ∈ Tε,α with probability at least

1− 3
(

24en
εs

)s
exp(−ακε2m).

Proof. Let M ∈ {m, |T |}, and S ⊆ {1, . . . , n} with |S| = s. For any ε > 0 there is

an ε−net QS,ε. Then with probability at least 1− 3
(

24
ε

)s
exp(−ακε2m) we have

1− ε ≤ 1

M
‖ATu‖2

2 ≤ 1 + ε, ∀T ∈ Tε,α, u ∈ QS,ε.

Define

d = sup

{
1√
M
‖ATu‖2 : u ∈ Sn−1

S , T ∈ Tε,α
}
.

For any u ∈ Sn−1
S , there is vu ∈ QS,ε such that ‖u− vu‖2 ≤ ε

8
. Thus

1√
M
‖ATu‖2 ≤

1√
M
‖ATvu‖2 +

1√
M
‖AT (u− vu)‖2 ≤

√
1 + ε+

dε

8
.

Also

d ≤
√

1 + ε+
dε

8
=⇒ d ≤

√
1 + ε

1− ε
8

≤
√

1 + 2ε

as ε ∈ (0, 1). On the other hand:

1√
M
‖ATu‖2 ≥

1√
M
‖ATvu‖2 −

1√
M
‖AT (u− vu)‖2 ≥

√
1− ε− dε

8
.

So

d ≥
√

1− ε− dε

8
=⇒ d ≥

√
1− ε

1− ε
8

>
√

1− 2ε.
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Hence it follows that

(1− 2ε)‖u‖2
2 ≤

1

M
‖ATu‖2

2 ≤ (1 + 2ε)‖u‖2
2, ∀ supp(u) ⊆ S, T ∈ Tε,α

There are in total
(
n
s

)
subsets of {1, . . . , n} with cardinality s. Hence by the union

bound argument and the Stirling’s approximation
(
n
s

)
≤
(
en
s

)s
, it follows that

P
(

(1− 2ε)‖u‖2
2 ≤

1

m
‖ATu‖2

2 ≤
1

|T |
‖ATu‖2

2 ≤ (1 + 2ε)‖u‖2
2, ∀| supp(u)| ≤ s, T ∈ Tε,α

)
>1− 3

(
24en

εs

)s
exp(−ακε2m).

This completes the proof.
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Chapter 4

Sub-gaussian Matrices under

Arbitrary Erasure of Rows with a

Given Portion of Corruption

In this chapter we will further study the erasure robustness of sub-gaussian

matrices for erasure ratio no more than a given number β. We will study the

strong restricted isometry property (SRIP) of sub-gaussian matrices with a

constant portion of corruption.

The main contributions which are provided in this chapter are establishing the

following results :

• The SRIP for sub-gaussian matrices with a given portion of corruption,

• The robust version of the JL Lemma for sub-gaussian matrices under a given

erasure ratio.
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Fix x ∈ Sn−1, for β ∈ [0, 1), 0 ≤ θ ≤ ω ≤ ∞, set

Ω[θ,ω],β =

{
1

|T |
‖ATx‖2

2 ∈ [θ, ω] ∀T ⊆ {1, . . . ,m}, |T c| ≤ βm

}
,

Ω̃[θ,ω],β =

{
1

m
‖ATx‖2

2 ∈ [θ, ω] ∀T ⊆ {1, . . . ,m}, |T c| ≤ βm

}
.

For β ∈ (0, 1), α > 0, define

θβ(α) = sup{θ ∈ [0,∞] : P(Ω[θ,∞],β) ≥ 1− e−αm ∀m ∈ N},

ωβ(α) = inf{ω ∈ [0,∞] : P(Ω[0,ω],β) ≥ 1− e−αm ∀m ∈ N},

θ̃β(α) = sup{θ ∈ [0,∞] : P(Ω̃[θ,∞],β) ≥ 1− e−αm ∀m ∈ N},

ω̃β(α) = inf{ω ∈ [0,∞] : P(Ω̃[0,ω],β) ≥ 1− e−αm ∀m ∈ N}.

By studying these quantities, we get the lower and upper bounds of the norm after

the reduced sub-gaussian matrix acting on a vector, and thus enables us to

determine the constants in the SRIP.

4.1 Estimates of θβ(α) and θ̃β(α)

Recall the following facts:

1. Let X1, . . . , Xd be independent Sub(b2) random variables with Var(Xi) = 1

for all i = 1, . . . , d and put X = (X1, . . . , Xd). Then it is straight forward to
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see that :

E〈X, x〉2 = E

(
d∑
j=1

xiXi

)2

=
∑

1≤i≤j≤d

xixjE(XiXj)

=
d∑
j=1

x2
jE(X2

j ) =
d∑
j=1

x2
j = ‖x‖2

2.

2. Given X ∼ Sub(b2) and 1 ≤ p <∞. From (ii) of Theorem 2.1.4 it follows

that

E|X|p = p

∫ ∞
0

tp−1P(|X| ≥ t) dt

≤ 2p

∫ ∞
0

tp−1e−
t2

2b2 dt

= 2
p
2 bpp

∫ ∞
0

u
p
2
−1e−u du

= 2
p
2 bppΓ

(p
2

)
.

(4.1)

With the above facts, we introduce the following result which will be used to

obtain the lower estimate of θβ(α). To prove this lemma, we use exactly the same

argument as in the proof of [3, Lemma 2.2]:

Lemma 4.1.1. Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries such

that each entry obeys Sub(b2) and has variance 1. Let x ∈ Sn−1 and Y = ‖Ax‖2
2.

Then for all 0 < q < m
2

we have

P
(
Y ≤ m

2
− q
)
< exp

(
− q

16b

)
.
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Proof. For µ ∈ R, define F (µ) = ln[E exp(−µY )]. By Markov’s inequality:

P(−µY ≥ F (µ) + ν) = P(exp(−µY − F (µ)) ≥ exp(ν))

≤ E(exp(−µY − F (µ))

exp(ν)

= exp(−ν)

for all ν ∈ R. Recall that for all t ≥ 0 we have

1− t ≤ exp(−t) ≤ 1− t+
t2

2
.

Denote aij the entry of A in the i−th row and j−th colume. It follows that

E exp(−µY ) =
m∏
j=1

E

exp

−µ ∣∣∣∣∣
n∑
i=1

xiaij

∣∣∣∣∣
2


≤
m∏
j=1

1− µE

∣∣∣∣∣
n∑
i=1

xiaij

∣∣∣∣∣
2

+
µ2

2
E

∣∣∣∣∣
n∑
i=1

xiaij

∣∣∣∣∣
4


≤
m∏
j=1

[
1− µ+

µ2

2
(16bΓ(2))

]
≤ exp

(
−mµ+ 8bmµ2

)
.

Therefore

F (µ) ≤ −mµ+ 8bmµ2.

It follows that

P
(
−µY ≥ −mµ+ 8bmµ2 + ν

)
≤ exp(−ν).

Setting µ = 1
16b

and ν = q
16b

, the proof is complete.

Lemma 4.1.2 (Lower estimate of θβ(α)). Suppose that A ∈ Rm×n is a random
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matrix with i.i.d. entries such that each entry obeys Sub(b2) and has variance 1.

Then for β ∈ (0, tsg) and α ∈
(
0, ln

(
(1− β)1−βββ

)
+

qβ
16b

(1− β)
)
, we have

θβ(α) ≥ min

{
1

2
− 16b(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
,
1

2
− α

}
,

where tsg is a fixed constant in
(
0, 1

2

)
depending only on the sub-gaussian moment

b2, and qβ ∈
(
0, 1

2

)
only depends on β.

Proof. Recall that for θ > 0, β ∈ (0, 1), x ∈ Sn−1:

Ω[θ,∞],β =

{
1

|T |
‖ATx‖2

2 ≥ θ, ∀T ⊆ {1, . . . ,m}, |T c| ≤ βm

}
.

For α > 0, we want to choose θ such that

P(Ωc
[θ,∞],β) < exp(−αm).

Let |T c| = k ≤ βm and γ = k/m. Then AT is an (m− k)× n matrix with i.i.d.

symmetric Bernoulli entries, therefore

P
(
‖ATx‖2

2 ≤
1

2
(m− k)− q

)
≤ exp

(
− q

16b

)
, ∀0 < q <

1

2
(m− k).

Now for any 0 < q < 1
2
(m− k), set qT = q

|T | = q
m−k . Then we have

P
(
‖ATx‖2

2 ≤
(

1

2
− qT

)
(m− k)

)
≤ exp

(
− qT

16b
(m− k)

)
,

which is equivalent to

P
(

1

|T |
‖ATx‖2

2 ≤
1

2
− qT

)
≤ exp

(
− qT

16b
(1− γ)m

)
. (4.2)
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Recall the Stirling’s approximation:

√
2πmm+ 1

2 e−m ≤ m! ≤ emm+ 1
2 e−m. (4.3)

Therefore for k ≥ 1:

(
m

k

)
=

m!

(m− k)!k!
≤ emm+ 1

2 e−m

2π(m− k)m−k+ 1
2 e−(m−k)kk+ 1

2 e−k

=
e

2π

(
m

m− k

)m−k (m
k

)k ( m

(m− k)k

) 1
2

≤ e√
2π

(
m

m− k

)m−k (m
k

)k
.

Now consider two cases:

• If bβmc = 0, then

P(Ωc
[θ,∞],β) = P

(
‖Ax‖2 < θm

)
≤ exp

(
−
(

1

2
− θ
)
m

)
,

for all θ ∈
(
0, 1

2

)
. Then simply choose θ ≤ 1

2
− α we will have

P(Ωc
[θ,∞],β) < exp(−αm).

• If bβmc ≥ 1: observe that

P(Ωc
[θ,∞],β) = P

(
min
|T c|=βm

1

|T |
‖ATx‖2

2 <
1

2
− qβ

)
.
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Without loss of generality assume βm =: k ∈ N. Then we have

(
m

k

)
≤ e√

2π

(
m

m− k

)m−k (m
k

)k
=

(
e√
2π

)(
1

1− β

)(1−β)m(
1

β

)βm
=

(
e√
2π

)
exp

(
m ln

(
(1− β)−(1−β)β−β

))
.

As (4.2) holds for all |T c| = k, it follows that for any q ∈
(
0, 1

2

)
:

P
(

min
|T c|=k

1

|T |
‖ATx‖2

2 ≤
1

2
− q
)

≤
(
m

k

)
exp

(
− q

16b
(1− β)m

)
≤
(

e√
2π

)
exp

[
m ln

(
(1− β)−(1−β)β−β

)
− q

16b
(1− β)m

]
.

Now we want to bound P(Ωc
[θ,∞],β) by C exp(−αm) where C is an absolute

constant independent of m. Then it suffices to have C = e√
2π

and

ln
(
(1− β)1−βββ

)
+

q

16b
(1− β) ≥ α. (4.4)

For q ∈
(
0, 1

2

)
, define

fq(t) = ln
(
(1− t)1−ttt

)
+

q

16b
(1− t)

= (1− t) ln(1− t) + t ln(t) +
q

16b
(1− t)

(4.5)

Then

f ′q(t) = − ln(1− t) + ln t− q

16b
.

It is easy to see that f ′q(t) < 0 whenever t <
exp( q

16b)
1+exp( q

16b)
. Recall that for a

sub-gaussian random variable, its sub-gaussian moment is greater than or
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equal to its variance, thus b ≥ 1. Moreover, as q ∈ (0, 1
2
), we conclude that

exp( q
16b)

1+exp( q
16b)
≥ 1

2
. It follows that fq(t) is strictly decreasing on

(
0, 1

2

)
, and

fq

(
1

2

)
= ln

1

2
+

q

32b
≤ − ln 2 +

1

64
< 0.

On the other hand, note that

lim
t→0+

fq(t) = q > 0.

It follows that fq has a unique root on
(
0, 1

2

)
, and call this root tq. Since we

require the left-hand side of (4.4) to be strictly positive, this forces that

β < tq.

We now analyze the behaviour of tq as q varies. It is easy to see that

lim
q→0+

tq = 0.

Now consider

(1− tq) ln(1− tq) + tq ln(tq) +
q

16b
(1− tq) = 0.

If we choose q′ ≥ q, then we will have

(1− tq) ln(1− tq) + tq ln(tq) +
q′

16b
(1− tq) ≥ 0,

and as fq′(t) is strictly decreasing on
(
0, 1

2

)
, it follows that tq′ ≥ tq, i.e. tq
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increases as q increases, and

lim
q→( 1

2)
−
tq =: tsg < (1 + e

1
2 )−1. (4.6)

Thus lim
q→( 1

2)
− fq(tsg) = 0. As fq(t) is continuous in both t, q, it follows from

(4.5) and (4.6) that

(1− tsg) ln(1− tsg) + tsg ln(tsg) +
1

32b
(1− tsg) = 0.

On the other hand, as fq(t) is continuous in both variables (t, q), it follows

that for any 0 < t < tsg, there is 0 < q < 1
2

such that fq(t) = 0, and therefore

fq′(t) > 0 for all q < q′ < 1
2
.

Thus for any β ∈ (0, tsg), there is 0 < qβ <
1
2

such that

(1− β) ln(1− β) + β ln(β) +
qβ
16b

(1− β) > 0.

So we can choose α in between such that

qβ ≥ 16b(1− β)−1
[
α− ln

(
(1− β)1−βββ

)]
.

Therefore, if θ ≤ 1
2
− 16b(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
, we have

P(Ωc
[θ,∞],β) ≤ e√

2π
exp(−αm).
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So by the two cases above, we have

α < min

{
ln
(
(1− β)1−βββ

)
+

qβ
16b

(1− β),
1

2

}
,

and

θ ≤ min

{
1

2
− (1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
,
1

2
− α

}
.

As fqβ is decreasing on (0, 1
2
) and limt→0+ fqβ(t) = qβ <

1
2
, it follows that

ln
(
(1− β)1−βββ

)
+ qβ(1− β) <

1

2
, ∀0 < β < tsg <

1

2
.

Thus α < ln
(
(1− β)1−βββ

)
+

qβ
16b

(1− β).

For the upper estimate of θβ(α), we use the order statistics arguments. We slightly

modify the argument from the proof of [15, Lemma 4.1].

Lemma 4.1.3 (Upper estimate of θβ(α)). Suppose that A ∈ Rm×n is a random

matrix with i.i.d. entries such that each entry obeys Sub(b2) and has variance 1.

For β ∈ (0, 1) and α ∈ (0, 1), we have θβ(α) ≤ 1.

Proof. Fix x ∈ Sn−1, let y = Ax. Set γ = bβmc, k = γm ∈ N. Observe that

P(Ω[θ,∞],β) = P

√√√√ 1

m− k

m∑
j=k+1

y2
(j) ≥

√
θ

 .

Also note that

E

√√√√ 1

m− k

m∑
j=k+1

y2
(j) ≤

√√√√ 1

m− k

m∑
j=k+1

Ey2
(j) ≤

√√√√ 1

m

m∑
j=1

Ey2
(j) = 1.

Without loss of generality assume m is large enough and β ∈ Q (as the general
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result follows from the fact that Q is dense in R) such that βm ∈ N, i.e. β = γ.

Then if δ =
√
θ − 1 > 0, we have

P(Ω[θ,∞],β) = P

√√√√ 1

m− k

m∑
j=k+1

y2
(j) − E

√√√√ 1

m− k

m∑
j=k+1

y2
(j) ≥

√
θ − E

√√√√ 1

m− k

m∑
j=k+1

y2
(j)


≤ P

√√√√ 1

m− k

m∑
j=k+1

y2
(j) − E

√√√√ 1

m− k

m∑
j=k+1

y2
(j) ≥

√
θ − 1


≤ exp

(
− δ2

5b2
(m− k)

)
= exp

(
− δ2

5b2
(1− β)m

)
.

So if P(Ω[θ,∞],β) ≥ 1− e−αm we will have 1− e−αm ≤ exp
(
− δ2

5b2
(1− β)m

)
. By

letting m→∞, we have 1 ≤ 0, which is impossible. Hence we must have δ < 0,

i.e. θ ≤ 1, and thus θβ(α) ≤ 1.

Combining Lemma 4.1.2 and 4.1.3 we obtain the estimates of θβ(α) for

sub-gaussian matrices:

Theorem 4.1.4. Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries

such that each entry obeys Sub(b2) and has variance 1. For β ∈ (0, tsg) and

α ∈
(
0, ln

(
(1− β)1−βββ

)
+

qβ
16b

(1− β)
)

we have

min

{
1

2
− 16b(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
,
1

2
− α

}
≤ θβ(α) ≤ 1,

where tsg and qβ are defined in Lemma 4.1.2.

Arguments in the estimates of θβ(α) can be applied to estimate the bounds of

θ̃β(α).

Theorem 4.1.5 (Estimating θ̃β(α)). Suppose that A ∈ Rm×n is a random matrix

with i.i.d. entries such that each entry obeys Sub(b2) and has variance 1.
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For β ∈ (0, tsg) and α ∈
(
0, ln

(
(1− β)1−βββ

)
+

qβ
16b

(1− β)
)
, we have

(1− β) min

{
1

2
− 16b(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
,
1

2
− α

}
≤ θ̃β(α) ≤ 1− β,

where tsg and qβ are defined in Lemma 4.1.2.

Proof. Fix x ∈ Sn−1, let y = Ax. Set k = bβmc and γ = k/m. Since

1

m

m∑
j=k+1

y2
(j) =

m− k
m

1

m− k

m∑
j=k+1

y2
(j) =

1− γ
m− k

m∑
j=k+1

y2
(j),

it follows that for θ ≥ 0:

P(Ω̃[θ,∞],β) = P
(

min
T∈Tγ

1

m
‖ATx‖2

2 ≥ θ

)
= P

(
1

m

m∑
j=k+1

y2
(j) ≥ θ

)

= P

√√√√ 1

m− k

m∑
j=k+1

y2
(j) ≥

√
θ

1− γ


= P(Ω[ θ

1−γ ,∞],β) ≥ P(Ω[ θ
1−β ,∞],β).

So for all θ ∈ [0, (1− β)θβ(α)), we have

P(Ω̃[θ,∞],β) ≥ 1− exp(−αm),

and consequently from the estimates for θβ(α) we conclude

θ̃β(α) ≥ (1−β)θβ(α) ≥ (1−β) min

{
1

2
− 16b(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
,
1

2
− α

}
.

To set up the upper estimate, we use the same argument as before: Without loss of
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generality assume β ∈ Q and thus β = γ, in which case we have

P(Ω̃[θ,∞],β) = P(Ω[ θ
1−β ,∞],β).

Again using the same proof in the estimate of θβ(α) yields

θ̃β(α) = (1− β)θβ(α) ≤ 1− β.

Hence the proof is complete.

4.2 Estimates of ωβ(α) and ω̃β(α)

We now give the estimates of ω̃β(α) and ωβ(α). The argument is exactly the same

as in the gaussian case from section 4 of [15] only up to slight modifications.

Theorem 4.2.1 (Estimating ω̃β(α)). Suppose that A ∈ Rm×n is a random

matrix with i.i.d. entries such that each entry obeys Sub(b2) and has variance 1.

For β ∈ (0, 1) and α > 0, we have

1 ≤ ω̃β(α) ≤ 1 +

√
α

κ
,

where κ is the same as in Theorem 2.2.1.

Proof. For ω > 0, by definition:

Ω̃[0,ω],β =

{
1

m
‖Ax‖2

2 ≤ ω

}
= Ω̃[0,ω],0.
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We claim that ω̃β(α) ≥ 1. Assume not, then there exists ω < 1 such that

P(Ω̃[0,ω],β) > 1− exp(−αm).

On the other hand from the concentration of measure for sub-gaussian matrices,

we have

P(Ω̃[0,ω],β) < exp
(
−κ(1− ω)2m

)
.

Hence 1− exp(−αm) < exp (−κ(1− ω)2m). Taking m→∞, we have 1 < 0, which

is a contradiction. Therefore ω̃β(α) ≥ 1.

By letting ε =
√

α
κ
, we have

P
(

1

m
‖Ax‖2

2 ≤ 1 + ε

)
≥ 1− exp(−κε2m) = 1− exp(−αm).

Thus

ω̃β(α) ≤ 1 +

√
α

κ
.

This completes the proof.

Theorem 4.2.2 (Estimating ωβ(α)). Suppose that A ∈ Rm×n is a random

matrix with i.i.d. entries such that each entry obeys Sub(b2) and has variance 1.

For β ∈ (0, 1) and α > 0, we have

(√
5b2α

1− β
+

√
2eb2 ln

e

1− β

)2

≥ ωβ(α) ≥


1, βm < 1

1

1−β
2

, βm ≥ 1.

Proof. Fix x ∈ Sn−1, let y = Ax. Set k = bβmc and γ = k/m. First observe that
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for any ω ≥ 0 we have

P(Ω[0,ω],β) = P

√√√√ 1

m− k

m−k∑
j=1

y2
(j) ≤

√
ω

 .

Also recall from Corollary 2.3.1 we have

E

√√√√ 1

m− k

m−k∑
j=1

y2
(j) ≤

√
2eb2 ln

em

m− k
=

√
2eb2 ln

e

1− γ
.

Therefore

P(Ω[0,ω],β) = P

√√√√ 1

m− k

m−k∑
j=1

y2
(j) − E

√√√√ 1

m− k

m−k∑
j=1

y2
(j) ≤

√
ω − E

√√√√ 1

m− k

m−k∑
j=1

y2
(j)


≥ P

√√√√ 1

m− k

m−k∑
j=1

y2
(j) − E

√√√√ 1

m− k

m−k∑
j=1

y2
(j) ≤

√
ω −

√
2eb2 ln

e

1− γ


≥ 1− exp

(
− δ2

5b2
(m− k)

)
≥ 1− exp(−αm),

provided that

δ :=
√
ω −

√
2eb2 ln

e

1− γ
≥

√
5b2α

1− γ
> 0.

Hence by 0 ≤ γ ≤ β < 1, it follows that P(Ω[0,ω],β) ≥ 1− exp(−αm) if

√
ω ≥

√
5b2α

1− β
+

√
2eb2 ln

e

1− β
.

Therefore

ωβ(α) ≤

(√
5b2α

1− β
+

√
2eb2 ln

e

1− β

)2

.

For the lower estimate: if k = 0, then we have Ω[0,ω],β = Ω̃[0,ω],β, so ωβ(α) ≥ 1.
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If k > 0, then γ > β
2
, and

1

m− k

k∑
j=1

y2
(j) =

m

m− k
1

m

k∑
j=1

y2
(j) =

1

1− γ
1

m

k∑
j=1

y2
(j).

It follows that for ω ≥ 0:

P(Ω[0,ω],β) = P
(

min
T∈Tγ

1

|T |
‖ATx‖2

2 ≤ ω

)
= P

(
1

m− k

k∑
j=1

y2
(j) ≤ ω

)

= P

√√√√ 1

m

k∑
j=1

y2
(j) ≤

√
ω(1− γ)


= P(Ω̃[0,ω(1−γ)],β) ≤ P(Ω̃[0,ω(1−β

2 )],β).

Hence

ωβ(α) = inf{ω : P(Ω[0,ω],β) > 1− exp(−αm)}

≥ inf{ω : P(Ω̃[0,ω(1−β
2 )],β) > 1− exp(−αm)}

=
ω̃β(α)

1− β
2

≥ 1

1− β
2

.

The proof is complete.

4.3 Main Results

By the estimates provided in sections 4.1 and 4.2, we have the following theorem:

Theorem 4.3.1. Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries

such that each entry obeys Sub(b2) and has variance 1. For β ∈ (0, tsg) and

α ∈
(
0, ln

(
(1− β)1−βββ

)
+

qβ
16b

(1− β)
)
, we have

min

{
1

2
− 16b(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
,
1

2
− α

}
≤ θβ(α) ≤ 1,
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(1− β) min

{
1

2
− 16b(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
,
1

2
− α

}
≤ θ̃β(α) ≤ 1− β,

where tsg and qβ are defined in Lemma 4.1.2.

Moreover for β ∈ (0, 1) and α ∈ (0, 1):

(√
5b2α

1− β
+

√
2eb2 ln

e

1− β

)2

≥ ωβ(α) ≥


1, βm < 1

1

1−β
2

, βm ≥ 1

,

1 ≤ ω̃β(α) ≤ 1 +

√
α

κ
,

where κ is the same as in Theorem 2.2.1.

We see that for β ∈ (0, tsg), and α ∈
(
0,min

{
ln
(
(1− β)1−βββ

)
+

qβ
16b

(1− β), κ
})

,

we have 0 < θ̃β(α) ≤ ω̃β(α) < 2.

Now we are at the stage to establish the strong restricted isometry property and

the robust version of the JL Lemma for sub-gaussian matrices with given erasure

ratio. We borrow and modify arguments as in the proof of Corollary 1.5 and 1.6 in

[15].

Theorem 4.3.2 (Strong restricted isometry property). Suppose that

A ∈ Rm×n is a random matrix with i.i.d. entries such that each entry obeys

Sub(b2) and has variance 1. Let α ∈
(
0,min

{
ln
(
(1− β)1−βββ

)
+

qβ
16b

(1− β), κ
})

and β ∈ (0, tsg) where κ is the same as in Theorem 2.2.1, tsg and qβ are the same

as in Lemma 4.1.2. Let s,m, n ∈ N and ε ∈ (0, 1) be such that

s ln
24en

εs
< αm− ln 2 and θε :=

√
θ̃ − ε

8

√
ω̃ > 0,
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where

θ̃ = (1− β) min

{
1

2
− 16b(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
,
1

2
− α

}
,

ω̃ = 1 +

√
α

κ
,

Then we have

P
(
θε‖u‖2

2 ≤
1

m
‖ATu‖2

2 ≤ ω̃(1 + 2ε)‖u‖2
2, ∀| supp(u)| ≤ s, |T c| ≤ βm

)
≥1− 2

(
24en

εs

)s
exp(−αm),

P
(

θε
1− β

‖u‖2
2 ≤

1

|T |
‖ATu‖2

2 ≤ ω(1 + 2ε)‖u‖2
2, ∀| supp(u)| ≤ s, |T c| ≤ βm

)
≥1− 2

(
24en

εs

)s
exp(−αm),

where

θε :=
(√

θ̃ − ε

8

√
ω̃
)2

,

ω =

(√
5b2α

1− β
+

√
2eb2 ln

e

1− β

)2

.

Proof. To prove the theorem, we only need to slightly modify the proof of

Corollary 1.6 in [15], the main idea is borrowed from the proof of Lemma 5.1 in [2].

Let T ⊆ {1, . . . ,m} be such that |T c| ≤ βm, then with probability at least

1− 2e−αm, we have

√
θ̃(1− ε)‖u‖2 ≤

1√
m
‖ATu‖2 ≤

√
ω̃(1 + ε)‖u‖2.
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Let S, Sn−1
S and QS,ε be the same as in Lemma 3.3.2. Define

d = sup

{
1√
m
‖ATu‖2, u ∈ Sn−1

S , |T c| ≤ βm

}
.

For any u ∈ Sn−1
S , there is vu ∈ QS,ε such that ‖u− vu‖2 ≤ ε

8
. Hence

1√
m
‖ATu‖2 ≤

1√
m
‖ATvu‖2 +

1√
m
‖ATu− vu‖2 ≤

√
ω̃(1 + ε) +

dε

8
.

By definition of d:

d ≤
√
ω̃(1 + ε) +

dε

8
=⇒ d ≤

√
ω̃(1 + 2ε).

On the other hand

1√
m
‖ATu‖2 ≥

1√
m
‖ATvu‖2 −

1√
m
‖ATu− vu‖2 ≥

√
θ̃ − ε

8

√
ω̃.

Choose ε > 0 small enough such that
√
θ̃ − ε

8

√
ω̃ > 0, and set

θε :=
(√

θ̃ − ε

8

√
ω̃
)2

.

Thus with probability at least 1− 2
(

24
ε

)s
exp(−αm), we have

√
θε‖u‖2 ≤

1√
m
‖ATu‖2 ≤

√
ω̃(1 + 2ε)‖u‖2,

for all u ∈ Rn with supp(u) ⊆ S and |T c| ≤ βm.

As there are
(
n
s

)
subsets of {1, . . . , n} with cardinality s, then by the union bound
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argument and Stirling’s approximation
(
n
s

)
≤
(
en
s

)s
, we have:

P
(√

θε‖u‖2 ≤
1√
m
‖ATu‖2 ≤

√
ω̃(1 + 2ε)‖u‖2, ∀| supp(u)| ≤ s, |T c| ≤ βm

)
≥1− 2

(
24en

εs

)s
exp(−αm),

provided s ln 24en
εs

< αm− ln 2.

Moreover applying the same argument above, it is easy to see that

P

√ θ̃

1− β
(1− 2ε)‖u‖2 ≤

1√
|T |
‖ATu‖2 ≤

√
ω(1 + 2ε)‖u‖2, ∀| supp(u)| ≤ s, |T c| ≤ βm


≥1− 2

(
24en

εs

)s
exp(−αm).

Thus the proof is complete.

Theorem 4.3.3 (Robust Johnson-Lindenstrauss Lemma with a given

erasure ratio). Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries

such that each entry obeys Sub(b2) and has variance 1. Let β ∈ (0, tsg) and

α ∈
(
0,min

{
ln
(
(1− β)1−βββ

)
+

qβ
16b

(1− β), κ
})

where κ is the same as in

Theorem 2.2.1, tsg and qβ are defined as in Lemma 4.1.2. Let N,m, n ∈ N be such

that

m > α−1 ln
1

N(N − 1)
.

For any set of N points p1, . . . , pN in Rn, then

P
{
θ̃‖pj − pk‖2

2 ≤
1

m
‖AT (pj − pk)‖2

2 ≤ ω̃‖pj − pk‖2
2, ∀|T c| ≤ βm, 1 ≤ j, k ≤ N, j 6= k

}
≥1−N(N − 1) exp(−αm),
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P

{
θ̃

1− β
‖pj − pk‖2

2 ≤
1

|T |
‖AT (pj − pk)‖2

2 ≤ ω‖pj − pk‖2
2, ∀|T c| ≤ βm, 1 ≤ j, k ≤ N, j 6= k

}

≥1−N(N − 1) exp(−αm),

where θ̃, ω̃ and ω are given in Theorem 4.3.2.

Proof. The proof the same as that of Corollary 1.5 in [15] up to corresponding

modifications. By Theorem 4.3.1, we have

P
{
θ̃‖pj − pk‖2

2 ≤
1

m
‖AT (pj − pk)‖2

2 ≤ ω̃‖pj − pk‖2
2, ∀|T c| ≤ βm

}
≥1− 2 exp(−αm),

P

{
θ̃

1− β
‖pj − pk‖2

2 ≤
1

|T |
‖AT (pj − pk)‖2

2 ≤ ω‖pj − pk‖2
2, ∀|T c| ≤ βm

}

≥1− 2 exp(−αm),

for any fixed pair (j, k) with 1 ≤ j, k ≤ N and j 6= k.

As there are
(
N
2

)
= N(N−1)

2
pairs (pj, pk) with j 6= k, then by the union bound

argument and the assumption m > α−1 ln 1
N(N−1)

, the result follows.

4.4 Special Case: Bernoulli Matrices

Among all random matrices with sub-gaussian entries, the Gaussian and Bernoulli

matrices are of particular interest in the study of compressed sensing, as in many

cases the projection matrices are drawn from one of these two distributions. It was

proved in [23] and [15] that a Gaussian matrix satisfies the SRIP with any erasure

ratio. This means that given an m× n Gaussian matrix and any β ∈ (0, 1) with

βm ∈ N, if we arbitrarily erase βm rows, the reduced matrix will still satisfy the

RIP with high probability. However, this is not true in general for arbitrary
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sub-gaussian matrices. Normally there might be an upper bound of the erasure

ratio β. For example, in the case of a Bernoulli matrix, it was seen in [23] that the

erasure ratio β cannot reach 1
2
. The maximum possible erasure ratio in the

Bernoulli case is still unknown.

Recall from Theorem 4.3.2 that if the erasure ratio is smaller than the number tsg

which is defined in Lemma 4.1.2, then the reduced matrix will still have the RIP

with high probability. The question is that tsg may not be the maximal erasure

ratio, and in cases of general sub-gaussian matrices it is difficult to do further

analysis at this stage. Nevertheless, in the case of a Bernoulli matrix, we may

further improve the number tsg. First let’s recall the following well-known result

related to Bernoulli random variables:

Theorem 4.4.1 (Khinchine’s inequality). Let X1, . . . , Xn be independent

symmetric Bernoulli random variables. Then for 0 < p <∞, there exist

a(p), b(p) > 0 depending only on p so that

a(p)‖c‖2 ≤

(
E

∣∣∣∣∣
n∑
j=1

cjXj

∣∣∣∣∣
p) 1

p

≤ b(p)‖c‖2, ∀c = (c1, . . . , cn) ∈ Cn.

a(p) and b(p) are called Khinchine constants.

With Khinchine’s inequality, let’s see why we may expect better results in the

Bernoulli case. Recall that in section 1 of this chapter we have proved

Lemma 4.1.1: Suppose that A ∈ Rm×n is a random matrix with i.i.d. entries such

that each entry obeys Sub(b2) and has variance 1. Let x ∈ Sn−1 and Y = ‖Ax‖2
2.

Then for all 0 < q < m
2

we have

P
(
Y ≤ m

2
− q
)
< exp

(
− q

16b

)
.
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Then we use this lemma to estimate the lower bound constant in the SRIP. In the

proof of Lemma 4.1.1, we need to estimate E |
∑n

i=1 xiaij|
4
, where aij denotes the

entry in the i−th row and j−th column of the matrix A. We apply (4.1) to

estimate the fourth moment of the Sub(1) random variable
∑n

i=1 xiaij and obtain

E

∣∣∣∣∣
n∑
i=1

xiaij

∣∣∣∣∣
4

≤ 2
4
2 (14)2Γ

(
4

2

)
= 16.

The problem is that the estimate given in (4.1) may not be sharp, therefore the

result we obtain might be weaker than what it should be. Fortunately, in the case

of Bernoulli random matrices, the Khinchine’s inequality provides optimal

estimates for moments of linear combinations of Bernoulli random variables. The

best Khinchine constants are given by Haagerup in [14] as follows:

Theorem 4.4.2. The best constants a(p) and b(p) in Khinchine’s inequality are

given by

b(p) =


1, 0 < p ≤ 2,

√
2

(
Γ( p+1

2 )√
π

) 1
p

, p > 2,

and

a(p) =



2
1
2
− 1
p , 0 < p ≤ p0,

√
2

(
Γ( p+1

2 )√
π

) 1
p

, p0 < p < 2,

1, p ≥ 2,

where p0 ∈ (0, 2) satisfies Γ
(
p0+1

2

)
=
√
π

2
.

With Khinchine’s inequality and the optimal Khinchine constants, and using the

same argument in the proof of Lemma 4.1.1, we can improve Lemma 4.1.1. The

result is as follows:
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Lemma 4.4.3. Let A ∈ Rm×n be a random matrix with i.i.d. symmetric Bernoulli

entries, then for any x ∈ Sn−1 and 0 < q < 1:

P
(
‖Ax‖2

2 ≤ (
1

2
− q)m

)
< exp

(
−q

3
m
)
.

Observe that the inequality we obtained in Lemma 4.4.3 is sharper than the one in

Lemma 4.1.1. Due to the improvement from Lemma 4.1.1 to Lemma 4.4.3, we can

obtain a better SRIP level in the Bernoulli case. We have the following lower

estimates of θβ(α) and θ̃β(α):

Lemma 4.4.4. Let A ∈ Rm×n be a random matrix with i.i.d. symmetric Bernoulli

entries. For β ∈ (0, tber) and α ∈
(
0, ln

(
(1− β)1−βββ

)
+

qβ
3

(1− β)
)
, we have

θβ(α) ≥ min

{
1

2
− 3(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
, 1− α

}
,

θ̃β(α) ≥ (1− β) min

{
1

2
− 3(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
, 1− α

}
,

where tber ∈
(
0, 1

2

)
satisfies

(1− tber) ln(1− tber) + tber ln(tber) +
1

6
(1− tber) = 0.

The numerical solution is tber ≈ 0.0376, and qβ ∈
(
0, 1

2

)
is given by

qβ = sup{q ∈ (0, 1) : (1− β) ln(1− β) + β ln(β) +
q

3
(1− β) > 0}.

Recall that the sub-gaussian moment of a Bernoulli random variable is b2 = 1, and

we have κ = 1
12

where κ is the same as in Theorem 2.2.1. Thus using the same

argument as in the proof of Theorem 4.3.2, we have the strong restricted isometry
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property for Bernoulli matrices:

Theorem 4.4.5 (Strong restricted isometry property for Bernoulli

matrices). Let A ∈ Rm×n be a random matrix with i.i.d. symmetric Bernoulli

entries. Let β ∈ (0, ther) and α ∈
(
0,min

{
ln
(
(1− β)1−βββ

)
+

qβ
3

(1− β), 1
12

})
where tber and qβ are the same as in Lemma 4.4.4. Let s,m, n ∈ N and ε ∈ (0, 1)

be such that

s ln
24en

εs
< αm− ln 2 and θε :=

√
θ̃ − ε

8

√
ω̃ > 0,

where

θ̃ = (1− β) min

{
1

2
− 3(1− β)−1

[
α− ln

(
(1− β)1−βββ

)]
,
1

2
− α

}
,

ω̃ = 1 +
√

12α,

Then we have

P
(
θε‖u‖2

2 ≤
1

m
‖ATu‖2

2 ≤ ω̃(1 + 2ε)‖u‖2
2, ∀| supp(u)| ≤ s, |T c| ≤ βm

)
≥1− 2

(
24en

εs

)s
exp(−αm),

P
(

θε
1− β

‖u‖2
2 ≤

1

|T |
‖ATu‖2

2 ≤ ω(1 + 2ε)‖u‖2
2, ∀| supp(u)| ≤ s, |T c| ≤ βm

)
≥1− 2

(
24en

εs

)s
exp(−αm),

where

θε :=
(√

θ̃ − ε

8

√
ω̃
)2

,

ω =

(√
5α

1− β
+

√
2e ln

e

1− β

)2

.
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Chapter 5

Gaussian Finite Frames

In this chapter we study the robustness properties of Gaussian random finite

frames with fixed erasure ratio. The setting is slightly different from previous

discussion, we will only consider matrices with more rows than columns, where as

in CS more often we have the projection matrix with more columns. As mentioned

before, the study of the finite frame theory shares several similarities with the

study of CS with corruptions. In this thesis, as a starter, we focus on the Gaussian

case mainly because this is the most special and important case among

sub-gaussian cases. Moreover, because of the stable property of Gaussian random

variables, this case is easier to deal with and we may expect more accurate

estimates.

Given a random matrix A ∈ Rm×n (m > n) with i.i.d. standard normal entries,

and given a fixed erasure ratio β ∈ (0, λ) where λ = 1− n
m
> 0. For the study of

finite frames, we care about the case which exactly βm rows are erased. In this

chapter we will show that an m× n Gaussian frame is a NERF of level (β, C) for

any β ∈ (0, λ) and C > 0 depending only on β with overwhelming probability. We

will fix the mistakes, revise the argument provided in [24]. We will give more
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accurate estimations and improve the results from [24].

5.1 The Largest Singular Value: Concentration

Inequality Approach

We begin with estimating the largest singular value of a Gaussian matrix with

certain portion of rows erased. We use the following well-known result:

Lemma 5.1.1. ([22, Corollary 5.35]) Let A ∈ Rm×n(m ≥ n) be a random matrix

with i.i.d. standard normal entries. Then

P(smax(A) ≥
√
m+

√
n+ t) ≤ e−

t2

2 , ∀t ≥ 0.

Then we can prove the following estimate of the largest singular value of a

Gaussian matrix:

Theorem 5.1.2 (The largest singular value). Let A ∈ Rm×n (m > n) be a

random matrix with i.i.d. standard normal entries. Let λ = 1− n
m

. Then for any

α > 0 we have

P
(
smax(A) ≥ r(α, λ)

√
n
)
≤ e−αn,

where

r(α, λ) = (1− λ)−
1
2 + 1 +

√
2α.

Proof. By Lemma 5.1.1:

P(smax(A) ≥ ((1− λ)−
1
2 + 1)

√
n+ t) ≤ e−

t2

2 , ∀t ≥ 0.
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Thus for any α > 0, setting t =
√

2αn, we have

P(smax(A) ≥ r(α, λ)
√
n) ≤ e−αn, ∀t ≥ 0,

where

r(α, λ) = (1− λ)−
1
2 + 1 +

√
2α.

Thus the proof is complete.

5.2 Non-asymptotic Estimates of the Smallest

Singular Values: Direct Approach

We now give the estimate of the smallest singular value of the reduced Gaussian

matrix. Given an m× n (m > n) random matrix A with i.i.d. standard normal

entries. Let λ = 1− n
m

and β ∈ (0, λ] with βm ∈ N. We need to estimate the

probability of the following event: {‖Ax‖2
2 ≤ t} with x ∈ Sn−1 and certain t > 0.

Lemma 5.2.1. Suppose that A ∈ Rm×n (m ≥ n) is a random matrix with i.i.d.

standard normal entries. Let x ∈ Sn−1 and λ = 1− n
m

. Then for any α > 0 we have

P(‖Ax‖2
2 ≤ q(α, λ)n) ≤ e−αn,

where

q(α, λ) = −(1− λ)−1W0(−e−2α(1−λ)− 6
5 ),

and W0 denotes the principal branch of the Lambert W function.

Proof. Let Y = Ax = (y1, . . . , ym)T . Then ‖Y ‖2
2 =

∑m
i=1 y

2
i has the χ2 distribution
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with m degrees of freedom. Thus the density of ‖Y ‖2
2 is

f(x) =
1

2m/2Γ(m/2)
xm/2−1e−x/2.

It follows that for t > 0:

P(‖Ax‖2
2 ≤ t) =

1

2m/2Γ(m/2)

∫ t

0

xm/2−1e−x/2 dx

=
1

Γ(m/2)

∫ t
2

0

xm/2−1e−x dx

=
γ(m/2, t/2)

Γ(m/2)
,

where

γ(s, z) =

∫ z

0

xs−1e−x dx =
∞∑
i=0

zs+ie−z

s(s+ 1) . . . (s+ i)

denotes the lower incomplete gamma function. Let q ∈ (0, (1− λ)−1] and

t = qn ≤ m, it follows that

γ(m/2, t/2) = (2/m)(t/2)m/2e−t/2
∞∑
i=0

(t/2)i

((m− k)/2 + 1) . . . ((m− k)/2 + i)

≤ (2/m)(t/2)m/2e−t/2
∞∑
i=0

(
t/2

m/2 + 1

)i
= (2/m)(t/2)m/2e−t/2

1

1− t
m+2

=

(
2

m

)(
m+ 2

m+ 2− t

)
(t/2)m/2e−t/2

≤ 3(t/2)m/2e−t/2,

where the last inequality holds whenever (m− k) ≥ 1. Also note that we require

t ≤ m when we estimate the infinite sum above, which forces q ≤ (1− λ)−1. Now

we estimate Γ(m/2). Recall the Stirling’s approximation Γ(z + 1) ≥
√

2πz(z/e)z,
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thus

Γ(m/2) ≥ (2/m)
√
πm(m/2)m/2e−m/2

= 2
√

2π(m/2)m/2−1/2e−m/2.

Hence we have

P(‖Ax‖2
2 ≤ t) ≤ γ(m/2, t/2)

Γ(m/2)

≤ 3

(
t

2

)m
2

e−
t
2

(
m
2

)−m
2

+ 1
2 e

m
2

2
√

2π

≤ 3

2
√

2π

(
t

m

)m
2

e−
t
2 e

1
10
m+ 1

2
m (as

√
x ≤ e

x
5 for all x > 0)

=
3

2
√

2π

(
t

m

)m
2

e
1
2( 6

5
m−t) ≤ (q(1− λ))m/2 exp

(
m

2
(−q +

6

5
)

)
= exp

(
n

2
(1− λ)−1

(
ln(q(1− λ))− q(1− λ) +

6

5

))
.

Now consider the function

g(q) =
1

2
(1− λ)−1

(
ln(q(1− λ))− q +

6

5

)
.

Observe that

lim
q→0

g(q) = −∞ and g((1− λ)−1) =
1

10
> 0.

It follows that for any α > 0 there exists q(α, λ) ∈ (0, (1− λ)−1) such that

g(q(α, λ)) = α, and the explicit form of q(α, λ) is given by

q(α, λ) = −(1− λ)−1W0(−e−2α(1−λ)− 6
5 ),

where W0 denotes the principal branch of the Lambert W function. Hence for any

α > 0 we have

P(‖Ax‖2
2 ≤ q(α, λ)n) ≤ e−αn.
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Thus the proof is complete.

Remark 5.2.2. Recall that W0 satisfies

W0(z)eW0(z) = z, ∀z ≥ −e−1.

Moreover, W0 is an increasing function on [−e−1,∞) with W0(0) = 0 and

W0(−e−1) = −1. Thus −W0(z) ∈ (0, 1) whenever z ∈ (−e−1, 0), so the number

q(α, λ) in Lemma 5.2.1 automatically satisfies q(α, λ) ∈ (0, (1− λ)−1).

To estimate the smallest singular value, we need to introduce the concept of

ε−nets. Recall that for ε > 0, a subset Nε of Sn−1 is called an ε−net if for any

x ∈ Sn−1 there exists v ∈ Nε so that ‖x− v‖2 ≤ ε.

Lemma 5.2.3. ([22, Lemma 5.2]) For any ε > 0, there exists an ε−net Nε ⊆ Sn−1

so that |Nε| ≤ (1 + 2ε−1)n.

The last supporting lemma we need to estimate the smallest singular value is the

following result:

Lemma 5.2.4. Let λ ∈ (0, 1), α > 0 and ε > 0. Define

µα(ε) = α + ln(1 + 2ε−1),

r(µα(ε), λ) = (1− λ)−
1
2 + 1 +

√
2µα(ε),

q(µα(ε), λ) = −(1− λ)−1W0(−e−2µα(ε)(1−λ)− 6
5 ).

Then for any fixed λ and α, there exists ε = ε(α, λ) > 0 such that

√
q(µα(ε), λ) > εr(µα(ε), λ). (5.1)
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Proof. By Remark 5.2.2 we have

lim
z→0

W0(z)

z
= lim

z→0
e−W0(z) = 1.

It follows that in this case as ε approaches 0, we have

q(µα(ε), λ) ∼ (1− λ)−1e−2(α+ln(1+2ε−1))(1−λ)− 6
5 ∼ ε2(1−λ).

Therefore
√
q(µα(ε), λ) ∼ ε1−λ. On the other hand it is easy to see that

εr(µα(ε), λ) ∼ ε+ ε
√

ln(ε−2).

As λ > 0, it follows that

lim
ε→0+

ε1−λ

ε+ ε
√

ln(ε−2)
= +∞.

Thus in this case limε→0+

√
q(µα(ε),λ)

εr(µα(ε),λ)
= +∞. Hence certainly there exists

ε = ε(α, λ) > 0 such that (5.1) holds.

Now we are at the stage to prove the estimate of the smallest singular value of a

Gaussian matrix. We have the following result:

Theorem 5.2.5 (The smallest singular value). Suppose that A ∈ Rm×n

(m > n)is a random matrix with i.i.d. standard normal entries and λ = 1− n
m
> 0.

For α > 0, let q(µα(ε), λ) and r(µα(ε), λ) be the same as in Lemma 5.2.4. Then

P
(
smin(A) ≤ p(α, λ)

√
n
)
≤ 2e−αn,
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where

p(α, λ) = sup
ε∈(0,1)

√
q(µα(ε), λ)− εr(µα(ε), λ) > 0.

Proof. For ε > 0, let Nε ⊆ Sn−1 be an ε−net. Let α > 0 and v ∈ Nε. Let x ∈ Sn−1,

choose vx ∈ Nε such that ‖x− vx‖2 ≤ ε. It follows that

‖Ax‖2 ≥ ‖Avx‖2 − ‖A(x− vx)‖2 ≥ ‖Avx‖2 − εsmax(A).

Let α > 0. Then for any p > 0 we have

P(smin(A) ≤ p
√
n)

≤
∑
v∈Nε

P(‖Av‖2 ≤ p
√
n+ εsmax(A))

≤
∑
v∈Nε

(
P(‖Av‖2 ≤ p

√
n+ εr(µα(ε), λ)

√
n) + P(smax(A) ≥ r(µα(ε), λ)

√
n)
)
.

By Lemma 5.2.4 we may choose ε = ε(α, λ) > 0 such that

pε(α, λ) :=
√
q(µα(ε), λ)− εr(µα(ε), λ) > 0.

It follows from Lemma 5.2.1 that

P(‖Av‖2 ≤ pε(α, λ)
√
n+ εr(µα(ε), λ)

√
n) = P

(
‖Av‖2 ≤

√
q(µα(ε), λ)n

)
≤ e−µα(ε)n.

On the other hand by Theorem 5.1.2 we have

P(smax(A) ≥ r(µα(ε), λ)
√
n) ≤ e−µα(ε)n.

66



Hence by Lemma 5.2.3 we have

P(smin(A) ≤ pε(α, λ)
√
n) ≤

∑
v∈Nε

2e−µα(ε)n ≤ 2(1 + 2ε−1)ne−µα(ε)n = 2e−αn.

By setting

p(α, λ) := sup
ε>0

√
q(µα(ε), λ)− εr(µα(ε), λ) > 0,

we have

P(smin(A) ≤ p(α, λ)
√
n) ≤ 2e−αn.

We are left to show that

p(α, λ) = sup
ε∈(0,1)

√
q(µα(ε), λ)− εr(µα(ε), λ) > 0. (5.2)

By Remark 5.2.2, |W0(z)| ≤ 1 for all z ∈ [−e−1, 1). Thus
√
q(µα(ε), λ) ≤ (1− λ)−

1
2

for all ε > 0, α > 0 and λ ∈ (0, 1). On the other hand it is easy to see that

εr(µα(ε), λ) > (1− λ)−
1
2 whenever ε ≥ 1. It follows that pε(α, λ) < 0 whenever

ε ≥ 1. Moreover by Lemma 5.2.4 we can choose ε ∈ (0, 1) sufficiently small such

that pε(α, λ) > 0. It follows from the definition of p(α, λ) that

p(α, λ) = sup
ε∈(0,1)

pε(α, λ) > 0.

This completes the proof.

5.3 Proof of NERF Property

Now we are at the stage to set up the main theorem for this chapter. We are going

to show that a Gaussian random finite frame is a NERF with overwhelming
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probability.

Theorem 5.3.1. Let A ∈ Rm×n be a random matrix with i.i.d. standard normal

entries. Let λ = 1− n
m
> 0. Then for any β ∈ (0, λ) such that βm ∈ N and ν > 0,

A is a NERF of level (β, R(ν,λ,β)
P (ν,λ,β)

) with probability at least 1− 3e−νn where

P (ν, λ, β) := sup
ε∈(0,1)

√
q(µα(ν,λ,β)(ε), λ(β))− εr(µα(ν,λ,β), λ(β)),

R(ν, λ, β) = (1− λ(β))−
1
2 + 1 +

√
2α(ν, λ, β),

α(ν, λ, β) = ν + (1− λ)−1 ln[β−β(1− β)−(1−β)],

µα(ν,λ,β)(ε) = α(ν, λ, β) + ln(1 + 2ε−1),

r(µα(ν,λ,β)(ε), λ(β)) = (1− λ(β))−
1
2 + 1 +

√
2µα(ν,λ,β)(ε),

q(µα(ν,λ,β)(ε), λ(β)) = −(1− λ(β))−1W0(−e−2µα(ν,λ,β)(ε)(1−λ(β))− 6
5 ),

λ(β) = 1− n

(1− β)m
=
λ− β
1− β

.

All quantities above are positive.

Proof. Let α > 0 and T ⊆ {1, . . . ,m} with |T c| = βm. Note that AT is an

(m− βm)× n matrix with i.i.d. standard normal entries. Define

λ(β) = 1− n

(1− β)m
=
λ− β
1− β

.

Thus by Theorem 5.1.2 and Theorem 5.2.5 we have

P
(
smin(AT ) ≤ p(α, λ(β))

√
n
)
≤ 2e−αn,

P
(
smax(AT ) ≥ r(α, λ(β))

√
n
)
≤ e−αn,
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where

p(α, λ(β)) := sup
ε∈(0,1)

√
q(µα(ε), λ(β))− εr(µα(ε), λ(β)),

r(α, λ(β)) = (1− λ(β))−
1
2 + 1 +

√
2α,

µα(ε) = α + ln(1 + 2ε−1),

r(µα(ε), λ(β)) = (1− λ(β))−
1
2 + 1 +

√
2µα(ε),

q(µα(ε), λ(β)) = −(1− λ(β))−1W0(−e−2µα(ε)(1−λ(β))− 6
5 ).

There are
(
m
βm

)
subsets T ⊆ {1, . . . ,m} with |T c| = βm. Use Stirling’s

approximation (4.3) of binomial coefficient we have

(
m

k

)
≤ e

2π

(m
k

)k ( m

m− k

)m−k (
m

k(m− k)

) 1
2

=
e

2π

(
m

k(m− k)

) 1
2

[β−βm(1−β)−(1−β)m].

Note that m
k(m−k)

≤ 2. Thus

(
m

k

)
≤ e√

2π
β−βm(1− β)−(1−β)m ≤ exp

(
n(1− λ)−1 ln(β−β(1− β)−(1−β))

)
.

Hence it follows that

P
(
p(α, λ(β))

√
n ≤ smin(AT ) ≤ smax(AT ) ≤ r(α, λ(β))

√
n,∀T ⊆ {1, . . . ,m}, |T c| = βm

)
≥1− 3

(
m

k

)
e−αn

≥1− 3 exp(n(−α + (1− λ)−1 ln[β−β(1− β)−(1−β)]))

≥1− 3 exp(−νn),

provided that ν = α− (1− λ)−1 ln[β−β(1− β)−(1−β)] > 0. Thus by setting

α(ν, λ, β) = ν + (1− λ)−1 ln[β−β(1− β)−(1−β)],
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µα(ν,λ,β)(ε) = α(ν, λ, β) + ln(1 + 2ε−1),

r(µα(ν,λ,β)(ε), λ(β)) = (1− λ(β))−
1
2 + 1 +

√
2µα(ν,λ,β)(ε),

q(µα(ν,λ,β)(ε), λ(β)) = −(1− λ(β))−1W0(−e−2µα(ν,λ,β)(ε)(1−λ(β))− 6
5 ),

P (ν, λ, β) := sup
ε∈(0,1)

√
q(µα(ν,λ,β)(ε), λ(β))− εr(µα(ν,λ,β), λ(β)),

R(ν, λ, β) = (1− λ(β))−
1
2 + 1 +

√
2α(ν, λ, β),

with probability at least 1− 3eνn we have

max
T⊆{1,...,m},|T c|=βm

Cond(AT ) ≤ R(ν, λ, β)

P (ν, λ, β)
,

where Cond(AT ) denotes the condition number of AT .

Remark 5.3.2. We used two different approaches to estimate the extreme

singular values:

• For the smallest singular value, we used a brute force method. We didn’t use

concentration inequality type argument because the concentration inequality

tells that for A ∈ Rm×n with m ≥ n, we have

P(smin(A) ≤
√
m−

√
n− t) ≤ e−

t2

2 , ∀t > 0.

This a sharp estimate proved in [22]. We see that if we put t =
√
m−

√
n,

then the probability is in fact zero, but the right hand side gives the bound

e−
(
√
m−
√
n)2

2 > 0. When this estimate is applied to prove the NERF property,

it will give a cap on the erasure ratio. Therefore, we need a faster decay near

zero.
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• For the largest singular value, we take the concentration inequality for grant,

this is due to the fact that this approach gives better results than the brute

force method, also it is much simpler.

5.4 Numerical Examples

In this section we provide some numerical examples.

Example 5.4.1. Let ν = 0.1, we will see how large the number

C(ν, λ, β) :=
R(ν, λ, β)

P (ν, λ, β)

can be if we keep the ratio β
λ

is fixed.

• β
λ

= 1
10

:

Figure 5.1: The graph of C(ν, λ, β) for β
λ

= 1
10

and ν = 0.1
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Table 5.1: Some numerical values of C(ν, λ, β) with ν = 0.1 and β
λ

= 1
10

λ 1
5

1
3

1
2

2
3

4
5

β 1
50

1
30

1
20

1
15

2
25

R(ν, λ, β) 2.774 3.514 3.716 3.965 4.873

P (ν, λ, β) 6.261× 10−9 4.639× 10−5 0.004236 0.04848 0.2028

C(ν, λ, β) 4.431× 108 7.575× 104 877.2 81.80 24.03

We see that in this case C(ν, λ, β) decreases as λ in creases, and as λ

approaches 1, C(ν, λ, β) approaches around 4.43.

• β
λ

= 1
2
:

Figure 5.2: The graph of C(ν, λ, β) for β
λ

= 1
2

and ν = 0.1
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Table 5.2: Some numerical values of C(ν, λ, β) with ν = 0.1 and β
λ

= 1
2

λ 1
5

1
3

1
2

2
3

4
5

β 1
10

1
6

1
4

1
3

5
12

R(ν, λ, β) 3.067 3.364 3.790 4.419 5.364

P (ν, λ, β) 6.261× 10−9 4.814× 10−5 0.004312 0.04848 0.2028

C(ν, λ, β) 4.899× 108 6.987× 104 878.9 91.15 26.45

We see that in this case C(ν, λ, β) also decreases as λ in creases, and as λ

approaches 1, C(ν, λ, β) approaches around 4.76.

• β
λ

= 9
10

:

Figure 5.3: The graph of C(ν, λ, β) for β
λ

= 1
2

and ν = 0.1
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Table 5.3: Some numerical values of C(ν, λ, β) with ν = 0.1 and β
λ

= 9
10

λ 1
5

1
3

1
2

2
3

4
5

β 9
50

3
10

9
20

3
5

18
25

R(ν, λ, β) 3.187 3.450 3.767 4.154 4.659

P (ν, λ, β) 6.261× 10−9 4.814× 10−5 0.004312 0.04848 0.2028

C(ν, λ, β) 5.090× 108 7.167× 104 873.7 85.69 22.97

In this case C(ν, λ, β) approaches around 2.83 as λ approaches 1.
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Chapter 6

Summary and Discussion

In this thesis, we have studied the robustness properties of the sub-gaussian

random matrices. First we have studied how large is the erasure ratio which still

keeps the nearly norm preserving property for the reduced matrix. Then we’ve

proved that sub-gaussian random matrices satisfy the strong restricted isometry

property of certain level and order. In particular we take a closer look on the

Bernoulli case, by employing the Khinchine’s inequality we see that the result can

be further improved from the general case. We also further studied the robustness

properties of the Johnson-Lindenstrauss Lemma and the restricted isometry

property for the sub-gaussian matrices. Last but not the least, by estimating

extreme singular values of Gaussian matrices, we confirmed that Gaussian finite

frames are numerically erasure robust frames. We fixed the mistakes made by the

author of [24] and improved the argument.

In the future, I would like to focus on the following projects:

• We know that the Bernoulli matrices do not satisfy the SRIP with high

probability if the erasure ratio is 1
2

or higher. Then we would like to ask

what is the maximum possible erasure ratio which still guarantees the SRIP
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for Bernoulli matrices.

• The explicit bounds for the condition numbers of the reduced Gaussian finite

frame were not provided in Chapter 5. We are interested in whether it is

possible to determine the closed form of the bounds, and if so we would like

to determine whether the bounds are optimal or not. We would like to know

if it is possible to further improve the existing results.

• This thesis focuses on sub-gaussian random matrices. We are also interested

in what would happen if we change our settings. Would similar results hold

for other types of matrices? For example, the discrete randomized Fourier

transform matrices? The approach could be quite different if the settings are

changed.
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