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Abstract

We study by computer simulations the low temperature properties of small

parahydrogen clusters (free clusters) and the effect of confinement on the ener-

getics and superfluid properties in two-dimensions (2D). Computed energetics

for the free clusters are in quantitative agreement with that reported in the

only previous study [M. C. Gordillo and D. M. Ceperley, Phys. Rev. B 65,

174527 (2002)], but a generally strong superfluid response is obtained for clus-

ters with more than ten molecules. All the free clusters, including the smallest

one, feature a well-defined, clearly identifiable solidlike structure; with only

one possible exception, those with fewer than N = 25 molecules are (almost)

entirely superfluid at the lowest temperature considered (i.e., T = 0.25 K),

and are thus referred to as nanoscale “supersolids”. The superfluid response

in the low temperature limit of the confined clusters is found to remain com-

mensurable in magnitude to that of the free clusters, for clusters fewer than

twenty molecules, within a wide range of depth and size of the confining well.

The flexibility of the superfluid response is traceable to the “supersolid” char-

acter of these clusters. We explore the possibility of establishing a bulk 2D

superfluid “cluster crystal” phase of p-H2, in which a global superfluid response

would arise from tunnelling of molecules across adjacent unit cells. Computed

energetics suggests that for a cluster of about ten molecules, such a phase may

be thermodynamically stable against the formation of the equilibrium insu-

lating crystal, for values of cluster crystal lattice constant possibly allowing

tunnelling across adjacent unit cells.
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Chapter 1

INTRODUCTION

The discoveries and inventions in the area of low temperature physics be-

gan in 1908 by Heike Kamerlingh Onnes, where he first liquified 4He. He made

precise measurements of liquid helium density and found that as the tempera-

ture is lowered, the density goes through a sharp maximum peak at ∼ 2.2 K.

This temperature was concluded by Willem Keesom and Mieczyslaw Wolfke

in 1927 as the phase transition temperature (Tλ), they named the phase below

Tλ as helium-II and the one above as helium-I [6].

A remarkable result was later discovered in 1937 by Kaptisa [1] and inde-

pendently by Allen and Misener [2] that liquid helium-4 is superfluid. They

both reported that liquid helium flowed with almost no measurable viscosity

below the transition temperature of 2.18 K. The bizarre property such as zero

viscosity was later attributed to the work of Lev Landau, Fritz London and

Laszlo Tisza as an evidence of a new superfluid phase of matter. Superfluidity

being associated with the motion of Bose-Einstein condensate (BEC) [3, 4]

is still unclear even in a recent study [5]. Bose-Einstein condensation occurs

when indistinguishable particles (Bosons) all occupy the same quantum me-
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chanical state, this explains the reason why 3He (another isotope of helium)

cannot undergo BEC alone by themselves which is as a result of 3He being

fermion and also obeying Fermi statistics. A superfluid phase can only be ob-

served by pairing up with fermions to form composite spin zero bosons which

is observed at ≈ 2 mK. Such pairing mechanism results to superfluidity in

superconductors [11] and in all Fermi systems.

Experimental investigation using oscillating disks reported by Keesom and

Macwood shows that liquid helium is capable of being viscous and non-viscous

at the same time [7]. This led to the formulation of two fluid model by Tisza

and Landau [4, 8]. They independently postulated that at temperature below

Tλ, helium-4 is made up of two fluids, namely the normal fluid (consisting

of non-condensed atoms) and superfluid (non-viscous). At absolute zero tem-

perature, it consists of superfluid only. The main difference between Tisza’s

theory and Landau’s is in the nature of the normal component: it is made up

of “quasiparticles” according to Landau.

Superfluids have been one of the most important discoveries in the 20th

century, it allows us to see quantum mechanical behavior macroscopically.

They possess interesting properties, such as amazingly high thermal conduc-

tivity [9] and the ability to flow without friction through narrow channels, for

example superfluid film flow [10].

The search for superfluid phase in other elements aside helium has been an

area of interest for a long time now. It has been predicted that spin-polarized

atomic deuterium and tritium are fermionic and bosonic liquids respectively, in

the zero temperature limit [12, 13]. However, their experimental study proves

elusive as a result of their high recombination rate. The next candidate for su-

perfluidty is molecular hydrogen, which is also known as parahydrogen (p-H2).
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The observation of its putative superfluid phase [36] has so far been prevented

by its strong tendency to crystallize at low temperature. There exists, however,

experimental [42] evidence that finite clusters of p-H2 remain liquidlike down

to temperatures much lower than the bulk crystallization temperature, con-

ceivably allowing one to probe their predicted superfluid behaviour, expected

to manifest itself at a temperature T ∼ 1 K, for clusters of thirty molecules

or less [43, 44, 45]. The question thus arises of whether one might be able

to observe a macroscopic superfluid response in a network of interconnected

superfluid clusters, in which global phase coherence could be established by

tunnelling of molecules across adjacent clusters. This is, in a sense, analogous

to the physics of the recently proposed supersolid phase of soft core bosons in

2D [14, 18, 19].

The above scenario could be achieved experimentally, for example, by ad-

sorbing p-H2 inside a porous material such as vycor [16, 17]. Another plausible

avenue, perhaps affording greater control, exploits the predicted superfluid re-

sponse of p-H2 clusters confined to quasi 2D [15, 20]. The idea is that of

fashioning a planar substrate capable of adsorbing p-H2 molecules at specific

sites, arranged on a regular triangular lattice, each designed to accommodate a

number of molecules corresponding to a strong superfluid response at low tem-

perature (i.e., around twenty [20]). The distance between nearest-neighboring

clusters should be chosen to render such a cluster crystal energetically favor-

able with respect to the formation of the ordinary uniform, non-superfluid

crystalline phase (with just one molecule per unit cell), while concurrently

allowing tunnelling of molecules across nearest neighboring wells, each one

acting in a sense like a superfluid quantum dot. Whether all of these condi-

tions can be met is not a priori obvious, and furnishing a quantitative answer
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is the goal of this work.

Aside from the energetics, a second aspect to assess quantitatively is the

effect of confinement on the superfluid properties of the individual clusters,

which, besides being obviously crucial to the goal of stabilizing the bulk su-

perfluid phase described above, is of interest in its own right and might be

probed experimentally, for example by trapping small clusters at adsorption

sites of corrugated substrates [21]. On the one hand, spatial confinement is

expected to bring about a reduction of the superfluid response of a structure-

less, liquidlike droplet, owing to the ensuing increased particle localization.

However, in our first study [20] we established that 2D parahydrogen clusters

of less than thirty molecules, turning superfluid at a temperature of the order

of 1 K, display a rather marked “supersolid” character (obviously such a def-

inition is necessarily loose, given that we are talking about a finite system);

that is, although exchanges of identical molecules are frequent at low tem-

perature, concurrently molecules are nonetheless spatially localized and form

orderly structures. Thus, owing to their greater rigidity, superfluidity in these

finite clusters may be robust against external confinement – more so than in

helium droplets, for instance. Furthermore, it has been recently shown that

confinement can actually have an enhancing effect on the superfluid response

of p-H2 clusters in three dimensions [22].

In order to investigate quantitatively the effect of confinement on its struc-

ture, energetics and superfluid properties, we have carried out first principle

Quantum Monte Carlo simulations of a single, spatially confined 2D p-H2 clus-

ter at low temperature (T = 0.25 K). We studied clusters comprising up to

thirty molecules. Confinement in this study is described by means of a simple

gaussian well of varying size (typically of the order of a few Å) and depth (up
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to 100 K).

We compared the computed superfluid response of the confined clusters

with that of its free counterpart, it shows that while as expected superfluidity

is suppressed in sufficiently deep wells, nonetheless clusters retain their struc-

ture and superfluid response within a rather wide range of confinement param-

eters, i.e., they are relatively unaffected by the confinement. Suppression of

superfluidity takes place gradually as the well is deepened, affecting primarily

the largest clusters. On the other hand, clusters with ∼ 15 molecules or less

remain superfluid, at the low temperature considered here, even when confined

in fairly deep wells. Our physical conclusion is that, even making allowance

for the simplicity of the model utilized, superfluid appears to be remarkably

resilient in these intriguing few-body systems; phrased alternatively, the quan-

titative requirements on the strength and size of the confining well may not

be particularly stringent, at least in terms of ensuring a significant, possibly

observable superfluid response of confined clusters.

The energetics of the system, however, is such that, no matter what values

of depth and size of the attractive well one chooses, the distance between ad-

jacent wells must be taken rather large (close to twice the size of an individual

cluster), in order for the low-density cluster crystal to be energetically stable

against the formation of the equilibrium 2D crystal. Consequently, in such a

cluster crystal tunnelling of molecules across adjacent sites, necessary to es-

tablish a global superfluid response, will be essentially absent, for practical

purposes. Thus, much like others previously explored [40, 41], this approach

to stabilize a bulk superfluid phase of p-H2 appears unlikely to succeed.

The structure of this thesis is summarized as follows: in chapter 2, we

describe the microscopic model of our calculation and also the computational
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methodology utilized. We devote chapter 3 to analysing the results of our first

study, describing the low temperature properties of 2D p-H2 clusters compris-

ing between N = 7 and N = 30 molecules. This led us to studying the effect of

confinement on this small p-H2 clusters and possible stabilization of its bulk

superfluid phase, we discussed this in chapter 4. Finally, we outlined the main

physical conclusion of our study and provide possible avenues to obtaining a

bulk superfluid phase.
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Chapter 2

PHYSICAL MODEL AND

METHODOLOGY

This chapter focuses on the discussion of the physical model and method-

ology adopted for our study.

2.A Many-body Hamiltonian

Our system of interest is modeled as a collection of N parahydrogen (p-H2)

molecules, regarded as point particles of spin zero, moving in 2D in the presence

of a confining potential. The quantum mechanical many-body Hamiltonian is

given by

Ĥ = − ~2

2m

N∑
i=1
∇2
i +

∑
i<j

v(rij) +
∑
i

V (ri), (2.1)

where ~2/2m = 12.031 KÅ2, ri is the position of the ith p-H2 molecule, rij ≡

|ri − rj|, v is the potential describing the interaction of a pair of molecules,
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while V is the confining potential. We model V by means of a simple Gaussian

well, centered at the origin, namely

V (r) = −A exp
(
− r2

2σ2

)
. (2.2)

While a direct experimental realization of such a confining potential may

not be straightforward (not to our knowledge anyway), it contains nonetheless

all the relevant ingredients to afford qualitative insight into the physics of the

system, with a small number of parameters, thereby rendering the interpreta-

tion of the results easier. We use the well-known Silvera-Goldman potential

[49, 50] to describe the pair-wise interaction among p-H2 molecules.

The thermodynamics and the structural properties of the above system at

low temperature (T = 0.25 K) have been studied by means of Quantum Monte

Carlo simulations based on the continuous-space Worm Algorithm [25, 26].

Details of the calculation are standards, analogous to those employed, for in-

stance, in the simulation of trapped dipolar Bose systems [23, 24]. Besides

the energy per molecule, we compute radial density profiles with respect to

the centre of the well, as well as global and local superfluid response of the

clusters, using standard estimators for finite systems [48, 55, 56].

2.B The Continuous-space Worm Algorithm

Path Integral Monte Carlo (PIMC) method is of great importance in the

theoretical investigation of quantum many-body systems. Besides the quanti-

tative results yielded for a wide range of physical systems, it also enables us

to understand phenomena such as superfluidity and Bose-Einstien condensa-
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tion at the microscopic level. Path Integral Monte Carlo (PIMC) is the only

known method capable of furnishing an exact numerical estimates of physical

observables for bose particles at finite temperature. In addition, regardless of

the sign problem that is often encountered while dealing with Fermi systems,

PIMC still provides approximate estimates comparable to other leading meth-

ods [27, 28]. We thus regard PIMC as a realistic method to investigate our

calculation of interest based on the continuous-space Worm Algorithm.

2.B.1 Thermal Averages and Path Integral Monte Carlo

We wish to compute the thermal average of a physical observable Â, for a

many-body system with N indistinguishable particles in thermal equilibrium

at temperature T , described by Eq. (2.1). This quantity is given by

〈Â〉 = 1
Z

Tr (Âρ̂) = 1
Z

∫
dRA(R)ρ(R,R, β) (2.3)

where R ≡ r1 r2 . . . rN is a collective coordinate referring to all N particles

in the system; β = 1/(kBT ) and KB is the Boltzmann constant (set to 1 for

simplicity); Z is the canonical partition function, which is of the form

Z = Tr ρ̂ =
∫
dR ρ(R,R, β) , (2.4)

ρ(R,R, β) is the many-body density matrix given by

ρ(R,R, β) = 〈R|e−βĤ |R〉 (2.5)

with Ĥ given by Eq. (2.1). The many-body density matrix is in most cases

unknown for a system of interacting particles, using path integral formalism
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proposed by R. P. Feynman [29] an expression for ρ could be obtained. We

start by using the identity

e−βĤ ≡ (e−τĤ)P , (2.6)

where β = Pτ , P is an identity operator, and τ is an imaginary time. Eq.

(2.5) can then be written as

ρ(R,R, τ) = 〈R|e−τĤe−τĤ ...e−τĤ |R〉

=
∫
dR1dR2 · · · dRP−1

∏
i

ρ◦(Ri, Ri+1, τ).
(2.7)

For a fixed β, the many-body density matrix approaches the free-particle den-

sity matrix in the limit of large P (or small τ), in this limit, we obtain, to 3rd

order in τ

ρ(R,R′, τ) ≈ ρ◦(R,R′, τ)e−τV (R), (2.8)

where V(R) = ∑
i<j v(rij) +∑

i V (ri) as given in Eq. (2.1) and ρ◦(R,R′, τ) in

D-dimensional configuration space is given by

ρ◦(R,R′, τ) = ρ◦(r, r′, τ) =
(
2π~2τ/m

)−D/2
exp

[
−m(r− r′)2

2~2τ

]
. (2.9)

The approximate expression for the many-body density matrix given in Eq.

2.8 becomes exact in the limit P → ∞ (i.e. τ → 0). Upon substituting this

expression into Eq. 2.3, an exact expression for the thermal expectation value

is obtained [29], which is of the form

〈Â〉 =
∫
DR(τ)A(R(τ)) exp {−S[R(τ)]}∫
DR(τ) exp {−S[R(τ)]} , (2.10)
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Figure 2.1: Permutation sampling in conventional PIMC

where the integral is over all continuous many-particle “path” R(τ) in the

interval 0 ≤ τ ≤ β and R(β) = R(0). S[R(τ)] is the Euclidean action given

by

S[R(u)] =
∫ β

0
du

⎧⎨
⎩

N∑
i=1

m

2�2

(
dri

du

)2

+ V(R(u))
⎫⎬
⎭ . (2.11)

2.B.2 Quantum Statistics

The above formalism can be used to compute the thermodynamics proper-

ties of systems assuming the molecules are distinguishable, but our system of

interest only focus on indistinguishable Bose particles obeying Bose statistics.

However, we have to take into account the Bosonic character in order to en-

sure that the many-body density matrix have proper symmetry when particle

labels interchange. To ensure this, the many-body paths must terminate at

τ = β having the same position for all the particles at τ = 0 with possible

permutation of labels of the particles, i.e., R(β) = PR(0), where P is a per-

mutation of particle indices. Such permutations underlie phenomena such as

Bose-Einstein condensation and superfluidity [30].
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2.B.3 Conventional PIMC Permutation Sampling

Permutation sampling of many-particle paths is very crucial in Monte Carlo

simulations. The conventional PIMC permutation sampling developed by

Ceperley [30] is realized through elementary moves that modify portions of

single-particle in a closed (β-periodic) paths. Permutation cycles consisting of

many-particles are sampled by cutting and reconnecting pairs of world lines in

such a way that permutations occur while still in the diagonal sector, Fig. 2.1

illustrates this. The sampling efficiency of this scheme is reasonable if particles

interact weakly. However, it is inefficient when particles interact through a re-

pulsive, hard core potentials which results from the reconstruction of world-line

segment involving bringing two or more particles close to one another leading

to a high potential energy. Such permutations will result in low acceptance

rate which is a serious problem when permutation exchanges involves more

than two particles. The observation of phenomenon such as superfluidity is

affected by this inefficiency, which involves long permutation cycles of particles

in the system.

2.B.4 Permutation Sampling In Worm Algorithm

The flaws in the conventional PIMC is completely overcome in Worm Al-

gorithm. The Worm Algorithm differs from the conventional PIMC in terms

of the configuration space. Worm Algorithm operates on an extended configu-

rational space, which includes the closed world-line configuration, also known

as Z-sector and the open world-line configuration (worm), also called G-sector.

The Z-sector configuration are diagonal, thereby contributing to the partition

function, the reverse is the case in the G-sector configuration, contributing
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only to one-particle Matsubara Green Function, given by

G(r1, r2, τ) = −〈T̂ [ψ̂(r2, τ)ψ̂†(r1, τ = 0)]〉 , (2.12)

where T̂ is the time ordering operator, −β ≤ τ ≤ β, ψ̂† and ψ̂ are time-

dependent Bose field operators. The zero-time limit of the one-particle Mat-

subara Green function gives a one-particle density matrix, n(r2, r1), from which

we can compute the momentum distribution [31] directly in the continuous-

space Worm Algorithm. The worm in the G-sector configuration have two

dangling ends which are known as Ira (head) and Masha (tail). Sampling of

configuration occurs through simple set of local update all involving Ira and

Masha.

Worm Algorithm is currently one of the powerful methodology to study

thermodynamic properties of quantum-mechanical systems comprising of many

interacting particles. The Worm Algorithm can be carried out in either a

canonical or grand-canonical ensemble, the latter resulting from fluctuations

of particle number through creation and annihilation of worms. In our present

implementation, the Z-sector configuration, have a fixed N number of parti-

cles, while the G-sector configuration have a single worm and N − 1 particle

world lines.

2.B.5 Thermodynamic Estimators and Statistical Er-

rors Evaluation

In this study, we compute thermodynamic properties such as; energetics,

global superfluid fraction, ρs(T ), the local radial superfluid density, ns(r) and
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the total radial density, n(r). The energetics were obtained using the energy

estimator, extensively discussed in Ref. [32]. The average Kinetic energy is

given by

〈K〉 ≈ 3
2τ −

1
4λτ 2

〈
(rl − rl+1)2

〉
+ λτ 2

9

〈(
∇V(R2l)

)2
〉
, (2.13)

where 〈· · · 〉 represents the thermal average, (rl − rl+1)2 is the square of the

distance between two beads along a world line, and the gradient of the potential

energy V is taken with respect to the coordinate of one of the particles at an

even time slice. The expression for the average potential energy per particle

is given by

〈V〉 ≈ 1
N
〈V(R2l−1)〉 . (2.14)

We estimated the superfluid fraction using the well-known “area” estimator

[33]. The superfluid fraction of a finite system, defined as the fraction that

decouples from an externally induced rotation is expressed as

ρS(T ) = 4m2T

~2Ic
〈A2〉 , (2.15)

where Ic is the classical moment of inertia and A is the total area covered by

the many-particle paths, projected to a perpendicular plane of one of the three

identical rotation axes.

The radial superfluid density was computed by means of a microscopic

estimator proposed by Kwon et al. [56], the local superfluid density, ns(r), is

given by
ns(r)
n(r) = 4m2〈AA(r)〉

β~2Ic(r)
, (2.16)
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where A(r) and Ic(r) are contributions from A and Ic respectively, computed

from a spherical shell of radius r centered at the center of mass of the cluster.

The thermal average of a physical observable Â is known to be calculated

from the average of its value over a large set of Nr samples Xj generated

through sampling procedure, as

〈Â〉 ≈ 1
Nr

Nr∑
j=1
A(Xj). (2.17)

The computation of statistical errors for our calculated expectation values is

very crucial as it makes our calculations more meaningful. For an independent

and normally distributed values A(Xj), the error estimate on 〈Â〉 can be

estimated as

σ ≈

√√√√∑Nr
j=1(A(Xj)− 〈A〉)2

(Nr − 1) . (2.18)

However, our sample states are generated via Markov chain in which one state

is generated by visiting the previous one. Successive state in this random walk

are correlated and the statistical errors are being underestimated using Eq.

2.18. One must find another means to perform the average over uncorrelated

configurations. An alternate approach is to spilt the simulation up into a

number of equal blocks containing a large (thousand) number of successive

configurations, over which partial averages for each block are calculated and

stored. A bin is then constructed for a fixed number of blocks in each, and the

error is thus obtained as the standard deviation of the resulting histogram.

We refer the reader to Ref. [34], for more detailed procedure for estimating

the standard error which we utilized in the work.
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Chapter 3

SYSTEMATICS OF SMALL

PARA-HYDROGEN

CLUSTERS IN TWO

DIMENSIONS

In this chapter, we discuss the properties of two-dimensional properties of

parahydrogen clusters comprising between N = 7 and N = 30 molecules at T

= 0.25K. 1

3.A Introduction

The physics of small parahydrogen clusters remains a subject of current

interest, mainly because this system features a rather unique interplay of clas-
1A version of this chapter has been published as:

Saheed Idowu and Massimo Boninsegni. Journal of Chemical Physics 140, 204310 (2014).
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sical and quantum physics [35]. Due to its low mass and bosonic character,

parahydrogen (p-H2) was predicted a long time ago to undergo a superfluid

transition, at temperature T . 6 K [36]. However, the equilibrium phase of

bulk p-H2 in the T → 0 limit is a crystal, even in reduced dimensions [37, 38],

due to the depth of the attractive well of the interaction potential between

two hydrogen molecules. The theoretical suggestion that a liquidlike phase of

p-H2 could be stabilized in two dimensions (2D) by an underlying impurity

substrate [39] is not supported by several recent calculations [40, 41].

There is experimental proof, on the other hand, that small clusters of p-

H2 in three dimensions can escape crystallization [42], down to a temperature

sufficiently low that a finite superfluid response, defined as the dissipationless

rotation about an axis going through the center of mass, is theoretically pre-

dicted to arise in the nanoscale clusters (. 30 molecules) at a temperature

of the order of a few tenths of a K [43, 44, 45]. While most of these clusters

are expected to remain essentially liquidlike, i.e., structureless, all the way to

zero temperature, in some cases undergoing quantum melting at sufficiently

low T , (p-H2)26 is predicted to retain some well-defined structural short-range

order, even with the concurrent development of superfluid coherence at low T ,

behaving in some sense as a finite-size “supersolid” [46].

An interesting question is what happens if clusters are themselves confined

to 2D, which could be achieved experimentally by adsorbing p-H2 on a suitable

substrate, strong enough to confine molecules effectively to 2D, but also weak

enough to allow for the neglect of corrugation. Substrates of alkali metals

might be a good candidate [47], but progress toward the stabilization of quasi-

2D H2 clusters on a different type of substrate has been recently reported [21].

Reduction of dimensionality brings about two competing effects. On the one
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hand, the lower coordination number is expected to weaken the tendency of the

system to crystallize, but also has the effect of hindering quantum-mechanical

exchanges of identical particles, which have been shown to play a crucial role

in the stabilization of a liquidlike structure at low T [44, 45].

The only existing theoretical study of p-H2 clusters in 2D is that by Gordillo

and Ceperley, who carried out first principles Path Integral Monte Carlo sim-

ulations, down to T = 0.3 K [15]. Their main physical findings were that

clusters comprising at the most two concentric shells of molecules around the

center of mass (typically ten molecules or less) are essentially structureless,

i.e., liquidlike, and superfluid at low T (. 1 K); as more molecules are added

to the cluster, a solidlike core starts forming, with the concomitant, gradual

suppression of the superfluid response. From this observation, the authors in-

ferred that, as cluster size is increased, superfluidity is progressively confined

to a liquidlike outer shell, while the solidlike core is insulating.

In this work, we present results of QuantumMonte Carlo simulations of two

dimensional p-H2 clusters of size ranging from N = 7 to N = 30 molecules, in

the temperature range 0.25 ≤ T ≤ 1 K. We computed energetic and superfluid

properties of the clusters, and investigated their structure by means of density

profiles computed with respect to the center of mass of the cluster, as well as

through actual density maps, affording direct visual insight in 2D.

In general, our estimates for the energy per particle are in satisfactory

quantitative agreement with those of Ref. [15], on taking into account the

statistical uncertainties of both calculations; on the other hand, we obtain

a stronger superfluid signal than they do, especially for clusters with more

than ∼ 10 molecules. Indeed, we find a robust superfluid signal at the lowest

temperature considered here, for clusters comprising as many as N = 25 p-H2
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molecules; analogously to what found in 3D clusters, the dependence of the

superfluid response on N is non-monotonic [44, 45].

More importantly, the physical picture that emerges from our study is

qualitatively different from that of Ref. [15] in a number of relevant aspects.

First and foremost, none of the clusters studied here can be regarded as truly

“liquidlike”, at low T . In particular, our radial density profiles for the smaller

clusters are quantitatively very different from those of Ref. [15], featuring much

higher peaks, separated in turn by much shallower dips. This is indicative of

a well-defined structure, in which molecules tend to occupy preferred lattice

sites, something that is confirmed by our computed density maps. Second, the

calculation of the local superfluid density shows that in all superfluid clusters

the response is not confined at the surface but rather uniform throughout the

system, much like in three-dimensional (3D) clusters [48]. Thus, no meaning-

ful distinction can be drawn between a non-superfluid, solidlike center, and a

superfluid liquidlike outer part, for any of the superfluid clusters; rather, they

should be regarded as featuring concurrently superfluid and solidlike prop-

erties. In this sense, these small 2D clusters may be regarded as naturally

occurring nanoscale “supersolids”.

In the next section, we describe the microscopic model underlying this

calculation and furnish basic computational details. A thorough illustration

of our results is provided in Sec. 3.C. In Sec. 3.D, we discuss the physical

conclusions and also provide possible scenarios of stabilizing bulk superfluid

phase of p-H2 in two dimensions.
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3.B Model And Methodology

In this chapter, our system of interest is modeled as a collection of N

parahydrogen (p-H2) molecules, regarded as point particles, moving in two

physical dimensions. The quantum mechanical many-body Hamiltonian is the

same as in Ref. [15], given by

Ĥ = −λ
N∑
i=1
∇2
i + V (R), (3.1)

where λ = 12.031 K Å2, R ≡ r1, r2, ...rN is a collective coordinate referring

to all N particles in the system and V (R) is the total potential energy of

the configuration R, which is assumed here to be expressed as the sum of

pairwise contributions, each one described by a spherical symmetric potential.

In this calculation, we made use of Silvera Goldman potential [49], mostly for

consistency with the calculation [50] of Ref. [15]. We estimated equilibrium

thermodynamic properties of this finite system at low temperature, by means

of Quantum Monte Carlo simulations, based on the Worm Algorithm in the

continuous-space path integral representation.

Our simulated system is enclosed in a square cell, chosen sufficiently large to

remove any effect of the boundary conditions, periodic in all directions. We use

a high-temperature approximation for the imaginary time propagator accurate

to fourth order [32, 53, 54] in the imaginary time step τ . The results shown

here are obtained with a value of τ = 10−3 K−1, empirically found to yield

estimates indistinguishable, within our quoted statistical uncertainties, from

those extrapolated to the τ → 0 limit (i.e the limit where the method becomes

exact). No artificial confining potential was used in the simulation, as clusters
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stay together simply as a result of the intermolecular pairwise attraction.

We compute both the global superfluid fraction ρS, as well as the radial,

angularly averaged one, ρS(r). We estimate the first using the well-known

“area” estimator [55], the second by means of a straightforward generalization

of the area estimator, applied to concentric shells of varying radii, centered at

the center of mass of the cluster [56]. For the smallest clusters (N . 10), a

more accurate estimate of the global superfluid fraction is the radial average of

ρS(r), weighted by the angularly averaged radial p-H2 density ρ(r), outside of

a circle of radius r◦ ∼ 2 Å. This is because the statistical noise in the estimate

of ρS arises mostly from contributions in the vicinity (i.e., within a distance

r◦ or less) of the center of mass.

3.C Results

As mentioned in the previous section, we carried out numerical simulation

of clusters in the temperature range 0.25 ≤ T ≤ 1 K. In general, structural

and energetic properties of the clusters remain unchanged below T ∼ 0.5 K;

in particular, physical estimates reported here for T = 0.33 K or lower, should

be regarded as ground state estimates, within their statistical uncertainties.

Fig. 3.1 shows the energy per molecule versus cluster size, computed at

T = 0.25 K. Also shown are the results reported in Ref. [15] at a slightly higher

temperature (T = 0.33 K). The two calculations are in excellent agreement,

within their statistical uncertainties. The energy per molecule is monotonically

decreasing, with no evidence of “magic numbers”, within the precision of our

calculation. It attains a value around −15.3 K for a cluster with N = 30 p-H2

molecules; this is still relatively far from the 2D bulk value [37] of ∼ −23.2 K.
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Figure 3.1: Energy per hydrogen molecule e (in K) versus cluster size N , at
T = 0.25 K (full symbols). Also shown are the results reported in Ref. [15],
at T = 0.33 K (open symbols). For clusters of size N = 10, 13, 16 and 20,
our energy estimates are indistinguishabe from those of Ref. [15]. Statistical
errors are at the most equal to symbol size.

In order to discuss the structural properties of the clusters, which are the

main focus of this study, we begin by illustrating in some details the results

for the smallest cluster studied in this work, namely that with N = 7 p-H2

molecules, because in many respects this allows us to draw general conclusions,

applicable to clusters of greater size as well.

Figure 3.2 shows the radial density profile ρ(r) for (p-H2)7 (solid line),

with respect to its center of mass, computed at a temperature T = 0.33 K.

Two results are shown, namely that obtained in this work (solid line), and

that published in Ref. [15] (filled circles); for comparison purposes, we begin

by discussing the latter first. It displays two broad peaks, one at the origin,
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Figure 3.2: (color online) Radial density profile for a cluster with N = 7 p-H2
molecules at T = 0.33 K (solid line). Filled circles show the corresponding
result from Ref. [15]. Profiles are computed with respect to the center of mass
of the cluster. Statistical errors are not visible on the scale of the figure. The
local superfluid density profile for this cluster is indistinguishable from that of
the local density.

signaling a particle in the center of the cluster, and an outer one, evidently the

signature a floppy surrounding ring comprising the remaining six molecules.

Only a minor depression between the two peaks is observed; indeed, the outer

peak is barely noticeable. Such a profile was reasonably interpreted by the

authors of Ref. [15] as evidence of a structureless, liquidlike cluster.

The corresponding density profile obtained in this work, on the other hand,

looks distinctly different. It features two much higher and narrower peaks (the

one at the origin more than twice as high with respect to that of Ref. [15]),

separated by a pronounced dip, to suggest a rather sharp physical demarca-
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Figure 3.3: (color online) Configurational snapshot (particle world lines)
yielded by a simulation of a cluster with N = 7 p-H2 molecules at T = 0.33
K. Brighter colors correspond to a higher local density.

tion between the central particle and the surrounding ring. This points to a

considerably more structured cluster, in which particles preferentially tend to

be at well-defined relative positions, i.e., the cluster is solidlike [57]. The quan-

titative disagreement between the two results is puzzling, considering that our

estimate of the energy per particle (−8.95(2) K), as well as that of the super-

fluid fraction ρS (∼ 100%) at this temperature are in agreement with theirs,

within the statistical uncertainties of the calculations. In order to obtain an

independent check of our result, we carried out a separate calculation of the

ground state properties of this cluster, using the Path Integral Ground State

technique [54, 58]. The details of this calculation are identical with those de-

scribed in Ref. [59]. The radial density profile obtained in this second way is
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identical with that at T = 0.33 K, given by the solid line in Fig. 3.2. This

fact gives us confidence on the correctness of our results. The qualitative dis-

agreement with the radial density profile of Ref. [15] is therefore unclear, and

somewhat puzzling, at this time, as the same microscopic model is utilized.

Furthermore, In order to gain additional insight into the physics of this few-

body system, we make use of the direct and visually suggestive information

provided in 2D by configurational snapshots generated by the Monte Carlo

simulation (see, for instance, Ref. [23]). Figure 3.3 shows a particle density

map obtained from a statistically representative configuration snapshot (i.e.,

particle world lines) for the cluster under exam, at the same temperature

as in Fig 3.2. By “statistically” representative, it is meant here that every

configuration generated in the simulation is roughly similar to that shown in

the Figure, differing from it mostly by a mere rotation. Albeit smeared by zero

point motion, lumps associated to individual molecules are clearly identifiable,

forming an ordered structure, with a visible gap between the particle in middle

of the cluster and those in the outer ring. In spite of this relatively “ordered”

arrangement, in turn implying a degree of molecular localization, exchanges

of indistinguishable particles occur frequently, hence large superfluid response.

Indeed, the probability for a single-particle world line not too close onto itself,

meaning that the particle participates to a cycle of exchange with one or more

partners, is as large as 30%.

The superfluid fraction of this droplet is, as mentioned above, 100% at

T ≤ 0.33 K, within statistical uncertainty. Moreover, the superfluid signal is

uniformly distributed throughout the whole cluster, not concentrated at any

specific region (e.g., the surface); in fact, the computed angularly averaged,

local superfluid density profile is indistinguishable from that of the local den-
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sity, shown in Fig. 3.2. This is much like already observed in 3D clusters [48].

Thus, the two seemingly exclusive superfluid and solidlike properties appear

to merge into a single, remarkable “supersolid phase” [57].

Figure 3.4: (color online) Radial density profile for cluster with N = 13 at
T = 0.33 K (solid line). Also shown is the corresponding result from Ref. [15]
(filled circles). Profiles are computed with respect to the center of mass of the
cluster. Statistical errors are not visible on the scale of the figure.

The structural short-range order characterizing this small cluster is found

to be the same in all other clusters investigated here. All of them are solidlike,

in no case quantum-mechanical exchanges causing the melting at low T into a

featureless, liquidlike cluster, an effect which is also observed in simulations of

3D clusters, in this temperature range [44, 45] . Figures 3.4 and 3.5 show ra-

dial density profiles for clusters with N = 13 and 20 molecules, at T = 0.33 K.

Comparison with Ref. [15] again shows considerably more structure in the sim-
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Figure 3.5: (color online) Radial density profile for cluster with N = 20 at
T = 0.33 K (solid line). Also shown is the corresponding result from Ref. [15]
(filled circles). Profiles are computed with respect to the center of mass of the
cluster. Statistical errors are not visible on the scale of the figure.

ulations carried out here. As the size is increased, both studies yield evidence

of greater structural short-range order, but quantitative differences between

radial density profiles remain visible even for the largest cluster studied in Ref.

[15], i.e., that with N = 20 (Fig. 3.5). While a quantitative characterization

of particle localization in these clusters might be obtained by making use of

estimators proposed in Refs. [60, 61, 62], nonetheless our results, consistently

yield higher peaks and more pronounced dips in between, i.e., a significantly

more rigid, solidlike structure. This is in marked quantitative, and for the

smallest clusters even qualitative disagreement with the physical conclusions

of Ref. [15].

We now discuss the superfluid properties of the few-body system. For all
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clusters with N ≤ 23, the superfluid fraction ρs is indistinguishable from 100%

within statistical uncertainties at T = 0.25 K. Our superfluid signal is stronger

than that reported in Ref. [15] for clusters with N = 13, 16 and 20, for all

of which they find is worth 0.6 ± 0.1 at T = 0.33 K, whereas for these four

specific clusters we find values in excess of 90% at that same temperature. The

largest cluster for which a significantly large superfluid response is observed

at the lowest temperature considered here, namely T = 0.25 K, comprises 25

molecules; its superfluid fraction is again worth approximately 100% at T =

0.25 K.

The superfluid response is observed to drop abruptly for N > 25; indeed,

for none of the clusters with 26 ≤ N ≤ 30 could we obtain an appreciable

value of ρS in this study [63], at the lowest temperature considered here. It

should be noted, however, that the dependence of ρS on N for a fixed low T

is not monotonic, a fact which have been observed in 3D clusters [44, 45] with

22 . N . 30. In particular, at T = 0.25 K, ρS is observed to drop down to

level of statistical noise for a cluster with N = 24, to rebound to ∼ 100% on

adding a single molecules (i.e., for a cluster with N = 25), to drop again to

zero if another molecule is added.

Such an intriguing behaviour, most remarkably mimicking what observed

in 3D clusters with the same numbers of molecules, cannot be straightforwardly

related to the shape of the cluster, and/or to the completion of any regular

geometrical structure, occurring on adding a molecule to (or removing one

from) a cluster with N = 25, nor to some greater “liquidlike” character of the

N = 25 system. In Fig. 3.6, we compare the density profiles of two clusters

with N = 25 and 26 p-H2 molecules at T = 0.25 K, at which the cluster with

25 molecules is entirely superfluid, and that with 26 features no measurable
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Figure 3.6: (color online) Radial density profiles for clusters with N = 25
(dashed line) and 26 (solid line) p-H2 molecules at T = 0.25 K. Profiles are
computed with respect to the center of mass of the cluster. Statistical errors
are not visible on the scale of the figure.

superfluid response. Both profiles show three peaks, i.e., three concentric

shells, but that of the the cluster with one extra molecule is noticeably more

structured, and its first two peaks sharper. On the other hand, the peak

corresponding to the outer shell is rather smooth, very similar in both cases.

Thus, the main structural difference between the two clusters seems to be that

the non-superfluid one has enhanced solid order in the two inner shells. This

observation, together with the fact that the superfluid response is uniformly

distributed throughout the cluster, in turn undermines the suggestion that

superfluidity should correlate with the presence of a liquidlike outer shell, of

which no evidence is shown by the representative configuration snapshots of

figures 3.7 and 3.8. Indeed, both clusters display a rather ordered structure,
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Figure 3.7: (color online) Configurational snapshot (particle world lines)
yielded by a simulation of a cluster with N = 25 p-H2 molecules at T = 0.25
K. Brighter colors correspond to a higher local density.

although the molecules sitting at the surface are obviously less bound.

3.D Discussion

In this chapter, we have performed a systematic investigation of the low

temperature properties of small clusters of p-H2 in two dimensions, using first

principle quantum Monte Carlo simulations, whose only input is the inter-

molecular pair potential. Some of the physical properties of these clusters

are very similar to those of clusters in three dimensions. For example, the

non-monotonic dependence of the superfluid response at low temperature on

the number N of molecules in the cluster, is also observed in the 3D system.

There too, most notably, the numbers N = 25 and 26 are associated with
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Figure 3.8: (color online) Configurational snapshot (particle world lines)
yielded by a simulation of a cluster with N = 26 p-H2 molecules at T = 0.25
K. Brighter colors correspond to a higher local density.

the same effect observed here, i.e., the drop of the superfluid fraction from

nearly 100% to a value close to zero (in the temperature range considered

here), on adding a single molecule to the N=25 cluster. This suggests that

a significant compensating effect takes place on reducing dimensionality; the

enhancement of quantum fluctuations, and the concomitant suppression of

quantum-mechanical exchanges (due to the confinement of molecular motion

to a plane, and the hard, repulsive core of the intermolecular potential at short

distances) both contribute to preserve some of the same physics observed in

three dimensions.

Additionally, some of the features of 2D p-H2 droplets set them aside from

their 3D counterpart. The most striking feature of these few-body systems, is
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the simultaneous presence of what can be reasonably described as short-range

order, whereby molecules tend to form specific geometrical arrangements, typ-

ically resulting from a classical mechanism (i.e., minimization of potential

energy), and a finite superfluid response, originating from exchanges of iden-

tical molecules. Much like in the 3D case, superfluidity is underlain by cycles

of exchanges involving all of the molecules, not just those on the outer shell.

Indeed, the participation of inner molecules to exchanges is crucial, witness

the fact that as the number N is increased beyond 25, at which point clusters

are no longer superfluid at the lowest temperature observed, their inner struc-

ture concurrently appears much more rigid (as shown by the comparison in

Fig. 3.6), consistently with inner molecules to be more localized and are less

involved in exchanges.

What are the implications of this study, if any, can be deduced from the

results of this study, regarding a possible stabilization of a superfluid phase

of bulk p-H2? The suggestion that one might be able to use frustration, ei-

ther arising from disorder [41, 64] or from an underlying impurity substrate

incommensurate with the equilibrium triangular crystalline phase of p-H2 in

two dimension [39], has not been shown to lead to a superfluid phase, although

recently renewed claims to that effect have been made [65].

Also, one could consider borrowing on ideas arising from theoretical studies

of superfluidity (and supersolidity) in cold atom assemblies [66]. In particular,

one could imagine patterning a suitably chosen surface with regularly arranged

adsorption sites (e.g., on a triangular lattice). Each site could be designed to

accommodate a number of p-H2 molecules between, say, ten and twenty, acting

in a sense as a “molecular quantum dots”, turning superfluid at low T . Con-

ceivably, upon choosing the lattice constant of the adsorption lattice suitably,
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it might be possible to establish phase coherence throughout the whole system,

through the tunnelling of individual p-H2 molecules across adjacent adsorption

wells. The ensuing superfluid phase would be similar to the supersolid droplet

crystal phase of Refs. [67] and [14], with the important conceptual difference

that in the present case the adsorption lattice is externally imposed, as op-

posed to arising from inter-particle interactions. This scenario is discussed in

the next chapter.
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Chapter 4

SUPERFLUID RESPONSE OF

2D PARAHYDROGEN

CLUSTERS IN

CONFINEMENT

4.A Introduction

In this chapter, we will discuss in great detail the effect of confinement on

the superfluid properties of small 2D p-H2 clusters. We will also discuss the

results obtained on possible stabilization of a bulk 2D superfluid phase of p-H2,

where a global superfluid response would arise from tunnelling of molecules

across adjacent unit cells.1

1A version of this chapter has been published as:
Saheed Idowu and Massimo Boninsegni. Journal of Chemical Physics 142, 134303 (2015).
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4.B Results

4.B.1 Superfluididty

Figure 4.1: Superfluid fraction of 2D p-H2 clusters confined in a Gaussian well
of size σ = 3 Å and depth A = 40 K (circles), A = 60 K (diamonds) and A =
100 K (triangles), at a temperature T = 0.25 K. Open triangles show results
for free clusters. When not shown, statistical errors are at the most equal to
symbol size.

We start the illustration of the results of our study for clusters trapped

inside a well of size σ = 3 Å i.e., roughly the radius of the inner shell of the

clusters [20]. Figure 4.1 shows the superfluid fraction ρs(N) at a temperature

T = 0.25 K, for clusters comprising up to N = 30 molecules, for wells of depth

A = 40, 60 and 100 K respectively. Also shown are the corresponding results

for free clusters (i.e., A = 0), from Ref. [20].

As discussed therein, a rather sharp demarcation exists for free clusters,
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Figure 4.2: Configurational snapshots (particle world lines) yielded by a sim-
ulation of a cluster with N = 20 p-H2 molecules at T = 0.25 K. Left: Free
cluster. Right: Cluster confined inside a gaussian well of depth A = 100 K
and size σ = 3 Å. Brighter colors correspond to a higher local density.

in terms of superfluid response. For, those with less than 26 molecules are

essentially 100% superfluid at this low T (with the sole anomaly of N =

24 for which the superfluid response is approximately one half), whereas the

superfluid response is suppressed in larger clusters.

For a relatively shallow well (A ∼ 20 K), the superfluid response of the

confined clusters remains close (within ∼ 10%) to that of the free ones. As the

depth of the confining well is increased, superfluidity is gradually suppressed,

but the smallest clusters, namely those with N . 15, retain their superfluid

properties (those with N . 10 essentially entirely), even for the deepest well

considered here, namely with A = 100 K. As shown in Fig. 4.1, clusters whose

superfluid response is most significantly affected by confinement are the largest

ones, i.e., those with N & 18.

This result may seem counterintuitive, as one might expect confinement

to have a more disruptive effect on the superfluidity of smaller clusters. The
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Figure 4.3: Radial density profile for a cluster of N = 20 p-H2 molecules,
confined in a Gaussian well of size σ = 3 Å and of depth A = 100 K. Dotted
line shows the corresponding profile for a free clusters. These profiles are
computed at T = 0.25 K. Statistical errors are not visible on the scale of the
figure.

reasoning would be that, as the well depth is increased, the molecules in the

inner part of the cluster become localized, with the ensuing suppression of

quantum exchanges, and thus of superfluidity, which might remain confined

to the outer region of a larger cluster, where molecules enjoy greater mobility

and where the effect of the confining potential is weak, for a well of size 3 Å.

This is certainly what happens, as qualitatively shown in Fig. 4.2 for a

cluster with N = 20 molecules. Configurational snapshots for a free cluster

(left), and one trapped inside a well of depth A = 100 K (right), clearly show a

much greater localization of molecules in the center of the cluster; this is more

quantitatively illustrated by the radial density profile, computed with respect
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to the center of the well, shown in Fig. 4.3. Exchanges of p-H2 molecules in

the center of such a deep well is rare. Exchanges still occur in the outer shell,

but superfluidity is nonetheless suppressed to statistical noise level in the con-

fined cluster, while it is nearly 100% in the free cluster. This is consistent with

the notion that superfluidity in p-H2 clusters, which have a strong “solid-like”

structure, crucially hinges on exchanges of molecules across different shells,

an effect already noticed in 3D clusters [48]. In the presence of a confining

well, superfluidity is resilient in smaller clusters, consisting of essentially only

one shell, because molecules are less compressed than in the case of clusters

with an additional shell, and therefore enjoy sufficient mobility, even for fairly

deep wells (∼ 100 K). Figure 4.4 shows ρS(N) for the same clusters as in Fig.

4.1, but for a well of size σ = 6 Å. The results are qualititatively similar to

those obtained for a tighter well, the suppression of superfluidity being more

noticeable in this case, especially for clusters comprising between 15 and 20

molecules, for a well of the same depth. In this case, the confining potential

is most rapidly varying roughly between the first and the second shell, for

clusters of more than ∼ 15 molecules, which has a greater suppressing effect

for intershell exchanges. The superfluid response of clusters of 15 molecules or

less, on the other hand, is relatively unaffected for depths up to 60 K. If the

characteristic radius of the well is further increased, essentially beyond that of

the cluster itself, confinement becomes increasingly irrelevant, understandably.

The main physical conclusion of this part of our study is that the super-

fluid response of 2D p-H2 clusters of less than . 20 molecules is quantitatively

rather robust against confinement. This is a direct consequence of the “super-

solid” character of these clusters, which renders them less compressible than

liquid-like ones, consequently protecting their main physical properties from
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Figure 4.4: Superfluid fraction of 2D p-H2 clusters confined in a Gaussian well
of size σ = 6 Å and depth A = 20 K (circles), A = 60 K (diamonds) and A =
100 K (triangles), at a temperature T = 0.25 K. Open triangles show results
for free clusters. When not shown, statistical errors are at the most equal to
symbol size.
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the influence of external agents. The basic physics of the superfluid clusters

in confinement quantitatively reproduces that of the free clusters.

4.B.2 Energetics

Figure 4.5: Energy per p-H2 molecule for clusters of N molecules (1 ≤ N ≤
30), trapped in a well of size σ = 3 Å and depth A = 60 K (diamonds) and
A = 100 K (triangles). Circles show the corresponding values for free clusters
(i.e., A = 0). Statistical errors are smaller than symbol size. Horizontal line
refers to the ground state energy per molecule of bulk p-H2 in its 2D crystal
equilibrium phase.

The energetics of the confined clusters remains a goal of interest in view

of the possible stabilization of a crystal of 2D clusters, turning superfluid at

low temperature, as explained in the Introduction of this chapter. Fig. 4.5

shows a typical results for the energy per molecule in a cluster comprising up

to thirty molecules, confined in a Gaussian well of varying amplitude and size
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σ = 3 Å. The qualitative behaviour observed in a well of twice the size is the

same, all curves being shifted downward.

The idea is that of “pinning” small p-H2 clusters at the sites of a triangular

lattice whose lattice constant d should be of the order of, or not much greater

than, the characteristic size of a superfluid cluster, in order to allow for tun-

nelling of outer shell molecules across adjacent sites. The results shown here

and in Ref. [20] suggest that d ∼ 20 Å.

Let us assume for definiteness a number of molecules per unit cell N equal

to 20, yielding a 2D density for the cluster crystal of approximately 0.058

Å−2. This is significantly less than the ground state equilibrium density of

p-H2 in 2D, equal to [37] ρ0 = 0.0667 Å−2, at which the system is a non-

superfluid crystal with one particle per unit cell; the energy per molecule in

such a phase is ε0 = −23.4 K. In order for the low density cluster crystal phase

to be energetically stable against the formation of the ordinary 2D crystal of

density ρ0, the energy per p-H2 molecule should be lower than ε0 +∆, ∆ being

the average potential energy in a lattice of identical wells, of a given lattice

constant d. This quantity can be easily computed numerically.

From Fig. 4.3, we see that the radius of a cluster with 20 molecules is ∼ 12

Å. If the lattice constant d is taken to be 25 Å, molecules in outer shells would

have to tunnel across a distance of ∼ 1 Å. However, for d = 25 Å and σ = 3 Å,

we have ∆ ≈ −0.107 A, consistently shifting the energy per particle of the 2D

crystal to a lower value than the energy per particle inside the corresponding

well (see Fig. 4.5), for any value of the well depth A. Thus, the condition

of stability of the cluster crystal is not met, as the system finds energetically

more favorable to form its equilibrium 2D crystal (leaving a fraction of the cell

empty, as the density is below the equilibrium one). The breaking down of the
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cluster crystal with the formation of the equilibrium 2D lattice was actually

observed in simulation.

If the lattice constant d is taken to be nearly 30 Å (which would entail

a rather large tunnelling distance across sites of approximately 6 Å), then

∆ ∼ −0.073 A; in this case, the cluster crystal becomes energetically favored

for A ∼ 100 K, but the superfluidity of the cluster is suppressed in a such a deep

well, as shown in Fig. 4.1. In order to make the cluster crystal energetically

favorable, for a depth A such that the clusters are still superfluid, the lattice

constant d must be taken as large as 36 Å, making the distance across which

molecules would have to tunnel prohibitively large.

Increasing the width σ of the well does not lead to different physics, for a

cluster of this many p-H2 molecules, because the energy per molecule in the

well is shifted downward by an amount roughly equivalent to that by which the

magnitude of ∆ is increased. Moreover, the disruptive effect of confinement on

the superfluid response is greater for this value of σ, as a result of which the

lattice constant needed to make the cluster crystal thermodynamically stable

is again above 30 Å.

The energy balance is more favorable for smaller clusters, i.e., N=10, whose

radius is approximately 8 Å. In this case, for σ = 3 Å, the cluster crystal with

d ∼ 20 Å, for which ∆ ∼ −0.168 A, is energetically favored for A & 60 K;

it should be noted that clusters of these sizes remain superfluid even for such

deep confining wells. Indeed, on taking A ∼ 100 K the cluster crystal is favored

over the equilibrium 2D crystal even for d as low as ∼ 19 Å (because we are

considering molecular tunnelling, a difference of 1 Å is significant). Tunnelling

of molecules across adjacent clusters would involve in this case a distance of 3-4

Å. Whether that can allow for a superfluid phase at an attainable temperature
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remains to be established. The main result of this study, however, is that a

superfluid cluster crystal phase of p-H2, if at all attainable, should have a

number of molecules per unit cell equal to ten or less.
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CONCLUSIONS

We have presented in this thesis, a low temperature systematic theoret-

ical study of the properties of small parahydrogen clusters and the effect of

confinement on the superfluid response and energetics, when trapped inside a

Gaussian confining well. This was studied by means of Quantum Monte Carlo

simulations achieved by using Worm Algorithm in the Continuous-space. The

purpose was on the one hand to assess the robustness of the superfluid response

predicted for the free clusters [20], on the other that of assessing the possibil-

ity of stabilizing a superfluid cluster crystal phase of p-H2 in 2D, analogous to

that observed in simulations for soft core bosons [14, 66].

The main physical conclusion is that 2D clusters retain in confinement most

of the same physical properties of the free systems, at least within the range of

confining parameters explored here. Clearly, the model of confinement adopted

here is oversimplified; a more realistic physical model would presumably de-

scribe adsorption sites as impurities around which clusters would coalesce,

i.e., with a short-distance repulsion between p-H2 molecules and the impu-

rity. This may have a suppressing effect on the superfluid response. Also, the

effect of foreign substitutional impurities on the superfluidity of the clusters

has not been addressed in this study. Based on the computed energetics, the

stabilization of a superfluid cluster crystal phase seems possible if clusters are
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relatively small (. 10 molecules), for a lattice constant some 20-25% greater

than the characteristic size of the superfluid clusters. This would require p-H2

molecules to tunnel across a distance of 3-4 Å, in order for phase coherence to

be established across the whole system.
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