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Abstract

Post’s correspondence problem (PCP) was invented by Emil L. Post in 1946.
It is an undecidable problem, which means that it is impossible to find an
algorithm to solve the whole problem. This problem has been extensively
discussed in the theoretical computer science literature, but only recently did
some researchers begin to look into the empirical properties of this problem.

Although this problem cannot be completely solved, some of its instances
can be solved and may have very long solutions. It is instructive and important
to find instances that have very long shortest solutions to reveal new properties
and understand the complexity of this problem.

In this thesis, several problem-specific search enhancements have been em-
ployed to find the shortest solutions of instances efficiently and effectively. New
disproof methods were invented to identify instances that have no solution. All
of these methods made it possible to completely solve 7 PCP subclasses and
to fully scan 3 other PCP subclasses. Our effort culminated in the discovery of
199 hard instances with very long shortest solutions and in setting new records
for the hardest instances known in 4 PCP subclasses. In addition, we present
experimental results on several important properties of PCP and on the search
and disproof methods used. These results will lead to a better understanding
of the theoretical and empirical properties of this problem.
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Chapter 1

Introduction

Post’s correspondence problem (PCP for short) is a classic undecidable
problem and is widely used as an example to explain the concept of undecid-
ability in the complexity hierarchy. Although the whole problem cannot be
solved by computers in general, researchers have discovered many results on
variances and subclasses of Post’s correspondence problem. There are a few
pending problems associated with it, and most of them fall into the type of
complexity issues. Only recently did some researchers begin to utilize search
and deduction methods to solve individual PCP instances, and propose ideas
and conjectures on theoretical problems through experimental analysis.
Post’s correspondence problem is essentially a single-agent search problem,
so traditional search techniques invented in this area can be useful to solve indi-
vidual PCP instances. As the result of PCP’s simple rules and nice properties
which are aesthetically appealing, we use PCP as a test bed for our research
in Artificial Intelligence (AI). Some new search methods have been invented
to deal with PCP instances specifically, and these ideas may also benefit other
applications. Though a PCP solver cannot solve all instances in PCP, it could
solve most instances it encountered in our experiments. By scrutinizing all
instances in several PCP subclasses, we gathered many useful experimental
results that guided us to find similarities and regularities inside PCP. This
may help researchers develop insights on why this problem is theoretically

unsolvable.



1.1 An informal introduction to Post’s corre-
spondence problem

A PCP instance is composed of several pairs with each pair having a top and
a bottom string. The goal is to select a sequence of pairs (may not be distinct)
such that the concatenated top string and bottom string are identical. The
following PCP (1.1) is an example of a PCP instance.

pair | pair 2 pair 3

100 0 1
(1 100 oo) (1.1)

Let’s consider the selections of pairs according to the sequence 1311322.

1 3 1 1 3 2 2
100 1 100 100 1 0 0
1 00 1 1 00 100 100

The above may not be clear enough, but if all blank spaces between strings

are removed, we will get the result below:

1311322
1001100100100
1001100100100

Now the top string and the bottom string are exactly the same, showing
that the sequence 1311322 is a solution to PCP (1.1). Although verifying a
solution can be easily done in polynomial time, finding a right sequence of
pairs may be very hard.

The number of pairs in a PCP instance is called its size. We can further
divide the whole Post’s correspondence problem into an infinite number of
subclasses according to their sizes. For example, PCP(3] is the PCP subclass

of all instances with size 3.



1.2 A brief history of Post’s correspondence
problem

Emil L. Post invented Post’s correspondence problem!® in 1946. He also proved
it was undecidable [1], which means there exists no algorithm capable of solv-
ing all its instances (the number of instances is infinite). Many textbooks
on computational complexity use PCP as an example in the introduction of
undecidability (e.g. [2]). Post’s correspondence problem is one of the stan-
dard problems to prove the undecidability of other problems, similar to the
place of SAT for proving NP-completeness. Bounded PCP (the bound is on
the solution length) is NP-complete [3]. The PCP subclass of size 2 has been
proven decidable [4], while a simpler proof using the same idea was developed
recently [5]. The PCP subclass of size 7 is undecidable [6], and therefore, any
PCP subclass of size greater than 7 is also undecidable. However, decidability
of PCP subclasses of size between 3 and 6 is still unknown.

During more than a half century since its appearance, Post’s correspon-
dence problem has been studied by many researchers, but mainly on its the-
oretical properties. Few tried to investigate how to solve individual instances
of this problem. This sounds quite reasonable, because PCP is unsolvable in
general and nobody could build a program capable of conquering all instances.
As a result, the examples in textbooks normally are either solvable instances
whose solutions can be easily found, or unsolvable instances which can be rec-
ognized through very simple rules. This causes some confusion between the
extreme hardness of the problem and those easy examples.

Probably inspired by the busy beaver problem [7], Richard J. Lorentz first
considered the methods for creating difficult PCP instances which have small
sizes and widths, yet quite long shortest solutions [8]. We gratefully acknowl-
edge that our work was motivated by Lorentz’s paper, and can be regarded as
an extension and the further development in this direction. M. Schmidt et al.
developed some ideas for solving PCP instances and discussed the issues of the

1 Actually Post called it correspondence decision problem. In the literature, the name
Post’s corvespondence problem and Post correspondence problem both are commonly used.
In this thesis, we use the former one, or its acronym PCP, to denote this problem.



possible connection between solving concrete instances and open theoretical
issues [9]. For example, experimental data seem to indicate a quadratic bound
on the length of the shortest solutions of solvable instances in PCP[3]. If such
a bound could be proven, the decidability of PC P(3] would be settled.

1.3 Motivation

The search techniques in Artificial Intelligence (AI) have progressed signifi-
cantly in the past 20 years. This is exemplified in single-agent search by the
work on the sliding-tile puzzles and Rubik’s cube, and in the domain of two-
player board games, such as Checkers and Chess, where computer programs
have defeated the human world champions. A variety of search enhancements
developed in these domains have set good examples for us to build a strong
PCP solver. Some of this research can even be directly migrated to solve
PCP instances simply after a few application-dependent modifications. On
the other hand, the distinct characteristics of PCP such as the unbounded
search space lead to special search difficulties, which has prompted us to de-
velop new search methods and find more application-related properties that
could be nicely integrated into a PCP solver.

As discussed later, it is very difficult to prove that some PCP instances
have no solution, and therefore, a few instances remain unsolved and are likely
unsolvable. Our current search methods are not suitable to prove the unsolv-
ability of these instances, and we have to seek assistance from mathematical
deduction as well as disproof methods derived from PCP’s properties and
characteristics.

Since PCP is a purely theoretical problem, the obvious question to ask is:

why bother solving PCP instances? Here are some answers.

1. Some PCP instances pose special difficulties for current search methods,
so PCP is an interesting test bed for research in Artificial Intelligence.
We have not been able to directly link it to real-world applications, but

this may be because PCP is unsolvable, and hence no one can use it in



reality. However, the methods and ideas proposed to solve small PCP

instances may transfer to future applications.

2. By using experimental approaches to tackle PCP, we have collected a
large amount of empirical data that present a statistical point of view
of this problem. This quantitative approach helped us to find new phe-
nomena and properties, and led to a clearer insight on how hard this
problem is. We expect that this work could help researchers to solve
theoretical problems related to PCP and unveil the border between its

hard and easy instances.

1.4 Structure of the thesis

The thesis mainly addresses how to tackle Post’s correspondence problem,
including solving PCP instances and looking for difficult PCP instances that
have very long optimal solutions. The thesis is organized as follows. In Chapter
2, we show the definition and a variety of properties of Post’s correspondence
problem, for example, the symmetry of PCP instances and relations among
different PCP subclasses. Then in the next three chapters, we present our
work on the three directions concerning this problem.

Chapter 3 is on searching for solutions to PCP instances efficiently and
quickly. A few known search algorithms implemented in our PCP solver are
discussed and new methods including the mask method, GCD enhancement
and forward pruning are presented.

Chapter 4 deals with proving instances unsolvable. This is the first time
that this research direction has been seriously investigated. The mask method,
exclusion method, symmetry method, group method and pattern method were
invented to serve this aim.

Chapter 5 is concerned with finding difficult PCP instances. With the
help of the methods developed in Chapter 3 and Chapter 4, a strong PCP
solver significantly increases the chance of finding difficult instances, which
resulted in the discovery of 199 hard instances whose shortest solution lengths

are greater than 100. There are two different efforts involved here, i.e, exam-

5



ining randomly generated PCP instances and systematically scrutinizing all
instances in several PCP subclasses. Currently we are holding the hardest
instance records in four PCP subclasses (see Section 5.4).

In Chapter 6, the experimental data and their analysis are shown. Finally,

conclusions and future work are given in Chapter 7.



Chapter 2

The magic behind Post’s
correspondence problem

2.1 Definitions and notation

Definition 2.1.1 Given an alphabet £, an instance! of Post’s correspondence
problem is a finite set of pairs of strings (gi, hi) (1 <@ < s) over ¥. A solution
to this instance is a sequence of selections iyiz---i, (n > 1) such that the

Strings g, Gi, - - - 9i, and h; hi, - - - hi, formed by concatenation are identical.

The number of pairs in an instance, s in the above, is called its size, and
its width is the length of the longest string in g; and h; (1 < i < s). Pairi
stands for pair (g;, h;), where g; and h; are the top string and bottom string
respectively. Solution length is the number of selections in the solution. For
simplicity, we restrict the alphabet X to {0, 1} since we can always transform
other alphabets to their equivalent binary format.

If an instance has at least one solution, then it is called solvable, otherwise,
it is unsolvable. If an instance was proven either solvable or unsolvable, it has
been solved; on the other hand, if no such proof is found, it is unsolved yet.

We will give examples in the next two sections.

Lemma 2.1.1 If sequence I and sequence J both are solutions to instance P,

then sequence IJ is also a solution to P.

Corollary 2.1.1 Any solvable instance has an infinite number of solutions.

In the following, we use the name instance to specifically represent PCP instance.

7



Lemma 2.1.1 is evident, disclosing that the sequence formed by concate-
nation of solutions is a solution too. This naturally leads to Corollary 2.1.1.
Since it is unnecessary to find all solutions to an instance, in this thesis, we
are only interested in optimal solutions, which have the shortest length over
all solutions to an instance. The length of an optimal solution is called the
optimal length. Note that there may be more than one optimal solution to an
instance. If an instance has a fairly large optimal length compared to its size
and width, we use the adjective hard or difficult to describe it.

To conveniently represent subclasses of Post’s Correspondence Problem, we
use PCP|s] to denote the set of all instances with size s, and PCP[s, w] for
the set of all instances with size s and width w. So we can find the following
relations:

PCP|s,w] C PCP[s] c PCP

We use a matrix of 2 rows and s columns to represent an instance in
PCP|s], where string g; is located at position (¢,1) and h; at (i,2). The
following PCP (2.1) is an example in PCP|3, 3], which has been shown in the

previous chapter.
100 0O 1
( 1 100 00 ) (2.1)

An instance is trivial if it has a pair whose top and bottom strings are
the same. It is obvious that such an instance has a solution of length 1. We
call an instance redundant if it has two identical pairs. In this case, it will
not influence solving result if one of the duplicated pairs is removed. For
brevity, we assume the instances discussed in this thesis are all nontrivial and

non-redundant.

2.2 An example of solving PCP instances

Now let’s see a concrete example of solving PCP (2.1) in the above. First, we
can only start at pair 1, since it is the only pair where one string is the other’s
prefix. Then we obtain this result:

Choose pair 1: im



The portion of the top string that extends beyond the bottom one, which
is underlined for emphasis, is called a configuration. If the top string is longer,
the configuration is in the top; otherwise, the configuration is in the bottom.
We use ¢ to denote a configuration, which contains not only a string, but also
its position information: top or bottom. If the position of c is flipped, i.e., from
top to bottom or vice versa, we will get ¢, its turnover.

In the next step, it turns out that only pair 3 can match this configuration,

and the situation changes to:

. 1001
Choose pair 3: 100

Now, there are two matching choices: pair I and pair 2. By using the mask
method (described in Section 3.3), we can avoid trying pair 2. Then, pair 1 is

the only choice:

1001100

Choose pair 1: 1001

The selections continue until we find a solution:

. 1001100100
Choose pair 1145611

: 10011001001
Choose pair 3: 1001100

. 100110010010
Choose pair 2: 141100100
Choose paiy 9. 1001100100100

paTr 21 4001100100100

After 7 steps, the top and bottom strings are exactly the same, which shows
that the sequence of selections, 1311322, forms a solution to PCP (2.1). By
exhaustively searching all combinations of up to 7 selections of pairs, we can
prove that this solution is optimal. The search tree for solving this instance is
illustrated in Figure 2.1.

In the figure, the thick directed lines in the search tree constitute a solution
path. Nodes in the tree represent configurations, which are in the bottom when

there are bars over them and in the top otherwise. A connection between two



100 0 1
1 100 00

Figure 2.1: Search tree and solution path in PCP (2.1)
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nodes is labelled by the pair selected.

2.3 More examples

Some PCP instances may have no solution. For example, the following PCP

(2.2) is unsolvable, which can be proven through the ezclusion method (dis-

110 0 1
9
(1 111 01) (22)

An analysis of the experimental data we gathered shows that in PCP sub-

cussed in Section 4.3).

classes of smaller sizes and widths, only a small portion of instances have
solutions, and a much smaller portion has very long optimal solutions. PCP
(2.3) is such a difficult instance whose optimal length is 206. It is elegant that
this simple form embodies such an incredibly long optimal solution. If a com-
puter performs a brute-force search, i.e., considering all possible combinations
up to depth 206, the computation will be enormous. That’s the reason why we
utilize Al techniques and new methods related to special properties of PCP to
prune hopeless nodes, and thus, accelerate search speed and improve search

efficiency. These techniques will be introduced in Chapter 3.

1000 01 1 00
(o 0 101 001) (2.3)

The optimal solution to an instance may not be unique. In PCP (2.4)
below, there are 2 different optimal solutions of length 75.

100 0 1
(1 100 o) (2:4)

Now let’s take a look at PCP (2.5). It is clear that pair 3 is the only
choice in every step, and as a consequence, configurations will extend forever
and the search process will never end. This example shows an unfortunate
characteristic of some PCP instances: the search space is unbounded. Take
the game of Go for example. Although its complexity goes well beyond the
computer’s capacities, its number of states remains finite, which implies that
a fast enough supercomputer with a large enough memory could in principle

solve this game. However, even if such a supercomputer could be constructed,

11



it still could not solve PCP (2.5) simply by going through all possible states,
since there are infinitely many. This lesson suggests the need for clever ideas to
prove instances unsolvable. Several new methods such as the ezclusion method,
which helps to prove the unsolvability of PCP (2.5), have been invented and
will be presented in Chapter 4.

100 0 1
(o 100 111) (25)

2.4 Properties of Post’s correspondence prob-
lem

We have already mentioned two properties of PCP above: the infinite number
of solutions and the unbounded search space. In this section, more properties

will be discussed.

2.4.1 Reversal properties

We first introduce an important concept: the reversal of an instance.

Definition 2.4.1 Let S be a string, then its reversal, denoted by SR, is S
written backwards.

Definition 2.4.2 Let P: (g;, h;) (1 <i < s) be an instance, then its reversal,
denoted by PE, is (g%, AR) (1 <i< ).

Suppose we have a solution i;iz - - - i, to instance P, then it is easy to see
that iqin_; - - - 71 is a solution to PR. Essentially, P and PR are equivalent, as

clarified in the following lemma:

Lemma 2.4.1 Let P be an instance. P has the same solvability as PR in the
sense that it has a solution if and only if P® has, and it has the same number

of optimal solutions and the same optimal length as those of P,

We can even go further: suppose that through a sequence of selections,
i1tz - - -ij, the corresponding configurations generated during these steps are
¢1,C2, -+ - , Cj, then configuration c;R in instance PR can be solved by selections

ijij_1-- iy

12



Lemma 2.4.2 Let P be an instance, and c a configuration, then ¢ can be

generated by P if and only if cR can lead to a solution in PR

This seems trivial, but it is a very important property underlying the mask

method and the ezclusion method discussed in the next two chapters.

2.4.2 Unsolvability properties

The following lemmas can be used to easily identify some types of instances

that have no solution:

Lemma 2.4.3 A solvable instance must have one pair where one string is the
other’s proper prefiz and another pair where one string is the other’s proper

postfiz.

Lemma 2.4.4 A solvable instance must have one pair whose top string is
longer than the bottom one and another one with its bottom string longer than

the top one.

Lemma 2.4.5 Let z € {0,1}. If in an instance, the top string in every pair
has no fewer z’s than the bottom string, then all pairs whose top strings contain
strictly more z’s than thetr counterparts can be safely removed without changing
the solvability of the instance. The same rule applies when the roles of the top

and bottom strings are reversed.

Lemma 2.4.3 ensures that the selections can start and end somewhere in a
solvable instance. Lemma 2.4.4 focuses on the balance of length, and Lemma
2.4.5 deals with the balance of elements. Although the latter lemma cannot
be directly used to prove instances unsolvable, it does help to remove useless
pairs in an instance which will lead to no solution whenever selected, and thus,

the instance is simplified.

2.4.3 Balance effects

Balance effects were first mentioned in [10]. They are based on the observation
that the final concatenated top and bottom strings should be identical, hence
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their lengths must be equal (balance of length). For a similar reason, the
number of 0’s and 1's in both strings should be the same too (balance of
element). These properties seem quite obvious, but prove themselves very

valuable by disclosing important properties of solutions.

Definition 2.4.3 Let S be a string over the alphabet {0,1} and |S| be the
length of S. Count(S,0) and Count(S,1) are the number of zeroes and ones

in s respectively.

Let P: (g;, k) (1 < i < s) be an instance. If we define f; as the number
of occurrences of pair i in the sequence i;i;---i,, We can construct three
equations based on the balance of length, element zero, and element one,

respectively:

PRI DED I
i=1

i=1

3" (f: x Count(g;,0)) = Y (fi x Count(h:,0))
=1 i=1

E (fi x Count(g;, 1)) = XS: (f: x Count(h;, 1))
i=1

i=1

The last two equations subsume the first one and can be used to prove
instances unsolvable (when the two equations put together have no solution),
or to get information about the structure of possible solutions. For example
in PCP (2.6):

(26)

11111 1 0011
0 1100 11

we can create two equations on the balance of element zero and element one:

h+2f;
2f2+2f3

{ 2f3
SHh+fa+2fs

they can be simplified to:

{ -fi=2f+2f3=0
SHh—fa=0
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then we obtain the following result:
h=2z
{ fo=10x zeN
f 3= 11z

If this instance is solvable, the length of its solution is
h+fa+ f3 =23z

which must be a multiple of 23. Actually, PCP (2.6) has an optimal solution
of length 115.

A factor of solution length deduced by this method is a suitable candidate
for the depth increment in an iterative-deepening search (see Section 3.1), and
the proportions between the frequency of pairs can be used to prune hopeless
nodes in the search (see Section 3.4). However, only in a few instances of

PC P[3] can we deduce meaningful factors of solution lengths in this way.

2.4.4 Isomorphisms between PCP instances

Isomorphism exists in PCP instances, and it is important to detect them to
avoid redundant work. In the following, we introduce the way to generate
isomorphic instances, and show how to normalize instances to a standard form,

which makes it possible to remove all isomorphic instances.

Types of transformations

There are four types of transformations to get the equivalent variations of an

instance:
1. Pair Reordering: reorder pairs in the instance.
2. Upsidedown: interchange the top and bottom strings in every pair.
3. Reversal: change every string to its reversal.

4. Complement: replace all 0’s with 1's and vice versa in every string.

15



It is not hard to see that through any combination of the above four trans-
formations on the original instance, we obtain an instance that shares the same
solvability as the original one, and these two instances are isomorphic to each
other. Solving any of the isomorphic instances means solving the instance.

For an instance in PCP]s], there will be up to s!- 2% isomorphic instances
(including itself) in the worst case. So an instance in PCP[3] may have as
many as 48 isomorphisms! For a symmetric instance such as PCP (2.7), there

will be fewer isomorphic instances.

111 0 00
(1 101 1 ) (2.7)

Cardinality of PCP subclasses

Definition 2.4.4 Str(w) is the set of all strings whose lengths are greater
than 0 but no longer than w. |Str(w)| is the cardinality of Str(w).

Definition 2.4.5 Pair(w) is the set of all string pairs whose strings are both

in Str(w) but not identical. |Pair(w)| is the cardinality of Pair(w).

Definition 2.4.6 The cardinality of PCP[s,w], denoted by |PCPs,w]|, is

the number of nontrivial and non-redundant instances in t.

This subsection deals with calculating the cardinality of PCP subclasses.
Let’s start from counting strings over the alphabet {0,1}, then pairs and

instances:

|Str(w)| =2! +22 +.--+2¥ =2+ -2
|Pair(w)| = |Str(w)| x (|Str(w)| — 1)
IPCP(Sr ‘lU)l = Pﬂ’m‘r(w)l - PlsPair(w—l)l

where P =nx(n—1)x---x(n—s+1)

Tables 2.1 and 2.2 show the cardinality of some cases using the above
equations. In the latter table, exact values are given for numbers up to 10'°,

and approximate values for larger numbers.
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w i1 2 3 4 5 6

|Str(w)] 6 14 30 62 126
|Pair(w)] | 2 30 182|870 | 3,782 | 15,750

(8]

Table 2.1: Cardinality of sets of strings and pairs

w
s 1 2 3 4 5 6
1 2 28 688 870 2,912 11,968
2 2 868 32,072 723,088 13,543,712 | 233,747,008
3 0 24,360 | 5,905,200 605,304,480} 5.3 x 101° | 3.9 x 102
4 0 657,720 | 1,060,733,520 | 5.7 x 10'* | 2.0 x 10 | 6.1 x 10!6
Table 2.2: Cardinality of 24 PCP subclasses
Normalization

Eliminating isomorphic instances is important for scanning PCP subclasses,
since there will be lots of redundant instances inside. Therefore, we use a
normalization process to convert all isomorphic instances to their standard

forms based on a numerical scoring method.

Definition 2.4.7 Let S = 5,52 -3, be a string over the alphabet {0,1}. Its
score, denoted by Score(S), is 3 o, (3* - (si +1)).

Definition 2.4.8 Let P = (5,,S5;) be a string pair. Its score, denoted by
Score(P), is (Score(S;), Score(S;)).

We use lexicographic ordering to order Score(P). For example, if P, =
(51, S2) and P, = (T, T3) are two string pairs, then Score(P,) > Score(P,) if
and only if Score(S,) > Score(T;) or Score(S,) = Score(Ty) and Score(S;) >
Score(T3).

Similarly, we can also order PCP instances of the same size using lexico-
graphic ordering.

Definition 2.4.7 ensures that the mapping function is injective.? Gener-

ally speaking, there are countless mapping functions that can work here, and
2If two strings are not identical, their scores must be different.
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we chose a simple one to perform the mapping. Using the lexicographic or-
dering, we can always find one instance with the highest score among all its
isomorphic instances, and this one is regarded as their standard forms. When
scanning through all instances of a PCP subclass, any instance different from

its standard form will be eliminated.

Results of removing isomorphic instances

We conducted experiments to determine the exact number of non-isomorphic
instances in 11 PCP subclasses. The results are presented in Table 2.3. In
the table, the value of ratio is computed as the total number of instances in
a subclass divided by the number of non-isomorphic instances in it; s denotes
the size of the PCP subclass.

| total number | non-isomorphic |  ratio | ratio/s! |
PCP[2,1 4 1| 4000 2.000
PCP[2,2 868 76 | 11.421 5.711
PCP[2,3 32,072 2,270 | 14.129 7.064
PCP[2,4 723,088 46,514 | 15546 | 7.773
PCP[2,5 13,543,712 856,084 | 15.821 7.910
PCP[2,6]| 233,747,008 14,644,876 | 15.961 7.981
PCPJ3,2 24,360 574 | 42439 7.073
PCPI[3,3 5,905,200 127,303 | 46.386 | 7.731
PCP[3,4]| 650,304,480 13,603,334 | 47.805 | 7.967
PCP[4,2 657,720 3,671 | 179.166 | 7.465
PCP[4, 3] | 1,060,733,520 5,587,508 | 189.837 | 7.910

Table 2.3: Number of non-isomorphic instances in 11 PCP subclasses

As the table shows, for the PCP subclasses of PCP[s], the value ratio
quickly approaches to 8 - s! as the width increases. This can be justified as
follows: when the width becomes larger, for an isomorphic instance generated
from transformations, the chance of being identical to the original instance
will become smaller. For a similar reason, when the width is fixed, the value
ratio/s! approaches 8 gradually as the size increases. This can be justified
by comparing results from subclass PCP[2, 3], PCP[3,3] and PCP(4,3]. All
instances in these 11 PCP subclasses were fully scanned for their solvability.
The details are given in Section 6.9.
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2.4.5 Constructing new instances from known instances

Adding pairs

Suppose we have an instance P, and we change P to P’ by inserting some pairs,
then any solution to P is also a solution to P’. However, the reverse proposition
cannot hold, because the added pairs may bring some new solutions for P’.

Therefore, the optimal length of P’ cannot be greater than that of P.

Replacing an element

In instance P, if all 0’s are replaced with a string 0S, where S is any string
over the alphabet {0, 1}, the resulting instance P’ shares the same solvability
as P. Thus, they have the same optimal length if P is solvable. Similarly
we can replace all 1's by a string starting with 1. This is an effective method

to construct hard instances from ones with smaller sizes. Here is a simple

1101 01 1
(010 1 101) (28)

PCP (2.8) in subclass PCP[3, 4] has only one optimal solution of length
216. If we replace all occurrences of 0 with 00 and 01 respectively, two hard
instances in PCP[3, 5] are created: PCP (2.9) and PCP (2.10). If we replace
0 with O1 in the reversal of PCP (2.8), with the same result as substituting 10
for 0 in PCP (2.8), we get PCP (2.11) in PCP(3,5]. These three new instances
all have a unique optimal solution of length 216, the same as PCP (2.8). Note

example:

that the replacing strings in these new instances have been emphasized by a
bold font.

11001 001 1

(00100 1 1001) (29)
11011 011 1

(01101 1 1011) (2.10)
11101 101 1

(10110 1 1101) (2.11)
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Chapter 3

Search in Post’s correspondence
problem

Search plays a critical role in solving PCP instances and it is the key point in
our objective to expedite the discovery of optimal solutions. We have stated
that a brute-force search is unrealistic for many difficult instances, and thus,
novel ideas need to be developed to search for solutions efficiently and ef-
fectively. This represents the two main aims that we are pursuing: search
efficiency (examining as few nodes as possible to finish a task) and search
speed (going through as many nodes as possible in a fixed time).

Lorentz’s paper [8] mentioned two methods that worked satisfactorily in
his PCP solver: iterative-deepening and the cache table. We restate them
in the following sections and also express our opinions about the way they
worked in our PCP solver. There were still some instances that Lorentz’s solver
could find solutions successfully, yet was unable to prove their optimality.
This intriguing uncertainty encouraged us to explore some problem-specific
properties, as shown in Chapter 2, and to invent three new methods in order
to enhance the capabilities of our solver. They are the mask method, forward
pruning and bidirectional probing.

An instance of a search problem, when formalized, consists of a state-space
graph, a starting state, and one or more goal states. The question is how to
find a path from the starting state to a goal state such that the path satisfies
certain conditions, for example, having the minimum cost. A state-space graph

is a directed graph, whose nodes are states and whose arcs represent transitions
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between states. A state-space graph may be implicit, where states and arcs are
not given explicitly, but rules to make legal transitions are provided instead.
Goal states may not be given explicitly either, but defined in terms of a goal
test function.

There are many famous search problems in the literature, such as the Trav-
elling Salesperson Problem (TSP), 15-puzzle and Rubik’s cube. These prob-
lems have received considerable attention and have been extensively discussed
by many researchers. PCP as a search problem is fairly new, and the infinite
search space naturally places it in a formidable position. The state space of
a PCP instance is given implicitly and may be infinite. Its states are config-
urations, and an arc from state z to y exists if and only if z can transfer to
y by selecting some pair. The goal is to find a shortest non-empty path from
a starting configuration (empty string) to a goal configuration (empty string
too).

In general, a state-space graph may contain loops, and we normally try
to detect and remove them during the search, as they are useless yet exhaust
search efforts. Thus the relevant part of the graph is a DAG (Directed Acyclic
Graph).

3.1 Depth-first iterative-deepening

A depth-first iterative-deepening algorithm based on A* algorithm is the first
known algorithm able to effectively solve the 15-puzzle, which has been proven
asymptotically optimal in time and space complexity for a class of tree search
problems [11]. This algorithm has been applied to a variety of single-agent
search problems and two-player games, and been combined with other algo-
rithms, for example, heuristic search as in A*, bidirectional search and alpha-
beta search.

This algorithm can be briefly described as follows: first, a starting depth
threshold is set and the state space is searched to such a threshold. If no
solution is found, the threshold is augmented by a depth increment. Then a

new search is performed. The above process is repeated until solutions are
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discovered or the depth threshold reaches a final threshold.

The final depth threshold acts as a stopping condition, preventing the
search process from running forever. Therefore, when the whole search process
finishes, either the optimal solution has been found, or a conclusion is drawrn
that no solution exists up to the final depth threshold.

Initially, we have no clue about the optimal length of an instance. There-
fore, if we simply search to a predefined depth, for instance 300, while actually
its solution length is much smaller, for instance 100, then it is very likely that
the search process will fall into a pitfall and run a very long time in vain before
finding the solution. Iterative deepening can help to alleviate or avoid the trap.
For example, we may start at the depth threshold of 20, and if no solution
is found and the final threshold is not reached, we increase the threshold by
20 and restart the search. If the average branching factor of a search tree is
very large, then the number of the revisited nodes is very small compared to
the number of the nodes that have to be visited. Since the average branching
factors in PCP instances with smaller sizes are not very large (typically less
than 2), a much larger increment is employed in our PCP solver, compared to
the increment of 1 or 2 typically adopted in other search problems.

Depth-first iterative-deepening functions like a search framework in solving
PCP instances. Figure 3.1 illustrates C++ pseudo-code of this algorithm.

In the framework, the parameter Depth_Increment is a very important pa-
rameter. The increment cannot be too small, otherwise the solver may do
excessive redundant work, because all nodes visited in an iteration will be re-
visited in the next iteration. On the other hand, if the increment is very large,
the search process may fall into the space where most nodes have larger depths
than the optimal length, which can result in a significant loss of efficiency. In
our experiments, we use 20 as the depth increment.

In section 2.4.3, it has been shown that the balance effects may be applied
to deduce a factor of the solution length. If it is used as the starting depth and
the increment, it is guaranteed that no node deeper than the optimal solution
will be visited. In the extreme case where the factor is 1, the above assertion is

obviously correct, though the search is quite inefficient. In the other extreme
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// predefined global parameters
int Fipal_Threshold;

int Starting_Threshold;

int Depth_Increment;

void Iterative_search(PCPInstance *pcp)
{
int threshold = Starting_Threshold;
while(1)
{
if (threshold > Final_Threshold)
threshold = Final_Threshold;
Search_to_depth(pcp, threshold);

// solutions found
if (Solution_found()) break;

// no solution found, and final threshold reached
if (threshold == Final_Threshold) break;

threshold += Depth_Increment;

}

Figure 3.1: Depth-first iterative-deepening routine in the PCP solver

where the factor is just the optimal length, such a precise estimate will ensure
that one search iteration is enough and no node is visited more than once,
which is the ideal situation that we are hoping for. Therefore, the factor
is used only when it is large enough, or in other words, comparable to the
default increment. But as pointed out, balance effects are effective only in a
few instances in PCP|[3].

3.2 Cache table

During the search process, it is possible to generate a configuration that has
been encountered before, where the depth of this newly generated configuration
is no less than that of the old one. Since we focus on optimal solutions,
whenever this case emerges, we can simply prune the new configuration. This

operation can be justified through the following two observations:

1. If a configuration at depth k is unable to lead to a solution within a
depth threshold, then the same configuration at depth ¢ > k cannot lead
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to a solution within the threshold either.

2. If a configuration at depth k leads to some solutions (may be optimal)
within a depth threshold, then the same configuration at depth ¢ > k&

cannot lead to an optimal solution.

As the depth threshold may be infinity, these observations can be gener-
alized to the depth-unbounded case. Care must be taken that while a deeper
revisited node can be safely pruned, a shallower revisited one must be fully
examined, since it still has a chance to reach an optimal solution while the
deeper one does not.

Since a deeper revisited node is useless, we do not need to reexamine all of
its descendants. Instead, it can be pruned once its identity is determined. To
check revisited configurations, we employ a cache table which is very similar
to the transposition tables widely used in game-playing programs. A cache
table is a block of specially allocated memory space used to store a number
of configurations that have been visited before. When a newly generated
configuration hits the cache, we can determine whether it can be pruned by
comparing its depth with the depth of the one in the cache table. If it cannot
be pruned, the cache should be added or updated if applicable. To facilitate
the identification process, we use a hash function to map configurations to
entries in the cache table. The size of the cache table and the hash function

need to be tuned for satisfactory performance.

3.3 Mask method

Is it possible to decide that a configuration in an instance has no hope of
reaching a solution by merely checking its position (in the top or bottom)?
The answer is encouragingly positive. First, let’s see definitions concerning

critical configuration and masks.

Definition 3.3.1 In an instance, a configuration in the top (bottom) can be

turned upside-down if by selecting some pair, the newly generated configuration
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is in the bottom (top). When no configuration in the top (bottom) can be turned

upside-down, this instance has a top-to-bottom (bottom-to-top) mask.

Definition 3.3.2 A critical configuration in an instance is a non-empty con-
figuration that can be fully matched by some pair (configuration becomes empty)

or be turned upside-doun.

It is apparent that an instance without critical configurations can never

lead to a solution.

Definition 3.3.3 A configuration is valid for an instance if it can be generated

through a sequence of selections from the empty configuration.

Definition 3.3.4 An instance has a top (bottom) mask if any configuration

in the top (bottom) is either invalid or cannot lead to a solution.

Corollary 3.3.1 If in an instance, all ending pairs have their top (bottom)
strings longer, and it has e top-to-bottom (bottom-to-top) mask, then it has a

top (bottom) mask.

In the following, we will explain how Definition 3.3.4 is used to detect
masks. The use of Corollary 3.3.1 is similar, and its explanation is omitted for
conciseness.

The mask method uses the possibility of ending the state of a configuration
in one position (top or bottom) to prune configurations at the beginning, which
links critical configurations to general configurations. If an instance has no
valid critical configuration in the top, then any generated configuration in the
top will not lead to a solution. So it has a top mask. Similarly, a bottom mask
exists if no valid critical configuration can be in the bottom. Therefore, the
task is to find all critical configurations and test if they can be generated.

All possible critical configurations can be found by enumeration. The test-
ing procedure for validity of configurations can also be automated, because
by Lemma 2.4.2 the question of whether one configuration in an instance can
be generated can be nicely converted to another question about whether the
turnover of the reversal of the configuration can reach a solution in the reversal
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of this instance. The following explains how to discover the top mask in PCP
(3.1), whose reversal is PCP (3.2).

01 00 1 001
( 0 o011 101 1 ) (3-1)

10 00 1 100
( 0 110 101 1 ) (32)

At first, we need to find all critical configurations in the top. Since they
could either be fully matched or turned upside-down, any possibly matched
pair must have a longer bottom string than its top one. In PCP (3.1), the
candidate could only be pair 2 or pair 3. It is not hard to find that only
one critical configuration in the top exists, i.e. string 10, which can be fully
matched by pair 3. Secondly, we check whether the configuration 10 in the top
can possibly be generated by PCP (3.1), or equivalently, whether its reversal,
01 in the bottom in PCP (3.2), can lead to a solution. Actually it cannot be
properly matched by any pair in PCP (3.2). Hence in PCP (3.1), no valid
critical configuration in the top exists. It has a top mask.

For some instances, the mask method is an effective tool to find their
optimal solutions. Take PCP (3.1) for example. It has a top mask, so we forbid
the use of pair 1 at the beginning, and can only choose pair 3, which helps us
to quickly find the unique optimal solution of length 160. If we did not know
this fact, pair I can be chosen as the starting pair and a huge useless search
space would have to be explored before concluding that the optimal length is
160. That’s the reason why Lorentz’s solver successfully found solutions to
two instances but could not prove their optimality [8]. Both can be decided
with the assistance of the mask method.

During the search process, the transformation when a configuration is
turned upside-down is called an oscillation. From the number of possible
critical configurations in one instance, we can infer an upper bound on the
number of oscillations in possible solutions. This information can be useful for
finding masks or pruning branches. In our experiments, we seldom encoun-

tered an instance oscillating more than once, and oscillations most occurred
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in the early or late phase of search.

3.3.1 GCD enhancement

The step to prove critical configurations invalid can be strengthened by using
a new checking rule, namely GCD (Greatest Common Divisor). If the length
differences of all pairs have a greatest common divisor d, then the length of
every possibly generated configuration must be a muitiple of d.! Consider
the following PCP (3.3) as an example, its GCD of all length differences is 2.
Although we can find a critical configuration 0 in the bottom, which can be
turned upside-down by pair 2, it is invalid since it is not a multiple of 2. As
a result, PCP (3.3) can be proven to have a bottom mask, revealing that the
starting selection must be pair 2. Finally, within several steps of enumeration,

we can easily prove it has no solution.

111 001 1
(001 0 111) (3.3)

The above example uses the difference of length, and similarly, we can use
the difference of element 0 or element 1. For example, if the difference of the
number of occurrences of element 1 in the two strings of any pair has a GCD d,
then the number of element 1 in any valid configuration should be a multiple
of d. This property can also be used to disprove the validity of configurations.

3.4 Forward pruning

Similar to search algorithms such as A* and IDA* [13] [11], a heuristic function
of a configuration in a PCP instance can also be calculated and used as a lower
bound of the optimal length (for an unsolvable instance, its optimal length is
infinity). Heuristic search algorithms can use heuristics to choose the most
promising nodes to explore first, and to stop nodes that violate constraints at
the same time. In this problem, heuristics are valuable to prune those nodes

that cannot lead to a solution within a given threshold. A heuristic value of a

1This idea was separately mentioned by R. Lorentz and J. Waldmann in private commu-
nications.

27



configuration is an estimate of how many more selections are needed at least
before reaching a solution. When the heuristic value of one configuration added
to its depth exceeds current depth threshold, this configuration definitely has
no hope of reaching a solution within that threshold. Hence we can reject it
even if it is still far away from the threshold. Since the heuristic function is
admissible, the pruning is safe and will not hurt the optimality of solutions.
A typical resulting search tree is illustrated in Figure 3.2.

Frontier

- Depthn

Figure 3.2: Search tree with forward pruning

In this figure, the task is to check all nodes within depth n to see whether
a solution exists. However, not all those nodes must be visited. Some nodes
at depth less than n that can be proven hopeless, i.e., they cannot lead to
a solution within depth n, so we can prune them without exploring their
descendants. As the figure shows, an unnecessary search of a significant portion
of the state space can be avoided in the way.

One simple heuristic value of a configuration in the top (bottom) can be
calculated by its length divided by the maximum length difference of all pairs
whose bottom (top) string is longer. This heuristic is based on the balance of
length, and similarly, we can calculate heuristics on the balance of element 0
and element 1.

A more complex heuristic can be developed, analogous to the pattern
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databases used to efficiently solve instances of the 15-puzzle {12]. We can
pre-compute matching results for some strings as the prefixes of configura-
tions and use them to calculate a much closer estimate of the solution length
than simple heuristics.

The experimental results concerning improvements using heuristics are

given in Section 6.5.

3.5 Bidirectional probing

Since a PCP instance and its reversal share the same solvability, we only need
to solve one of them. Sometimes these two forms are amazingly different in
terms of search difficulties, as shown experimentally in Section 6.6.

Hence, we use a probing scheme to decide which direction is more promis-
ing. Initially we set a comparison depth of k (40 in the implementation). Then
two search processes are performed for the original instance and its reversal
to depth k separately. A comparison of the number of visited nodes in both
searches gives a good indication about which direction is easier to explore.
The solver then chooses to solve the one with the smaller number of visited
nodes. As the branching factor in most PCP instances is quite stable, this
scheme works very well in our experiments.

The mask method, forward pruning and bidirectional probing were incor-
porated into our PCP solver. The pseudo-code presented in figures 3.3 and 3.4

illustrates how these methods work together within simplified search routines.

3.6 Program optimizations

In order to make the search process run as fast as possible, we also put effort
into code optimizations. Although this inevitably reduces the code readability
and increases the difficulty of maintenance, it does accelerate search speed
satisfactorily. Here we will introduce two main improvements: removing tail

recursions and using our own memory allocation routines.
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// predefined global parameters
int Comparison_Depth;

// global variable, reset to zero before each search
int node_num;

int Search_solution(PCPInstance *pcp)

{
PCPInstance reversal_pcp, sbetter_pcp;
int original_node_num, reversal_node_num;

// check if it is unsolvable
if (No_solution(pcp)) return -1;

// create reversal
Create_PCP_reversal(pcp, kreversal_pcp);

// find masks
Find_masks(pcp, &reversal_pcp);

// try original direction
Search_to_depth(pcp, Comparison_Depth);
original_node_num = node_num;

// try reverse direction
Search_to_depth (kreversal_pcp, Comparison_Depth);
reverse_node_num = node_num;

// choose the easier one to search

if (original_node_num <= reverse_node_num)
better_pcp = PCp;

else better_pcp = &reversal_pcp;

Iterative_search(better_pcp);

return 1;

}

void Search_to_depth(PCPInstance *pcp, int threshold)
{

Config config;

Set_empty (kconfig) ;

node_num = 0;

Solve_config(pcp, kconfig, 1, threshold);

Figure 3.2: Search framework in the PCP solver
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// predefined global parameters
int Length_Increment;

// global variable
Cache cache;

void Solve_contig(PCPInstance *pcp, Config *config, int depth, int

{

int i, sel_num, selections[MAXSIZE];

// test if exceeding the threshold
if (depth > threshold) return;

// try forward pruning
if (Heuristic_pruned(pcp, config, threshold)) return;

// generate all selectioms
sel_num = Generate(selections);

Config *newConfig = Allocate(length(config)+Length_Increment);
for (i=0; i<sel_num; i++)
{

// get a duplicate

Copy(new_config, config);

// choose pair selection(i] and update the config
Update_config(pcp, selection(i], nev_config);

// check masks
if (Mask_pruned(new_config)) continue;

// check in the cache and update it if config not pruned
if (Look_up_cache(cache, new_config) == PRUNED) continue;
else Update_cache(cache, new_config);

threshold)

// if solution found, update threshold and continue searching

// this step ensures to find all optimal solutions
if (Is_Empty(new_config))
{
threshold = depth;
Update_solution_info();
continue;
}
Solve_config(pcp, new_config, depth+l, threshold)
}
Free(newConfig);

Figure 3.4: Solving configuration routine in the PCP solver
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3.6.1 Tail recursion removal

The main CPU resources are spent in the recursive function Solve_config in
Figure 3.4, which forms a bottleneck to search efficiency. A minor improvement
in this function can result in big savings during the search. Our first step is

to remove some of these recursions.? There are two types of tail recursions:

1. If only one pair can be selected to match a configuration, we can simply
jump back to the starting point of the function after the configuration
is updated.

2. If more than one pair can be selected to match a configuration, when the
last possible pair is tried, the search process will update the configuration

and jump back instead of calling the recursive function.

The significance of this method lies in the decrease of unnecessary stack
operations involved in function calls. When the search space is very large, the
savings can be aggregated to produce a big improvement. In our experiments,
the solving time was decreased by 11% on average by using this method.

There is a trade-off between readability and efficiency of the code, and for

this reason, we do not remove all recursions but only those easily done.

3.6.2 Memory allocation

It is easy to see that the memory space used in every configuration during
the search process is not of fixed size. If we employ the dynamic memory
allocation provided by the operating system, for example, the standard library
function malloc(), it will exhaust too many CPU resources in the running
time with frequent operations of allocating and freeing of memory. Therefore,
we designed our own memory allocation routines specifically catering to PCP
configurations.

A large enough memory block is statically allocated during program initial-
ization and is used to simulate stack operations. Then only simple operations

are needed to allocate the memory space for new configurations and reclaim
2This idea was first mentioned in [8].
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them when they are obsolete. In the experiment, this method resulted in a
15% improvement on search speed compared to using the standard library

function malloc() and free().



Chapter 4

Identifying unsolvable PCP
instances

As shown in Chapter 2, many PCP instances have no solution, but methods
to prove instances unsolvable may vary a lot. For some instances, it is quite
obvious that they have no solution, while for others, it may be very difficult
to prove their unsolvability. What’s more, there are still some instances that
are still unsolved, yet the search results show they are very likely to have no
solution.

When scanning all instances in a specific PCP subclass to dig out difficult
instances, the PCP solver will frequently meet unsolvable instances or those
seemingly unsolvable instances that exhaust lots of search time but yield no
result. Thus proving instances unsolvable is a hurdle lying before us that
urgently needs to be overcome.

Lorentz’s paper [8] mentioned three types of filters used to discover in-
stances with no solution, namely prefiz/postfiz filter, length balance filter, and
element balance filter. They can be considered as the direct uses of Lemmas
2.3, 2.4 and 2.5 in Chapter 2. This simple method is an amazingly effective
way to identify a great percentage of unsolvable instances for subclasses of
smaller sizes and widths. The scanning results and the effectiveness of filters
will be shown in Chapter 6.

However, there are still lots of instances that can successfully pass filters
but have no solution. In such a situation, the search methods discussed in

the previous chapter may serve as an unsolvability proof. Furthermore, the
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effort of tackling unsolved instances has resulted in five new disproof methods:
mask method, exclusion method, group method, symmetry method and pattern
method. They will be explained in the following sections. Please be advised
that these methods should not be treated separately. In many cases, only

when several methods are used together can an instance be proven unsolvable.

4.1 Search as an unsolvability proof

If the state space of an instance is finite, an exhaustive search can be performed
to decide whether the instance has a solution or not. But this approach is based
on the assumption that all revisited nodes can be detected. If a PCP solver
fails to detect some revisited nodes, the state space may become infinite from
the horizon of the solver, and thus, the searched instance remains unsolved
and no meaningful result will come out. For this reason, the cache must be
large enough to hold the whole state space of an instance if we expect to use
exhaustive search to prove its unsolvability.

When the state space is infinite, exhaustive search becomes inapplicable
and cannot do any work for an unsolvability proof except for proving that
no solution can be found up to a depth threshold. Therefore, some new ap-
proaches have been devised to specifically cope with instances that have an

infinite search space.

4.2 Mask method

The mask method as well as the GCD enhancement discussed in Section 3.2
can help to prove an instance unsolvable. If an instance has the top mask and
the generated configurations after choosing any possible staring pair are in the
top, this instance definitely has no solution. Similarly, if we can prove that an
instance has both top and bottom masks, then it is obviously unsolvable.
Masks of an instance and its reversal are interdependent since an instance
has a top (bottom) mask if and only if its reversal has a bottom (top) mask.
Besides, the masks of one instance may be discovered with the assistance of the
masks of its reversal and vice versa, as we discussed in Section 3.3. Therefore,
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the process to find the masks of an instance and its reversal must be iterated
until there is no change on the masks. The number of iterations is at most 4

since the work is to detect the existence of up to 4 masks.

4.3 Exclusion method

The exclusion method is utilized to detect pairs that will never be used when
selections start at some pair. The exclusion comes from the fact that if
any combination of certain pairs cannot generate a configuration that can be
matched by a specific pair, then this pair is useless and can be safely removed.

PCP (4.1) is such an example.

10 101
(o 001 1 ) (4.1)

If we start from pair 2, then the following selections will always jump

between pair I and pair 2. The proof can be separated into three steps:

1. Since the bottom strings of pair 1 and pair 2 are no shorter than their
corresponding top strings, configurations will always stay in the bottom

if only these two pairs can be chosen.

2. Any combination of the bottom strings of these two pairs cannot have
a substring of 101, which is the top string of pair 3. Thus when a
configuration generated by these two pairs has its length greater than or
equal to 3, pair 3 has no chance to be selected.

3. The only configuration in the bottom with length less than 3 that can be
matched by pair 2 is string 10 in the bottom. But it cannot be generated
by pair 1 and pair 2.

Therefore, after selections start at pair 2, every configuration will stay
in the bottom and selections can only be pair I or pair 2. No selection of
pair 3 can be made. Thus, after pair 2 is chosen, we only need to solve an
instance consisting of pair 1 and pair 2. This new instance never leads to a
solution because of the length balance. Hence starting at pair 2 is hopeless.
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Combined with the fact that this instance has a top mask, we successfully

prove it unsolvable.

4.4 Symmetry method

From various properties we discussed in Chapter 2, particularly those related
to reversal properties, we can get the following lemmas on relations between

starting and ending pairs.

Lemma 4.4.1 An instance can start at pair ¢ if and only if its reversal can

end at pairt.

Lemma 4.4.2 In the solution of an instance, if both its starting pair and
ending pair have top (bottom) strings longer, then configurations must oscillate

an odd number of times.

Starting and ending pairs of an instance can be found with the help of
Lemma 4.4.1. Combined with the bottom-to-top mask or top-to-bottom mask
(see Section 3.3), some hopeless starting pairs can be excluded if no oscillation
can happen. When there are no other starting pairs available for an instance,
it can thus be proven unsolvable.

The symmetry method utilizes the above procedure to find unsolvable in-

stances, and the following is an example to solve PCP (4.2).

(o0 111 0) &

First we can use the exclusion method to find that if we start at pair 3,
both pair I and pair 2 will be excluded, thus this starting point is eliminated.
Now the starting pair can only be pair 2. As this instance is identical to its
reversal, by using Lemma 4.4.1, this instance can only end at pair 2 as well, so
it has the same starting and ending pair. Since this pair has its bottom string
longer, after starting at pair 2 we must turn configurations from bottom to top
somewhere to make it possible to end at pair 2. Yet judging from the length

difference, this instance has a bottom-to-top mask, revealing no possibility of
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turning upside-down. So starting at pair 2 is also hopeless. In sum, PCP (4.2)

has no solution.

4.5 Group method

If any occurrence of a substring in configurations can only be entirely matched
during one selection of pairs, instead of being matched through several selec-
tions, we can consider the substring as an undivided entity, or a group. In
another word, if any character in the group is matched after one selection, all
others in the group will be matched in the same selection. The group method
is utilized to detect such groups and help to simplify instances. Consider the

following instance, where the substring 10 is undivided.

011 10 0
(1 0 010) (43)

Substring 10 can be inserted into configurations through the bottom string
in pair 3, and then can be matched by 10 in the top string in pair 2. If we
consider an instance consisting of only pair 2 and peir 3 in PCP (4.3), then it
is not difficult to find out that whenever there is a substring 10 occurring in a
configuration, this substring must be entirely supplied by a selection of pair 3
and can only be matched by pair 2.

Therefore, we can use a new symbol g to represent the group 10, and the

instance will be simplified to:
011 g O
1 0 Og

g =01

If only pair 2 and pair 3 are taken into consideration, the configurations
they generate will stay in the bottom and have their lengths non-decreasing.
So these configurations will lead to no solution. As the new symbol g cannot
be matched by 0 or 1, it is easy to see that pair I can be excluded and safely
removed when selections start at pair 3. As there are no other possible starting
pairs, PCP (4.3) is unsolvable.
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4.6 Pattern method

If a configuration has a prefix o and any possible path starting from it will
always generate a configuration having prefix o after some steps, then this
prefix cannot be completely removed whatever selections are made, and any
configuration having such a prefix never leads to a solution. This observation
essentially comes from the goal to shrink configurations to the empty string.
If there is a substring that will unavoidably occur, it is impossible for con-
figurations to transfer to the empty string. Figure 4.1 gives an example of
a prefix pattern, where arrow-headed lines represent transformations after a
finite number of selections. Note that configurations never become empty in

the middle of transformations.

aA

Figure 4.1: Example of a prefix pattern

The pattern method is based on prefix patterns as well as three other types
of patterns, and they are given together in Figure 4.2.

Type 1: prefix pattern aA = aB
Type 2: postfix pattern Aa —> Ba
Type 3: infix pattern AaB = CaD

Type 4: prefix & postfix patterm aAf = aBp

Note: a and 8 are patterns consisting of non-empty strings,
A,B,C,D are substrings that can be empty.

Figure 4.2: Four types of patterns

The pattern method is a very powerful tool to prove instances unsolvable,

probably because it discloses a deep property inherent in PCP. The following
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example illustrates how this method is effective to prove PCP (4.4) unsolvable,

which has a prefix pattern of 11 in the top.

011 01 0
(1 0 100) (4.4)

For a configuration of 114 in the top, the next selection can only be pair
1. Thus a new configuration 14011 in the top is obtained. Now let’s focus
on how the substring O right after the A is matched. The matched 0 can be
supplied either by the only 0 in the bottom string of pair 2, or by the last 0 in
the bottom string of pair 3. Whichever it is, after 0 is matched the substring
11 right behind it will inevitably become the prefix of a new configuration. So
a configuration 114 in the top will definitely transfer to another configuration
11B in the top after some number of steps. The prefix cannot be removed,
showing that any configuration in the top with a prefix of 11 will lead to no
solution. The procedure to find a prefix in PCP (4.4) is presented in Figure
4.3. The dotted vertical line in the figure partitions configurations into two
parts: left part and right part. If a configuration still has the chance to lead to
a solution, its left part from the line must be matched exactly by some pairs.
Therefore, the dotted vertical line works as a border: matching must stop at
one side of it and continue on the other side; no substring is matched across
the border.

114 => 14011 => 118

Figure 4.3: Deduction of 11 prefix pattern in PCP (4.4)

It can be proven that PCP (4.4) has a bottom mask, and thus it can only
start at pair 2. Then only pair I can be selected and the choice of pair 3 can
be pruned because of the bottom mask. Now the configuration is 011 in the
top, and only pair 2 can be chosen in the next step, generating a configuration
of 1101 in the top. But this configuration is hopeless because of having the
prefix of 11. Therefore, PCP (4.4) has no solution.

It is quite intuitive to discover the pattern in PCP (4.4), yet to find sim-

ilar patterns in other instances may not be simple. For example, Figure 4.4
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illustrates the procedure to detect the prefix pattern of 000 in the top in PCP
(4.5), and this prefix pattern is indispensable for the unsolvability proof of this

instance.

o1 0 00
( 0 100 10 ) (43)
10103 B;01 = 1 B,610000 = 100:000C; = 000D
000A =>A010101 = { 10101 B,0 = 1B,00:000 = 000C;
10103 B;00 == 1 B;000000 c=> 000C;

Figure 4.4: Deduction of 000 prefix pattern in PCP (4.5)
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Chapter 5

Creating difficult PCP instances

A strong PCP solver enhanced by the methods and techniques discussed in
Chapters 3 and 4 is essential for efficiently finding many difficult PCP instances
with small sizes and widths; on the other hand, the hard instances that we
have discovered naturally attracted us to find their solutions as quickly as
possible, and those instances we could not solve were intriguing for us to come
up with new ideas to prove their unsolvability. Thus, the three directions we

are working on are interrelated, as shown in Figure 5.1.

Search as a proof method Proof of

Search

Creating
difficult
instances

Figure 5.1: Relations between three research directions in PCP



The task of creating difficult instances can be further categorized into two

schemes: the random search scheme and the systematic search scheme.

5.1 Random search for hard instances

A random instance generator plus a PCP solver is a straightforward means
of discovering interesting instances. The generator creates random PCP in-
stances, which are then fed to the solver. Statistically, the generator will create
a few hard instances with very long optimal lengths sooner or later. However,
we can still do much work to increase the chance of finding hard instances.

Using several search enhancements and various methods that help to prove
unsolvable instances, the program can quickly stop searching hopeless in-
stances and find the optimal solutions to solvable instances fairly quickly.

During the search process of an instance, we use three factors as stopping
conditions if no solution is found. They are the final depth threshold, the
number of visited nodes, and the number of pruned nodes (cutoff nodes). Using
the number of visited nodes as a stopping condition makes the search process
treat every instance equally, avoiding the situation of frequently getting stuck
in instances that have a large branching factor but no solution. Based on the
observation of the hard instances we collected, most of those instances do not
have a large number of cutoff nodes. Thus in the implementation, we also use
the number of cutoff nodes as one of the stopping conditions.

Another method suggested in the literature is the removal of instances
that have the pair purity feature, that is, a pair consisting wholly of ones or
zeroes [8]. This suggestion is based on the observation that many instances
bearing this feature have no solution, but have quite messy search trees that
are very costly to explore. However, our experimental results show that this
method may cause the failure of discovering some hard instances (see Section
6.9).
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5.2 Systematic search for hard instances

As the random search scheme randomly chooses instances to consider, the
chance of finding difficult instances is still dependent on luck, so a system-
atic approach seems more convincing to demonstrate the strengths of a PCP
solver. If all instances in a specific PCP subclass are examined, they may be
completely solved, and lots of hard instances including the hardest one in this
subclass will be discovered. Even if we cannot solve all of them, the unresolved
instances may stimulate us to find better approaches to deal with them.

It is not hard to generate all instances in a specific PCP subclass, and the
issue of removing all isomorphic instances has been addressed in Section 2.4.4.
But this method can only be effective for those PCP subclasses with smaller
sizes and widths as in Table 2.3. For larger PCP subclasses, our program is

unable to examine all of their instances in a reasonable time.

5.3 Neighborhood effect

One interesting property that we found helpful for creating difficult instances
is the neighborhood effect. In the optimal solution of a hard instance, if one pair
is very infrequently used, i.e. less than 5% of the total number of selections,
it is likely that a new hard instance can be found by removing that pair or
replacing it with other valid pairs. For example, PCP (5.1) with an optimal
length of 120 was first found by our PCP random generator, and then, the
infrequent use of pair 2 in its optimal solution led to the discovery of PCP
(5.2) with an optimal length of 200. These two instances differ only in the top

string of pair 2.

1010 101 1 110

(1 1111 1011 O1 ) (5.1)
1010 010 1 110

(1 1111 1011 O1 ) (5-2)



5.4 New PCP records

The random and systematic search schemes for creating difficult instances
helped us to achieve new records in 4 PCP subclasses. These records are new
instances with the longest optimal length over all instances in specific PCP
subclasses. The records in subclasses PCP[3,4] and PCP[4,3] were found
by the systematic search scheme and those in PCP(3,5] and PCP[4, 4] were
obtained through the random search scheme. The records of hardest instances

known are presented in Table 5.1.

number of
subclass | hardest instance known | optimal length | optimal
solutions
110 1 O
PCP[3,3] ( : uo) 7 2
1101 0110 1
PCP[3,4] ( 110) 252 1
11101 1 110
PCPI[3,5] (ouo o ) 240 1
111 011 10
PCP[4,3] (110 1 100 11) 302 1
1010 11 o 01
PCP[4,4] (100 1011 1 0 ) 256 1

Table 5.1: Records of hardest instances in 5 PCP subclasses

The hardest instance in PCP{3,3] was discovered by R. Lorentz and J.

Waldmann independently. More details are given on the websites [14] [15].
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Chapter 6

Experimental results and
analysis

This chapter discusses experimental results on solving and creating difficult
PCP instances. All experiments were done on 200 hard instances. 199 in-
stances have optimal lengths no shorter than 100 and were collected from 4
PCP subclasses through the methods described in Chapter 5; the remaining
test case is the hardest instance in PCP(3,3]. Table 6.1 lists the number of
test instances in each subclass. Please refer to Appendix A for a list of these
instances and their solution information. In the following, if an instance shown
in this chapter also appears in Appendix A, we will give its corresponding index
in the appendix and its solution length together with the instance.

PCP subclass | number
PCP[3,3 1
PCP[3,4 5
PCP[3,5 21
PCP[4,3 72
PCP[4,4 101

Total 200

Table 6.1: Number of test instances in PCP subclasses

In our experiments, the default options are that the program used depth-
first iterative-deepening, cache table, mask method, forward pruning based on
the balance of length, bidirectional probing and program optimizations, as well
as three unsolvability proof methods including the mask method, symmetry

method and exclusion method. The group method and pattern method were
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not implemented because we could not find a general way to automate them.

Table 6.2 gives details about these options.

Method Implemented? | Parameters or comments
Depth-first iterative-deepening Yes depth increment = 20
Cache table Yes cache size = 2'3 entries
Mask method Yes with GCD enhancement
Forward pruning Yes based on balance of length
Bidirectional probing Yes comparison depth = 40
Tail recursion removal Yes
Own memory allocation Yes
Symmetry method Yes
Exclusion method Yes
Group method No
Pattern method No

Table 6.2: Default configurations of the PCP solver

Our PCP solver program was implemented in C++ in about 4,500 lines of

source code. The machine configuration we used for compiling and running the

program is given in Table 6.3. With the default configurations of the program

and the hardware, solving all 200 instances took about 1 hour.

OS

Redhat Linux 7.1

Compiler

gee 2.96

Compiling option | -O3

CPU

Pentium III 600

RAM size

128M

Table 6.3: Machine configuration used in experiments

6.1 Search speed

We first conducted an experiment on the program’s search speed, in which

the solver searched to the optimal length of an instance without iterative-

deepening. Search speed for an instance is measured by the number of nodes

visited divided by the time spent solving it. As there were 83 instances that

took less than 1 second to solve, we did not take them into account due to

the lack of precision. The distribution of search speed in the remaining 117
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instances is given in Figure 6.1. The final version of our PCP solver achieved

a search speed of 1.38 x 10° nodes per second on average.
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Speed (1000 nodes/second)
Figure 6.1: Distribution of search speed in 117 instances

The speed for different instances shows a lot of variability. PCP (6.1) has
the highest speed: roughly 2.2 x 10° nodes per second; yet the search speed in
PCP (6.2) is only about 1.0 x 10° nodes per second, the slowest one in the test
set. We had thought that the optimal length might be the reason for such a
large difference, but when looking at the whole data set, we found that many
instances with quite long solutions did not have a very high search speed. We
could not find a simple factor that controls the speed of an instance, and thus
can only regard it as one of the special properties of PCP instances.

111 011 10 0
(110 1 100 11) (6.1)

No.28 optimal length = 302
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1111 1110 1 O
(110 11 10 1110) (6.2)

No.125 optimal length = 140

6.2 Branching factor

Our next experiment was on the branching factor in the search, where the final
depth threshold for searching an instance was set to the optimal length of that
instance. Since the branching factors in the test instances are very small, all
between 1.00 and 1.25, we instead calculated the 20-level branching factor,
which is the branching factor to the 20th power. Similar to the definition of
branching factor, the 20-level branching factor of depth k is the number of
nodes between depth k+1 and k + 20 divided by the number of nodes between
depth k — 19 and k. The formulas to calculate the 20-level branching factor
and the average 20-level branching factor in our experiment are given in Figure
6.2. We chose a depth of 41 as the starting point for computing the average

20-level branching factor solely for the reason of obtaining a better precision.

Num(k + 1,k + 20)
Num(k — 19, k)

Num(61, len)) Ten-23

bf(k) =

average bf = ( Num(4l, 60)

Notes: len is the optimal length of the instance; Num(a,b) is
the number of nodes between depth a and b.

Figure 6.2: Computing the 20-level branching factor

The experimental results show that the average 20-level branching factor
in 200 test instances is 9.830, and therefore, the average branching factor is
only 1.121. The distribution of the 20-level branching factor for the test set is
presented in Figure 6.3.

The 20-level branching factor of PCP (6.3) is 67.759, the highest over all
test instances. Such a high branching factor is largely due to its pair 2, which
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Figure 6.3: Distribution of branching factor in 200 instances

consists only of 0’s. When the configuration is in the top with a prefix of 0,
pair 2 can be selected to match it, and three consecutive zeroes are appended
to the end of the configuration. These three zeroes later can cause pair 2 to be
selected three times, or pair I to be selected once. This increases the chance
for more pairs to be chosen, and thus results in the branching factor of this

instance being much larger than that of all others in our test set.

111 000 1 O
(ooo 0 10 11) (6:3)

No.91 optimal length = 104

Over all test instances, PCP (6.4) has the smallest 20-level branching fac-
tor, only 1.544. In the process of solving this instance, configurations always
stay in the bottom. As the top strings of pair 1 and pair 2 in this instance
are very long, most configurations generated have no more than one pair to

match. This results in a search tree with very few branches, and therefore, a
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very small branching factor.

(11111 01011 1 ) (6.4)

10 11 10101
No.13 optimal length = 189

6.3 Cache table

The size of the cache table is an important factor influencing the performance
of the PCP solver. First, using a cache table will inevitably introduce overhead
in the solving process, and the larger the size, the bigger the overhead will be.
Secondly, too small a cache table will cause a failure to hold some important
visited nodes, and the solver cannot prune those nodes when they are revisited,
so the solver needs more time to solve the instance. Therefore, the size of cache
should be selected carefully.

We did experiments for the cache size ranging from 2%, 2! until 2! en-
tries, and measured the time needed to solve 200 instances. The results are
illustrated in Figure 6.4.

In our experiments on cache sizes as well as on depth increments in the
next section, our aim is to describe the general trends of change according
to different parameters by using empirical data. For example, in Figure 6.4,
we can see that if the cache size is very small, the solving time will increase
significantly. This phenomenon also happens when the cache size is very large.
However, for a cache size between these two extremes, for example, from 8
entries to 65536 entries, the solving time is quite stable. We believe this
phenomenon is largely dependent on the test instances chosen, and therefore
we consider it unnecessary for deep investigations about which one results in
minimum solving time and why.

Although 8 entries seem good enough to solve all test instances, we still use
a larger cache table when solving a new instance, in case we need the cache
table to prove the unsolvability of that instance.

We also did an experiment on the number of nodes pruned by the cache
(cutoff nodes). PCP (6.5) has the largest number of cutoff nodes in its last
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Figure 6.4: Solving time with respect to different cache sizes

search iteration of all test instances, yet the number actually is not large
at all, only 28,972. This indicates that many hard instances do not have a
large number of cutoff nodes, justifying our approach to use the cutoff number
as a threshold to find hard instances when using the random search scheme
discussed in Chapter 5.

(6.5)

1110 1001 1 O
10 1 10 01

No.161 optimal length = 118

6.4 Iterative deepening

The depth increment in iterative deepening is also an important search param-
eter. A small increment will result in too much redundant work, but a large
increment may cause the solver to examine lots of useless nodes whose lengths

are larger than the optimal length. Thus, there is a trade-off between benefit
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and overhead. We experimented with 13 different depth increments, and the
solving time for them is summarized in Figure 6.5. The minimum time occurs
when the increment is 20, and we chose it as the default depth increment.
This setting is also convenient in data processing and analysis. In the figure,
the solving time changes quite irregularly when the depth increment increases.

We believe this phenomenon is largely dependent on the specific test instances

we chose.
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Figure 6.5: Solving time with respect to different depth increments

It is very interesting to take a look at the overhead introduced by iterative
deepening. The last iteration is necessary and all other iterations are over-
head. We represent the overhead by dividing total number of nodes visited in
all iterations except the last one by the number of visited nodes in the last
iteration. The average overhead is 19.8%, which is much larger than the recip-
rocal of the 20-level average branching factor we computed in Section 6.2. This

is because the increment is much larger than 1, and the penultimate iteration
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may have its depth threshold very close to the optimal length, thus incurring

considerable overhead.

6.5 Forward pruning

We implemented two types of admissible heuristic functions to prune hopeless
nodes. The first one is based on the balance of length. The depth heuristic
of a configuration is computed by its length divided by the maximum length
difference of all pairs. Therefore, if the depth heuristic of a configuration
added by its current depth exceeds the depth threshold, this configuration can
be pruned. The second type of heuristic functions is based on the balance
of element, where the depth heuristic of a configuration is computed as the
number of one element (0 or 1) in it divided by the maximum difference of
this element in all pairs (see Section 3.4). This type will generate two heuristic
values, and the larger one is used for pruning. Note that the heuristic values
can round up to their next larger integers, and since they never overestimate,
the pruning is safe.

We did three separate experiments on forward pruning, namely, only using
the first type of heuristic, only using the second type and using both types.

The results are shown in Table 6.4.

Pruning method Solving time (seconds)
on balance of length 3749
on balance of element 19026
on balance of both 4593

Table 6.4: Solving time with respect to different forward pruning methods

We tried to compare the improvement achieved by the heuristic pruning
compared with the situation when no pruning is done, but we could not finish
the task since it would take too much time. PCP (6.6) is an illustrative
example. The solver spent 14,195 seconds to solve this instance when no

pruning was used, compared to merely 5.2 seconds when the length balance
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heuristic was employed. This is a 2730-fold improvement in the solving time!

11011 110 1
(0110 1 11011) (66)

No. 18 optimal length = 120

Table 6.4 shows clearly that only using the heuristic on the balance of
length excels in the performance. This heuristic is simple and elegant, but
is also very powerful and introduces very little overhead. This result also
reminds us that it is not always true that a more complicated approach will

gain a better performance.

6.6 Bidirectional probing

The search difficulty in an instance and its reversal may be extremely different,
though they are isomorphic to each other. We performed an experiment on
200 test instances by searching in two directions at depth 40 separately, and
then compared the number of visited node in each direction. The distribution

of the difference of the search difficulty in two directions is given in Figure 6.6.

120

100

number of instances
2
v
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Figure 6.6: Distribution of the difference of search difficulty in two directions

In the test set, PCP (6.7) has the largest difference. Up to depth 40, search
in PCP (6.7) is more than 15,000 times harder than search in its reversal in
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terms of visited nodes.

110 1 1 0
(o 101 00 11) (6.7)

No.61 optimal length = 134

Consider that searching to depth 40 has already made such a big difference,
if searching to depth 100 or more, the difference will explode exponentially,
and will make it unrealistic to solve the instance by searching in the harder
direction. This fact clearly demonstrates how important bidirectional probing

is.

6.7 Program optimizations

In this section, we report the benefits brought by our configuration allocation
routines and tail recursion removal. The specific allocation routines gain a
15.4% improvement in solving time and the tail recursion removal decreases

the solving time by 11.4%. The test results are given in Table 6.5.

Method Solving time (seconds)
no own memory allocation 4328
no tail recursion removal 4176
both are used 3749

Table 6.5: Solving time with respect to program optimizations

6.8 Solution structures

The most difficult instance in terms of solving time in our test instances is PCP
(6.8), which needs 598 seconds to solve. In its last search iteration, 621,887,191

nodes are visited, and 22 nodes are pruned.

110 001 1 O
(10 o o1 11) (6.8)

No.66 optimal length = 131
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The 200 test instances altogether have 226 optimal solutions, and Table 6.6

shows the distribution of the number of optimal solutions in these instances.

number of solutions | number of instances
1 179
2 17
3 3
4 1
Total 200

Table 6.6: Distribution of the number of optimal solutions

The only instance that has 4 optimal solutions is PCP (6.9).

11011 0110 1
1 11 110

No.12 optimal length = 190

(6.9)

Now let’s consider how the configurations change along the optimal solu-
tion. These configurations actually constitute the optimal solution, and we
call them solution configurations. Figure 6.7 gives a typical form of solution
configurations, which belongs to PCP (6.10). The starting and ending config-
urations are both the empty strings, and are therefore omitted in the figure.

While it seems no regularity exists in the solution configurations of PCP
(6.10), the solution configurations in PCP (6.11) given in Figure 6.8 are very
special.

If we only consider how the length of configurations changes, we can find
the waves that they generate are quite regular and have many forms similar
to triangles. These kind of waves are really amazing and hard to forget.

We did experiments on two properties of solution configurations, that is, the
maximum length! and the number of local maxima on length. Local maxima
are those configurations whose lengths are larger than their local neighboring
configurations. For example, PCP (6.11) has 10 such local maxima.

The maximum length of solution configurations of all test instances is only
79, encountered in PCP(6.12). For this reason, it may be true from the sta-

tistical point of view that very long configurations are unlikely to lead to a
1 Please note that configuration length and solution length are different.
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1110 1010

0

1

o1 1

0 1101 (6.10)

No.117 optimal length = 152
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Figure 6.7: Solution configurations in PCP (6.10)
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Figure 6.8: Solution configurations in PCP (6.11)
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solution. Thus when using the random search scheme to discover hard in-
stances, we may set a threshold on the length of configurations, say 200, to

prune configurations.

(6.12)

11111 01111 1
11110 11 10111

No.23 optimal length = 112

In all test instances, PCP (6.13) has the maximum number of local maxima

in its solution configurations, which is 80. PCP (6.14) has only 4, the minimum

(1101 0110 1 ) (6.13)

in all test instances.

1 11 110
No. 12 optimal length = 252

111 011 001 1
(110 1 11 100) (6.14)

No.77 optimal length = 112

6.9 Results of creating difficult instances

We systematically scanned seven PCP subclasses that are easy to handle. All
instances in these subclasses have been completely solved. The results are
shown in Table 6.7, which also gives statistics on the effectiveness of those
unsolvability proof methods. Besides, we can see how small a percentage of a
PCP subclass are solvable instances!

The symmetry method typically is used together with other methods, so
it is not listed separately in the table. The hardest instances in terms of the
longest optimal length in these 7 subclasses are presented in Table 6.8. There
are three hardest instances in PCP[2,2] and 5 in PCP[4,2], and for brevity,
we only list one of them in each subclass.

One special phenomenon we observed from the table is that the hardest

instances in PCP subclasses with size 2 can all be represented in the following
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PCP total after | after after solvable | unsolvable
subclass number filter | mask | exclusion || instances instances
PCPJ2,2 76 3 3 3 3 73
PCP|2,3 2,270 51 31 31 31 2,239
PCP[2,4 46,514 662 171 166 165 46,349
PCP[2,5 856,084 9,426 795 761 761 855,323
PCP[2,6] | 14,644,876 | 140,034 | 3,404 3,129 3,104 | 14,641,772
PCP[3,2 574 127 67 61 61 513
PCP[4,2 3,671 1,341 812 786 782 2,889
Table 6.7: Solving results of 7 PCP subclasses
number of
subclass hardest instance optimal length | optimal
solution
10 1
PCP[2,2] ( 1 o1 ) 2 1
110 1
PCP[2,3) ( o 1 ) 4 1
1110 1
PCP[2,4] (1 om) 6 1
11110 1
PCP[2,5] (1 ouu) 8 1
111110 1
PCP[2,6] (1 011111) 10 1
11 00 1
()
PCP[3,2] (oo ot ) 5 >
11 11 00 O
PCP4,2] (10 i 1 00) 5 2
Table 6.8: Hardest instances in 7 PCP subclasses
form:2

1"0 1
1 o1

)

It is not hard to prove that the optimal length of this kind of instances is

2n. Lorentz’s paper [8] mentioned it and conjectured that such an instance
might always be the hardest one in PCP[2,n + 1] in the general case. If the
conjecture is true, it will lead to a much simpler proof that PC P{2] is decidable
than the existing one [4]. Table 6.8 supports this conjecture with data from 5

20f the three hardest instances of PCP(2,2], only one instance can be represented in

this form.
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subclasses.

We used the systematic method to further examine three PCP subclasses
that are much harder to conquer. Table 6.9 summarizes the results from
PCP[3,3] at first.

Total number | 127,303
After filter 8,428
After mask 2,089

After exclusion 2,002

Solvable instances 1,968
Unsolvable instances 33
Unsolved instances 1

Table 6.9: Scanning results of subclass PCP(3, 3

In Tables 6.9 and 6.10, an instance removed by the exclusion method may
still have solutions, but it cannot have a valid solution. A solution to an
instance is valid if in the solution all pairs of the instance are used. Since
the result of solving such an instance is identical to combinations of results
from instances with smaller sizes, we do not give it any further processing.
Similarly, instances removed by the element balance filter may also have invalid
solutions, but these solutions are of po interest to us. In addition, 32 instances
are unsolved by our PCP solver, but are proven unsolvable by hand using
the methods discussed in Chapter 4. The difference comes from the fact that
though some methods can successfully prove several instances unsolvable, some
parts of them cannot be generalized or are too complicated to implement, and
thus they were not incorporated in our PCP solver. The 33 instances that
could not be solved by our solver are given in Appendix B.

The only one unsolved instance in PCP(3,3] is PCP (6.15). Our solver
searched to a depth of 300, but still could not find a solution to this instance.
Various deduction methods were tried to prove it unsolvable, but also failed.
Compared to the fact that the hardest instance in all instances of PCP(3, 3]
except this one only has the optimal length of 75, we believe this instance is

very likely to have no solution, but apparently new approaches are needed to
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deal with it.
110 1 O

(1 01 110)

We used a similar method to scan all instances in PCP[3, 4] and PCP[4, 3],

(6.15)

and the results are summarized in Table 6.10. The scanning process took about

30 machine days to finish with three bounds when searching an instance:

1. search depth < 400

2. number of visited nodes < 180, 000, 000

3. number of cutoff nodes < 5,000,000

This effort resulted in the discovery of 77 hard instances whose optimal

lengths are no shorter than 100 (see Appendix A). At the same time, more
than 17,000 instances remain unsolved to the solver, and it becomes impossible
to check such a large quantity of instances manually. Although most of these
unsolved instances should have no solution, it is still likely that they contain
some extremely difficult solvable instances. Thus, these instances are left for
future work, waiting for some new search and disproof methods. You can find

these instances from the website [15].

PCP[3,4] | PCP[4,3]

Total number | 13,603,334 | 5,587,598

After filter 902,107 | 1,024,909

After mask 74,881 275,389
After exclusion | 65,846 | 266,049 |
Solvable instances | 61,158 | 249,493 |

Unsolvable instances 1,518 2,633

Unsolved instances 3,170 13,923
|  Hard instances 5 72 |

Table 6.10: Scanning results of subclass PCP(3, 4] and PCP[4, 3]

In the 72 hard instances we collected from PC P4, 3|, 13 instances (18.1%)
have the pair purity feature (see Section 5.1), and some of them need more
than a hundred seconds to solve. This evidence suggests that even an instance
with the pair purity feature may still have a very long optimal solution (the
longest is 240), and the quantity of these instances cannot be ignored.

Using the random approach to search for difficult instances, we successfully
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discovered 21 instances in PCP[3,5] and 101 instances in PCP[4,4]. Their
optimal lengths are all larger than or equal to 100. The whole process took
more than 200 machine days to finish. Please refer to Appendix A for these

difficult instances.

6.10 Summary

In the last part of this chapter, we will give a brief summary of those search and
disproof methods. All disproof methods implemented are performed before the
search process begins, and bring very little overhead. Many search methods are
indispensable to find the optimal solutions to some solvable instances, which
means that if these methods are not employed, those instances cannot be
solved in a realistic time. These important methods include the mask method,

bidirectional probing and forward pruning.



Chapter 7

Conclusions and Future Work

In this thesis, we presented an experimental approach to solving instances
of Post’s correspondence problem. Our research contrasts nicely with the
theoretical work done on this problem. The main contributions of this thesis

can be summarized as follows:

1. Devise new search techniques to search for solutions of solvable PCP

instances more effectively and efficiently.

2. Develop new disproof methods to prove the unsolvability of PCP in-

stances.

3. Incorporate various search techniques and disproof methods to a PCP
solver, and use the systematic and random search schemes to scan 10
PCP subclasses. This helped us to find 199 hard instances with opti-
mal lengths no less than 100. We also set new records for the hard-
est instances known in subclass PCP(3,4], PCP[3,5], PCP[4,3] and
PCP[4,4].

We have discovered many new characteristics and properties of PCP, and
provided empirical results for solving PCP instances including the search
speed, branching factor, search parameters, effectiveness of different disproof
methods and solution structures. These results present a new angle on PCP,
and may be helpful to investigate some theoretical issues related to this prob-

lem.
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7.1 Future work

There is still much room for improvement.

First, many instances are still unsolved, especially PCP (6.15) (see page
63) which is the only one remaining unsolved in PCP(3,3]. New ideas are
needed to conquer these instances.

Next, some further search enhancement ideas can be implemented. For
example, PCP is suitable for bidirectional search. With large memory quite
common nowadays, we may use it to investigate how much improvement we can
achieve from a proper implementation of bidirectional search. What’s more,
in Section 3.4 on forward pruning, we briefly mentioned a heuristic method
similar to pattern databases; we believe this method can decrease the solving
time significantly if nicely built into our solver.

Two methods, the group method and pattern method, discussed in Sections
4.5 and 4.6, were not implemented due to the difficulty of finding a general
way to automate the identification procedures in them. However, if they can
be coded, a great portion of unsolved instances will be proved unsolvable.

Finally, we expect PCP[3,5] and PCP[4,4] and more PCP subclasses
to be systematically examined, because this step is meaningful for finding
regularities among those hardest instances and for better understanding the

complexity of this problem.
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Appendix A: List of 200 Hard

Instances
number of
No. instance optimal length | optimal
solutions
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Al (PR et ) | W
sl (T8 P L) | m




36 % e 168
37 101 foo 160
38 ;’11 (1’0 160
39 éég (1’11 155
40 101 ;go 155
41 o igo 155
G
43 0 154
44 1(1’1 c1>o 154
45 111 igo 150
46 1°° g; 149
47 810 ioo 149
NG
GRS
(e
51 1‘;0 31 144
52 ;i° ‘:10 142
53 i°° 0 140
54 1‘1’0 21 140
55 i;’ o 140
56 o0 2 138




57 PN 138
58 - To0 136
59 % o 136
60 o o 134
61 101 ;0 134
62 11° o1 132
63 oo 132
64 0 g; 132
65 L 200 131
66 oo 131
67 101 100 126
68 101 oLt 124
69 ot 120
70 201 o 120
71 gxo oLt 120
() |
73 out : 119
74 ot . 118
75 ot o e 117
R ) [
” 1o 1 1 10 112




Al (B ) | w
| (B4 50) |
o (B ) |
81 (110 ;20 (1)1 210) 110
a ] (T W) | @
| (T g b)) | @
Al (%2 %) |
o] (T hh W) |
o (R L) | W
| (e | e
ol (0 g ) |
o (T L) |
o (T i) | w
| (T %) | w
a | (T8 %) | ™
o | (T W) | ™
o] (T o) | ™
o (e L) | w
o] (e L) | w
o (emant )| w
9.8 (110 131 100 210) 102




o0 | (1 o1 00 110) 100 !
NG
o [P S ) we |
o (T )| ™ |
DGR
DG I
o[ (B0 0 )| m |
oo (P B )| e |
o [(B0 R s )| m |
108 (1)110 c1>oo1 io (1)11 ) 178 ]
oo (I o b )| |
no [ (IHT T )| w |
11 1101 (1)11 (1)00 21 ) 168 1
we[(fmem e )| w |
ne | (ST )| w |
na (T 0 ) w |
ns [ (T )| e |
116 (1100 3101 <1)o1 (1)1 ) 136 1
117 (1)110 1010 81 1101) 152 1
118 (iéu (1)00 3100 31 ) 152 1
119 (11°° e e (1’10 ) 150 1

74




120 (1101 Eo 1100 211 ) 145 1
191 (1100 (1)010 31 311 ) 144 5
2 (o Bt s )| |
s [(TP e )] w |
o[PS )| e |
o (Y )| W |
e (0o )] |
() m |
o (BT 0 )| w |
o (0P )| w |
130 (1100 (1)01 210 2010) 134 )
131 (3“0 20 110) 134 1
(570 5 am)| ® |
| (o Y )| ™ |
w0 ) w |
135 (;111 c1)100 ;oo c1> ) 132 1
| (o 0 oo )| m | 1
137 (iuo (1)01 210 2010) 132 1
w (e ) m |
139 ((1)110 100 c1>o (1’100) 129 1
w (e P )| m |

[6]




141 0ot s ) 128
el (e s )
St
144 ;1 go 3110) 126
DGR
el (s, )
147 1310 (1;0 (0)11 ) 124
148 3101 301 21 ) 121
ol (e e T
(et )
151 b o1 ) 120
R |
153 ore o 2 ) 120
154 0 21 1100 (0)1 ) 120
sl e )
156 ;110 1010 ;o go ) 120
G T
158 G°°1 Y oo ) 118
159 2 T 3 ) 118
w (Pt o
161 M o ) 118
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DG
oo (B o o o) |
o | (o S )| e
165 (1100 (1)010 io (1)1 ) 116
oo (50 e )|
or| (o ™ 8 o )|
o | (0o e )|
169 ((1)111 3200 (1)1 31 ) 114
0| (o oty )| W
o (o ™ o )|
(o o o )|
173 ((1)110 1100 10 c1>1 ) 112
DGR
| (™ e 3 )|
o[ (o e )|
| (R o G s )|
s [ (G o & o) | W
179 (1100 ;gm 210 <1>00 ) 109
o[ (Pl ou )|
o (e s )| W
w| (00 w0 )| w




1101 11 1
18101 o101 0 110 ) 108

1100 1010 00 108

184 (1 001 11 o1o1
185 (1101 110 1

1 010 110 1011

0 0010 110

1111 01 1

199 1010 O 0001 100

Ol Ol O

100

)

)
186 ((1)101 i°1° <1>o ) 107
(et 3
(e )
Sl )
(T E S
191 ((1)111 1101 c1>(1)1 o1o1) 104
] (2L, 8w
Sl B
[ (L)
195 (1101 8101 ;o ) 103
W[ ()
o[ (o
198 1110 11 1 ) 100

)

)

1101 00 1
200 (110 1 0 100

Note: all instances in the appendiz are in their normalized forms.
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Appendix B: Results on 33
instances in PCP[3, 3| not solved
by the solver

Exclusion method can prove 13 instances unsolvable

] 111 100 0 0 111 10 0
11 011 100 11 111 ooo
3 111 001 1 s 111 000
10 0 111 10 0 111
5 111 000 1 6 111 o1
100 0 11 10 1 o
7 111 100 0 s 111 100
1 11 100 1 1
111 10 1 111 1
9 (1 1 011) 10 (1 10 )
111 10 1 110 00
11 (o 1 011) 12 (010 0 011)
110 00 1
13 (01 0 uo)

Group method can prove 12 instances unsolvable

14 (110 (130 310) 15 (111 21 :.01)
o () [ ()
DG ICIGIEY
o () [ (57 1)
2 (B ) |2 (5 o)
NGRS E G
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Mask method can prove 1 instance unsolvable

26

111 O
1 100 11

0

)

Pattern method can prove 6 instances unsolvable

111 1 o0 111 1 0

27 (1 110 111) 28 (1 110 1 )
110 10 1 110 10 0

29 (1 11 01) 30 (1 0 001)
110 1 0 110 1 0

3 (1 01 ou) 32 (1 01 010)

1 instance is still unsolved

33

110 1
1 01

0
110

)

Note: all instances ezcept the last one are solved by hand, and those methods used
manually either are too complicated to implement, or have been implemented but

could not deal with those particular cases.
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