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Using acoustic distance and acoustic absement to quantify
lexical competitiona)

Matthew C. Kelleyb) and Benjamin V. Tuckerc)

Department of Linguistics, University of Alberta, Edmonton, Alberta T6G 2E7, Canada

ABSTRACT:
Using phonological neighborhood density has been a common method to quantify lexical competition. It is useful

and convenient but has shortcomings that are worth reconsidering. The present study quantifies the effects of lexical

competition during spoken word recognition using acoustic distance and acoustic absement rather than phonological

neighborhood density. The indication of a word’s lexical competition is given by what is termed to be its acoustic

distinctiveness, which is taken as its average acoustic absement to all words in the lexicon. A variety of acoustic

representations for items in the lexicon are analyzed. Statistical modeling shows that acoustic distinctiveness has a

similar effect trend as that of phonological neighborhood density. Additionally, acoustic distinctiveness consistently

increases model fitness more than phonological neighborhood density regardless of which kind of acoustic

representation is used. However, acoustic distinctiveness does not seem to explain all of the same things as

phonological neighborhood density. The different areas that these two predictors explain are discussed in addition to

the potential theoretical implications of the usefulness of acoustic distinctiveness in the models. The present paper

concludes with some reasons why a researcher may want to use acoustic distinctiveness over phonological

neighborhood density in future experiments. VC 2022 Acoustical Society of America.
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I. INTRODUCTION

In spoken word recognition, a listener must discriminate

or recognize the word contained in an audio signal from

among other potential candidates based on cues from audi-

tory and other modalities. One predominant metaphor used

to describe this process is the activation/competition meta-

phor. Under this metaphor, potential matches for the word

in the audio signal receive activation based on how well the

acoustic information in the signal matches the listener’s

expectations for each word. A group of words that sound

similar and are expected to compete have been called pho-

nological neighborhoods (Luce, 1986; Luce and Pisoni,

1998). In Luce (1986), words are defined as neighbors on

the basis of being one edit (phoneme addition, deletion, or

substitution) away from each other. For example, some of

the phonological neighbors of /kIt/ are /skIt/, /It/, and /sIt/.
The number of edits between phoneme strings is assessed

using Levenshtein distance, which is the smallest number of

symbol additions, deletions, or substitutions required to con-

vert one string into another string. In this sense, sound simi-

larity between words is assessed using text in the form of

phoneme strings. Competition is then quantified by counting

the number of words that are neighbors with a given word in

the lexicon. This count is defined as the word’s phonological

neighborhood density. Phonological neighborhood density

has been found to be predictive of participant behavior in

many psycholinguistic tasks. In auditory lexical decision,

for example, high phonological neighborhood density values

have been found to have inhibitory effects in English

(Goldinger et al., 1989; Luce and Pisoni, 1998). However,

facilitatory effects were found for Spanish (Vitevitch and

Rodr�ıguez, 2005) and Japanese (Yoneyama, 2002). See

Vitevitch and Luce (2016) for a review of other tasks that

this measure has been used for.

Yet, when the notion of phonological neighbors based

on the one-edit rule was introduced, Luce (1986) remarked

that a more sophisticated method of assessing sound similar-

ity should eventually be used. He noted that the one-edit

definition of neighbors applies equal weight to segmental

substitutions wherever they occur in the word and does not

reflect the phonetic differences that would occur. For exam-

ple, /kIt/ would be considered to be as similar to /sIt/ as it is

to /kIs/. What’s more, equal weight is also assigned to any

possible segmental change, and, as such, /pIt/ would be con-

sidered to be as close to /bIt/ as it is to /nIt/, which does not

reflect how the word or phrase position of a segment influen-

ces its production. This is in spite of the fact that not all

speech sounds are equally similar to each other, which is

readily apparent whether considering the sounds from an

articulatory, auditory, or acoustic perspective.

While researchers have learned a lot about spoken

word recognition and competition from the one-edit rule and
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mail: matthew.c.kelley@ualberta.ca, ORCID: 0000-0002-7218-5599.
c)ORCID: 0000-0001-8965-7890.

J. Acoust. Soc. Am. 151 (2), February 2022 VC 2022 Acoustical Society of America 13670001-4966/2022/151(2)/1367/13/$30.00

ARTICLE...................................

https://doi.org/10.1121/10.0009584
mailto:matthew.c.kelley@ualberta.ca
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0009584&domain=pdf&date_stamp=2022-02-25


phonological neighborhood density, it is time to address

these shortcomings. In the present study, we used acoustic

distance comparisons to quantify the sound similarity

between words. We then used those comparisons to opera-

tionalize lexical competition to model responses in an audi-

tory lexical decision task and compare the results to using

phonological neighborhood density.

Previous research has not left Levenshtein distance or

the one-edit rule unquestioned. Luce (1986) detailed more

sophisticated methods of quantifying competition, ultimately

proposing the frequency-weighted neighborhood probability

rule. It incorporates lexical frequency, neighborhood density,

and phoneme confusability. Neighbors are still detected based

on the one-edit rule. However, despite the additional explana-

tory value of the frequency-weighted neighborhood probabil-

ity rule, most studies that use, analyze, or control for

phonological neighborhood effects have used the one-edit

rule and classical phonological neighborhood density

(Vitevitch and Luce, 2016). A modification to the one-edit

definition of neighbors was proposed by Kapatsinski (2005),

where neighbors are defined by having at least two-thirds of

their segments in common as assessed by Levenshtein dis-

tance. However, this modification still does not address the

original concerns about the type or position of the change. In

production, Nelson and Wedel (2017) suggested that the pres-

ence of minimal pairs was a better predictor than phonologi-

cal neighborhood density for lexical competition during

production. Switching to using the presence of a minimal

pair, though, does not resolve the concerns about the timing

or type of change to the phonetic signal when assessing sound

similarity.

It seems, then, that a method with more gradience than

binary same/different comparisons is needed to assess the

similarity of sounds. Comparisons between segments date

back at least to Saporta (1955), who used distinctive fea-

tures from English (Jakobson et al., 1952) and Spanish

(Llorach, 1950) to calculate a sort of distance between seg-

ment pairs for each language. This style of assessing the

similarity of sounds with distinctive features has found use

in many other studies (Albright and Hayes, 2006; Allen

and Becker, 2015; Frisch et al., 2004; Mohr and Wang,

1968). Other feature sets have also been used (Heeringa,

2004; Kondrak, 2000; Peterson and Harary, 1961; Sanders

and Chin, 2009). Featural comparisons may very well be

analytically useful, but it cannot be assumed a priori that

similarity measures based on them will be relevant in

acoustico-perceptual studies. From a perceptual perspec-

tive, Iverson et al. (1998) used confusion data to calculate

the phi-square coefficient, which is equivalent to the

squared Pearson correlation between binary variables

(Howell, 2008). This method was later adopted in Gahl and

Strand (2016). However, phoneme confusion data are diffi-

cult to extend to the word level, and confusion in simple

syllables may not relate well to confusion in longer words

because of context effects.

Other researchers comparing linguistic units have

instead focused on using acoustic data. Heeringa (2004)

compared formant tracks using Euclidean distance in a

dynamic programming paradigm with a speech rate normaliza-

tion to ensure a consistent duration for every segment. A short-

coming of this method for use in perceptual work is the speech

rate normalization since speaking rate is ever-present in

speech. Lewandowski and Jilka (2019) calculated acoustic

similarity based on the amplitude envelopes of specific fre-

quency bands of the signals in question using cross-correlation.

Cross-correlation, though, does not deal with temporal distor-

tions between two signals such as might occur among different

productions of the same vowel.

Johnson (1997) and Yoneyama (2002) created acousti-

cally derived exemplar models of the words. A vector-

quantization technique was used on sequences of spectra to

create the exemplars, and the vector-quantized exemplars

were compared with an exponential function of Euclidean

distance based on the quantized spectra. When exemplars

were of different lengths, an alignment algorithm was used.

As well, these representations do not truly resolve the

highlighted issues for phonemic representations. The quan-

tized spectra themselves—that is, the internal representa-

tions of the words—are discrete and effectively symbols.

Mielke (2012) introduced a method of calculating pho-

netic similarity between phone or phoneme categories. It

works with the mel-frequency cepstral coefficient (MFCC)

and delta coefficient representations of two audio signals,

which is a form of time-frequency representation for sound.

The distance is taken as the average distance between each

pairing produced by the dynamic time warping algorithm,

which finds the set of pairings between two signals that min-

imizes the accumulated distance between them while main-

taining the temporal order. This method was later adopted

by Bennett et al. (2018), who summed the distances instead

of averaging them. Bartelds et al. (2020) also used dynamic

time warping on MFCCs, delta coefficients, and delta-delta

coefficients as a measure of the pronunciation distance

between words and also used a temporal normalization tech-

nique similar to averaging. Dynamic time warping has also

been used in McCloy (2013) to align pitch and intensity con-

tours and in Kirchner et al. (2010) to create averages of

speech exemplars.

A. The present study

Demonstrably, myriad methods have been used to quan-

tify differences between words and sounds. However, fewer of

these methods have been directly compared against the one-

edit rule used to calculate phonological neighborhood density.

Gahl and Strand (2016) found that some aspects of the pho-

nological neighborhood density did not reflect perceptual

similarity, and Yoneyama (2002) reported better performance

using more acoustic comparisons. However, there has yet to

be a large-scale comparison between phonological neighbor-

hood density and more acoustically grounded methods.

The remainder of this paper describes a measure of lexi-

cal competition based on acoustic comparisons between words

and analyzes auditory lexical decision data. This paper extends
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the methods in Mielke (2012), using dynamic time warping at

the word level and in the realm of lexical competition. The

most direct acoustic notion of a word having many or few

phonological neighbors is whether a word is acoustically simi-

lar or distinct from many words. We refer to this as a word’s

“acoustic distinctiveness” and calculate this variable over a

large lexicon of speech data by using dynamic time warping.

Considering that dynamic time warping calculates dis-

tance at various time points in the signal and can handle

temporal distortion, it seems a good candidate for assessing

the similarity of sounds as long as the format of the input

captures the acoustic characteristics of the signal well.

MFCCs are a good starting place to represent speech as they

are the industry standard for speech recognition. Dynamic

time warping also addresses the concerns about the type and

position of different segmental changes to the extent that

they are present in the acoustic signal.

We wish to briefly address some conceptual and termi-

nological concerns about the output from the dynamic time

warping algorithm. Some previous work using dynamic

time warping has referred to its accumulated cost value out-

put as a “distance metric” (e.g., Bennett et al., 2018).

However, in the strict sense of a mathematical distance met-

ric, this label is inaccurate because the output of dynamic

time warping does not meet all of the criteria necessary to

be a distance metric. Bartelds et al. (2020) and Mielke

(2012) avoided this terminological problem by finding the

average or approximately average distances between aligned

MFCC vectors in the dynamic time warping output.

However, durational differences between otherwise acousti-

cally similar segments will not be penalized in the output

due to the nature of the alignment in vanilla dynamic time

warping. Such differences may actually result in a lower

average value caused by a higher prevalence of small differ-

ence values in the set of numbers over which the average is

calculated. Whereas, for spoken word recognition research,

it is desirable for such durational mismatches to be penal-

ized because duration is a cue for a variety of speech sounds

like vowels and geminates. We believe, however, that there

is an elegant solution at hand that also has a strong connec-

tion with kinematics. Specifically, acoustic distance forms

the “interior” of dynamic time warping, so to speak, when a

distance value is computed between two chunks of audio.

Then, the accumulated distance that is output is the abse-

ment between the two sequences being compared in

dynamic time warping. In kinematics, absement is the time-

integral of displacement or distance, and it is indeed the

case that dynamic time warping sums distance over time.

Absement has found use in fields such as musical instrument

design (Mann et al., 2006) and kinesiological feedback

(Mann et al., 2018). For vanilla dynamic time warping,

absement would be the lowest accumulated mismatch

between the two signals.

Our first analysis is a proof-of-concept in which approx-

imately 26 000 real word stimuli from an auditory lexical

decision experiment are compared with each other to deter-

mine an overall acoustic distinctiveness value for each word

using the concept of acoustic absement. The acoustic distinc-

tiveness measure is then used as a statistical variable to pre-

dict the response latency of the participants in auditory lexical

decision. The second analysis builds on the first but compares

different ways of representing the words in the experiment,

including using recordings from speakers that are not used in

the auditory lexical decision stimuli and applying a sequence

averaging technique to multiple recordings to create prototype

acoustic representations. These results are compared with a

statistical model that uses neighborhood density instead of

acoustic distinctiveness to predict participant response times.

The third analysis investigates the extent to which acoustic

distinctiveness and phonological neighborhood density over-

lap in the models. These analyses are followed by a general

discussion of the results and why a researcher might choose

to use acoustic distinctiveness over phonological neighbor-

hood density.

II. ANALYSES AND RESULTS

The data used in the analysis come from the freely avail-

able Massive Auditory Lexical Decision (MALD) data set

(Tucker et al., 2019). MALD is an auditory lexical decision

megastudy with about 27 000 real words recorded by a young

male speaker of western Canadian English. Each word was

responded to in an auditory lexical decision task at least 4

times from among 231 unique participants, who were also

native speakers of western Canadian English, for a total of

227 129 data points (including responses to both real words

and pseudowords). Stimuli sets were also recorded for two

other speakers, a young female and an older male, both of

whom are native speakers of western Canadian English.

These other recording sets will be crucial for further develop-

ment and testing of the acoustically based measures of com-

petition detailed later in the present study. As such, only

words that are common between these three speakers will be

used such that no particular word is left incomparable in

the different representations developed herein. In total, there

were 26 005 words in common between the speakers.

Further details on the recording process for the young

male speaker, the auditory lexical decision task, and the var-

iables included in the data set are available in Tucker et al.
(2019). The young female and older male speakers were

recorded in a similar environment and with similar methods

and equipment as for the young male speaker.

A. Analysis 1

The first analysis used the stimuli from the auditory lex-

ical decision task itself as templates to compare against each

word. In this way, a word was acoustically represented as

the frequency information in its associated recording.

1. Calculating acoustic distinctiveness

Each word was first converted to an MFCC representa-

tion similar to that in Mielke (2012). At a high level, this

process converts the waveform of the audio into a transform

of the frequency representation, which is similar in some
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ways to a spectrogram. More specifically, this process

involves multiplying the frames of the signal with a window

function like a Hamming window, calculating mel filter-

banks for each windowed frame, and determining the ceps-

tral coefficients for each filterbank with a discrete cosine

transform. In the present analysis, a typical format used in

speech recognition was selected in which the window length

was 25 ms and the step size for the windows was 10 ms.

Thirteen coefficients were calculated, and the zeroth coeffi-

cient was replaced with the log energy of the frames.

The delta and delta-delta coefficients were not calcu-

lated, unlike the standard practice in speech recognition and

in Bartelds et al. (2020) and Mielke (2012). The choice not

to calculate them in the present paper was made on the

grounds that the goal is to calculate the distance between

the time slices in the signals, and it does not make sense to

use derivatives in such calculations. To motivate this choice,

consider the question of how many kilometers there are

between Edmonton and Calgary. A response of “How fast

will you be going?” would not address the question because

the distance does not depend on the rate of travel.

The choice not to use delta and delta-delta coefficients

should not be interpreted as discounting the importance of

spectral change on speech perception and spoken word rec-

ognition. Indeed, it has already been demonstrated that lis-

teners are sensitive to spectral change in speech (Nearey and

Assmann, 1986; Souza et al., 2015). Additionally, note that

spectral change still comes to bear on the absement value

from dynamic time warping because the MFCC representa-

tion itself changes over time. Yet, folding rate of change

variables into the acoustic representation disturbs the natural

kinematic metaphor between distance and absement and

makes it more difficult to reason about the variables used in

our modeling. We are, as such, being intentionally strict

with our terminology, here, to be able to isolate and test the

effect of local distance accumulated into global absement on

spoken word recognition.

Once the words were converted to an MFCC-by-time

representation using the MFCC.JL package (version 0.3.1,

van Leeuwen, 2019) in the JULIA programming language

(version 1.4.2, Bezanson et al., 2017), each individual

word was acoustically compared to all of the other words

and itself using the dynamic time warping algorithm. There

was one instance of each word in the data set. After com-

paring each word to all of the words, the mean of its abse-

ment to all of the words was calculated. This mean value

was taken as an indicator of the word’s acoustic distinctive-

ness or how distinct it is, on average, from all of the words

in the lexicon. In terms of graph-theoretic (Vitevitch, 2008)

and network scientific approaches to modeling connections

between words in the lexicon (Vitevitch, 2021), the

connections are modeled as a complete graph with the

addition of a word being connected to itself. The weight

on each connection is acoustic absement. The acoustic dis-

tinctiveness value would then be the average connection

weight of the word. These calculations were performed

using the PHONETICS.JL (version 0.1, Kelley, 2020) and

DYNAMICAXISWARPING.JL (version 0.2.5, Bagge Carlson,

2020) packages.

There were some words left over from the recording

process for the MALD data set. They were not responded to

in the lexical decision task because there were not enough of

them to make an additional experimental session. These

words were used in calculating acoustic distinctiveness for

other words, but the acoustic distinctiveness values of those

words themselves were not used in the modeling process.

2. Statistical analysis

The acoustic distinctiveness values correlated highly

with the duration of the stimuli (r¼ 0.89, p< 0.001). This is

to be expected, however. The interval over which the acous-

tic distances are summed to calculate absement between

word pairs is linearly related to the duration of the stimuli

(modulo some zero padding for the final window on which

the MFCCs are calculated). And, in this case, absement

increases monotonically over time. The high correlation

does not mean that these variables are the same, however.

Consider that f ðxÞ ¼ x2 and g(x) ¼ x are also very highly

correlated when x is strictly positive, yet, it is clear that x2

and x are not equivalent.

What the correlation between duration and acoustic dis-

tinctiveness means, practically, is that they should not both

be in the model at the same time if the results are meant to

be interpretable. We also believe that absement and, by

extension, acoustic distinctiveness provide a characteriza-

tion of the role that duration plays in the modeling. That is,

absement describes what is happening over the duration of

the stimulus, and as a result, it more clearly represents

speech processing than duration. To draw a more concrete

example, consider trying to model the fuel efficiency of a

car. It is standard to quantify fuel efficiency as the ratio of

distance to volume of gasoline used, such as in miles per

gallon or liters per 100 km. However, one could also model

the ratio between time spent driving and the amount of gaso-

line used, which would also index a car’s fuel efficiency.

The ratio of time to volume of gasoline is related but not

equivalent to the ratio of distance driven and volume of gas.

Yet, measuring fuel efficiency with time does not capture

the crucial relationship between gasoline consumption and

speed of travel, where faster speeds use more gasoline and

reduce travel time. As such, without appealing to other fac-

tors, time spent driving obviously does not afford the same

potential for explanation in a model of fuel efficiency as the

actual distance driven does. The same holds for the relation-

ship between stimulus duration and absement/acoustic dis-

tinctiveness: The time it takes to hear a word does not give

the same amount of information regarding perception as the

accumulated acoustic differences between a word and other

words in a language.

Theoretically, the general relationship between phono-

logical neighborhood density and acoustic distinctiveness is

inverse. Where phonological neighborhood density is high,

acoustic distinctiveness is low and vice versa. The reason

for this relationship is that acoustic distinctiveness is a
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measure of how acoustically unique a word is in the lexicon,

whereas phonological neighborhood density is a measure of

how similar a word is to other words. This relationship is

reflected in the linear correlation value of �0.30 between

these two variables in the data used for modeling.

The acoustic distinctiveness values were used as a pre-

dictor of the response latency in generalized additive mixed

models (GAMMs) using the MGCV (version 1.8.3, Wood,

2011) and ITSADUG (version 2.3, van Rij et al., 2017) pack-

ages in the R programming language (version 3.6.3, R Core

Team, 2020). GAMMs were chosen to model nonlinear rela-

tionships between the variables. We feel that modeling pos-

sible nonlinear relationships is especially important when

introducing a new variable. Response time was measured

from stimulus offset to help factor stimulus duration out of

the response time values themselves. These response times

were then logged. Only the correct responses to real words

made after stimulus offset were retained. This restriction

leaves 96 001 responses for the modeling process.

Model fitting consisted of a forward-fitting process for

the random structure, where complexity was gradually

added based on the f restricted maximum likelihood score

(fREML) as suggested in van Rij et al. (2017). The fixed-

effect structure was fit analogously but complexity was

gradually removed instead of added. This backward-fitting

process resulted in a smooth term for age, a smooth term for

education level, and a parametric term for sex being

removed from the model for not contributing to the overall

fitness of the model. The final model had fixed smooth terms

for trial number, log frequencyþ 1 from the Corpus of

Contemporary American English (COCA, Davies, 2008),

acoustic distinctiveness, phonological uniqueness point, and

log moving average response latency. The phonological

uniqueness point of a word is the point at which the word

can be uniquely identified from among all other competitors,

and it has been found to be predictive of participant behav-

ior in spoken word recognition (Tucker et al., 2019;

Marslen-Wilson and Zwisterlood, 1989). The log moving

average response latency is a decaying average of a partici-

pant’s previous responses. It was calculated using the algo-

rithm from ten Bosch et al. (2018) with the a variable set to

0.1 globally. Phonological uniqueness point and log moving

average response latency were included in the model as con-

trol variables.

The random effect structure consisted solely of a

by-subject random intercept. Adding random slopes did not

significantly improve the model fit. By-item random inter-

cepts were not included in the model because the models

took a prohibitively long time and large amount of RAM to

run. Additionally, most items had four or fewer responses

after subsetting, thus, the explanatory power added by having

the by-item random intercepts is small, and the potential for

overfitting increases.

The best model from the model-fitting process was then

subjected to model criticism as outlined in Baayen and

Milin (2010). There was a left skew in the distribution of the

residuals, and, as such, the observations associated with

residuals that were greater than 2.5 standard deviations from

the mean residual value were dropped (n¼ 2386 or 2.49%

of the data used for the model fitting), and the model was

refit. The table of coefficients for the fixed smooth terms in

this model can be viewed in Table I.

The smooths for the control variables were as expected.

And, a plot of the smooth effect of acoustic distinctiveness

can be observed in Fig. 1. Smooth effect plots for the other

effects are provided in the supplementary material.1 The

relationship is monotonically decreasing, with the amount of

decrease leveling off at the higher values of distinctiveness.

That is, words that are acoustically similar to many other

words are responded to more slowly. Analogously, words that

are acoustically distinct from many other words are

responded to more quickly. In the frame of competition,

words with many potential competitors (words that are acous-

tically similar to many words) are responded to more slowly

and words with few potential competitors (words that are

more acoustically distinct) are responded to more quickly.

This is the same general trend as was reported for phonologi-

cal neighborhood density, at least for English (Luce and

Pisoni, 1998). In terms of speech perception, these results

TABLE I. The coefficients for the GAMM after model criticism.

Predictor edf Ref.df F p-value

Trial number 3.32 4.12 23.22 <0.001

Log COCA frequencyþ 1 5.76 6.72 333.01 <0.001

Acoustic distinctiveness 5.39 6.59 1154.60 <0.001

Phonological uniqueness point 5.62 6.53 441.76 <0.001

Log moving average

response time (RT)

8.41 8.91 540.72 <0.001

FIG. 1. The smooth effect for the acoustic distinctiveness values when all

of the other predictors are held constant. The y axis is the response latency

after backtransforming from the log scale. The x axis is the centered and

scaled acoustic distinctiveness. Each point in the function represents how

much additional time it would take to respond to a word with that

particular acoustic distinctiveness value.
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suggest that it takes longer for the competition process to

play out in the mind when hearing a word that sounds like

many other words.

Concurvity was also calculated for this model. The

results are reported in Table II. Concurvity is a generaliza-

tion of collinearity for nonlinear trends (Wood, 2011).

Because GAMMs model nonlinear trends, it is appropriate

to use concurvity here. The measures of concurvity from

MGCV use a similar scale as correlation, where a value of

zero means no concurvity and a value of one means indis-

cernibility from other smooths, although the intermediate

values cannot necessarily be mapped onto standard correla-

tion thresholds.

Of the three indices that MGCV provides, we chose to

interpret the “observed” index. While the documentation

suggests that this measure is possibly optimistic (underesti-

mates) about how much concurvity is in the model (Wood,

2020), it is close to the worst case for concurvity in our data.

We also prefer that it measures the concurvity present in the

data given the GAMM coefficients that the fitting process

determined. For a given smooth term, the index can be

thought of as the proportion of its effect that can be explained

using other smooth terms. We provide a deeper explanation of

these indices in the supplementary material.1

As far as we are aware, there is not yet a systematic

way to interpret the concurvity values as indicators of differ-

ent kinds of statistical errors. Nor is there a consensus on

when the values begin to become concerning. Johnston

et al. (2019) used a provisional cutoff of 0.3 in the indices

as an indication of a potential problem regarding which vari-

ables to include. For our purposes, however, such a calibra-

tion is not strictly necessary because we are not using the

concurvity measures as a method of determining which vari-

ables to include in a model. Rather, we are interested in

determining the extent to which an effect, such as that of

phonological neighborhood density, is explained by all of

the other predictors in the model. In this case, we believe

that a cutoff of 0.5 is appropriate. The interpretation of this

cutoff is that a concurvity measure above 0.5 suggests that a

majority of a predictor’s effect can be explained by other

terms in the model.

There is one predictor for which the measure crosses

our threshold—that of the log moving average reaction

time. It is a control predictor that does not really relate to

the research questions. Thus, it is not really a concern for

the interpretation of acoustic distinctiveness in the model.

Still, an examination of the pairwise measures of concurvity

from the CONCURVITY function shows that much of the high

concurvity value is due to the random intercept for subject,

where the value of the observed index was 0.49. The con-

curvity between the log moving average reaction time and

the random intercept subject is to be expected, though,

because the log moving average reaction time is calculated

on a by-subject basis.

There are some implications for speech processing to

be gleaned from the effect of acoustic distinctiveness in the

model presented here. First, it would seem that competition

effects can be modeled using data directly derived from

physical measurements of the acoustic signal. The MFCC

templates used for calculating acoustic distinctiveness are

based on the acoustic productions of the speaker, and each

coefficient in each frame of the template indicates frequency

information. If competition were to first arise at an abstract,

symbolic level—like that of phonemes—acoustic distinc-

tiveness should not have had a great effect in modeling the

response latencies because it would not connect directly to

the cognitive information that is producing the competition

effect. However, because acoustic distinctiveness produced

a competition-style effect in the model, it challenges the

idea that word-level competition plays out among the candi-

dates represented as symbol strings (e.g., phonemes or

diphones) and not acoustics, such as was suggested by the

networks in TRACE (McClelland and Elman, 1986) and

TISK (You and Magnuson, 2018).

Overall, these results show that calculating acoustic dis-

tinctiveness by comparing sequences of MFCC values pro-

duces a useful predictor for response latencies in the

auditory lexical decision task. Due to its high correlation

(and, likely, high concurvity) with item duration, acoustic

distinctiveness may account for roughly the same portion of

variance in the data that the duration does. However, acous-

tic distinctiveness has a clearer relationship to the signal and

other items in the lexicon than does duration. This is a par-

ticularly important point because duration is often included

in models as a control predictor for nuisance variance,

whereas that same variance can be more easily related to

competition when using acoustic distinctiveness as a predic-

tor. Additionally, in our data, phonological neighborhood

density is more correlated with duration (r ¼ �0:46) than

with acoustic distinctiveness (r ¼ �0:30). From a modeling

perspective, the effects of the lexical predictors in the model

may be more easily interpreted when using acoustic distinc-

tiveness than when using duration due to the lower amounts

of multicollinearity or concurvity. Acoustic distinctiveness

may, thus, be preferable over duration in this scenario.

However, there is a potential shortcoming of using the

stimuli themselves as the templates against which the stim-

uli are compared to find their acoustic distinctiveness.

Namely, it is not very ecological to the prior experience of a

listener. Regardless of what the structure of the lexicon may

TABLE II. The estimated concurvity for the smooths in the GAMM model.

A value of zero indicates no concurvity and a value of one indicates indis-

cernability of the effect among other smooths.

Concurvity index

Predictor Worst Observed Estimate

Trial number 0.21 0.14 0.10

Log frequencyþ 1 0.16 0.12 0.13

Acoustic distinctiveness 0.31 0.30 0.23

Uniqueness point 0.24 0.21 0.20

Log moving average RT 0.57 0.57 0.47

Subject 1.00 0.24 0.01
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be or what the mechanisms of speech processing are, an

adult listener will have experience with a wide variety of

speakers. New stimuli will be compared against this sum

total experience rather than just the experience relating to

the speaker that is currently being listened to. As such, the

next analysis focuses on comparing templates created from

different and multiple speakers and assessing how well they

match the lexical decision data with attention also paid to

how they compare to phonological neighborhood density.

B. Analysis 2

To answer the question of how using different and mul-

tiple speakers to create templates for calculating acoustic

distinctiveness and how these compare to neighborhood

density, acoustic distinctiveness values were calculated sim-

ilarly to those in analysis 1. This time, the recordings of

additional speakers were used. These were the previously

mentioned young female and older male speakers. Both of

these speakers’ recordings were used as the template sets for

determining the acoustic distinctiveness of the stimuli used

in the lexical decision task. Additionally, the values were

calculated using each possible combination of the speakers

as templates by using a sequence averaging technique of the

words. Each of these instantiations of acoustic distinctive-

ness was also compared against phonological neighborhood

density. The motivating hypotheses were (1) that if the

acoustic representation is abstracted enough away from the

raw signal, using a different speaker’s recordings as the tem-

plates should also provide an indication of lexical competi-

tion, and (2) because a listener has multiple experiences

with a given word’s acoustic characteristics, using an aver-

age of the multiple speakers’ recordings should produce a

template that is closer to a listener’s cognitive representa-

tion, providing a better index than a single speaker would.

The different templates compared were all possible subsets of

the three speakers: (1) the young male speaker, (2) the young

female speaker, (3) the older male speaker, (4) the average of

the young male speaker and the young female speaker, (5)

the average of the young male speaker and the older male

speaker, (6) the average of the young female speaker and the

older male speaker, and (7) the average of all three speakers.

1. Calculating average sequences

The averaging process used was dynamic barycenter

averaging (Petitjean et al., 2014, 2011), and this process was

designed for time series data, generally. We started with the

MFCC-by-time representations described previously. Next,

the medoid of the sequence was found. The medoid is a cen-

tral tendency—similar to the mean and median—for a set of

data. It is the element in the data set which is closest to all

of the other elements in the set given a cost function. In this

case, the absement between the sequences (dynamic time

warping cost) was used as the cost function to minimize.

Here, the medoid is found by computing all of the pairwise

absement values and choosing the recording with the lowest

summed absement to the other recordings.

The medoid is taken to be the time series that will be

modified to find the average sequence. Subsequently, the

medoid is mapped onto each time series with dynamic time

warping. In doing so, each frame of the current average

sequence is mapped onto the relevant frames in the other

time series. Each frame in the current average sequence is

then replaced with the average (or barycenter) of all of the

frames mapped to it during dynamic time warping. The pro-

cess is repeated iteratively until a convergence criterion is

met, and the resulting sequence is taken as the average. This

process was performed using the AVGSEQ function in the

PHONETICS.JL package.

Conceptually, this averaging process is similar to that

of Kirchner et al. (2010), who also used dynamic time warp-

ing to create a type of average of the exemplars, although

the algorithm and representation were different.

2. Statistical analysis

To compare the effects that each of the different methods

of calculating acoustic distinctiveness had on the model, the

same model from analysis 1 but without the acoustic distinc-

tiveness variable was taken as a baseline model. The acoustic

distinctiveness values from the different calculation methods

were then added to the model separately, and the changes in

the fREML values were observed. The change was also

observed for adding phonological neighborhood density.

When comparing to the baseline model, there was a decrease

in the fREML for each method used to calculate the acoustic

distinctiveness as well as for phonological neighborhood

density. The magnitudes of these decreases are presented in

Fig. 2. The fREML decreases support both hypotheses out-

lined for this analysis. The second hypothesis was not fully

supported, though, because using the young male speaker’s

recordings as the templates produced the greatest increase to

model fitness. This is not completely unexpected as his

recordings are naturally going to be closer to each other than

they are to other speakers’ recordings.

By a large margin, neighborhood density provided the

least improved model fit when compared to the baseline

model. However, based on the fREML value, there is a sig-

nificant increase in the fitness from the baseline model.

Generally, all of the templates that included the speaker of

the stimuli for the lexical decision task increased the model

fitness the most.

What is more striking is that using the productions of

the older male speaker as the templates to compare the

experimental stimuli against does not improve the model fit-

ness to the same degree as the other acoustic distinctiveness

values. It suggests that the speech of the older male speaker

is not a good model for the younger male speaker due to the

greater acoustic differences. Conversely, the larger increases

to model fitness from the other acoustic templates could be

taken to indicate more acoustic similarity between the tem-

plates and stimuli. Support for this idea is also found in the

fact that using the recordings of the younger male speaker

as the templates produces the greatest increase to model
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fitness. These results also suggest that age differences pro-

duce greater acoustic differences in the production than do

sex differences. The results also suggest that acoustic repre-

sentations based on single speakers run the risk of creating

idiosyncratic models of speech that may not effectively cap-

ture the important acoustic aspects of words.

Concurvity was also checked for each model, and the

results were similar to those in analysis 1 with the exception

of the model that used neighborhood density instead of acous-

tic distinctiveness. In that model, the observed concurvity

index for neighborhood density was 0.51. In the pairwise

observed concurvity indices, phonological neighborhood den-

sity was most concurved with uniqueness point at a value of

0.39 and log frequency at a value of 0.23. Overall, these con-

curvity results suggest that a slight majority of the smooth for

phonological neighborhood can be explained using the other

variables in the model. Specifically, a moderate amount of

the concurvity in the model is due to the uniqueness point

and log frequency.

In the face of these observations, it is clear that acoustic

distinctiveness increases the model fitness more so than

neighborhood density. Overall, this indicates that acoustic

distinctiveness is a better predictor of response times in the

model. Treating acoustic distinctiveness as an indicator of

lexical competition, these results imply that competition is

better measured using acoustic representations that are

closer to the observed data than phoneme sequences. And,

acoustic distinctiveness is closer than phonological neigh-

borhood density to a literal reading of the phrase “sound

similarity,” which underlies the idea of phonological neigh-

bors, i.e., words that sound similar.

What’s more, the results suggest that this measure can

be generalized to be used in future research that does not

necessarily use the MALD stimuli. Because various speak-

ers or combinations thereof can be used as templates for the

stimuli in the experiment without destroying the effect of

acoustic distinctiveness, a database could be produced that

contains a large number of templates. A researcher could

then input their stimuli to a program that would compare the

stimuli to the items in the database and provide an acoustic

distinctiveness score for the stimuli.

It is still unclear, though, if acoustic distinctiveness val-

ues represent the same kind of information as neighborhood

density does. To answer this question, a third analysis was

performed, which examined the degree to which neighbor-

hood density further increased model fitness for models that

already had distinctiveness values as predictors.

C. Analysis 3

To answer the question of whether the acoustic distinc-

tiveness and neighborhood density capture similar information

about competition, a third analysis was performed. The moti-

vating hypothesis is that if neighborhood density and acoustic

distinctiveness are measuring the same thing and accounting

for the same variance in the data, adding neighborhood den-

sity to a model that already has acoustic distinctiveness should

not significantly increase the model’s goodness of fit.

1. Statistical analysis

Phonological neighborhood density was added to each

of the models with acoustic distinctiveness from analysis 2,

and the changes in the fREML values were observed. The

fREML decreased for each model, and the magnitude of the

decreases are presented in Fig. 3. Overall, neighborhood

density contributed significantly to improving the fitness of

all of the models, which is taken as evidence against the

idea that acoustic distinctiveness and phonological neigh-

borhood density represent closely related information about

the lexicon.

Note that the level of the fREML decrease (that is, the

level of the model fitness increase) was greatest for the

model using the older male speaker’s recordings as the tem-

plate for acoustic distinctiveness. There is a parallel to the

finding in analysis 2 in which using the recordings of the

older male speaker as the templates increased the model fit-

ness the least amount compared to the other acoustic distinc-

tiveness values. Together, these results imply, again, that

using the productions of the older male speaker as the tem-

plates for the productions of the younger male speaker is a

worse fit, potentially due to greater acoustic differences

between the two speakers.

A similar trend to those from analysis 2 is observed in

the concurvity values for the models in the present analysis.

The best case for phonological neighborhood density was

when it was added to the model using the recordings of the

older male as templates. In this case, phonological neighbor-

hood density had an observed concurvity index of 0.53 with

FIG. 2. (Color online) The fREML differences between the acoustic dis-

tinctiveness calculations and neighborhood density. All of the changes were

decreases, indicating a better model fit. The larger values indicate greater

increases to the model fitness. “YM” refers to the young male speaker,

“YF” refers to the young female speaker, and “OM” refers to the older male

speaker.
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uniqueness point, log frequency, and acoustic distinctive-

ness values being the greatest contributors in the pairwise

comparisons with values of 0.40, 0.23, and 0.12, respec-

tively. The worst case for phonological neighborhood den-

sity was the model using the recordings of the young female

as templates, in which neighborhood density had an

observed concurvity index of 0.55 with values of 0.41, 0.23,

and 0.21 for uniqueness point, log frequency, and acoustic

distinctiveness, respectively. The concurvity values for

acoustic distinctiveness were largely similar to those in anal-

ysis 1. For the model with the templates from the young

female, the observed index on the full model was 0.37 with

its largest values in the pairwise comparisons being 0.23,

0.13, and 0.25 for neighborhood density, log frequency, and

uniqueness point, respectively.

In sum, the better that the acoustic representation con-

tained in the templates matched the stimuli, the more that

acoustic distinctiveness explained parts of the effect of the

neighborhood density. Further, against the hypothesis

motivating this analysis, it may not be possible for acoustic

distinctiveness to completely subsume the effect of neigh-

borhood density because they appear to be measuring differ-

ent phenomena, even if there is some overlap. There are at

least three possible reasons for this difference. (1)

Neighborhood density relies on phonological, phoneme-

based representations, which are multiple degrees removed

from the observed acoustic signal, whereas acoustic distinc-

tiveness does not. (2) The reliance of phonological neigh-

borhood density on phonemes may cause it to be

confounded by the effects of orthography. (3) Phonemic rep-

resentations may capture some level of abstractness that is

not currently captured in the way that acoustic distinctive-

ness is calculated. The remaining question is whether what

remains of the effect of the neighborhood density in the

presence of acoustic distinctiveness is still relevant to sound

similarity.

III. GENERAL DISCUSSION

The overall results presented in the current study are that

acoustic distinctiveness significantly predicts response laten-

cies in auditory lexical decision, acoustic distinctiveness is

more predictive than phonological neighborhood density in

statistical models, and there is a degree of conceptual and

statistical overlap between what acoustic distinctiveness and

phonological neighborhood density are measuring. The over-

lap, however, did not seem to rise to the level at which it

could be said that neighborhood density and acoustic distinc-

tiveness are measuring the exact same thing. Although both

measures can be interpreted as some indication of lexical

competition, in reality, it should be clear that they are not the

same. Acoustic distinctiveness measures an average tendency

of how well a given word acoustically matches all of the

words in the lexicon in the form of absement. Phonological

neighborhood density provides an index of approximately

how many words there are that sound like a given word based

on the one-edit rule.

Looking back to the initial investigations using phono-

logical neighborhood density, the focus was on examining

the role of the structure of words on the lexical competition

(Luce, 1986). Structure was taken to be sound patterns,

which can have a variety of representations. It could be a

sequential string of phoneme-like units, a series of acousti-

cally derived values, the intensity-by-time signal itself, etc.

The one-edit rule was seemingly chosen simply as a tool to

model lexical competition and not strictly because of the

theoretical motivations for how words are represented in the

mind. As such, it stands to reason that what is important in

any index of lexical competition is that it models trends

observed in the data. Similarly, it does not appear that what

is understood about lexical competition based on sound sim-

ilarity is married to phonological neighborhood density

itself.

The decision of whether to use phonological neighbor-

hood density or acoustic distinctiveness should be based on

the merits of what assumptions the measures make about the

lexical representation and what trends they can predict. To

begin, it is informative that acoustic distinctiveness and pho-

nological neighborhood density do not share a high level of

correlation. Were this the case, it would suggest that they

could be operationalizing the same characteristics of words

as each other and would be interchangeable for nontheoreti-

cal reasons. Rather, replacing phonological neighborhood

density with acoustic distinctiveness must be predicated on

theoretical reasons. These reasons may be on the basis of

representation, in that they concern the nature of lexical rep-

resentations; applicability, in that one of the measures can

explain something another cannot; statistics, in that one of

the measures provides a better fit to the data; or feasibility,

in that the measure can be calculated easily and efficiently

FIG. 3. (Color online) The fREML differences between the acoustic dis-

tinctiveness calculations and the neighborhood density. All of the changes

were decreases, indicating a better model fit. The larger values indicate

greater increases to model fitness.
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by researchers without being experts in high-performance

computing.

Concerning the representational reasons, the principal

question is how a word is represented in the mind.

Phonological neighborhood density relies on an assumption

that lexical entries take the form of strings of phonemes.

Whereas, acoustic distinctiveness makes an assumption that

the lexical entries contain some sort of acoustic representa-

tion. Inherently, acoustic distinctiveness is less well-defined

as a concept because acoustic representations can take many

forms. In the context of the present study, the acoustic repre-

sentations were taken as sequences of MFCC frames or,

otherwise, as sequences of frequency information. A repre-

sentation based on acoustics is similar in spirit to approaches

to phonetic and psycholinguistic analyses that do not coerce

the continuous acoustic or articulatory signal to the discrete

symbols (Baayen et al., 2016; Goldinger and Azuma, 2003;

Kohler, 1995; Pike, 1943; Port and Leary, 2005). We are not

arguing for or against phonemes or abstraction more gener-

ally, but using acoustic absement and acoustic distance may

form the basis of describing how sound-level contrast works

on an acoustic level.

In spoken word recognition, it is definitional that the

acoustic signal itself will come to bear on how words are

recognized. The question is whether it is also necessary for

discrete symbols like phonemes to be recognized or if some

less abstract, acoustic features suffice for representing words

in the lexicon. The averaged MFCC sequences in a word

represent a level of abstraction between the raw signal and

phoneme strings. Discrete symbols are convenient as a rep-

resentation for words because they are static. Although, pro-

vided that a sufficient number of observations are available

for any given word, it is likely that the average sequence

would converge toward one sequence to represent that word.

This average representation would be such that the addition

of new observations similar to the representation does little

to alter the average sequence if there is nothing particularly

novel about the new exemplar. In other words, the sequence

is stable and quasi-static. And, this point leads to the ques-

tion of the applicability to future research since the pro-

cesses of creating the acoustic specifications associated with

acoustic distinctiveness are transparent and can be mapped

to a variety of linguistic phenomena.

One such linguistic phenomenon is when a listener

adapts to an unfamiliar speaker or accent, the latter of which

seems to require rapid updating of cognitive representations

or processing (Adank and McQueen, 2007; Clarke and

Garrett, 2004). Using the acoustically specified lexical

entries, this process can be modeled as adding additional

observations to the lexical entries that must be incorporated

into the representation. Empirical data could be gathered

from a variety of speakers to examine how the representa-

tion changes with each new speaker. This process can still

be modeled when assuming that phonemes are the units of

lexical representation, possibly as the listener adjusting the

weights they have in the connections between the acoustic

information and phonemes. However, it is unclear how this

process might be simulated or modeled effectively when

using phonemic strings as the representations for words

instead of acoustics. The conclusion in Ohala (1996)

highlighted some of the difficulties and potential remedies to

finding invariant cues for phonemes such as looking for cues

to diphones or different sets of features. But, to date, the con-

stellations of cues that unvaryingly lead to the perception of

phonemes are unknown, if such invariant cues exist at all.

An example of where it is not possible to use phonolog-

ical neighborhood density is the analysis of perception relat-

ing to homophones. By definition, homophones will have

the same phonemic representation. However, production dif-

ferences in homophones have been found previously (Gahl,

2008; Lohmann, 2018; Seyfarth et al., 2018; Warner et al.,
2004). Warner et al. (2004) also found that listeners are sen-

sitive to these production differences. Any study wishing to

examine the perceptual differences of homophones will not

be able to use phonological neighborhood density to tease

out these perceptual effects because it will be the same for

the homophone pairs. Acoustic distinctiveness, however,

has the potential to be used in such studies because it allows

for more granular representations of words that can be sensi-

tive to the differences in production. It would also be appli-

cable to studies examining the effects of speech production

on perception, where phonological neighborhood density

could not.

Turning now to the statistical reasons for using either

phonological neighborhood density or acoustic distinctive-

ness over the other, the case for acoustic distinctiveness is

stronger. The analyses presented in the current study show

that acoustic distinctiveness is more predictive than neigh-

borhood density in a variety of different methods of deriving

the acoustic representation. Whether using the stimuli that

were being presented to the participants, recordings of the

same words by different speakers, or averages of the record-

ings, acoustic distinctiveness increased the model fitness

more so than did neighborhood density. Phonological neigh-

borhood density showed moderately concerning concurvity

levels over 0.5 in our models, whether acoustic distinctive-

ness was in them or not. The parts of phonological neigh-

borhood density that were not subsumed by acoustic

distinctiveness, lexical frequency, and uniqueness point may

not have to do with lexical competition either. Because pho-

nological neighborhood density uses letter-like units, it is

possible that part of the observed effects of phonological

neighborhood density is due to the effects of orthography,

which has been found to have profound and varied effects

on speech perception (Mukai et al., 2018; Perre and Ziegler,

2008; Taft et al., 2008; Ziegler and Ferrand, 1998).

Although, demonstrating such a connection would require

further research. Nevertheless, our results suggest that using

acoustic distinctiveness in place of neighborhood density

would reduce the chance of encountering concurvity or col-

linearity issues during regression modeling.

There are also task-related reasons why one might

choose to use acoustic distinctiveness over phonological

neighborhood density or, possibly, vice versa. Such a choice
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should, in principle, be motivated by the differences in what

the two variables represent. Namely, it seems that acoustic

distinctiveness is a better fit to the stimuli itself, whereas

phonological neighborhood density may be a better fit to

more abstract representations of the stimulus. When a task

deals more in how acoustic differences contribute to speech

perception and spoken word recognition—such as speech in

noise tasks—acoustic distinctiveness will more closely

relate to the task. As acoustic distinctiveness and absement

are calculated using production data, they may also have a

clearer link to the production tasks in which certain speech

patterns arise based on lexical competition (Gahl, 2015;

Wright, 2004). Moreover, effect trends of phonological

neighborhood density can change depending on whether it is

being used in perception or production tasks or the language

it is being used to analyze (Vitevitch and Rodr�ıguez, 2005).

Although empirical evidence still needs to be gathered, it is

possible that acoustic distinctiveness will provide a more

uniform effect across tasks and tested languages. It will, at

least, either counterbalance or bolster the effects observed

with phonological neighborhood density.

In terms of feasibility, phonological neighborhood density

has some factors in its favor. It is easier to program, especially

compared to the average sequencing procedure. Note, how-

ever, that the Levenshtein distance used in neighborhood den-

sity is a dynamic programming algorithm just like dynamic

time warping; as such, the implementation differences

between them are slight. Neighborhood density also uses tex-

tual data, which is easier to manipulate and gather, and it takes

up less hard drive space. However, some steps can be taken

for acoustic distinctiveness to make it more accessible to

researchers. It can be incorporated into software packages,

such as PHONETICS.JL, which will give researchers an accessible

programmatic interface for calculating it on their stimuli.

Additionally, we have made our acoustic absement compari-

sons and distinctiveness values available in Kelley and Tucker

(2021) for other researchers to be able to use acoustic abse-

ment in their own work. We have also added acoustic distinc-

tiveness as a variable to the MALD data set (Tucker et al.,
2019).

There are, thus, various reasons to favor the use of acous-

tic distinctiveness over phonological neighborhood density,

defined using the one-edit rule and Levenshtein distance.

Representationally, the acoustic representations of lexical

items can provide more transparent explanations of phenom-

ena than phonemic representations. In terms of applicability,

acoustic distinctiveness seems usable for a wider variety of

experiments performed in phonetic and linguistic research.

Statistically, acoustic distinctiveness contributes more to

model fitness than phonological neighborhood density and

does not seem to have the possibility of being confounded

with the effects of orthography. For those reasons, we believe

that the time has arrived to reconsider quantifying lexical

competition with the one-edit rule and phonological neighbor-

hood density with some considerations given to the experi-

mental task. The recent increases in computational power and

quantity of data obviate some of the technical reasons to use

the one-edit rule on textual representations of words to assess

sound similarity. Future research can build on the concept of

absement to measure lexical competition and sound similarity

acoustically.

One specific improvement would be to ensure that the

acoustic representations can account for the acoustic cues

known to be relevant in speech perception. It is also crucial

to develop acoustic representations based on more than just

three speakers’ recordings, especially so as to avoid the

problem of using the experimental stimuli themselves in the

acoustic template. It will also be necessary to use acoustic

distinctiveness and acoustic distance in modeling spoken

word recognition in non-English languages. The results pre-

sented in the present study are intended to be applicable

cross-linguistically, but it cannot be determined whether

these results are indeed valid across languages until future

experiments are conducted. Alternative representations

should also be explored, such as those using functional data

analysis discussed in Pigoli et al. (2018) or using the encod-

ing that an off-the-shelf automatic speech recognition sys-

tem has learned. Other representation formats may also

allow for more local, fine-grained acoustic differences, such

as formant transitions, to be better accounted for. It may

also be fruitful to explore the methods used in Kirchner

et al. (2010). Finally, future research may need to further

investigate more explicit measures of spectral change, like

total variation as was used in Kelley and Aalto (2019). By

so doing, listener sensitivity to the rate of spectral change

can be accounted for when necessary.

IV. CONCLUSION

The present paper began by discussing the activation/

competition metaphor in language comprehension and

discussed a common operationalization of competition,

phonological neighborhood density. It was observed that

acoustic distinctiveness is a stronger predictor of competi-

tion effects than phonological neighborhood density is, even

if they do not completely account for the same information.

Although competition has often been reasoned about

using abstract symbolic forms, acoustic distinctiveness

opens the door to thinking about competition in terms of

acoustics. Lexical representations may encode acoustic

information itself rather than acoustics being a mere tool to

get to the abstract symbols used for representation. Similar

suggestions about acoustics being part of lexical representa-

tions have been made by Johnson (1997), and work like that

in Mullennix et al. (1989) has highlighted the importance of

acoustic information in lexical modeling. On a related note,

the sequencing of the onset of competition effects may be

earlier than once thought, beginning while acoustic informa-

tion is being processed, and future models of spoken word

recognition will need to be intentional in how they depict

the sequencing of processing and competition.

The advent of large databases of speech and more pow-

erful computers has ushered in the possibility of refining the

notion of phonological neighborhoods. The initial concerns
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of Luce (1986) may finally be addressed, and characteristics

of acoustic data can now play a larger role in understanding

the comprehension of spoken language, as well they should.
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