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Abstract

This thesis presents a comprehensive exploration of social biases embedded within texts

and Natural Language Processing (NLP) models. It develops innovative algorithms to

evaluate and mitigate these biases, thereby enhancing the fairness and effectiveness

of NLP applications. The initial phase of the research introduces a novel method for

reducing gender bias in static word embeddings, meticulously designed to preserve

maximum semantic integrity and explainability. This approach not only achieves

state-of-the-art results in gender debiasing tasks but also enhances performance in

word similarity evaluations and various downstream NLP tasks.

Expanding the scope, subsequent sections delve into broader evaluations of social

biases. A new evaluation framework employing Masked Language Models is introduced,

which quantitatively assesses social bias using validated inventories of social cues and

words, enabling a systematic linguistic analysis. This framework was applied in a

large-scale evaluation of the ChatGPT model in high-stakes environments such as

the job market. Our findings reveal how the increasing use of generative AI by both

employers and job seekers can reinforce gender and social disparities through biased

language.

The final section proposes a statistical hypothesis-testing framework to detect

biases in texts generated by MLMs. This unsupervised approach uses sentence

perturbation techniques to facilitate effective bias testing across various linguistic

contexts. Empirical validation confirms its ability to identify subtle biases, enhancing

the framework’s practical utility and effectiveness.

Together, these investigations provide a series of comprehensive, effective, and
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efficient algorithms for studying social bias in textual contexts. They offer valuable

insights and practical tools for future researchers and significantly advance the state of

the art in NLP research. This thesis contributes to academic knowledge and represents

a crucial step toward creating more equitable technological solutions in language

processing.
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Chapter 1

Introduction

The rapid advancement of Artificial Intelligence (AI) is transforming society in profound

ways. Among the most significant developments are in Natural Language Processing

(NLP) and Large Language Models (LLMs), which have revolutionized how machines

process, understand, and generate human-like text. These technologies are increasingly

integrated into systems that influence our social interactions. Despite their success,

there is a critical issue: these models can learn, perpetuate, and even amplify harmful

social biases, potentially exacerbating inequalities and impacting users and society at

large. This thesis addresses this pressing challenge by exploring methods to mitigate

bias within NLP models, evaluate bias in textual settings, and develop a comprehensive

framework for bias assessment.

At the foundation of all NLP and LLM systems is the word embedding—the

numerical representation that encapsulates the meaning of word tokens. Given its

fundamental role, it is crucial to examine and address biases at this initial stage. In

the first paper of this thesis, we introduce a causal framework aimed at reducing bias

within static word embeddings. Our comprehensive experiments demonstrate that

this method not only achieves state-of-the-art results in gender debiasing tasks but

also enhances performance in word similarity assessments and various downstream

NLP applications.

We then shift our focus to evaluating biases in generative language models, such as
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ChatGPT, which are gaining widespread use across multiple sectors. The potential of

these models to propagate and amplify social biases, especially in high-stakes settings

like the job market, presents a significant concern. Our research employs a novel

experimental design to analyze social biases in ChatGPT-generated job applications in

response to actual job postings. By simulating the job application process, we uncover

language patterns and biases, introducing a novel evaluation framework that utilizes

Masked Language Models (MLMs) to quantitatively assess social biases using validated

social cue inventories. Our findings reveal how the increasing use of generative AI by

both employers and job seekers could reinforce gender and social disparities through

biased language.

Finally, we propose a novel statistical hypothesis-testing framework to detect biases

in textual content generated by MLMs. This unsupervised approach uses sentence

perturbation techniques to create robust datasets from individual text instances, facil-

itating practical and effective bias testing. The framework is versatile, incorporating

various bias measurement and variance calculation methods to suit different linguistic

contexts and research needs. Empirical validation with real-world data confirms the

framework’s ability to identify subtle biases, underscoring its utility and effectiveness.

Collectively, these studies enhance our understanding of and provide innovative

solutions for addressing bias in NLP. They offer valuable insights and practical tools

for data analysts and fairness researchers, contributing significantly to the fields of

AI ethics and social responsibility. This thesis not only advances the state of the art

in NLP bias mitigation but also equips developers and researchers with actionable

methods to enhance the fairness and transparency of AI technologies.
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Chapter 2

Debias Static Word Embedding

2.1 Abstract

With widening deployments of Natural Language Processing (NLP) in daily life,

inherited social biases from NLP models have become more severe and problematic.

Previous studies have shown that word embeddings trained on human-generated cor-

pora have strong gender biases that can produce discriminative results in downstream

tasks. Previous debiasing methods focus mainly on modeling bias and only implicitly

consider semantic information while completely overlooking the complex underlying

causal structure among bias and semantic components. To address these issues, we

propose a novel methodology that leverages a causal inference framework to effectively

remove gender bias. The proposed method allows us to construct and analyze the

complex causal mechanisms facilitating gender information flow while retaining oracle

semantic information within word embeddings. Our comprehensive experiments show

that the proposed method achieves state-of-the-art results in gender-debiasing tasks.

In addition, our methods yield better performance in word similarity evaluation and

various extrinsic downstream NLP tasks.

2.2 Introduction

Word embeddings are dense vector representations of words trained from human-

generated corpora [1, 2]. Word embeddings have become an essential part of natural
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language processing (NLP). However, it has been shown that stereotypical bias can

be passed from human-generated corpora to word embeddings [3–5].

With wide applications of NLP systems to real life, biased word embeddings have

the potential to aggravate and possibly cause serious social problems. For example,

translating ‘He is a nurse’ to Hungarian and back to English results in ‘She is a nurse’

[6]. In word analogy tasks appears in Bolukbasi et al. [7], wherein
−→
she is closer to

−−−→nurse than
−→
he is to

−−−→
doctor. Zhao et al. [8] shows that biased embeddings can lead to

gender-biased identification outcomes in co-reference resolution systems.

Current studies on word embedding bias reductions can be divided into two camps:

word vector learning methods [8] and post-processing algorithms [7, 9]. Word vector

learning methods are time-consuming and suffer from the high computational cost

required to train word embeddings from scratch. To overcome these limitations,

post-processing algorithms have emerged as popular alternatives. Yang and Feng

[10], for example, proposes a simple and efficient algorithm that projects embeddings

into a space that is orthogonal to gender-specific words such as mother and father

and is successful in reducing gender bias. However, the critical issue of using gender-

specific word vectors remains: information on gender and semantics entangled within

these words. For example, the gendered word pair bride and bridegroom exhibit

gender information as well as semantic information pertaining to weddings. Therefore,

eliminating gender information through pairs of gendered words such as policeman

and policewoman also eliminates intrinsic semantic information: this is clearly not

ideal.

As a solution, we propose utilizing the differences between vectors corresponding to

paired gender-specific words to better eliminate gender bias while retaining important

semantic information. These differences are between embedded vectors for male- and

female-gendered words, such as
−−−→
father−

−−−−→
mother or

−−−−−−−→
bridegroom−

−−−→
bride.

As a motivating example1, Table 2.1 demonstrates that this simple change from

1Please refer to the appendix for detail explanation
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Task 1

Wedding

Task 2

Service

Task 3

Family

Task 4

Religion

Oracle 11.22 (0.2) 9.96 (0.11) 13.51 (0.3) 20.27 (0.3)

DeSIP 7.01 (0.15) 6.67 (0.10) 10.69 (0.25) 13.59 (0.25)

HSR 4.34 (0.14) 5.61 (0.10) 8.90 (0.22) 9.85 (0.20)

Win 100.00% 99.00% 100.00 % 100.00%

Table 2.1: Semantic information preservation experiment.

gender-specific word vectors to the differences between word-pair vectors indeed retains

more semantic information than the state-of-the-art post-processing framework [10].

In this paper, we propose novel causal frameworks for reducing bias in word embed-

dings while maximally preserving semantic and lexical information. Our contributions

are summarized as follows.

• We develop two causal inference frameworks for reducing biases in word embed-

dings that improve upon existing state-of-the-art methods.

• We find an intuitive and effective way to better represent gender-related infor-

mation that needs to be removed and use this approach to achieve oracle-like

semantic and lexical information retention.

• We show that our methods outperform other state-of-the-art debiasing methods

in various downstream NLP tasks.

The rest of this paper is organized as follows. We first present a thorough review

of current studies on word embedding bias evaluation and debiasing algorithms. We

then define two types of bias and propose frameworks for dealing with each. The

comprehensive experimental results on a series of gender bias evaluation and semantic

evaluation tasks demonstrate the effectiveness of our proposed methods.
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2.3 Related Works

2.3.1 Quantifying Gender Bias

Numerous studies have demonstrated that word embeddings trained by human-

generated corpora exhibit human stereotype bias. Caliskan et al. [3] develops the Word

Embedding Association Test (WEAT) as an analogue to the Implicit Association Test

used in psychology [11] to detect implicit stereotypes. WEAT measures the association

between a word and an attribute using cosine similarity; the test compares two sets of

target words against a pair of attribute sets.

Bolukbasi et al. [7] applies word analogy tests as a way to demonstrate bias. The

task uses a word embedding to find an output to pair with a given input word, say,

doctor, such that the (target, output) pair is in analogy to the gender pair (he, she).

The word embedding passes the test if the output is stereotype-free, say, physician

instead nurse for the input doctor. However, this task requires crowd-sourcing to set

the benchmark and has been replaced by other evaluation methods in more recent

works.

Another approach from Bolukbasi et al. [7] for evaluating gender bias involves

computing projections onto a gender direction, the difference between vector embed-

dings of a pair of gender-specific words (e.g. he and she, as the most widely accepted

definition). This debiasing metric is used in many other studies [12]. Such a method

has failed to become the gold standard because a “true” gender direction if it exists,

is used in the evaluation.

Gonen and Goldberg [13] later points out that direct projection does not eliminate

gender bias from the geometry of the embedding and that biased words tend to cluster

together even after debiasing. To account for this, the neighborhood bias metric was

introduced to measure the bias of a word by counting the difference in the number of

(socially) male- and female-biased neighbors among the word’s K-nearest neighbors.
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2.3.2 Prior Debiasing Methods

Current studies on word embedding bias reductions can be divided into two camps:

word vector learning methods [8] and post-processing algorithms for instance [7] and

[9] and many more. Word vector learning methods require retraining of the word

embedding and can be time-consuming due to the retraining of the word embedding.

Therefore, most of the works on debiasing word embeddings choose to remove the bias

through post-processing, including algorithms like [7, 9, 10, 14–16].

From a technical perspective, we see that Bolukbasi et al. [7] formulates the core

idea of detecting the subspace that contains the most information related to gender

Based on the idea of removing gender subspace, other works have incorporated different

strategies, e.g., maximizing the distance between masculine and feminine words [8],

detecting gender direction using partial projection [14], or detecting and mitigating

distortion in gender direction due to word frequency [15]. Various extensions of [7] are

also developed, for instance removing bias with respect to multiclass attributes (like

ethnic) [12] or debiasing multilingual word embeddings [17].

More recent works [10, 16] have considered the problem beyond just detecting and

removing gender direction from gender-neutral word vectors. Shin et al. [16] models a

word vector as a sum of two components, each containing latent gender information

and semantic information respectively. An autoencoder is trained to disentangle these

two components and gender-neutral words are debiased using a counterfactual copy of

itself, i.e. a synthesized word vector with the same semantic component but biased in

the other gender direction.

Similarly, Yang and Feng [10] approaches the problem using a causal framework in

which it is assumed that latent gender information affects both gendered and gender-

biased words. The model aims to recover gender-specific information in gender-biased

words from the gendered words through a linear ridge regression. In comparison, the

causal framework used in our approach not only distinguishes gender information from
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semantic information but also takes into account the potential effect of the former

on the latter through causal inference. This causal path from gender information to

semantic information is overlooked by the causal model used in [10].

2.4 Methodology

2.4.1 Preliminary Definitions

We characterize two types of gender bias in the causal framework and propose algo-

rithms for removing each type. Specifically, we use model intervention techniques to

determine causal effects in a causal model. It is more manageable to apply the model

intervention to proxy variables of the gender bias rather than the gender bias variables

themselves (represented by the differences between gender-specific word pair vectors,

such as
−→
he−

−→
she or

−−→
male−

−−−−→
female), since the latter are generally regarded as inherited

attributes for which interventions are often impossible in practice.

We consider five types of variables corresponding to five word-related matrices:

an s1-dimensional pure gender bias variable D with a corresponding matrix D ∈

RN×s1 composed of pure gender bias vectors such as
−→
he−

−→
she and

−−→
male−

−−−−→
female; an

s2-dimensional gender bias variable proxy P with a corresponding matrix P ∈ RN×s2

composed of vectors that are directly influenced by D that should not affect the

final prediction; an m-dimensional resolving, non-gender-specific word variable Z

with a corresponding matrix Z ∈ RN×m composed of vectors that are influenced by

D in a manner that we accept as non-discriminatory; a d-dimensional, non-gender-

specific word variable Y with a corresponding matrix Y ∈ RN×d composed of word

vectors potentially containing gender bias that needs to be removed, such as −−−→nurse

and
−−−−−→
engineer; and another p-dimensional, non-gender-specific word variable X with a

corresponding matrix X ∈ RN×p that may retain semantic information. Here N is

the dimension of the word embedding vector, and s1, s2, m, d, and p are the sizes of

the variables D, P , Z, Y and X, respectively.
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It is clear that using the vectors in D can eliminate pure gender bias information

contained in word embeddings. In this way, semantic information can be preserved.

As shown in Figures 2.1 2.2 and 2.3 2.4, we generally allow influence along the

pathway D → X → Y in our framework. Motivated by Kilbertus et al. [18] and these

conventions, we introduce the following definitions.

Definition 2.1 (Potential proxy bias.) A variable Y in a causal graph exhibits poten-

tial proxy bias if there exists a directed path from D to Y that is blocked by a proxy

variable P and if Y itself is not a proxy.

This definition indicates that potential proxy bias from P articulates a causal

criterion that is in a sense dual to unresolved bias from Z.

Definition 2.2 (Unresolved bias.) A variable Y in a causal graph exhibits unresolved

bias if there exists a directed path from D to Y that is not blocked by a resolving

variable Z and Y itself is non-resolving.

This definition implies that all paths from a gender-bias variable D are problematic

unless they are justified by a resolving variable Z.

2.4.2 Removing Potential Proxy Bias

We now develop a practical procedure for removing proxy bias in a linear structural

equation model. For each y ∈ RN , the column vector of Y, it can be decomposed

into two parts as y = y∆ + y∆⊥ , where y∆ and y∆⊥ are the projections of y onto

the mutually orthogonal spaces ∆ and ∆⊥. In particular, let ϕj ∈ RN denote the

basis vectors for ∆ and ψj′ ∈ RN denote the basis vectors for ∆⊥. The whole space

Ω = ∆ ∪∆⊥. We can write y =
∑︁

j:ϕj∈∆ ξjϕj +
∑︁

j′:ψj′∈∆⊥ κj′ψj′ , where ξj, κj′ ∈ R.

In this paper, we take ∆ = Span(D), namely, the linear space spanned by the column

vectors of D. Consequently, ∆⊥ contains the semantic information not described by

D. As bias reduction is primarily concerned with reducing bias along paths starting

from D, we do not remove information from y∆⊥ .

9



Figure 2.1: Proxy bias

Figure 2.2: Intervention on proxy bias

We next propose an algorithm for debiasing non-gender-specific word vectors y. As

illustrated in Figure 2.1, 2.2 the corresponding linear structural equations are

P = Dα0 + e1

X = Dα1 +Pα2 + e2 (2.1)

Y = Pβ1 +Xβ2,

where e1 and e2 are unobserved errors and α0 ∈ Rs1×s2 , α1 ∈ Rs1×p, α2 ∈ Rs2×p,

β1 ∈ Rs2×d and β2 ∈ Rp×d are parameters. Here, we note that the proxy matrix

P contains vectors of words that are direct descendants of D and should not affect

the prediction of Y. In this paper, we pre-specify P using the gendered-word pairs

listed in Zhao et al. [8]. We build predictors that remove proxy bias by intervening

on P , that is, by setting P = p′, where p′ is a random variable: this is similar to

the approach in Kilbertus et al. [18]. In particular, we want to guarantee that P

has no overall influence on the prediction of the non-gender-specific variable Y by

adjusting the P → Y pathway to cancel the influence along P → X → Y . We do

10



Algorithm 1 (P-DeSIP) Removing potential proxy bias.

Input: D, P, X, Y.
1: Solve X = Dα1 +Pα2 by PLS to get (ˆ︁α1, ˆ︁α2)

2: Solve Y = Pβ1 +Xβ2 by PLS to get (ˆ︁β1, ˆ︁β2)

3: Compute ˆ︁Y = (X−Pˆ︁α2)ˆ︁β2

4: Compute ˆ︁Y∆⊥ = Y −D(DTD)−1DTY

5: Compute ˆ︁YP-DeSIP = ˆ︁Y + ˆ︁Y∆⊥

Output: ˆ︁YP-DeSIP as the debiased word matrix.

not generally prohibit the potential for the gender bias variable D to influence the

non-gender-specific variable Y in this case: see Figure 2.1, 2.2. The non-gender-specific

word matrix ˆ︁Y with potential proxy bias removed is2

ˆ︁Y = (X−Pˆ︁α2)ˆ︁β2, (2.2)

where the parameters ˆ︁α2 and ˆ︁β2 are estimated by partial least squares (PLS), a

supervised dimension reduction method that works particularly well when variable

dimensionality is very large [19] and becomes a popular tool in various scientific areas

in recent years [20]. However, since the debiasing procedure above does not retain any

information of Y∆⊥ since ˆ︁Y is a descendant of D, we must find a way to restore the

information of Y∆⊥ .

In particular, we propose obtaining a least-squares estimate ˆ︁Y∆ of Y∆ through

multivariate linear regression of Y on D. We then use the residual ˆ︁Y∆⊥ as an estimate

of Y∆⊥ . Finally, we compute ˆ︁YP-DeSIP = ˆ︁Y + ˆ︁Y∆⊥ as the bias-reduced version of Y.

This post-processing algorithm is formally presented in Algorithm 1.

In practice, when the dimensionality of X is extremely high, the computational cost

of this algorithm becomes a concern. With this in mind, we introduce a preliminary

screening step to reduce ultrahigh dimensionality to a moderate level before conducting

a refined analysis. Before conducting a simple screening procedure using correlation

learning, each column of X and Y are standardized to a mean of zero and a standard

deviation of one. Inspired by Fan and Lv [21] and Xie et al. [22], we propose the

2Please refer to appendix for detail derivation
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following marginal screening utility to measure the dependence between Y and the

columns xk (k = 1, . . . , p) of X: τk = max
j=1,...,d

|x⊤
k yj|/N, where yj (j = 1, . . . , d) denotes

the j-th column ofY. We propose ranking xk by sorting τk from largest to smallest. We

denote the reduced non-gender-specific word matrix by Xˆ︂M, where ˆ︂M = {k : τk ≥ γn}

and γn is a pre-specified threshold value.

2.4.3 Removing Unresolved Bias

We take a similar approach to remove unresolved bias when a proxy gender bias

matrix P is not attainable. We consider the resolving non-gender-specific word matrix

Z ∈ RN×m that directly affects X instead of the proxy bias matrix P: this is illustrated

in Figure 2.3, 2.4.

Figure 2.3: Unresolved bias

Figure 2.4: Intervention on unresolved bias

Resolving variables are influenced by D in a manner that we accept as non-

discriminatory: therefore, Z is chosen to directly affect X and have some correlation

with D. In particular, we choose Z containing the adjectives and nouns correlated

to D based on mean cosine similarity, while X includes the words that are otherwise
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contained by Y, Z, and D. Since all adjectives in English have an adverb form, this

ensures that the path from Z to X exists.

The causal dependencies in the corresponding linear structural equation model are

equivalent to those in Figure 2.1, 2.2 for potential proxy bias:

Z = Dγ0 + ϵ1

X = Dγ1 + Zγ2 + ϵ2 (2.3)

Y = Zθ1 +Xθ2,

where ϵ1 and ϵ2 are unobserved errors and γ0 ∈ Rs1×m, γ1 ∈ Rs1×p, γ2 ∈ Rm×p,

θ1 ∈ Rm×d, and θ2 ∈ Rp×d are parameters. We can proceed as before by intervening

on Z, that is, by setting Z = z′. In this case, we want to cancel the remaining

information from D to Y by intervening on Z: Figure 2.3, 2.4 illustrates this procedure.

The non-gender-specific word matrix ˆ︁Y with unresolved bias removed is

ˆ︁Y = Zˆ︁θ1. (2.4)

This debiasing procedure does not retain any information of Y∆⊥ . Therefore we

restore the information from Y∆⊥ by taking a similar way to the previous procedure.

2.5 Experiments

In this section, we compare the proposed methods against other debiasing algorithms

in a set of comprehensive experiments. Our results show that the proposed methods

not only reduce bias in various evaluation tasks, but also enhance the performance

Algorithm 2 (U-DeSIP) Removing unresolved bias.

Input: D, Z, X, Y.
1: Solve Y = Zθ1 +Xθ2 by PLS to get (ˆ︁θ1, ˆ︁θ2)
2: Compute ˆ︁Y = Zˆ︁θ1
3: Compute ˆ︁Y∆⊥ = Y −D(DTD)−1DTY

4: Compute ˆ︁YU-DeSIP = ˆ︁Y + ˆ︁Y∆⊥

Output: ˆ︁YU-DeSIP as the debiased word matrix.
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of word embeddings in semantic evaluation tasks. Our debiasing methods outper-

form in downstream part-of-speech (POS) tagging, POS chunking, and named-entity

recognition tasks.

We apply the proposed debiasing methods to 300-dimensional GloVe embeddings

pre-trained on English Wikipedia data with 322,636 unique words [2]. As baselines, we

also compare our results against previous state-of-the-art debiasing methods, including

the hard-debiasing method (Hard) [7], the gender-preserving debiasing method (GP) [9],

word vector learning method (GN) [8], and the half-sibling regression debiasing method

(HSR) [10]. For a fair comparison, we utilize the other authors’ implementations. 3

To separate the words in the following experiments, we manually pick 11 pairs

of pure gender words such as (he, she) and (him, her)4. We form D using the

differences between the vector embeddings corresponding to these word pairs. We

similarly compute P using the gendered word pairs listed in Zhao et al. [8]. The words

represented in P contain significant non-gender-related information and gender-related

information, e.g., bride and bridegroom. We choose the 50,000 most frequent words in

GloVe to form Y, which contains the words to be debiased, following the evaluation

procedure in Gonen and Goldberg [13]; X is formed using the remaining words. In all

of the below experiments, we use a fixed screening parameter γn = 0.92 in P-DeSIP

and γn = 0.80 in U-DeSIP.

2.5.1 Quantitative Evaluation for Bias Tasks

Throughout this section, the top N gender-biased words are chosen by evaluating

dot products with the gender direction
−→
he−

−→
she in the original word embedding (i.e.

GloVe) and choosing the most positive and negative values as the most male- and

female-biased words, respectively.

3https://github.com/Lei-Ding07/Word Debias DeSIR
4See the accompanying appendix for details of word list
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Bias-by-projection Task.

Bias-by-projection uses the dot product between the gender direction
−→
he−

−→
she and the

word to be tested. We compute and average the absolute projection bias of the top

50,000 most frequent words.

The first column of Table 2.2 shows that our methods achieve very good results.

Its performance is just below that of Hard-GloVe, which can be explained by the fact

that Hard-Glove is trained by removing projections along the gender direction.

Sembias Analogy Task.

The SemBias test was first introduced in Zhao et al. [8] as a set of word analogy tests.

The task is to find the word pair in best analogy to the pair (he, she) among four

options: a gender-specific word pair, e.g., (waiter, waitress); a gender-stereotype word

pair, e.g., (doctor, nurse); and two highly-similar, bias-free word pairs, e.g. (dog, cat).

The dataset contains 440 instances, of which 40 instances, denoted by SemBias(subset),

are not used during training. We report accuracy in identifying gender-specific word

pairs.

The second and third columns of Table 2.2 quantify accuracy in identifying gender-

specific word pairs. Our P-DeSIP methods achieve very good performance in both

tasks. Specifically, in the subset test, P-DeSIP outperforms GloVe by almost 40%.

Bias-by-projection SemBias SemBias (subset)

GloVe 0.0375 0.8023 0.5750

Hard 0.0007 0.8250 0.3250

GP 0.0366 0.8432 0.6500

GN 0.0555 0.9773 0.7500

HSR 0.0218 0.8591 0.1000

P-DeSIP 0.0038 0.9523 0.9750

U-DeSIP 0.0038 0.9090 0.5000

Table 2.2: Gender-direction-related task performance. In each column, the best and
second-best results are boldfaced and underlined, respectively.
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Clustering Male- and Female-biased Words.

As noted in Gonen and Goldberg [13], biased words tend to cluster together. Even

some debiased embeddings were unable to escape from this phenomenon. Here we

take the top 500 male-biased words and the top 500 female-biased words and partition

them via K-means clustering (K=2) [23]. Accuracy in splitting the 1,000 words into

male and female clusters is presented in Table 2.3. Our methods achieve the best

performance among all other methods.

Correlation between Bias-by-projection and Bias-by Neighbors.

Taking again the top 50,000 most frequent words as targets, we compute the Pearson

correlation coefficient between the bias-by-projection and bias-by-neighbor results.

The latter is computed using the neighborhood metric, which counts the percentage

of male- and female-biased words within the K-nearest neighbors of each target word

[13, 15]. Here, we take K = 100. Referring to the second column of Table 2.3, our

methods generally achieve the best performance.

Bias-by-neighbors for Profession Words.

In this task, we assess the effect of debiasing by calculating the correlation between

bias-by-neighbor measures before and after debiasing. We use the neighborhood

metric, as in the previous task, but we restrict our targets to the list of professional

words in Bolukbasi et al. [7] and Zhao et al. [8]. Results, in the third column of Table

2.3, show that our methods outperform GloVe and are comparable to HSR-GloVe.

Classifying Previously Female- and Male-biased Words.

After selecting the top 2,500 biased words for each gender, for each baseline model we

train a support vector machine (SVM) model using 1,000 randomly sampled words.

This classifier is then applied to the remaining 4,000 words to predict gender bias

direction. Prediction accuracy is shown in the last column of Table 2.3: a lower
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accuracy indicates the trained model is unable to capture gender-related information

from the original embedding and thus, that the debiasing method is superior. Again,

both of our methods outperform the other methods.

Clustering Correlation Profession Classify

GloVe 1.0000 0.7727 0.8200 0.9980

Hard 0.8050 0.6884 0.7161 0.9068

GP 1.0000 0.7700 0.8102 0.9978

GN 0.8560 0.7336 0.7925 0.9815

HSR 0.9410 0.6422 0.6804 0.9055

P-DeSIP 0.7910 0.6431 0.7096 0.8547

U-DeSIP 0.7920 0.6421 0.7060 0.8550

Table 2.3: Gender bias word relation task performance. In each column, the best and
second-best results are boldfaced and underlined, respectively.

Word Embedding Association Test (WEAT)

The WEAT test [3] is a permutation-based test that measures bias in word embeddings.

We report effect sizes (d) and p-values (p) in our results. The effect size is a normalized

measure of how separated two distributions are. A higher value indicates a larger bias

between target words with respect to attribute words. The p-values denote whether

the bias is significant or not.

We conduct three tests using the Pleasant & Unpleasant (Task 1), Career & Family

(Task 2), and Science & Art (Task 3) word sets. We consider male and female names

as attribute sets.5. As shown in Table 2.4, we achieve results comparable to those

for other methods. In two out of three tasks, the p-value is not significant. We also

achieve a reasonably small effect size in all three tasks.

5All word lists are from Caliskan et al. [3]. Because GloVe embeddings are uncased, we use lower
case words.
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Task1 Task2 Task3

p d p d p d

GloVe 0.090∗ 0.704 0.000 1.905 0.026 0.987

Hard 0.363∗ 0.187 0.000 1.688 0.583∗ -0.104

GP 0.055∗ 0.832 0.000 1.909 0.025 0.997

GN 0.157∗ 0.541 0.074∗ 0.753 0.653∗ -0.222

HSR 0.265∗ 0.340 0.000 1.555 0.410∗ 0.122

P-DeSIP 0.755∗ -0.373 0.001 1.459 0.486∗ 0.019

U-DeSIP 0.732∗ -0.335 0.001 1.462 0.491∗ 0.012

Table 2.4: WEAT test result. In each column of p-value, ∗ indicates statistically
non-significant compare with α = 0.05; In each column of d, the best and second-best
results are boldfaced and underlined, respectively.

2.5.2 Visualization

In order to visually illustrate that our proposed methods effectively reduce gender

bias, we took the top 500 male- and female-biased embeddings and generated a t-SNE

projection [24] for all of the baseline embeddings. In Figures 2.5, 2.6, 2.7, 2.8, 2.9

and 2.10 , the two colors in the graphs indicate male- and female-biased embeddings.

We can see our two methods more effectively mix up the male- and female-biased

embeddings.

Figure 2.5: t-SNE visualization of GloVe

2.5.3 Word Similarity Tasks

Another important aspect of word embedding is its ability to encode words’ semantic

information. While bias removal is our main goal, it is unacceptable to disregard how

semantic information is influenced by the debiasing process. We next implement several

18



Figure 2.6: t-SNE visualization of Hard-debias

Figure 2.7: t-SNE visualization of GP-debias

Figure 2.8: t-SNE visualization of HSR

Figure 2.9: t-SNE visualization of P-DeSIP

Figure 2.10: t-SNE visualization of U-DeSIP
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Embedding Matrix Replacement

POS Tagging POS Chunking

∆ F1 ∆ Precision ∆ Recall ∆ F1 ∆ Precision ∆ Recall

Hard -0.0776 -0.0736 -0.2079 -0.0653 -0.1500 -0.1009

GP -0.1021 -0.1910 -0.2068 -0.0702 -0.1385 -0.1301

GN -0.0987 -0.1001 -0.2554 -0.0702 -0.1269 -0.1401

HSR -0.0666 -0.0589 -0.1820 -0.0377 -0.0753 -0.0689

P-DeSIP -0.0133 -0.0006 -0.0471 -0.0108 -0.0036 -0.0346

U-DeSIP -0.0107 0.0033 -0.0405 -0.0110 -0.0073 -0.0324

Table 2.5: Result of downstream tasks for POS Tagging and POS Chunking. Positive
value means the task has better performance than using Original GloVe. In each
column, the best and second-best results are boldfaced and underlined, respectively.

Embedding Matrix Replacement (continued) and Model Retraining

Named Entity Recognition Model Retraining

∆ F1 ∆ Precision ∆ Recall ∆ F1 ∆ Precision ∆ Recall

Hard -0.0118 -0.0187 -0.0238 -0.0194 0.0078 -0.0741

GP -0.0353 -0.0366 -0.0871 -0.0071 0.0011 -0.0264

GN -0.0294 -0.0610 -0.0472 -0.0027 0.0089 -0.0174

HSR -0.0055 -0.0068 -0.0128 -0.0055 -0.0009 -0.0192

P-DeSIP -0.0014 0.0002 -0.0052 -0.0018 0.0002 -0.0068

U-DeSIP -0.0007 0.0013 -0.0035 -0.0010 0.0000 -0.0036

Table 2.6: Result of downstream tasks for Named Entity Recognition and Model
Retraining. A positive value means the task has better performance than using
Original GloVe. In each column, the best and second-best results are boldfaced and
underlined, respectively.

word similarity tests to evaluate our algorithms against existing baseline methods.

We consider the following tasks: RG65 [25], WordSim-353 [26], Rarewords [27], MEN

[28], MTurk-287 [29], and MTurk-771 [30]. SimLex-999 [31], and SimVerb-3500 [32].

These datasets associated with each task contain word pairs and a corresponding

human-annotated similarity score.

As an evaluation measure, we compute Spearman’s rank correlation coefficient

between these two ranks. Results are shown in Table 2.7 and 2.8. We see that our
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methods have the leading performance for most of the tasks.

RG65 WS RW MEN

GloVe 0.7540 0.6199 0.3722 0.7216

Hard 0.7648 0.6207 0.3720 0.7212

GP 0.7546 0.6003 0.3450 0.6974

GN 0.7457 0.6286 0.3989 0.7446

HSR 0.7764 0.6554 0.3868 0.7353

P-DeSIP 0.7794 0.6856 0.3970 0.7484

U-DeSIP 0.7734 0.6828 0.3956 0.7478

Table 2.7: Word similarity task performance 1. In each column, the best and second-
best results are boldfaced and underlined, respectively.

MT-287 MT-771 SimLex SimVerb

GloVe 0.6480 0.6486 0.3474 0.2038

Hard 0.6468 0.6504 0.3501 0.2034

GP 0.6418 0.6391 0.3389 0.1877

GN 0.6617 0.6619 0.3700 0.2219

HSR 0.6335 0.6652 0.3971 0.2635

P-DeSIP 0.6452 0.6741 0.3765 0.2286

U-DeSIP 0.6455 0.6731 0.3756 0.2273

Table 2.8: Word similarity task performance 2. In each column, the best and second-
best results are boldfaced and underlined, respectively.

2.5.4 Downstream Task Utility Evaluation

In order to demonstrate that our de-biased word embeddings still retain good down-

stream utility and performance, we follow the CoNLL2003 shared task [33] and use

POS tagging, POS chunking, and named-entity recognition(NER) as the evaluation

tasks. Following Manzini et al. [12] we evaluate each task in two ways: embedding

matrix replacement and model retraining.

In embedding matrix replacement, we first train the task model using the original

biased GloVe vectors and then calculate test data performance differences when using

the original biased GloVe embeddings versus other debiased embeddings. Table 2.5
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suggests constant performance degradation for all debiasing methods relative to the

original embedding. Despite this, our methods outperform all the other tasks (in the

sense of minimizing degradation) by a large margin across all the tasks and evaluation

metrics (i.e., F1 score, precision, and recall). Furthermore, we even achieve a small

improvement in precision on the NER task.

In model retraining, we first train two task models, one using the original biased

GloVe embeddings and the other using debiased embeddings. We then calculate differ-

ences in test performance. Table 2.6 again suggests that our methods have the closest

performance to the model trained and tested using the original GloVe embeddings.

Our method also displays the most consistent and comparable performance across the

three tasks.

2.6 Conclusion

In this paper, we develop two causal inference methods for removing biases in word

embeddings. We show that using the differences between vectors corresponding to

paired gender-specific words can better represent and eliminate gender bias. We find

an intuitive and effective way to better represent gender information that needs to be

removed and use this approach to achieve oracle-like retention of semantic and lexical

information. We also show that our methods outperform other debiasing methods in

downstream NLP tasks. Furthermore, our methods easily accommodate situations

where other kinds of bias exist, such as social, racial, or class biases.

There are several important directions for future work. First, we only consider

the linear relationship among the proposed causal inference frameworks. Further

investigation is warranted to extend these frameworks to incorporate the non-linear

causal relationship [34]. Second, when P is not attainable, we select the resolving

variables Z to contain the adjectives and nouns correlated to gender bias variables

D. This selection method is rather heuristic. If prior knowledge about resolving

variables was introduced, it would surely improve the performance of the unresolved
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bias removal. Third, we introduce a residual block to restore the information not

retained from the debiasing procedure. The construction of it is rather intuitive and

requires more rigorous justification. Finally, although our methods facilitate easy

accommodations for situations where other kinds of bias exist, how the proxy and

resolving variables as well as the bias variables are properly pre-specified may require

non-trivial efforts.
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2.7 Appendix

2.7.1 Detail explanation of Table 1

For each of the four pre-determined words Wedding, Service, Family, and Religion,

we identify the top 200 most cosine-correlated words. For each of the 200 words,

we fit a ridge regression against gender-specific words defined in Yang and Feng [10]

(HSR), and a linear regression against the differences between gender-specific word

pairs from this paper (DeSIP). The fitted word vectors are used as reduced-bias word

vectors. To quantify the semantic information preservation, the mean absolute dot

product between the pre-determined words and their bias-reduced versions over the

200 most related words are presented, with standard errors in parentheses. Note that,

the oracle preservation semantic information is achieved by using the original word

vector instead of the fitted one. The last row shows the proportion of these 200 words

for which DeSIP outperforms HSR with respect to semantic information preservation.

2.7.2 Pure gender word list of D

Male words : he, him, man, his, himself, son, father, guy, boy, male, men, sons, fathers,

guys, boys, males, sir, gentleman, gentlemen, mr

Female words: she, her, woman, hers, herself, daughter, mother, gal, girl, female,

women, daughters, mothers, gals, girls, females, madam, lady, ladies, mrs

D is formed by subtraction of each word in Male words with the corresponding word

in Female words.

2.7.3 Detail derivation of equation (2) and (4)

We present the details about how to obtain the equations (2) and (4) here as follows:

• Intervene on P by removing all incoming arrows, see Figure 2.1, 2.2, and set

P = p′, where p′ is a random variable. Then we obtain:

P = p′,X = Dα1 +Pα2 + e2,Y = Pβ1 +Xβ2.
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• Integrate the first and second equations into the third equation from their

structural equations.

Y = p′(β1 +α2β2) + (Dα1 + e2)β2.

• Require the distribution of Y to be independent of p′, i.e. for all p1 and p2,

Pr{p1(β1+α2β2)+(Dα1+e2)β2} = Pr{p2(β1+α2β2)+(Dα1+e2)β2}, which

simply yields β1 = −α2β2. Hence Y = (X−Pα2)β2.

• Given the dataset, we estimate the parameters α2 and β2 by partial least squares

method, denoted the estimators as ˆ︁α2 and ˆ︁β2. Then, the equation (2) can be

obtained.

Similar to equation (2), we can get equation (4).

• Intervene on Z by removing all incoming arrows, see Figure 2, and set Z = z′,

where p′ is a random variable. Then we obtain:

Z = z′,X = Dγ1 + Zγ2 + ϵ2,Y = Zθ1 +Xθ2.

• Integrate the first and second equations into the third equation from their

structural equations.

Y = z′(θ1 + γ2θ2) +Dγ1θ2 + ϵ2θ2.

• Require the distribution of Y to be invariant under interventions D, i.e. for all d1

and d2, Pr{z′(θ1 + γ2θ2) + d1γ1θ2 + ϵ2θ2} = Pr{z′(θ1 + γ2θ2) + d2γ1θ2 + ϵ2θ2},

which simply yields θ2 = 0. Hence Y = Zθ1.

• Given the dataset, we estimate the parameter θ1 by partial least squares method,

denoted the estimator as ˆ︁θ1. Then, equation (4) can be obtained.
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Chapter 3

Probing Social Bias in Labor
Market Text Generation by
ChatGPT: A Masked Language
Model Approach

3.1 Abstract

As generative large language models (LLMs) such as ChatGPT gain widespread

adoption in various domains, their potential to propagate and amplify social biases,

particularly in high-stakes areas such as the labor market, has become a pressing

concern. AI algorithms are not only widely used in the selection of job applicants,

individual job seekers may also make use of generative LLMs to help develop their job

application materials. Against this backdrop, this research builds on a novel experi-

mental design to examine social biases within ChatGPT-generated job applications

in response to real job advertisements. By simulating the process of job application

creation, we examine the language patterns and biases that emerge when the model

is prompted with diverse job postings. Notably, we present a novel bias evaluation

framework based on Masked Language Models to quantitatively assess social bias

based on validated inventories of social cues/words, enabling a systematic analysis of

the language used. Our findings show that the increasing adoption of generative AI,

not only by employers but also increasingly by individual job seekers, can reinforce
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and exacerbate gender and social inequalities in the labor market through the use of

biased and gendered language.

3.2 Introduction

The rapid advancements in generative Large Language Models (LLM) like ChatGPT

[35], mark a significant technological shift. These models have not only propelled the

field of Natural Language Processing (NLP) but have also found widespread application

across numerous sectors [36, 37]. However, as these models are incorporated into social

and economic practices, they bring to the fore critical ethical concerns, especially

regarding their potential to propagate and amplify existing social biases and attendant

inequalities, particularly within high-stakes domains such as the labor market [38].

Recognizing the growing potential of generative AI use in employment practices,

our research primarily aims to identify and understand the impact of biases in the

application of generative LLM within the labor market. We focus particularly on

ChatGPT, investigating how this widely used LLM influences the propagation of

biases in job advertising and application processes.

The complexity of automating bias evaluation in textual content poses significant

challenges. Traditional approaches in social sciences, such as content analysis, often

rely on manual word counts from static lists [39], which may miss the subtleties and

unlisted language cues that advanced NLP technologies can detect. In addition, by

considering words individually, these traditional approaches often fail to capture the

contextual meanings that emerge from the interplay of words within entire sentences.

To address this limitation and build toward a more solid bias evaluation method,

we develop a novel bias evaluation algorithm called PRISM: Probability Ranking

bIas Score via Masked language model. PRISM involves masking words sequentially

within texts and using the Masked Language Models (MLM) [40, 41] to predict the

likelihood of alternative tokens, thus allowing us to assess bias with a ranking-based

approach that leverages established word lists from social science research to provide
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contextual sensitivity, enabling a systematic and detailed analysis of language use.

Additionally, the inherently opaque nature of LLMs like ChatGPT, which function

as black boxes without transparent access to their internal structures or parameters,

adds another layer of complexity. We propose a method of probing these biases by

simulating and analyzing how job seekers use ChatGPT to craft applications (output

texts) in response to real job postings (input texts), as illustrated in Figure 3.1. This

simulation reveals insights into the biases embedded within ChatGPT’s training data

and their potential impacts on real-world human resource practices.

Utilizing our PRISM algorithm in tandem with job posting and application text

pairs, we explore the correlation between generated content and bias propagation.

This comprehensive and novel simulation offers a distinctive lens through which to

view how biases might influence the job application process.

In essence, this paper seeks to bridge the gap between rapid technological advance-

ments and the ethical considerations raised by the use of generative LLMs. Through

our research, we emphasize the importance of ensuring that AI use promotes core

social values of fairness and equality in the labor market as these technologies become

increasingly integral to our daily lives.

Our key contributions include:

• We propose PRISM, a brand new paradigm for bias evaluation combines with

validated word lists capturing directional cues (based on social science research)

with MLM to assess biases in texts. It advances existing methods in terms of

efficiency, flexibility, robustness as well as theoretical properties.

• We draw on a novel experimental design to probe the black-box of social biases

in ChatGPT models to understand both the biases inherent in their training

data and their implications for real-world job application scenarios.

• Analysis of bias across four different social dimensions demonstrates inherent bi-

ases in job postings are likely reproduced in ChatGPT-generated job applications,
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with a tendency for the model to exacerbate and reinforce these biases.

This paper is structured as follows: we first review the current landscape of

bias evaluation in NLP and social sciences. Following this, we introduce our bias

scoring algorithm and provide experimental evidence supporting our methodology.

We conclude with an analysis of job postings and applications mediated by ChatGPT,

evaluating our approach’s broader applicability and discussing the social implications

of our empirical findings.

Figure 3.1: Overview of the paradigm for bias probing experimental design.

3.3 Background and Related Works

Bias Evaluation in NLP The evaluation of bias within natural language processing

(NLP) presents complex challenges, as methodologies vary significantly across studies

[42, 43]. Traditional approaches range from analyzing cosine similarity in word

embeddings [44] to diverse methods such as correlation, clustering, classification, and

visualization [13, 45, 46]. Recent works have focused on detecting bias in language

models that rely on manual sentence templates [47] or creating benchmarks that

require high-cost crowd-workers [48, 49] and across various NLP downstream tasks

including text classification [50, 51], coreference resolution [52], natural language

inference [53], and machine translation [54].

Bias Evaluation for Text The domain of text bias evaluation is notably more

challenging than evaluating the NLP models, often requiring extensive human expert

intervention or resorting to simplistic and heuristic methodologies. Many existing
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approaches are also limited to specific types of bias, making them difficult to adapt to

other contexts. Dhamala et al. [55] measure bias by computing the cosine similarity

of word embeddings [2, 56] with respect to the gender direction (
−→
he−

−→
she) [44] and

averaging over sentences. Cryan et al. [57] compare a lexicon-based approach and

a fine-tuned BERT model with a Crowdsourced label dataset. Spinde et al. [58]

developed a media bias dataset through costly expert annotation, a process not easily

generalizable to other domains. Raza et al. [59] explore the use of named entity

recognition for detecting biased words within texts. Yet this approach also requires

the creation of costly labeled training data for each task and model training.

Labor Market Bias Evaluation in Social Sciences A substantial body of re-

search has documented prevalent gender stereotypes and their role in (re)producing

inequalities – gender segregation [60, 61], gender wage/promotion gaps [62], mother-

hood penalties [63], and fatherhood premiums [64] – in the labor market. Further

research shows that gendered language plays a crucial role in maintaining and re-

producing gender stereotypes [65]. Psychological studies also show that women and

men, given their gender socialization, tend to use and be attracted to different gen-

dered languages and linguistic styles [39]. For example, women tend to employ and

identify with a more communal language style, including the use of words related

to social and emotional contexts [66]. In contrast, masculine language is typically

characterized by a style that highlights agentic traits. Gendered language is found

across a wide range of contexts, and in the labor market, it features prominently in

job advertisements, the language used in job applications and interviews, as well as

performance management processes [67]. While existing research has often focused on

gendered language from the labor demand side in terms of, for example, employers’

wording of job advertisements [68], far less attention has been paid to the language

used by job candidates in response to job advertisements in order to secure a job,

despite an increase in individual job seekers’ use of ChatGPT. This study thus fills
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this important gap by assessing gendered languages from both the labor demand (job

advertising) and supply (job application) sides. In doing so, it highlights the relational

use of language in the job application process as a quintessential example of social

interactions in action. It aims to explore and reveal the extent to which gender biases

are present and indeed circulated and exacerbated through the interplay between

languages used in job advertisements and job applications.

3.4 Bias Evaluation Algorithm for Text

3.4.1 Motivations

When assessing social bias in textual content, previous methodologies often begin

with a straightforward approach: selecting keywords for simple frequency counts.

For instance, this might involve comparing the total word count of feminine and

masculine words. This technique is prevalent in psychological and sociological studies

as described in Section 3.3. More contemporary methods have advanced to include the

use of static word embeddings to measure semantic similarities among words, although

these approaches still treat each word individually. To go further, researchers need to

acquire expensive, labeled training data for specific tasks and do the model training.

In contrast, our objective is to refine and further advance these existing approaches

to measuring textual bias with three useful and practical settings:

• Beyond merely analyzing each word individually, the algorithm should aim

to consider the contextual meanings of entire sentences, allowing for a more

nuanced and comprehensive view of the text.

• The algorithm does not require costly human-labeled training data and circum-

vents the process of model training or fine-tuning. This aspect is particularly

valuable in scenarios where the necessary labeled data is not readily available,

allowing for more flexible and scalable applications.
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• The algorithm should incorporate established and rigorous word inventories from

social science research to guide the bias calculation in a contextually embedded

and domain-specific manner (e.g., accounting for specificities of the labor market

context). This incorporation of domain knowledge ensures that the assessments

are both empirically grounded and contextually salient.

3.4.2 Problem Setup and Algorithm Implementation

Figure 3.2: An illustration of the paradigm for PRISM that uses word lists for
directional cues with MLM to compute bias score for text.

In this section, we detail our algorithm under the settings introduced above. Given

a text T comprising n words T = {w1, w2, . . . , wn}, we iteratively mask each word

wi and input the modified masked text T\i = {. . . , wi−1, [MASK], wi+1, . . .} into an

MLM, which outputs the probability distribution over the vocabulary for the masked

position i, denoted as P (· | T\i).

Then, to obtain the direction signal for score calculation, we require two predefined

word lists representing different contexts—such as gender with a feminine word list

F = {f1, . . . , f|F |} and a masculine word list M = {m1, . . . ,m|M |}. For each word in

F and M , we obtain the probability from the distribution P (·|T\i). This yields two

sets of probabilities: PF = {P (f |T\i)}f∈F and PM = {P (m|T\i)}m∈M .

Next, we merge PF and PM and filter the probabilities by taking the top α percent

of the probabilities, as lower probabilities represent less likely predictions by the MLM

and thus contribute minimally to our analysis of bias. This step allows us to focus
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on the most influential predictions which significantly determine the context of the

sentence.

Finally, we calculate the rank of each probability within this merged list. The

rank of probability for each word wi in the text T using the word lists F and M is

denoted as RF∪M(P (f |T\i)) and RF∪M(P (m|T\i)), respectively. And the lower the

rank indicates the higher the probability. The bias score for each word wi is computed

as the difference between the mean ranks of the two word lists:

S(wi) =
1

|F |
∑︂
f∈F

RF∪M(P (f |T\i))−
1

|M |
∑︂
m∈M

RF∪M(P (m|T\i))

A positive score indicates a bias toward a masculine orientation, while a negative

score suggests a bias toward a feminine orientation. This differential allows us to

detect the direction of the bias, providing deeper insights into how gender nuances are

embedded within the language.

Finally, the overall bias score for the text T is the mean of the scores for all words

in the text:

B(T ) =
1

n

n∑︂
i=1

S(wi)

This score quantifies the bias present in T . By analyzing these scores across various

texts, we can assess the extent and direction of linguistic bias present, providing

insights into the underlying gender biases conveyed through language. The overall

algorithm is illustrated in Figure 3.2, and is detailed in Algorithm 3.

3.4.3 Methodological Benefits of PRISM

Efficiency Our algorithm eliminates the need for costly data labeling and model

training. By leveraging predefined word lists developed by existing sociological research,

our method avoids the resource-intensive processes associated with supervised learning,

such as gathering expert annotations and training models from scratch. This approach

not only expedites deployment but also ensures that the algorithm can be scaled
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Algorithm 3 PRISM: Probability Ranking bIas Score via Masked language model

Input: Text T with n words {w1, w2, . . . , wn}, Word lists F and M
Ouput: Bias score B(T )

1: for each word wi in T do
2: Create T\i by masking wi in T
3: Predict distribution P (· | T\i) using MLM
4: Initialize Pmerged = [ ]
5: for all words w in F ∪M do
6: Append {w,P (w|T\i)} to Pmerged

7: end for
8: Sort and filter Pmerged to retain top α% of entries
9: Calculate ranks for RF∪M(P (f |T\i)) and RF∪M(P (m|T\i)) in the filtered list
10: S(wi) =

1
|F |
∑︁

f∈F RF∪M(P (f |T\i))− 1
|M |
∑︁

m∈M RF∪M(P (m|T\i))
11: end for
12: B(T ) = 1

n

∑︁n
i=1 S(wi)

13: return B(T )

and adapted swiftly and economically, making it highly practical for researchers and

practitioners needing quick and reliable bias assessments in various settings.

Computational Flexibility The inherent flexibility of our method allows for the

evaluation of bias across various dimensions simply by altering the word list cues.

This adaptability means that different types of bias can be assessed without the

need to relabel data or retrain models, significantly reducing the time and resources

required for analysis. Whether exploring gender, race, age, or any other form of

bias, our algorithm can adjust to new research questions with minimal adjustments.

This also allows for the incorporation of substantively meaningful domain-specific

word inventories from social science disciplines such as sociology, management studies,

psychology, etc.

Robustness Robustness in our method is two-fold. Firstly, we utilize ordinal

measurements of word probabilities, focusing on relative positions (ranking) rather

than absolute values. This method effectively mitigates issues arising from the

predominance of low probabilities within a large pool of candidate words, which can
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lead to nonsensical outcomes. Secondly, our approach ensures robust results across

different MLMs. Unlike other scoring methods using raw probabilities for calculation,

our rank-based bias score method remains consistent even when different MLMs

produce varying output probabilities. This dual approach minimizes the influence of

outliers and maintains reliability across various computational models.

Theoretical Properties Moreover, we can test whether MLM’s predictions have the

same distribution on two word lists (M and F ). Consider two groups of probabilities,

{P (f |T\i)}f∈F and {P (m|T\i)}m∈M , representing the probability distributions PF and

PM . The rank sums, denoted by
∑︁

f∈F RF∪M(P (f |T\i)) and
∑︁

m∈M RF∪M(P (m|T\i))

respectively, allow us to test the hypotheses Hi0 : PF = PM vs. Hi1 : PF ̸= PM . The

null hypothesis holds if there is no statistically significant bias toward masculine or

feminine language in a particular word wi. The following theorem provides a rigorous

formulation of the test statistic and its asymptotic result.

Theorem 3.1 When |F | and |M | are large, for each i ∈ [n], under Hi0:∑︂
m∈M

RM(P (m|T\i)) ∼ N(
|M |(|F |+ |M |+ 1)

2
,
|F ||M |(|F |+ |M |+ 1)

12
)

If further we have |M | = |F | = K, for each i ∈ [n], under Hi0:

S(wi) ∼ N(0,
2K + 1

3
)

3.4.4 Algorithm Validation

To demonstrate the reliability of our scoring algorithm in identifying social biases

within texts, we validate our method on two different tasks:

Human Experts Validation This validation involved collaboration with six expe-

rienced professionals from the fields of sociology and management science. Each coder

manually labeled a randomly selected subsample of job advertisements. Leveraging
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their extensive domain knowledge, these experts meticulously classified the advertise-

ments, assessing them for levels of perceived gender bias. These categorical labels were

then transformed into ordinal variables, enabling a detailed statistical comparison with

the results produced by our scoring algorithm. This rigorous, expert-driven coding

process ensured the reliability of our evaluation methodology.

We compute the Spearman rank correlation between the bias scores generated

by our algorithm and the results from the manual labeling process. A Spearman

correlation coefficient of 0.851 was obtained (Figure 3.4), indicating a strong positive

association between our algorithm’s scores and the human experts’ assessments. This

result validates the algorithm’s capacity to accurately reflect human judgments of

bias, confirming its effectiveness as a tool for social bias detection.

Benchmark Validation Further validation was conducted using the BIOS dataset

[50], which comprises personal biographies categorized by gender and various occu-

pations. We employed gender-specific word lists from [69], such as {man, his, he ...}

versus {woman, her, she...}, as binary directional cues and designated gender as the

ground truth label. Our algorithm demonstrated high performance, achieving an AUC

of 0.97 in classifying gender, as illustrated in Figure 3.5. The AUC, or Area Under

the ROC Curve, measures the ability of our model to distinguish between classes —

here, gender categories. This performance surpasses that of three baseline methods

in [55] that rely on unigram or word embeddings, highlighting the effectiveness and

potential applicability of our bias detection approach in broader NLP tasks.

1This correlation is notably higher compared to those typically observed in non-experimental
social sciences.
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3.5 Probing Methodology and Job Application Data

Generation

Probing Methodology To explore the social biases inherent in ChatGPT, particu-

larly in the context of the labor market, our study simulates the typical use case where

job seekers employ ChatGPT to assist in drafting job applications. This approach

allows us to investigate not only the biases that may emanate from ChatGPT’s training

data but also to understand how these biases could potentially influence real-world

job application/hiring processes.

Probing the social biases within ChatGPT presents several challenges. Firstly,

ChatGPT’s model operates as a ‘black box,’ making it difficult to discern the internal

processes that contribute to bias propagation. Secondly, the lack of access to the

model’s architecture or parameters further complicates direct examination. Therefore,

our analysis adopts an indirect method, employing our known bias evaluation algorithm

to detect and quantify the biases exhibited by ChatGPT, thereby illuminating how

these biases might manifest in practical applications.

Job Application Data Generation Our dataset comprises over 33,000 job postings

collected from LinkedIn, reflecting a diverse range of industries and job types. To

simulate realistic job application processes, we utilize the OpenAI API to prompt

ChatGPT with these job advertisements, instructing it to generate corresponding job

applications for each job posting.

This method does more than replicate real-world scenarios where individuals respond

to job postings—it also facilitates a comprehensive analysis of the generated texts

across various sectors. By using job advertisements as standardized prompts, we ensure

that any observed deviations from neutrality in the generated texts are attributable to

the model’s ingrained biases, rather than the content of the advertisements themselves.

This setup is crucial for isolating the effects of ChatGPT’s biases, allowing for an

accurate assessment of bias presence and intensity using the quantifiable metrics
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provided by our bias score calculation method.

3.6 Analysing the Bias inside ChatGPT

3.6.1 Dimensions of Gender Bias

We begin by introducing the four gender dimensions, each defined by a distinct set

of gender-related word lists, which will form the basis of our analysis. In recent

social science research, understanding gender bias involves not just recognizing the

existence of biases but also evaluating their impacts in various contexts. Building on

the framework proposed by Gaucher et al. [39], Bem [66], and Konnikov et al. [69],

we utilize specialized word lists to apply our social bias analysis across four different

dimensions. Each dimension not only helps identify specific instances of bias but also

offers insights into the broader social and psychological dynamics at play.

Psychological Cues: The psychological dimension assesses language context

leaning towards communal attributes (e.g., “caring,” “sympathetic,” “attentive”)

commonly associated with femininity, or agentic attributes (e.g., “authoritative,”

“active,” “confident”) typically linked to masculinity.

Role Description: We evaluate job descriptions and roles using word lists that

categorize terms associated with “soft” and “social” skills for feminine orientation, and

“time-compressed” and “stressful” tasks, such as “multitasking,” “pressure,” “speed,”

for masculine orientation.

Work–Family Characteristics(WFC): This dimension examines employer poli-

cies and cultural expectations affecting gendered labor force participation, scrutinizing

terms like “parental leave” and “flexible work” for feminine orientation versus “irregular

and long work hours” and “weekend work” for masculine orientation.

Social Characteristics: We also analyze explicit gender references such as gen-

dered pronouns and identity markers (“she,” “he,” “his,” “her,” “man”).
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3.6.2 Correlation Analysis

We first analyze the correlation of job postings and job applications across each

dimension of gender bias. Our findings indicate a consistent positive linear correlation

between the bias scores of job postings and the ChatGPT-generated job applications.

This trend suggests that the biases inherent in job postings are likely to be reproduced

in job applications by generative AI, reinforcing and possibly amplifying the initial

biases. This correlation is visually captured in Figure 3.3, illustrating the potential

for cyclical reinforcement of biases through the use of generative AI in job application

practices.

Figure 3.3 presents the statistical parameters for each analyzed dimension of social

bias. The strongest correlation is observed in the Social Characteristics dimension with

a correlation coefficient of 0.777, indicating a very strong positive relationship. This

is followed by the Role Description dimension, which shows a correlation coefficient

of 0.708. Both of these correlations suggest significant potential for the biases in job

postings to be reproduced by AI in job applications in these dimensions.

The Psychological Cues and WFC dimensions exhibit lower but still substantial

correlation coefficients of 0.644 and 0.451, respectively. The slopes of these relationships

indicate the rate at which the bias scores from job postings predict those in job

applications, with steeper slopes observed in the Social Characteristics dimension.

This analysis clearly supports the hypothesis that inherent biases in job postings are

likely reproduced in ChatGPT-generated job applications.

3.6.3 Statistical Testing for Analysis

In this section, we delve deeper into how ChatGPT influences bias reproduction

within the job application process. Let {Xi} and {Yi}, for i = 1, . . . , n, represent

the bias scores of original job postings and those of the job applications generated

by ChatGPT, respectively. A score close to zero indicates minimal bias (i.e., gender

neutrality that is neither feminine nor masculine), a higher positive score signifies a
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Figure 3.3: Result scatter density plot, for each of the bias dimensions where the
x-axis is the job posting bias score and the y-axis is the job applications bias score.
Where the darker color means there are more dots. The p-value is the significance of
the correlation coefficient.

bias towards masculine language, and a lower negative score indicates a bias towards

feminine language. The aim is to evaluate how ChatGPT may exacerbate or mitigate

these biases. We denote the population mean and variance of X as µX and σ2
X . The

histogram and summary statistics of the bias scores are in Appendix 3.8.3.

Shift in Mean We propose the following hypothesis tests to assess shifts in mean:

H0 : µX ≥ µY vs. H1 : µX < µY

Using the Wilcoxon signed-rank test, we determine whether there is a significant

change in the mean bias score from the job postings to the applications.

Shift in Magnitude For the magnitude of bias, we assess:

H0 : |µX | ≥ |µY | vs. H1 : |µX | < |µY |

This test measures the central tendency of bias scores, examining if the absolute values

(regardless of bias direction) decrease. The less the magnitude(i.e. closer to zero) the

less bias it has.
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Change in Variance We also explore the variability in bias scores:

H0 : σ
2
X ≤ σ2

Y vs. H1 : σ
2
X > σ2

Y

This variance test, employing Levene’s test [70] for equality of variances, explores

whether ChatGPT produces job applications with more uniform bias expressions com-

pared to the job postings. It helps determine if there is a reduction in variance, which

would suggest that ChatGPT standardizes the use of gendered language cues. Such

standardization could potentially reinforce specific gender biases more consistently.

Dimensions Mean Magnitude Variance

Psychological Cues ↑ ↓ ↓

Role Description ↓ ↓ ↓

Work–Family Characteristics ↑ ↑ ↓

Social Characteristics ↑ ↑ ↓

Table 3.1: Statistical testing results for each dimension. The mean result indicates
whether the overall bias score is shifting toward the masculine (↑) or feminine (↓)
direction. The magnitude result reveals whether the bias is moving toward zero (↓) or
away from zero (↑). The variance assesses whether job application bias scores exhibit
greater (↑) or lesser (↓) variance compared to the job postings. Please refer to Table
3.2, 3.3,3.4, 3.5 and 3.6 in Appendix for detail statistics.

Shift in Mean The testing for the mean shift in Table 3.1 reveals significant

findings across several dimensions. Except for Role Description, all other dimensions

exhibit statistically significant shifts toward more masculine language. This indicates

a predominant inclination for ChatGPT to amplify the use of masculine language

in simulated job applications over and above the original job postings, possibly due

to its training on historically biased data. This shift raises concerns about the

consolidation and exacerbation of masculine language. Such biases in AI-generated

content could perpetuate gender disparities in professional settings, emphasizing the

need for interventions in AI training processes to address and correct historical biases.

In contrast, the Role Description dimension shows a mean shift toward a less masculine
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direction, but the bias in job postings has already been shown to be skewed toward a

very masculine direction. In this case, ChatGPT seems to help mitigate this extreme

masculine bias.

Magnitude of Bias The magnitude of bias, assessed through the mean of the

absolute bias scores, varies across the dimensions. The Psychological Cues and

Role Description dimensions suggest that the overall intensity of bias—regardless of

direction—does not increase. This could imply that while the direction of bias towards

masculinity is pronounced, the degree of bias embedded within job applications does

not intensify. Conversely, the WFC and Social Characteristics dimensions exhibit an

increase in bias magnitude, indicating not only a shift towards masculine language

but also an overall increase in the strength of biased expressions. This finding is

particularly troubling as it suggests that AI-generated job applications in these areas

may become more polarized, further entrenching gender-specific expectations in roles

traditionally associated with work-life balance and social interactions.

Variability in Bias Expression The variance results across all dimensions reveal

a consistent decrease in job applications compared to job postings. This decrease

in variance suggests that the language used by ChatGPT is more uniform across

different applications, potentially indicating a standardization of language that leans

towards masculine expressions. Such uniformity in language use could narrow the

range of expressions and perspectives presented in job applications, limiting diversity

and potentially skewing hiring decisions in favor of male candidates.

3.6.4 Implications and Extended Analysis

Our statistical results underscore a critical issue: biases in job postings are not merely

replicated but are amplified in job applications created by generative AI in response

to the postings. This phenomenon can be explained by the reinforcement of initial

biases through the language processing and text generation capabilities of AI tools
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like ChatGPT, which tend to replicate and often intensify the language patterns they

are trained on.

Societal and Labor Market Implications: The amplification of gender biases

in AI-generated job applications has profound societal and labor market implications,

suggesting that not only are stereotypical roles perpetuated through biased language,

but they are also strengthened when individuals use AI tools like ChatGPT to

assist with drafting job applications. This use of generative AI plays a crucial role

in circulating and amplifying biases, which reinforces, rather than challenges, the

gender biases underpinning persistent gender inequalities in the workplace. Such

biases can compound, influencing job satisfaction, employee retention, and career

advancement. The misallocation of human resources due to biased AI could reduce

economic efficiency and innovation, potentially causing sectors to overlook qualified

candidates. Furthermore, these persistent inequalities may spur regulatory and legal

challenges, especially in countries with robust equal employment opportunity laws,

with significant implications for social ethics, justice, and economic equality.

Recommendations for Intervention: To mitigate the reproduction of gender

biases through LLMs, it is recommended that employers and AI developers implement

more rigorous bias monitoring and mitigation strategies. This could include the use

of debiased language models, regular audits of AI-generated content by independent

third-party organizations, and the development of enhanced AI training datasets that

reflect the diversity of the global job market. Additionally, public awareness and

education initiatives should be promoted to increase understanding of AI’s role in job

application and its potential impacts, fostering a critical approach to AI tool usage in

professional settings.

3.7 Conclusion

Our paper – including a novel experiment, new algorithm development, and empirical

application and findings – contributes to the ongoing debates and developments
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in the ethical use of AI in labor market processes and practices. By identifying

underlying biases in AI-driven text generation, this paper proposes novel strategies

and methods for detecting and mitigating such biases. Through our PRISM algorithm

and empirical application, we show that these strategies are not just theoretical but

are intended as actionable steps toward ensuring that the integration of AI in the labor

market supports equitable and fair employment opportunities for both employers and

job seekers.

3.8 Appendix & Supplemental Material

3.8.1 Proof of Theorem 3.1

Since each word from two word lists M and F are selected independently. Therefore,

the first result in Theorem 3.1 is implied directly from the Wilcoxon rank sum test

[71].

If |M | = |F | = K, the bias score S(ωi) can be rewritten as

S(ωi) =
1

K

∑︂
f∈F

RF∪M(P (f |T\i))−
1

K

∑︂
m∈M

RF∪M(P (m|T\i))

=
1

K

[︄∑︂
f∈F

RF∪M(P (f |T\i))−

(︄
2K(2K + 1)

2
−
∑︂
f∈F

RF∪M(P (f |T\i))

)︄]︄

=
2
∑︁

f∈F RF∪M(P (f |T\i))

K
− (2K + 1) , (3.1)

where the second equality follows from the fact:

∑︂
f∈F

RF∪M(P (f |T\i)) +
∑︂
m∈M

RF∪M(P (m|T\i)) =
2K(2K + 1)

2
.

From the first result in Theorem 3.1, we have

∑︂
f∈F

RF∪M(P (f |T\i)) ∼ N(
K(2K + 1)

2
,
K2(2K + 1)

12
)

for each i ∈ [n], underHi0. Therefore, underHi0, the result S(wi) ∼ N(0, 2K+1
3

) follows

directly from the relationship (3.1) and the distribution of
∑︁

f∈F RF∪M(P (f |T\i)).
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3.8.2 Algorithm Validation Result

Figure 3.4: Human Expert Validation

Figure 3.5: Benchmark Validation

In Figure 3.4, A labeled value of 7 signifies neutrality, while values less than 7
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suggest femininity, and values greater than 7 imply masculinity. A Bias Score close to

zero indicates neutrality, a positive value suggests masculinity and a negative value

denotes femininity.

In Figure 3.5, We follow three gender metrics for evaluating gender bias in texts in

[55]. The first metric, unigram matching, counts gender-specific tokens like ’he’, ’him’,

’she’, ’her’ etc., and labels texts with more male tokens as male, more female tokens

as female, and texts with equal counts as neutral. The second metric assesses words

indirectly related to gender via a normalized projection of word vectors in the gender

direction, defined by she⃗ −he⃗, using a Word2Vec embedding. Word-level gender scores

are calculated as bi =
w⃗i·g⃗

∥w⃗i∥∥g⃗∥ . These are aggregated either by a weighted average

(Gender-Wavg):

Gender-Wavg =

∑︁n
i=1 sgn(bi)b

2
i∑︁n

i=1 |bi|

or by taking the score from the most gender-polar word (Gender-Max ):

i∗ = argmax
i

(|bi|), Gender-Max = sgn(b∗i )|b∗i |

Texts are classified as male if the score is less than -0.25 and as female if the score

is greater than 0.25.

3.8.3 Histogram of Bias Scores

In Figure 3.6, we present the histogram of bias scores for Job Postings and Job

Applications on different dimensions.

3.8.4 Statistical Tests Results

3.8.5 Experiment Setting & Computational Resources

For our analysis, we utilize the ’bert-base-uncased’ model from the Hugging Face library

with a selection threshold, α, set to 20 for choosing the top probability percentage.

The temperature parameter for the ChatGPT API is set to its default value of 7. For
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Figure 3.6: Result histogram, for each of the bias dimensions, we use different colors
to distinguish the Job Postings and Job Applications

Dimension Mean Magnitude Std

Psychological Cues -0.030 0.552 0.703

Role Description 3.188 3.205 1.550

Work–Family Characteristics 0.455 0.476 0.290

Social Characteristics 0.435 0.484 0.355

Table 3.2: Mean, Magnitude, and Standard Deviation for job postings across different
dimensions.
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Dimension Mean Magnitude Std

Psychological Cues 0.039 0.427 0.533

Role Description 3.020 3.020 1.060

Work–Family Characteristics 0.513 0.515 0.203

Social Characteristics 0.550 0.569 0.288

Table 3.3: Mean, Magnitude, and Standard Deviation for job applications across
different dimensions.

Dimension Statistic p - value H1

Psychological Cues 229792649.0 1.06× 10−136 µX < µY

Role Description 316042300.0 0.0 µX > µY

Work–Family Characteristics 207756451.0 0.0 µX < µY

Social Characteristics 119987669.0 0.0 µX < µY

Table 3.4: Wilcoxon Test Results for Mean Shift

Dimension Statistic p - value H1

Psychological Cues 353433005.0 0.0 |µX | > |µY |

Role Description 319570996.0 0.0 |µX | > |µY |

Work-Family Characteristics 219288122.0 0 |µX | < |µY |

Social Characteristics 146778531.0 0.0 |µX | < |µY |

Table 3.5: Wilcoxon Test Results on Absolute Values

Dimension Statistic p - value H1

Psychological Cues 1825.094 0.0 σ2
X > σ2

Y

Role Description 3410.619 0.0 σ2
X > σ2

Y

Work–Family Characteristics 2491.084 0.0 σ2
X > σ2

Y

Social Characteristics 922.186 1.80× 10−201 σ2
X > σ2

Y

Table 3.6: Levene’s test results for variance between job and application data across
different dimensions, analyzed with a one-sided interpretation. These results indicate
significant differences in variance, with the job postings consistently showing greater
variance compared to the job applications.
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the preprocessing, when we iterate through the text, we skip some of the function

words like Articles (’a’, ’an’, ’the’), Prepositions (’on’, ’by’), Conjunctions(’and’, ’but’,

’if’), etc. As our algorithm solely requires a forward pass and no training, this enhances

computational efficiency. To further optimize performance, we employ an Nvidia RTX

A5000 GPU. All experiments are conducted on an Ubuntu server equipped with an

AMD Ryzen Threadripper 3990X 64-Core Processor and 256 GB of RAM.

Limitations & Future Works

All our results are based on an English dataset; however, additional complexities

may arise with other languages due to more intricate word splitting or tokenization

challenges. The Masked Language Models (MLMs) utilized in our study are sourced

from public, open-source pre-trained models. The inherent biases of these pre-trained

models might impact our results, although we have attempted to mitigate this issue

through a robust rank-based method that reduces sensitivity to changes in probability

distributions. Currently, our job application generation relies on basic prompts;

exploring the effects of varied prompts to capture a broader spectrum of biases

constitutes part of our future work. Moreover, while our framework is initially

designed to use pairs of word lists, it possesses the flexibility to accommodate single

or multiple word lists with minimal adjustments, an extension we also plan to explore

in future research endeavors.
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Chapter 4

A Statistical Testing Framework for
Bias Word Detection with Masked
Language Models

4.1 Abstract

We introduce a novel statistical hypothesis-testing framework designed to detect

biases in textual content by Masked Language Models (MLMs). Our unsupervised

approach leverages sentence perturbation techniques to construct robust datasets

from singular text instances, enabling practical and effective statistical testing of

bias. The framework is adaptable, incorporating various methods for measuring bias

and calculating variance, thereby accommodating different linguistic contexts and

analytical needs. Through rigorous empirical validation using real-world data, we

demonstrate the framework’s capacity to identify subtle biases, highlighting its utility

and effectiveness. Our contributions are significant, offering a tool that enhances the

transparency and fairness of AI technologies. This work not only advances the field

of AI and ethics but also provides actionable insights for developers and researchers

striving to mitigate bias in AI-generated texts.
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4.2 Introduction

As artificial intelligence (AI) continues to evolve, with Natural Language Processing

(NLP) and Large Language Models (LLMs) becoming increasingly prevalent, their

influence permeates every facet of social and economic life. The rapid deployment and

integration of these technologies into daily interactions, decision-making processes,

and broader societal functions spotlight their potential to reshape numerous aspects of

human activity. However, alongside the technological advancements, there is a growing

concern about the embedded social biases and ethical issues that these technologies

may harbor. Such concerns underscore the urgent need for rigorous scrutiny and

methodologies capable of addressing and mitigating bias within AI systems.

Recognizing the profound impact generative AI has on society, this paper focuses

on identifying and understanding the biases manifested in generated textual content.

To address these challenges, we are the first to develop a statistical hypothesis testing

framework designed specifically for bias detection in texts produced by Masked

Language Models (MLMs). This framework is not only innovative but also adaptable,

accommodating various bias measurement and variance calculation methods.

The crux of our research is the establishment of a statistical testing framework

that measures biased words within textual data. This framework is distinctive in

its flexibility, allowing for the integration of diverse bias measurement techniques.

Moreover, our method stands on solid theoretical ground, possessing several desirable

statistical properties that enhance its reliability and applicability in bias detection.

One of the highlights of our framework is its unsupervised nature, which is par-

ticularly advantageous given the typical scarcity and expense of labeled data. This

is especially relevant in domains where bias-labeled data are rare or non-existent.

Furthermore, our approach addresses the real-world challenge of data scarcity in

statistical testing scenarios. Typically, when a sentence is identified as a candidate for

bias testing, the available data may be limited to that single instance rather than a
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larger sample. Our method creatively employs sentence perturbation techniques to

generate a sufficient sample of data points, thus enabling the robust estimation of

distributions necessary for effective statistical testing.

In essence, this paper seeks to bridge the gap between advanced computational

techniques and the critical need for fairness and transparency in AI. Through our

innovative approach, we aim to contribute significantly to the ongoing dialogue and

efforts in AI ethics, particularly in mitigating bias in language models.

Our key contributions are threefold:

• We propose a novel statistical testing framework specifically designed for detect-

ing bias in textual contexts, which is both robust and flexible.

• Our algorithm is distinguished by several aspects of methodological soundness,

including theoretical validity and the ability to handle diverse data scenarios

without the need for extensive labeled datasets.

• We validate our framework with real-world data, demonstrating its effectiveness

and practical utility in identifying and understanding biases within large language

models.

This paper is structured as follows: We first discuss the related work about quan-

tifying social bias in text and NLP. Then we talk about the problem setting and

motivation. For the main algorithm, we start by introducing the sentence perturbation

followed by the statistical hypothesis testing framework. Finally, we present the

experiment result.

4.3 Related work

Evaluating bias in textual contexts remains a formidable challenge within the field of

natural language processing. Despite significant advancements in machine learning

and AI technologies, effectively detecting and quantifying biases in text not only
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requires sophisticated algorithms but also a nuanced understanding of language and

context. This has spurred ongoing research efforts aimed at developing more robust

and adaptable methodologies to address this critical issue.

The measurement methods for evaluating bias in pre-trained word embeddings

and language models can be broadly divided into two categories: Intrinsic and

Extrinsic evaluations. Intrinsic bias evaluations probe the bias within pre-trained word

embeddings and language models. Common methods include measuring the geometry

in embedding space, such as the Word Embedding Association Test (WEAT; [45])

and Sentence Encoder Association Test (SEAT; [72]). Additionally, [47–49] propose

metrics using the likelihood score. Furthermore, research suggests that some debiasing

methods may only hide bias, and thus additional measurement approaches are needed

[13].

The extrinsic bias is specific to certain downstream tasks. In the text classification

task, De-Arteaga et al. [50] and Blodgett et al. [51] proposed two benchmark datasets

and used the equal opportunity measure from fairness literature. Zhao et al. [52]

proposed the WinoBias benchmark for Coreference resolution. As well as other

benchmarks, such as Bias-NLI [53] and in machine translation [54]. However, recent

research has indicated that intrinsic bias in embeddings or models typically does not

have a strong correlation with bias in downstream tasks[73, 74]. Kaneko et al. [75]

found out that the debiased models re-learn the bias from the fine-tuning datasets,

showing that only debiasing upstream models may not be enough to eliminate bias in

downstream tasks.

In this paper, we focus on the specific downstream task of bias evaluation of the

generated text. Many current methods are only applicable to particular kinds of

bias, making them less flexible for other scenarios. Dhamala et al. [55] calculate

bias by determining the cosine similarity between word embeddings [2, 56] along the

gender axis (
−→
he−

−→
she) [44], and then averaging these values across sentences. Cryan

et al. [57] analyzes both a lexicon-based method and a BERT model that has been
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fine-tuned using a dataset with labels gathered via crowdsourcing. Spinde et al.

[58] has produced a dataset on media bias using expensive expert annotations, a

technique that is not readily applicable to different fields. Raza et al. [59] investigate

the application of named entity recognition to identify biased words in texts, a method

that also necessitates the generation of expensive labeled training data for each specific

task and model. Sociological and psychological studies correlate word usage with

conventional gender roles and personality characteristics, pinpointing words typically

linked to masculine or feminine traits (such as caregiving and assertiveness; agentic

versus communal) [76]. The Bem Sex-Role Inventory serves as an example of a list of

gender-related words created through participant studies, underscoring characteristics

deemed desirable for different genders [39, 66].

4.4 The Problem Setting & Motivation

4.4.1 Motivation

In this section, we formally outline the objectives of our study. The primary aim is to

develop a universal framework capable of estimating biases for individual words within

a sentence using an unsupervised approach. This framework employs statistical testing

to assess word biases and provides a corresponding p-value for each word within a

text. Its flexibility is a key feature, allowing for various calculation methods, which

we will elaborate on subsequently.

Our methodology operates within an unsupervised, or minimally supervised, frame-

work. Lacking labeled data, we do not train a large model to predict word biases.

Instead, we leverage a Masked Language Model (MLM) for extracting relevant infor-

mation. Additionally, we utilize sets of keyword pairs that serve as directional cues in

our analysis.
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4.4.2 Notation

Given a text T comprising n words T = {w1, w2, . . . , wn}, we iteratively mask each

word wi and input the modified masked text T\i = {. . . , wi−1, [MASK], wi+1, . . .} into

an MLM, which outputs the probability distribution over the vocabulary for the

masked position i, denoted as P (· | T\i).

Then, to obtain the direction signal for score calculation, we require two predefined

word lists representing different contexts—such as gender with a feminine word list

F = {f1, . . . , f|F |} and a masculine word list M = {m1, . . . ,m|M |}. For each word in

F and M , we obtain the probability from the distribution P (·|T\i). This yields two

sets of probabilities: PF = {P (f |T\i)} for each word f ∈ F and PM = {P (m|T\i)} for

each word m ∈ M .

4.4.3 Problem Setting

Our task is to test the biases of each word inside a sentence. From the viewpoint of

statistical testing, we first start with the null hypothesis that the word is not biased.

In order to do this, we first need to quantify the bias and denote that as a Bias Score.

We will discuss more details and options for the Bias Score in the section below. In

addition, after obtaining the Bias Score as test statistics, in order to estimate the

distribution of the test statistics and conduct statistical inference, we need to have

multiple scores for the distribution estimation, and this is done through the sentence

perturbation method, and it will also discuss in detail in the following section.

4.5 Sentence Perturbation

To conduct accurate statistical hypothesis testing and estimate the distribution of test

statistics, it is essential to have multiple samples. Yet, the primary constraint is often

the availability of only the candidate text. To overcome this limitation, we propose

several ways to generate data and text perturbation.
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Sentence Transformation In our study, we explore sentence transformation. We

employ a pre-trained language model to perturb text while ensuring that these

transformations do not alter the original content’s meaning, focusing solely on word

changes. In detail, we utilize the Text-to-Text Transfer Transformer (T5) model [77],

which excels in generating multiple sentences that preserve the semantic integrity

of the original text. T5 is uniquely skilled at transforming text-based tasks into a

text-to-text format, notably adept at producing paraphrases that maintain semantic

consistency while varying lexical and syntactic elements.

The effectiveness of T5 stems from its comprehensive pre-training on a diverse

corpus, enabling it to develop a nuanced understanding of language semantics and

syntax. This pre-training allows T5 to generate semantically consistent perturbations,

crucial for our methodology. In our approach, we first mask each word wi in a

text T with a masked token for the Masked Language Model (MLM) to predict.

Additionally, we select several indices randomly and replace them with the extra id

token specifically designed for T5, resulting in a modified sentence fed into the T5

model, which then predicts and fills the gaps, creating randomly perturbed sentences.

We provide a detailed illustration graph in Figure 4.1.

Redundant Prefix Another method for data perturbation involves appending a

redundant prefix to the start of the original data, preserving the literal meaning of the

original sentence. We modify the text style by introducing a redundant prefix at the

beginning of the original text. These prefixes include ”It is important to acknowledge

that:”, and ”It is worth noting that:”, which lend a nuanced and deliberate tone to

the content. To create diverse samples, our approach requires utilizing various prefixes

and suffixes. We employ ChatGPT to generate a predefined set of these elements,

ensuring each modifies the original content differently. This strategy not only changes

the tone but also adds a layer of careful consideration, emphasizing the message being

conveyed.
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Punctuation Marks Substitution Another straightforward yet effective pertur-

bation technique we employ involves substituting the punctuation marks within a

sentence. This method subtly alters the tone of the text without changing its factual

content. However, the scope of this transformation is somewhat limited due to the

restricted number of punctuation marks and their placement within the text.

Figure 4.1: An illustration of the paradigm for text perturbation and use MLM for
obtaining the score.

4.6 Word Level Bias Evaluation Framework

In this section, we first outline the full testing framework followed by the detail of

each necessary component for our testing framework.

4.6.1 Algorithm for Testing Word Bias

To systematically determine whether a given word Wi in a sentence T exhibits bias,

we devise an algorithm that employs natural language processing and statistical

analysis techniques. The method involves perturbing the sentence context as we

mentioned above, utilizing a Masked Language Model for contextual understanding,

and performing a hypothesis test based on the generated data.

In our framework, the algorithm begins by accepting specific input parameters: a

critical value ∆, a significance level α, a target word W, and the sentence T that

includes W. The core of the algorithm involves a sentence perturbation process

using the T5 model, which manipulates the words in T while keeping W static,
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thus generating a series of perturbed sentences T ∗
1 (W), . . . , T ∗

B(W). Each perturbed

sentence is then processed to mask W , and a Masked Language Model (MLM) such

as BERT is employed to predict the probability distribution of potential replacements

at the masked position.

The MLM predictions are used to compute two specific sets of probabilities: PF

and PM . PF encompasses probabilities associated with female-biased words, while PM

covers male-biased words, both derived from a predefined list of gender-associated

words.

With these probabilities, we can use them to form various metrics for quantifying

social bias. Allow for the calculation of a Bias Score for each perturbed sentence,

quantifying the level of gender bias that W introduces into T .

Following the bias score calculations, the variance of these scores is estimated to

support the construction of a test statistic V . This statistic is crucial for evaluating the

significance of the observed bias, as it is compared against a standard or theoretically

derived distribution to ascertain if the bias is statistically significant, culminating in

the computation of a p-value. This p-value is instrumental in determining whether

the bias associated with W is significant at the level α, thereby providing a robust

measure of word bias in the context of the sentence.

This methodology leverages advanced machine learning techniques and statistical

analysis to provide a systematic and reproducible approach to detecting and quantifying

word bias in textual data, exemplified by processing a sentence like “The nurse attended

the conference” where “nurse” might be perturbed to observe gender biases based on

associative probabilities in different contexts. The detailed paradigm is in Figure 4.2

and the Algorithm step is in Algorithm 4.

This structured algorithmic approach integrates advanced machine learning tech-

niques with robust statistical methods, facilitating precise and replicable bias detection

in textual data.

In the following, we will provide details about each component of the framework
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Algorithm 4 Bias Word Detection Algorithm

Input: Sentence T (W), Target word W , Critical Value ∆, Significance Level α,
Number of Perturbation Samples B
Output: p-value indicating the bias of Word W
1: Initialize Perturbation Samples: Generate T ∗

1 (W), . . . , T ∗
B(W) using T5 model by

perturbing words in T , excluding W
2: for b = 1 to B do
3: Mask W in T ∗

b (W)
4: Use MLM to predict the probability distribution P (·|T ∗

b (W) with W masked)
5: Calculate probabilities PF and PM for female and male bias-related words

respectively
6: Compute Bias Score for T ∗

b (W) using PF and PM

7: end for
8: Compute the mean Bias Score and variance of Bias Scores across all B samples
9: Construct the test statistic V = (Bias Score−∆)/

√
Var

10: Determine the p-value by comparing V to a corresponding distribution
11: return p-value

Figure 4.2: An illustration of the paradigm for the testing framework
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and provide examples for illustration and recommendations.

4.6.2 Social Bias Quantification

Previous Methods

Here arises a key question on how to quantitatively represent the bias, many of the

previous research works on evaluating bias in the context of word embedding, language

models, and different downstream tasks(as discussed in the related work section). In

this study, we concentrate on the assessment of unstructured text, which is inherently

more difficult than evaluating natural language processing models. This often demands

significant input from human experts or the use of basic and heuristic techniques.

In our previous work, we introduced two kinds of methods for bias calculation, the

first is a static word embedding-based method for calculating the bias using word

list words, the main idea is that for each word in the text we want to analyze, we

use the word list pairs to convert the words into two sets of embedding vectors, and

then we use the candidate word and also convert it to the embedding word vectors

and then we calculate the cosine similarity of the candidate word vector with the

two-word vectors sets. We can view the cosine similarity to be how biased this word is

to male or female word sets. As for our framework, static embedding-based methods

will yield exactly the same score for every perturbation of the sentence, since it looks

at words individually. Thus failing to capture the nuanced changes induced by the

perturbations.

The second metric is based on the masked language model, the key advantage is

that the analysis will be context-aware, which means when we are looking at the

candidate word, we are also considering the information of the whole sentence, not

each word individually. The key idea is to mask the candidate word and use the

Masked Language Model to output the prediction probabilities. We use this output

and the probabilities of the two-word lists to construct the bias scores.
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Bias Score Calculation Methods

We present various methods to quantify bias from the outputs of a Masked Language

Model (MLM), specifically analyzing the probability distributions PF and PM for each

target word W . The bias score is fundamentally derived as a function:

Bias Score = F(PF , PM)

where F represents a calculation method designed to measure the disparity between

two sets of probabilities associated with gender-biased words.

To illustrate the versatility and adaptability of our framework, we present several

exemplary methods for calculating the bias score, each tailored to meet different

analytical needs and performance criteria within diverse linguistic research contexts:

1. Average Probability Difference: This method calculates the bias score as

the difference between the average probabilities of female-biased and male-biased

word sets:

Bias Score =
1

|F |
∑︂
f∈F

P (f |T\i)−
1

|M |
∑︂
m∈M

P (m|T\i).

2. Quantile-Based Difference: An alternative approach utilizes the η-quantiles

of the probability distributions, providing a bias score that reflects more extreme

probability values:

Bias Score =
1

|F |
∑︂
f∈F

Qη(P (f |T\i))−
1

|M |
∑︂
m∈M

Qη(P (m|T\i)),

where Qη represents the η-quantile, with η being a predefined threshold.

3. Rank-Based Evaluation: This method assesses bias by comparing the average

ranks within each set of probability distributions, where here we define function

R as the rank of the probability with respect to the whole dictionary:

Bias Score =
1

|F |
∑︂
f∈F

R(P (f |T\i))−
1

|M |
∑︂
m∈M

R(P (m|T\i)).
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4. Quantile of Ranks Difference: Building on rank evaluations, this method

calculates the bias score using the quantiles of the ranks, potentially highlighting

disparities that are not evident from average ranks alone:

Bias Score =
1

|F |
∑︂
f∈F

Qη(R(P (f |T\i)))−
1

|M |
∑︂
m∈M

Qη(R(P (m|T\i)).

5. Merged Rank Differences: A derivative of our previous methods, this ap-

proach merges the two probability sets before calculating the rank differences,

here the function R′ denotes the rank based on the union of two probability sets:

Bias Score =
1

|F |
∑︂
f∈F

R′(P (f |T\i))−
1

|M |
∑︂
m∈M

R′(P (m|T\i)).

These methods provide a comprehensive toolkit for researchers to adapt and apply

according to their specific datasets and hypothesis-testing needs, illustrating the

flexibility and potential of our framework in exploring and quantifying biases in

textual data. Each method highlights different aspects of bias, from subtle to overt,

ensuring that researchers can choose the most appropriate approach for their specific

study.

4.6.3 p-value calculation and the Corresponding Distribu-
tions.

With the bias score in hand, we can proceed with the calculation of the distribution

and the corresponding p-value.

Normal Approximation

The most intuitive method for estimating variance in the context of bias score analysis

is the ordinary variance calculation:

Var = (B − 1)−1

B∑︂
k=1

{︁
Bias Scorek − Bias Score

}︁2
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Here, B represents the total number of perturbation samples, Bias Scorek denotes

the bias score from the k-th sample, and Bias Score is the mean bias score across all

perturbation samples. This variance estimation is crucial as it quantifies the dispersion

of bias scores around their mean, which is fundamental to the normal approximation.

The test statistics can be constructed as:

V =
Bias Score−∆√

Var
∼ N (0, 1)

The p-value for the word w can then be calculated using the following:

pw = 1− sup{β : V > Zβ}

where Zβ is the β-th quantile of the standard normal distribution.

Self Normalization

In typical statistical applications, the sample variance estimator presumes that obser-

vations are independent and identically distributed (iid). However, this assumption is

problematic in context, where we deal with sentence perturbations—subtle alterations

to syntax or diction that preserve the original meaning. These manipulations mean

that sentences share inherent similarities and are not statistically independent.

Moreover, estimating variance in such dependent samples is notoriously challenging.

To address this, under specific conditions, [78] introduced the self-normalization

technique, which proposes a new estimator with variance proportional to that of

the original data, referred to as the normalizer. Consequently, the ratio of two such

statistics effectively eliminates the asymptotic variance, yielding a deterministic and

known limiting distribution. Following the methodology outlined in [78], we apply a

similar normalizer. Assuming certain technical conditions, this ratio is expected to

weakly converge to the distribution given by W (1)√∫︁ 1
0 (W (t)−tW (1))2dt

, where W (t) denotes

Brownian motion. Our variance estimator is defined as follows:

Var = B−2

B∑︂
k=1

{︄
k∑︂

j=1

(Bias Scorej)− Bias Score

}︄2
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This framework not only adheres to robust statistical theory but also ensures that

our estimations are suitable for the complex and dependent nature of our framework.

4.7 Experiments

To analyze the performance of the framework, we conduct some real-world text analysis

on various method combinations we have. To showcase it, we demonstrate an example

text and analyze its result:

’She has been working with children in camp , community and school

settings for the past 8 years . She believes in the importance of cultivating

self - love and awareness in black children at a very young age and is

excited to be apart of Black Lives Matter Toronto ’s Freedom School !’

Using the text above, we deploy our framework using four different word lists with

detail in the Appendix 4.9.1. Each of the word lists measures a different dimension of

gender bias. For the result, when we are looking at the gender-social characteristic

dimension, which only contains words with gendered pronouns, our framework is not

only able to detect all the pronouns that it is meant to detect but also detects some

words that are gender bias in another dimension, such as children, cultivation,.. etc.

In addition, the other dimensions such as Psychological Cues, are able to detect the

pronouns words such as she.

4.8 Conclusion

In this study, we introduced a novel statistical hypothesis-testing framework for

detecting biases in textual content using Masked Language Models (MLMs). Our

methodology stands out due to its unsupervised nature, leveraging sentence perturba-

tion techniques to create robust datasets from individual text instances. This approach

enables practical and effective statistical testing of biases, facilitating the identification

of subtle biases in text.
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Unique Words psy diff role diff wfc diff gsc diff

she 0.036800 0.001200 0.709800 0.000000

working 0.017600 0.060200 0.242400 0.092600

children 0.004400 0.034400 0.009200 0.156200

camp 0.000400 0.243600 0.028800 0.132000

community 0.000000 0.005000 0.061200 0.110600

school 0.004800 0.459200 0.022800 0.061600

years 0.001200 0.005000 0.320400 0.213200

she 0.784200 0.085800 0.372400 0.013200

believes 0.203000 0.210800 0.013200 0.000000

importance 0.001000 0.067200 0.102200 0.236400

cultivating 0.265400 0.000000 0.000000 0.013000

self 0.024400 0.264400 0.000000 0.148800

love 0.036200 0.000000 0.005800 0.230600

awareness 0.632800 0.354600 0.000000 0.025200

black 0.058600 0.004600 0.000000 0.000000

children 0.479800 0.616400 0.058200 0.018200

young 0.137400 0.001400 0.002200 0.222400

age 0.112800 0.000000 0.000000 0.502200

excited 0.049800 0.001400 0.014800 0.074600

black 0.004800 0.000400 0.028000 0.047200

lives 0.118200 0.447800 0.168600 0.728800

matter 0.002000 0.018000 0.059800 0.082200

toronto 0.002000 0.001400 0.077600 0.425000

freedom 0.725200 0.000000 0.066200 0.006200

school 0.240800 0.000000 0.140800 0.592400

Table 4.1: Example text bias analysis
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Our framework is highly adaptable, and capable of incorporating various methods

for measuring bias and calculating variance. This flexibility allows it to accommodate

different linguistic contexts and analytical needs, making it a versatile tool for bias

detection across diverse settings. Through rigorous empirical validation of real-world

data, we have demonstrated the framework’s capacity to reliably identify biases,

thereby underscoring its utility and effectiveness.

The contributions of this work are significant, enhancing the transparency and

fairness of AI technologies. By providing a methodological advancement in the field of

AI and ethics, this research not only propels the scientific community forward but also

offers actionable insights for developers and researchers striving to mitigate bias in

AI-generated texts. Looking forward, we envision this framework being applied more

broadly to assess and improve the ethical considerations of AI systems, ultimately

leading to more equitable AI applications. This work lays a solid foundation for future

research aimed at refining bias detection techniques and developing more nuanced

approaches to understanding and eliminating bias in automated systems.

Through continued innovation and collaboration, we can enhance the capabilities of

AI systems, ensuring they serve society ethically and justly. The potential applications

of our framework extend beyond the academic sphere into practical implementations,

where developers can integrate these methodologies to audit and refine AI outputs,

promoting fairness in automated decision-making processes.

4.9 Appendix & Supplemental Material

4.9.1 Dimensions of Gender Bias

We begin by introducing the four gender dimensions, each defined by a distinct set

of gender-related word lists, which will form the basis of our analysis. In recent

social science research, understanding gender bias involves not just recognizing the

existence of biases but also evaluating their impacts in various contexts. Building on
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the framework proposed by Gaucher et al. [39], Bem [66], and Konnikov et al. [69],

we utilize specialized word lists to apply our social bias analysis across four different

dimensions. Each dimension not only helps identify specific instances of bias but also

offers insights into the broader social and psychological dynamics at play.

Psychological Cues: The psychological dimension assesses language context

leaning towards communal attributes (e.g., “caring,” “sympathetic,” “attentive”)

commonly associated with femininity, or agentic attributes (e.g., “authoritative,”

“active,” “confident”) typically linked to masculinity.

Role Description: We evaluate job descriptions and roles using word lists that

categorize terms associated with “soft” and “social” skills for feminine orientation, and

“time-compressed” and “stressful” tasks, such as “multitasking,” “pressure,” “speed,”

for masculine orientation.

Work–Family Characteristics(WFC): This dimension examines employer poli-

cies and cultural expectations affecting gendered labor force participation, scrutinizing

terms like “parental leave” and “flexible work” for feminine orientation versus “irregular

and long work hours” and “weekend work” for masculine orientation.

Social Characteristics: We also analyze explicit gender references such as gen-

dered pronouns and identity markers (“she,” “he,” “his,” “her,” “man”).
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

This thesis has addressed the critical issue of social biases embedded in Natural Lan-

guage Processing (NLP) models and textual data, offering innovative solutions for their

evaluation and mitigation. Throughout this research, we have successfully developed

and implemented algorithms that not only enhance the fairness and effectiveness of

NLP applications but also push the boundaries of current methodologies in gender

debiasing and bias evaluation. Our initial research phase introduced a novel method

for reducing gender bias in static word embeddings, which preserved semantic integrity

while achieving state-of-the-art results in debiasing tasks and improving performance

in both word similarity evaluations and downstream NLP tasks. Subsequent studies

expanded this approach to broader social biases, introducing a rigorous framework

using Masked Language Models for quantitative bias assessment. This was particularly

demonstrated in our large-scale evaluation of ChatGPT’s performance in high-stakes

environments like the job market, illuminating how generative AI can perpetuate

social disparities. The final segment of our research introduced a groundbreaking

statistical hypothesis-testing framework, using sentence perturbation techniques to

detect subtle biases in MLM-generated texts, validated through empirical studies.
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5.2 Future Work

Despite these advancements, the journey towards completely unbiased NLP models is

ongoing, and several areas warrant further exploration:

• Evaluation Benchmarks: There is a significant scarcity of robust evaluation

benchmarks for bias in textual contexts. Future research should focus on creating

and refining these benchmarks to provide more reliable and standardized methods

for bias evaluation.

• Datasets: The availability of training, testing, and validation datasets remains

limited across various domains of bias evaluation. There is a pressing need

to expand and diversify these datasets to enhance the comprehensiveness and

reliability of bias assessments.

• Interdisciplinary Approaches: Integrating insights from psychology, sociol-

ogy, and ethics can enrich bias mitigation strategies. Interdisciplinary research

could lead to more holistic and effective solutions by incorporating diverse

perspectives on what constitutes bias and fairness.

• Broader Linguistic and Cultural Contexts: Future research should consider

applying the developed frameworks to a wider array of languages and cultural

contexts. While most existing bias mitigation strategies focus predominantly

on English, expanding this research to include other languages could help in

understanding and reducing biases in a globally applicable manner.

• Impact Assessments: Future studies should also focus on the long-term

impacts of debiased models in practical applications. It is crucial to evaluate

whether changes at the algorithmic level translate into tangible improvements

in fairness and equality in real-world scenarios.
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By addressing these areas, future researchers can build on the foundation laid

by this thesis, further enhancing the fairness, accuracy, and utility of AI and NLP

technologies in diverse societal applications.
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