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Abstract

As Moore’s Law continues to drive the advancement of new complementary metal-oxide

semiconductor (CMOS) technology generations toward feature sizes in the sub 10 nm regime,

the role of process, voltage and temperature (PVT) variations have become increasingly

important when designing integrated circuits. very large scale integration (VLSI) designers

are challenged to get millions or even billions of transistors to reliably operate over a wide

range of possible operating conditions. This is not an easy task. Variations in transistor

properties due to the inherent statistical variability of the fabrication process, power supply

voltages, and operating temperatures all determine the conditions that affect the behaviour

and/or output of an integrated circuit (IC). IC designers commonly model PVT variations

as a combination of discretized values that represent the full range of expected operating

conditions and are referred to as PVT corners. Designing such a large system of transistors,

while ensuring that a high yield of devices will operate correctly, requires designers to

consider all possible combinations of PVT corners to determine the worst-case performance

of a circuit during the verification process. Traditional verification methods require SPICE-

level circuit simulations for every possible PVT corner to find the worst-case performance of

a circuit, which has become both time consuming and computationally expensive as modern

designs can have several thousands of PVT corners. The PVT verification problem can be

treated as a mathematical optimization problem. This thesis proposes a verification method

that uses a machine learning model and heuristics to determine worst-case PVT corners

without the need for simulating all possible combinations. The Rapid PVT Verification

(RPV) algorithm that was developed employs a Gaussian process model (GPM) to extract

information generated by PVT simulations to create a model of a given circuit’s output

behaviour. Heuristics are used to further exploit the information provided by the GPM to

determine if the global optimum (worst-case) has been found by the algorithm to a certain

degree of confidence.
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Chapter 1

Introduction

How are integrated circuit (IC) designers able to create microprocessors with billions of

reliable transistors in the nanometer regime, where minimum feature sizes are currently

near 9 nm? This is not a straightforward task for designers and requires new challenges

to be overcome with every new technology generation. To follow the road map set out by

Moore’s Law, classical transistor scaling techniques came from Dennard scaling, where the

oxide thickness (Tox), transistor length (Lg) and transistor width (W ) were all scaled by

a constant factor (1/k). However, classic Dennard scaling techniques ended with at the

130-nm technology node [1]. In the subsequent technologies simply scaling the transistor

feature sizes introduced performance degrading issues such as off-state current leakage, gate

leakage current, and increased channel doping due to impurity scattering [1, 2, 6].

For designers to push past this challenge, new enhancements were added to transistor

design. Mechanical strain was introduced for the 90-nm and 65-nm nodes. For n-channel

metal-oxide semiconductor (NMOS), strain was introduced by adding a high-stress Si3N4

cap layer over the transistor. On the other hand, p-channel metal-oxide semiconductor

(PMOS) strain was achieved by replacing the traditional source/drain region with embedded

SiGe [7]. The addition of strain increased the mobility of the minority charge carriers in the

channel region and thus increased the output drive current, thus improving the performance

of both the NMOS and PMOS transistors [7]. High-k gate dielectric and metal gate (HiK-

MG) technology was introduced to further enhance the strain effectiveness in the 45-nm and

32-nm nodes [6]. HiK-MG improved drive current performance and significantly reduced

the gate leakage current [6]. These new enhancers allowed for the challenges of degraded

performance to be overcome and technology scaling to continue.

Another serious challenge for very large scale integration (VLSI) designers is to get

millions or even billions of transistors to reliably operate in all specified operating conditions.

Over the past several decades, technology scaling has improved the performance and density

of complementary metal-oxide semiconductor (CMOS) ICs [2]. Figure 1.1 shows that at

the recent 32-nm technology node there are on the order of billions of transistors per

central processing unit (CPU). Designing such a large system of transistors while ensuring
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that a high yield of devices will operate correctly over a wide range of possible operating

conditions is not an easy task. The precise values of those process properties cannot be

exactly controlled given the unavoidable statistical variability of nanoscale semiconductor

device fabrication [8]. Those operating conditions could include operating temperature

range, power supply voltage range, and the ranges of possible key transistor properties

such as threshold voltage and transconductance. For convenience transistor properties are

often described with only one effective speed property, where “fast” transistors have a lower

threshold voltage and “slow” transistors have a higher threshold voltage.

Figure 1.1: Moore’s Law: The transistor count of CPU integrated circuits has increased by
2X and the minimum transistor feature size has decreased by 0.7X every two years [1].

Ensuring correct circuit operation in the presence of inevitable process variations has

always been a critical aspect of CMOS design [2]. Process variations can adversely affect

performance and power consumption, which can ultimately reduce the chip yield (that is,

the fraction of manufactured chips that operate within specification). A source of variation

that was historically of minor impact, but has emerged as a serious challenge because

of the nanoscale dimensions of present transistors, is random dopant fluctuation (RDF)

[2]. RDF alters the transistor’s characteristics, notably the important threshold voltage.

RDF has a larger impact on advanced technologies because the total number of dopant

atoms in the channel region is far fewer than before. Figure 1.2 shows that minimum-sized

transistors in the present technology nodes have fewer than 100 dopant atoms in the channel

region. The precise number of dopant atoms that get placed into each channel cannot be

controlled exactly because of the statistical nature of processing steps, such as dopant atom

implantation. Still the VLSI designers must create ICs with billions of transistors that all

operate reliably in the presence of such process variations.

The process, voltage and temperature (PVT) variations determine the conditions that

affect the internal behaviour and output characteristics of an IC. IC designers commonly

2



Figure 1.2: Reduction in the number of dopant atoms in the transistor channel [2].

model PVT variations as PVT corners. Each PVT corner is a combination of discretized

values that represents one possibility among the full range of expected operating conditions.

A common PVT corner parameter is the typical or model set value. The model set values

we will use follow the standard two-letter naming convention. The first letter refers to the

characteristics of the NMOS transistors and the second letter refers to the characteristics

of the PMOS transistors. In this convention there are three characteristic values; typical,

fast and slow. These characteristics refer to the relative mobilitities of the minority charge

carriers in the transistor’s channel region. Note that fast indicates higher carrier mobility

than normal, slow indicates lower carrier mobility than normal, and typical is considered

normal carrier mobility. This results in five possible model set combinations: typical-typical

(TT), fast-fast (FF), slow-slow (SS), fast-slow (FS), and slow-fast (SF). Other PVT corner

parameters can account for variations in one (or more) supply voltages and variations in

the average die operating temperature.

Traditionally, only a few PVT corners were considered when verifying the behaviour

of a chip design: model set {FF, SS} * operating voltage {min V, max V} * operating

temperature {min T, max T} = 8 [9]. However, modern processes have tighter voltage and

timing margins and they require more intermediate values as well as an increased number

of PVT variables. A recent example of this is a voltage-controlled oscillator (VCO) circuit

at the 28-nm node that has 15 model set values, 3 values for temperature, and 5 values

for each of its three voltage variables, for a total of 3375 PVT corners [9]. To verify that

this circuit will operate within specifications for all of these PVT corner conditions, up

to 3375 accurate computer simulations of the circuit designs must be run. For this VCO

circuit, a single PVT corner would take the standard HSPICE circuit simulator 70 seconds

to simulate and therefore 66 hours would be required to simulate all 3375 corners [9].

An important goal of PVT verification is to find the worst-case performance/output

value over all possible PVT corners. IC designers tackle this problem with different ap-

3



proaches. The most straightforward approach is a full factorial experiment [3]. The full

factorial experiment simply simulates all possible PVT corners. This approach is guaran-

teed to find the worst-case PVT corner(s); however, it can be very time consuming and

consequently in large VLSI designs the simulation time can be too large [3]. Frequently,

designers desire to expedite the verification process and seek less costly alternatives to the

full factorial approach.

The designer “best guess approach” consists of simulating only a fraction of all possible

PVT corners. The PVT corners that are simulated are selected using the designer’s best

guess at worst-case PVT corners based on prior experience and expertise [3]. This could lead

to an inadequate selection of PVT corners and overly optimistic belief in circuit behaviour.

This could mean that under certain conditions the circuit might not fall within the required

specifications. If not discovered before chip production, the problem could greatly reduce

the yield or ultimately cause dangerous failures in the field. Although the “best guess

approach” has the advantage of reduced simulation time, it sacrifices confidence in the

robustness of the design.

Another interesting approach is sensitivity analysis via linear modeling. In this type

of approach each PVT variable is adjusted one-at-a-time over a suitable range of values

while all other variables are held constant and the circuit is simulated for each variation [3].

A linear response surface model (RSM) is constructed from the observed behaviour of the

circuit’s output. The RSM is used to predict worst-case PVT corners for simulation. This

approach requires relatively few simulations, which makes it fast, but it may have poor

reliability. Reliability may be poor due to falsely assuming a linear response to the PVT

variables and by assuming there are no interactions between variables [3].

The goal of PVT verification can alternatively be viewed as a mathematical optimization

problem. From this viewpoint the input domain would consist of PVT corners, x⃗i ∈ X,

where x⃗i = [xi1, xi2, . . . , xin] and n ≥ 1 is the number of PVT variables. Therefore the

problem of finding the worst-case PVT corner could be viewed as finding the global maxi-

mum of the simulated output value, f(x⃗i) ∈ Y , over the input domain X. The new aim of

the verification problem is to find the global optimum and not get stuck on local optima.

Figure 1.3 illustrates PVT verification cast as an optimization problem over a domain, in

this case, the very simple one-dimensional domain of a temperature parameter x. The x-

axis shows all possible values of the PVT variable while the y-axis shows the output values

(dots) of simulated PVT corners and the predicted output values (curve) of unsimulated

PVT corners.

In many engineering optimization problems, the number of computationally expensive

function evaluations is severely limited by time or cost [10]. This has become an expanding

field of interest called simulation-based optimization [4]. Simulation-based optimization

addresses functions that are not expressed with closed-form analytical equations, but that

can only be evaluated with so-called “black-box” computer simulations. Finding the worst-
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Figure 1.3: PVT verification cast as a global optimization problem [3]

case PVT corner of a given circuit’s output is a black-box optimization problem. Black-box

functions can be noisy or discontinuous (i.e., rough or non-smooth) and/or require a long

time to compute [4].

Figure 1.4 shows an example black-box function: the fuel economy of an automobile

as a function of the vehicle’s final drive ratio. Finding the optimal final drive ratio that

yields the highest fuel economy poses several challenges due to the noisy and discontinuous

behaviour of the function. Traditional gradient-based optimization techniques may inaccu-

rately estimate the gradient due to the non-smooth nature of the function [10]. This can

lead gradient-based algorithms to potentially miss the maximum. Discontinuities may also

cause algorithms (i.e., hill climbing) to find local maxima, but prevent them from finding

the global maxima.

A method is proposed in [10] to address these problems through the use of approxi-

mations and machine learning techniques. To address these problems, [10] fits a response

surface to data collected by evaluating the black-box function at a few points. These surfaces

(function approximations) are then used for function optimization. The particular optimiza-

tion algorithm that we investigated is known as Efficient Global Optimization (EGO) [10].

In Chapter 2 the EGO algorithm will be reviewed in detail, including the use of kriging

models as an approximation method that is able to provide estimates of local uncertainty.

The objective of machine learning techniques is to extract generalized knowledge directly

from the data. Machine learning is concerned typically with programs or algorithms that

optimize a performance criterion using known/sampled data. When we have a model of a

certain problem, that includes adjustable parameters, learning is described as optimizing the

values of those parameters with the use of training data [11]. Training data is a collection

of data points that are known (i.e., the output for each input combination in the collection

is known). Errors or uncertainties might also be associated with the training data points.

There are two main types of machine learning: unsupervised learning, which is com-

monly used for clustering, and supervised learning, which is commonly used for classification

or regression. Both regression and classification are supervised learning problems, where an
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Figure 1.4: Example of a simulation-based design problem [4].

algorithm is tasked with mapping an input, from a domain X, to an output, in a domain Y .

Classification refers to the problem of mapping an input to an output domain that consists

of a finite set of discrete values (e.g., [1,2,3]). Regression refers to the mapping of an input

to a continuous output domain (e.g., Y ∈ ℜ).
Global optimization is an active research area and there are many different available

optimization techniques [4]. This thesis shall explore and experiment with a novel Rapid

PVT verification optimization method. This method will employ a machine-learning model

of the circuit’s output and use different heuristics to exploit the information provided from

the model. A machine-learning regression model can use information from simulated PVT

corners to make predictions about unsimulated PVT corners. Information from the model

can also be used to determine if a global optimum has been found with a certain degree

of confidence. The goal of this proposed method is threefold: (i) reliably locate the global

optimum, (ii) simulate the fewest number of PVT corners, and (iii) compute quickly (i.e.,

minimize the computational expense).

This thesis is composed of six chapters. Chapter 2 provides background on global

optimization problems and describes current algorithms and frameworks. The machine

learning model to be used will be explained and justified as an appropriate choice for the

PVT verification problem. Chapter 3 gives an overview of the initial Rapid PVT Verification

(RPV) algorithm that focuses on a single output and reports initial reliability measurements.

In Chapter 4 many alternative heuristics are evaluated experimentally in simulation to see if

improvements over the initial algorithm can be made. Chapter 5 extends the RPV algorithm

to evaluate multiple outputs simultaneously and experimentally evaluates the benefits of

concurrent vs. sequential searching methodologies. Finally, Chapter 6 concludes the thesis

with a summary of results and provides suggestions for future work in this area.

6



Chapter 2

Background

This chapter is organized into three sections. In Section 2.1 the Efficient Global Opti-

mization (EGO) algorithm is reviewed in detail. Section 2.2 introduces Gaussian process

models (GPMs) and their application to machine learning. Section 2.3 will review related

work.

2.1 The Efficient Global Optimization Algorithm

The optimization algorithm known as EGO was introduced by Schonlau, Welch and Jones

[10]. It was developed as an efficient iterative optimization strategy that constructed and

updated models of expensive-to-evaluate functions. Since function evaluations are assumed

to be costly in terms of time and/or other costs, the algorithm fits a response surface

model of the function to data collected by evaluating the function at the smallest possible

number of selected points. The response surface model is then used for optimization. The

response surface model used has been reported to be especially good at modeling nonlinear

multimodal functions, the types of functions commonly found in many engineering problems

[10]. This approach has proven to be efficient and effective for many optimization problems

[4]. The basic outline of EGO can be summarized in the following five steps.

1. Obtain an initial sample of the function using a space-filling design of experiments

method.

2. Fit a kriging model to the function.

3. Select a sampling criterion that maximizes an expected improvement function to de-

termine where to sample next.

4. Sample the point(s) of interest.

5. If the expected improvement function has become sufficiently small, then stop; other-

wise return to step 2.
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There are a wide variety of optimization algorithms that use global search methods based

on statistical models. These types of optimization algorithms are classified as Bayesian

analysis algorithms [4]. Bayes’ theorem, from probability theory, set the foundation for

Bayesian statistical inference [12]. Statistical inference can be used to draw conclusions

from known sampled data to unsampled data. Bayesian analysis is a statistical method

which attempts to estimate parameters of an unknown function or distribution based on

sampled observations. This type of inference uses interpolation from known samples to

make approximations. Since these approximations are not certain, there is an associated

uncertainty for each predicted unsampled data point. For a more comprehensive review

of Bayesian methods the reader is referred to Iversen [12]. The EGO algorithm uses a

Bayesian method called a Kriging model. Kriging models, which are also known as GPMs

in the machine learing field, will be covered in detail in the next section [4].

To illustrate the search strategy of EGO, a one-dimensional example is shown in 2.1. The

sinusoidal dashed line represents the unknown objective function that is to be minimized.

The kriging approximation of the function is shown by a solid line and is generated based

on the sampled points shown as circles. The curve at the bottom of the plot represents the

infill sampling criterion (i.e., the next point selection rule) that has been superimposed and

normalized to allow comparisons between iterations. The maximum of the infill sampling

criterion function is the point that is to be sampled next.

Subsequent function evaluations are chosen based on the infill sampling criterion (ISC).

EGO chooses to simulate the point where the ISC is maximized, meaning that this point is

most likely to improve the accuracy of the model and/or discover a better function value

than previously found. In this example, EGO creates a kriging model of the function after

the initial sample of four points is evaluated Figure 2.1 (a). The resulting approximation is

a poor fit compared to the true function, but the ISC leads the algorithm to sample regions

of high uncertainty. After the evaluation of two more points the approximation closely

resembles the true function for the right side Figure 2.1 (b). After another two function

evaluations, Figure 2.1 (c), the ISC has determined another region of high uncertainty

and places greater emphasis on it rather than on an area of local optimization (where

7.5 < x > 8) of the function. By the sixth iteration, Figure 2.1 (d), EGO has explored both

local optima and has found the global optimization accurately.

From this quick example it is clear that EGO does not follow a traditional gradient-

based search path that could become stuck at local optima [4]. Points of interest may

be found anywhere in the design space depending on where the ISC is the highest. This

shows how EGO uses a global search strategy that is more robust than simple local search

methods, such as gradient-based searches that can get stuck in local optima. However this

robustness does come at a cost. The process of generating kriging models and locating the

maximum of the ISC does have significant overhead compared to gradient-based methods

[4]. However, gradient-based methods usually require a relatively large number of function
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Figure 2.1: Demonstration of the EGO algorithm. The dashed curve is the unknown
function, solid curve is the approximation, and the circles are the sampled points. The
curve at the bottom represents the infill sampling criterion [4]

.
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evaluations before converging on a solution [4]. The trade-off EGO makes does have a larger

overhead, but during each iteration as much information is used as possible to identify where

to evaluate the function next. This allows the algorithm to find good solutions in fewer

iterations. This makes the EGO algorithm well suited for problems that have expensive-to-

evaluate functions.

2.2 Gaussian Process Model

In Bayesian analysis the standard linear regression model takes the form of

y(x) =

NB∑
i=1

wifi(x) + ϵ.

In this model, every fi(x) is a linear or nonlinear function of x and is referred to as a basis

function. Each of the NB basis functions has an unknown coefficient, wi. During model

fitting (i.e., training) the wi and fi(x) terms are determined by optimizing criteria such as

minimizing mean-squared error on the training data [13]. The residual ϵ is assumed to be

independent and identically normally distributed with mean zero and variance σ2
n

ϵ ∼ N(0, σ2
n).

In this standard linear regression model the error distributions remain constant through-

out the entire input domain (i.e., ϵ ∼ N(0, σ2
n) ∀x), even for data points that have already

been sampled. Conceptually this does not make sense for a computer-calculated determinis-

tic function because any lack of fit of the model will be entirely modeling error (incomplete

regression terms) and not measurement error or noise [10]. Since these error terms are only

a collection of left out wi and fi(x) terms, we can view the error term as a function of x,

ϵ(x) [13]. If xi and xj are two points that are close together, then the errors ϵ(xi) and ϵ(xj)

should also be close. It no longer seems reasonable to assume that ϵ(xi) and ϵ(xj) are inde-

pendent. Instead, it would be reasonable to assume that these error terms are correlated,

and that the correlation is higher when xi and xj are closer and lower when the two points

are further apart.

The main difference between the standard linear regression model and a Gaussian Pro-

cess model is that the GPM assumes that if y(x) is continuous then ϵ(x) is also continuous

since it is the difference between y(x) and the regression terms [10]. The GPM does not as-

sume that errors are independent, but rather that the correlation between errors are related

to the distance between corresponding points. The GPM does not use Euclidean distance,

since this distance measurement weights all variables equally. A special weighted distance

formula is used instead, as shown below

d(xi, xj) =

n∑
h=1

θh|xi,h − xj,h|ph (θh ≥ 0, ph ∈ [1, 2]). (2.1)
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With this distance function, the correlation between ϵ(xi) and ϵ(xj) is

Corr[ϵ(xi), ϵ(xj)] = exp[−d(xi, xj)]. (2.2)

The correlation function, as defined in (2.1) and (2.2), proves to have intuitive properties.

As two points xi and xj get closer, their distance approaches zero, and therefore their

correlation goes to one. Similarly, when two points move far apart their correlation will

approach zero. The distance function also has parameters, n dimensional vectors θ and

p, that characterize the activity and smoothness of input variables. The θh parameter in

the distance function (2.1) can be interpreted as an activity measurement of the variable

xh. This means that when variable xh is active, small values of |xi,h − xj,h| may lead

to large differences in the function values at y(xi) and y(xj). In cases such as this, a

large value of θh can be equivalent to a large distance and hence low correlation. The ph

parameter relates to the smoothness of the function in the coordinate direction h. For

example ph = 2, corresponds to relatively smooth functions and values of 1 correspond

to less smooth functions [10]. These parameters are determined using maximum-likelihood

estimation on the training data [3].

Modeling the correlation in this way is so powerful that the GPM can replace regression

terms with a constant value [10]. This yields the GPM in the form of

y(x) = µ+ ϵ(x),

where µ is the mean of a stochastic process (i.e., mean of the regression terms), ϵ is

Gaussian(0, σ2), and that correlation is defined by Equations (2.1) and (2.2). The vari-

ance, σ2, is represented by a correlation matrix R. Every entry in R is defined as Rij =

Corr[ϵ(xi), ϵ(xj)].

Let us see how the GPM can be used as a predictor for unknown points. Let r denote

the k-vector of correlations between the error term at an unknown point, x∗, and the k

error terms at previously sampled points. Using (2.1) and (2.2), we find that element i of r

is ri(x
∗) ≡ Corr[ϵ(x∗), ϵ(xi)]. Also, let 1 denote a k-vector of ones. This allows the GPM

to predict y(x∗) as

ŷ(x∗) = µ+ rTR−1(y − 1µ).

The GPM can also be used to report the associated uncertainty of a predicted output

value. The GPM is able to report an estimate of variance as given by

s2(x) = σ2[1− rTR−1r+ (1− 1TR−1r)2/(1TR−11)].

For any further details we refer the reader to [10] and [13].
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2.3 Related Work

2.3.1 Response Surface Models of Process Variations

Sengupta et al. proposed a statistical methodology of monitoring process variations dur-

ing IC verification in [14]. Nardi et al. investigated process variations and found that as

process dimensions scaled down, process variability tends to increase [15]. Increased pro-

cess variability can have a non-negligible affect on a circuit’s performance margins [15].

The observed random process variations reflected a stochastic spread of a given circuit’s

performance measurements [15, 16]. Sengupta et al. introduce a statistical methodology

to determine the worst-case combination of process parameters (parameters such as oxide

layer thickness, NMOS and PMOS threshold voltages, polysilicon thickness, etc.), referred

to as process corners, for a set of circuit performance measurements [14]. The proposed

methodology uses quadratic functions of the process parameters to estimate RSMs over

the process parameter space. The RSMs are used to identify process corners that yield

worst-case circuit performances as indicated by maximum/minimum values of the RSMs.

The RSM takes the form

yk = ak + bTk x+ xTBkx, k = 1, 2, ...m

for the kth output of the possible m outputs. In this model ak is a constant term, bk and

Bk are matrices, and x is a vector of n process parameters.

The proposed methodology was evaluated using digital standard cells and typical com-

munication analog/radio frequency circuits in 130 nm technology. The methodology was

able to reduce verification time of circuit designs by orders of magnitude [14]. As circuit

complexity increases, statistical simulations for larger circuits can sometimes become pro-

hibitive [14]. The proposed methodology uses statistical device models efficiently in order

to determine worst-case process corners [14].

2.3.2 Beyond Low-Order Statistical Response Surfaces

This subsection reviews the work presented in [17]. Singhee et al. developed the SiLVR

algorithm to address increasing dimensionality, large variations, and nonlinearity found in

generating response surface models of circuit behaviour in the presence of process variations

in the 90 to 45 nm technology nodes. The number of sources of process variations, e.g.

random dopant fluctuation (RDF), line edge roughness (LER), poly crystal orientation

(PCO), etc., for even a simple digital circuit, such as a flip-flop, can be over fifty [18].

Larger analog cells can easily have the number of sources of variations in the hundreds and

therefore require response surface models to have large dimensionality [17]. Some variation

sources can have a relatively large effect [17]. For example, the variation source RDF, at

the 70nm node, was investigated to have a standard deviation of the threshold voltage (Vt)

that can be 10% of the nominal Vt [19]. At the 25 nm node, the standard deviation of the

threshold voltage can be up to 21% of the nominal Vt [20].
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Not all variation scenarios are well modeled by low-order (i.e., linear or quadratic) re-

sponse surfaces [17]. Linear RSMs, as described in [21,22], are effective only when variations

are small enough to allow for a linear approximation [17]. Initial quadratic RSMs proposed

in [23], as well as improved quadratic RSMs proposed in [24,25] cannot always capture the

nonlinearity seen in the presence of large process variations [17].

The SiLVR algorithm uses latent variable regression (LVR) techniques as described

in [26] to reduce dimensionality of the variation sources. The LVR techniques iteratively

extract the next most important statistical variable (i.e., latent variable) until the error

from the response surfaces generated with only extracted variables falls within a reasonable

level [17]. SiLVR employs a feedforward neural network to generate arbitrarily nonlinear

statistical response surfaces. SiLVR is an efficient statistical response surface modeling

method that can handle large and nonlinear effects from process variations [17]. SiLVR

provides a basis for future work on nonlinear yield optimization strategies [17].

2.3.3 Efficient Design-Specific Worst-Case Corner Extraction

This subsection reviews the work developed in [27]. Statistical analysis is an integral tool

for nanoscale integrated circuit (IC) design [27]. RSMs can be used efficiently to predict

performance distribution and/or parametric yield in the presence of both inter-die and

intra-die variations for ICs [28, 29]. To capture the large-scale variations that are observed

in IC technologies 45 nm and below, quadratic or even strongly nonlinear RSMs are required

to improve modeling accuracy [17, 24, 25, 30, 31]. It is important for CAD tools to predict

yield values, but also to provide additional information that helps the circuit designers

to improve the IC design [27]. Worst-case corner extraction aims to identify the unique

process conditions that cause a given circuit to operate outside of specifications [14, 23].

By determining the worst-case corners, the designers can run simulations on these corners

to determine the reason for the circuit’s performance failure and develop an appropriate

solution to improve robustness [27].

Extracting the worst-case corners using RSMs is not a simple task. Using a quadratic

RSM results in a non-convex quadratically constrained quadratic programming (QCQP)

problem for extracting the worst-case corners [14, 23]. Zhang et al. propose a method

that converts the non-convex QCQP problem to a convex semidefinite programming (SDP)

problem that can be solved more easily. The approach is derived from the Lagrange duality

theory of nonlinear optimization in [32]. Zhang et al. exploit the unique case that the

QCQP formulated during worst-case corner extraction only contains a single quadratic

constraint [27]. In this special case, the dual form of the QCQP is a convex SDP [27].

The proposed method can efficiently and robustly find the worst-case corners with global

convergence [27].
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2.3.4 Gaussian Process Surrogate Model Assisted Evolutionary Algo-
rithm for Medium Scale Expensive Optimization Problems

This subsection reviews the work presented in [33]. There are many real-world optimiza-

tion problems that require expensive-to-compute simulations for unknown function evalua-

tions [10,34,35]. Traditional gradient-based mathematical optimization methods cannot be

applied directly to these problems since analytic formulations are unknown [33]. Similarly,

evolutionary algorithmss (EAs) cannot directly solve these types of problems either since

EAs require a large number of function evaluations and therefore unrealistic to perform [33].

Using a surrogate model assisted evolutionary algorithm (SAEA) is one approach for dealing

with expensive-to-compute optimization problems. The SAEA uses a surrogate model to

replace the expensive-to-compute function evaluations. The computational cost can be re-

duced significantly by using a surrogate model to approximate an unknown function rather

than performing expensive function evaluations [33].

Many current SAEAs focus on small-scale expensive optimization problems (problems

with less than 20 variables), such as the ones proposed in [10,36,37]. Real-world applications

such as integrated circuit design problems can have around 20 to 50 design variables [38,39].

The method proposed by Liu et al. focuses on expensive optimization problems of 2050

variables (medium-scale problems) [33]. Other medium-scale SAEA methods were proposed

by [35,40,41]. In [41], Zhou et al. uses a Gaussian process model (GPM) with probability of

improvement prescreening [42] as a global surrogate model and a Lamarckian learning pro-

cess as a local surrogate model to accelerate an EA. Liu et al. propose a new SAEA method

called Gaussian process surrogate model assisted evolutionary algorithm for medium-scale

computationally expensive optimization problems (GPEME). The GPEME uses Sammon

mapping [43], a dimension reduction technique, to lower the dimensionality of the GPM.

The GPEME iteratively searches for promising candidate points using a differential evolu-

tion (DE) algorithm as described in [44]. Experimental results on benchmark problems show

that the GPEME performs comparably to other state-of-the-art SAEAs, namely [35,40,41],

while requiring 12% to 50% fewer exact function evaluations [33].
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Chapter 3

Initial Algorithm Methodology

3.1 Examine Initial Circuit Dataset

The Rapid PVT Verification (RPV) algorithm was developed and evaluated using pre-

computed simulation data results (preferably full factorial). A full factorial search requires

circuit responses to be simulated for all PVT corners of interest and stored in a data set.

When used in its intended scenario, RPV would be used to select which simulation(s)

would be necessary to perform on the basis of past simulation results. The data sets we

used were prepared using Cadence/Spectre simulation tools and provided to us by Solido

Design Automation. These data sets represent nine typical circuits and they have different

input and output characteristics. Some of these data sets contain all full-factorial PVT

combinations while the other data sets contain only a subset of all PVT combinations (i.e.,

they are partial factorial). A list of the circuit data sets is shown in Table 3.1. In these nine

different circuits the number of PVT corners ranges from 120 to 1800 and they involve up

to 10 PVT parameters. Each parameter spans a small finite domain of possible values.

To illustrate the input and output domains, we will first consider the shift register

circuit. This circuit has seven PVT parameters (NMOS model set, PMOS model set,

Table 3.1: Initial Circuit Dataset

Circuit Data Set Type Total Corners PVT Parameters Outputs

shift reg Full-Factorial 1080 7 3

buffer chain Full-Factorial 1800 10 6

bitcell Full-Factorial 120 5 2

mux Partial-Factorial 120 8 7

charge pump1 Partial-Factorial 216 8 5

charge pump2 Partial-Factorial 324 8 5

sense amp1 Partial-Factorial 120 10 7

bias gen Partial-Factorial 120 3 10

opamp1 Partial-Factorial 120 6 1
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Temperature, Vin ac, VV CC , VV DD, and VREF ) and three different output functions (delay,

fall time, and rise time of one circuit output signal). Figure 3.1 shows a scatter plot of

the delay output values for each individual PVT parameter. The x-axis of each subplot

indicates a domain of possible PVT parameter values and the y-axis shows the possible

range of values for the delay output at each PVT parameter.

Figure 3.1: The delay output range of the shift register circuit for each PVT parameter.

Figure 3.1 shows the multidimensional nature of our optimization problem. There are

no obvious trends for individual PVT parameter values. The delay output can have a large

range of values for each PVT parameter. The search for minima or maxima in the output

functions must consider the input parameter values in combination.

To get a better visualization of the delay output behaviour we observe a 3D plot in Figure

3.2. In this plot we vary two PVT parameters, temperature and V vdd, while holding all

of the other parameters constant. The blue dots correspond to the delay output being

measured at a given PVT corner. The blue curves are artificially added in to represent a

possible response surface curvature.

3.2 Initial Algorithm

This proposed methodology will utilize the Efficient Global Optimization (EGO) framework

to develop a search algorithm to solve the PVT optimization problem efficiently and reliably.

An efficient solution is defined as an algorithm that on average requires far fewer circuit

simulations than a full factorial search. This so-called Rapid PVT Verification (RPV)

algorithm will iteratively learn Gaussian Process models of the initially unknown circuit

output functions. A Gaussian Process regression model is constructed using a standard

algorithm to exploit the increasing amount of information from all previous rounds of PVT
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Figure 3.2: The delay output of the shift register circuit is measured over a range of
temperatures and supply voltages.

simulations. The model can be used to predict output values of corners not yet simulated.

A major contribution of our work is to propose and then refine heuristics that refer to

the current GPMs and decide which unsimulated PVT corners should be selected next to

simulate. The three main steps of the EGO approach include: (1) choosing the initial

training set (the set of PVT corners that are simulated at the start to construct the first

GPM), (2) choosing the next one or more training corners to simulate next, and (3) deciding

when to stop the search for the function maximum. The method follows a looping pattern

as illustrated by Figure 3.3. The cycle begins by updating the GPM(s) and then selecting

the next PVT corners to simulate. This cycle is repeated until the stopping conditions have

been reached.

Figure 3.3: Rapid PVT Verification (RPV) flowchart.

Once the GPM has been updated (i.e., fit or trained) to the simulated PVT corners,
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the GPM can be evaluated at the unknown PVT corners to generate predictions based on

interpolations. By supplying a set of initial PVT corners along with their simulated output

values (i.e., the initial training set), the GPM fits a response surface to the simulated PVT

corners and can generate predictions for the unsimulated PVT corners. Figure 3.4 shows

an example of a GPM for a simple function (f(x) = x sin(x)). In the figure five simulated

and hence “error-free” points are indicated by red dots. The GPM uses these simulated

points to generate a model or approximation of the function, shown as a solid blue line.

The shaded blue region shows the expected range of actual function values between the

observed points.

Figure 3.4: Example of a Gaussian Process Model for f(x) = x × sin(x) constructed over
the domain 0 ≤ x ≤ 10 using five error-free observations.

A great benefit of using a GPM to model output functions in our optimization prob-

lem is that the model not only generates a prediction (Ŷ ), it also generates an associated

estimated variance (σ2) for each Ŷ . The GPM exploits the relative distances in the do-

main between the training and predicted corners to report an estimated uncertainty or

error (as discussed in Chapter 2). By taking the square root of the σ2 we are able to

estimate the standard deviation (Stddev) of each Ŷ . This in turn allows us to estimate

Normal-distribution confidence intervals. Following the EGO algorithm, we can use the

GPM to balance the priorities between sampling where estimated maxima occur (max(Ŷ ))

and where the estimated prediction error is high (max(Stddev)).

The framework of the new algorithm follows the EGO algorithm as shown in Figure 3.5.

The algorithm starts by selecting samples of the input domain and calculating/simulating

the function’s output at those points to create an initial data sample (i.e., a training set).

The initial data sample set is used to construct a GPM. The GPM allows for the ap-
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proximation of unknown points of the output function. The next point selection rule is a

heuristic that identifies the points that are most likely to benefit the model. These next

points are then calculated/simulated and then added to the set of known sample points. If

the stopping criterion is met the algorithm will end; otherwise it will enter a loop that will

update the GPM and select new points until the stopping criterion is met. This framework

has three main subproblems: initial training set, next corner(s) selection, and stopping cri-

terion. The subproblems are solved using experimentally-tuned heuristics. The remainder

of this section will explain these three topics in detail.

Figure 3.5: Flowchart of the EGO algorithm [4].

3.2.1 Selecting the Initial Training Set

The first step of this algorithm is to select an initial training set of corners to be simulated

to train the first GPM. Selecting the initial set involves two issues: how many corners

should be selected and what heuristic rule should be used to select those corners.

Deciding exactly how many PVT corners to simulate as the initial training set does not

have a straightforward answer. We only want enough corners to provide a good basis for

our initial GPM. Selecting too big an initial training set could be wasting time simulating

corners that may not benefit the model or more rapidly advance the algorithm to the end

goal of reliably finding the maxima.

Selecting an initial training set is the classic design of experiment problem [12]. There

are many experimental designs ranging from classical experiment designs, such as central

composite design, to space filling experimental designs like orthogonal Latin hypercube

design. To select the initial training set we opt to use a modified central composite design

(CCD). The CCD requires fewer than 3n points to compute a 2nd order response surface

by using the center points along with axial points to estimate the curvature of the surface.
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Suppose a circuit has n input PVT corner parameters, where each PVT parameter may

have several possible values, for a total of M PVT combinations (i.e. M possible corners).

A traditional CCD is a combination of 2n factorial points (edge points), 2× n star (axial)

points, and a center point, as shown in the three-dimensional example in Figure 3.6 [5].

The factorial points refer to the 2n possible combinations of maximum and minimum PVT

parameter values, which are also referred to a edge or extreme-case PVT corners. However,

a 2n + 2n + 1 design produces a large training set for n ≥ 5. As a starting point for the

algorithm, we used a heuristic and selected a training set size of n2 corners. This number of

corners will be much less than the total number of possible corners, that is n2 << M , but

should provide enough information of a circuit’s function behavior to have a good starting

point for the algorithm.

Figure 3.6: Central composite design, a classical experimental design [5]

The modified CCD that we developed selects one center point PVT corner (i.e. the

PVT corner that is comprised of PVT parameter median values) and n2 − 1 edge PVT

corners (i.e., factorial points). Since there are 2n possible edge PVT corners we initially

select n2− 1 edge corners at random. The performance implications of choosing fewer than

n2 − 1 edge corners will be explored experimentally in subsequent sections.

For example the shift register circuit has this set of PVT parameters: nMOS modelset,

pMOS modelset, Temp, Vin ac, Vvcc, Vvdd, Vvref. The default method to select input

vectors, a.k.a. corners, is to create two arrays; one for the minimum parameter values

and one for the maximum parameter values. The shift register circuit has the following

minimum values [0, 0, -50, 0.05, 3.2, 1.4, 1.6] and the following maximum values [2, 2, 125,

0.05, 3.4, 1.6, 1.7] for each of the PVT parameters, respectively.

These minimum and maximum values are referred to as extreme values. All possible

combinations of these extreme values construct the set of edge-case corners or factorial

points. Identifying edge-case corners allows us to describe the bounds of our input domain.

In the case of the shift register circuit there are 64 edge-case corners.
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3.2.2 Next Corner Selection

The next step of the algorithm is to select the infill sampling criterion (i.e., the next corner

selection rule). The infill sampling criterion seeks to reduce the error of the current function

model while searching the input domain for the most likely potential maxima corners to

simulate next. The selection of the next PVT corner(s) to be simulated is based on the

predictions of the GPM. Similar to the EGO algorithm, the choice of next sample is based

on the model’s estimated predictions (Ŷ ) as well as the model’s estimated error (Stddev)

for those predictions.

Again we are faced with the decision of how many corners should be chosen by the infill

criterion to simulate. Since we assume that training a GPM is computationally inexpensive

compared to simulating a PVT corner, we believe it is reasonable to iteratively train GPMs

and simulate corners one corner at a time. It makes intuitive sense to select only one corner

per iteration so that we are able to exploit the newly available simulation information as

soon as possible and therefore allow the selection decision to be made on the most up-

to-date data. However, selecting multiple corners distributed about the input domain at

each iteration may yield more information about the output function. Several different

approaches of next corner selection will be explored in the next chapter.

We want our infill sampling criterion to maintain a balance between estimated predicted

values and estimated error. Simply selecting a corner with the highest predicted value,

cnext = argmax(Ŷ (c)), may leave us blind to regions of the predicted outputs that have a

large estimated error. Following [45], we have found that the worst-case combinations of Ŷ

and Stddev can be captured and understood using a convex hull plot.

Figure 3.7: Convex hull of the output delay of the shift register circuit after 35 PVT corners
have been simulated and used to construct a Gaussian Process model.

21



The GPM gives approximations for the output function for all unsimulated (unknown)

corners, Ŷ (c), and their associated estimated standard deviations, Stddev(c). In Figure

3.7, these values along with the known corners are plotted to give an intuitive view of the

GPM after 35 PVT corners have been simulated for the delay output of the shift register

circuit. Please note the y-axis of Figure 3.7 is Ŷ (c) and the x-axis is Stddev(c). The points

along the vertical y-axis (i.e., at x = 0) correspond to the 35 simulated corners, which

have Stddev = 0 and were used to construct the GPM. A convex hull is shown as a red

curve. Intuitively, the convex hull is the set of “worst-case” points that could potentially

be maxima of Y [45]. More formally, the convex hull is the set of corners (ccovexhull) for all

values of w such that cconvexhull = argmax(Ŷ (c) + w × Stddev(c)), w ∈ [0,∞].

The PVT corners that are found on the convex hull are the PVT corners most likely to

be a simulated maximum for all possible choices of the parameter w [45]. The value selected

for w determines how much weight is placed on the estimated error of an unsimulated corner

compared to the predicted value of the corner. This allows the search algorithm to search

areas with large predicted values and also explore areas of the input domain that have large

values of uncertainty.

Selecting the optimal value of w is not straightforward. It may even be desirable for

the algorithm to have a dynamic value of w, which changes as the algorithm progresses.

Starting the algorithm with a high value of w would allow the algorithm to explore areas of

the input domain that are sparsely sampled and potentially reveal regions where a possible

maxima could occur. As the algorithm progresses, it could switch to a smaller value of w

and focus on regions that have high predicted output values. In other words, the algorithm

could start out by exploring the input domain to identify regions where potential maxima

could occur and then shift focus to those regions.

As a starting point for the RPV algorithm we will use another heuristic and set the

coefficient w to a value of 3, which will not dynamically change during the searching process.

The next training corner will therefore be the rule cnext = argmax(Ŷ (c) + 3× Stddev(c)).

Later in this chapter we will examine the results of experiments that use different choices

of the w value. In the next chapter we will explore alternatives that consider more complex

improvements of the heuristic.

3.2.3 Stopping Condition

Following the EGO framework, the last subproblem is the algorithm’s stopping criterion.

The difficulty with this type of problem is that even if we find the global maxima, we cannot

be certain that the maxima we have found so far is indeed the global maxima. To determine

a reliable stopping condition there needs to be a high level of confidence supporting it from

the model. There is of course a major problem with stopping the search too soon. Finding

a local optima, and not the true worst-case PVT corner, could have dire consequences if

the yield of sellable chips becomes very low because of PVT variations, or if the yield can
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only be improved by respinning the integrated circuit.

Figure 3.8: Visualization of the stopping condition of the delay output of the shift register
circuit after 35 PVT corners have been simulated

With the GPM’s ability to generate a prediction for the standard deviation (Stddev(c))

for every unsimulated corner (Ŷ (c)), we are able to estimate normal distribution confidence

intervals and establish reasonable bounds for all predictions (Ŷ (c)). Assuming a normal

distribution, the actual Y (c) should fall within 2 standard deviations of the Ŷ (c) prediction

with 95.4% (i.e. 2-Sigma) confidence. Similarly, Y (c) should fall within a 3 standard

deviations of the Ŷ (c) prediction with 99.7% (i.e. 3-Sigma) confidence.

Therefore we can impose a stopping criterion based on confidence levels. To do this, the

algorithm uses the rule

Current maximum found so far > Ŷ (c) + n× Stddev(c), for all unsimulated c

where n indicates the desired confidence level with respect to a normal distribution. To

visualize this in terms of a stopping condition, Figure 3.8 plots Ŷ (c) versus the standard

deviation (Stddev(c)) of the delay output of the shift register circuit and indicates the

stopping rule as a green line. The unsimulated PVT corners that are above this line are

considered to be possible maxima. Once all PVT corners fall below the line the algorithm

is able to terminate with a n-Sigma level of confidence.

Figure 3.9 shows many different n-Sigma confidence levels. For any selected value of n

stopping criterion, all unsimulated PVT corners must be moved below the corresponding

confidence line as a result of simulating more PVT corners and learning more accurate GPMs

of the unknown circuit output function. The search for the global maximum terminates

when the last unsimulated corner falls below the stopping condition line.
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Figure 3.9: Visualization of six n-Sigma stopping conditions for the delay output of the
shift register circuit after 35 PVT corners have been simulated.

We demonstrate how confidence levels are reached by looking at the progression of a

GPM for the delay output of the register circuit at four instances. Figure 3.10 shows the

progression of a GPM’s confidence level after 35, 50, 70, and 100 PVT corners have been

simulated. From Figure 3.10(c) we can see that the GPM has reached 2-Sigma confidence

after 70 PVT corners have been simulated, and from Figure 3.10(d) we can see that the

GPM has reached 3-Sigma confidence after 100 PVT corners have been simulated.

In the demonstration of Figure 3.10, the global maximum for the delay output was

found after 67 PVT corners had been simulated. In this case, having a stopping condition

of 2-Sigma (n = 2) would have been sufficient. Since the primary goal of this algorithm is

reliability, an initial stopping criterion of n = 3 will be chosen to allow for a 99.7% confidence

interval and should provide a reasonable level of reliability. This of course assumes that the

predicted corners are indeed Gaussian distributed about the actual simulated corners and

that the estimated deviations are near ideal standard deviations of those distributions.

24



(a) GPM after 35 simulations (b) GPM after 50 simulations

(c) GPM after 70 simulations (d) GPM after 100 simulations

Figure 3.10: Progression of a GPM’s confidence level of the delay output for the shift
register circuit
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3.3 Experimental Results of the Initial Algorithm

In this section we will investigate how well the initial RPV algorithm works on the nine-

circuit dataset described at the beginning of the chapter.

In brief review, the current algorithm is set up as follows. The initial training set

selects n2 PVT corners, where n is the number of PVT parameters. This selection consists

of one center point PVT corner and n2 − 1 edge PVT corners according to the CCD.

The next training corner is selected by the rule cnext = argmax(Ŷ (c) + 3 × Stddev(c)).

The algorithm terminates when the Current maximum found so far > Ŷ (c) + n ×
Stddev(c), for all unsimulated c.

3.3.1 Initial Algorithm Results From Initial Dataset

In this experiment we will evaluate the RPV algorithm with the nine circuit data sets.

Currently RPV only considers finding the maxima of one output at a time, so each circuit

output will be considered in turn. We will record the total number of PVT corners in the

data set, the initial training set size, how many PVT corners are required to be simulated

to reach the 3-Sigma confidence, the speed-up of the algorithm (measured by the total

number of corners divided by the number of corners required to reach the 3-Sigma stopping

condition), and also the computational time taken (not including the time taken for corner

simulation). These experiments were run on a desktop computer equipped with a 3.2-GHz

Intel i5-3470 processor and 10 GB of DDR3 SDRAM.

Speed up is a measure of the efficiency of the RPV algorithm. We define speed up

to be the total number (full factorial) of PVT corners for a given circuit divided by the

number of PVT simulations required to reach 3-Sigma confidence for a given output (i.e.

Total Corners column divided by the Simulation 3 Sigma Reached column). In this type

of measurement we desire a larger speed up as it reflects the goal of simulating fewer PVT

corners for verification as opposed to the brute force approach of simulating every possible

PVT corner. From Table 3.2 we can see the best speed up found was 16.22× and the worst

was 1.03×. The average speed up was found to be 5.37× with a standard deviation of 4.54.

These initial results appear to be promising for the RPV algorithm. The global maxi-

mum was found for every output and the average speed up was 5.37×. This indicates that

on average the RPV algorithm requires approximately one-fifth of the number of circuit

simulations to verify a circuit compared to a full factorial approach.

In the trial of the MUX qsgn output we find the worst speed up and possibly the worst-

case set of conditions for the algorithm. Although the global maximum was found on the

first simulation, the algorithm required the simulation of 116 corners out of the available

120 to reach 3-Sigma confidence. This indicates that the worst-case set of conditions for

the RPV algorithm occurs when the total number of corners is in the range of only a few

hundred and the GPM s confidence for the output function is slow to converge.

Also from looking at Table 3.2 we note that out of the 46 output trials, the maximum was
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Table 3.2: Initial RPV Algorithm Results

Circuit Output Total
Corners

Training
Set Size

Simulation
Max Found

Simulation
3 Sigma
Reached

Speed
Up

Time
Taken
(sec)

Shift Reg delay 1080 49 66 93 11.61 2.40

Shift Reg fall time 1080 49 159 242 4.46 10.62

Shift Reg rise time 1080 49 127 127 8.50 2.73

Buffer Chain Tf4 5 1800 100 19 111 16.22 0.57

Buffer Chain Tr4 5 1800 100 19 114 15.79 0.73

Buffer Chain avg slew 1800 100 19 113 15.93 0.69

Buffer Chain avgdly4 5 1800 100 19 112 16.07 0.63

Buffer Chain fslew 1800 100 19 123 14.63 1.24

Buffer Chain rslew 1800 100 19 118 15.25 0.97

Bit Cell blwm 120 25 15 28 4.29 0.04

Bit Cell blwm mv 120 25 15 28 4.29 0.04

MUX qfinal 120 64 7 65 1.85 0.02

MUX qinit 120 64 2 101 1.19 0.98

MUX qsgn 120 64 1 116 1.03 0.68

MUX qtran 120 64 56 76 1.58 0.13

MUX qtran0 120 64 56 76 1.58 0.13

MUX setup time 120 64 4 68 1.76 0.04

MUX t ref 120 64 8 65 1.85 0.02

Charge Pump 1 boostcr 216 64 58 66 3.27 0.05

Charge Pump 1 eq error 216 64 10 65 3.32 0.02

Charge Pump 1 holdcrd 216 64 10 66 3.27 0.05

Charge Pump 1 holdcru 216 64 10 65 3.32 0.02

Charge Pump 1 ovdrive 216 64 14 67 3.22 0.07

Charge Pump 2 boostcr 324 64 28 67 4.84 0.08

Charge Pump 2 eq error 324 64 28 69 4.70 0.07

Charge Pump 2 holdcrd 324 64 13 67 4.84 0.07

Charge Pump 2 holdcru 324 64 13 67 4.84 0.07

Charge Pump 2 ovdrive 324 64 71 74 4.38 0.26

Sense Amp SAspeed 120 100 3 101 1.19 0.04

Sense Amp glitch senout 120 100 5 101 1.19 0.04

Sense Amp maxout 120 100 12 104 1.15 0.06

Sense Amp offset 120 100 6 101 1.19 0.04

Sense Amp rslt 120 100 7 101 1.19 0.04

Sense Amp sen dip 120 100 12 104 1.15 0.06

Sense Amp sen dip pctg 120 100 2 112 1.07 0.19

Bias Gen bgr m51 v145 120 9 2 24 5.00 0.17

Bias Gen bgr m51 v150 120 9 2 23 5.22 0.14

Bias Gen bgr m51 v155 120 9 2 20 6.00 0.09

Bias Gen bgr m51 v180 120 9 2 20 6.00 0.08

Bias Gen bgr m51 v195 120 9 2 21 5.71 0.10

Bias Gen bgr m51 v25 120 9 2 20 6.00 0.09

Bias Gen bgr m51 v27 120 9 2 20 6.00 0.08

Bias Gen bgr m51 v30 120 9 2 20 6.00 0.08

Bias Gen bgr m51 v33 120 9 2 20 6.00 0.09

Bias Gen bgr m51 v36 120 9 2 20 6.00 0.08

Op Amp dc gain 120 36 2 39 3.08 0.02

27



found within the initial training set 42 times. This suggests that the remaining simulations

after the initial training set are being used to bring confidence in the GPM’s predictions of

the output function up to the 3-Sigma level. We can also notice that for cases where the

total number of corners is fewer than 200, that smaller speed ups are observed, namely the

MUX and Sense Amp circuits. In these cases the large number of input PVT parameters

causes the initial training set to be large compared to the total number of corners. These

two points raise the question, is the initial training set too large? In the case of the Sense

Amp the initial training set size is comparable to the total number of corners, which suggests

that the algorithm is not benefiting from the efficiency of the GPM’s learning process.

In the next section we will investigate the impact of smaller initial training set sizes in

an attempt to optimize the benefit of the GPM’s learning process and increase the overall

speed up.

3.3.2 Effect of the Initial Training Set Size

In this section we will use the same experiment as described before, but in this case we will

vary the initial training set size. We will implement three new trials in which the initial

training set sizes will be 3
4n

2, 1
2n

2, and 1
4n

2. No other parameters will be changed from the

RPV algorithm as described in the previous section.

With the original n2 large initial training set, all trials were able to successfully find the

global maximum by the time the algorithm declared termination with 3-Sigma confidence.

In Tables 3.3, 3.4, and 3.5 we can see there are times when the RPV algorithm failed to find

the global maximum. In the 3
4n

2 trial there were four termination failures for two of the

circuits, Shift Reg and MUX. In the 1
2n

2 trial there was only a single termination failure,

for the Shift Reg circuit. The 1
4n

2 trial suffered five termination failures for three different

circuits, Shift Reg, MUX and Charge Pump 2.

This experiment is interesting because even though there are failures, it indicates that

smaller initial training set sizes can allow for better speed ups. The speed up for the 3
4n

2

trial ranged from 1.20× to 20.22×. The speed up for the 1
2n

2 trial ranged from 1.32× to

29.03×. The speed up for the 1
4n

2 trial ranged from 1.40× to 43.90×.

We find that sometimes it fails to find the global max and we wonder if it’s due to the

initial training corner selection. This leads to the next round of experimentation where we

randomize the training corner selection and observe the effects of all four training set sizes.
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Table 3.3: Initial RPV Algorithm Results for the 3
4n

2 Initial Training Set Size

Circuit Output Total
Corners

Training
Set Size

Simulation
Max Found

Simulation
3 Sigma
Reached

Speed
Up

Time
Taken
(sec)

Shift Reg delay 1080 36 71 71 15.21 0.82

Shift Reg fall time 1080 36 Fail 138 7.83 3.59

Shift Reg rise time 1080 36 Fail 297 3.64 20.72

Buffer Chain Tf4 5 1800 75 20 90 20.00 0.55

Buffer Chain Tr4 5 1800 75 20 92 19.57 0.64

Buffer Chain avg slew 1800 75 20 91 19.78 0.59

Buffer Chain avgdly4 5 1800 75 20 89 20.22 0.51

Buffer Chain fslew 1800 75 20 106 16.98 1.19

Buffer Chain rslew 1800 75 20 101 17.82 0.99

Bit Cell blwm 120 18 16 23 5.22 0.07

Bit Cell blwm mv 120 18 16 23 5.22 0.07

MUX qfinal 120 48 7 49 2.45 0.02

MUX qinit 120 48 2 99 1.21 1.25

MUX qsgn 120 48 1 49 2.45 0.01

MUX qtran 120 48 Fail 66 1.82 0.17

MUX qtran0 120 48 Fail 66 1.82 0.17

MUX setup time 120 48 4 57 2.11 0.08

MUX t ref 120 48 8 49 2.45 0.02

Charge Pump 1 boostcr 216 48 50 52 4.15 0.08

Charge Pump 1 eq error 216 48 10 50 4.32 0.04

Charge Pump 1 holdcrd 216 48 10 52 4.15 0.08

Charge Pump 1 holdcru 216 48 10 50 4.32 0.03

Charge Pump 1 ovdrive 216 48 14 51 4.24 0.06

Charge Pump 2 boostcr 324 48 28 52 6.23 0.09

Charge Pump 2 eq error 324 48 28 56 5.79 0.08

Charge Pump 2 holdcrd 324 48 13 55 5.89 0.14

Charge Pump 2 holdcru 324 48 13 54 6.00 0.12

Charge Pump 2 ovdrive 324 48 57 60 5.40 0.26

Sense Amp SAspeed 120 75 3 76 1.58 0.03

Sense Amp glitch senout 120 75 5 78 1.54 0.08

Sense Amp maxout 120 75 12 84 1.43 0.11

Sense Amp offset 120 75 6 76 1.58 0.03

Sense Amp rslt 120 75 7 76 1.58 0.03

Sense Amp sen dip 120 75 12 84 1.43 0.11

Sense Amp sen dip pctg 120 75 2 100 1.20 0.32

Bias Gen bgr m51 v145 120 6 2 19 6.32 0.12

Bias Gen bgr m51 v150 120 6 2 19 6.32 0.11

Bias Gen bgr m51 v155 120 6 2 17 7.06 0.08

Bias Gen bgr m51 v180 120 6 2 17 7.06 0.08

Bias Gen bgr m51 v195 120 6 2 17 7.06 0.08

Bias Gen bgr m51 v25 120 6 2 17 7.06 0.08

Bias Gen bgr m51 v27 120 6 2 17 7.06 0.08

Bias Gen bgr m51 v30 120 6 2 17 7.06 0.08

Bias Gen bgr m51 v33 120 6 2 17 7.06 0.08

Bias Gen bgr m51 v36 120 6 2 17 7.06 0.08

Op Amp dc gain 120 27 2 34 3.53 0.07
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Table 3.4: Initial RPV Algorithm Results for the 1
2n

2 Initial Training Set Size

Circuit Output Total
Corners

Training
Set Size

Simulation
Max Found

Simulation
3 Sigma
Reached

Speed
Up

Time
Taken
(sec)

Shift Reg delay 1080 24 74 107 10.09 1.97

Shift Reg fall time 1080 24 Fail 90 12.00 1.65

Shift Reg rise time 1080 24 67 246 4.39 10.32

Buffer Chain Tf4 5 1800 50 20 62 29.03 0.33

Buffer Chain Tr4 5 1800 50 20 64 28.13 0.52

Buffer Chain avg slew 1800 50 20 64 28.13 0.40

Buffer Chain avgdly4 5 1800 50 20 63 28.57 0.37

Buffer Chain fslew 1800 50 20 89 20.22 1.22

Buffer Chain rslew 1800 50 20 67 26.87 0.67

Bit Cell blwm 120 12 17 17 7.06 0.07

Bit Cell blwm mv 120 12 17 17 7.06 0.07

MUX qfinal 120 32 7 37 3.24 0.04

MUX qinit 120 32 2 91 1.32 1.21

MUX qsgn 120 32 1 33 3.64 0.01

MUX qtran 120 32 41 41 2.93 0.07

MUX qtran0 120 32 41 41 2.93 0.07

MUX setup time 120 32 4 44 2.73 0.09

MUX t ref 120 32 8 37 3.24 0.07

Charge Pump 1 boostcr 216 32 34 36 6.00 0.07

Charge Pump 1 eq error 216 32 10 35 6.17 0.05

Charge Pump 1 holdcrd 216 32 10 38 5.68 0.09

Charge Pump 1 holdcru 216 32 10 34 6.35 0.03

Charge Pump 1 ovdrive 216 32 14 37 5.84 0.08

Charge Pump 2 boostcr 324 32 28 42 7.71 0.17

Charge Pump 2 eq error 324 32 28 45 7.20 0.12

Charge Pump 2 holdcrd 324 32 13 42 7.71 0.16

Charge Pump 2 holdcru 324 32 13 42 7.71 0.17

Charge Pump 2 ovdrive 324 32 38 47 6.89 0.26

Sense Amp SAspeed 120 50 3 53 2.26 0.06

Sense Amp glitch senout 120 50 5 58 2.07 0.15

Sense Amp maxout 120 50 12 66 1.82 0.14

Sense Amp offset 120 50 6 51 2.35 0.02

Sense Amp rslt 120 50 7 51 2.35 0.02

Sense Amp sen dip 120 50 12 66 1.82 0.15

Sense Amp sen dip pctg 120 50 2 90 1.33 0.42

Bias Gen bgr m51 v145 120 4 2 13 9.23 0.08

Bias Gen bgr m51 v150 120 4 2 13 9.23 0.08

Bias Gen bgr m51 v155 120 4 2 14 8.57 0.09

Bias Gen bgr m51 v180 120 4 2 15 8.00 0.08

Bias Gen bgr m51 v195 120 4 2 15 8.00 0.08

Bias Gen bgr m51 v25 120 4 2 14 8.57 0.09

Bias Gen bgr m51 v27 120 4 2 15 8.00 0.08

Bias Gen bgr m51 v30 120 4 2 15 8.00 0.08

Bias Gen bgr m51 v33 120 4 2 15 8.00 0.08

Bias Gen bgr m51 v36 120 4 2 15 8.00 0.08

Op Amp dc gain 120 18 2 29 4.14 0.09
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Table 3.5: Initial RPV Algorithm Results for the 1
4n

2 Initial Training Set Size

Circuit Output Total
Corners

Training
Set Size

Simulation
Max Found

Simulation
3 Sigma
Reached

Speed
Up

Time
Taken
(sec)

Shift Reg delay 1080 12 75 100 10.80 1.94

Shift Reg fall time 1080 12 Fail 57 18.95 0.83

Shift Reg rise time 1080 12 Fail 390 2.77 39.44

Buffer Chain Tf4 5 1800 25 20 43 41.86 0.39

Buffer Chain Tr4 5 1800 25 20 42 42.86 0.37

Buffer Chain avg slew 1800 25 20 43 41.86 0.40

Buffer Chain avgdly4 5 1800 25 20 41 43.90 0.35

Buffer Chain fslew 1800 25 20 59 30.51 0.79

Buffer Chain rslew 1800 25 20 47 38.30 0.66

Bit Cell blwm 120 6 7 14 8.57 0.08

Bit Cell blwm mv 120 6 7 14 8.57 0.09

MUX qfinal 120 16 7 22 5.45 0.03

MUX qinit 120 16 2 86 1.40 1.15

MUX qsgn 120 16 1 17 7.06 0.01

MUX qtran 120 16 Fail 36 3.33 0.13

MUX qtran0 120 16 Fail 36 3.33 0.13

MUX setup time 120 16 4 31 3.87 0.19

MUX t ref 120 16 8 25 4.80 0.12

Charge Pump 1 boostcr 216 16 22 24 9.00 0.12

Charge Pump 1 eq error 216 16 10 23 9.39 0.09

Charge Pump 1 holdcrd 216 16 10 26 8.31 0.14

Charge Pump 1 holdcru 216 16 10 24 9.00 0.11

Charge Pump 1 ovdrive 216 16 14 27 8.00 0.16

Charge Pump 2 boostcr 324 16 23 29 11.17 0.18

Charge Pump 2 eq error 324 16 Fail 25 12.96 0.07

Charge Pump 2 holdcrd 324 16 13 26 12.46 0.15

Charge Pump 2 holdcru 324 16 13 28 11.57 0.17

Charge Pump 2 ovdrive 324 16 21 27 12.00 0.17

Sense Amp SAspeed 120 25 3 28 4.29 0.04

Sense Amp glitch senout 120 25 5 41 2.93 0.23

Sense Amp maxout 120 25 12 46 2.61 0.14

Sense Amp offset 120 25 6 30 4.00 0.07

Sense Amp rslt 120 25 7 30 4.00 0.03

Sense Amp sen dip 120 25 12 46 2.61 0.14

Sense Amp sen dip pctg 120 25 2 77 1.56 0.44

Bias Gen bgr m51 v145 120 2 2 14 8.57 0.10

Bias Gen bgr m51 v150 120 2 2 14 8.57 0.10

Bias Gen bgr m51 v155 120 2 2 14 8.57 0.10

Bias Gen bgr m51 v180 120 2 2 14 8.57 0.10

Bias Gen bgr m51 v195 120 2 2 15 8.00 0.10

Bias Gen bgr m51 v25 120 2 2 14 8.57 0.09

Bias Gen bgr m51 v27 120 2 2 15 8.00 0.10

Bias Gen bgr m51 v30 120 2 2 15 8.00 0.10

Bias Gen bgr m51 v33 120 2 2 14 8.57 0.09

Bias Gen bgr m51 v36 120 2 2 15 8.00 0.10

Op Amp dc gain 120 9 2 25 4.80 0.09
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3.3.3 Experiment with Randomized Training Sets of Varying Size

The previous experiments showed varying results when we augmented the initial training

set size. This indicates that not only the initial training set size, but which corners are

selected next are important to consider. To explore the impact of the initial training set on

the performance of the RPV algorithm we will experiment with randomized selections of

initial training corners. In the previous section we saw that the Shift Reg circuit seems to

be a difficult case for the algorithm to solve. The Shift Reg has three outputs, one of which

seems to be easy and the other two seem to be more difficult for the RPV algorithm.

In this section we will further experiment with the Shift Reg circuit with the aim of

determining the reliability of the RPV algorithm with randomized initial training sets. To

investigate this we decide to perform separate experiments for four different initial training

set sizes, n2, 3
4n

2, 1
2n

2, and 1
4n

2. For each training set size we will perform 100 trials in

which the corners selected for the initial training set will be randomized. We will ensure

that each trial has a unique initial training set of PVT corners.

Termination failures from previous experiments may indicate that terminating the al-

gorithm when the 3-Sigma confidence level is reached may not be a strict enough stopping

criterion. Alternatively, perhaps the GPM’s predictions are not as accurate as we have

assumed and will be examined in Chapter 4. For these experiments each trial will record

when the global maximum was found as well as when Sigma confidence levels from 3 to 10

are reached for the Shift Reg circuit outputs.

Since it would be cumbersome and unintuitive to analyze many tables of results for

these trials directly, we will instead view plots of averaged results. In these plots we want

to capture the probability of finding the global max when a certain Sigma confidence level is

reached for each circuit output. Since these plots are also complex to analyze, we will view

the results from only the n2 initial training set size first. In Figure 3.11 the x-axis indicates

how many PVT corner simulations are needed to reach the 3 to 10-Sigma confidence level.

The y-axis measures the probability of finding the global maximum as a percentage of

the number of trials that successfully found the global maximum by the time that each

Sigma level was reached (i.e., if the true maximum is found 90 times out of 100, this would

correspond to a 90% probability of finding the maximum for that confidence level).

In Figure 3.11 we can see the results of the n2 initial training set size experiment. Each

output is designated by a different line style: delay is a dashed line, fall time is a dotted

line, and rise time is a solid line. As we can see from the plot, by the time the GPM reaches

3-Sigma confidence, the output’s maximum is found 78% of the time (78 successful trials out

of 100) for the delay output, 74% for fall time, and 44% for rise time. These probabilities

are much lower than expected from a truly Gaussian model that has 3-Sigma confidence.

We can see that for the algorithm to always find the true maximum for the delay output,

a confidence level of 4-Sigma is required and that the fall time output requires 5-Sigma.

We can also see that the rise time output requires 10-Sigma confidence to successfully find
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Figure 3.11: Measure of the RPV algorithm’s reliability using randomized trials and aver-
aging the results for an initial training set size of n2.

the global maximum in all 100 trials.

Ideally when the GPM has 3-Sigma confidence, it should successfully find the true

maximum with a probability of 99.7%. To understand these discrepancies from observed

probability values and theoretical ideal values, we must acknowledge that the Sigma confi-

dence level is only an estimation that is based on the GPM’s own approximation of predicted

standard deviations of output predictions. This will be a topic of great importance in the

next chapter when we instigate ways to improve the algorithm.

To further explore the observed reliability of the algorithm, the results for all initial

training set sizes are displayed in Figure 3.12. This plot is an extension of Figure 3.11. All

conventions are the same as the previous plot as each output is designated by different line

styles, but now the results from each training set size are indicated by the line color. The

n2 experiment uses red lines, the 3
4n

2 experiment uses green lines, the 1
2n

2 experiment uses

blue lines, and the 1
4n

2 experiment uses yellow lines.

Many interesting observations can be made from this plot. The experiments with the

delay and rise time outputs seem to produce very similar results for all sizes of the training

sets. In the case of the fall time output it seems that similar results are found for the

n2, 3
4n

2, and 1
2n

2 trials, but the 1
4n

2 trial seems perform much worse. It seems that the

fall time 1
4n

2 trials are able to reach Sigma confidence levels after approximately the same

number of simulations as the other training set size trials, but this training set size has

decreased probability of finding the maximum for the 3-Sigma and 4-Sigma confidence
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Figure 3.12: Measure of the RPV algorithm’s reliability using randomized trials and aver-
aging the results for an initial training set size of n2, 3

4n
2, 1

2n
2, and 1

4n
2.

levels. It is also interesting to note that for the rise time output the 3
4n

2, 1
2n

2, and 1
4n

2

trials fail to find the global maximum by the time 10-Sigma confidence is reached. Clearly

the GPM’s reported 10-Sigma confidence does not reflect an ideal 10-Sigma level.

It is interesting that different initial training set sizes produce similar results. This

indicates that using initial training sets smaller than n2 is reasonable. We also notice

that reported Sigma confidence levels do not match the ideal Sigma levels. This is an

indication that the GPM’s estimation of standard deviations is not always accurate. In

the next chapter we will look at methods to improve the accuracy of the GPM’s Sigma

confidence levels.
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Chapter 4

Improving the Single Output
Method

In this chapter we will focus on improving the Rapid PVT Verification (RPV) method

applied to finding the maximum of a single output function. We will explore new heuristics

that make it more reliable, efficient and fast. The algorithm needs to be reliable in the

sense that upon termination we can be confident that the true worst-case PVT corner has

been found. We also want to make sure that the algorithm reaches termination in the

fewest possible number of PVT corner simulations in order to minimize simulation expense

and keep the algorithm efficient. As we experiment with new ideas to improve the RPV

algorithm, we will make sure that the algorithm’s computational complexity is kept minimal

to allow for fast execution.

4.1 Experimenting With Smaller Initial Training Sets

In the previous chapter we used a modified CCD to select the initial training corners. The

initial training set size or sample size, Q, was n2, where n is the number of parameters. This

sample size may not be the best choice as it does not consider the total number, M , of PVT

corners. With our current data sets it seems that many circuits have n > 5 and M < 200.

In such cases, Q = n2 can be a large percentage of the total training corners available.

For example, the Sense Amp circuit has 10 input parameters and only 120 available PVT

corners. Choosing an initial sample size of n2 corners results in simulating 100 of the possible

120 corners. This does not give the RPV method much scope to increase efficiency of the

verification process. Conversely, a situation where n is very small, but M is very large, is

possible (e.g., a case with few PVT parameters, but each PVT parameter has a large range

of possible values). In such cases, choosing n2 initial training corners may provide too small

of a sample size and result in inaccurate modeling by the GPM.

In an attempt to balance the training set sizes based on values of M and n, we developed

the heuristic rule Q = max(0.01M, 2n). This rule should allow for smaller training set sizes

and account for large and small values for both M and n. The goal of reducing the initial

35



sample size is to reduce unnecessary simulations and allow the algorithm to benefit from

the likely advantage of having more directed choice on the corners that were selected earlier

for simulation.

Previously our heuristic for selecting the initial training set was based on the CCD

with a sample size of Q = n2. The initial training set would be composed of one average-

case PVT corner (a corner with the average/median value for each PVT parameter) and

(n2 − 1) extreme PVT corners chosen at random. Our new proposed method will again

select one average-case PVT corner, but will now select the remaining max(0.01M, 2n)− 1

edge corners in a space filling method. This space filling method searches the edge-case

corners and selects the one that is at the greatest distance from any other corner that is

already included in the training set. After adding the average-case corner to the training

set, the method will select the corners with all maximum values. The method will then

measure the distances of each edge-case corner to the closest corner in the training set. The

method will add the edge-case corner with the largest distance away from those corners

already in the present the training set.

Since different PVT parameters can be measured in different units, we decided to use

a Manhattan distance expressed in dimensionless grid units to measure distances. To find

these Manhattan distances we first find all possible values of each input PVT parameter

(x1, x2, ..., xn). We then sort them in ascending order. We then give each value a relative

position (i.e., 0, 1, 2, etc.). We use this relative grid position to compare different PVT

corners. Distance is measured by the difference of each PVT parameter’s relative grid

position. For example, let x1 be from the set {−50,−25, 0, 25, 50}. We map the values of

x1 to relative positions 0, 1, 2, 3, 4. Let corner A be [x1 = −50, x2, ..., xn] and corner B be

[x′1 = 0, x′2, ..., x
′
n]. Assume that x2, ..., xn are the same. We would determine the distance

between corner A and B to be |x′1 − x1|+ |x′2 − x2|+ ...+ |x′n − xn| = |2− 0| = 2 grid units.

To examine the reliability of the new training set size we will perform an experiment

with randomized training sets, similar to the experiment in the previous section, using the

Shift Reg circuit. In this experiment we will perform 100 trials for each output of the Shift

Reg circuit in which the corners selected for the initial training set will be randomized. We

will ensure that each trial has a unique initial training set of PVT corners. Each trial will

record when the global maximum was found as well as when Sigma confidence levels from

3 to 10 are reached. We will view the averaged results in Figure 4.1. In this figure the

x-axis indicates how many PVT corner simulations are needed to reach the 3 to 10-Sigma

confidence levels. The y-axis measures the probability of finding the global maximum as a

percentage of the number of trials that successfully found the global maximum by the time

that each Sigma level was reached.

We can compare Figure 4.1 to the previous Q = n2 training set size experiment from

Figure 3.11. In the case of the delay output we can see that the 5-Sigma confidence level

is reached after ≈200 simulations with the smaller training set, whereas with the larger
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Figure 4.1: Measure of the RPV algorithm’s reliability using randomized trials and averag-
ing the results (axis labels still need to be changed).

training set it does not reach 5-Sigma until ≈300 simulations. There seem to be many

cases where the smaller training set size achieves faster convergence to given target Sigma

confidence levels.

We expected that the probability of finding the global maximum would be increased for

each confidence level because the algorithm would spend more simulations actively searching

for the maximum rather than exploring the input domain more broadly to create a larger

initial training set. It seems that for confidence levels 3 and 4-Sigma for all outputs that

the probability of finding the global maximum decreases with smaller training set sizes.

However this may be due to the present next corner selection method. We will explore

alternative next corner selection methods in the upcoming sections.

In Figure 4.1 a big surprise occurs with the rise time output. Two out of the one hundred

trials fail to find the global maximum by the time the GPM declares 10-Sigma confidence.

The probability of finding the global maximum seems to steadily increase between Sigma

confidence levels until 8-Sigma is reached. Once 8-Sigma is reached the algorithm seems

to not increase any closer to 100% the probability of finding the global maximum, even

with many more simulations. In the next section we will investigate why this plateauing

phenomenon occurs.
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4.2 Introducing an Amplification Factor for Uncertainty Near
Known Maxima

In the previous section we reported an unexpected result. In our 100 randomized initial

training corner set experiment we observed that in two trials, the RPV method failed to

find the global maximum of the rise time output of the Shift Register circuit, even when

10−Sigma confidence was declared. This is very unexpected since the 10-Sigma threshold

should be very hard to reach, and reaching it should be a reliable indicator of termination

with the correct function maximum. This discrepancy should help us identify a weakness

in our RPV method.

Since we kept detailed records for each trial in the experiment, we were able to recreate

the GPM for the rise time output and observe what happened using a convex hull plot. In

Figure 4.2 we can view the state of the GPM before it terminates. As seen in previous convex

hull plots, the x-axis is the estimated standard deviation of each prediction (Stddev(c)) and

the y-axis is the predicted output value (Ŷ (c)) of each PVT corner. Note that the corners

on the vertical y-axis (where Stddev = 0) are the corners that have been simulated and

that presently are the training set for the GPM. The highest corner on the vertical y-axis

is the current maximum value that has been simulated. The downward sloping line that

extends from the current maximum represents the 10-Sigma confidence level. Once all of

the unsimulated PVT corners are below this line 10-Sigma confidence will be reached.

At the situation shown in Figure 4.2, 895 PVT corners of the possible 1080 of the

rise time output have been simulated and there are very few corners remaining above the

10 − Sigma confidence level. From our initial observations about this trial we found that

the corner, which the method believed to be the global maximum, was only 1 Manhattan

distance step away from the true global maximum. This intrigued us and lead us to highlight

PVT corners that are within 3 Manhattan steps away from the current global maximum.

PVT corners that are 1 Manhattan step away are highlighted with a red dot, corners that are

2 Manhattan steps away are highlighted with a blue dot, and corners that are 3 Manhattan

step away are highlighted with a yellow dot. We also mark the global maximum corner

with a black diamond. The second largest maximum is marked with a black square and

the third largest maximum is marked with a black triangle. From this convex hull plot we

can see that the second largest maximum has been simulated and is the GPM’s current

maximum. Both the first and third largest maxima are only 1 Manhattan step away from

the GPM’s current maximum, but they have not yet been identified by the algorithm as

potential maxima.

From these observations it seems that the GPM has the unfortunate tendancy to under-

estimate the uncertainty of it’s predictions near local maxima. To offset this weakness we

investigated using an amplification factor for the GPM’s reported Stddev. This amplifica-

tion factor will artificially increase the Stddev value for PVT corners near the algorithm’s

current maximum. To determine the best strategy for using an uncertainty amplification
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Figure 4.2: GPM of the rise time output after 895 PVT corner simulations.

factor, we performed experiments to determine which approach works best.

In this experiment we will examine three variations of uncertainty amplification using

the 100 randomized initial training sets experiment with the same three outputs of the Shift

Register circuit. The first will apply the amplification factor to Stddev of PVT corners that

are up to three Manhattan steps away. The second will apply the amplification factor to

PVT corners that are up to two Manhattan steps away. The third will apply the amplifica-

tion factor to PVT corners that are only one Manhattan step away. We will use a heuristic

that PVT corners that are one Manhattan step away will have their Stddev increased by

25%. Similarly, PVT corners that are two Manhattan steps away will have their Stddev

increased by 15% and PVT corners that are three Manhattan steps away will have their

Stddev increased by 5%.

In Figure 4.3 we can see the results of the 3-step amplification factor. In this variation

of the amplification factor, the experiment took 120879.396 seconds (33.58 hours) to com-

plete with an average of 402.931 seconds per single trial completion (there were 100 trials

performed for each of the three circuit outputs, for a total of 300 trials run). The 3-step

amplification factor method is able to reach 99% probability of finding the global maximum

for the delay output by the 4 − Sigma confidence level, which is higher than the other

two uncertainty amplification methods at the 4-Sigma confidence level. The results for the

fall time output do not seem to vary much from the results of the other methods in this
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Figure 4.3: Probability that the RPV algorithm finds the global maximum using 100 ran-
domized trials and averaging the results for the 3-step uncertainty amplification factor.

Figure 4.4: Probability that the RPV algorithm finds the global maximum using 100 ran-
domized trials and averaging the results for the 2-step uncertainty amplification factor.
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Figure 4.5: Probability that the RPV algorithm finds the global maximum using 100 ran-
domized trials and averaging the results for the 1-step uncertainty amplification factor.

experiment. We can see that the 3-step amplification method is able to reach 100% proba-

bility of finding the true maximum for the rise time output, while previously our algorithm

had trials in which the global maximum was overlooked due to a near local maximum.

Figure 4.4 shows the results of the 2-step amplification factor which artificially increases

the stddev value for any PVT corners that are 2 Manhattan steps away from the current

maximum. This experiment took 118425.707 seconds (32.90 hours) to complete with an

average of 394.752 seconds per single trial completion. By 4-Sigma confidence, the RPV

algorithm is able to reach a 100% probability of finding the true maximum for the delay

output and 98% for the fall time output (which reaches 100% by 5-Sigma). By the 10-

Sigma confidence level the RPV algorithm is able to reach 100% probability of finding the

true maximum for the rise time output.

The third and last variation of the uncertainty amplification factor experiment results

can be seen in Figure 4.5. In this variation only PVT corners that are 1 Manhattan step

away from the current maximum have their Stddev value increased by the amplification

factor. This experiment took 116903.492 seconds (32.47 hours) to complete with an average

of 389.678 seconds per trial completion. For the delay and fall time outputs, the RPV

algorithm was able to reach 100% probability of finding the true maximum by 4-Sigma

confidence. For the rise time output, the RPV algorithm reached 98% probability of

finding the true maximum by the 10-Sigma confidence level. This means that in 2 of the

100 trials, for the rise time output the true global maximum was not found.
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From these three experiments we can see that an uncertainty amplification factor can

improve the algorithm’s probability of finding the global maximum by the time of termina-

tion. The 1-step method does not seem to provide the desired increase in probability as the

other two methods do. Although the 3-step method does see an increase in probability of

finding the true maximum for the delay output than the other variations, it does take the

longest to execute. Since the 2-step amplification factor is able to find the global maximum

for all 100 trials of each of the circuit’s outputs and is able to execute faster than the 3-step

method, we will utilize this 2-step method in out RPV algorithm.

4.3 Experimenting with the Next Corner Selection Rule

In this section we want to explore several options for selecting the next corner(s) to be

simulated. The current algorithm selects one corner at a time to be simulated using the

rule cconvexhull = argmax(Ŷ (c) + w × Stddev(c)) with w = 3. The parameter w could

reasonably hold any suitable value in the range (0,∞) so it may be best to try multiple

values in this range. We will experiment with different w values and look at methods that

choose more than one corner at a time.

We will use the randomized initial training set experiment for the Shift Register cir-

cuit when determining if the algorithm’s performance can be increased by changing the w

parameter. For this experiment the algorithm will also use the 2-step uncertainty amplifi-

cation factor as described in the previous section. In this experiment we will observe the

effects of increasing the w parameter to 6 and also 9. The results are plotted below.

In Figure 4.6 the experiment was run with w = 6 and took 82173.267 seconds (22.83

hours) to complete. Figure 4.7 shows the results of the experiment with w = 9 that took

86279.171 seconds (23.97 hours) to complete.

From the previous section we saw that with the 2-step uncertainty amplification factor

and w = 3 the algorithm was able to reach 100% probability of finding the true maximum

for the delay output by 5-Sigma confidence; similarly, fall time reached 100% probability

by 5-Sigma confidence as well and rise time reached 100% probability by the 10-Sigma

confidence level. From Figure 4.6 we can see that with w = 6, the algorithm reached 100%

probability of finding the true maximum for the delay output by 4-Sigma confidence, the

fall time output by 6-Sigma and the rise time output by 9-Sigma. From observation it

seems that with w = 6 that almost every confidence level has a higher probability of finding

the true global maximum than with w = 3. It seems that for the performance for the more

difficult output, risetime, there is significant improvement. For example, at the 5-Sigma

confidence level, a correct termination probability of 85% is reached with w = 6 compared

to 62% with w = 3.

From Figure 4.7 we see that with w = 9, the algorithm reaches 100% probability of

finding the true maximum for the delay output by 4-Sigma confidence and for the fall time

output by 6-Sigma. However, for the rise time output, the algorithm is only able to reach
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Figure 4.6: Probability that the RPV algorithm finds the global maximum using 100 ran-
domized trials and averaging the results for w = 6.

Figure 4.7: Probability that the RPV algorithm finds the global maximum using 100 ran-
domized trials and averaging the results for w = 9.
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93% probability of finding the true maximum by the 10-Sigma confidence level.

From this shift register circuit we see that selecting w = 6 produces the best per-

formance for these three outputs. However, this may not be the case for other circuits.

We must consider a more general approach that does not depend on a user-determined w

parameter. One approach would be to simulate all of the corners on the convex hull instead

of choosing only one corner to simulate at each iteration. By simulating all of the corners

on the convex hull we are able to focus on a relatively small set of corners that have the

greatest potential of being a maxima. This approach may also allow the RPV algorithm to

terminate with less computational time because intermediate calculations (i.e., generating

GPMs and distance measurements) are not being done after each individual simulation.

We will use this next corner selection method in the randomized initial training corner

experiment to see how it performs.

Figure 4.8: Probability that the RPV algorithm finds the global maximum using 100 ran-
domized trials and averaging the results for simulating all corners on the convex hull.

In Figure 4.8 we can see that the algorithm’s probability of finding the global maximum

reaches 100% for all three outputs by the 6-Sigma confidence level. With the previous best

result, w = 6, the algorithm takes until the 9-Sigma confidence level for all three outputs to

reach 100% probability of finding the true maximum. We can also see that by the 3-Sigma

confidence level the algorithm reaches 78% to find the true maximum for the rise time

and fall time outputs and 87% for the delay output. These probabilities for the 3-Sigma

confidence level are much higher than for any of our previous methods.

From Table 4.1 we can see that the convex hull method took only 4.919 hours to com-
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Table 4.1: Experiment Running Times

Next Corner
Selection
Method

Running Time
(seconds)

Running
Time
(hours)

w = 3 118425.707 32.90

w = 6 82173.267 22.83

w = 9 90702.285 25.20

Convex Hull 17709.466 4.92

plete, which is significantly faster than all other methods. The convex hull method is 4.6×
faster than the w = 6 method and is 6.7× faster than the w = 3 method.

These results show that selecting multiple corners per iteration has a clear computational

time advantage over selecting only one corner per iteration. We have also seen increased

probability of finding the global maximum by using the convex hull method. From our

experiments so far, we have seen the best overall performance is achieved when the RPV

algorithm uses a 2-step uncertainty amplification factor and simulates all corners on the

convex hull at each iteration.

4.4 Examine the Predicted Error and Introduce a Correction
Factor for the GPM

In this section we will address the accuracy of the GPM’s sigma estimation. We have seen

from the many previous trials that the GPM’s estimation of Sigma values are often far

from ideal statistical Sigma values. If the GPM’s estimated standard deviations were ideal,

we would expect to see 99.7% of predictions within 3 standard deviations.

Pr(ŷi − 3× σ ≤ yi ≥ ŷi + 3× σ) ≈ 0.9973

When the RPV algorithm declares 3-Sigma confidence of finding the maximum value, then

we would expect that the global maximum value would be found 99.7% of the time. From

our observations, we find that the probability of finding the maximum at the reported

3-Sigma confidence level is much lower than the ideal value.

We will design an experiment to monitor the GPM’s reported Sigma levels. In this

experiment we will measure the percentage of PVT corners that fall within 3 standard

deviations (i.e., 3-Sigma) of their predicted output values with different training set sizes

and display the results in a plot. The x-axis of the plot will be the percentage of total

available PVT corners and the y-axis will report the percentage of PVT corner predictions

that fall within the GPM’s estimated 3-Sigma level. The experiment will use training set

sizes that range from 5% to 95% incrementing by 5% step sizes (i.e., 5%, 10%, 15%,..., 95%)

of the total number of PVT corners. For each training size percentage we will create 100
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randomly selected training sets and for each training set we will generate a GPM. For each

training set we will calculate the percentage of unknown corners that are within the GPM’s

estimated 3 standard deviations of their predicted output values. We will then average

these values for each training set size and plot them. This will be done for all three outputs

of the shift register circuit.

Figure 4.9: GPM’s observed 3-Sigma of the shift register circuit outputs.

Figure 4.9 shows the ideal 3-Sigma level and the observed 3 − Sigma levels for delay,

fall time, and rise time outputs of the shiftregister circuit. We can see that the GPM’s

estimation of standard deviation is not accurate and results in a 3-Sigma level that is lower

than the ideal. Since the GPM’s estimated standard deviation is not accurate we will impose

a correction factor, β, to improve the observed Sigma levels. This β value will be applied

to the GPM’s estimated standard deviation in order to reflect near-ideal Sigma values.

To calculate β we will use a popular validity test known as k-fold cross validation [46]. In

k-fold cross validation the known data (i.e., the training set) is divided into approximately

equally sized k subsets [46]. Models are created k times by the machine learning method

and each time one of the subsets is left out of the model’s training set. The subset not

included with training the model is used for evaluation and is referred to as the test set.

Normally cross validation is used to calculate the prediction error of each test set, but we

will use it to establish a reasonable β value. We will use 10-fold cross validation as it is a

commonly accepted standard for k-fold cross validation [46].

During cross validation we want to find a β value that for every test-set PVT corner

prediction will fall within these bounds:

ŷi − 3× σ × β ≤ yi ≥ ŷi + 3× σ × β
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To find this β value we first calculate intermediate β values for each prediction using

βi = |yi − ŷi|/(3× σ)

. We then set β to be the maximum βi value calculated. If we apply this β value to all the

test-sets during cross validation we will find that the percentage of predicted output values

fall within the new 3-Sigma to be 100%, which is ≈ 99.7%.

We will now observe the GPM’s reported Sigma levels with the new correction factor,

β. We will perform the previous experiment from this section in which we select various

different training size sets and create 100 randomized training sets to monitor the percentage

of GPM predictions that fall within the estimated 3-Sigma. The results can be found in

Figure 4.10.

Figure 4.10: GPM’s observed 3-Sigma with the correction factor of the shift register circuit
outputs.

The results shown in Figure 4.10 shows a significant increase in performance and shows

near-ideal statistical values for 3-Sigma. However, we still observe lower than ideal values

for training size sets below 20% of the total number of corners. We will add a heuristic to

the way we calculate β to improve these values. We shall artificially increase the β value

by 25% until the training set size is larger than 20% of the total number of corners.

The experiment was run a third time and the results are shown in Figure 4.11. We see

that the PVT corners within 3-Sigma are almost always above 99% for the training set

sizes less than 20% of the total corners and maintain a near ideal statistical level for all

training set sizes larger than 20%. This heuristic based correction factor for the GPM’s
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standard deviation provides probabilities that predictions are within 3 − Sigma that are

much closer to ideal statistical values.

Figure 4.11: GPM’s observed 3 − Sigma with the modified correction factor of the shift
register circuit outputs.

Before implementing a correction factor in the RPV algorithm we must consider the

significant cost of which it takes to calculate the correction factor. It would not be feasible

to perform 10-fold cross validation every iteration of the algorithm since that would roughly

increase the computational complexity by 10×. We propose a method that only computes

the correction factor, β, a maximum of 10 times during the execution of the algorithm.

We will calculate β after the initial training set has been simulated and then at every 10%

interval of the total number of PVT corners (i.e., calculate β at 10%, 20%,..., 90% of the

total number of PVT corners). Since we observed the correction factor to have a very linear

nature in Figure 4.10 and 4.11 we will use a linear approximation to update the correction

factor during iterations that do not use 10-fold cross validation to calculate the correction

factor.

To define the linear approximation of β we will use an example case, as shown in Figure

4.12. At iteration xi, correction factors βA and βB are known and have been calculated

for iterations xA and xB, respectively. Note that xA < xB < xi. We use the linear

approximation βi ≈ m × xi + β0. We calculate the slope as m = (βB − βA)/(xB − xA),

and the y-intercept as β0 = βB − m × xB. We can now use the linear approximation

βi ≈ m(xi − xB) + βB. This approximation is used to update the correction factor during

iterations that do not use 10-fold cross validation to calculate βi. This approximation is
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used to reduce the computational complexity of calculating the correction factor.

Another consideration that must be taken into account is the size of the initial training

set, Q. We must ensure there are at least 10 PVT corners in the initial training set, since

we intend to perform 10-fold cross validation immediately after they have been simulated.

Therefore, we will set Q = max(0.01M, 2n, 10).

Figure 4.12: Linear approximation of the correction factor βi.

4.5 Improved Algorithm Performance

In this section we will investigate how well the improved RPV algorithm performs on the

nine-circuit dataset described in the previous chapter as well as an alternative ten-circuit

dataset.

In brief review, the improved RPV algorithm is set up as follows. The initial training set

selects Q = max(0.01M, 2n, 10) PVT corners, where n is the number of PVT parameters

and m is the total number of PVT corners. This selection consists of one center point PVT

corner and Q−1 edge PVT corners according to the CCD. We also use a 2-step uncertainty

amplification factor that increases the Stddev of PVT corners that are two Manhattan steps

away by 25% and PVT corners that are one Manhattan step away by 15%. The algorithm

selects all corners on the convex hull to be simulated at each iteration. The algorithm

terminates when Current maximum found > all predicted output values + 3 × β ×
standard deviation, where β is the standard deviation correction factor. All experiments

will be run on a desktop computer equipped with a 3.2-GHz Intel i5-3470 processor and 10

GB of DDR3-SDRAM.
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4.5.1 Improved Algorithm Results from the Initial Dataset

In this experiment we will evaluate the improved RPV algorithm with the nine-circuit

dataset. The RPV will consider the maxima of one output at a time so each circuit output

will be tested individually. We will record the total number of PVT corners in the data

set, the initial training set size, how many PVT corners are required to be simulated to

reach the 3-Sigma confidence, the speed-up of the algorithm (measured by total number of

corners divided by number of corner required to reach the 3-Sigma stopping condition), and

also the computational time taken (not including time taken for corner simulation).

In the previous chapter we defined speed up as the total number (full-factorial) of PVT

corners for a given circuit divided by the number of PVT simulations required to reach

3-Sigma confidence for a given output (i.e. Total Corners column divided by Simulation 3

Sigma Reached column). Speed up is used as a measure of efficiency for the RPV algorithm.

From Table 4.2 the best speed up found was 23.38× and the worst was 1.02×. The average

speed up was found to be 5.91× with a standard deviation of 5.92. There are no cases in

which the RPV algorithm fails to find the circuit’s output maximum.

Previously, from Table 3.2, we saw the best speed up found was 16.22× and the worst

was 1.03× for the initial algorithm. The initial algorithm’s average speed up was 5.37×
with a standard deviation of 4.54. From these observations we can note that the improved

algorithm’s best speed up and average speed up has been increased. It is important to

note that even with a more strict termination criterion, we observe increased average speed

up. If we only improved the initial algorithm by making the termination criterion more

strict, we would expect to see a much lower average speed up due to increased number of

simulations required to reach termination. The fact we observe an increased average speed

up must be due to the effective combination of using a reduced initial training set size and

using heuristic-based search methods.

4.5.2 Experiment with Randomized Training Sets

We will now examine the reliability of the improved RPV algorithm using the 100 random-

ized initial training set experiment with the three outputs of the shift register circuit. In

this experiment we will generate 100 randomized initial training sets for each circuit out-

put and monitor when the global maximum is found, as well as when 3-Sigma confidence

to 10-Sigma confidence levels are reached. A plot will be created to display how many

simulations (on average) are required to reach each confidence level (x-axis) and the corre-

sponding probability of finding the global maximum by that confidence level (y-axis). With

the introduction of the correction factor we expect to observe near ideal statistical Sigma

levels.

Figure 4.13 shows the results of the improved RPV algorithm. This experiment took

41696.161 seconds (11.58 hours) to complete with an average of 138.987 seconds per single

trial completion. We observe that by 3-Sigma confidence the RPV algorithm is able to
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Table 4.2: Improved RPV Algorithm Results

Circuit Output Total
Corners

Training
Set Size

Simulation
Max Found

Simulation
3 Sigma
Reached

Speed
Up

Time
Taken
(sec)

Shift Reg delay 1080 14 172 378 2.86 9.04

Shift Reg fall time 1080 14 276 1033 1.05 122.66

Shift Reg rise time 1080 14 183 959 1.13 98.93

Buffer Chain Tf4 5 1800 20 64 85 21.18 2.40

Buffer Chain Tr4 5 1800 20 60 87 20.69 2.43

Buffer Chain avg slew 1800 20 57 82 21.95 2.17

Buffer Chain avgdly4 5 1800 20 60 77 23.38 2.13

Buffer Chain fslew 1800 20 86 127 14.17 3.17

Buffer Chain rslew 1800 20 52 86 20.93 2.36

Bit Cell blwm 120 10 16 28 4.29 0.31

Bit Cell blwm mv 120 10 16 24 5.00 0.30

MUX qfinal 120 16 10 36 3.33 0.23

MUX qinit 120 16 2 110 1.09 1.80

MUX qsgn 120 16 1 18 6.67 0.10

MUX qtran 120 16 58 58 2.07 0.44

MUX qtran0 120 16 58 58 2.07 0.42

MUX setup time 120 16 3 48 2.50 0.69

MUX t ref 120 16 3 33 3.64 0.48

Charge Pump 1 boostcr 216 16 24 35 6.17 0.38

Charge Pump 1 eq error 216 16 9 35 6.17 0.29

Charge Pump 1 holdcrd 216 16 9 42 5.14 0.39

Charge Pump 1 holdcru 216 16 9 41 5.27 0.37

Charge Pump 1 ovdrive 216 16 12 56 3.86 0.60

Charge Pump 2 boostcr 324 16 23 65 4.98 0.44

Charge Pump 2 eq error 324 16 39 54 6.00 0.35

Charge Pump 2 holdcrd 324 16 13 43 7.53 0.45

Charge Pump 2 holdcru 324 16 13 40 8.10 0.45

Charge Pump 2 ovdrive 324 16 34 63 5.14 0.52

Sense Amp SAspeed 120 20 11 27 4.44 0.35

Sense Amp glitch senout 120 20 6 47 2.55 0.61

Sense Amp maxout 120 20 9 49 2.45 0.39

Sense Amp offset 120 20 8 34 3.53 0.49

Sense Amp rslt 120 20 10 31 3.87 0.28

Sense Amp sen dip 120 20 9 53 2.26 0.47

Sense Amp sen dip pctg 120 20 2 118 1.02 1.32

Bias Gen bgr m51 v145 120 10 2 43 2.79 0.51

Bias Gen bgr m51 v150 120 10 2 40 3.00 0.31

Bias Gen bgr m51 v155 120 10 2 35 3.43 0.29

Bias Gen bgr m51 v180 120 10 2 36 3.33 0.29

Bias Gen bgr m51 v195 120 10 2 35 3.43 0.28

Bias Gen bgr m51 v25 120 10 2 42 2.86 0.31

Bias Gen bgr m51 v27 120 10 2 35 3.43 0.30

Bias Gen bgr m51 v30 120 10 2 36 3.33 0.29

Bias Gen bgr m51 v33 120 10 2 36 3.33 0.30

Bias Gen bgr m51 v36 120 10 2 35 3.43 0.29

Op Amp dc gain 120 12 2 43 2.79 0.30

51



Figure 4.13: Measure of the improved RPV algorithm’s reliability using 100 randomized
trials and averaging the results.

reach 100% probability of finding of finding the true maximum for the fall time output

and 99% probability for the delay and rise time outputs. From the average of the 100

trials for each output, the RPV algorithm is able to reach 3-Sigma confidence level after

323 simulations for the delay output, 980 simulations for the fall time output, and 947

simulations for the rise time output.

We note that with the introduction of a standard deviation correction factor, β, that

it takes the RPV algorithm more simulated PVT corners to reach the 3-Sigma confidence

level. For this circuit’s three outputs we do see a decreased efficiency (i.e., a decreased

speed up). However, the reported probability of finding the true maximum at the 3-Sigma

confidence level is approximately the same as the ideal statistical value. We see a significant

increase in observed reliability of the improved RPV algorithm as compared to the initial

algorithm.

4.5.3 Improved Algorithm Results from the Alternative Dataset

An alternative dataset has been provided to us to observe the performance of our final ver-

sion of the single-output RPV algorithm. Testing the RPV algorithm with this alternative

dataset is done to confirm that our RPV algorithm was not designed with an inherent bias

towards one dataset. The alternative dataset has 10 circuits and 68 unique outputs.

The RPV algorithm will test each circuit output individually. It will record the total
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number of PVT corners for a given circuit, the initial training set size, how many PVT

corners are required to be simulated to reach the 3-Sigma confidence, the speed-up of

the algorithm (measured by total number of corners divided by number of corner required

to reach the 3-Sigma stopping condition), and also the computational time taken (not

including time taken for corner simulation).

From Table 4.3, there are no cases in which the RPV algorithm fails to find a circuit’s

output maximum. The best speed up observed was 33.09× and the worst was 1.00× (i.e.,

no speed up). The average speed up was found to be 5.45× with a standard deviation

of 6.30. The results from the first dataset reported an average speed up of 5.91× with a

standard deviation of 5.92. Table 4.2 also reported the best speed up found was 23.38× and

the worst was 1.02× for the first dataset. The results from the new dataset show that the

RPV algorithm performs consistently among datasets and does not appear to be biased to

only one dataset.
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Table 4.3: Improved RPV Algorithm Results for the Alternative Dataset

Circuit Output Total
Corners

Training
Set Size

Simulation
Max Found

Simulation
3 Sigma
Reached

Speed
Up

Time
Taken
(sec)

Buffer Reference V1K(DB).Bufref vss.sp 225 10 18 78 2.88 0.62
Buffer Reference END1 225 10 7 76 2.96 0.51
Buffer Reference END2 225 10 7 76 2.96 0.50
Buffer Reference ERR1 225 10 150 225 1.00 2.76
Buffer Reference ERRMAX1 225 10 67 89 2.53 0.72
Buffer Reference ERRMAX2 225 10 3 82 2.74 0.52
Buffer Reference ERRMIN1 225 10 7 71 3.17 0.38
Buffer Reference ERRMIN2 225 10 7 73 3.08 0.37
Buffer Reference IVDD 225 10 18 36 6.25 0.30
Buffer Reference V1K(DB).Bufref vdd 225 10 16 26 8.65 0.17
CP Default bw 225 10 26 65 3.46 0.47
CP Default gain 225 10 6 40 5.63 0.36
CP Default fall time 225 10 5 225 1.00 2.53
CP Default rise time 225 10 6 225 1.00 2.87
CP Default voh 225 10 4 46 4.89 0.31
CP Default vol 225 10 22 33 6.82 0.33
Current Mirror dv degree 315 10 56 259 1.22 3.47
Current Mirror vmax 315 10 3 37 8.51 0.38
Current Mirror vmin 315 10 3 37 8.51 0.37
D Flip-Flop MaxVout 405 10 18 82 4.94 0.47
D Flip-Flop i vdd 405 10 8 195 2.08 1.50
D Flip-Flop pwr 405 10 9 58 6.98 0.34
D Flip-Flop q clk delay setup 405 10 7 116 3.49 0.73
D Flip-Flop setup time 405 10 18 43 9.42 0.27
GMC ATTEN 1125 11 534 1101 1.02 113.08
GMC IL 1125 11 5 1122 1.00 132.47
GMC max vout 1125 11 46 506 2.22 15.84
GMC min vout 1125 11 465 1120 1.00 140.44
GMC slew 1125 11 386 1078 1.04 126.67
GMC v1 1125 11 243 828 1.36 54.01
GMC v2 1125 11 68 1122 1.00 133.43
GMC vout pp 1125 11 40 298 3.78 5.32
LSTB bandwidth 1125 11 36 77 14.61 0.97
LSTB dc gain 1125 11 21 78 14.42 1.05
LSTB gain margin 1125 11 180 906 1.24 75.82
LSTB gbw 1125 11 7 55 20.45 0.63
LSTB idc 1125 11 7 34 33.09 0.46
LSTB integ1 1125 11 33 85 13.24 1.09
LSTB phase margin 1125 11 9 146 7.71 2.62
LSTB phase margin1 1125 11 27 47 23.94 0.72
LSTB test loop gain at minifreq 1125 11 28 107 10.51 1.24
LSTB test phase margin 1125 11 27 49 22.96 0.71
LSTB test phase margin freq 1125 11 4 74 15.20 0.90
NDL idiss 221 10 3 49 4.51 0.36
NDL out 0 rise 221 10 16 42 5.26 0.31
NDL out 1 rise 221 10 5 38 5.82 0.28
OP Amp TB gain 1125 11 455 1020 1.10 90.79
OP Amp TB overshoot 1125 11 664 1125 1.00 160.37
OP Amp TB settling time 1125 11 586 1125 1.00 149.41
OP Amp TB slew rate 1125 11 7 422 2.67 9.14
OP Amp TB v1 1125 11 224 1022 1.10 94.62
OP Amp TB v2 1125 11 66 538 2.09 16.37
OP Amp TB vavg 1125 11 430 1124 1.00 133.85
OP Amp TB vmax 1125 11 46 1107 1.02 120.06
SDF leakage power VBP 405 10 279 405 1.00 9.39
SDF leakage power VDD 405 10 69 253 1.60 3.08
SDF leakage power vbn i 405 10 23 195 2.08 1.72
SDF leakage power vbp i 405 10 19 211 1.92 2.26
SDF leakage power vdd i 405 10 275 405 1.00 8.89
SDF leakage power vss i 405 10 73 129 3.14 1.05
SDF maxvout 405 10 18 109 3.72 1.16
SDF pwr 405 10 19 111 3.65 0.71
SDF pwr i 405 10 7 150 2.70 1.02
SDF q ck delay 405 10 7 208 1.95 1.78
SDF q slew 405 10 7 282 1.44 3.62
SDF setup time 405 10 7 40 10.13 0.19
SDF total leakage power 405 10 15 215 1.88 2.22
Sense Amp rise time 405 10 7 29 13.97 0.20
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Chapter 5

Extending the Algorithm to
Multiple Outputs

When a designer is using SPICE-like circuit level simulation tools, such as the Cadence

Virtuoso Spectre Circuit Simulator, it is possible to obtain multiple outputs at once for

very little extra cost. Since circuits often have multiple outputs that designers need to

verify, as is clear from Table 3.1, it should be an advantage to coordinate the search for

the worst-case PVT corners for all outputs at the same time. This way we can maximize

the use of all the information acquired by each PVT corner simulation. The verification

problem then becomes multiple simultaneous global optimization problems. Thus far we

have investigated methods and heuristics to develop a reliable, efficient and fast algorithm,

RPV, that is able to determine the worst-case PVT corner of a single output for a given

circuit. In this chapter we look at different methods that extend the RPV algorithm to

consider finding the worst-case PVT corner for every output of a given multiple-output

circuit. Primarily we will consider concurrent search and sequential search methods.

Concurrent search methods create one model for each output and then attempt to

converge all models simultaneously. Sequential search methods create models for each

output and iteratively attempt to converge one output model at a time. The sequential

search method considers only one output model at a time and does not consider the next

output model until the present model has reached the termination criterion.

5.1 Concurrent Search Methods and Results

At this point, our RPV algorithm is tailored to single-output problems. To extend it to

consider multiple outputs simultaneously we will modify the RPV algorithm to create a

GPM for each of the circuit outputs. While considering multiple outputs simultaneously we

need to decide how to choose the set of next PVT corners to simulate. Choosing the entire

convex hull of one output’s model was reasonable for a single output problem, but it may

be too computationally expensive if other output models need to be considered. We thus

decided to investigate different rules for choosing the next set of corners to simulate.
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5.1.1 Concurrent Search Methods

The selection rule for choosing the next set of corners to simulate can have many different

approaches. We will examine three types of approaches. One approach is to evenly dis-

tribute the search effort over all output models by having a selection rule that picks corners

evenly from every output model. A second approach is to focus the search effort on one

model by having a selection rule that picks corners from only one output model of interest

at a time. A third approach is to asymmetrically distribute the search effort among all out-

put models by having a selection rule that picks more corners from output models of high

interest and fewer corners from output models of low interest, where the level of interest is

determined using a heuristic.

The asymmetric approach is a blend of the first two approaches: it distributes com-

putational effort over all models, but gives priority to output models with higher levels of

interest. The asymmetric distribution approach we will use is based on a geometric series.

The output model with the highest interest will receive one half of the computational effort,

the output with the second highest interest will receive one quarter of the computational

effort, and so on (i.e., computational effort will be distributed as [12 ,
1
4 ,

1
8 , ...] in the order of

highest interest to lowest interest). The choice of a geometric distribution allows the algo-

rithm to place the majority of computational effort on the output model with the highest

level of interest while also allowing some computational effort to be placed on the other

models as well.

There are many possible ways of determining which output model should of the highest

interest. For example we could gauge the interest level by determining which output model

is furthest from convergence (i.e., furthest from termination). We measure how far an

output model is to convergence by counting how many unsimulated corners remain above

the termination criterion threshold (e.g., shown in Figure 3.7 as yellow dots). Corners that

lay above the termination criterion threshold are considered to be potential maxima. The

output model with the most potential maxima is considered to have the highest interest

level. Therefore, the approaches that focus their search effort will focus on output models

that have the largest number of potential maxima (i.e., output models with high levels of

interest).

We will examine seven unique concurrent search methods that use different next corner

selection methods. All of the concurrent search methods will have the same initial training

corner selection method and termination criterion as the improved RPV algorithm. The

only difference between the seven concurrent search methods will be the next corner selection

rule. The seven unique concurrent search methods are defined below.

Concurrent Method 1

At each iteration the algorithm will focus all of the computational effort on the output

model which has the highest interest level.

The corners to be simulated next will be the corners that lie on the convex hull of the
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output model with the highest interest.

Concurrent Method 2

At each iteration the algorithm will select m (the number of outputs) PVT corners

and evenly distribute this computational effort among all of the non-converged output

models.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).

Concurrent Method 3

At each iteration the algorithm will select m PVT corners from only the output model

which has the highest interest level.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).

Concurrent Method 4

At each iteration the algorithm will select m PVT corners using the geometric-

asymmetric distribution among the non-converged output models. The corners to

be simulated will be selected using the rule cnext = argmax(Ŷ + 6× stddev).

Concurrent Method 5

At each iteration the algorithm will select 2m PVT corners and evenly distribute this

computational effort among the non-converged output models.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).

Concurrent Method 6

At each iteration the algorithm will select 2m PVT corners from only the output

model which has the highest interest level.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).

Concurrent Method 7

At each iteration the algorithm will select 2m PVT corners using the geometric-

asymmetric distribution among the non-converged output models.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).

5.1.2 Concurrent Search Methods: Data Set Results

In this section we will investigate how well the seven concurrent search methods perform

on the nine-circuit dataset described in Chapter 3. The multiple-output search algorithm

will consider the maxima of each circuit output and report if any output maximas are not
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Table 5.1: Speed Up of Concurrent Search Methods for the Nine-Circuit Dataset

Circuit Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7

Shift Register 1.01 1.01 1.02 1.04 1.05 1.01 1.04

Buffer Chain 2.97 9.0 3.28 3.25 8.49 3.08 6.62

Bit cell 5.0 6.67 6.67 6.67 5.45 5.45 5.45

MUX 1.00 1.05 1.00 1.05 1.00 1.00 1.05

Charge Pump 1 3.09 3.27 2.67 3.54 2.84 2.51 2.84

Sense Amp 1 1.14 1.02 1.00 1.02 1.00 1.00 1.02

Charge Pump 2 3.77 3.21 3.38 3.56 3.38 3.38 3.06

OP Amp 3.24 3.87 3.64 3.33 2.61 2.73 3.53

Bias Gen 3.16 2.0 2.4 2.0 2.4 1.33 1.71

Average 2.71 3.46 2.78 2.83 3.14 2.39 2.92

found by the time of convergence. We will report the observed speed up (measured by the

total number of corners divided by the number of corners required to reach the 3-Sigma

stopping condition) of the algorithm for each circuit and also calculate an average speed up

over all circuits.

Table 5.1 reports the results of the concurrent search methods for the nine-circuit

dataset. We observe that all seven of the concurrent search methods were able to find

the global maximum of every output for all circuits in the dataset. We observe a range of

average speed ups from 2.39× to 3.46× faster than a conventional full-factorial verification

approach, which simulates all possible PVT corners.

The observed speed ups seem to be lower than some of observed speed ups measured

with the single-output search method as reported in Table 4.2. This is likely due to the

fact that the multiple-output method must converge multiple output models instead of only

one model. The single-output problem only requires enough corner simulations to converge

one output’s model. By contrast, the multiple-output problem requires sufficient corner

simulations to converge all of the output models of the given circuit.

5.1.3 Concurrent Search Methods: Results from the Alternative Dataset

In this section we will investigate how well the seven concurrent search methods perform on

the alternative ten-circuit dataset that was introduced in Chapter 4. The multiple-output

search algorithm will consider the maxima of each circuit output and report if any output

maximums are not found by the time of convergence. We will report the observed speed up

(measured by total number of corners divided by number of corner required to reach the

3-Sigma stopping condition) of the algorithm for each circuit and also calculate an average

speed up over all circuits.

Table 5.2 reports the results of the concurrent search methods for the alternative ten-

circuit dataset. All seven of the concurrent search methods were able to find the global

maximum of every output for all circuits in the dataset. The average speed ups range
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Table 5.2: Speed Up of Concurrent Search Methods for the Ten-Circuit Dataset

Circuit Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7

Buffer Reference 1.00 1.02 1.02 1.02 1.07 1.07 1.07

CP Default 1.00 1.00 1.02 1.00 1.05 1.05 1.05

Current Mirror 1.88 1.77 2.17 1.04 1.08 1.90 1.13

D Flip-Flop 1.59 1.59 1.09 1.07 1.09 1.01 1.31

GMC 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LSTB 2.98 1.28 2.92 1.38 1.18 1.48 1.20

NDL 4.51 5.97 3.62 4.25 5.53 3.45 5.53

OP Amp TB 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SDF 1.00 1.01 1.01 1.00 1.01 1.01 1.00

Sense Amp 13.97 20.25 20.25 20.25 16.88 16.88 16.88

Average 2.99 3.59 3.51 3.30 3.09 2.99 3.02

from 2.99× to 3.59× faster than a full-factorial verification approach. However, these mean

values may misrepresent the performance of the concurrent methods. For example, Method

2 reports the highest average speed up of 3.59×, even though, for eight of the ten circuits

the speed up is less than 2.00×.

Many of the concurrent search methods report little to no speed up for the ten-circuit

dataset in Table 5.2. These unexpectedly low speed ups may be explained from the results

of the single-output RPV algorithm results reported in Table 4.3. Table 4.3 shows the

individual speed up observed for each output of the ten circuits in the alternative dataset.

We note that many circuits report large speed ups for some outputs while also having a one

or more outputs that report little or no speed up. For example the CP Default circuit has

six outputs. Four of the outputs report a speed up between 3.46× to 6.82×. Yet, two of the

outputs seem to be difficult for the RPV algorithm and do not show any speed up (1.0×).

We also observe that the concurrent multiple-output Method 2 reports no speed up for the

CP Default circuit.

It would seem that the most difficult output of a given circuit will determine the per-

formance of the multiple-output search method. Therefore, the best speed up that any

multiple-output method can yield is determined by the worst speed up of the single-output

method for a particular circuit.

5.1.4 Revised Concurrent Search Methods and Results from the Alter-
native Dataset

In the previous subsection we defined outputs with the highest level of interest as the models

that were furthest from convergence. This may have influenced the algorithm to primarily

focus on the most difficult outputs of a given circuit. In order to confirm that speed up

of the multiple-output method is determined by the worst speed up of the single-output

method for a particular circuit, we will investigate the effects of assigning a high level of

interest to the output model that is closest to convergence.
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In this subsection we will investigate five revised concurrent search methods. These new

search methods, which are listed below, are identical to the previously proposed concurrent

search methods with one exception. The exception is that we define outputs with the

highest level of interest as the output models that are closest to convergence. The goal is

to see if how we define levels of interest has an overall effect on the performance of the

multiple-output search method.

Concurrent Method 8

At each iteration the algorithm will focus all of the computational effort on only the

output model which has the highest interest level.

The corners to be simulated will be the corners that lie on the convex hull of the

output model with the highest interest.

Concurrent Method 9

At each iteration the algorithm will select m PVT corners from only the output model

which has the highest interest level.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).

Concurrent Method 10

At each iteration the algorithm will select m PVT corners using an asymmetric dis-

tribution among non-converged output models. The corners to be simulated will be

selected using the rule cnext = argmax(Ŷ + 6× stddev).

Concurrent Method 11

At each iteration the algorithm will select 2m PVT corners from only the output

model which has the highest interest level.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).

Concurrent Method 12

At each iteration the algorithm will select 2m PVT corners using an asymmetric

distribution among non-converged output models.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).

These five revised concurrent search methods are examined using the ten-circuit dataset.

We report the observed speed up for each circuit and also each method’s calculated average

over all circuits in Table 5.3.

Revised concurrent Methods 8, 9, 10, 11, and 12 can be directly compared to their

counterparts, concurrent Methods 1, 3, 4, 6, and 7, respectively. The variations between

the revised method average speed ups and the original method average speed ups range
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Table 5.3: Speed Up of Revised Concurrent Search Methods for the Ten-Circuit Dataset

Circuit Method 8 Method 9 Method 10 Method 11 Method 12

Buffer Reference 1.00 1.02 1.02 1.07 1.07

CP Default 1.00 1.02 1.02 1.05 1.05

Current Mirror 3.94 1.23 1.06 1.02 1.15

D-Flip Flop 1.10 1.40 1.05 1.04 1.01

GMC 1.00 1.00 1.00 1.00 1.00

LSTB 2.46 1.22 1.25 1.20 1.18

NDL 3.95 3.62 4.51 3.45 4.25

OP Amp TB 1.00 1.00 1.00 1.01 1.01

SDF 1.00 1.01 1.01 1.01 1.01

Sense Amp 13.97 20.25 20.25 16.88 16.88

Average 3.04 3.28 3.32 2.87 2.86

from 0.05 to 0.23. The largest difference is found between Method 3, which reported an

average speed up of 3.51×, and Method 9, which reported 3.28×. The speed up difference

between these two counter parts is 0.23.

Focusing the computational effort on models that are closest to convergence as opposed

to those models that are furthest from convergence does not seem to have a significant effect

on the multiple-output problem. This result agrees with the previous observation that the

best speed up that the multiple-output method can yield is determined by the worst speed

up of the single-output method for a particular circuit.
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5.2 Sequential Search Method Experiments and Results

In this section we will investigate sequential search methods. This is a straightforward way

to extend the single-output RPV algorithm to multiple outputs. Sequential search methods

iteratively use a single-output algorithm to converge one output model at a time and then

repeat the process until all output models have converged.

5.2.1 Sequential Search Methods

The sequential search methods will consider only one output model at a time and will not

consider another until the current output model has converged. To select which output

model should be considered next we will select the output model with the highest level

of interest. As described in the previous section, the output model with the highest level

of interest is the model with the most unsimulated corners above the termination criterion

threshold (i.e., the model furthest from convergence). After the initial training set is selected

a GPM will be created for each output. A modified version of the single-output RPV

algorithm will search for the maximum of the model with the highest level of interest. Once

the current model of interest has reached convergence (i.e., reached the 3-Sigma termination

criterion) GPM will be created for all non-converged circuit outputs and the cycle will repeat

until all output models have converged.

We will examine three unique sequential search methods that each use different next

corner selection approaches. All of the sequential search methods will have the same initial

training corner selection method and termination criterion as the improved RPV algorithm.

The only difference between the three sequential search methods will be the next corner

selection rule. The three unique concurrent search methods are defined below.

Sequential Method 1

At each iteration the algorithm will select the corners on the convex hull of the current

output model until that model has determined convergence.

Sequential Method 2

At each iteration the algorithm will select m (the number of outputs) PVT corners of

the current output model until that model has determined convergence.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).

Sequential Method 3

At each iteration the algorithm will select 2m (the number of outputs) PVT corners

of the current output model until that model has determined convergence.

The corners to be simulated will be selected using the rule cnext = argmax(Ŷ + 6 ×
stddev).
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Table 5.4: Speed Up of Sequential Search Methods for the Nine-Circuit Dataset

Circuit Method 1 Method 2 Method 3

Shift Register 1.03 1.01 1.12

Buffer Chain 10.69 3.18 2.28

Bit cell 4.29 5.45 4.62

MUX 1.01 1.05 1.05

Charge Pump 1 2.63 2.84 2.25

Sense Amp 1 1.02 1.15 1.02

Charge Pump 2 3.31 3.56 3.06

OP Amp 1.02 3.33 3.00

Bias Gen 3.08 2.00 1.71

Average 3.12 2.62 2.23

5.2.2 Sequential Search Methods: Data Set Results

In this section we will investigate how well the three sequential search methods perform on

the nine-circuit dataset described in Chapter 3. The multiple-output search algorithm will

consider the maxima of each circuit output and then report if any output maximums are

not found by the time of convergence. We will report the observed speed up (measured by

the total number of corners divided by the number of corners required to reach the 3-Sigma

stopping condition) of the algorithm for each circuit and also calculate an average speed up

over all circuits.

All three of the sequential search methods were able to find the global maximum of

every output for all nine circuits in the dataset. From Table 5.4 we observe a range of

average speed ups from 2.23× to 3.12× faster than a conventional full factorial verification

method. Sequential Method 1 reported the largest average speed up of 3.12×, whereas the

largest average speed up for concurrent search methods reported 3.46× for the nine-circuit

dataset.

5.2.3 Sequential Search Methods: Results from the Alternative Dataset

In this section we will investigate how well the three sequential search methods perform on

the alternative ten-circuit dataset that was introduced in Chapter 4. The multiple-output

search algorithm will consider the maxima of each circuit output and report if any output

maximums are not found by the time of convergence. We will report the observed speed up

(measured by total number of corners divided by number of corner required to reach the

3-Sigma stopping condition) of the algorithm for each circuit and also calculate an average

speed up over all circuits.

All three of the sequential search methods were able to find the global maximum of

every output for all ten circuits in the dataset. Table 5.5 shows the observed speed ups
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Table 5.5: Speed Up of Sequential Search Methods for the Ten-Circuit Dataset

Circuit Method 1 Method 2 Method 3

Buffer Reference 1.00 1.02 1.07

CP Default 1.00 1.02 1.05

Current Mirror 1.38 1.09 1.15

D-Flip Flop 1.22 1.09 1.35

GMC 1.00 1.00 1.01

LSTB 1.28 1.28 1.15

NDL 5.02 4.02 3.81

OP Amp TB 1.00 1.00 1.01

SDF 1.00 1.01 1.01

Sense Amp 13.97 20.25 16.88

Average 2.79 3.28 2.95

for the ten-circuit dataset. We observed a range of average speed ups from 2.79× to 3.28×
faster than a conventional full factorial verification method. The largest average speed up

reported by the sequential methods for the ten-circuit data set was 3.28×, which is lower

than the largest average speed up reported by the concurrent search methods of 3.59×.

5.3 Summary of Multiple-Output Search Methods

At the beginning of this chapter we noted that many circuits have multiple outputs and that

measurements for all of these outputs can be taken during a single PVT corner simulation.

In an attempt to maximize the use of the information generated during each simulation we

proposed to view the verification of all outputs as a multiple simultaneous global optimiza-

tion problem. We extended the RPV algorithm to consider multiple circuit’s outputs using

different approaches. The concurrent method approach monitors all output models and

attempts to converge all models simultaneously. The sequential search method iteratively

attempts to converge one output model at a time.

We explored three different ways of distributing computational effort for the concurrent

search methods. The first was to evenly distribute computational effort among all non-

converged output models. The second focused all computational effort on a single output

model. The last used an asymmetric distribution on all non-converged output models.

Altogether we implemented seven different concurrent search methods.

Since sequential methods only focus on one output model at a time, there was no need

to distribute computational effort among the multiple models. However, we did explore

applying three different amounts of computational effort during the next corner selection

step. In the first method we applied a variable amount of computational effort that is

determined by the number of PVT corners that fall on the model’s convex hull. In the
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second method there is always a selection of m (the number of outputs) corners to be

simulated. The third method also has a fixed number of corners to be simulated, that is

2m.

We tested the seven concurrent search methods and three sequential search methods on

both of our datasets. For the nine-circuit dataset we found that the average speed ups for

the concurrent methods ranged from 2.39× to 3.46× and that the average speed ups for the

sequential methods ranged from 2.23× to 3.12×. For the ten-circuit dataset, average speed

ups for the concurrent methods ranged from 2.99× to 3.59× and the average speed ups for

the sequential methods ranged from 2.79× to 3.28×. For both datasets the method that

reported the largest average speed up was the concurrent Method 2. Concurrent Method

2 selects m PVT corners each iteration and evenly distributes this computational effort

among all non-converged output models. Overall, concurrent search Method 2 provided

larger speed ups over all of the sequential methods. This is likely due to the coordinated

search strategy that is used. At every iteration concurrent Method 2 always places some

computational effort on any non-converged output model.

We also observed from both the nine-circuit and ten-circuit datasets that some circuits

reported little to no speed up. By reviewing the results of the single-output RPV method

results, we noticed that circuits reported high speed ups for certain outputs, but much lower

speed ups for other outputs. We found that these difficult outputs dominate the overall

difficulty of the circuit. The best speed up that the multiple-output search method can

yield is limited by the worst speed up of the single-output method for the most difficult

output(s) of the given circuit.
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Chapter 6

Conclusions and Future Work

In this thesis the problem of integrated circuit verification in the presence of PVT variations

was investigated. PVT variations can adversely affect a circuit’s performance and behavior,

which can cause problems in operation and greatly reduce the overall yield [8]. Circuit

designs in modern process technologies can have several thousand PVT corners that need

to be verified to ensure that the circuit operates within specifications over all of these con-

ditions [9]. The full-factorial PVT verification method, which simply simulates all possible

PVT corners, can be very time consuming and often not feasible to carry out [3]. Other

approaches, such as the designer best guess approach, are found to reduce the number

of required SPICE level simulations, but may not always find the worst-case PVT corner

and may report overly optimistic results [3]. We treated the PVT verification problem as

a mathematical optimization problem. Our goal was to develop an algorithm that could

reliably locate a global maxima while requiring minimal PVT corner simulations and also

be quick to compute. We based our algorithm on the iterative optimization algorithm

known as the EGO algorithm, as discussed in Section 2.1. In Chapter 3 we introduced the

framework and some initial results for our RPV algorithm. The RPV algorithm employs a

Gaussian Process machine-learning model to model a given circuit’s output. Heuristics are

used to exploit the information provided by the GPM. Information from the GPM is used

to determine if the global optimum has been found and to what degree of confidence.

In Chapter 4 we focused on improving the RPV algorithm to make it reliable, efficient,

and fast. Reliability is being reasonably confident that upon the algorithm’s termination the

true worst case PVT corner has been found. The primary way to ensure that our algorithm

is reliable is to have a reliable termination criterion. The RPV’s termination criterion

is based on Simga confidence levels that are reported by the GPM’s standard deviation

estimation. We found that the GPM’s estimation of sigma values has a measurable degree

of inaccuracy. In Section 4.4 we introduced a standard deviation correction factor, β ,

that compensates for error in the GPM’s overly optimistic sigma estimation. In Section

4.5.2 we thoroughly examined the reliability of the improved termination criterion using a

randomized initial training set experiment on the three unique outputs of the Shift Register
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circuit. We observed that when 3-Sigma confidence is declared, the experiment reports

100% probability of finding the global maximum for the fall time output and 99% for the

delay and rise time outputs, as shown in Figure 4.13. The GPM’s estimated 3 − Sigma

confidence seems to be very close to the expected ideal 3-Sigma confidence levels. The

RPV algorithm was tested on both the nine-circuit and ten-circuit datasets over a total of

114 unique outputs and was able to successfully find the global maximum for every output.

For our PVT verification method to be efficient it needs to minimize the number of

required SPICE-level PVT corner simulations. We measure efficiency as speed up over

the full factorial verification method. Speed up is calculated by the total number of PVT

corners divided by the number of PVT corners required to reach the termination criterion.

In Section 4.5.1 the RPV algorithm was tested on the nine-circuit dataset. The average

speed up found for all 46 outputs was 5.91× and the largest speed up observed was 23.38×.

In Section 4.5.3 the RPV algorithm was tested on the ten-circuit dataset. The average

speed up found for all 68 outputs was 5.45× and the largest speed up observed was 33.09×.

Computational time is also an important consideration for our verification algorithm.

Significant attention to detail was made while creating the RPV algorithm. Decisions were

made to reduce computational complexity where ever possible. As an example, we used

a linear approximation to calculate the standard deviation correction factor, β, instead of

performing 10-fold cross validation at every iteration. Another example would be to select

multiple PVT corners to simulate each iteration (e.g., select all corners on the GPM’s convex

hull) in order to reduce the total number of GPMs built and trained over the course of the

algorithm. In Section 4.5 the time from the beginning of the verification process to the

time of termination (neglecting PVT simulation time) was monitored for every output of

the nine-circuit and ten-circuit dataset. We observed that the RPV’s compute time ranged

from 0.10 s to 160.37 s on a 3.2-GHz Intel i5-3470 processor. Modern circuit designs can

take on the order of minutes for a single PVT corner simulation, such as the VCO in a 28

nm process technology that reports an approximate 70 s per PVT corner simulation [3].

The computational time required to execute the RPV algorithm is minimal compared to the

computational time required for a SPICE level PVT corner simulation. The RPV algorithm

is relatively fast compared to corner simulation times.

In Chapter 5 we noted that many circuits have multiple outputs and that measure-

ments for all outputs can be taken during a single PVT corner simulation. In an attempt

to maximize the use of information generated during each simulation, we extended the

RPV algorithm to consider all of a given circuit’s outputs simultaneously. The verification

problem was then viewed as multiple simultaneous global optimization problems. We in-

vestigated many different concurrent and sequential search methods. As stated in Section

5.3, we found that concurrent search Method 2 provided the best observed average speed

ups for both the nine-circuit and ten-circuit datasets with 3.46× and 3.59×, respectively.

Each iteration of the algorithm the concurrent search Method 2 would select m (the number
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of outputs) PVT corners to be simulated and evenly distribute this computational effort

among non-converged output models. We also noted that the most difficult output of a

given circuit will determine the performance of the multiple-output search method. There-

fore, the best speed up that the multiple-output method can yield is determined by the

worst speed up of the single-output method for a particular circuit.

6.1 Future Work

We have noted that some outputs, particularly digital outputs, are difficult for the GPM to

model. It would be possible to add a new step to the algorithm that monitors if the output

function has discrete regions (e.g., digital outputs). This could be done using a discretization

algorithm to determine if identifiable clusters (i.e., regions) exist in the output space (e.g.,

CAIM discretization [47]). If unique clusters are determined to exist, the program could

then use a clustering algorithm, such as K-means clustering [46], on known data samples

(the number of clusters, k, as determined by the discretization algorithm). The K-means

clustering model could then be used to determine expected regions of interest (i.e., predict

where regions of possible maxima) exist among unsimulated PVT corners. Then the RPV

algorithm could be applied separately to only the regions of interest.

The dimensionality of the GPM may become an issue as the number of PVT parameters

increase. Medium-scale problems with 20-50 parameter variables can be computationally

expensive for the GPM to compute [3, 33]. Liu et al., [33], proposed using dimension

reduction techniques, such as Sammon mapping [43], to lower the dimensionality of the

input space of the GPM. The use of dimension reduction techniques for the GPM in the

RPV algorithm may be necessary when number of PVT parameters becomes larger than

20. As dimensionality increases it may also be beneficial to explore modeling techniques

other than the GPM, such as multilayer perceptron neural networks [48].
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