
University of Alberta

DETECTING AND DIAGNOSING WEB APPLICATION
PERFORMANCE DEGRADATION IN REAL-TIME AT THE METHOD

CALL LEVEL

by

Mengliao Wang

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Mengliao Wang
Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Abstract

As e-commerce becomes more popular, the performance of enterprise web appli-

cations becomes an important and challenging issue. Unlike failures, performance

degradation is more difficult for the administrator to observe. It also takes much

time to locate the root cause because there are many possible performance bottle-

necks including network I/O, resource starvation, source code mistakes and even

high site requests.

In this thesis, we propose a system which is able to detect and diagnose web

application performance degradations at the method call level in real time. We also

set four sensors on the web server to monitor web application conditions, and use

the measurements as input in detection and diagnostic algorithms. We implement

our system in Java and build a test bed using a pet store application. Our system

is evaluated on the test bed and results are encouraging, showing that our approach

outperforms a traditional detection approach.

Acknowledgements

First I would like to express my thanks to my supervisor Dr. Kenny Wong for his

guidance and patience during the last two years. It would not be possible to finish

this thesis without his support and help. I would also like to thank my lab mates

Haiming Wang and Liang Huang for their feedback and suggestions. Last but not

least, I sincerely thank my parents who supported my study over the last years.

Table of Contents

1 Introduction 1

2 Background 5

2.1 Definition of Performance Degradation 6

2.2 Causes of Performance Degradation 7

2.2.1 Web Tier Causes . 7

2.2.2 Application Tier Causes 7

2.2.3 Integration Tier . 7

2.2.4 Environmental Causes . 7

2.3 Performance Instrumentation Approaches 9

2.3.1 Aspect Oriented Programming 9

2.3.2 Application Response Measurement 10

2.3.3 JavaSysMon . 11

3 Methodology 12

3.1 Offline Stage . 13

3.1.1 Pattern Mining . 14

3.1.2 Pattern Modeling . 17

3.2 Online Stage . 19

3.2.1 Application Instrumentation 19

3.2.2 Performance Degradation Detection 21

3.2.3 Performance Degradation Diagnosis 24

4 Evaluation 29

4.1 Test Bed . 29

4.2 Instrumentation . 30

4.2.1 CPU Usage . 31

4.2.2 Memory Usage . 32

4.2.3 I/O Rate . 32

4.2.4 Request Rate . 32

4.3 Performance Degradation Injection 34

4.4 Analysis of Results . 36

4.4.1 Time Overhead . 37

4.4.2 Performance Degradation Detection 38

4.4.3 Performance Degradation Diagnosis 42

4.5 Limitations and Threats to Validity 43

4.6 Summary . 44

5 Related Work 46

6 Conclusion and Future Work 48

Bibliography 50

List of Tables

3.1 Parameters Used in Our Approach 28

4.1 System Overhead . 38

4.2 Our Approach Against Traditional Approach on Performance Degra-

dation Detection . 40

4.3 Performance Degradation Diagnosis Results 43

List of Figures

1.1 CA Wily Dashboard Example . 2

2.1 AOP Development Stages [22] . 9

3.1 Architecture of the Offline Stage 13

3.2 Architecture of the Online Stage 14

3.3 Pattern Mining Pseudo Code . 16

3.4 Example of two patterns with different numbers of repetitions . . . 17

3.5 Example Method Call Trace with Performance Degradation 18

3.6 Instrumentation System Architecture 20

3.7 Method Call Sequence Example 21

3.8 Excerpt of Our Recorded Method Call Trace 22

3.9 Data Flow of Performance Degradation Detection 23

3.10 Degradation Diagnosis Framework 25

3.11 Cause Classification Pseudo Code 27

4.1 A sample Aspectwerkz deployment description file 31

4.2 A Sample Access Log Recorded by Tomcat 33

4.3 The Sahi Script Used to Test System Overhead 36

4.4 Distribution of a Method Call Execution Time 39

4.5 An Intuitive Performance Degradation Detection Experiment Result 41

Chapter 1

Introduction

Nowadays, an ever-increasing number of businesses publish and update their prod-

ucts and services through web applications. These web applications are required to

be robust and responsive to process the requests from clients. As a result most web

applications are hosted on powerful server machines to keep them running normally.

However, in commercial uses the performance of web applications could still be de-

graded due to various reasons. For example, a web application server may receive

a huge number of requests in a short period of time, which can greatly increase

the response time for each client of the server. Also, the consumption of operating

system resources like CPU, memory, and disk space on the web application server

can also lead to performance degradation.

It is important for the administrators of web applications to detect the perfor-

mance degradations once they happen, and fix these problems as soon as possible.

However, it is impossible to monitor every client’s running state due to the huge

number of clients and privacy issues. Thus, some performance monitoring tools

have been developed to help the administrators to detect performance degradation,

such like CA Wily [3], HP Performance Center [6] and Glassbox [5]. All of

these tools aim at application performance monitoring, but are different in the de-

tails. Glassbox uses AOP (Aspect Oriented Programming) techniques to monitor

an application’s health in real time. It monitors the requests as Java code executes

and provides details about response times. The Glassbox web client provides a

nice dashboard view which contains various attributes like server-name, applica-

tion name, operation/request-URL, number of executions, status (slow/OK), and so

1

Figure 1.1: CA Wily Dashboard Example

on. But the Glassbox monitoring scheme is simple: by default, an operation that

takes more than one second of execution time is marked with a “slow” status. CA

Wily application performance management is another tool which provides perfor-

mance monitoring functions. Similar to Glassbox, it provides a dashboard with

details about an application’s running status. Figure 1.1 shows an example of the

dashboard provided by CA Wily. However, CA Wily does not support automated

performance analysis, which means it can not detect when the application perfor-

mance has degraded. HP Performance Center is similar to CA Wily, which provides

a dashboard to present details on web application performance. But this tool still

needs the experience and expert knowledge of the administrator to make the deci-

sion about whether there is a performance degradation and what the root cause of

the degradation might be.

It is hence necessary to develop a more powerful tool to detect performance

degradations of web applications and diagnose the causes, which is also the focus

of this thesis. In this work, we propose a framework to detect and diagnose the

performance degradations at the method call level with assistance from some sen-

sors which monitor certain server attributes like CPU usage, memory usage, I/O

rate, and request rate. Unlike the degradation detection scheme used by Glassbox,

2

we first collect enough baseline web application performance data, from which the

distribution model of the execution time of each method under normal situations is

calculated. Also, we mine the most frequent method call patterns from collected

method call traces and save them with their execution time in a pattern repository

for future analysis. If a method call trace is given, we use the pattern repository

to divide it into segments, with each segment as the basic unit for analysis rather

than the method. If one segment’s execution time deviates too much from the nor-

mal execution time stored in the pattern repository, an alert will be given to the

administrator.

Our approach not only detects the performance degradation, but also determines

the potential cause of it. This is based on some server environmental status such

as CPU usage, memory usage, I/O operation number, and the request number. The

problem determination is based on some pre-defined status checks and eventually

the problem will be categorized to be low CPU resource, low memory resource,

high I/O rate, or high request rate. Moreover, if the problem is inside the web ap-

plication, our approach can locate the method in the source code that reveals this

performance degradation, which could greatly reduce the time for programmers to

remove the fault. Most of the current performance monitoring tools only provide

the administrator a dashboard with system performance information, but the per-

formance problem detection and determination is still up to the administrators. In

our research, the web application monitor could present an alert by itself of per-

formance problems without human intervention. Also this framework can provide

helpful suggestions during the problem fixing stage, and make performance tuning

easier for the administrator.

The contributions of this thesis are:

1. Proposed an AOP based web application instrumentation system with low

overhead and no need to recompile programs.

2. Proposed a method call trace based web application performance degradation

detection framework which runs in real time. This approach is shown to

outperform the detection approach used by Glassbox.

3

3. Proposed a performance degradation diagnostic system to determine the cat-

egory of performance problem. Also this system is able to precisely locate

the method in the source code that reveals the performance degradation.

4. Implemented our approach in Java, and built a test bed using the Java Pet

Store application to evaluate our system, and the results validate the efficiency

and effectiveness of our approach.

The remainder of this thesis is organized as follows. In Chapter 2, we describe

the background of web application performance monitoring. In Chapter 3, the

framework of our system is illustrated, and we detail each analysis phase of our

system separately. In Chapter 4, we describe the evaluation details and present our

experimental results. The analysis of the results demonstrates the efficiency and

accuracy of our approach, and the overhead of our approach is shown to be low.

In Chapter 5, we introduce some work by other researchers that overlap with our

work. Finally, in Chapter 6, we summarize our contribution in this research and

discuss potential future work of this topic.

4

Chapter 2

Background

Web applications have been an ever-increasing topic in e-commerce business dur-

ing the last decade. A web application is hosted on a powerful server to provide

services such as online shopping, web mailing, and online chatting for clients. On

the client side, users always wish responsiveness from the server. For example, in

an online chatting application, if the message received from the server is delayed,

the conversation could be misunderstood or difficult to continue. However, in com-

mercial applications, there are often a large number of users connected to the server

simultaneously, which means the processing by the server might intensify at cer-

tain moments. Under this situation, the performance of application will be greatly

slowed, which means each user will need to wait for a longer time than typical to

get a response from the server after an operation.

In order to avoid such incidents, the administrator needs to monitor the running

status of the web application, and detect the performance degradation as soon as

possible. To assist in performance monitoring, some tools have been developed to

provide administrators a dashboard with detailed server running status. CA Wily,

Glassbox, HP Performance Center are such tools. With all the graphs and data from

these tools, administrators can determine whether there is a performance problem

and the cause of the problem. However, these tools still require human attention to

make a decision about whether the server performance is good or degraded. Thus,

in this thesis, we propose an approach for automatic performance degradation de-

tection. This chapter overviews the web application tiers, and then describes the

definition of performance degradation together with some potential causes. After

5

that, we introduce several existing state-of-art web application performance moni-

toring tools.

2.1 Definition of Performance Degradation

A typical web application has three tiers: web tier, application tier, and integration

tier [13]. The web tier can be understood as the user interface in a web application,

which supports the interaction with a human. In a J2EE (Java 2 Enterprise Edition)

web application, JSP (Java Servlet Pages) is often used to implement this tier. The

application tier, or business tier, is where the source code and pagers reside. The

main task of this tier is to deal with the business logic of the application, which

determines the functions this application supports. In J2EE, the application tier is

often implemented by EJB (Enterprise Java Beans) and JavaScript. The integration

tier, also called the data access tier, connects the stored dataset with the system. For

example, in an online Java shopping application, the information on all the prod-

ucts may be stored using Derby [10], a database implemented in Java. When a

user sends a request for searching a certain product from the web tier to the appli-

cation tier, a connector such as JDBC (Java Database Connectivity) will connect

the database to the application at a certain port. After that, the product could be

searched by running the business logic upon the database. In a three-tier applica-

tion, the transmission between different tiers takes time because these tiers are often

not executed within the same process, or even the same machine. Also some com-

ponents inside the tier need to take more time to execute. If these time-consuming

components are repeated too often or their execution time greatly extended, a slower

response results for the user, which we deem a performance degradation.

In the white paper by Tealeaf Technology [28], they propose that application

health is not simply evaluated in terms of uptime and page load speed, but by in-

corporating other important metrics and the perspective of the user. This idea mo-

tivates us to monitor performance based on different metrics and sensors. One

potential metric is method execution time. As we introduced before, if a perfor-

mance degradation in the web application happens, there may be some abnormally

6

time-consuming methods. Using a method call trace with time recorded for each

call is one way to detect performance degradations.

2.2 Causes of Performance Degradation

Performance degradation might happen in all the three tiers of a web application.

We classify causes of performance degradations on the web server based on these

three tiers with an additional category which is environmental causes. The details

of potential causes we focus on are listed as follows.

2.2.1 Web Tier Causes

1. High request rate: There are too many users sending requests to the server in

a short period of time, which causes the server response time to slow greatly

for each client.

2.2.2 Application Tier Causes

1. Deadlock: In the business logic, a deadlock appears which will lead the ap-

plication to be stuck for a long time until the deadlock is fixed.

2. Thread consumption: Most operating systems have a maximum thread num-

ber, while some web applications need to create different threads for different

users. Scheduling many threads may cause some users to wait for a long time.

2.2.3 Integration Tier

1. Database queries: Database searching is also a time-consuming process in

web applications. If the database is referred to too frequently, the response

time will increase.

2.2.4 Environmental Causes

1. Low CPU resource: On the web server, if the CPU is too busy to process the

web application request, the response time of each request will increase.

7

2. Low memory resource: Similar to low CPU resource problems, if there is

limited available memory usage, it will take more time for the web application

to process the request from the client.

3. Low disk resource: If the disk resource of the web server is consumed without

leaving enough disk space, some operations like database exchanges will be

slowed.

4. High I/O rate: I/O consumption in the web application includes various types

such as network I/O, database I/O, file I/O and so on. Massive I/O operations

of any type in a short period of time can lead to a performance degradation in

the web server.

5. Monitoring overhead: Processing time needed by the application monitoring

component could increase the application response time.

8

2.3 Performance Instrumentation Approaches

2.3.1 Aspect Oriented Programming

For any application monitoring tool, the first step is to instrument the web appli-

cation. One widely used instrumentation technique is called AOP (Aspect Ori-

ented Programming) [22]. AOP is designed to separate concerns, making each

component more clear. Each system can be decomposed into core concerns and

cross-cutting concerns. The core concern usually captures the central functions

of the system. The cross-cutting concerns may be authentication, logging, stor-

age management, multithread safety, and so on. These concerns often affect other

concerns and can not be cleanly decomposed from the rest of the system. Thus,

by OOP (Object Oriented Programming) techniques, it is difficult to add, remove,

or update the components which implement cross-cutting concerns in a system.

However, in a typical AOP project, each cross-cutting concern is encapsulated in a

separately implemented “aspect”. An aspect is connected by a “pointcut”, which

specifies at which locations this aspect will be integrated into the system. This stage

is called weaving. The process is shown in Figure 2.1. When a set of requirements

is presented, the AOP technique classifies these requirements into core concerns

and cross-cutting concerns, and implements each concern individually as an aspect.

Note that all the cross-cutting concerns should be independently implemented. For

example, updating the logging aspect should not affect the security aspect. Finally

all the aspects are woven into the final system by the pointcuts.

Figure 2.1: AOP Development Stages [22]

9

Because AOP makes it very easy to insert additional functions to the existing

code at specific points, it is one of the most popular forms of instrumentation. Pro-

grammers need only to write a separate instrumentation aspect, and weave the in-

strumentation code into the original application source code. The original methods

to be instrumented will be specified in the pointcuts. Thus, to instrument any appli-

cation, programmers do not need to be familiar with the original application source

code, and the instrumentation code can also be applied on different applications

without too many modifications.

There are several tools that implement AOP, and the most popular one on Java

is AspectJ. AspectJ is an extension of Java, which means every Java program is

also a valid AspectJ program, and all the AspectJ programs are written in Java with

some special AOP rules. AspectJ is a mature language used widely nowadays, but a

major problem is it requires recompiling the whole software if we need to introduce

some new aspects. In a big project, this process is very time-consuming and poten-

tially dangerous. There is another AOP implementation, called Aspectwerkz [2],

which does not require recompilation if new aspects need to be integrated. It uses a

deployment description file to specify the weaving details and it is very simple for

the programmers to use.

2.3.2 Application Response Measurement

ARM (Application Response Measurement) is an API (Application Programming

Interface) to capture vital information about transactions inside applications or mid-

dleware at runtime. A transaction is a set of method calls which completes a certain

function or action in the application. ARM is called before a transaction begins and

stopped when a transaction ends. This technique is repeated for every transaction

until the web application itself stops running. This API was implemented in C lan-

guage only, without support for Java before 2002. In 2003, the Open Group allowed

both C and Java bindings in ARM 4.0, which were compatible with each other.

When the application is running, each time a transaction is finished, ARM re-

ports the information collected to a software management system. However the

measurements about a transaction it supports are limited, including only response

10

time, running total time, and bytes transferred. Although this API provides many

built-in transaction analysis functions, the lack of other measurements limit further

analysis on application performance bottlenecks [20].

2.3.3 JavaSysMon

JavaSysMon is a simple API developed by J. Humble [9]. This tool is written in

Java, with a dynamic linked library written in C. It is a cross-platform tool and is

able to monitor different attributes of the operating system. This tool was devel-

oped because a Java application running on a virtual machine is unable to obtain

certain operating system measurements directly and quickly. Thus this API assists

Java programmers to monitor operating system conditions efficiently without high

overhead.

This API is still under development, and currently it captures values such as

uptime, CPU usage and information, total and free memory, as well as process

table information with ID, name, size, resident size, user time, and kernel time for

each process. The main advantage of this API is the low overhead compared to

other instrumentation tools, which is very important in long-running commercial

web applications.

11

Chapter 3

Methodology

When performance degradation happens to a web application, our tool is able to

detect the occurrence and analyze the cause of this performance problem using in-

formation at the method call level. If the cause lies in the web application itself,

our approach can locate the method of the web application that reveals this prob-

lem. In this section we describe the details of our web application performance

monitoring and diagnosis system. Our approach includes both offline and online

parts as shown in Figure 3.1 and Figure 3.2 respectively. In offline part we instru-

ment the execution time of every method when the web application is running. We

collect a number of normally running traces to mine patterns for trace abstraction

and build models for each pattern, which assist our performance degradation detec-

tion algorithm. The online part involves three phases: application instrumentation,

performance degradation detection, and cause diagnosis.

1. Application instrumentation: Each web application consists of a number of

method calls, and we abstract the method call trace into a set of patterns.

When a method call begins, we first detect whether it is the end of a pattern

we mined in offline stage. It yes, our instrumentation system starts to collect

information about the application running status and server environment pa-

rameters from four sensors: CPU usage, memory use, I/O rate, and request

rate. This information is passed to the next phase.

2. Performance degradation detection: When a pattern is found, the information

during the execution of this pattern is collected. The second phase makes a

12

Figure 3.1: Architecture of the Offline Stage

decision about whether performance degraded at the end of this pattern based

on the information collected. If the answer is yes, we proceed to the third

phase to categorize the cause of this performance problem. Otherwise we

continue monitoring the next method call.

3. Cause diagnosis: If a degradation is detected, the third phase determines the

category of this cause. This phase is also able to locate the method in the

source code that reveals the performance degradation. Administrators can

then use the suggested method as a starting point when debugging.

3.1 Offline Stage

Given that our instrumentation system is at the method-call level and the data col-

lected are affiliated with method calls, we need to organize and abstract the method

call sequence for further analysis. Otherwise the information will be too huge to

process in real-time. A very simple operation by the user, like adding a product to

cart, may lead to hundreds of method calls with each method call accompanied by

a piece of system information. Here, we segment the method call trace and find

some common patterns for abstraction. Next we select patterns, which are healthy

since no performance degradation is happening, and use these healthy patterns to

13

Figure 3.2: Architecture of the Online Stage

build a model of pattern execution status. When our system is running and detect-

ing performance problems in real-time, our system can determine the probability

of whether there is a performance degradation happening inside the current method

call trace pattern based on the built model.

3.1.1 Pattern Mining

In a complex commercial web application, the size of a method call trace is often

huge. In our test bed, which is built based on a demo pet store application, about

5,000 method calls are involved in a typical shopping process. As a result trace

abstraction is needed if we want to analyze the web application situation at the

method call level. During the last decade, a lot of research has been done on method

call trace segmentation [15, 27, 25, 30, 17]. The most commonly used approaches

14

are based on pattern selection. K. Sartipi et al. [25] used some machine learning

algorithms to select a set of most representative patterns, and used these patterns as

the basic unit to process in later analysis. In our tool, due to the speed and space

limitations, our algorithm must not be too complicated and be able to finish quickly.

The method call trace is a stack structure, which means if method A is called

before method B, method B must end before method A ends. There is no exception

on this calling sequence. Also, certain methods may be called repeatedly which is

usually caused by logical loops in the application source code. These loops cause

the trace file and the system information recorded at each method call to be large

and repeating. Thus there is a pre-processing step in our detection system to remove

redundant method calls caused by loops in the web application.

Each time a method is finished and recorded by the instrumentation system, in

order to check whether this is a repetitive method call we consider the k previous

method calls. As an example, suppose sequence “AA′BB′CC ′BB′” is the method

call trace so far, which we assume to contain no continuously repetitive method

calls. Here symbol “A” refers to the method entry, while symbol “A′” refers to the

method exit. If method A throws an exception, it is also labeled as “A′”. When

next method call occurs, we apply a repetitive string finder algorithm (Crochemore

[16]) on the recent calls trace to see if the incoming method call leads to a rep-

etition. If yes, e.g. the next method is “CC ′” or “BB′”, the repeated method

calls are composed as one instance with the number of repetitions labeled, such as

“AA′(BB′CC ′)2” or “AA′BB′CC ′(BB′)2”. Otherwise, e.g. the next method is

“A”, we do not have a repetition.

However, even if we group the repeated method calls as one instance, it is still

slow to collect performance information at every single method call. In our ex-

periment we find that some sensors like memory usage and free disk space are

very time consuming and even take longer time than some web application meth-

ods. This can increase the overhead on each instrumented method and slow down

the web application greatly. This is also a reason why approaches like Glassbox

use only a simple sensor like method execution time on each method call to detect

performance degradation. To reduce the overhead generated by multiple sensors,

15

we apply trace abstraction techniques on the method call trace, and detect web ap-

plication performance degradation based on each segment rather than each single

method call.

We show the pseudocode of our abstraction algorithm in Figure 3.3. At first,

to do trace pattern mining, we need a set of normal method call traces without

performance problems for training. Then we use a sliding window with different

sizes to scan the training traces. The maximum window size s is set to be 50 in our

experiment. The window size can differ but must be a even number because each

method consists of an entry/exit pair. For each fixed size window, we scan through

the whole method call trace. Every time we move the window one step forward we

will get a new subsequence, and this subsequence needs to pass a validation test to

be selected as a pattern. The validation rule is that the entry/exit pair for the same

method call must be found in the subsequence. That means, if method A’s entry

is in the subsequence, then method A’s exit must be in the subsequence too, and

vice versa. For example, segment “AA′BCC ′B′” is a valid segment, but segments

“ABB′CC ′D” and “AA′BCDD′” are not valid. This rule guarantees that each

subsequence is a separate unit and complete several functions. The whole method

call trace could be decomposed into these subsequences.

PatternMining(T , LENGTH, MAX SIZE) : PR
Input: A method call traces T , the length of trace LENGTH, a maximum sliding window size MAX SIZE
Output: a pattern repository PR

size = 2
pos = 0
while size <MAX SIZE do

while pos <LENGTH do
Run pattern validating algorithm
if T (pos : pos + size) is a valid pattern then

Add T (pos : pos + size) to RP
end ifpos = pos + 1

end while
size = size + 2

end while
return RP

Figure 3.3: Pattern Mining Pseudo Code

All the subsequences that follow these rules are picked offline and denoted as

patterns, and the patterns are stored in a pattern repository together with their nor-

mal execution time. We use these patterns as the basic units to handle rather than

the single method calls. When our application is running, at each method call we

16

first scan the pattern repository to see if this is the end of a pattern. If yes, we col-

lect the system information from all the four sensors, and then start the performance

degradation detection. Otherwise we skip this method call and continue. However,

the size of the pattern repository is usually too huge to handle if all the patterns are

saved, so we need to select the most common ones and remove the patterns that ap-

pear less than n times. In our experiment we set n to be 50. Here if two patterns are

almost the same except for some method repetitions, they will be recorded as the

same pattern in the pattern repository. For example, Figure 3.4 shows two patterns

with repetitions of “DEE ′D′”. These two patterns are defined as one pattern stored

in the pattern repository.

Figure 3.4: Example of two patterns with different numbers of repetitions

3.1.2 Pattern Modeling

As we discussed before, it is not a good idea to detect performance degradation

by only setting a single threshold on execution time. Because the execution time

distribution of each method varies greatly, the mean execution time per method

varies too. In Figure 3.5, we give an example of the execution time of method

calls under an injected performance degradation. At the beginning of this trace,

some methods take a very long time to finish, even when there is no performance

degradation there. These methods are time-consuming simply because of their task.

Thus in this example, a single threshold approach cannot detect the performance

degradation accurately.

17

Figure 3.5: Example Method Call Trace with Performance Degradation

Here we propose an idea of treating each method differently. To be more spe-

cific, we collect enough execution time data for each method separately, and use

this data to calculate the distribution parameters for each method, including mean

value, standard deviation, and frequency. To make the modeling step easier, we

assume that the method execution time distribution fits a Gaussian model. This as-

sumption is validated in an experiment in Chapter 4. The mean execution time and

standard deviation of method i are recorded as the Gaussian model parameters µi

and σi. The probability that method i take x seconds to finish, based on data col-

lected from a normally running system, is calculated by Formula 3.1. If we detect

performance degradation by setting a threshold on the probability, the problem of

using a threshold on absolute execution time is solved.

Pi(x) =
1√
2πσ2

i

e
−(x−µi)

2

2σ2
i (3.1)

Because the method call trace is abstracted into a set of patterns, we model

the patterns we mined rather than a single method. This is similar to method call

modeling, but the execution time is over a number of method calls. To be more

18

specific, in offline training if a pattern is detected in the method call trace, we record

the total time it takes to finish. If a pattern has repetitive loops, we use the average

execution time of loops instead of the total execution time of all the loops. When

all the patterns are saved in the pattern repository, the mean time and variance of

each pattern are calculated and saved. There are two major benefits of detecting

degradation based on the execution time of a pattern rather than a single method

call. First, the execution time of the patterns varies less, i.e., lower variance in the

Gaussian model than with method calls, which makes our approach more accurate.

Second, in this way we can reduce the time spent on detection significantly. For

example, if a pattern contains 20 method calls, we need to check for a performance

degradation only when the 20th method call ends. In this way, we save a lot of time

compared to running our detection algorithm at the end of every method call.

3.2 Online Stage

3.2.1 Application Instrumentation

In order to monitor the application performance at the method call level, the first

step is to instrument each method separately. Methods in the three web application

tiers usually function in different ways, which requires different instrumentation

techniques to collect the parameters and health measurements of different method

calls.

In this project we designed an instrumentation system for a typical J2EE web

application. Figure 3.6 shows the architecture of this system. At first a user request

initiated from the client side is sent to a web filter. We use a class RequestInstru-

mentation to collect the status of client requests. After that, the request is then pro-

cessed by Java servlets. In most recent Java web applications, servlets are usually

used in conjunction with JSP (Java Server Pages). Then the requests are forwarded

to application functions which are commonly implemented by EJB (Enterprise Jav-

aBean) components. Here, some methods may need to query data stored in the

application database, so a DAO (Data Access Object) method is involved. These

steps use similar Java standards and can be instrumented by one class, which we

19

name JavaInstrumentation. If a database is involved, we need another class Databa-

seInstrumentation to record the database queries made. Because most databases are

stored in certain files on the server and require I/O operations to read, this class

will also monitor the related files. All these instrumentation classes also record the

sensor measurements during the method execution phase.

Figure 3.6: Instrumentation System Architecture

When the web application is running, at each method call, the server workload

and method execution status are recorded by our instrumentation system with the

details transferred to the detection phase for further analysis. Each method call is

actually recorded as an entry/exit pair, and measurements are recorded separately

for CPU usage, memory usage, total I/O operation number, and received request

number. Note that CPU usage is actually a time-based statistic, which means that

only the average CPU usage over a very short time can be estimated rather than

the CPU usage at a certain time point. For example, the CPU usage from time A

to time B is calculated using Formula 3.2. In this formula, “WorkingTime” refers

to the time that the CPU spent in the busy state since the server was booted, and

“TotalTime” refers to the time that the CPU spent in both busy and idle states.

However, it is impossible to acquire the exact CPU usage at time A or B.

CPU usage =
WorkingT ime(B)−WorkingT ime(A)

TotalT ime(B)− TotalT ime(A)
(3.2)

Also, the execution time of each method is defined to be only the time spent in

the method excluding the time for all the sub-methods called by this method. For

example, suppose method B and method C are called by method A, which results

20

in a sequence as shown in Figure 3.7. When we need to calculate the execution

time tA of method A, we will have equation tA = (Ex(A)−En(A))− (Ex(B)−
En(B)) − (Ex(C) − Ex(C)). Here En refers to the time when a method starts

and Ex refers to the time when a method ends. We exclude the running time of the

called methods to pinpoint performance problems for each method more precisely.

Figure 3.7: Method Call Sequence Example

As an example, Figure 3.8 is an excerpt of our recorded method call trace with

sensor information. The trace is logged based on time series, and system informa-

tion is captured at the exact point when a method entry or exit happens. Contents

separated by colons from left to right at each line are: method call number, pro-

gramming language, method name, start (for method entry) or stop (for method

exit), system time (millisecond), time used to finish a method (millisecond), free

memory, CPU usage, received request number, and total I/O operation number.

Here the sample trace is used to represent what our instrumentation system logs.

Given that our performance monitoring tool is running in real time, to speed up

processing and save space, this information is transmitted directly to the diagnosis

phase without logging.

3.2.2 Performance Degradation Detection

In order to decide whether performance degradation is happening, a system is

needed to detect with high precision and recall based on the observation of server

measurements captured by the instrumentation. This is also the prerequisite for di-

agnosing the application performance problem in the third phase. However, this is

a difficult task given that application performance is affected by numerous factors

which cannot be monitored completely. We use different metrics to evaluate the

21

1 28:JAVA:com.ibatis.jpetstore.service.CatalogService.getCategory
:START:1323905835835:0:646520832:0.48387098:12:31

2 29:JAVA:com.ibatis.jpetstore.persistence.sqlmapdao.
CategorySqlMapDao.getCategory:START
:1323905835839:0:646520832:1.0:12:31

3 30:JAVA:com.ibatis.jpetstore.domain.Category.setCategoryId:
START:1323905835889:0:646447104:0.8387097:12:37

4 30:JAVA:com.ibatis.jpetstore.domain.Category.setCategoryId:STOP
:1323905835892:3:646447104:0.8387097:12:37

5 31:JAVA:com.ibatis.jpetstore.domain.Category.setName:START
:1323905835895:0:646447104:0.8387097:12:37

6 31:JAVA:com.ibatis.jpetstore.domain.Category.setName:STOP
:1323905835896:1:646447104:0.8387097:12:37

7 32:JAVA:com.ibatis.jpetstore.domain.Category.setDescription:
START:1323905835899:0:646447104:0.5:12:37

8 32:JAVA:com.ibatis.jpetstore.domain.Category.setDescription:
STOP:1323905835901:2:646447104:0.5:12:37

9 29:JAVA:com.ibatis.jpetstore.persistence.sqlmapdao.
CategorySqlMapDao.getCategory:STOP
:1323905835903:64:646447104:0.5:12:37

10 28:JAVA:com.ibatis.jpetstore.service.CatalogService.getCategory
:STOP:1323905835906:71:646406144:0.5:12:37

Figure 3.8: Excerpt of Our Recorded Method Call Trace

running status of an application, but according to Tealeaf Technology’s white paper

[28], method execution time is the most direct and reliable one to detect perfor-

mance degradation due to the causes we list in Section 2.2. In this thesis, the other

metrics are only used for the diagnosis phase.

As we described in Section 2, the approach used by Glassbox simply set a sin-

gle threshold on the method execution time to decide whether there is a problem

within the application. However, due to the variety of the causes on the client side

that might trigger a slow response, it is extremely difficult to decide if it is a perfor-

mance degradation on the server that leads to this slow response or some other cause

like internet connection failure. Also, based on our experiments we find that exe-

cution times of different methods vary greatly. For example, the average execution

time of method getProductListByCategory in class ProductSqlMapDao is 227.8ms,

while the average execution time of method getItemList in class CatalogBean is

only 2.67ms. So obviously one cannot set a single threshold on method execution

time to detect whether there is a performance degradation. Here we designed an

improved approach for performance degradation detection. The data flow chart of

22

this phase is shown in Figure 3.9.

Figure 3.9: Data Flow of Performance Degradation Detection

Our instrumentation system records information about server status when each

pattern ends, and then passes the data collected into the detection phase. We use

the pattern repository and the Gaussian models created in the offline stage to de-

tect unknown performance degradation in the online stage. When the application

is running, our instrumentation tool will capture each method entry and exit in se-

quence. A pattern must be end with a method exit. When a method exit is captured

by the instrumentation system, we search for the longest length match to the pat-

terns in the repository. The longest length match searching process continues until a

matched pattern is found, or there is no matches in the repository. If we cannot find

a matched pattern, the method call is treated as a one-method pattern. Next we use

the Gaussian model of the recognized pattern to calculate the probability that the

execution time is normal. If the probability is greater than the threshold we set, this

pattern is considered to be running normally. Otherwise, an alert will be presented

which indicates there is a performance degradation suspected.

However, there is a problem about outliers of performance which is unpre-

dictable in most cases. Even when the server is running in the best health condition,

some methods might suddenly take much longer time than average to finish. The

potential reasons vary and are difficult to predict, such as a transient network delay

or a bad block on disk. The duration of this type of problem is usually only over

1 or 2 method calls. Compared to a performance degradation, which usually lasts

for a longer period, we call transient cases as outliers. To solve this problem and

improve the result, we use a filter to select the real performance degradation only.

This filter is similar to the idea of median filtering in the signal processing area. In

this thesis, the signal is a method call trace, while the signal value is the probability

23

of whether the current pattern execution time is normal. Each probability of the

method call trace is recalculated as shown in Formula 3.3. Before we report the

final probability of method i, we check if the probability is obviously deviated from

the mean probability from method i − k to method i + k. We set k to be 5 in our

experiments, and the deviation threshold is decided by α which we set to be 0.4. If

P (i) is obviously deviated, we claim this is a outlier and replace the probability by

the mean probabilities of 2k + 1 methods. Otherwise we do no adjustment. This

filter is capable of specifically removing the outliers.

P (i) =





1
2k+1

i+k∑

j=i−k

P (j) , |P (i)− 1
2k+1

i+k∑

j=i−k

P (j)| > α

P (i) , |P (i)− 1
2k+1

i+k∑

j=i−k

P (j)| < α

(3.3)

3.2.3 Performance Degradation Diagnosis

If a performance degradation is detected and confirmed in the detection phase, the

next step is to diagnose and identify the potential cause. However, this task involves

system administrators in most web application monitoring tools. These tools only

display the collected system data on a dashboard, but it is up to human operators to

analyze and locate the cause. This is understandable because a lot of reasons can

lead to performance degradation. It is extremely difficult to locate all the potential

causes we listed in Section 2.2 and other uncertain causes with one general diag-

nosis system. In this case most researchers focus on certain types of performance

problems, or use expert knowledge to diagnose these problems. In our research we

set four different sensors on CPU usage, memory usage, I/O rate, and request rate

to diagnose the following four causes: low CPU resource, low memory resource,

high I/O rate, and high request rate. Our approach can locate the type of cause using

information at the method call level, but only for the performance problems caused

by the web application itself. Figure 3.10 illustrates the detailed steps to diagnose a

confirmed performance degradation.

If performance degradation is detected in detection phase, we use the four sen-

24

Figure 3.10: Degradation Diagnosis Framework

sors to classify the cause and the method where the degradation occurred. This

method might suggest the real cause. If all the potential causes can not be con-

firmed based on the sensors we use, this problem is categorized as a undefined

performance degradation and is left to the administrator. The details of each step

will be described in the following sections.

Cause Classification

It is stated in Section 2.2 that a performance degradation can be caused by various

reasons, such as problems in program logic, resources, hardware, or the network.

All these causes have different performance effects on the server and require differ-

ent approaches to determine, but on the client side they all appear to be the same

symptom: it takes longer time to get a response from the server, even leading to a

failure. We can determine whether there is some performance degradation based on

method execution time. However, for performance degradation diagnosis, the ex-

25

ecution time of each method call is not enough and we need assistance from other

sensors on crucial system attributes. The relationship between each system attribute

is difficult to model. Thus we need to deal each sensor data separately. In our ex-

periment we use four different sensors on CPU usage, memory usage, I/O rate,

and request rate, aiming at the causes related to low CPU resource, low memory

resource, high I/O rate and high request rate respectively.

Unlike method execution time, the state of resources such as CPU or memory

may vary greatly depending on the time of day and the server condition. Thus we

can not apply the same statistical strategy in the detection phase here. Instead of

training models of system information offline, we use this information at runtime

to determine the type of causes (see the pseudo code in Figure 3.11). First we

consider the sensor data for the previous t pattern occurrences, and calculate the

average sensor value over these t patterns. Next for each type of sensor, we compare

the current value to the average value in this window. If the difference exceeds a

threshold we set based on expert knowledge, we suggest a potential corresponding

cause (e.g., low CPU resource for an exceeding CPU usage value).

We use this sliding window strategy to determine the type of cause because there

is not an absolute expected value of each sensor. For example, in our experiment,

we find that a web application might be working normally with 100 simultaneous

requests, but can slow down when only 50 simultaneous requests are received. So

we use the difference between the current value and recent values. Also, perfor-

mance degradation might be caused by multiple reasons. For example, simultane-

ous request traffic may also lead to a low CPU resource symptom, so we check all

the sensors.

Locating the Problem

Here, as a starting point to locate the root cause of the performance problem, we

consider the method that revealed the performance degradation. The most direct

way is to consider the method called at the time when performance degradation

was detected. However, sometimes there is a delay between the time when the

most suggestively problematic method is executed and the time when a performance

26

CauseClassification(cpu1,2,...,N , mem1,2,...,N , io1,2,...,N , rr1,2,...,N ,cpuN+1, memN+1, ioN+1,
rrN+1):V (P, C)
Input: Saved system state including CPU usage cpu, memory usage mem, IO rate io, and request rate rr from pattern P1

to PN , system state of pattern PN+1 including cpuN+1, memN+1, ioN+1, and rrN+1

Output: array V (P, C), P is the set of patterns and C is a 4-bit vector indicating the cause classification result

mean cpu = 1
N

N∑

j=1

cpuj

mean memory = 1
N

N∑

j=1

memj

mean io = 1
N

N∑

j=1

ioj

mean rr = 1
N

N∑

j=1

rrj

if |cpuN+1 −mean cpu| > THRES CPU then
V (N + 1, 1) = 1

else
V (N + 1, 1) = 0

end if
if |memN+1 −mean memory| > THRES MEM then

V (N + 1, 2) = 1
else

V (N + 1, 2) = 0
end if
if |ioN+1 −mean io| > THRES IO then

V (N + 1, 3) = 1
else

V (N + 1, 3) = 0
end if
if |rrN+1 −mean rr| > THRES RR then

V (N + 1, 4) = 1
else

V (N + 1, 4) = 0
end if
if application is running then

CauseClassification(cpu2,3,...,N+1, mem2,3,...,N+1, cpuN+2, memN+2, ioN+2, rrN+2)
else

return V
end if

Figure 3.11: Cause Classification Pseudo Code

degradation is detected. For example, a performance degradation may be detected

after method A, but could be due to numerous I/O operations in method B which

executed 10ms before method A. One reason is the pattern-based approach: we

typically check for a degradation after a number of method calls, not after each

one. To address this issue, when a performance degradation is detected at method

M , we list all the r methods happening before M together with M as suspicious

methods. In our experiment we set r = 20. Next time if a similar degradation

happens, i.e., with the same type of cause inside the web application, we list these

r + 1 suspicious methods again for the suspicious methods list. For any further

similar degradations we order the suspicious methods by frequency and suggest the

27

top ones as the method to start looking for the cause.

The parameters used in our approaches are listed in Table 3.1.

Table 3.1: Parameters Used in Our Approach

Parameter Value used in the experiment
Maximum Pattern Size s 50

Pattern Occurrence Times Threshold n 50
Probability Threshold in Detection Phase p 0.1

Outlier Filter Deviation Threshold α 0.4
Outlier Filter Sliding Window Size k 5

Cause Classification Sliding Window Size t 10
CPU Usage Threshold THRES CPU 0.3

Memory Usage Threshold THRES MEM 0.2
I/O Rate Threshold THRES IO 5.0

Request Rate Threshold THRES RR 0.1
Method Location List Size r 20

28

Chapter 4

Evaluation

In the last few sections we described our framework on detecting and diagnos-

ing web application performance degradation, and here we evaluate our approach

against some approaches like Glassbox to see the effectiveness of our approach.

In this chapter we first introduce the web application selected for testing and the

implementation of the sensors. Then we illustrate how we inject performance prob-

lems into the web application for evaluation in our experiment. Next we describe

the details of the evaluation design and conclude with results.

4.1 Test Bed

In our experiment, we choose a popular sample Java pet store application which was

developed by the Java BluePrints program at Sun Microsystems. This application

is designed to illustrate the functions Java Enterprise Edition 5 has, and also gives

an example on how to design, compile, build, and run an e-commerce application.

It implements web-based pet store shopping system, which contains functions in-

cluding pet category browsing, user registration, logging in, shopping cart, specific

pet search, check out, and retrieving shopping history. Here the version of the ap-

plication we used is iBatis JPetStore 4 [7], which has 255 functional methods in

the source code and uses a Derby database [10] to store product information. We

choose this application based on the following reasons. First, this application is

easy to compile and is built on Tomcat, a very stable web server [14]. It also means

less conflicts and bugs when instrumenting this application using AOP techniques.

29

Secondly, the database of this application is open source, which means it is possible

to inject problems into the full source code and recompile it. Finally, although this

is a sample application, almost all the functions needed in real world e-commerce

applications are well implemented in JPetStore and thus can mimic a real world

scenario. This application is built and run on an Apache Tomcat Server (Pentium

4, 1 GB memory, 60 GB disk space). We can run this application repeatedly (reini-

tialization is also includeed) to set up different experiments.

4.2 Instrumentation

In this thesis we use Aspectwekrz [2] as our instrumentation tool. As we introduced

in Section 2.3.1, Aspectwerkz is an implementation of AOP framework using Java.

The most important feature of Aspectwerkz is that it does not need to re-compile

the source code to add extra monitoring code. The monitoring code is embedded

into an existing application through a deployment description file, so it is simple

and clear for administrators to manage the monitored application. The deployment

description file is based on XML schema and easy to understand. An example of

our deployment file is given in Figure 4.1. The detailed information of each method

execution is recorded in real-time, including system time spent, user time spent,

total time spent, memory usage, CPU usage, I/O rate and request rate. Then this

information is used for further analysis.

We use four sensors in this experiment, which are monitoring CPU usage, mem-

ory usage, I/O rate, and request rate. Because our instrumentation architecture is

built on Aspectwerkz, all the sensors must be implemented in Java. Also the JPet-

Store application we used was written and built in 2003, when J2SE 5.0 was not

available. Thus our test bed is built on J2SE 1.4, which means a lot of monitoring

functions in J2SE 5 and 6 can not be used. However, there are alternative ways to

set up the sensors for the test bed.

30

1 <!DOCTYPE aspectwerkz PUBLIC
2 "-//AspectWerkz//DTD//EN"
3 "http://aspectwerkz.codehaus.org/dtd/aspectwerkz.dtd">
4

5 <aspectwerkz>
6 <system id="webapp">
7 <aspect class="com.infosys.setlabs.j2ee.performance.

instrumentation.InstrumentJavaAdvice">
8 <pointcut name="allPublic" expression="execution(public

* *..*.*(..)) AND within(com.ibatis.jpetstore..*)
"/>

9 <advice name="trace" type="around" bind-to="
allPublic"/>

10 </aspect>
11 </system>
12 </aspectwerkz>

Figure 4.1: A sample Aspectwerkz deployment description file

4.2.1 CPU Usage

CPU usage is calculated over a short time interval, not for a single instant. It is the

percentage of CPU time spent on processing computer programs within the total

elapsed real time, which includes both the CPU busy time and CPU idle time. A

typical modern CPU may work in three modes: user mode, kernel mode, and idle

mode. To calculate the CPU usage from time A to time B, we first need to know

the total time CPU has spent on all these three modes at time A and B. Then CPU

usage from A to B is calculated as Formula 4.1. Here UT refers to time spent in

user mode, KT refers to time spent in kernel mode, and IT refers to time spent in

idle mode. If the CPU usage of a specific process is wanted, then we need to know

the CPU time spent for that process in user mode and kernel mode.

CPU usage =
(UT (B) + KT (B))− (UT (A) + KT (A))

(UT (B) + KT (B) + IT (B))− (UT (A) + KT (A) + IT (A))
(4.1)

Now the problem is how to get the CPU time spent in user mode, kernel mode,

and idle mode. Unfortunately, it is impossible to get this information using pure

Java 1.4 because there is no API to provide such functions. Two alternative ap-

proaches can be used to solve this problem. The first approach is to use the exec()

31

method in the Runtime Java class to call an external, platform-specific command

like wmic on the Windows OS, and parse its output to get the information we need.

This approach takes about 500ms to execute the wmic command and parse the out-

put, which is too slow for our needs. Thus we use the second alternative approach

in our experiment: integrate a segment of C code that implements these functions

into our Java project via Java Native Interface (JNI). The API, called JavaSysMon,

which we introduced in Section 2.3.3 already implements this function, which runs

in 1ms, a very low overhead. We use this API in our test bed for CPU usage instru-

mentation.

4.2.2 Memory Usage

In Java, it is easy to know the free memory using the method freeMemory() in

the Runtime class. However, it is the amount of free memory in the Java virtual

machine only. If we want to know the total free memory in the operating system,

this approach is not viable. Here we use JavaSysMon again to get the information

we need. This API also provides a function to obtain the process table with the

memory in bytes each process takes.

4.2.3 I/O Rate

The I/O operation number can be recorded by the AOP technique. In our exper-

iment, we use an additional Aspectwerkz class to monitor all the methods in the

Java I/O class. Every time an I/O related method is executed, the number of I/O op-

erations is increased. Then we use the total I/O operation number to calculate I/O

rate as Formula 4.2. Here Nk and Tk refer to the total number of file I/O operations

detected and the system time when pattern k ends respectively.

IO Ratek =
Nk −Nk−1

Tk − Tk−1

(4.2)

4.2.4 Request Rate

There are a lot of ways to capture the requests sent to the server from the client side.

One way is to analyze network packets like Wireshark [12]. This approach is able

32

to cover every event happening on the network, but it is difficult to integrate with

our instrumentation system. Another approach is to add a listener on each servlet

of the web application, but this requires modifying all the related JSP and servlet

source code. Here we use the Apache server access log to capture the information of

received user requests for JPetStore. A sample fragment of access log file is shown

in Figure 4.2. The items listed from left to right on each line are: IP address of the

client which sends the request to the server, date the server recieved the request, the

method used by the client, the resource requested by the client, the protocol used

by the client, the status code that the server sends back to the client, and the size of

the object returned to the client.

1 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /
JPetStoreApp/ HTTP/1.1" 200 1488

2 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /
JPetStoreApp/images/bkg-topbar.gif HTTP/1.1" 200 959

3 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /
JPetStoreApp/images/sign-in.gif HTTP/1.1" 200 257

4 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /
JPetStoreApp/images/help.gif HTTP/1.1" 200 134

5 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /
JPetStoreApp/images/cart.gif HTTP/1.1" 200 96

6 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /
JPetStoreApp/images/separator.gif HTTP/1.1" 200 46

7 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /
JPetStoreApp/images/search.gif HTTP/1.1" 200 323

8 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /
JPetStoreApp/images/logo-topbar.gif HTTP/1.1" 200 3808

9 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /
JPetStoreApp/images/poweredby.gif HTTP/1.1" 200 2722

10 142.244.142.60 - - [14/Dec/2011:16:34:43 -0700] "GET /favicon.
ico HTTP/1.1" 200 21630

11 142.244.142.60 - - [14/Dec/2011:16:34:47 -0700] "GET /
JPetStoreApp/shop/index.shtml HTTP/1.1" 500 3854

Figure 4.2: A Sample Access Log Recorded by Tomcat

Every time a request is sent to the server, an additional record of information

about this request is added to the access log in one line. We track this access log file

and report a new request when a new line in the file is found. In this way the number

of requests sent to the server is well monitored. Because we do not parse the log,

this approach does not bring too much overhead. In this way the total number of

requests received is acquired, and the request rate can be calculated by Formula 4.3.

33

Here Rk and Tk refer to the total number of requests received and the system time

when pattern k ends respectively.

Request Ratek =
Rk −Rk−1

Tk − Tk−1

(4.3)

4.3 Performance Degradation Injection

Because of the lack of real-world data, we need to inject performance problems

into the test bed manually in order to test our system. There are a lot of potential

causes that could lead to a performance degradation, and in this thesis we simulate

four common cases of performance problems: low CPU resource, low memory

resource, high I/O rate, and high request rate.

To simulate the low CPU resource scenario, we use an open source tool called

CPUKiller [4] which can slow down other processes by adjusting its CPU usage

by any percentage. This tool runs a high-priority program which takes most of the

CPU resource to slow down other applications running on the same machine. This

tool can be used to generate a high CPU load for the application server machine.

However, we need to manually set its CPU usage, which limits our ability to auto-

mate the injection process. Also the algorithm it uses to generate a high CPU load

is not revealed. To inject low CPU resource problems to affect the web applica-

tion directly, we insert the code of a complex graphic algorithm which is able to

completely consume CPU usage.

For low memory resource and high I/O rate problems, there are a lot of ways to

create a shortage of the resource over a short time. For the low memory resource

problem, we use a short segment of zip compression code to consume the memory.

The number of zipping loops can be used to adjust the duration of memory con-

sumption, and this segment of code can be running either inside or outside the web

application. For the high I/O rate problem, we use a segment of Java code which

contains looping file I/O operations to simulate this scenario. Also the number of

loops can be used to determine the I/O rate.

For the high request rate problem, we use AB (Apache Benchmark) [1] which

34

is an open-source software provided by Apache Software Foundation. This tool is

originally designed for benchmarking the Apache HTTP (Hypertext Transfer Proto-

col) server, with statistics showing how your server performs when the client num-

ber increases. For example, when an Apache application is running on the server,

we can use Apache Benchmark to send 1000 requests by 10 times using command

“ab -n 1000 -c 100 http://142.244.142.54/JPetStoreApp/shop/index.shtml”. Here

option ’-n’ indicates the number of requests totally, while option ’-c’ indicates the

number of requests to perform at a time. There are also some other options to

control advanced testing, but in this thesis we use this example to simulate a high

request rate scenario. After this command is executed, some information is dis-

played to help administrators to understand the capacity of users an application

could serve, such as the time taken for this test, the transfer rate, and the percentage

of the requests served within a certain time. However, in this thesis we only use

this tool as a trigger of concurrent multiple user requests to JPetStore on the server

from another machine.

There are many factors in the human operations from the client side that may

affect the response time from the server. In order to test the improvement and

overhead of our approach, we need to conduct our experiment in a repeatable way.

In this project, we use a load generator called Sahi [11]. Sahi is an open source

automation tool to test web applications, developed by Tyto Software. Sahi can

record the user operations on a website into a script, and then replay the script

repeatedly to reproduce the actions. Also a user can write his own script based on

its scripting rules. There are two reasons we choose Sahi as our automation testing

tool. First, it is written and built in Java, and can be easily integrated into our

system. Secondly, Sahi is easy to get started with and provides all the functions we

need to test our approach, such as script playback, looping, and timing. The sample

script we used to test system overhead in this experiment is shown in Figure 4.3.

35

1 _click(_link("Enter the Store"));
2 for (var $i=0; $i<50; $i++){
3 _click(_image("sign-in.gif"));
4 _setValue(_textbox("username"), "admin3");
5 _setValue(_textbox("username"), "admin3");
6 _setValue(_textbox("username"), "admin4");
7 _setValue(_password("password"), "adminadmin");
8 _click(_imageSubmitButton("button_submit.gif"));
9 _click(_image("fish_icon.gif"));

10 _click(_link("FI-SW-01"));
11 _click(_link("EST-2"));
12 _click(_image("button_add_to_cart.gif"));
13 _click(_link("Golden Retriever"));
14 _click(_link("EST-28"));
15 _click(_image("button_add_to_cart.gif"));
16 _setValue(_textbox("EST-28"), "3");
17 _click(_imageSubmitButton("update"));
18 _setValue(_textbox("keyword"), "poodle");
19 _click(_imageSubmitButton("search.gif"));
20 _click(_link("Cute dog from France"));
21 _click(_link("EST-8"));
22 _click(_image("button_add_to_cart.gif"));
23 _click(_image("button_remove.gif"));
24 _click(_image("button_checkout.gif"));
25 _click(_image("button_continue.gif"));
26 _setValue(_textbox("order.creditCard"), "1234 5678 8765 4321");
27 _click(_imageSubmitButton("button_submit.gif"));
28 _click(_image("button_continue.gif"));
29 _click(_image("my_account.gif"));
30 _click(_image("sign-out.gif"));
31 }

Figure 4.3: The Sahi Script Used to Test System Overhead

4.4 Analysis of Results

In order to evaluate our approach against an existing approach used by Glassbox on

performance degradation detection, we conduct an experiment on the JPetStore web

application. As described in Section 3, our approach needs an offline training step.

So at first, we write 10 different Sahi scripts and run these scripts on an instrumented

JPetStore application normally, where no performance problems are injected. Each

script is executed 5 times, resulting in around 75,000 method execution records with

over 255 different methods in total. Then we select around the 6,000 most frequent

patterns into a pattern repository by our pattern mining algorithm as described in

Chapter 3. For each pattern we calculate a Gaussian model based on the pattern

36

execution time. In this experiment, only patterns that occur more than 50 times are

selected for the pattern repository.

We use four scripts to test our detection algorithm, with each script correspond-

ing to one type of performance problem. Performance problems are injected at ran-

dom times when the application is running. Each time a method returns, our system

scans the pattern repository to see if there is a matched pattern. If yes, then we use

the trained pattern model to calculate the probability that a performance degrada-

tion has happened. To simulate the simple detection method used by Glassbox, we

alert whenever the execution time of one method exceeds a predefined threshold of

500ms.

To test the diagnosis phase, we use the same four scripts from the detection

phase. However, for low CPU resource, low memory resource, and high I/O rate

problems, we make additional runs on a recompiled web application version with

faults injected at certain methods. Each time the faulty method is executed, the

injected problem will be triggered.

4.4.1 Time Overhead

Our performance monitoring tool works continuously at runtime, which means the

instrumentation, detection and diagnosis parts of our system are all attached to the

web application. Whenever a method is executed, information is collected for its

execution time, and more system information is consulted during diagnosis. Thus,

we evaluate the time overhead of our performance monitoring system to make sure

it does not slow down the web application greatly.

The metric we used to evaluate the overhead is the running time of the web ap-

plication on the client side. In this experiment we repeatedly run a Sahi script to

simulate a shopping scenario, in order to accurately calculate the time it takes to

finish. At first, we run the script on the pure application without the instrumenta-

tion or detection system. Next, we activate our instrumentation system to test the

overhead brought by each sensor. Finally, we activate our online detection and di-

agnosis system to test the total overhead of our tool. The Sahi script we use is the

one in Figure 4.3, and the result is recorded in Table 4.1.

37

Table 4.1: System Overhead

1 turn(s) 5 turns(s) 20 turns(s) 50 turns(s)
Pure application 18 55 223 596

Instrument on CPU 18 53 217 603
Instrument on memory 21 74 303 787
Instrument on I/O rate 17 55 210 600

Instrument on request rate 17 54 212 580
Full Instrumentation 21 68 264 725

Complete system 22 70 280 723

From this table, we see the overhead brought by our system is not too much.

Even when all the functions are running in real-time, the execution time of the Sahi

script is only increased by 21% based on the 50 turns data. Also we find that the

major additional overhead is due to the memory sensor only. The overhead brought

by detection and diagnosis is insignificant. Thus it is feasible to apply this system on

commercial web applications. However, due to the limitations in this experiment,

it is still not tested if the response time will have more overhead when there are a

large number of users connected simultaneously, which is a very common case in

most commercial web applications.

4.4.2 Performance Degradation Detection

As we described before, our performance degradation detection system works based

on the execution time of each method. Thus it is important to know whether the ex-

ecution time of each method is stable. That is, a method’s execution time does

not vary greatly depending on the system and time under normal situations. In the

methodology, we assume that the execution time of a method call fits in a normal

distribution without large variance. In this experiment, We run the JPetStore appli-

cation under different system conditions at different times, and collect the execution

time of each method to see whether the execution time varies greatly. For example,

consider a method from all the 255 methods, occurring at three different times of

day for 624 calls in total, with a distribution histogram of execution times as shown

in Figure 4.4. We can see the execution time of this method is basically a nor-

38

mal distribution, which supports our assumption in the methodology part. We also

checked other methods and about 90% of them fit a normal distribution in a normal-

ity test with significance level 0.1. This result makes our assumption on execution

time more valid.

Figure 4.4: Distribution of a Method Call Execution Time

Next, we evaluate the detection phase of our approach. First we give an intuitive

example comparing our approach against a fixed time threshold. We inject two per-

formance problems (a low CPU resource problem and a high request rate problem)

into the web application, and the time when performance degradation happens and

ends are given in Figure 4.5(a). Also we plot the execution time of each method

in Figure 4.5(a). Consecutive method calls appear on the horizonal axis. When the

web application is running normally, the execution time of some methods can be

extremely high, like the first few methods in the method call trace which even ex-

ceed 4000ms. At the same time, when the degradation happens, some methods can

still be finished very fast. This tricky situation makes a single time threshold ap-

proach unable to detect performance degradation accurately. For 306ms, the single

threshold leading to highest precision, we get the detection result in Figure 4.5(b).

39

There are a couple of false positives and many false negatives.

However, the dividing line between slow server and normally running server

can be very clear by our approach, which is based on the Gaussian model of each

method or pattern rather than a simple threshold. In Figure 4.5(c) we give the cal-

culated probability that a method is running in a normal situation. We can see when

performance degradation happens, there is an obvious decrease in the probability.

The detection result of our approach is shown in Figure 4.5(d). Here we present an

alert of performance degradation when the probability is below 0.1. Compared to

the time threshold approach, our probability-based approach is more accurate, with

both high precision and recall.

In order to validate our result in terms of precision and recall, we extend this

experiment to all the four performance problem types we consider. Because our

framework detects and diagnoses performance degradations using information at

the method call level, the precision and recall are evaluated based on the number

of method calls. For example, if a method finishes under a low performance condi-

tion and is detected by our approach, this is called a true positive instance. On the

contrary, if a method finishes under normal conditions and our approach claims it

is running normally, this is called a true negative instance. In Table 4.2 we compare

our approach against a time threshold based approach on all four types of perfor-

mance degradation in terms of precision and recall.

Table 4.2: Our Approach Against Traditional Approach on Performance Degrada-
tion Detection

Time Threshold Approach Our Approach
Precision Recall Precision Recall

low CPU resource 56.2% 21.0% 76.3% 67.2%
low memory resource 31.9% 34.2% 84.8% 83.7%

high I/O rate 91.5% 94.7% 95.7% 98.2%
high request rate 47.8% 10.8% 80.5% 89.3%

From this table we can see our approach outperforms the single time thresh-

old approach on every injected problem, especially in terms of recall. For the high

request rate problem we injected, the recall of the single time threshold approach

40

Figure 4.5: An Intuitive Performance Degradation Detection Experiment Result

41

is only 10.8%. The reason is obvious: when the web application performance is

degraded, in most cases the execution time of each method call is increased propor-

tionally rather than increased by a certain amount of time. For example, when 10

simultaneous requests are sent to the web application and all need the same method

to process, the response time of this method might increase from 5ms to 50ms.

This case is defined as a performance degradation, but the execution time of this

method still does not reach the threshold set by administrator, typically 300ms. As

a result, a large number of performance degradation cases are missed by the single

time threshold approach, which leads to the low recall shown in Table 4.2. Similar

things happen for the low CPU resource and low memory resource cases. The only

exception is high I/O rate problem. Both the time threshold approach and our ap-

proach have high precision and recall. It is because when disk is full, the execution

time of each method increases sharply. We find that it takes more than 500ms to

finish for almost every single method when massive I/O operations happen. Thus

it is a easy case for both approaches to detect accurately. On the other hand, for

our approach we find that the result of low CPU resource detection is slightly worse

than the other three cases. This result somehow indicates that the method execution

time increment caused by low CPU resource may not be as significant as the other

three problems.

4.4.3 Performance Degradation Diagnosis

In this part, we test our performance degradation diagnosis system. First, we eval-

uate the accuracy of categorizing all the four causes of performance problems we

inject in this experiment. Next we test our approach on locating the injected method

in the source code that best suggest the problem. We set k = 20 which means 20

previous method calls are suspected together with the current method call when the

degradation was noticed. After the performance degradation is reported for 5 times,

we collect the suspicious method calls involved and rank them by frequency. The

results are shown in Table 4.3.

From this table we find the overall performance of our approach is effective on

categorizing the cause, all the four injected problems can be classified with accuracy

42

Table 4.3: Performance Degradation Diagnosis Results

Categorizing Cause Locating Method
Low CPU resource 90.0% Rank 1(5 methods)

Low Memory resource 82.8% Rank 1(8 methods)
High I/O rate 87.5% Rank 1(1 method)

High request rate 100% N/A

over 80%. Specifically, all 27 methods with injected high request rate problems are

correctly classified. This result should be attributed to the obvious increment on the

number of requests when using Apache Benchmark for simulating simultaneous

request traffic. In the method location part, we find that for all the three cases, the

injected method is identified as the most suspicious. For low CPU and low memory

resource problems, there are other methods equally suspicious, which means the

administrator needs to check all these methods to find where the problem might lie.

In the high I/O rate case, the injected faulty method is precisely ordered as the only

suspicious method. We do not currently inject a high request rate problem into the

methods of the web application, so the result about method location for this type of

problem is not available.

4.5 Limitations and Threats to Validity

Some limitations of this work are:

1. Currently our sensors are still not enough to cover all the potential perfor-

mance degradation causes. The sensors are all built based on Windows using

Java, and it remains for future work to validate how they work when we apply

our approach on web applications in other languages and platforms.

2. In performance degradation detection phase, we use method execution time

as the only criteria. We believe the result can be further improved if some

other sensor data can also be applied.

3. Our method location algorithm in diagnosis requires performance degrada-

tions to recur. The more times the degradation happens, the better our result

43

will be. Thus it becomes another question about how to locate the method

when performance degradation first appears.

4. We lack the statistical study on the distribution of execution time over dif-

ferent methods. Execution time of certain methods such as database query

operations may not fit the Gaussian distribution.

5. Our test bed is built on a sample pet store application, which is compiled

using Java 1.4. How our approach works on a modern real world enterprise

web application is still not validated.

Threats to the validity of the experimental results are as follows:

1. Due to the limitation of the number of clients, we can not simulate a real

world enterprise web application, which usually has a lot of simultaneous

clients connected. Also our computer, which runs the web application, is not

as powerful as a commercial server. Thus the performance measurements

might be different from the real world.

2. In the experiment we decide the value of certain parameters. The effect of

these values on the results is not studied yet. It remains a question about how

to decide the optimal parameters for detection and diagnosis.

3. Our injected problems in the evaluation are possibly too direct and easy to

observe. Also, some complicated scenarios with multiple causes are not sim-

ulated in our experiment. It is still not studied whether our approach is robust

when there are multiple potential problems. Also the interactions between

different causes are not studied.

4.6 Summary

In this part we build a test bed to evaluate our approach from three aspects. At first,

we find that the overhead of our system is acceptable, increasing response time by

only around 21%. In the performance degradation detection phase, compared to the

44

sample approach Glassbox uses, our approach improves significantly in both preci-

sion and recall. For diagnosis, our approach performs well again. All the causes can

be classified with accuracy over 80%. Also our algorithm can successfully locate

the injected faulty method that causes recurrent performance degradations. All the

results show that our system is capable of detecting and diagnosing web application

performance degradations at the method call level with high accuracy, in real time.

45

Chapter 5

Related Work

There are a number of web application monitoring software products, such as Glass-

box, CA Wily, SharePath, and HP Performance Center. These tools are commonly

used in industry and are effective on performance monitoring. However, most only

provide a dashboard for the administrators to analyze the data collected by the soft-

ware, which means they do not detect and diagnose performance degradation by

themselves. Glassbox is the only one which provides a way to detect performance

degradation, but the approach is too simple. For cause diagnosis, they only cre-

ate different charts about performance data and leave it for the administrator to do

further analysis.

Java Application Monitor (JAMon) is a Java API for monitoring production

application performance, developed by Steve Souza [8]. This tool is currently the

most closely related work with our system. This tool collects performance statistics

such as page hits, page execution time, simultaneous request numbers and so on.

However, these statistics are not collected at the method call level, and it does not

provide a performance degradation detection function either. This tool proposes

a performance tuning function, but it is still up to the administrators to use the

performance measurements provided by JAMon.

Some researchers also paid attention to web application performance monitor-

ing, but none have a complete architecture including instrumentation, detection, and

diagnosis. Nevertheless our work has overlap in certain aspects. In the web appli-

cation instrumentation area, M. Schmid et al. [26] presented an instrumentation

system which focused on multi-tier applications, and realized it on Apache Tomcat

46

and JBoss. Their instrumentation system is built on the ARM (Application Re-

sponse Measurement) standard, and it focuses on method execution time too. They

also tested their instrumentation system on JPetStore, and the overhead is 14.5%

for a single client without capturing any other sensor values. N. Repp et al. [24]

also presented a web service performance monitoring system, but it is based on the

analysis of TCP/IP and HTTP protocols and throughput.

We also find previous work in the method call trace segmentation area [15, 27,

25, 30, 17]. Their goal is to extract some scenarios from the method trace, making

it easier for the administrator to understand. Some machine learning techniques

including K-means clustering techniques [27] or concept lattice analysis [25] are

applied in their approaches. The results are encouraging, but their algorithms are

applied on logs offline and are unable to do segmentation online in real time.

On web application performance diagnosis, S. Iwata et al. [18] proposed an

approach for determining suspicious components in web applications when per-

formance is degraded. Their approach is similar to our suspicious method loca-

tion part, but uses method execution time as the measurement only. Besides, their

work studies logs and is unable to analyze method call traces in real time. Other

researchers also proposed different systems to diagnose performance related prob-

lems [21, 19, 23, 29], but unfortunately, all of them use the response time from

server as the only measurement, without considering other parameters like CPU

usage or memory usage of the server.

47

Chapter 6

Conclusion and Future Work

In this thesis, we design and implement a system to detect and diagnose web ap-

plication performance degradation at the method call level in real time. We first

implement an instrumentation system which monitors the web application from

different aspects using Aspectwerkz and JavaSysMon. When the web application

starts, the detection part of our system monitors and gives an alert when a perfor-

mance degradation is found. Next the diagnosis part of our system suggests the type

of cause, and makes a decision about whether this cause is inside the web applica-

tion or not. If yes, our approach suggests the methods in the source code that reveal

this performance degradation, assisting administrators to correct the problem.

Compared to other performance monitoring tools like Glassbox and CA Wily,

our system does not only capture the server information when the web application is

running, but also makes further analysis on the measurements collected. We build a

test bed to evaluate our system and the results are encouraging. Precision and recall

of detecting performance degradations reach over 80% for injected low memory

resource, high I/O rate, and high request rate problems. Our results also outperform

the single time threshold approach significantly. In diagnosis, our approach is ef-

fective, with accuracy over 80% for categorizing the four problem types injected.

Moreover, the problematic method in source code can be located by our algorithm

after the problem has reoccurred 5 times.

However, our approach can still be improved in future work. First, we need

more sensors to test our detection and diagnosis algorithm over other causes, but

the sensors should not generate high overhead. Secondly, because our evaluation

48

is conducted on a test bed which is built on a simple demo Java application, our

approach is still not validated on real world enterprise web applications. In future

work, we plan to test our system on a more complex web application with more

components. Also the number of parallel clients should be increased to mimic a

real world scenario more closely. Last but not least, our current algorithm is still too

simple to analyze some complex scenarios, like performance degradation triggered

by multiple interacting causes. Also some parameters and threshold values in our

algorithm are decided by hand. Our approach could be more robust if some self-

adaptive algorithms can be used in the future to determine these values.

49

Bibliography

[1] Apache Benchmark. http://httpd.apache.org/docs/2.0/programs/ab.html.

[2] Aspectwerkz. http://aspectwerkz.codehaus.org/.

[3] CA Wily Application Performance Management.
http://www.ca.com/us/application-performance-management.aspx.

[4] CPU Killer. http://www.cpukiller.com/.

[5] Glassbox. http://glassbox.sourceforge.net/glassbox/Home.html.

[6] HP Performance Center. http://www8.hp.com/us/en/software/software-
product.html?compURI=tcm:245-937011.

[7] iBatis JPetStore. http://sourceforge.net/projects/ibatisjpetstore/.

[8] Java Application Performance Monitor. http://jamonapi.sourceforge.net/.

[9] System Monitor API written in JAVA.
https://github.com/jezhumble/javasysmon.

[10] The Apache Derby Project. http://db.apache.org/derby/.

[11] Web Automation and Test Tool. http://sahi.co.in/w/.

[12] Wire Shark. http://www.wireshark.org/.

[13] B. Basham, K. Sierra, and B. Bates. Head First Servlets and JSP, 2nd Edition.
O’Reilly Media, 2008.

[14] J. Brittain and I.F. Darwin. Tomcat: The Definitive Guide. O’Reilly Media,
Inc., 2007.

[15] F. Cantal de Sousa, N.C. Mendonca, S. Uchitel, and J. Kramer. Detecting Im-
plied Scenarios from Execution Traces. In Reverse Engineering, 2007. WCRE
2007. 14th Working Conference, pages 50–59, 2007.

[16] M. Crochemore. An Optimal Algorithm for Computing the Repetitions in a
Word. In Inf. Process. Lett., pages 244–250, 1981.

[17] J.L. Hellerstein, S. Ma, and C.S. Perng. Discovering Actionable Patterns in
Event Data. IBM Systems Journal, 41(3):475–493, 2010.

[18] S. Iwata and K. Kono. Clustering Performance Anomalies in Web Appli-
cations Based on Root Causes. In ICAC ’11 Proceedings of the 8th ACM
international conference on Autonomic computing, pages 221–224, 2011.

50

[19] S. Jakobsson. Timing Failures Caused by Resource Starvation in Virtual Ma-
chines. In DEPEND 2011, The Fourth International Conference on Depend-
ability, pages 88–91, 2011.

[20] M. W. Johnson. Monitoring and Diagnosing Applications with ARM 4.0 . In
In International Computer Measurement Group Conference, pages 473–484,
2005.

[21] Parallel Data Laboratory. Diagnosing Performance Changes by Comparing
System Behaviours. In Supersedes Carnegie Mellon University Parallel Data
Lab Technical Report CMU-PDL-10-103, 2010.

[22] R. Laddad. AspectJ in Action, Second Edition. Manning Publications, 2009.

[23] M. Raghavachari, D. Reimer, and R.D. Johnson. The Deployer’s Problem:
Configuring Application Servers for Performance and Reliability. In Software
Engineering, 2003. Proceedings. 25th International Conference, pages 484–
489, 2003.

[24] N. Repp, R. Berbner, O. Heckmann, R. Steinmetz, and Technische Univer-
sity Darmstadt. A cross-layer approach to performance monitoring of web
services. In ECOWS 2006 Workshop on Emerging Web Services Technology,
IEEE, 2006.

[25] K. Sartipi and H. Safyallah. Dynamic Knowledge Extraction from Software
Systems using Sequential Pattern Mining. International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), 20(6):761–782, 2010.

[26] M. Schmid, M. Thoss, T. Termin, and R. Kroeger. A generic application-
oriented performance instrumentation for multi-tier environments. In In IEEE
Intl. Symposium on Integrated Network Management, pages 304–313, 2007.

[27] M. Smit, E. Stroulia, and K. Wong. Use Case Redocumentation from GUI
Event Traces. In Proceeding CSMR ’08 Proceedings of the 2008 12th Euro-
pean Conference on Software Maintenance and Reengineering, pages 263–
268, 2008.

[28] Tealeaf technology Inc. Open for Business? Tealeaf technology Inc Whitepa-
per, 2003.

[29] C. Yuan, N. Lao, J. Wen, J. Li, Z. Zhang, Y. Wang, and W. Ma. Automated
Known Problem Diagnosis with Event Traces. In EuroSys ’06 Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems
2006, pages 375–388, 2006.

[30] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying Webmin-
ing Techniques to Execution Traces to Support the Program Comprehension
Process. In In Proceedings of the Conference on Software Maintenance and
Reengineering (CSMR, pages 134–142. IEEE Computer Society, 2005.

51

