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ABSTRACT

Single nucleotide polymorphisms (SNPs) are genetic mark-
ers that may be used to identify the causes and risks of
cancer. The sheer volume of data generated by SNP studies
is difficult to analyze by hand. Machine learning techniques
have been developed to address the types of data and the
sizes of data sets provided by these studies in an efficient
matter. We discuss the applicability of 5 machine learning
techniques to the classification of cancer patients using SNP
data. The techniques include decision trees, naive Bayes,
neural networks, support vector machines, and clustering
methods.
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1. INTRODUCTION

Cancer is a genetic disease in which certain cells break free of
normal growth controls. A number of factors can contribute
to the DNA damage which leads to this uncontrolled cell
division. Some of these factors are genetic conditions which
increase the risk of the initiation of cancerous growth. The
identification of these risk factors is of major interest in can-
cer biology.

Single nucleotide polymorphisms (SNPs) are single nucleotide
variations of DNA. (see Table 1) While many of these small
variations have no effect, some may influence certain drug
reactions[2] or cause susceptibility to disease, including can-
cer. Some SNPs which may have no direct impact on health
may be linked to other nearby genes which do have an ef-
fect. Technological advances have improved the efficiency

*PolyomX is a major new research initiative based at the
Cross Cancer Institute in Edmonton, Alberta, Canada. It
aims to develop, implement, and document a broad spec-
trum molecular analysis of human cancers and their corre-
lations to certain clinical outcomes.[1]
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Figure 1: Sample SNP: BRCA1 Breast Cancer Early
Onset.

tgaaaacAga gcaaatgact - normal
tgaaaacGga gcaaatgact - variant

SNP 1750018 [3]

with which we can now study large quantities of SNPs in
significant numbers of individuals.

Although technological advances[4, 5] now allow us to study
many SNPs concurrently over larger populations, the in-
creasing amounts of data reduce the practicality of unaided
human analysis[5]. Advances in the aquisition of data must
be matched by advances in the analysis of data. Machine
learning techniques[6, 7] are computational approaches by
which patterns in known data can be learned and applied to
new data. These intelligent systems can be applied to the
domain of SNP data from cancer patients.

We propose the use of machine learning techniques to ana-
lyze the large amount of data produced by studies of single
nucleotide polymorphisms in cancer patients. The aim of
our project is to improve diagnosis and treatment of can-
cer. Specifically, we wish to determine if the available SNP
data contains sufficient information to be able to classify
cancer patients. This knowledge may help to improve clini-
cal diagnosis and risk assessment which can lead to earlier,
more specific, and more effective treatments. We also would
like to identify genes which may be most significant causal
factors in the development of cancer. With this informa-
tion new treatments can be developed that better target
the genes that are implicated by the SNP data. Finally, we
want to determine which machine learning techniques will
enable us to extract this information from the data set in
the most efficient and accurate manner possible. It is this
three-fold purpose upon which our project is based.

The problem of diagnosing cancer can be very challenging
as there are many factors that influence the onset, manifes-
taion, and progression of cancer. These factors can create
'noise’ for a learning system that is focused on solely one
aspect of patient data. In addition, real world clinical and
molecular data can be difficult to obtain. In our data set,
missing data is a major problem that affects the techniques
required for data analysis.
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Figure 2: The Learning and Performance Systems.
The learning system receives observations in the
form of SNP data. It learns patterns in the data
and then assists in the classification of new patient
data (the input to the performance system). The
performance system then gives a response given the
situation and experience of the learner(s).

2. BACKGROUND
2.1 PolyomX

This machine learning project lies within the larger frame-
work of the PolyomX project.

The PolyomX project aims to develop, imple-
ment, and document a broad spectrum molecu-
lar analysis of human cancers and their correla-
tions to certain clinical outcomes. Working with
pathologists and surgeons from a variety of re-
gional hospitals, PolyomX researchers are assem-
bling a multi-tumor site tissue bank. These sam-
ples are then analyzed using the most recent ad-
vances in genomics, proteomics, metabonomics
and bioinformatics. It is hoped that the wealth
of molecular information collected by PolyomX
researchers will lead to major advances in the
fight against cancer. [1]

The PolyomX project will amalgamate many sources of data
in order to improve patient diagnosis and treatment. The
SNP data that we analyze in our project is a small part
of that data. We intend to make the classification of cancer
patients as accurate and efficient as possible using this single
data source. Thus, when multiple data sources are brought
together the Polyomx system can be robust and practical.

We may consider the entire PolyomX project as the per-
formance system in this scenario. (see Figure 2) The 'SNP
Learner’ that we develop in this project is a single input into
that larger performance system. The 'SNP Learner’ is the
learning system with which we are concerned.

To this point the PolyomX project has been focused on data
collection. The SNP data, in fact, arrived prior to and dur-
ing the course of our project. This will be the first analysis
of this data.

2.2 Cancer Research and SNPs

Single nucleotide polymorphisms have been used in a variety
of ways for cancer research. It has been observed that certain
SNPs indicate a predisposition to cancer [8, 9, 10, 11, 12,
13]. It has also been found that some SNPs may alter the
effectiveness of various drug treatments[14, 15]. This, of
course, is of huge concern to the pharmaceutical industry
and many studies are currently underway.

SNP analysis has often been done with smaller numbers of
SNPs in large populations. These analyses have typically
been done using disequilibrium linkage analysis in order to
identify correlations between a particular SNP or group of
SNPs and a particular disease. This technique may com-
monly be used to map the location of the gene responsible
for the disease.

Although many large gene expression studies have been done
[16], to our knowledge no studies have been done to ana-
lyze a large group of SNPs (in our case, 209) using machine
learning techniques as we propose. It is likely, however, that
studies are taking place within the pharmaceutical industry
that we are not aware of.

2.3 MachineLearning

The field of machine learning is focused on building com-
putational intelligent systems that improve over time [6, 7].
Machine learning has applications in a wide variety of do-
mains, from suggesting books to buy to autonomously driv-
ing vehicles. A large subset of these applications consist
of creating a ’classifier’ of some type. It is this collection
of applications we will focus on. Classifiers typically learn
from ’training data’. Training data is supplied to the classi-
fier with class labels for each training instance. With more
training instances or experiences, the classifier learns how
to distinguish between the various classes. It may evaluate
its performance according to the effectiveness of its classifi-
cation compared to the true value of test instances given to
it. In this way, machine learning classifiers seek to improve
their performance.

There are a variety of classifiers that have been developed
due to different approaches to machine learning theory and
various practical constraints. In our project we wish to
study classifiers that, given SNP data to train on, will be
able to distinguish classes of patients and, ideally, provide
some indication of which SNPs were most influential in the
decision.

We will evaluate decision trees [17, 18], naive Bayes classi-
fiers[19], neural networks[20], support vector machines[21],
and clustering algorithms[22]. We will determine which, if
any, will be able to extract information from the SNP data
for the improvement of diagnosis and treatment.

2.4 Cancer Research and Machine Learning
Machine learning techniques have been applied to a variety
of applications in cancer research.

The data most often analyzed, however, is cDNA microarray
data[23]. The techniques used on microarray data include
support vector machines[24, 25] and clustering methods[26,
27]. Other techniques have been used as well.



Figure 3: Sample SNP: Experimental Values
Sij=1
tgaaaacAga gcaaatgact - normal
tgaaaacAga gcaaatgact - normal
Si; =2
tgaaaacAga gcaaatgact - normal
tgaaaacGga gcaaatgact - variant
Si,j =3
tgaaaacGga gcaaatgact - variant
tgaaaacGga gcaaatgact - variant

There have been a number of studies utilizing machine learn-
ing that have focused on information sources other than
SNPs[28]. Decision trees have been used with a variety of bi-
oligical data for leukemia[29]. Bayesian nets have been used
with clinical data to study breast cancer[30, 31]. Machine
learning classifiers have been applied to survival analysis for
prostate cancer[32]. Clustering algorithms have been used
for prognosis studies[33]. Breast cancer diagnosis has been
studies using neural networks[31].

Despite the current focus on machine learning in cancer re-
search and an equally strong focus on the collection of SNP
data for various purposes, we are not aware of any other
groups using machine learning techniques to analyze SNP
data for cancer research.

3. METHODS

3.1 Data

The SNP data that we acquired from the Cross Cancer
Institute consisted of patients of various conditions. The
three conditions for which we had sufficient data to operate
with were breast cancer (B), leukemia(L), and normal(N).
These three classes were used throughout the experiments
and were the target classifications for the machine learning
algorithms.

For each patient the data contained an array of SNP values
from 0 to 3. As each human normally has two copies of
each gene, these SNP values represented the combinations
of normal or variant for the two gene copies. (see Figure
3) '1’ represents having two normal genes(homozygous nor-
mal). ’2’ represents having one normal gene and one variant
gene(heterozygous). '3’ represents having two variant copies
of the gene(homozygous variant). ’0’ represents an unknown
result. An unknown result may be due to experimental error
or due to lack of the gene expected in the SNP location. As
such, a '0’ may be a significant outcome.

For mathematical notation, we can represent the data set
as S ={< 51,;,52,,...5n,,C; >} where S is the data set,
Si,; is the is the value of a certain SNP ¢ for a certain patient
j, Cj is the class of that patient j, and n is the number of
SNPs being considered.

The original SNP data had many missing values. These
values were predominantly found in the 'normal’ data that
we used as control data. These holes can be seen in the
lower half of the data set in Figure 4. The missing data was
assigned values of '0’ or 'unknown’.

i

Figure 4: Original SNP data. A patient is repre-
sented by a horizontal line. A SNP is represented
by a vertical line. A red cell indicates a homozy-
gous normal genotype for the given SNP and pa-
tient. A blue cell indicates a homozygous variant
result. Green indicates heterozygocity (one normal
and one variant).
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Figure 5: The process.

3.2 Process Overview

In order to establish the utility of the SNP data and the most
effective machine learning method by which to analyze it,
we passed the data through some preprocessing steps and
then through each of the given classifiers. (see Figure 5)
Various methods were attempted for the preprocessing step,
as discussed below. Parameters were also adjusted on each
of the classifiers in order to get optimal results using the
given processed data set.

3.3 Preprocessing

The original data set was missing a large amount of informa-
tion for certain sets of patients and SNPs. It was necessary
to preprocess the data set in order to minimize the effect
of the missing data on the analysis. As seen in Figure 4
there is meaningless regularity in the data due to the miss-
ing data. As the classifiers are built to recognize patterns,
any classifier h will recognize patients with large amounts
of missing data as 'normal’. For such a data set the sample
error in experiments will be low and seem to indicate suc-
cess in learning. The true error on the entire distribution of
patients in the world, however, will be quite high since this
pattern will not hold in general. As a result, the classifier
will appear to do very well on experimental data but will



Table 1: Data Sets created by splitting on patient
class.

Data Set Patient Types
CN cancer, normal
BN breast cancer, normal
LN leukemia, normal
BL breast cancer, leukemia
BLN breast cancer, leukemia, normal

Table 2: Distribution of data among patient classes.

Patient Type | Patient Count

breast cancer 139
leukemia, 33
normal 136

perform very poorly when used on real world data. Various
preprocessing steps were used to prevent overfitting.

3.3.1 Pruning

Some particular patients (rows) and SNPs (columns) in the
data set contained a large amount of missing data. One
method which was used to prevent this missing data from
interfering with the results was by simply pruning those rows
or columns completely from the data set. After some test-
ing, two representative pruning thresholds, 0.1 and 0.5, were
chosen.

Patients were pruned from the data set if the proportion of
missing data for that particular patient was greater than the
given threshold.

SNPs were pruned from the data if the amount of missing
data for that SNP and any class of patient was greater than
the threshold. For example, assume a set containing 300
total patients and pruned using the 0.1 threshold. If for a
particular SNP 20 data points were missing, that SNP would
not necessarily be pruned as this is less than 30. If, however,
there were 100 normal patients and data was missing from
20 of these, the SNP would be pruned since that class would
exceed the missing data threshold of 0.1. This style of prun-
ing was done to avoid the problem of missing data being
particularly concentrated in a single class. In this case, a
large amount of normal data was missing.

It should be noted that although using the 0.5 threshold
greatly reduced the total amount of missing data in the data
set, it also removed a disproportionate number of 'normal’.
For this reason we also used the 0.1 threshold data set which
had more missing data but a more balanced set of patient
classes (about 1:1).

3.3.2 Patient class comparisons

Five unique data sets were also created on the basis of pa-
tient class. The three main classes were ’breast cancer’,
’leukemia’, and 'normal’. The data sets were then created
from various combinations of these as laid out in Table 1.

We tried using the BL and BLN data sets in order to de-
termine if our methods could differentiate between differ-
ent types of cancer. The results on the BLN data set were

lower than the BN and LN sets individually, which indicated
that there were patterns within each cancer type which the
learning techniques had difficulty distinguishing when the
data sets were combined. Unfortunately, the small amount
of leukemia data (33 patients) led to very poor results in the
LN, BL, and BLN data sets. Since the leukemia data made
up only from 10% to 25%of each data set (see Table 2), each
classifier could simply classify all the patients as the larger
class and the error would only be 10% to 25% but no actual
classification would be occuring. For this reason we did not
focus on the leukemia data sets any longer in the analysis.

We tried the CN data set by mixing the breast cancer and
leukemia patients into one class to see if the classifiers could
find a trend in the cancer patients in general. The accuracy
was consistently lower. Upon checking the most significant
attributes of each analysis, it was clear that the attributes
important in breast cancer were outweighing any important
attributes in the combined set because of the small amount
of leukemia data. As the leukemia seemed to only provide
noise with no additional information in this data set, we had
little confidence in those results and removed the set from
consideration.

With these results, the main data set that we focused on for
our analysis was the BN (breast cancer/normal) data set
with about 135 patients of each class.

3.3.3 Sampling

Another technique that was used to reduce the effects of
missing data on the results was sampling. Using this im-
putation technique, unknown values were filled in with a
random sampling of values from the distribution seen in the
known values. The distribution used for unknown SNP val-
ues in a particular patient class was taken only from the
known values within the same patient class. Given S;; is
the value of a certain SNP ¢ for a certain patient j and Cj
is the class of that patient j:

Si; € {0,1,2,3} (1)
¢, € {B,LNC} (2)
Z‘ ;5 =c --=s]'
P(Siy=slCi=0) = SEA=HT 0 (3)

Zj\ojic,si,j¢01

Unknown data were assigned values according to the distri-
bution given by Equation 3. This filled out data that was
not pruned so that it would not create meaningless and eas-
ily recognizable patterns. The resulting data set is shown in
Figure 6.

Although we hope that this sampling prevents overfitting of
the results, there is also the danger that correlations between
SNPs may be lost in the the randomness of the sampling.
As seen in the Results, this affects each machine learning
technique differently since some assume independence (naive
Bayes) between the SNPs and some do not.

3.4 Cross-validation
Another technique used to prevent overfitting of the data
is that of cross-validation. With this techique the data set



Figure 6: Sampled and pruned SNP data. A pa-
tient is represented by a horizontal line. A SNP is
represented by a vertical line. Red indicates a ho-
mozygous normal genotype for the given SNP. Blue
indicates a homozygous variant result. Green indi-
cates heterozygocity (one normal and one variant).

is randomly split into subsets. Training is then done using
all sets but one. It is this held out set that is then used
for testing. This is repeated in round-robin fashion so that
each set is used as the testing set once. The results of each
round are then averaged for an average accuracy score. We
used 5-fold cross-validation in each experiment and the given
accuracy score is the average of 5 rounds of training and
testing using each subset once as the hold-out set.

3.5 Classification Technologies
We used WEKA[34] extensively for our preliminary testing
and for the naive Bayes, and neural net classifiers.

3.5.1 Decision Trees

The nature of the SNP data set pointed to potentially learn-
ing the cancer classifier using a straight forward and com-
mon machine learning mechanism: the decision tree. While
having a high dimensionality each attribute within a tuple
has only 3 or 4 potential discrete values. As a result of this
small attribute domain range, decision trees created based
on this data would have a small branching factor providing
a quick and compact classifier. An additional benefit of the
decision tree method was the ability to easily derive human
understandable information from the structure of the tree.
In this form of early stage interdisciplinary research, the
reasons behind the results are as important as the results
themselves.

The actual algorithm used to generate the decision trees
was C4.5 [18] This algorithm was chosen over other simpler
learners such as ID3, because of its ability to prune the deci-
sion tree. Since the sample data had a both large number of
attributes and was noisy the trees produced by ID3 would be
excessively deep and would likely be inaccurate on untrained
data. These problems would be magnified by the relatively
small data set that was available for training. By perform-
ing pessimistic post pruning C4.5 would significantly reduce
the size of the decision tree by removing the irrelevant, and
theoretically evenly distributed, attribute branches. This
would in theory generalize the decision tree and result in

better accuracy.

We confirmed the WEKA analysis using the CART pro-
gram[35]. Similar results were found.

3.5.2 Naive Bayes

The naive bayes learning algorithm is a conceptually simple
idea. The algorithm predicts classes by choosing the most
probable class, based on the available evidence.

argmazeiqssP(class|snpi, snpa, ..., snpy)

By using Bayes theorem, and counting the occurrences of
each SNP and classes within a dataset the probabilistic clas-
sification of a new sample can be made computationally fea-
sible.

The use of nave bayes in context of this problem was promis-
ing for several reasons. The first reason is that naive bayes
are adept at handling noisy data due to their probabilistic
nature. The biological nature of the data also introduces
the possibility that the ’real’ cancer classifier is in no way
discrete. For example two people may have identical SNP
results, but due to other factors, one individual may have
cancer while the other does not. The learned cancer classi-
fier using Naive bayes will take into account such cases and
create (within the limitations of the data) probabilities for
a patient having cancer or not. Using simple Naive bayes,
in this dataset context, provides some causality, which can
be useful for further investigation by biological researchers.
A final benefit is that in the future as more information and
known probabilities become available, they can be added
into a naive bayes model to improve its predictive accuracy.

With using naive bayes an important assumption must be
stated. This assumption, used to simplify bayes calculation
within the learning algorithm, is that each SNP attribute is
independent of every other one. This assumption is reason-
able to make, but may not always hold in all cases.

3.5.3 Neural Nets

Neural networks also appear as a natural approach to learn a
cancer classifier from the SNP data. Neural networks are ro-
bust in dealing with highly dimensional noisy data. The long
training time for neural networks was not considered a prob-
lem in this application. The offline learning of the cancer
classifier could be given an arbitrary large amount of time.
The most significant drawback with using neural networks
in this setting is the difficulty of extracting human readable
information from the trained neural network. While this dis-
advantage inhibits the direct study of the causality within
classifier, the predictive performance of the classifier is itself
worth investigating.

This study utilized two forms of neural networks: basic per-
ceptron and multilayer feedforward networks. Both types of
networks use an input unit for each SNP attribute of a pa-
tient and have only one output unit that classifies the patient
as having cancer or not having cancer. The training of both
types of networks used the traditional back propagation [6]
algorithm with a learning rate of 0.3 and 0.2 momentum to
a maximum of 500 epochs.



Figure 7: Linear SVM:The Optimal Hyperplane in
the Linear SVM

3.5.4 Support Vector Machines

The Support Vector Machine(SVM) was introduced in COLT’92

by Boser, Guyon, and Vapnik. It has been greatly devel-
oped ever since and become one of the most efficient learn-
ing methods applied to the real applications today, which
include text categorisation, hand-written character recog-
nition, image classification and biosequence analysis. The
basic idea of SVM is to construct a largest margin sepa-
rating hyperplane to classify objects into two classes. In
computational biology, a lot of problems can be considered
as classification problems, for example, gene classification,
protein secondary structure predication and so on. The is-
sues we deal with in this project belong to the category of
gene classification. Thus we choose Support Vector Machine
to analyze our SNP data set.

Typically, if most data points in the training set are lin-
ear separable, we only need to build a linear classifier using
linear SVM.

35.4.1 Linear SYM

Given training set as a sequence of labeled points in n-
dimensional space, the task of Linear SVM is to find an
optimal separating hyperplane. Assume we get a hyper-
plane that separates the training data. The equation of this
hyperplane is w*x +b = 0. Let d4 be the shortest distance
from the hyperplane to the nearest positive examples and
d_ for the nearest negative examples. The margin m of the
separating hyperlane is then dy + d_ . The aim of linear
SVM is to find the separating hyperplane with the largest
margin m.

An example is showed in Figure 7. The solid line is the
solution hyperplane, the margin is the distance between the
two parallel dashed lines, the circled negative and positive
examples are called support vectors. The number of the
support vectors is usually small in comparison with the size
of the training set. We can see that the optimal hyperplane
is defined only by the support vectors and if we remove all
other training points, the hyperplane will not be affected.

However, there are two limitations with using linear SVM.
The first is that linear SVM can’t handle the non-separable
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Figure 8: Non-Linear SVM: Mapping input data to
a higher-dimensional feature space

cases. For instance, the linear can’t construct a separating
hyperplane for the input data in Figure 8. The second is
that linear SVM can’t efficiently eliminate the effect of noise
data. In order to overcome these two shortcomings, we need
to introduce non-linear SVM with kernel functions.

3.5.4.2 Non-Linear SYM

The basic idea of non-linear SVM is to map the input data
points into the high-dimensional feature space by some non-
linear mapping and then construct a hyperplane in the fea-
ture space. .

A simple example of this process is shown in Figure 8. The
kernel function should be defined in such a way that the non-
separable input data can be mapped into separable features.
The method for building a hyperplane in the feature space
basically is the same as applied in the linear SVM. There-
fore, the critical point for applying non-linear SVM is how
to choose the kernal functions. Three classical kernels are
widely used today, which are polynomial kernels, Gaussian
kernels and sigmoid kernels.

3.5.4.3 Polynomial kernels

The general form of a polynomial kernel is defined by:

Kpoty (#,@) = (5. & . & +¢)? (4)

where d is the degree of polynominal, s and c are constant
numbers.

3.5.44 Gaussian Kernels
The Gaussian Kernel is defined by:

& — 7'

z I
T) (5)

KG’aussiaTL(fy i:l) = El'p(—

where ¢ is a parameter. The smaller vaule of ¢ is suitable for
the complex shape while the larger value is used for handling
the smooth shape.
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Figure 9: The curve of polynominal degree

3545 Sgmoid Kernels
The sigmoid kernel is defined by:

Kigmoid (:l_f, f’) = (k,‘ L+ 9) (6)

where k is called gain and 0 is called threshold.

We didn’t find any documents talking about how to choose
a kernel function for a specific data set. We have to try all
kernel functions with different values of parameters. The
SVM tool we used is SV M'9"* which is an implementation
of SVM for the problem of pattern recognition and for the
problem of regression. The detailed description of SV M9t
is in http://svmlight.joachims.org/.

The experiments show that only applying polynominal ker-
nel can get better classification accuracy. Using other ker-
nels can’t get a good hyperplane for our SNP data set. The
experiments also indicate that the value of polynominal de-
gree has significant effect to the construction of hyperplane.
The Figure 9 demonstrates how the change of polynominal
degree affects the prediction accuracy. This result is based
on all data sets we generated. The accuracy of degree 1
is equal to that of linear SVM. We can see the non-linear
SVM using polyminal kernel doesn’t work with polynominal
degree larger than 7. We can also get that the biggest im-
provement is around 14% in average using kernel functions
for our SNP data set. The detailed results are presented in
the section 4.

355 Clustering

The clustering is the process of grouping a set of data points
with highest similarity. As we know, the clustering method
is a unsupervised learning method. Since we have got the
label values for all data tuples, we only need using supervised
learning methods to build our models, such as SVM, decision
tree and neural network we have applied. However, little
work has been done to apply machine learning methods to
analyze the SNP data set. So we still want to have a try to
employ clustering methods and see if we can find the hidden
interesting patterns in SNP data set. In this project, we
choose OPTICS to analyze our SNP data set.

OPTICS[36] is a Density-Based clustering method. The

Table 3: Sample confusion matrix for the results

from a classifier.
Classification

Label B N
B | B’s labelled as B’s | B’s labelled as N’s
N | B’s labelled as N’s | N’s labelled as N’s

density of a data point is measured by the number of its
neighborhood points. A density-based cluster is a set of
density-connected objects that is maximal with respect to
density-reachablility. The basic idea of a density-based clus-
tering method is that Given a value of radius, the neighbor-
hood of each point in a cluster contains at least a minimum
number of objects.

There are two reasons for us to select OPTICS. Firstly, OP-
TICS is a hierarchical clustering method. Unlike other clus-
tering methods, the number of clusters is not needed to be
specified. Therefore, OPTICS is very suitable to find the
undiscovered patterns in the data set. Secondly, OPTICS is
not sensitive to the parameter of similarity distance, which
is used to define the reachablility of a data point. Many clus-
tering methods are very sensitive to this parameter, such as
DBSCAN. A little bit change of this parameter will get com-
pletely different results. Usually, this parameter is empiri-
cally specified but difficult to determine for high-dimensional
data sets.To overcome this limitation, OPTICS firstly sorts
all data points by reachability distance and extracts the clus-
ters based on these sorted data. Therefore, the performance
of OPTICS is not affected too much by this parameter only
if the value of this parameter is big enough to get a good
result.

3.6 Confusion Matrices

The measure of classifier confusion is an important aspect of
results obtained thought learning cancer classification through
the SNP dataset. The level of classifier confusion can be
viewed as a ”confusion matrix”; an n-by-n matrix, where n
is the size of the class domain, is populated by the correct
and incorrect classifications for each class. By examining the
distributions of values within the confusion matrix the error
bias of the classifier (if any) will become evident. A classi-
fier with a high prediction accuracy rating may simply be an
artifact of an uneven distribution of sample classes, an im-
portant flaw that will be shown clearly within the confusion
matrix. The distribution of error is an equally important
point from an application perspective. For learning cancer
results from SNP data this importance is quite clear. The
misclassification of patients as having cancer when they do
not is very unfortunate. However the misclassification of pa-
tients not having cancer when they do is a far worse event.
The confusion matrix indicates the individual rate of error
for each type of misclassification and can be used to rate the
classifier.

4. RESULTS

As mentioned earlier, due to poor preliminary results with
other data sets, only the BN (breast cancer/normal) data
set is included in the final analysis. Both the 0.1 and 0.5
pruning thresholds were compared.



Table 4: Naive Bayes Classifier Accuracy

Sampling

Attribute Selection 0.1 0.5
Non-sampled | 97.5% | 90.5 %
Sampled | 98.2% | 90.5 %

Table 5: Results for given Pruning Threshold (PT)
on sampled and unsampled data using a naive Bayes
classifier

Sampling
Attribute Selection 0.1 0.5
Non-sampled | 79.2727% | 89.4737%
Sampled | 79.2727% | 88.9474%

4.1 Decision Trees

The decision tree results displayed in Table 4 show the best
classification accuracy with using the C4.5 learning of a can-
cer classifier by using an information gain splitting criteria.
The results are however some what misleading. In the 0.1
sampled and non sampled data sets, the learning algorithm
is finding large sets of zeros and former zeros to match and
use as a distinguishing feature of the normal patients. This
is an artifact of the original incomplete data set and as such
those results can not be considered as indicative. The results
of using 0.5 data set reflect more accurately the capability
of decision trees to classify cancer from this form of SNP
data. The results for those data sets are not affected by
the zeros as the offending normals are removed. On those
data sets the decision tree performs as well as the nave bayes
algorithm (shown below) as a classifier.

The top (root) branches of the decision tree can be inter-
preted as the most informative and distinguishing. Some of
the top level tree nodes are the attributes: CDX2_2_T201C,
CYP11B1.6_A_G135A, STAT2_3_C_T201C, ARO1.1_T201C,
ACE_1_G201A.

These attributes are major factors in determining whether
a patient has cancer within the available SNP data set.

4.2 Naive Bayes

The naive bayesian networks displayed almost the best over-
all classification accuracy. On the 0.5 data sets the classifier
performed at about 89% accuracy and about 79% accuracy
for 0.1 data. What is more interesting in these results is the
distribution of the error made for each data set by the naive
bayes classifier. By examining the four confusion matrices
for the four data sets (Table 6,7 ,8 ,9 ) several observations
are made. First the distribution of error for the 0.5 data
sets is quite even. That is to say the naive bayes classifier is
not achieving a high accuracy by simply always guessing one
classification, but rather is really using the available data to

Table 6: Confusion matrix for 0.1 Non-Sampled
Data Set

Classification
Label B N
B | 133 6

N | 51 85

Table 7: Confusion matrix for 0.5 Non-Sampled
Data Set
Classification
Label | B N
B | 129 9
N | 11 41

Table 8: Confusion matrix for 0.1 Sampled Data Set

Classification
Label | B N
B | 115 24

N| 33 103

predict the class. A second point of interest is that, while
both the sampled and un-sampled data for the 0.1 data set
had exactly the same predictive accuracy, the sampled data
set error distribution was better distributed.

These two ideas can be summarized by looking at the mean
squared error (error(B)? 4 error(N)?)/2) of each classifica-
tion (Table 10). The mean squared error is a good additional
indicator of the true abilities of a classifier.

The mean squared error for 0.5 non-sampled and 0.5 sam-
pled do not vary much, while the 0.1 non-sampled is mean
squared error is significantly higher that for the 0.1 sampled.

4.3 Neural Nets

Before delving into the predictive results of neural networks
on the four primary data sets some more preliminary re-
sults. In initial neural network investigations, using a hand-
selected subset of the full SNP data set, both single layer
(perceptron) and multi-layer networks were experimented
with. The results of these initial trials were significantly in-
formative and gave direction to all further neural network
use within the scope of the SNP data set. As shown in
Tables 12 and 13 the results using both types of neural net-
works, with otherwise identical learning parameters, pro-
duced almost identical results. The classification accuracy
with using single layer network is 85.4077% and 83.2618%
with using multi-layer network.

Since the multi-layer network is a great deal more expressive
in the range of classifiers it can produce the a perceptron,
which can only represent linearly separating classifiers, this
result leads to inference that the ’true’ cancer classifier is
a linearly separator. Due to this result all further exper-
imentation with neural networks use only the single layer
perceptron network type.

Table 11 summarizes the predictive accuracy of perceptrons
with the four primary data sets. Three of the four data sets

Table 9: Confusion matrix for 0.5 Sampled Data Set

Classification
Label B N
B | 130 8
N | 13 39




Table 10: Data Sets created by splitting on patient
class.

Data Set Mean Squared Error
0.1 Non-Sampled 7.12%
0.5 Non-Sampled 2.45%
0.1 Sampled 4.43%
0.5 Sampled 3.39%

Table 11: Neural Network Classifier Accuracy
Sampling
Attribute Selection 0.1 0.5
Non-sampled | 86.9091% | 86.3158 %
Sampled | 77.4545 % | 85.2632 %

produce very similar accuracys of about 85%. The sampled
and 0.1 data set however showed a relatively weak ability for
neural net classification with 77% predictive accuracy. The
likely reason for the lower performance of the sampled data
sets is the reduction of distinctive values within the data.
By sampling, the differences between the normal and cancer
patients are reduced and the distinction is blurred. The 0.5
shows this effect to a far smaller degree because of the small
amount of sampling that is performed on it.

Looking deeper into the results the confusion matrix of the
0.5 non-sampled data set (Table 14) reveals a somewhat bias
split among the error for the neural network. Out of the
52 normal patients in the set, the perceptron misclassified
15 data points only an accuracy of 71%, while the cancer
classification scored 91%. While the accuracy was not quite
so high using the 0.5 sampled data set, the error distribution
is slightly better (Table 15).

Generally due to the nature of neural networks, the models
can be difficult to interprate. In the case of the single layer
networks (perceptrons) it is possible to look at the weights
of the input nodes and determine the largest contributors to
the result.

The attributes (and associated variant type) shown in Ta-
ble 16 are the largest contributors or detractors (when the
weight is negative) for a patient having breast cancer, based
on the neural network trained on available SNP data.

4.4 Support Vector Machines

The results from using SVM are shown in the table 17. Be-
cause using 0.5 pruning threshold removed most partially
known data tuples, the sampling process doesn’t have much
effect on the selection of support vectors. So the classifica-
tion accuracies are the same for both sampled data set and
unsampled data set. The highest accuracy is 87.27% for the

Table 12: Confusion matrix for Single layer Network
on Hand-Sampled Data Set

Classification
Label B N
B | 117 22

N | 12 82

Table 13: Confusion matrix for Multi-layer Network
on Hand-Sampled Data Set

Classification
Label | B N
B | 115 24
N | 15 79

Table 14: Confusion matrix for 0.5 Neural Nets
Non-Sampled Data Set

Classification
Label | B N
B | 127 11
N | 15 37

Table 15: Confusion matrix for Neural Nets 0.5
Sampled Data Set

Classification
Label | B N
B | 127 11
N | 17 35

Table 16: Neural Network Contributing Attributes

Attribute Type Contribution for Cancer
ADPRT_3_C201T | Homozygous Var 1.3781
BDKRB2_1_G201A Heterozygous 1.1011
BDKRB2_.1_G201A | Homozygous Nor -1.2981
BDKRB22_C152T | Homozygous Nor -1.1559
BDKRB22_C152T Heterozygous 1.2361
BRCA2_12_A201C | Homozygous Nor -1.9760
BRCA2_12_A201C Heterozygous 1.2030
CYP4F3_1_A_A201C Heterozygous 0.7791
CYP4F3_1_A_A201C | Homozygous Var -0.7788
GRB10.1_A201G Heterozygous -0.9712
GRL_6_C201T | Homozygous Var -0.8713
GRL_6-C201T Heterozygous 0.9114
NFATC1.3_.A_A201G | Homozygous Var 1.0343

Table 17: Results for given Pruning Threshold (PT)
on sampled and unsampled data using a support vec-
tor machine (SVM) classifier.

Classification
Label PT =0.1 | PT =0.5 | Hand-Pruned
Unsampled 87% 80% 81.74%
Sampled 73% 80%
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CN data set

unsampled data set using 0.1 pruning threshold. But this
number is not convincing because a lot of partially known
data tuples are picked up as support vectors. After using
GIBB’s sampling method to fill in these unknown informa-
tion, we only got 73.82% for the classification accuracy. This
indicates that the unknown information are very significant
to the classification. Depending on current SNP data set,
we get around 80% in average for the classification accuracy.

Our experiment results show that the SVM is not the best
tool for classifying our SNP data. This is a little deviant
from our initial expectaion since the SVM is a very new
learning method and it has become one of the best tools
in the computational biology. We thought the reasons are
that all data types in our data set are categorial and there
are only three possible values for every attribute. Because
SVM uses the distance measurement to find the optimal
hyperplane, applying it to our SNP data set can’t exhibit
the full power of SVM.

45 Clustering

Unfortunately, the result of applying OPTICS is not good.
We can only get one cluster no matter how we change the
values of parameters. From the figure 10, we can see that
only one cluster can be generated and the difference among
the reachabilities of all data points is very small. It means
all data points are crowded. We thought the reason for this
result is somewhat the same as those in using SVM. Using
the distance measurement between data tuples is difficult to
separate them. Before we draw a conclusion, we also tried
other clustering methods, which are CURE and ROCK. The
results of using both methods are the same.

5. CONCLUSIONS

These results show that SNP data does contain sufficient in-
formation to be able to classify cancer patients. This knowl-
edge may allow clinicians to use machine learning techiques
in the future to identify individuals who are at higher risk
for breast cancer. With this information, those individuals
might be checked more often in order catch tumors early.

Happily, the analysis confirms the results of earlier stud-
ies[10, 12] which identified certain genes as significant causal

factors in the development of cancer. This agreement be-
tween our study and previous studies validates our the fea-
sibility of our approach.

In particular, SNPs in BRCA2, a well-known breast can-
cer gene, were prominent in the analysis. The CYP gene
seems to play a major role in our data set, confirming other
studies[8]. The MLH tumor-suppressor gene, which disrupts
DNA repair when mutated, was shown to be significant in
breast cancer.

The caveat here is that the SNPs chosen are already a very
select sampling of the entire genome and were selected as
likely candidates for success in this study. Even in the case
that all the genes may have some previously known effect,
we hope that our analysis will help prioritize the most influ-
ential SNPs in a meaningful way.

The best techniques for our analysis seemed to be the deci-
sion trees and naive Bayes classifier, although some of the
other classifiers were not far behind. It seems that the sam-
pling during preprocessing was not as effective as we might
have hoped. The pruning seemed a more effective way to
reduce problems due to missing data while not introducing
the noise that sampling seemed to.

From the perspective of aiding clinicians and researchers the
decision trees and naive Bayes show a distinct advantage in
that it is easier to extract causal information from these
studies. For this reason, if the results of neural nets, SVMs,
and clustering were only a little higher than the other two
methods, we would probably still prefer the decision trees
and naive Bayes.

5.1 Remaining problems and future research
directions

To summarize, we are encouraged by the results we obtained
in these experiments. Despite the large amount of missing
data, some significant evidence was found. We anticipate
that the previously known SNPs that appeared the most
relevant in our analysis (such as BRCA2) will not be the
most interesting part of this work. We expect that the less
well characterized SNPs that appear nearly as significant
will be the most interesting places for future work.

We anticipate that the results of using these methods will
improve drastically in the use of a full data set. With more
time, the parameters for the classifiers could certainly be im-
proved for some increase in accuracy. We would also benefit
from closer interaction with cancer biologists.

Overall, we feel that machine learning techniques will con-
tinue to be useful on SNP data sets for cancer research and
beyond.
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