Solving The Sequential Ordering Problem With Automatically
Generated Lower Bounds

[stvan T. Hernadvolgyi
University of Ottawa
School of Information Technology & Engineering
Ottawa, Ontario, KIN 6N5, Canada
Email: istvan@site.uottawa.ca

August 25, 2003

Abstract

The Sequential Ordering Problem (SOP) is a version of the Asymmetric Traveling Salesman
Problem (ATSP) where precedence constraints on the vertices must be observed. The SOP has
many real life applications and it has proved to be a challenge as there are SOPs of order 40-50
vertices which have not yet been solved optimally with significant computational effort. We use a
novel branch&bound search algorithm with lower bounds obtained from homomorphic abstractions
of the original state space. Our method is asymptotically optimal. In one instance, it has proved
a solution value to be optimal for an open problem while it also has matched best known solutions
quickly for many unsolved problems from the TSPLIB. Our method of deriving lower bounds is
general and applies to other variants of constrained ATSPs as well.

1 Introduction

The Sequential Ordering Problem (SOP) is stated as follows. Given a graph G, with n vertices and
directed weighted edges with the start and terminal vertices designated. Find a minimal cost Hamil-
tonian path from the start vertex to the terminal vertex which also observes precedence constraints.
An instance of a SOP can be defined by an n x n cost matrix C, where the entry C; ; is the cost of
the edge i — j in G, or it is -1 to represent the constraint that vertex j must precede vertex 7 in the
solution path.

The SOP is a model for many real life applications, ranging from helicopter routing between oil rigs
[14] to scheduling on-line stacker cranes in an automated warehouse [1].

While Traveling Salesman Problems (TSP) of large order can be solved optimally, there are still
unsolved problems of SOPs with 40-50 vertices. Most asymptotically optimal solvers model the SOP
as an Integer Program. Unfortunately the exact structure of the SOP polytope is not yet fully
understood and therefore these methods achieved only limited success. Our approach is state space
search. The partial completions of feasible tours form a directed acyclic graph where the minimal
cost path from the start state (the tour with only the start vertex) to the goal state (the tour with
all vertices) corresponds to the optimal solution to the SOP. We use automatically generated lower

bounds to prune branches from the search tree. These lower bounds are derived from abstractions of
the original state space and correspond to optimal tour completion costs in the abstract space.

Using our technique, we were able to prove a new optimal solution to an unsolved instance in the
TSPLIB [16] and we were also able to match best known solutions to many so far unsolved instances.
The abstraction mechanism described in this paper is general and it is applicable to other versions of
constrained ATSPs as well.

2 Related Work

Optimal solutions to some instances of the SOP were obtained by Ascheuer et. al. [2] who used
a cutting plane approach. The SOP is modeled as an Integer Programming problem derived from
the Asymmetric Traveling Salesman Problem (ATSP) polytope [8]. The challenge was to find valid
facet-including inequalities that represent the additional precedence constraints. They also employed
heuristic tour improvements to derive solutions. Escudero et al. [7] used a similar approach but the
lower bounds were obtained by Lagrangian relaxation.

The HAS-SOP system of Gambardella et al. [10, 9] is a metaheuristic technique. In many instances
they obtained the best known upper bounds to unsolved instances. This approach is a form of
stochastic search and therefore optimal solutions cannot be guaranteed, however these solutions were
obtained very quickly. Similar results using genetic algorithms were achieved by Seo et al. [15].

Our lower bounds are actually derived from a state space graph and correspond to an underestimate
of tour completion over the remaining vertices. In this sense our bounds are closer in spirit to the
well known Minimum Weight Spanning Tree (MST) bound of the TSP or to the Assignment Problem
(AP) lower bound of the ATSP. These bounds, however, cannot be easily adopted to incorporate
precedence constraints. Christofides et al. [3] considered state space relaxations first to generate lower
bounds. They also used a state representation very close to ours. The lower bounds correspond to the
completion of a relaxation of the original dynamic programming recursion of the SOP. This approach
was considered by Mingozzi et al. [13] for the TSP with time windows and precedence constraints.

We use large look-up tables of lower bounds which are derived from an abstraction of the state
space. These look-up tables are referred to as pattern databases because the abstraction corresponds
to merging states of the original state space according to some syntactic pattern. This technique was
invented by Culberson and Schaeffer [4] and was later used by Korf [12] to obtain optimal solutions
to the Rubik’s Cube for the first time. Edelkamp [6] also used pattern databases to derive optimal
plans for STRIPS problems.

3 State Space

The SOP of n vertices is usually defined by an n x n matrix C' of edge costs where C; ; = —1 if vertex
4 must precede vertex 4 in the tour. Without loss of generality, we label the vertices from 0 to n — 1;
the tour starts at vertex 0 and ends at vertex n — 1. We write C[i][j] to represent the edge cost i — j.
Figure 1 shows the TSPLIB [16] representation of a 6 vertex SOP. The EDGE_WEIGHT_SECTION is an
explicit 6 x 6 cost matrix. For example, the cost of the 0 — 1 edge is 2 and the 2 — 1 edge is 1. Clearly,
start vertex 0 must precede all other vertices while the terminal vertex 5 is preceded by all vertices

NAME: Ex6

TYPE: SOP

COMMENT: Example

DIMENSION: 6

EDGE_WEIGHT_TYPE: EXPLICIT
EDGE_WEIGHT_FORMAT: FULL_MATRIX
EDGE_WEIGHT_SECTION

6
0 2 1 4 4 1000000

-1 1 4 2 1

-1 1 0 3 3 0

-1 -1 3 0 2 3

-1 2 1 3 0 1

-1 -1 -1 -1 -1 0
EOF

Figure 1: The example SOP Ez6 in TSPLIB format

but itself. Since the SOP can visit each vertex only once, the values in the diagonal are irrelevant.
The edge from the start to the terminal vertex cannot be taken either!. The -1 entry for edge 3-1
indicates that vertex 1 must precede vertex 3. Figure 2 depicts the precedence graph P corresponding

Figure 2: Precedence graph P corresponding to SOP Ex6

to this example SOP. There is a directed edge from vertex vy to vy in P if v; has to precede vy; implied
precedences are removed. This graph can be efficiently computed using dynamic programming and it
can be used to remove redundant edges from the cost matrix. If there is no direct edge in P from v,
to ve, then there should be no entry for edge vy — v1 in the cost matrix. For example, there is no edge
from 3 to 0 because vertex 1 in any valid tour must be between them. Similarly, the 1 — 5 and 0 — 5
edges are also deleted from the cost matrix C'. We use the x symbol to mark edges removed.

X 2 1 X 4 x
-1 X 1 4 2 X
-1 1 x 3 3 0
¢= -1 -1 3 X 2 3 (1)
-1 2 1 3 x 1
-1 -1 -1 -1 -1 x

1Tt is customary to put a value for this edge that exceeds the value of any feasible solution

In our representation, a SOP state s corresponds to a partial completion of the tour. It records the
current last vertex in this partial tour as well as the vertices which have not been reached yet. This is
very similar to the state representation of Christofides et al. [3] who instead kept track of the vertices
visited so far in the partial tour. For example, consider the intermediate state below for our 6 vertex
SOP:

s =(3,5)[2]

The tour is currently in vertex 2 and vertices 3 and 5 are yet to be reached. From this information
we also know that vertices 0, 1 and 4 are already part of this partial tour but their actual respective
order is not kept in the state. The SOP state space S, with this representation is a lattice with the
start state at the apex and the goal state at the bottom. The lattice has n levels corresponding to
the n vertices in the tour. The start state is at level 0. The state space lattice corresponding to our
example Ez6 is depicted in Figure 3.

(1,2,3,4,5)[0]
(2,3,4,5)[1] (1,3,4,5)[2] (1,235)14]—— 1

2 3 1
1 2

(3,4,5)[2] (3,45[1] (2,45)[3] (1,3,5[2] (1,3,5)[4] (2.3,5)[4] (2,3,5)[1]— 2

P DRV 2N

(4,5)[3] (3,5[4] (2,5)4] (4502 (39I[1] (2,5)[3] 8,9)[2]—— 3
4 3 3
>
3
(5)[4] (53] (5)2] 4
1 3 0

0[5] 5
Figure 3: State Space Lattice S

The full lattice not considering precedences has

n—3 n—2
IS(n)|=<Z< ;)(n—2—i)>+2 (2)

1=0

states. At level 1 <[<n —2, n— 2—1 vertices are available from the n — 2 possible vertices, since
vertices 0 and n — 1 are reserved. The last visited vertex in the partial tour could be any of the
not chosen [vertices from the n — 2. Setting ¢ = n — 2 — [, equation 2 follows. There are at most
(n — 2)! complete tours through S; some are infeasible because of the precedence constraints. |S(n)]
is significantly smaller than (n — 2)!. For example, for a 30 vertex SOP,

|S(30)] = 3,758,096,386 // states in S
28 304, 888, 344, 611, 713, 860, 501, 504,000,000 // paths through S

The minimum cost path observing precedences is the optimal solution to the SOP. In our case, it is
the tour 0-2-1-3-4-5 with cost 9 (Figure 3).

The state space lattice for a SOP of n vertices has n distinct levels. We will write S; to refer to the
states of S on level i. Edges in S are only connecting states of S; to S;y1. The state representation
implicitly encodes level information: the number of vertices available subtracted from n —1 is the level
where the state belongs. For example,

1((2,4,5)[3]) = (6—1)—3=2

In the discussions that follow, we rely on this level property of S.

4 Lower Bounds

Let s be a partial tour in the state space lattice S. Let ¢(s) be the cost of this partial tour and let
b(s) be an underestimate of the cost of completing s. Let ¢(t) be the cost of the best cost full tour ¢
known so far. If ¢(s) + b(s) > c(t) then s can be eliminated as a candidate for an optimal solution.
Our search procedure (which we will describe in detail later) uses such lower bounds to prune the
space lattice.

The lower bounds will be derived from an abstraction of the state space lattice and stored in a large
look-up table we call the pattern database. The abstract state space S’ is also a lattice with the same
number of levels as S. However, |S’| < |S|, so we can enumerate it efficiently. The abstract lattice is
obtained by clustering states of .S on the same level. Figure 4 illustrates the conceptual relationship

Figure 4: State Space Lattice Abstraction

of the original and abstract lattices. S is the original lattice and S’ is the resulting abstraction.
The cheapest cost path from the top to the bottom vertex corresponds to the optimal tour in the
underlying SOP. We chose some states on the same levels to cluster and identified the cheapest cost
edges entering and leaving these clusters (drawn with bold edges). These edges will be retained to
connect the clustered states which are now replaced by a single vertex (shown as filled circles) in S’.
We will refer to the vertices of S” as abstract states. Since we always chose the cheapest edges, reaching

the bottom vertex from an abstract state s’ in S’ cannot be more expensive than reaching the bottom
vertex in S from any of the original preimages of s’. Therefore the cost of the optimal completion of
s' in S’ is a lower bound on the optimal completion cost of the preimage states of s’ in S. This is
exactly what our lower bounds correspond to. However, considering the number of states in the SOP
lattice (Equation 2), enumeration of S is infeasible. We have to compute S’ without computing S.

Let S; and S denote the states at level ¢ in .S and S’ respectively. The level property of the lattice is
preserved in S'. The map ¢; : S; — S} is an equivalence relation for s; € S where s! are the equivalence
classes. In essence the action of ¢; is to designate the clusters of S;. ® =< ¢g, d1,...,0p_1 > is a
vector of such maps with one abstraction for each level. The states of S’ = ®(S) are obtained by
applying the maps in this vector level-wise to S.

The action of ¢ is purely a syntactic relabeling of the state representation. We distinguish between the
vertex and the label that refers to it. Initially all vertices have their own label. The start vertex has
label 0 and the terminal vertex has label » — 1 in the n vertex SOP. Our abstractions operate on the
set of labels; in the abstract problem there could be more than one vertex with the same label. This
does not mean that vertices get “physically” merged, but they are indistinguishable in the abstract
problem. For example consider a 5 vertex SOP as shown in Figure 5. For now we omit precedence
constraints and edge weights. In the original SOP, each vertex has its own label. The number of tours
is 6

0-1-2-3-4

0-1-3-2-4

0-2-1-3-4

0-2-3-1-4

0-3-1-2-4

0-3-2-1-4

Now, let us relabel the vertices with labels 2 and 3 so they now have the same label z. There are only
three tours in this abstract SOP:

0-1—z—x—-4

0—xz—1—2z-4

O—zxz—x—-1-4

Note that both vertices with label z are present in each tour. The original cost matrix is:

3 X

Figure 5: Label abstraction in a 5 vertex SOP

X €p,1 Co2 €Cp,3 X

-1 X c2 a3 cia

C = -1 C2,1 X €23 C24
=1 31 c32 X c34

-1 -1 -1 -1 X

Since we cannot tell the vertices with label = from each other, the abstract cost matrix has only one
entry for edges leading to and leaving z:

X Co,1 o2 €o,3 X
/
-1 X C12 C13 C1,4 X Cp,1 CO,w X
/
' — _ -1 X Clg €14
- - / /
—1] |c X €3 |C24 -1 ¢ Gy Cra
-1 C3,1 €32 X C3.4 -1 -1 -1 X
-1 -1 -1 -1 X

Note that there is a diagonal entry ¢}, , since there are abstract paths which include the z —x edge. The
abstraction of vertex labels does not reduce the number of vertices but it merges edges and therefore
compresses the cost matrix. For example, the 0;71 edge in C' replaces the cp; and c3; edges in C.

Definition: Domain Abstraction

Let D = {vy,v9,...,u,} be the set of original vertex labels. Any onto map ¢ : D — D'
with D’ = {v},v),...,v},} where k < n is a domain abstraction.

We use domain abstractions to create the abstract states. The action of a domain abstraction on a
state is to relabel each vertex in the representation. Without loss of generality, let D = {0,1,...,n—1}
and D' = {0,1,....,k — 1}; this allows us to use the vertex labels as indices of the cost matrix. We
further require that that our domain abstractions preserve the identities of the start and terminal
vertices: ¢(0) =0, ¢(n — 1) = k — 1 and no other vertex maps to 0 or £ — 1 under ¢.

In the example problem Ez6, there are 6 vertices. Originally they all have different labels 0, 1, ..., 5.
After applying ¢ some of these vertices will be assigned different labels but there are still 6 vertices.

For example, for n = 6 and k£ = 4,

0 if v=0
)1 i ve{n2,4)
2=19 i3)
3 if v=5

is an example of a domain abstraction. It is marked ¢9 because we will apply this map to level 2 of S.

For example, the states of Sy (Figure 3) under ¢o fall into the equivalence classes in Table 1. S), has
two states: (1,2,3)[1] and (1,1,3)[2]. Note that as a result of this clustering, the original vertices
1, 2 and 4 at level 2 are indistinguishable. We would like to caution that the action of ¢ is not to
merge vertices into one but to make them indistinguishable. In state (1,1, 3)[2] there are two 1’s; their
original identity is lost. In fact, a tour in S’ must contain three 1’s as all vertices must be visited
exactly once.

Sy— | | (1,2,3)[1] | [(1L,L3)[2]]

52 — (3v4a5)[1] (Dy)[2]

Table 1: The abstract states ¢2(.S2)

The action of ¢ is fairly trivial on the states. To complete the abstraction of ®, we also need to know
how the edges of the lattice are effected. In other words, the action of ® on C.

Since ¢; € @ could all have different number of abstract vertex labels,
q)(C) =< C(I),la 01,27 ey C;L—Q,n—l >

is a vector of cost matrices where C{’i 41 represents the connectivity between levels ¢ and 7 + 1 in S'.

In the lattices of S and S, all edges connect consecutive levels only, therefore we only consider a pair
of adjacent levels at a time. To continue with our example, we define another domain abstraction for
level 3:

0 if v=0
1 if v=1
dalw) =4 2 if ve {23} (4)
3 if v=4
4 if v=5

The states of S3 under ¢3 are listed in Table 2. We now proceed to determine the edges and their

Ss—| [290] [@92]] [@9B]] [6.972]]
i i il i

S3— | | B9[] | | (25B] | | 8,54 | | (45[03]

(3,902 | [(2,904]] [(45)(]

Table 2: The abstract states ¢3(S3)

costs between S5 and Sj.

There are 4 labels on level 2 and 5 labels on level 3, therefore the cost matrix we are looking for is
4 x 5. The rows correspond to the vertex labels of S and the columns to those of S5. This cost matrix,
C§,3, is derived from the original cost matrix. Equation 5 shows the values of the original matrix C'
(Equation 1) clustered and rearranged according to ¢ and ¢3. For example, the preimages of 1 under
¢2 are 1, 2 and 4. Therefore we take the rows corresponding to these vertices from C and make it the
row corresponding to their image (namely 1) in 0573. The boxed entries correspond to edges which
are merged by the abstraction. For example, let us single out the entry in the second row and third
column. The second row represents the preimages ¢, 1(1), which are 1, 2 and 4, while the third row
corresponds to the preimages ¢3 1(2) which are 2 and 3. The 6 values are the entries corresponding
toedges 1 —2,1-3,2—-2,2-3,4—2and 4 — 3 from the original matrix C' (Equation 1). In the

abstract space, all these edges will be represented by a single edge.

0 1 2 3 4 5
ZEE AR S A

0 1 2 2 3 4
2
0—0 x 2 4 x « 9 1 4

Coz= 1-1 1] [x 1 4 2] [x] = j _i ; ; g (5)

21 -1 1| x 3 3 11 1 1«
41 -1 2 1 3| x| |1

3—2 -1 -1 2 3
53 -1 -1 -1 x

The question is, what cost should we assign to this edge? As we have hinted before, we are building
this abstract space to derive lower bounds. Therefore we will take the most conservative choice. First
we introduce some notation. Let [and [+ 1 be the indices of adjacent levels. i and j' are abstract
labels with preimages P;(i') = ¢; ' (i') and Py (5') = ¢l_+11 (4') respectively. P,(i') and Py 1(j') are the
sets of vertices which get mapped to i’ in Sj and to j' in Sj, ;. The entry C'[i'][j] is the single edge
i' — 7' merging the set of edges C[P(7')][P+1(j")]- In our example, for i’ =1, j' =2, P,(1) = {1,2,4}
and P3(2) = {2,3}, while

1 4
ClR(D][P5(2)] = C[{1,2,4}][{2,3}] =| x 3
1 3
We apply the following rules of assigning edge costs to C'[i'][5']:
1. if all edge costs C[P,(¢')][P+1(j")] are -1 then C'[¢'][j'] = -1
The entry -1 represents a precedence constraint, C; ; = —1 if j must precede 7. There-

fore all vertices P, 1(j") precede all vertices P;(i') in S and i’ will precede j' in S’.
2. if all edge costs C[P,(i")][P+1(j")] are x then C'[i'][j'] = x

This means that there are no edges from any of the preimages of i’ to any of the
preimages of 5’ and therefore there should be no edge from i’ to j' in S’.

3. if some entries of C[P;(i")][Pi+1(j')] are -1 and some are marked x then C'[/'][j'] = x

In this case we know that there are no edges from any of the vertices of P;(i') to any
of Py1(j") in S but we cannot preserve the precedence constraints as it is not true
that all of Py1(j") precedes all of Py(i).

4. if there is at least one non -1 and non x entry within C[P,(¢')][Pj4+1(j")] then C'[i][j'] =
min(C[P,(i")][Pi+1(j")]) excluding the -1 and x entries

Since there is at least one edge from the set of vertices P;(i') to the set of vertices
P11(5"), we must preserve this link. We choose the minimum of the non -1 and non
X entries.

We applied these rules to obtain the cost matrix 0573 in Equation 5.

Theorem 1

Let S be the lattice of an n vertex SOP with cost matrix C. Let ® =< ¢g, ..., pp_1 > be a
vector of domain abstractions as defined above. Let s’ be a state in §' = ®(5) at level /.

The optimal cost of completing s’ € S’ is a lower bound on the optimal completion cost of
seSs.

Proof.

Suppose s is at level [in S. Let p =< v;,v;41,...,Up—1 > be any precedence observing
completion of s. The cost of this completion is

n—2
c(p) = Y Clvil[vis1]
i=l

We show that the path p’ =< ¢;(v;), dro1(vig1), ey Pn_1(vn—1) > in S’ is a completion of
s with cost ¢(p') < ¢(p).

Since p is a feasible path, we know that the entries C[v;][v;41] are non -1 and non-x. The
cost of this path is

n—2
c(p') = > Clinl¢i(wi)llpir1 (vig1)]
il

While we do not know the exact values of Cj;1[¢i(vi)][$it1(vit1)], we know that they
were created by applying rule 4 only, which chooses the cheapest of the edge costs between
the preimage vertex clusters. The costs C[v;][v;+1] belong to these clusters, so ¢(p') < ¢(p).

We still have to prove that there are no precedence constraints in C; ; , ; which would render
p’ infeasible. For p’ not to exist, there must be a precedence constraint for some 0 < i < n—

2 which prohibits taking the ¢;(vi)—¢i11(vit1) edge in p’; namely C ., [¢k (vi1)][Pr11 (vi)] =
—1, where | < k < n — 2. Only rule 1 introduces precedence constraints into C7;, ;. If
there is such an entry, then all of ¢, ' (v;41) must precede all of ¢,;_|1_1(vi); the precondition
for rule 1. But this is a contradiction because in p v; precedes v;;1 and p is a precedence
observing completion by assumption.

O

As we stressed before, the enumeration of the states of S is infeasible and therefore we have to build
S’ without knowing S. S’ will be enumerated entirely and therefore it has to be relatively small.
We expand S’ one level at a time from the bottom up by generating the predecessor states on the
previous levels. We can do this, since the edges of S’ have unique inverses whose costs can be readily
obtained from the abstract cost matrices. As we expand the levels we also calculate the cheapest cost
of reaching each abstract state from the abstract goal state. These are the lower bounds which are
stored in look-up tables.

We assume the existence of perfect minimal hash functions I; : S — {0,...,|S;| — 1}. This hash
function operates on its assigned level and its purpose is twofold. First, it is used to keep track of

10

states visited in the expansion and their best known completion cost. Second, the largest value of
this function is the maximum size of the level. We will later use this knowledge to calculate domain
abstractions which yield abstract spaces which are small enough to be enumerated explicitly. We later
show how to calculate the value I;(s') efficiently. Let H; be an array with |S]| many entries, where
H,[I;(s")] stores the value of the optimal completion cost of s’ in S’. If s is on level [in S, then

b(s) = Hi[Li(¢1(s))] (6)
is a lower bound on completing s in S. If s cannot be completed, b(s) = —1.

Since S’ is a lattice with a level property and all costs are non-negative, we can calculate the optimal

costs one level at a time. That is, we can calculate the values of H; considering only level S;_ ;.

For this, we will need to be able to generate the predecessors on Sj of a state on S +1- While we
omit the details, this calculation can be performed in constant time in terms of the number of original
vertex labels.

Function prec(s’, i1, ¢y) returns the set of predecessor states of s’ in Sj,; and function curr(s')
(current) is the label of the last vertex in the partial tour s’. For each state of s, ; € 5], | we generate
its predecessors on S;. For each predecessor sj, we calculate the minimal cost of reaching it via s,
from the abstract goal state. This cost is composed of the edge cost stored in the cost matrix Cl"l 41 and
the minimal cost of reaching s, from the abstract goal state; the value we stored in Hjq[Ij11(s])]
We compare this cost to the entry for the predecessor s; in H;. If we found a better cost, then we
update the value H;(I;(s})).

Algorithm 1: Calculating the sates of S; and the values of H,

Given

Siy11: abstract states on Sjiq

Cll,l 41 cost matrix between levels / and [+ 1

Hj4: optimal completion costs of states in S; 4

Ij, I;11: minimal perfect hash functions for S; and Sj4;

1. for i =0 to |S;| — 1, H[i] = —1 end for // all values of H[i] are initially -1

2. for each s;,, € S;., // for each state on S,
3. for each s) € prec(s) , ¢i11, 1) // for each predecessor s) of 5|,

4. ¢ = Cy . [curr(sy)][eurr(s))] // cost from the predecessor sj to s},
5. b= Hy1[I141(s]1,)] + ¢ /] cost of cheapest path reaching s via sj
6. 1= Il(sg)
// if there is no value for Hi[i] or a better one is found, update this value
7. lle[Z] < —1 then Hl[l] =b
8. else if H;[i] > b then H;[i] =b
9. end for
10. end for

Let us walk through this algorithm in the context of our example Ex6 with ¢9 and ¢3. Figure 6 depicts
the two levels S% and Y. We have already calculated the states on S5 and know the cost of the shortest
completion of each state: the values of H3. We show all possible combinations of states, the ones which
were not reachable because of precedence constraints are grayed out. The domain abstraction at the

11

4 -1 3 | Ho

(1,2,3)[1] (L1391 (1132 S,

lo

-1 7 3 3 -1 1 -1 }——Hg
@A A1 GAl2l @42 a2 2403 4aEL - Sy
0 1 2 3 4 5 6 — I3

Figure 6: Determining Ho

previous level is ¢ (Equation 3). We also have derived the cost matrix C3 3 (Equation 5) which can
be used to obtain the edge costs and the precedence constraints between these levels.

First, Hy[7] is initialized to -1 (line 1). We have not calculated the states on S, yet, so initially we
mark each as "not reached”. Next, we iterate through the reachable states of S§ (line 2). The first
reachable state is (2,4)[1]. We show the predecessors in two steps. The predecessors of this state
under ¢3 are

prec((2,4)[1], ¢3, ¢3) :{ 8:;:3;% }

We need the images of these states under ¢o, which are

(1,2,3)[1]
prec((2,4)[1], ¢3, ¢2) = { (LL-3H
(1,1,3)[2]

The state (1,1,3)[1] is unreachable because a precedence constraint is violated. While we described
the action of ¢ on S] that it clusters states from S}, we do not calculate the states of S] this way.
We build S} by generating the predecessors of Sj ;. This is first achieved by a syntactic manipulation
of the vertex labels of si,,, done in the two stages mentioned above. Then, the states are checked
against Cl"l 11- The abstractions ¢;11 and ¢ may or may not have preserved the precedence constraints
originally defined in C. Fortunately, in this case, this violation can be discovered from 0573 (Equation
3) as both ¢o and ¢3 preserved the precedence constraint. There are cases, however, when the
precedence constraint is eliminated by the abstraction (Rules 3 and 4) and predecessors are generated
which have no preimages in S. These states have two undesirable effects. First, they could result in
poor lower bounds because they create (potentially cheap) paths in S” which do not correspond to
feasible paths in S. Second, we have a non-negative value for H|[s'] so the search tries to complete s
while it could have discovered that s has no feasible completion. In Appendix 10.2 we describe how
we can check at least for some cases if an abstract state has no preimage in the original state space.
Because in this particular case the constraint is preserved,

prec((2,4)[1], ¢3, ¢2) :{ 8:?:2;%% }

12

Now, C33[1][1] = 1 so the edge connecting (2,4)[1] and (1,2,3)[1] is assigned this value (line).
C2,3[2][1] = —1 which indicates that (2,4)[1] is not reachable from (1, 1,3)[2]; indicated by a dashed
arrow in Figure 6. I5((1,2,3)[1])) = 0 (line 6) and H2[0] = —1. As we have not reached H[0] yet, we
set Hy[0] = H3[1] + 1 = 8 (line 7). Later this value will change because a cheaper route is discovered
to this state. This algorithm is a version of Dijkstra’s single-source all shortest-path algorithm [5]
adopted to a lattice with a level property with non-negative costs.

There is a large number of domain abstractions for a given SOP. We are interested in those that yield
good lower bounds. We will later confirm experimentally the intuitive conjecture that the larger S’
the more accurate the lower bounds. Therefore one of our aims is to build the largest S’ we can handle
within our memory limits. Let ||S'|| denote the size of S’ if we ignored precedence constraints (that is,
if we generated even those states which represent infeasible partial tours). ||S’|| solely depends on the
granularity of domain abstractions. Our total storage requirements for the lower bounds (Algorithm
1) is exactly ||S’|.

Definition: Granularity

Let ¢ : D — D’ be a domain abstraction. The granularity of ¢, g(¢), is a sorted vector
of length |D’| where the elements correspond to the number of preimages of each abstract
label in D’.

For example, g(¢2) =< 3,1,1,1 >, since label 1 has three preimages while the other three labels each
have only one. If ®! and ®? have the same granularity domain abstractions for the same levels, then
|®L(S)]| = ||®%(S)||. Therefore our second objective is to find a ”good” set of domain abstractions ®
within the sets of domain abstractions of the same granularities.

As enumerating S’ is an expensive operation, we will not consider generating many possible ®’s.
Instead we will use greedy search which climbs to a local optimum according to a user provided
evaluation function. Since we build S’ bottom up (Algorithm 1), we calculate ¢; from S; ;. Initially,
we start with ¢, 1 which maps labels to themselves; ¢,,_1(z) = z for all x € D. Suppose we are at
level 44+ 1 in Algorithm 1. This means that we have already calculated levels i + 2, ...,n — 1. We build
the perfect hash function I; for level 7 using ¢; = ¢;41. If the maximum value of I; is larger than
some user imposed value, we make ¢; more abstract. ”More abstract” specifically refers to a domain
abstraction which would result in fewer states on the next level. If we could enumerate S; with ¢; 1,
then C! 1= ! +1,+1- We then proceed according to Algorithm 1. Now suppose, we discover that ¢;
has to be made more abstract. There is a very large number of abstractions which are more abstract
than ¢;, so we restrict ourselves to those which can be obtained by merging two labels of ¢;11 to a
single one in ¢;. For example, if ¢;11 has k + 1 labels, then ¢; will have k labels. We still require that
the identities of the start and terminal vertices are kept unique, so we reserve these labels. Therefore
we have (n;?’) pairs of vertex labels to consider (which is of quadratic order in n). To estimate how
good abstraction ¢; would be, we calculate C} +1,; for each pair of labels. Suppose we choose labels
v1 and vy to be merged by ¢;. vi,v2 € D;11 and suppose they receive the label v' € D;. The rows

13

corresponding to v1 and vy in C] +1,; will be merged according to our rules of edge cost assignments.

, J—
i+l =

The merge of rows is exemplified by Equation 7. We calculate the row merge for all pairs of labels and
choose the pair which minimizes a user provided error measure E, ,,. The ones we have considered
in our experiments were the following:

preserve precedences : choose v; and vo which minimizes the number of precedence constraints
that get eliminated by the merge. If there is more than one best candidate, choose the one that
minimizes the absolute error or the normalized error (see below).

absolute error : choose v; and v9 which minimizes
|Dig1]—1
Ew,m)= > | Wil - C'W2)l] |
=0
If C'[v1][4] or C'[v2][4] is -1 or X then their values the value is taken to be 0. Some user defined
penalty could also be applied if a precedence constraint is eliminated.

normalized error : similar to absolute error, but the absolute value of the difference is divided by
the larger of the costs.

It is possible that after merging the two chosen labels ¢; is still not abstract enough; the number of
states at S; still exceeds our limit. In this case we repeat this merging step as many times as needed
until a suitable granularity domain abstraction is found.

For a SOP of n vertices, the lattice has the most states at the middle levels, this is where we need the
coarse granularity abstractions. However the upper levels are much smaller than the middle ones, so we
could make the domain abstractions less abstract and still expand it within the given limits. Instead
of merging rows, we consider splitting them. There are many more combinations of splitting than
merging, therefore we again limit the combinations we consider. Let ¢;11(v) € D;y; have preimages
P;11(v) = ¢;)1(v) € D. We only consider one kind of label split: taking a single vertex label from
Pj;1(v) and giving it its own label. We choose the pair v; and vy € P;y1(v) which mazimizes our error
measure in C| 41,4 In other words, we want the largest discrepancy between the resulting rows v; and
V2.

Since we can vary the granularity of abstractions from one level to the next, we are able to enumerate
abstract space lattices which maximally utilize available memory.

5 Search

The SOP state space is a lattice which is also a directed acyclic graph (DAG). Because it is acyclic
and finite, a systematic depth-first expansion of the space always terminates. Our search procedures

14

are based on depth-first branching. Since the depth of the solution is fixed at n for the n vertex SOP,
the memory requirement for this search is altogether only O(n?) states (n successor arrays on the
stack). Therefore we can practically use all memory to store the lower bounds. Let

f(s1) = c(s1) +b(s1) (8)

be an estimate of the cost of a tour which is comprised from the cost of the partial tour ¢(s;) and its
estimated completion cost b(s;). b is precalculated and obtained by looking up the entry H;[I;(¢;(s;)]
as we described in the previous section. The space is explored in depth first order. The successors are
generated by the function succ(s;), which uses the cost matrix associated with the SOP to eliminate
those partial tours that would violate precedence constraints. The successors are sorted in increasing
order according to their f values (Equation 8).

Algorithm 2: Depth-first BranchéBound

Given

s;: current partial tour on level [
c(s;): cost of s
ub: the value of the best known tour, -1 initially (global variable)

. dfbb(sy,c(sy))
if | =n —1 then
if ¢(s;) < ub or ub = —1 then
ub = c(s;) // best solution so far
return // bottom reached
for 5,1 € sortg(succ(s;)) // successors of s; on 1+ 1
if f(s;11) > ub return
dfbb(sii1,c(s1) + Clsi][s141])
end for

©ooNS oW =

If we reach the terminal vertex, then we check whether this tour has a lower cost than the cost of
the best known tour (line 2). If it does, we update the value of the cheapest tour. Otherwise, we
generate the valid successors and sort them in order of their f values (line 6). We consider those
partial tours first whose estimated total cost is cheaper. At any point in the loop, if we discover that
the cheapest tour under s; 1 cannot be cheaper than the cost of the best known tour, we abandon all
further successors (line 7) as they are known to cost at least as much as the current s;;;. Otherwise
the algorithm keeps branching (line 8).

This algorithm can be greatly improved for solving the SOP. Since Algorithm 2 branches depth-first,
its action is to solve subtrees of increasing depth from the bottom up. When the algorithm is called
recursively with a successor (line 8), it can be thought of as solving a new search tree whose depth is
one level smaller. However in the case of a SOP, this subtree is also a solution to a smaller SOP S.
Therefore if the lower bounds obtained for S do not yield an optimal solution to the subtree within a
user specified computational limit, then this subtree can be solved as a smaller individual instance of
a SOP with its own lower bounds.

Theorem 2

Let C be the cost matrix of a SOP and let s; be a state in S with representation

51 = (V1415 Vi 2, ---Vp—1) V1]

15

The vertices vy, ..., v; are part of the partial tour represented by s;. Let

¥ {vy,.evp_1} = {0,..,n —1 — 1}

be an isomorphism which assigns a unique index to v; and the vertex labels not yet reached
by s;. We only require that 9 (v;) = 0 and 9 (v,—1) = n — [— 1. 1 simply established an
order of the unvisited vertices and the current last vertex such that the current vertex is
the first and the terminal vertex is the last. Let ¢/(C) be a matrix with rows and columns
chosen by ¢ from C. The SOP, S, defined on the vertices {v;,...,v, 1} has cost matrix C
with values of 4(C') and precedence constraints added to reflect that ¢ (v;) = 0 is the start
vertex and v (v,_1) = n — [— 1 is the last vertex. In essence, C' is the rows and columns
of C with indices of the unreached vertices.

The optimal completion cost of s; in S is the cost of the optimal solution to the SOP S.
Proof.

The SOP S is over k = n — [vertices. Let
P =<V, V1, .., Vp—1 >
be the optimal cost tour in S. This tour corresponds to the completion of s;

p=9"(p) =< ¢ " (0),p (V1) s ¥ (Up—1) >

We prove that p is a complete (1), precedence observing (2) and optimal (3) completion
of Si.-

1. p is clearly a complete completion of s; as it includes each unvisited vertex exactly
once, starts at vertex v (since ¢~'(9) = v;) and terminates in vertex v, ; (since
¢ (O—1) = vn-1)-

2. Suppose there is a constraint in C' which states that v, must precede v, in S (I < z,y <
n). Then there is an entry C[v,][v;] = —1 which is preserved by C[¢(v,)][4(v;)] = —1,
s0 1 (v,) precedes 9 (vy) in p. Therefore p is precedence observing with respect to C.

3. Suppose p is not an optimal completion of s; in S. Then there exists another path
q =< U, Ul41, -, Up—1 > Which is cheaper than p. This path has the image

q= '(,b(Q) =< 1,/)(Ul),¢(ul+1), "'7¢(un*1) >

in S. Since ¢ is a path, the entries C[u;][u;;1] for 0 < 4 < n are non-negative and
so are the entries C[tp(u;)][1(u;s1)]- Suppose there is a precedence constraint that
uy precedes u, for | < x,y < n; ie. Cluy|luy] = —1. This constraint is present in
C as Cih(uy)]|[¥(ug)] = —1 so 9(uy) precedes 9(uy) in . But ¢(q) < ¢(p) which is
a contradiction since p is assumed to be the optimal tour in S. Therefore p is an
optimal completion of s;.

16

The number states on level S; of an n vertex SOP for [<0 <n —11is

|sl|=(”l‘2><n—2—l>)

From this, it is clear that the middle levels are far larger then the top and bottom ones. When we
build the abstract lattice S’, we can enumerate some of the bottom layers with abstracting only a few
of the original labels and therefore at these levels the lower bounds will be very accurate. However,
the middle layers of S are larger and coarser granularity abstractions are needed in order to calculate
S’. This will deteriorate the quality of the lower bounds at levels closer to the top. At levels where
the lower bounds are inaccurate, Algorithm 2 will not prune as many branches. However, using the
property that tour completions are themselves solutions to SOP instances, we can modify Algorithm
2 to solve such subtrees faster. Let L; be a user specified limit on how many expansions the user is
willing to tolerate for solving the subtree at level [with the current lower bound. When this limit is
reached, the current search is abandoned and the completion of s; is solved as an independent SOP.
The subproblem SOP has fewer vertices (and therefore it is a much smaller problem) so we expect to
generate more accurate lower bounds. In fact, we do not necessarily have to find the actual optimal
solution to this subproblem.

Algorithm 3: Recursive Depth-first BranchéBound

Given

C': cost matrix
ub: upper bound for pruning
L: vector of tolerance values

01. rdfbb(C ub,L)
02. fori=0to i <n E[i] =0 // init nodes expanded counts
03. dfbb(C,s0,0)

04. dfbb(C,s1,c(s1))
05. ifl =n—1 then

06. if ¢(s;) < ub or ub = —1 then

07. ub = ¢(s;) // best solution so far

08. return // bottom reached

09. inc(E[i])

10. if E[i] > L[i] then

11. rdfbb(Cub-c(s;),L) |/ solve the subproblem SOP over the remaining vertices
12. return

13. for s, € sorty(succ(s;)) // successors of s; on 1+ 1

14. if f(s;41) > ub return

15. dfob(Csi41,¢(s1) + Clsi][s141])

16. end for

The additions to Algorithm 2 are the lines 9-12. If the tolerance is exceeded, we generate C' which
is the cost matrix of the subproblem SOP over the remaining vertices and only looking for solutions

17

which are better than ub— ¢(s;). In most cases it takes much less time to prove that no solution exists
whose value is less than this new bound than actually finding the optimal solution in the subproblem.
Running our initial experiments we also realized, that it is more efficient to check for violations at the
levels closer to the top first. If Lo and Ls are both exceeded by the current search, then we choose to
solve sy instead of s5 because the solution to so also solves s5. Of course, it is not easy to determine
what the optimal limit values should be. The overhead of calculating new lower bounds must also
be taken into account. We can accurately estimate the computational effort involved in building the
abstract space since we give exact limits on the size of a level we can enumerate. In our experiments
we set L; approximately 10-15 times the size of the abstract space based on a few experiment we ran
initially. It would require further experimentation to verify if a good set of limits can be efficiently
found.

There is another property which can be used to improve our search. The precedence constraint ”v;
must precede v;” can be rephrased as ”v; must occur after v;”. Regarding the solution cost, the
direction of the search is arbitrary. However, it has been observed [11] that the direction of the search
is relevant with respect to computational time to find the optimal solution. This is related to the
difference in the branching factors: it is possible that a state in S has more branches on average in
one direction than in the other. While it is computationally infeasible to determine the branching
factor in the SOP as it is decided by the precedence constraints, it can be calculated quickly down to
a few levels from the start. When we consider solving a subtree independently, we already commit to
significant computational overhead by calculating new lower bounds. With some additional effort, we
can also determine how many states there are in the new SOP at say levels 1,2 and 3 in both directions.
Based on these values we can choose the direction we expect to take less work, since solving subtrees
at these levels take the most computational effort.

Depth-first branch&bound does not keep track of states already reached and therefore some states are
reached many times during search. From the representation

S| = (Ul+1avz+2, ---,Un—l)[vl]

we know that the vertices vg,...,v; have been used, but we only know that vy was the start vertex
and that this partial tour ends in v;. The different precedence observing combinations of vy, ...,v;_1
are all valid partial tours represented by s; and in the worst case all of them could be traversed in
the search. These different paths to v; are often referred to as transpositions in the search literature.
To minimize the number of transpositions, we can utilize transposition tables to store the cost of the
cheapest cost of reaching s; so far. If the algorithm encounters s; with a higher cost, then s; does not
have to be expanded again. The drawback of keeping transposition tables is the memory overhead.
Since we use memory to store lower bounds, we would have to consider if it is worth to trade some of
it to store transposition tables instead. In the case of the SOP, it turns out that there is a justifiable
answer. We already have a perfect hash function I; which operates on S] (see Appendix 10.1). The
hash on S; is just a special case of I; where ¢ maps each vertex to label itself. Therefore we also
have a perfect minimal hash function to index the transposition tables associated with a particular
level. There are no transpositions on levels 0, 1 and 2. The size of level [is given by Equation 9.
Therefore, we can calculate how much memory we would need exactly to store transpositions at levels
3 and below. Since we want to avoid re-expansions at the higher levels, we can utilize transposition
tables for these shallower levels. In our experiments we found it worth-while to use a few levels of
transpositions tables.

18

Depth-first branch&bound finds feasible paths of decreasing cost. Since these costs are used as upper
bounds to prune branches, it is very important to find cheap tours early. The lower bounds stored in
a pattern database are also used in sorting the branches. As our experiments will show, having tighter
lower bounds in a pattern database does not guarantee cheaper initial solutions. Therefore we decided
to use a heuristic improvement method also employed by [2, 10, 15]. Whenever a solution is found
(Algorithm 2 line 4), we run a 3-opt tour improvement heuristic. We also alternate directions each time
a user specified number of node expansion limit is reached. The searches in both directions work on
refining the best known solution so far. The rationale of the direction switch can be understood from
recursion of depth-first branch&bound. The tail end of the best known tour is much more refined
as many more feasible permutations of the vertex labels have been evaluated. If we displayed the
sequence of vertex labels being considered during search, we would see that the vertices of the partial
tours near the start vertex hardly change while the tail end vertices are shuffled a lot. Changing the
direction tries to force changes in the other end of the tour as well.

6 Results

The two control parameters we supply to calculate the lower bounds are the maximum number of
abstract states on a single level (maximum width) and the error function which the abstractions
between consecutive levels optimize. In this discussion we use the maximum width as the measure of
the size of pattern database as it is directly proportional to the total memory requirements (compare
the columns “Maximum Width” and “Actual Size” in Table 4). We have considered four different
error functions. These are the ones discussed in the previous section, namely “Preserve Precedences”,
“Absolute Error” and “Normalized Error”, and we also included “Random” which picks the labels to
be merged randomly. In all of our experiments we found that “Absolute Error” (AE) generates the
tightest lower bounds, even when the penalty value for eliminating a precedence constraint is zero.
Applying a good penalty value could often tighten the bounds. In one particular experiment we found
that minimizing AE clearly outperforms the other measures and in some cases it generates almost 100
times higher lower bounds than randomly chosen abstractions. The lower bound of the start state,
bo, is also a lower bound of the optimal solution. In this experiment, we obtained significantly higher
bo’s than the best posted value of 69,569. This problem is referred to as p43.4 in the TSPLIB. Table 3
shows the results of this experiment. by is the lower bound of the start state, ave(b) is the average value
of all lower bounds stored and Time is the CPU time in seconds needed to build the patter database.
The values in bold are higher than the best lower bound reported for this problem previously. For
each size, we generated 20 random pattern databases and took the highest by, the highest ave(b) and
reported the time for the shortest calculation. It is clear from the results that even the best values
chosen from 20 random databases are far worse than the one built optimizing AE. In fact, our smallest
AE pattern database has much higher lower bounds than the best of 20 random ones which is also
16,384 larger. While these large discrepancies were not typical in our experiments, our results suggest
that experimentation with the error measure for a particular SOP could be well worth the effort. This
experiment also reveals an interesting phenomenon that we encountered on more occasions. The AE
pattern database with width 2000 is better than many of the larger ones minimizing the same error
measure. At this time we have no explanation other than the abstractions generated seem to preserve
the costs between the levels particularly well.

We are most interested in how our lower bounds perform in actual searches. We chose a few unsolved
problems from the TSPLIB and we also created a testbed of 16 smaller problems. First we describe

19

Max Random Absolute
Width Error

bo ave(b) | Time bo ave(b) | Time
500 400 402.90 | 0.57 53,965 | 53,704.10 | 0.57
1,000 435 668.63 | 0.69 54,110 | 47,218.00 | 0.62
2,000 490 830.25 | 0.80 || 80,690 | 59,256.60 | 0.77
4,000 510 848.48 | 0.85 54,110 | 50,163.50 | 0.92
8,000 545 | 1,219.24 | 1.00 54,115 | 52,356.10 1.13
16,000 580 | 1,631.24 | 1.15 54,000 | 50,853.30 1.17
32,000 630 | 2,146.16 | 1.46 || 80,890 | 65,315.20 1.29
64,000 655 | 2,624.48 | 1.69 54,045 | 52,732.60 | 2.14
128,000 680 | 2,934.33 | 2.13 || 81,055 | 60,713.50 | 2.24
256,000 700 | 3,618.05 | 2.50 || 81,140 | 77,298.50 | 2.85
512,000 710 | 4,925.33 | 3.30 || 81,110 | 69,782.70 | 2.63
1,024,000 955 | 5,000.84 | 4.05 || 81,320 | 74,026.30 | 3.71
2,048,000 965 | 7,841.39 | 5.82 || 81,350 | 65,885.20 | 4.48
4,096,000 | 1,130 | 8,218.48 | 8.95 || 81,385 | 70,395.50 | 6.23
8,192,000 | 1,265 | 9,704.65 | 18.43 || 81,585 | 70,473.30 | 12.87

Table 3: Generating Lower Bounds for p43.4

the TSPLIB experiments.

We did not manage to improve on the best known upper bounds of the TSPLIB instances but in one
case we proved that the upper bound of 83,005 for p43.4 is also optimal?. On the other hand, we
did match the best reported upper bounds within 60 minutes of CPU time to the open problems
p43.2, p43.3, p43.4, ry48p.2, ry48p. 3, ry48p.4, £t53.2 and £t53.3. In these experiments we used
bi-directional branch&bound and also utilized a 3-opt edge exchange heuristic.

To study the behaviour of our lower bounds, we created a testbed of 16 smaller problems. Each
problem is a SOP over 30 vertices. These 16 SOPs are derived from 4 base problems. The first one
was obtained by choosing 30 points on a 500x500 integer grid. The edge costs correspond to the
rounded Euclidean distances between these points. We also picked one third of the edges randomly
and added random noise within £50% of the edge cost. The second SOP was generated exactly in
the same manner but we selected the 30 points on a 6x6 grid. This latter only has edge costs in
the interval [0,8]. The edge costs for the third and fourth SOPs were generated by choosing uniform
random integers from [0, 1000] and [0, 10] respectively. Next, we generated four random precedence
graphs. We applied the constraints implied by these to each of our four base problems and obtained
SOPs with 107 (1), 160 (2), 210 (3) and 253 (4) precedence constraints. These include the 57 trivial
precedences which are due to the fact that the start and terminal vertices are designated. For ease
of reference, we named these 16 test problems suggestively. 500x500-2 is the SOP whose vertices are
chosen from the 500x500 grid and to which the second precedence graph was applied. Therefore its
cost matrix has 160 precedence constraints.

First, we investigated the memory and search speed trade-off. That is, how increasing memory to store
lower bounds effects search speed. To this end, we solved the 500x500-3 SOP instance with 7 different
pattern databases of exponentially larger size. For all these pattern databases, we optimized the
“Absolute Error” measure in the abstract space. The results of this particular experiment represent

Zwhich also contradicts the upper bound posted as 82,960 whose origin we could not trace

20

25K
1e+08

1e+07 |

Nodes Expanded

1e+06

1,600K

| L PSR | L M |
1e+06 1e+07 1e+08
Memory

Figure 7: Nodes Expanded vs. Memory

the general trend we observed in the other experiments as well. Figure 7 plots the number of nodes
expanded during search and the actual size of the pattern database, this time measured as total
number of entries. Both axes are on the logarithmic scale. If the trade-off was 1-1, then the data
points would be on a line with slope -1 (drawn as a dashed line). In fact, in this case it seems that
the trade-off is even better. Doubling memory to store lower bounds results in less than half of the
nodes expanded in the search. The notable exception is the pattern database with width 100K. This
one clearly outperforms the one double its size and it is as good as the one four times larger. The
detailed statistics of this experiment are listed in Table 4 and Figure 8 plots the solution cost vs. the
number of nodes expanded during search. These tell why the 100K pattern database outperforms
the one with width 200K. It is clear from Figure 8 that the database with width 200K starts with
the costliest solutions a lot of search effort is needed before the cheaper solutions are found. The
value of the first solution found also seems to be uncorrelated with the size of the pattern database
(Table 4). In this particular case, the smallest pattern database finds the cheapest solution. The
lower bounds play two roles in our search algorithm. They are used to prune branches from the
search tree as well as ordering the branches. The value of the first solution depends mostly on how
the branches are ordered. From the results of this experiment and other experiments we performed
we cannot establish any relationship between the size of the pattern database and the quality of the
initial sequence of solutions. We did compare to random ordering, which turned out to be consistently
worse. However, to date, we found no telling statistics of the pattern database which would suggest
cheap initial solutions. In these experiments we did not use the 3-opt heuristic tour improvement so
we can study this behaviour. The focus of our currently running experiments is to investigate how we
can force cheap solutions early. At this time we have no statistics.

21

Max Actual bo First Nodes Search | DB
Width Size Solution | Expanded | (sec) | (sec)
25,000 | 402,043 | 2,577 4183 | 108,618,722 | 261.61 | 0.11
50,000 895,986 | 2,905 4,655 | 66,025,147 | 160.84 | 0.14
100,000 | 1,680,769 | 3,023 5,048 6,621,231 19.16 | 0.72
200,000 | 3,178,762 | 3,065 5,433 | 13,920,570 40.68 | 1.33
400,000 | 6,339,234 | 2,975 4183 | 6,339,234 | 19.23 | 2.14
800,000 | 11,517,316 | 3,292 4,375 1,367,800 4.54 | 3.62
1,600,000 | 24,147,235 | 3,109 4,695 452,692 1.80 | 5.10

Table 4: Results of Solving 500500 3 with Different Databases

While nodes expanded is an appropriate and exact measure to evaluate search performance, we also
have to take into account the overhead of building pattern databases. Figure 9 plots the solution
cost (y-axis) and the actual CPU time (z-axis, logarithmic scale) that it took altogether to find the
solutions. The computational overhead is represented by the time offset of the initial solutions. From
this plot we can tell, that even with the overhead, larger pattern databases result in faster searches.
The order is almost the same as established by the number of nodes expanded, except that the pattern
database with 100K level limit now also outperforms the database whose maximum width is 400K.

We are also interested in how adding more precedence constraints effect search performance. Ascheuer
et al. [2] observed that their branch&cut method is more effective for SOPs which have less precedence
constraints. The limiting factors in branch&cut, besides the dimensionality, are the size of the pool of
inequalities that have to be searched and the construction of the facet including inequalities. Non of
these are eased by more precedences. For us, more precedence constraints mean less branching in the
search space and therefore less node expansions. On the other hand, it is more likely that more of the
original constraints would be eliminated by the abstractions if there were more to begin with. Loosing
a significant portion of the original constraints could result in poor lower bounds. Our experiments
indicate that in most cases the more constrained the SOP the faster our searches. Table 5 shows
the results of our experiments with the 16 SOPs. We chose 3 different size pattern databases; with
maximum level widths of 50K, 250K and 1,250K states respectively. In all cases we minimized the
“Absolute Error” measure when building the abstract spaces. While we can easily solve these problems
to optimality with large databases, we also used a small and a moderate size database as well to study
how adding more constraints effects the quality of lower bounds with different size pattern databases.
From our experiments we can establish that regardless of the size of the pattern database, in general,
the more constrained the SOP the earlier the search terminates. The two exceptions are 0-1000-3
and 0-10-3. They both need more computation than their less constrained counterparts 0-1000-2
and 0-10-2. We believe we know the reason for this. 500x500 and 6x6 are derived from Euclidean
base problems. When the “Absolute Error” is minimized, it is likely that “physically close” vertices
receive identical labels by the abstractions as their proximity to other vertices would carry the least
absolute error. On the other hand, in the random problems there is no such notion of distance and
it is likely that some relatively large cost edges are merged with small cost edges in the abstraction.
Therefore “Absolute Error”can be misleading and applying penalties to keep precedences would be
more appropriate. This conjecture is also supported by the by values. In the case of 500x500-3 the
lower bound for the start state is 72% of the optimal cost while it is only 40% for 0-1000-3 according to
the smallest databases. When experimenting with different penalty values applied when a constraint

22

5600 T T T T T T

25K ——
50K ---x---
5 100K ---%---
5400 - 200K 8 -
* 400K —-m-—
800K ---o--
; 1,600K o -
5200 - -
*".
5000 - moggo.g .
B : g
§ 4800 | : ‘ i
3 : ‘
o e X
(%} oot =] ¥
e . o 4 XX X Y X
400 - o B 8 § 88§ 38 §
X = -
4400 .
4200 .
4000 i
10M 102 1043 1074 1075 1076 1047 1078

Nodes Expanded
Figure 8: Solution Cost vs. Nodes Expanded for 500x500-3

is eliminated, we were able to bump up 0-1000-3’s by to 81% of the optimal cost with the same size
pattern database. Our results also show that having larger databases pays off. In the case of 500x500-
1 allocating a 5 times larger database results in a 148 fold reduction in nodes expanded. Increasing
this size yet another 5 times and there is another a 21-fold reduction in nodes expanded. While these
very high ratios are not typical, our experiments indicate that in general the trade-off between memory
and search speed favors adding more memory.

We also performed experiments with recursive branch&bound and using transposition tables. For this
experiment we used the smaller databases. In all cases we set a tolerance limit of 300 times the width
of the pattern database (approximately 12 times its actual size). If this limit is reached, a new pattern
database is built for the sole purpose of solving the largest current subtree excluding the start state.
The node counts reported in Table 6 for the recursive branch&bound experiments (column marked
Rec) include the nodes expanded in the subproblems as well. Because there is additional overhead of
building more pattern databases, we also report the actual CPU times of the total runs. The column
Rec+Trans lists the results of using recursive branch&bound and two levels of transposition tables.
The results suggest that in most cases recursive branch&bound outperforms plain branch&bound even
with additional overhead. In some cases the improvements are negligible or actually increase search
effort. In other cases the improvements are significant. For example in the case of 500x500-1, the
improvements are 7-fold and using transposition tables as well are almost 9-fold. For 0-1000-3 and
0-10-3 the improvements result in less search than using the 5-times larger pattern database (bold
entries).

23

5600 T T

25K —+—
50K ----—-
5 100K -
5400 [: 200K ~-=r
: 400K -—m—
800K ---o---
: 1,600K o -
5200 [| i
xo
5000 g -
5 4800 | C Y -
5 ! f
[e) * ; L
® 0 % %% % < x
‘600 |- ! . .88 88 § B &
| £ T
X -
4400 | . 3 P | 4
e x B4
X * % L R
4200 | X : % h 4
" .
4000 L e Besy 5 I I
1 10 100 200 400

CPU Time (sec)
Figure 9: Solution Cost vs. CPU Time

7 Other Applications

Our lower bounds are derived from state space abstractions. These are induced by domain abstractions
which are simple syntactic patterns that group states. While we tested our technique with the classic
SOP only, we believe it could also be effective to solve other constrained TSPs as well.

Here, we detail two variations of the SOP for which our technique could generate lower bounds. We
do not have experimental results at this time to actually evaluate their effectiveness.

Disjunctive Precedence Constraints

In the classical definition, the precedence is given explicitly. On the other hand one can imagine a
more elaborate constraint structure where the constraint involves a choice. For example, “one-of (3
and 4) must precede vertex 5 or “two-of (2, 3 and 4) must precede vertex 5”. Once we add disjunction
we can express arbitrary boolean constraints of precedences. The precedences must be in the form

(boolean constraint of vertices) must-precede vertex

At this point, we would not allow a disjunctive constraint on the right-hand side of must-precede.

It is easy to see that we can encode such constraints into the successor generator function. Let s be a
state representing the partial tour ending in the vertex with label v,

s = (v1,v2, ..., vg)[vc]

When we create the successors, we simply check that the precedence constraints are observed for

24

SOP 50,000 250,000 1,250,000
1,000 Time 1,000 Time 1,000 Time
Nodes (sec) Nodes (sec) | Nodes (sec)
1] 3,046,341 21,790 20,596 208.29 964 10.57
500x500 2 212,656 1,132 8,761 52.63 692 5.27
3 66,025 278.13 7,750 37.92 460 3.07
4 27,796 127.25 9,288 49.80 488 3.17
1 9,022,057 66,451 | 1,775,135 16,058 | 141,987 1,570
6x6 2 || 1,154,906 5,818 35,283 206.61 3,476 25.25
3 26,579 133.14 9,509 57.88 814 5.63
4 988 4.84 176 1.06 4 0.03
1 360,391 2,773 34,060 336.05 | 17,091 184.29
0-1000 2 25,661 152.81 3,787 26.34 159 1.51
3 266,526 1,243 70,435 376.39 8,936 60.89
4 176 1.04 32 0.22 4 0.04
1 118,071 721.58 33,489 248.34 3,006 32.74
0-10 2 468 3.06 202 1.48 54 0.52
3 59,310 290.84 22,045 126.68 | 10,943 61.89
4 7,788 40.01 895 5.33 43 0.32

Table 5: Nodes Expanded and CPU Times of the Problem Set

v which is the right-hand side of the must-precede operator. In the abstract state, the domain
abstractions must also be applied to the constraint definitions. For example, consider the constraint

two-of (2, 8 and 4) must-precede 5

and the domain abstractions
2, ifve{2,3}
v, otherwise

¢1(v) = {

2, ifv e {2,3,5}

v, otherwise

Under ¢; the constraint reads

two-of (2, 2 and 4) must-precede 5
and under ¢9

two-of (2, 2 and 4) must-precede 2

Since domain abstractions do not eliminate vertices just relabel them, checking the abstract constraints
is still trivial from state representation. With ¢;, we check if the tour has used up two 2’s or a pair
2-4 labels. Otherwise the state is not generated. With ¢o, if the successor’s current vertex is 2, we
still have to make sure that either two other 2’s or a pair of 2-4 are already part of the tour.

25

50,000

SOP Plain Rec Rec + Trans
K Nodes Time K Nodes Time K Nodes Time
1| 3,046,341 21,790 405,420 3,220 350,431 2,817
500x500 2 212,656 1,132 351,017 2,113 315,387 1,922
3 66,025 278.13 33,327 146.79 26,871 118.18
4 27,796 127.25 56,153 248.63 44,182 198.21
1 || 9,022,057 66,451 | 18,950,825 134,032 | 12,250,761 101,120
6x6 2 || 1,154,906 5,818 30,4600 1,750 26,8862 1,551
3 26,579 133.14 26,579 135.48 21,293 108.86
4 988 4.84 988 4.96 988 4.98
1 360,391 2,773 347,409 2,732 317,975 2,506
0-1000 2 25,661 152.81 17,865 112.49 17,686 109.62
3 266,526 1,243 51,707 230.21 48,021 212.11
4 176 1.04 176 1.03 176 0.03
1 118,071 721.58 61,936 420.93 61,798 423.42
0-10 2 468 3.06 468 3.11 468 3.13
3 59,310 290.84 22,042 111.54 20,171 101.83
4 7,788 40.01 7,788 40.95 7,786 40.93

Table 6: Nodes Expanded and CPU Times of the Problem Set

Soft Precedence Constraints

We can also imagine that some precedences are cast in stone while others are allowed as far as some
penalty is paid. It can be easily detected at the time the successors are generated if a penalty applies.
The value of the penalty is added to cost of the partial tour corresponding to the successor. This is
also true in the abstract space. However, we will only be able to add the penalty if the uniqueness
of the penalized edge is preserved. That is, when the labels of the source and end vertices are not
abstracted. Otherwise only the minimum of the original penalties between the preimage vertices can
be applied. However a well designed error measure could optimize to preserve penalties in the abstract
space.

8 Conclusion

We have defined a new way of deriving lower bounds automatically for the SOP. The lower bounds
correspond to optimal tour completion costs in an abstraction of the original state space. These lower
bounds are calculated at once and stored in a look-up table called the pattern database. We have
introduced a novel way of building pattern databases which use different abstractions exploiting the
level structure of the SOP state space lattice. The lower bound corresponding to the start state is a
lower bound for all feasible solutions of the SOP. With our technique, we were able to tighten lower
bounds for some instances of the unsolved TSPLIB problems.

We also have introduced many variations of depth-first branch&bound. Recursive branch&bound
takes advantage of the property of the SOP that every consecutive sequence of vertices in a feasible
tour is a SOP itself. This SOP is much smaller and our pattern database technique can be used
to solve this subproblem independently. Bidirectional branch&bound exploits the fact that the SOP
state space can be searched in both directions.

26

We experimentally confirmed that the larger the pattern database the faster the search. In fact, often
the ratio of improvement in search speed far exceeds the ratio of memory increase. Unfortunately
we could not establish a similar relationship between the size of the pattern database and the cost
of the initial sequence of solutions. To obtain better solutions early, we also used a 3-opt heuristic
tour improvement on each new solution we found. This, together with bi-directional search resulted
in a solver which matched best known upper bounds in reasonable computational time for many of
the unsolved TSPLIB instances. Using recursive branch&bound, we were able to prove a previously
unknown optimal value for one instance from the TSPLIB.

The pattern database technique is a general strategy to derive lower bounds for state space search. We
believe that it can also be used with other variations of constrained ATSPs and possibly to solve other
scheduling/optimization problems. We also believe that it can be integrated with other solvers as well.
For example, instead of a simple 3-opt, our algorithm could be seeded with the cheap solutions of the
HAS-SOP solver of Gambardella et al. [10]. This way a good quality solution is guaranteed early. We
also believe that the shortcomings of our pattern databases in finding solutions early could be solved
by Ascheuer’s [2] branch&cut. The solution to the LP relaxation is a fraction in [0,1] corresponding
to each edge of the SOP. We could interpret these values as probabilities that tell how likely it is that
the particular edge is included in the tour. We would sort branches by these probability values but
still use our lower bounds for pruning.

9 Acknowledgement

I would like to thank my supervisor, Dr. Robert C. Holte, for his support, advice and encouragement
during the completion of this work. I was also financially supported by an NSERC grant.

References

[1] N. Ascheuer. Hamiltonian path problems in the on-line optimization and scheduling of flexible
manifacturing systems. PhD thesis, Technical University of Berlin, 1995.

[2] N. Ascheuer, M. Jiinger, and G. Reinelt. A branch & cut algorithm for the asymmetric traveling
salesman problem with precedence constraints. Computational Optimization and Applications,
17(1):61-84, 2000.

[3] N. Christofides, A. Mingozzi, and P. Toth. State space relaxation procedures for the computation
of bounds to routing problems. In Networks, volume 11, pages 145-164, 1981.

[4] J. C. Culberson and J. Schaeffer. Searching with pattern databases. In Proceedings of the
Eleventh Biennial Conference of the Canadian Society for Computational Studies of Intelligence
on Advances in Artificial Intelligence, volume 1081, pages 402-416, 1996.

[5] E. Dijkstra. A note on two problems in connexion with graphs. In Numerische Mathematik,
volume 1, pages 269-271, 1959.

[6] Stefan Edelkamp. Planning with pattern databases. Technical report, Institut fiir Informatik,
Universitat Freiburg, 2000.

27

[7] L. F. Escudero, M. Guignard, and K. Malik. A Lagrangian relax-and-cut approach for the
sequential ordering problem with precedence constraints. In Annals of Operations Research,
volume 50, pages 219-237, 1994.

[8] Fischetti. Facets of the asymmetric traveling salesman problem. MOR: Mathematics of Operations
Research, 16, 1991.

[9] L. M. Gambardella and M. Dorigo. HAS-SOP: Hybrid ant system for the sequential ordering
problem. Technical Report IDSTA-11-97, IDSTA, 1, 1997.

[10] L. M. Gambardella and M. Dorigo. An ant colony system hybridized with a new local search for
the sequential ordering problem. INFORMS Journal on Computing, 12(3):237-255, 2000.

[11] Hermann Kaindl, Gerhard Kainz, Angelika Leeb, and Harald Smetana. How to use limited
memory in heuristic search. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pages 236-242, 1995.

[12] R. Korf. Finding optimal solutions to Rubik’s cube using pattern databases. In Proceedings of
the Workshop on Computer Games (W31) at IJCAI-97, pages 21-26, 1997.

[13] A. Mingozzi, L. Bianco, and S. Ricciardelli. Dynamic programming strategies for the traveling
salesman problem with time window and precedence constraints. Operations Research, 45:365—
377, 1997.

[14] W. Pulleyblank and M. Timlin. Precedence constrained routing and helicopter scheduling: Heuris-
tic design. Technical Report RC17154, IBM, 1991.

[15] Dong-Il Seo and Byung-Ro Moon. A hybrid genetic algorithm based on complete graph rep-
resentation for the sequential ordering problem. In Genetic and Evolutionary Computation —
GECCO-2003, volume 2723 of LNCS, pages 669-680. Springer-Verlag, 2003.

[16] TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/software/ TSPLIB95/.

10 Appendix

10.1 Perfect Minimal Hash Function

I; is a perfect minimal hash function over the states of S = ¢;(5;), not taking precedences into
account. This means that given a state on s; € S}, Ij(s;) returns a unique integer in the interval
[0,]|S]]] = 1], where ||S]|| is the total number of states on 5] including those which represent partial
tours that violate precedence constraints.

Recall that s; is represented as a set of abstract labels corresponding to the vertices not in the partial
tour and the label of the last vertex in the partial tour. The number of labels available in s; for an n
vertex SOP is n — [. This includes the label £ — 1 for the terminal vertex of the tour. Therefore we
have n — [— 1 “wild card” labels.

s; = (available labels, k — 1)[v,]
—_—_————
n—{—1

28

To model this problem, imagine that we have « boxes, one box corresponding to each of the k abstract
labels excluding the labels 0 and ¥ — 1 which are unique and reserved for the start and terminal
vertices. # = k — 2. The box 4, for 1 < i < =, contains |¢; ' (i)| pebbles with the same colour. No
two boxes have pebbles with identical colours. There is at least 1 pebble in each box (we do not have
redundant labels). The labels of the abstract state correspond to the pebbles we pick from the boxes.
In particular, we have to choose 1 pebble for the current vertex (v.) and then another n —[—1 pebbles
from the remaining ones to represent the available vertex labels. To count the abstract states, we
break down the problem into the these subproblems.

e choose 1 pebble from the z = k — 2 boxes

e choose n — [— 1 pebbles from the remaining ones

Subproblem 1 is clear. There are k& — 2 choices. For subproblem 2, we define a recurrence relation.
Fix the order of the £ boxes and number them with 1, 2, ..., . Any order is good, but it has to be
fixed ahead of time.

Let f(a,b) be the number of ways one can select b pebbles from the boxes with numbers a, a 4+ 1, ...,
x where each box contains n, many identically coloured pebbles. The recurrence is

0, ifb > number of pebbles in the a boxes

1, if b = number of pebbles in the a boxes
fla,b) =< 1, ifb=0

1 ifa =1landb < n,

St o fla—1,b—14) otherwise

We can solve this recurrence with dynamic programming. The matrix of state variables T' for ¢ = 4
and b=4 withn; =3, no =2, n3=5and nqy =2 is

b
01 2 3 4
T 11 4 10 18 26
al2|{1 3 6 8 9
3|1 2 3 3 3
4111 1 0 O

The value T[1][4] = 26 is the total number of ways the 4 pebbles can be picked from the 4 boxes.

Suppose we have chosen m, pebbles from box a, > m, = b. The value

=S (mflT[aH] (gmj) —ZD

a=1 1=0
is unique for each choice of b pebbles in the interval [0, T[1][b]].

Suppose we chose 2 pebbles from box 1, one pebble from box 3 and one pebble from box 4. Then the
h value corresponding to this choice is

(T[2][4] + T[2][3]) + 0+ (T[3][2]) =9+8+1=18
We need k£ — 2 such dynamic programming tables, one for each choice of v.. Let us order them

according to the label values of of v.. The hash value is obtained by calculating A(.) and offsetting
this value by the maximum entries of the tables that precede the one labeled v,.

29

10.2 Checking Precedence Violations in Abstract States

Our domain abstractions reduce the dimension of the cost matrices between levels of the abstract
space. This could inevitably lead to eliminated constraints and therefore result in the generation of
abstract states that have no preimages in the original state space.

In this section, we present a technique to efficiently check two cases of such violations. For the
discussions below, we consider only three vertex labels: a, b and ¢. Suppose there is a constraint that
b must precede ¢ in a tour. Now let ¢(c) = a. According to our merging rules, we have to eliminate
this precedence because it is not true anymore that b must precede all a’s and the invalid subpath
aab occurs in abstract tours. We shall refer to this case as the aab violation. Now suppose there is
a constraint that a must precede b and ¢(a) = c. For analogous reasons, the constraint is eliminated
and the sequence bcc appears in tours in the abstract space. We claim that aab and bec violations
can be checked efficiently. Let A be the bag of vertex labels in sj which are part of the corresponding
partial completion excluding the current vertex label b and let C be the bag of vertex labels which are
still available. According to our representation s; = (C')[b] from which A is also clear. The abstraction
that generated s is ¢; and C' is the original cost matrix. We build two tables T4 and T¢. For each
abstract label a, b, the entry T4[a|[b] is the maximum number of non -1 entries amongst the columns of
Cl¢; *(a)][4; *(b)]. To avoid aab violations, the number of a’s in A must be at least T4[a][b]. Similarly
for each abstract label b, ¢, T¢[c][b] is the maximum count of non -1 entries between the columns of
Cle; *()ll#; 1 (b)]. To avoid bee violations, the number of ¢’s in C' must be at least Tc[c][b].

30

