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JABUTRACT

Wee wioh to present come results concerning a '

collection of H-opaces which, on the one handy have o

Hivce chatacteriyation tn terms of fFinttedimer ol =
A . N
. b

spaces and on the other hand are (i the cpratahle ‘fgi{“ )
f / .i
Lsomorphic to complementod subspace:. of boto, ). C
. . ’ : : J
J

In chapter O we colleat together kpnown resalty

concerning theoe Lh-spages and infroduce come nacessary

notmtion., We sometimes will xq%veﬁ short heuristic )
indications of proofs. .

Our first chaptler CQﬁCéTﬂsrﬁﬁé process of direct
summing 51; S'p—;f’;pa(féf’: in order to form (possibly new) f
Lio-spaces, The results obfaiﬁed are of a négative
nature and indicate that there is probably only ;ne

way to norm an infinite dijrect sum in order to get a




4 : L4
In the final chapter we determine the i somorphionm | ‘ S
. ’ . - I 2
- types ot the cloced lTinear spans ol subsequencaes df the ,
< N . " .
Haor system in l.ph),lJ torel - po oo oty uhnwr} .
. N \
that lp atd l,E’L()7lJ are the Hnly }u)‘,‘,xhlll?uw_ ) K
§
[hevr o ane maty open problems 1o this area ol analy i
and we will aok questions , when appropriate wiil ch we "
fecl would be important and useful it colved.  Thears s
B g
Stil)l very much to doj an indication of thi~ comes from
‘”A ) » » . -
the 1@%@ that ther~ are at this writing ooly 9 kKnown
g in . pﬁ’;ﬂ
¢
isomorphic types of separable infinite-dimensional -
¥ -
£p=:,an‘fn for I < p <oy p#F 2. 1t is not even known
if the number is finite or not. Showing that two spaced '
o : - [
= N 5 ! 8 PR 4 - *
are isomorphic or not is even more difficull than
construction of new spaces. .
1 - = -
. ! od : N - \ .
~
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PREL IMLNAKTES ,

’
We- ropathier here known pesulto concerntng ¢ Ap-mgiace.
. Y (\‘., )
z )
Theoeo wrepes }HT/, oduced T 100 by T 1JHM!‘|:".1II:U",-, )

\

-

, ) | ) i
and Abelczydska; the llon’< share of 1efult since 1hon
have bheen obtained by them and by Hi.b. Roaenthal,

We otart with basic notation ang detinitione.

I)f\,j:lj_”,( ];('27)#7]7 Unless othoerwi e ‘-}"\“(li fied ’ all ‘;Ul)“[«'u Fr

R —
s

ate assumed,to be cloaed.

Def i nijj,(in‘ % We say two  B-spaces X ond YVooare

isomorphic and write KX ~ Y if there 1s 4 linear 1 |
e oy oy . - -1

mapping T of X onto Y with T and T - continuoun.

In such a case we get: ’

”ﬁitTﬁ H}H:j\HTxH < |7l ”xH for all xeX .

The con%1?nts ‘”T-l”r and |ITIl above are an
indication ¢f how close the mapping T 1is to being an

. isometry.

Definition.3 = We define the distance d(X,Y) between

r

two B-spaces X and Y as follows:




PEX ed Y are not even isomorphic put  d{X,Y) = .,

X we Tt
s o
AL ) = ind {“EH 1N ]H 1 bo an doomorphiom of X onto Y L}

Of cour-e thi- does not define 4 metric but thece properties

( »

are casily ceen to hold:

1‘.' (i(x‘,Y) = ny

d(X,7) = 1 i1 X and Y are im}nef'x:i(i

A(X,7) = d(X,Y)dlY,7) .

Hence dlog d(X,Y) 15 a pseudo-metric. However d(X,Y)

is easler to work with so we dp no. :
Definition 4 et 1 - p < and Ky 21 . A B-space

£ 0o called o spor-space 1f for every finite-dimensional
‘subspace I of X there is a finite-dimensional subspace 3
F'of X with F o T and d(F,lh) < A where n = dim F .

We say X 1s a ¢p-space 1if it is a - fp,A-space for
1 .
some finite . . ' . o

Heuristically, X 1is a fgp-space if it has subspaces

»

-

uniformly closé to lg spaces "embedded everywhere".
This is a property enjoyed by Lp(u) spaces so the

concept of gp-spaces generalizes Lp(u) spaces. One of



£ . ~ -

the early bnown Yeaults shows how deep the Tink ia:

Definjtion % If Y i< a subupace of a Iﬁ/spa( e X

1

we nay Y 1o complemented i A4 1t there s w continuous
- =,
. . . 2
lineasr mapping P of X onto Y with P =P =« Suchoa
N

mapping 1o cal led A projection of X onto Y .
it is well-known (e.q. by closed graph *heorem)
that Y i+ womplemented in X 1f and only if there-

existes .Hno%'r‘ subspace Y’ of X with Yy © = {0} and

¥ ) .
X =Y+ Y’ . We call such a subspace Y’ a complement

<

for Y in X and usually write X =Y @& Y’ .

Theorem 1 - (Lindenstrauss & Pelczydski [11].) Let X
be a B-space and let 1 <« p <o and 1 < ) < o . Assume

.that for everyfinife*dimensiongl subspace [ of X

there is a subspace F of lp with d(E;ﬁ) < x . Then

there is a measure gy and a subspace Y of Lp(p) with

—

dX ,Y) < A . (We outline the proof: Using the isomorphisms

~E—FE , One defines an exteﬁded real-valued mapping on the’

o

bounded functions on the unit pball of X* . .We may apply.

a theorem of Bohnenblust to the subspace of th8se

functions for which this is finiteﬁ‘deduéing tﬁat the latter
- : : . . : . 2 | L.

P

-
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- 1 -4 -

o Ip(lu) for some measure 4 . But X can be emBRdded
! PR
in bounded functions on the unit ball of ito dual (evaluation)
and T faat itn\imm;f- Lieo ineide thic newly-found space  Lp(u)
[he wpace Y 1 thia Tmage of Y the needed norm
”
iMequalities easily hold.)
[heorem o et X be a g, space . Thernr there 1s a
e L .\,)\ -
"_
Hilbert space 1 with d{X,H) <N . (11}
Theorem /’} et 1 <p o< and let X be a fp-space.
Then X' is isomorphic to a complemenhted subspace of an
Lp(u) space. [11)
;‘ 7 ‘ ’

Theorem 4 et X be a j Pen X 1s

& , A,‘ :
isomorphic to a compl_ement{ed subspace of an

if and Oﬁ]y if X

,Yl( gx)}'SpF:?“.

. -
1s cComplemented in

T

The aboveiére again due to Lindenstrauss and Pelézyﬁski;

one needs only to be more carefu% in the proof of theorem 1.

Let XP

F

Theorem )

,isomorphic to a Subspate of. Lp[O 1].

be a separable

Sp‘sp ce.

If

"'Then X 1is

1 < p < o0 this

subspace can be taken to be complemented. [lﬁg

4

-This holds because a separable subspace of an

Al

'Lp('u)\

L1(n) (g p)) space




L . 7
Space 1o 1ﬂmmwrphiﬁjTU 4 subspace of a seyarablw Lp(p) Gpac e

cwhich S o turn i ieometric to oa <ubopace of Ipfﬁ,l].
V 4
heotem fet 1 - p oo . Asmeparable Bospace X0
R . ) & . i : - - . =
toometric to an o lp(h) space for some measul~ y it and only

-apace for evpry P (R SN

lf X i") I ¢
N P, Lte
1hegrem 7 ‘et X be an infinite-dimensional  Sp-space
. .
with 1 <« p <. ’Then X has a compleménted subspace

Lscmorphic to lp - {1l -

s
»

Theorem 8 et 1 <« p <1 57? . Then erO,lj is isometric
to a subspace of Ip[0,17. L11J
This is good justification {for not atfemprinq to find -

all subspaces of Lp(0,17. On one hand there afe'too many
P .

different isomorphic types, at least for p < 2 , and on
the other hard, the uncomplemented subspaces can possess A
properties which are vastly different from those enjoyed:

by the whole space.'

..

Theorem 9 Let X be a B-space and 1 < p <o and.

‘1 <A< Gl} 'Tben there is a measure u andva_SUbSpace

Yy of Lp(u) with d(X,¥) < » if and only if whenever [
. . o, - § .

i



0‘
¢ ¢
X s
S '
wer iy {l 1} I s {\/j\f”.r 4‘(— X with
X 1:—‘] j:l
’5: Ix"‘(\?i)l}‘ - ZEI 'Ix“(,\/.)P). for all  «® h Qe
=1 =1 ) '
. Q
N B ¢ . m . , . ' "
Phenwe adeo hove P 3o P L g (N L v
: 1=1 » )= 1 ' -
(1he alteration for po= o Is obvious,) (11

a A\
PMie can rule out possible candidates for fp-spacen:
it a space i+ not isomorphic to a subspace of an "ILp(u) space

then 1t cannot possibly be a

prSpabe;
;‘ L] ) LA 4
@ Theorem 10 (f.indenstrauss & Rosenthal 7[1?]-) .
et 1 - p .~ and 5 + %: 1 . Then a B-space X im a
- - )
Sp-space 1f and only if- X* 'is a 'xq#ﬁpﬁcé:.
Theorem 11 (Lindenstrauss & Rosenthal (12].) )
. : i | | \
Let 1 «p <. *Tf X 1is a complemented subspace of N ' '
- ; : ) . . . ‘if-?
i - ~ 3 5 . ' » [y
@ fp-space then either X 1s' a £p~5pa€e or X is ’ .o
igomgrghié to . Milbert space., If X is a complemented
a
. . o
Subsp?ce of a £,(s,) space the? »X ig.a g,(g ) space.
’ , §= B
Combining theorem 5 with theorem 11 we see that the ’
problém of finding isomorphic typestof séparable sp;spacés
" (l,<p <) is the same as classifying iédmorphigﬁtyges )
. . ., \ ) ' [ N * rd
of ‘the complemented subspaces of \Lp[O,l] QBther than ”TQ‘. o
., ; ' . : . . v."- , ‘ '.‘



I
(e I ” ™~
b4 \
Furthermorey, ot X0 b a0 Speapace fog I - p then
N et e divee and Tt dual ol 1 o j‘,{ e e e g f
v hvve twos node g oot e Speepacen, thens thelr duales
31 TlHl»"—ll?.Uﬂluf}‘wi( I e Danere Al o P L
- a
ey v e Nt whoa b wee wab o to o i find the SP-apac e
for oo .
e mont of whatt will tiow be done will e wilth
LY
fooo . (14 i~ 7»:7: “ier to work with Do o than
with 1 - [:: - ) o, \\ . ) '
o s = A A 5 n . R - -
Wee will now give o brief summary and construction of
Phie Frifjwri -if‘irf-ﬁ"rﬁl');lfi Sp=npaners, ( - - .) W& show how
Hronn rpaces aan be concidered as gomplemented subspaces "
T [ ]F r(:)7=l 1; ] -
L] & ) ] . 1 ’ ‘ b hd A
B F L
1) i » \
‘\.—7 ,%'V A 7 - s E -
[houdh not a |, gp=space for p # 2 , .1, 1is isomorphic
& o, . A ' ) -
to. a- complemented subspace of LplOy1] for 1 < p « oo ,
. . R, ! . : T ) -
the span of the Rademacher functions” in Lp[O,l] gives
the desired space. (Khintchine. )
B €
) ‘
}')
“ This is easily obtainmed by considering the closed .
o - £
. 2 = a ’
, 4 \ ,

-
-
-
B

»
JEw
ke
»



Paear pan of a equence obcharag feriatic functions of

1

i joint meacarable et of posi b ive aneabule.

)l a1
fi S "
Wee consider a nubipace of ,I}'“)‘l%i iwomorphic, 1o ]}‘
and complemented theres (This i easily done incoe
l ;f(),‘} | ]r‘,'j‘.()IIu:H'l o oto l}\f(),’l\’] l)\,/ n Gt il HM[\.)

- . 7 P B I T '7 B i B = ~ . n} . V q o : |
Wee alno find g cubspace ot 1:!1r571 J i somor phi o ‘()’,,1,——, ol
complemantad. (b dirsct um of these two spaces 14 the
drsired one.  This in an erample of the followlng theorem
witti el 1o part of folklora.

icomorphic to complemented
15 X Y .
A 7= (1, L, Do ,
) “n (]7 oL o )P
r 17 a % o
anlp for all 1 for which the norm - ‘ ~
F) P 1 ,
! AN Dy~ . . . . :
7 = ’ b is finite. ,
Il {x I (rﬁf x I5)p  is finite 2

.This is easily obtainable by constructing a Rademacher
system in Lprﬂ?h+l] for each. n ;3  this glives spaces

X—n c l,.pfn,n+l] which are 'unifonly complemented and at a

L F e .
uniformly small distance from 1, »



-

‘
- i * ;? N
ot o
o
o '

[

2
Py

o

From the factl that l,p[(),l], Lp(n,lH I J A l,p['(),xu)

¥

are all Toohetrio, it follows that /F it Isomorphic to
]

(A,@XWW...) which 19 complemented in Lpf0y~? . Hence
wee get, vig the Tsometry, the required space in Lplo,17.
this-aqgain seems to be part of folklore and has—bheen

stated without proof by Lindenstrauss and l’elc?yrﬂf;ki. (11)

»
. £ i
Ihe proot 15 qulte easy.
Theorem 17 let X be isomorphic to a complemented

p

subspace of  1pl0,17. Then so i< (ij)p = (XX, ..) .

%) H.P. Rosenthal's space X. .
p

—_—

nd {fﬁ} be a sequente Df{iﬁdéﬁéﬁdéﬁi

N
|

Let 2 <'p « oo,
o, pﬁrﬁbability sense) , Symm%tric (p{xf, (x)=a} = n {xlfﬁ(x) = ~ q}
for every n and a ), 3-valued functions in Lp(0,1] . 1If
Wp ‘denotes the §losed linear span of {fn} in: Lpl0,41] |

then Wp is complemented.
The isomorpbid type of Wp is determined' by the

behaviour ?f;the ?yotients Wn ='”fn“2/“fn”p i‘

/
v

If Xp,w(w = {wn}) denotes the spate of all sequences

‘ . ‘ 1 I
'{xh} for which the norm .HTXn}” = max {( z:Janp) Zp,(EZL}iwi) /2}

is finite then X and W_  are isomorphic.
' : " . Pyw P . .
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Converaely any <pace of sequences X “detined as
’ Ve W . .
above kxy means ot an ;nbitrdry sequence of }'\()éitivf‘ Teal

mwinbera ow e {w“} (lens than 1) i lsomorphic to a space

W} obtained as above from some functions in Lpl0,17 .
The following hold: ‘ £,

/\) [ { Z_,W;;})/( b—'))x %) then - X ‘ -~ 1] i (USE‘

Paw p

. : .- L2 .
4B lder's inequality on E:Anwn and apply open mapping
theorem.)

B) Tf . inf w2 O,jthéﬂ Xp,w ~ 1, . (Again by

open mapping theorem.)

c)  If {wn} splits into 2 diéjoiﬁt subseguences one
satisfying A) and the other B) we get Xp;wmlﬁfl? .

D) 1f none of the above happens, that is 12w o= 0.

n

2p/ (p-7) f : e -
and w = o for all € >0, we have a fourth "
. wn"*f& a > b . -
isomorphic type. _ B : /

We call Xp/ the space defined by a sequence {w} - fff’
_ ‘ , s .
with. D) holding. It is known that any two spaces Xp w
pa . "p, ,

and Xp,w,‘ are ?sqﬁorphic if W gnd w'! ,R th sétisfy
D) . Hence Xpﬂ(we‘arefsearching for isomorphik types)

/‘ a

is“well-defined. .
: /



11

»
»
‘») B
. })
l~or ;;;1;t, et 1e i toy haee g prace 4 [
}r,[l - };?‘ﬁ/
Por the e s W“ - {Ww}‘ ': W{.l - “r(; ‘>//P for all ) -
b )
J
Pach }i[ ‘ Io bnomorphic 1o l,) but the (i‘»qmuh»—h’\a‘/u'r)
»,1 » '
Al thance Tporeanas o . |, et oo (b 1 AL J/’j,(}>. .- ) .
) B Py bray P
F
Ty PR A
. f K
) 7 X : ’
P I
GY Y= (X )
I P P
7 ) -
10) 1.pl0O,17 . J C
S . The conatruction of the spacen, XF 5 ﬂr and Y_ and
) . Y K f

thelr properties iq due tor H.P. ﬁﬁiéﬁ{ha]. [15f. fle has

S

shown that the nine known separaples fp-spaces listed
above are non-isomorphic; part of this is published (15] and

the test i1s unpublished.




CH/\I_”'I 'k 1

SUMMING OF &7 SPACEZ;

ES
+

We saw in (hapter O that the direct sum {or produnt i
} 3 ' .

r I
you prefer) of two fp-spaces or of a spooapd a B ‘,pe(,é-“i
. -
was ‘again a  fp-space and that an iniir;ite/dir‘e’ni? {r-oum
of elther a p or Aa XQ Space was a L Lp-opace.

0o ' \

We investigate here in what ways the infinite sum of.
a fp or S? spage ~can be normed so as to produce a

Sp space. We show that we must use an unconditional ba<i- g
]

i

for some gp-space which contains no copy of 1, .

Tt is illuminating to realize that all the known separable

fp-spaces are obtained by a:,p~summiné process applied to
the spaces: 1p,12,Xp,Lp[O;l] (eitherl? or an infinite number

at a time). ?{

- We start with some basic definitions:

.

Definition 1 A sequence {xi}' in a (necessarily)

{ s ' . - ‘
separable B—spaée is called a basis for X if every x & X
has a unique representation X = E:xixi where the

convergence is in the nporm of X .

We say {X{} is an unconditional basis if every x



caty bee wratten Urni(,'fﬂly RN X = ) and where the
LT
Gerien converges uncondifionally in norm to x . {(i.e. the

SRS BRI LN . « € e Or frve ermutation o
e é AQ(I)/”(I) aonverges fo very permnutalt of
- . . A \ )

e poditive Pt eqgera.) ‘ /

A sequence  {x ; 1 1o called a basic wequence (uncond  tional

N .
baoic wenquence) if 1t 14 a basis (unconditional basi<) for ite
[ '

closed linear span.

we will write [xi] tor the closed linear span of -
A sequence {Xi} . We will sometimes subscript this with
- ‘n oremind us that we pre dealing with the closed linear

npan b Lpt@,l].; ’ ‘ ' w :

T i~ well-known that if {xi}: is a basic sequence

then it is an unconditional basic sequence if and only if

» ™5

whenever de x; converges and Ip |<|X { for all i

¢
then aiap/éénverqes- if and only if wheneve }

.X: conver X. . SO conver es for-ever -
§:k1¥1 ‘ qe§ then z:elxl i al E u‘\\\

S

choice of 'Ei = ; 1f and ‘only if whenéver E:X X5

AY
converges then 2:5 N X5 also conVérqes'for every choice

~ .- ' ! P




14—

[ case  f{xz. ) 1o an unconditional l)d‘\i . nequence Thern
et 1eoa new norm on Qy.l‘] , #quivalent to Jhe original

‘mulm, oy that 1 %1/‘1 converges and lui\ . ‘)\l

. N —_ .
for all [ thiere new 1o ( Lg“ixi) - Terw 1O Fm X K

Deefind tion 2 fet Yo b o Beapace and {'Xi

} a basic

n%quenré. Wee define | Ei\/){/ }S(YWY%-..),ﬂ } Lo. be. the

~ . { %
S ' !
1:‘,:‘_ ) . ¢ . ) i
cpace of all sequences  {yo b of elements of Y for which

i

TR DN SPRRCNIIRIES

[t ia @any to see and seem, part of folklore that in

-

4

order for E:Y){x y o to bea lincar space, for the above
g f

_to define a norm and for this linear space to be complete

I

itd respect to this norm, what we need 15 exactly that
/ ‘ . . d

{xi} be an unconditional basic sequence with fxi] “ repormed

,
as ment ioned above. That is:
,%L |
Theorem 1  let Y be a B-space and {x3} an unconditional.
N — = ‘ , S
% basic sequence; suppose fxi] iiﬂwyunﬁmd as before”
definition 2. Fh E:Y } is a B-space under tbef
. norm in definition 2.
. Q" K . Our question is then the following:. What requirements
vl d " on? {xi}/ do we need so that ( E:Y){X,} will be a
. o ‘ S . ! L .




(.

1,
Cpo- Gprace whenever Yoo
“heorem T there emxint a0 Lofiodte—dimen it l Cpo- s #
AT ) ( )
o fof ‘N)\‘l",k. ( L\I/ ’. 1. 4 i Lpaaes thiep ] i
SR } )

o Spepae (1o )

}qjﬁ;ﬁ: Piy theoraom ool Uhapsten (% e Foars a0 subipac e o
W),y(r, i conplemented 1o Y (by o projection b, ﬂ.xy) and
isomorphic to 1 (by an i-~omorphiom 1 2 e nuy,)
' , ‘ § -
Then it i easy 1o aee that S iv a closed
I i / { i ( L ) {ﬂ] }
} £ ﬁ'{) [t ] ted 1l b }
Tubspace o s A ) - t 15 complemented there by the
L. {xi}
?rojﬁc?imn () :;Q({Yi}) 7 {Pyi} . This projection Q is

learly continuoud® since
, < - , T ,
il LV ! = D X = I e _

N Zﬂyinxiurx_] = fell gyl

i

by the properties of the unconditional norm introduced on
- ™~
~
[xi] and the continuity of P .
o tnermore . (37 0y ie e (T
Furthermore . ( Z){xi} is isomorphic to Ldlp){xi] /

£

by the'iSomorphiﬁm S S({Zi}) = {Tzi] . Whe continuity
&

properties of S ‘and S are inherited from those of

<
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J"‘
1 cf
i oand by an argument cimidar to the above.
Thus 1 >{x ] i inomorphic to a complemented
! 1
then "

Hl)‘;pd e of

i omorghic

—
ZJ]}J {x.} i clearly not a f.,-npace; 1t1% not
¥ .
goace oince it o clearly contaln. a
&

-y al€ ( L’){x} . Fagt
{0

thies

B,
s

Hilhert

2
oo
Ty

[

&

to .1 .
})

< .

1%

1 ~omorphic

cabrpace
Hence by theorem 11 of Chapter 0O, ( AJZ){X ]
T i

a sp
again = Xpﬁkpacew
7 i—\ ) ’ - '
Thus ( Llp) {xi 1 19 A fp-space.
, 2 ¥
'ﬁ’@n"ls ’ ¢ .
w .
R ¢ o 7
& & ( gﬂ)&;%z?
4‘1&7 # k’ fl ’
i5 a fp-space. (We have just seen it cannot ever be 5,
‘ 4 S n '{ |
- ,s‘,?-Space.) -
Theorem 3 If E:lp){x } ”15(3 xp_space“then x.1}
T 1Ay e
i is either a gp-space or a f,-sSpace. o ‘
o ‘
. »
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)

Proot: Take a fixed element xZ0 of lP . [t 14 easy

1o ee that L\'_‘Hx) o
P

gk

o is isomorphic to [x.] and
{xi } : 1 r

complemented in the ep-space ( [—-lp){x.} . By theorem ]‘l
i o

of Chapter 0, fx{] is elther a £p or £, -space.

tt
A e

~

Mow it is easy to see that we may as well have assumed,

¥
in the definition of infinite sum, that the junconditional
) ~ £
)

basic sequence was normalized: .
- We quote the following known result: |

The§rem 4 In 1@ all normalized Uﬁéonditiéﬁal bases

+

are equiva}eﬁt. (See Singer [187.)
By equivalent we mean the usual

-

Definition 3 Two béses {xi} and ,{yi} are called

equivalent if E:Xixi oonverges if and only if
. @ #

}:Xiyi convergesf ‘

M

-

If we have equivalent unconditional bases {xi}“andq
'{Yi}‘ then‘the‘correSpondenceM xif*yi definesfan‘ 

iéombgphism between [xi] and [Yi]‘~
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t

!

¢ )

. ;f
. /f.‘l- . -

We hawve,/ 3;’)1‘?1': reduced our problem to the following:

A or,/what Sp-opaces with unconditiodnal basie

L.

{xi} o ( 5: ){x p fp-space?

i) }:1 A Sp—épace?’ (Wher9<f€"med“

1, 1nq 1he unit vectors for an un(ondlflonal bagis. )
Vg N 7
The answer to B) is already known and is stated
- " ? } - - -
without proof by lLindenstrauss and Pelczyfski f117.
4

3,

.

jheorem"b If p# 2 then E:lp)l is not a fp-space.

, 2
If 72 < Qp oo, Zl

is not even 1‘30morphlc to a
Jub)pace of an Lp(u) space.

2

!
n'-.

We will now give a partial answer to question A). We

£y & \

start by quoting some known results which we will need:

Theoreﬁvé 3(Kadec and Pelczydski (77.) If X 1is a
—_— _ L ?

subspace of ;LP[O;l] (2 < p <00 isomorphic to 1, ,

’
f

@hen X"is‘complemented in LplQ,17.

Definitlon 4 Let {x.}ofbe a basis for a B‘space‘ X .

Let {pn} be an 1ncrea31ng sequence of positive 1ntegers
vy ‘

-

.and {x }9 a sequence of real numbers. Then e sequence

nfg

'

' - /
l . w
!.'

! o -
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9
{yi} in A i+ called a block basic sequence with
1o (x_l} if vy # 0 for all i and the {y-l}

I e et
Dit ] XX

liave the t‘)“”:., vy = Z i %
=1, 4
pitl e

t)")r’fi(",f%

e an infinite-dimen<ional sut

Theorem 7 I et Y
of a B-space X with basis {xi } . Then there is in
{yi} which is equivalent to a block

(2]

Y a basic sequence
basic seguence with respect to. {xi} .
easy to see that a block basic sequence

Since 1t s
with respect to an UﬂCOﬂhiTiOﬁil basis is 1tself unconditional,

the following holds:
Y be an infinite-dimensional subspace

‘Then

"

which 1is equivalentJQo an unconditional block basic

Theorem Y [Let
/ . o -
.of a B-space X with unconditional basis {xi} .

sthere is in Y an unconditional basic sequgrce {

‘sequence with re;geét to {x;} . (2]

But wé know whatJthe normalized unconditioifl basic

-
o

; SR seqUencés in ;lé are. We then get:
Theorem 9 Let.X be a B-space with uné®nditional basis
‘ o AN
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—1

_ [
/
IR Vi p o 7 Gt Lt 1 abegae e Toomory it , !
i

chery Pheer e b e oneditr e b b lon b by R FIRER PR T

7
H [ofe ol oy {/‘§ \N’lj(;h i i‘li‘/ 111 i O e i ool } ) i

.
Cop ® .
Wee w1l o now ob et oreeear ]l b owhih ok '.»«\/u{w]/ R A
posaibi Fities Faor direcr amnmie.
' )
B ) Il

Theorem 10 | et ( ‘_,,I ), depole the diTect caomoof 0

b
copiles of ]} , normed witlh the unual 1., norm. (1

3 12 * =na —
o 8
I .
o . : P AT, s 4 . .
0f courae, 1f o~ v, the (L,],)f; 19 1nomorphle to
. P .
1 so mutt be a fp-space; it there doeas . not exiat o
\

{1 - .

b 4ﬁ~ for which, (2.1 ), is a. s space {for every n .
r. - P’)\ R
(.

I'roof: Con<ider the linear space Y consisting of those

7
sequences  {x 1 in (Zdl,)j with only a finite number
' h 1 P 7

of X being nonzero. " It 1s clear that v is dense

- 1) ) -
is the union of the spaces le)? . If there were a
t oy n i ‘ :
» < for which Zl )., was a §’ space for all
: ' 1 P 7 Py

1 <n ~»s <then we could modify the proof of theorem 1
of Chapter Q (Lindenstrauss and Pelczydski) by considering

only the finite dimeﬁsiohal‘égaces E of Y with

’




-
B , ’
S Fim . - )
Ligies l;lnl ) oo . e would yvield that ( Zn}),’ 1
.., 4 1 y oL
s§§§

! %@‘ al o o Cpe - Cinee b towould ‘.Tn);w Hvxiai it
,§;

inomorphic

25 tor a0 omp Lemenred subpace of 1}{0,1] . Put o thiis b 0ot truel
oo NG | . f
o Detinatien S bett b e e ded ke to he the

h—uyﬁru of all Cﬁquwn(vu {x“} for which the norm

A \\§¢2

N "é ) f= . l(l‘rl)/,) i"r([‘//,r: ]/
fog s el e LT
=100 nFI(iAL)
hs oY -
Prafinites Tt i- Wﬁ]{;knﬁwn'éﬂinqéT 18] p. 944)  that
R . e ) i ' A
] io Taomorphie to |1 2

,r; the proof Jges known propetviles

af the Hademaoher functions.

Lot | LJ*JI' depnote the infinite direct sum
) 1! P o
; ir\ 3 3 ¥ i : a
(;éelﬁ)£F11, where e #ire the unit vectors in the
<porm efining T . It is easy to see thgt
£

ol a Sp—épﬁde.

, We first state a’slightly stronger version of theorem
s ! Lo o - ; :

’ !V

11 of Chapter O.




M

lheoroem 1 bet” 172 - 0 and A - o . buppose X i

4 £ —apace and et Y be a ubspace of X comp lement ed

brah

by o projection b . Suppose Y contains a subspace

isomorphic to 1 . Then Y 15 a space where

4 h
P Py

uo depends only on X, HI'H and d(/, 1{_’)

e proof i« identical to the proof of theorem 11
of Chapter O but uses in addition the fact that a g
"'Ar;\i"l('i‘(:r\;i", distance <\ 1o a subspace of df:’l I-,,(H) space
complemeénted by a projection with norm < ) . (See

Lindenstrauss and Pelezydski [117.)

Theorem 17 (1 (L1 )5), i

i s not & fp-space for :F £ oo
n=1 1P p :
Proof ; By contradiction.
7 2 Do
Suppase (Z: (E;lf)ﬁ}, is a £ ) opace for some
n=1 I PP P’

i ] 4 7 )
A -~ . Now avery | %ﬁp)Q cantains a subspace ilsometric

to lp « Furthermore, each such subspace 1is complemented

by a'projection of norm 1. We then apply theorem 11 and

get that there is a .u , depending only on % , for

: ”wr.uch (ilp)2 is a S5 . Space for every n . This

-

*



i L 4
/
” ." ph- .
P eﬁlv*‘
v A
doongn

ft

an unconditional bacsia tor a

Sr-opace X . Suppose thera exinto ) oo andd for eoch o
vt needimend i onad caabapace K of Yo owith "/\'I wpanned by
1

{ . 7 B! N -
s liqnesrt -, AR wl th xi(y.) . x{(yk) = (O for every
i il ] £ o SuUppoae al I theoe cubapaces X“ are
. 3 V) .
complemented by projections wlith norm - ) and that for

1
i fi . Hi - . _ . !
[’ﬂéf’»ﬂ '\/’i to the 1 unit vector 1n

—

("/‘)(V}I Ti e ’i.

’ 5 then . H—[f'ﬁ” HT“ H - Aoa 'tien ( le){xl} 15

it N S‘F»*’uuu

‘his cannot happen:  we will show Hnl‘ lattwer space contains

o0 )
a complemented subspace isomorphic to ' ( Z} ( z:J%)ﬁ)ﬁ
= P p
- - n=1- 1
is neither a §p nor a f, space.

The space 15 constructed as follows: for each n
consider ! in the nt'h Co of Zl )
, > YyeeeY P Py p {x}

~in the direct sum (.E:( 2: 1P){Xi})p . “The assumption on



;o
N

V- caye thiat no Two can hare g co-ordinate. glhat L there
! o .
Gre constants . and et of integers ((ii‘;j()ilﬂ}
)
i ! . n % L o '
o A with vy, = N .7 . - (e Supfractipt X . 1O
f

1 ! JEA. b
j

. . , thn
Jegrat e thiat we are (l‘mxlx[” with the x.l found in the n

. . 1t . '
copy of ( Zl}‘){x ] ) Conslder, 1 the n . co~ordinate,

; -
P space Y[ qunvra1nd'by the element - of the form
i
I bir 3 i ; 2
[ Y L0 for nome i £ .
g vy we conatruct the space -
‘T"’_\
( e ] .
Z‘=’ ’71)[ f)
i

L, . T, . )
Wee fitet ~how thie ~pace’ls inomorphic to

§!

er)m . Tt s clea% that it is enough 1o show
3 3
0
that v, are uniformly 1somor rphilc to ( Zhr)ﬁ - A
1 3 S
1P -

4 - \ R - oDy } .
gynjcal alement < Y 7 PR RY N
!/p);xl 1ement, of Y 1 {XJ{Hk}}JEA?, i=1,..n

N

for some N sequences {pi} in 1 . We wish to correspond
fo this the element {{ui}}. in Zﬂ ). -
1 1 2
The norm of the former is

1T L DI Ay e eauels
’1 J{A I o o i

\\E: E: Ag H{uilﬂp*g”p&i] "sinEe.we héve normed l

1 jFA




f)ﬁi‘] to obtain o 11%51(1(;1‘*. il)“!{tléﬂ?i?‘/ and obhtain thie Aas

4 corrollary.
| 1{
Bt then thia eqgquals

h
!

" i n
"‘g H{uk”(p yi“fxi'] which 15 a-equivalent to
— V4

( . \\{u; }H;) by our krown i womorphiom. This equals
. 3

] 42
the norm of (iu;}} in | i] ),7) -
< 1 1 P

©

i1
Thus Yer and Zﬂr)” are distance less than or
1V ;

equal to ) by a naturally obtained isomorphism.

chono, Y is complemented|by

We now show that for e

Py

h oprojection of norm smaller than or equal to A .

[irst we may have acsumed with no loss of ;eneralify
thﬁfg ' > 0 for all j . ODuppose ;Pﬁ is the given
projection of X onto X o with e il <. It is
clear that we can assume (because of unconditionality)

that 'Pﬂij = 0 if j4 Ay for some i€l...n . Then

. ) ny. _ E: N .o s .
write P _: Pn(xjxj) =y kgA.xkxk 1f jeA; - Consxdgr now

A,

the‘map P given by P (y.x0) = l_l_,. E: A .
. n . | j J ‘pk‘ keA k k
1 keA

4

It is easy, to check that ﬁn is a linear idempotent onto
- R o ! ) x\ez(t




iy~

We now wish to show continulty.

. 1 )
A ?ypi(/;,l element of ® i Z\’j X] . en

-)\ <O
0 & Z ‘U ‘\LL }\*/\ L
}‘[l( Vj‘x .j) = LA - )\77& 4“":—\7"‘-‘_~—;~
}{z/\i )

equala P (X) whe e

['/IJ' ?‘l.l’.
rn

f1

i1 Lol e X .
X = AU ] .

i=1 jeAp T AL

.. N 0 ) Ve San u xr,\
e | Do | N L
; - oy i=l je i kEAi ‘“k‘

g v k070 Il

i=1 jfiAi J kz/\

L0,

i=1 )&A J (;

o HﬁnH < . The firstC%&uality holds since

and the second inequality

and s

‘ij'z ‘Vj sqn ujt for all j

since Py | >,1§: w | >1 for all i .
k}é;\i Mt S keA. K, o '

“ What we have just succeeded. in éhowingng that there
is no loss in generality in assuming that u > 0 for



"
-
every j iw the definition of ¥ & Ihis will be
'Y f/T X
Ga
Crncial 1o showing that the induced projections on
"
I {/1 are uniformly bounded.
Ve tow et Loe 4 f 1 oifh Zl
‘ ! }n 1 onto Yn
N ~
. ] .
Ly omayp iy thie element A . of Z] - .
" / 1 [N i 1 {{F}(}}] ( P>{x"} whih :
. \ 1 g
\ . . th .
i zero exqept 10 the ] co~ordinate to the sequence
"2
. . .th L X ‘
i /[ whove co-~ordinate 1s the sequence
i
r ~—
- th 3 on
co-ord of P X . -
{1 CO-OT( D I ﬂ“kx) }k
fry the 111;41!"\(;1(3 i[](fq\)' 11?\/ for the norm-on lp we can
‘A',‘f: 1 ?)a t , ' ’ “:

HI’ {{Up} } H - HI}n{H{HB’}ka}JH which in

turn 14 less than or \g?qual Lo
\
\",

j v d |
LIl =3l (g . The fact that
My > 0O for all 3 42 alsé uéedﬁ
“ ‘ . -th :
We: have thus constructed Yn in the n copy
Z].p){ With d(Yﬂ’ ( ?lp)?): A a'nd,Yn
-cgmplemented.with a projection'of norm less than or equal .

b [ \

“to A . Thus we have a‘compl%mented subspace of



: ‘ 1° e ict €a0S
( }:( E:IP>{7i})P isomorphi to | E:lp)lp whict mea
that ( Z( Zl ) ) 1< not a j'}m—k.}\a(,f‘ and so

- Pl e \

( E:l ) 1o not elther.
‘ P/

1.’ N
. ‘ i
We now pxu:/f: ca theorem of similax sfyle. ihe proot
1, ot o arn lll‘*""’,y. ' K\
Jheorem 14 foet {xi} Le-an unconditional hasis for A

fp-npace Tor 2 -« p 7 7 .ouppone X contains a subspace

?

icomorphic to 1. . Then ( E:];){x ] is not a  fp-5pace -
5 Hl \ 1

Proof: We will conastruct in ( EZ]P){Xi} a subspace

fiommrﬁhic to E:l },. . If the space ( z:l Yoo,
: poe : P {Xi}
were a  gp-opace Lhen it would he isomarphic to a suhspace

v } "
of 1. T0,17 rand hence 50 would ( §i1p)v . But this

y

rontradicts theorem 9.

Iy theorem O there is a block pasic sequence with

respéct 1o {x&} which is equival to the usual basis
‘ i ) . .
' j+1 -
‘ - - o ’ b ‘ o
of 12 . Suppose yJ ’ ISER S be such avblock basic
i=p,+1
j -

sequence. (pl “ Po Ciees) o (wlocj‘)\.l > 0) . Consider then the

w Space“ y in Ejl ), . generated py elements of the
u | - - piixgY o \

‘



E

S

JERGP A

}','YA

form  {| Xiijﬁ 11 for <ome | Hﬁ }} in l}r - The norm

“k ) A
i 1=pj+1
al o typical element {{} iu¥1k1x~. ). I

" i Ml
tor [ TR Y] {u‘] () N -.> 1ty 1 1
fok P

T P H . ‘ ‘
b L by i) .’1
]: ’l':i>.'+1 \

- ; t""j»fl

S o TR Do T
j=1 lij+1 '

2 Tl - E el

¢ by e icomorphiom on the bhlocks with respect to x. .
save fhun showed that Y 14 closed in §:11)'~ y  and
Pt

i~omorrhin to }:1 ) 5 a5 desired.
! \ pY

g

ft

-~

The theorem 14 <ays that only bases for gp-spaces
with no subspace isomorphic to Hilbert .space have any

chance of being usable for norming the infinite sum of

-~
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| (and hence algo the infinite sum of any Spospace.)

It would apjpear that 1[ 1o the only uch fp-apace;

creedernce 1 o glven to thin congjecture by the folowl g

by faat s 1) thia 17 (IF"riily the case among the known

¢
8

Sp-onpaces ) a 1eqult of Fadeco & belcrydeki [7):  let

¥ be a subapace of ] ‘f('),l] . Ihen X containe no

)
cubopace joomorphic to 1, 1f and only if every subspace
. :
of X contains a subspace 1comorphic to 1 and comp'!emented
. P < P -
in L_T0O,17 (hence al<so in X ). Thus follows easily from
Pl

theelr theorem 3.

Open [)T_(’)I)‘]:lﬁ‘l: et p o~ 7 . - 1 the only separable

sp-opace which contains no isomorphic copy of 1, 7?7 (The

With: respect to the second question we would like to
mentlon o result of Johnsony Rosenthal and Zippin [6]
which states that every separable §p space has a basis.

It do«s not seem unreasonable to SU%heC1‘that they all

s

possess unconditional bases. (p# 1, p#=)..

A positive answer to the above- problem would restrigt

»



i
*

g

dattention 1o *he unconditional bases for 1 . In th.s
r}

it i our feeling that the followling problem
1

rt",pegt ,

beae, g o1 tive answer :
!

Opeery problem: Ire every unconditional basio for 1
Vel probden Y :

fopuivalent to a block bacic sequence with respect to the
unual baste for b
§)

A negative answer to the firstiproblem would easily

&
imply the existence of more  fp-spaces.



CHAPTER 2

TENSORING OF - g AND S7’SPACYS

-

In this chapter we consider tensor products of
'

)
Ps

fp-spases and of a fp-space and 1, . We show that if‘thv
tensor product is appropriately normed and then the -
completion taken with respect to this norm then the result i
always a fp-space.

The definition of tensor product of Iinear ipacﬁriﬂ
too well-known to state. The famous memoir by Crothendl«ck

gathers together much of what 1s known about teunsor

products ot B-spaces.

- : T - b
Tt is easy to see from the definition of tensor -

products that Lp[O,lj ® Lp[o,l] can be naturally identified
with a linear subspace of the Lpspace on the unit square

with Lebesque measure. Hence Lp[@,l] ® Lp[071] ﬂﬁheriié

e t
r

afnatural ﬁgfm. It is not easy to see how to compute
1

the norm of an arbitrary element of this tensor prb uct;
it is, hbwéver; easy to see that the combletion under the
inherited norm of the image of L [0,1] ® L [0,1] is the

whole 'Lp space dh the'square. R ' f e

-320%
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S. Chevet [47] has introduced a norm on afbitrary

»

Gcts of B-spac€s; she has shown that this norm

-

is equiva to the norm on’ Lpr,l] ® Lp[O,l] inherited

from th® norm &f Lp of the square. This norm has the
benefit that certain computations are easier to make.

In addition, it generalizes certain cross-norms considered

by Grothendieck and Saphar.

Definition 1 lLet X and Y be B-spaces, and 1 < p < 00

,
(with 1/p + 1/q = 1) . Define a norm _ || ”p on X ®Y as
follows: ,

n 1/ i 1/

Ml = inf {( Iy, IP) P sup (8 Ixf(x) 19) "9

p igl : x/ex’ i=1 1 :

lIx “ll<1,
4 .
where the infinium is taken over all .ppssible representations
n o '? '

u = 5;1 X; ®y; of u e.X ® Y . Denote- by .X\ép Y the

goﬁpletiqﬁ of X ® Y with respect to the norm | Hp . Lal-

As already mentioned the following is known:’

. Theorem 'l On Lgto,lj‘®‘Lp[0,l}‘ #e norm || Hp is
equal. to the norm inheritéd from Lp([O;lj x [0,1}),f
L [0,118 110,17 is isometric to . L ([0,1]x [0,17) . .[4]

s *



We wish to do computatjons involving X &p y where
X and Y are€ either £p or £ spaces-

Hence consider X and Y 5, B-spaces which are
complemented;%ubspapes of Lp(é,l} ; (Results of ans

isomorphic nature will follow easily later on.) We wish

N

1o show that X &p v is a complemented subspace of

A - , o ) L :
Ld[O,}] ®, LPYO,l} , bgnce a complemented subspace of
LD(YO,I] X YQ,)])- by theorem 1, hence a complemented
subspace of Lp[O,l] .

THeorem 2 et X and Y be éomplemented subspaces

of Lp[O,lj . Theni X ®Y is a linear.subspace gf
le[O,l] ® Lp[O,l] - T£ere aré iﬁmeéiately two ﬁorm;
rg\failable‘ for X & Y: the norm I, of definition 1
‘and the no;m,;call it | w o, iﬁ%erited }rom £he

.

I “p» norm of def1g7tlon 1 on L (O,l] ® Lp[O,l? . &

' These two ngTms are equivalent, so that X @p Y is

r

a closed subspace of L, (o 1] @ Ly [o 1] .

e

‘Prqqf:‘ Let P be a\projectlon of L {o, 1} onto X and

.

Q. a.projection ohtp Y. Let u € X ® Y .
o T ‘
. \ A . - : '

—



‘L&

A~

(4

[}

AT ( Y ;1P P sup le

"< el oy (( Zny )1/ sup

&

1/(] )
xtel ,llx H\l
(int over u ‘E:xiwyi » XinYy € Lp )
L/ 1/
< 3
< iot (( ) iy IP7) P sup (le‘(xi)w) q )
| . H -
, X f;l({,“){ [|=1
(inf over u inwyi » XiEﬁX ) yjfiY ). But every )('E:l.q induces

a continuous functional on X with norm no larger; hence

HullP =< HUHP )

~

On the other hand, let u :-ZXiQ'O'yi > xi’inLp be an

‘arbitrary repreuentaifon used in computing lull”. Then

;ﬂPx cxl.)y1 1s a tlyplcal representation used in computlng
Ilull

(( XIIQY Hp) el Z b (Px; ) 19) /q ) oA
x' = ‘ 1/
o el [<1Z b p/lIPlEx,) lq) q]

NN IONA L 1/pxs:E el (Y I (x, >é|;>l/q)

since every x'P/|IPIl for x'ex' w1th norin at most l deflines an

” Y

x{eLq with norm-at most 1.
If we take inf,first oﬁiihe left side then on the right
side we get that Hu”p’f;’”PH'HQH lullP as wanted.
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Thus Hunp - “UHP e HPH HQ“ HUHP for every u &€ X ® Y.

!/

o N - a
Thus, {rom now on, we will not worry about which of
these two norms we are using on X ® Y -

3 let X and Y be complemented subspaces of

LI

Theore

5

; Lpfo,lj . Then X &pY is a complemented subspace of

(0,17 ® L (0,17 .
P :7 1 p p[ ? 1

Proof: SUpﬁOiﬁ: X 1s complemented 1in LPEO,I] by a
ﬁ?@jéctibﬁ P and Y by a projection Q . We wish to

U S Ay
define a projection of L [0,1] &b L [0,1] onto X 8 -

From the definition®of tensor product, it is easy to see
) , :
that P ® Q (f ® g) = Pf ® Qg defines a linear idempotent

of LpfO,lj ® Lﬁ[O,l] onto X ® Y (f,qeLp[O,lj)- 1f

*

u = E:fi®qi is then a typical element of Lp[O,lj.® LpfO,l] ’
) = . l/ * ) : l F

x ‘ex’, lIx <1

| Y/ 1/
psa(u)ll = 1nf (¢ Y laaylP) P sup Qe DT

Using'an argument as in theorem 2 we get



TG ()(\l)“ - Hl‘H HuH HHH , after, of course taking the
correct infimune Cintimum for  oes Q(u) tirat).

By continuity we extond to a contibuous Tinear map of
l} ro,1 (»“{ I.} fO, 0] o Thie map tn easily seen 1o be

idrmpotent and onto X MY since P (o b o X8 YL
. }|

[ i not difficult to show that the following is then

e
Theorem 4 et X andh ¥ be fp or £, spaces.

Then X ({\6; Y is a JSfp or a  §p, Space.

We now wich to improve a bit on this and show that

s if Y and Y are £ iﬁﬂi%% then X @7 Y 1s a £, “pace
5 ; n o
- - : Y ,\ k) LI . 5 _ _ _- e « _ N i . - ,,i',
and that X Mr Y is a §Sp-space in the other cases.
Iheorem 5 Tf  {x;} i< a basis for a reflexive space

X and {fi} are the associated coefficient functionals

then {fi} ~1is’a basis for X’ . (Karlin [8].) ™

A

Theodrem 6 If 1. - p < then 12 &plz is isomorphfﬁ

to 1? hénce’is a X?Qépace.

i



'root: fher e

>

pro= 7 i trivial since ]

)y )

cvbspace of 1.

DUpiposes now e . Consider the cubopace X

of [,[ fO,1]  wpanned by the hademacher functions  {r,} .

i

P i well=-Foown that X 17 a (1(')111}716'«[“(%&6*(1 Subye, pace o

L Fo, 11 which 14 isomorphic to l, -~ Hence we need to

N .
Jhow thiad g0 s 1

P o lnomorphic to 1)

Consider then the double sequence  {r. @ r.}
T j

—

-

L~ 1ot difficult to see that this is orthonormal (from

orthonormality of the Rademacher <ystem.)

ﬁ]ﬁﬁf P27 we immediately get

ZA \,rf’r’ : HZ Ao o X mr)lg
- (\Ji/} Zinj ri(S)Tj(1)!yd“d{)1/?

"_ ;\.‘\ )\ii])

by orthonormal\\i;ty.

COn the otﬂer hand .

o
DR rm]upi Cf[1 Ty (0,0 Pasan) P

o/ 1/
S UT 1T gy 2an 7P

]‘E/
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‘ AN
N . ? 1/,
G }1 I >T IPLI M I
y 2/ A
— a p g
- & (fl%xl]) 1Pa1) P)
, > 1/,
- 2:’ xi3) -
1y ,
gtf i

The first and last inequalities féllow from Khintchine's
inequality for {ri} and the seconé 1s a triangle inequality
for Lp/?fO,lj (p »2) .

thus the space of elements of the form E:xij T, ® rj
1s 1somorphis 10 1? , hence 1is comélete, hence equafs
X & X and so X &p X is isomorphic to 1? if 2 < p o< oo
Tt also followskthai {ri ® rj} is an unconditional basis
for X @p X equlvalent to'phe usual basis for l? -

It l‘phZ then i E: 1j L, 8T = Yﬁk.j
[[IL)\ (s)r;(t) {dsdt = f[lzzx r(tr(s |dsdt
[(Tivx» (t) | )%dt 2 C (Z(f ZX t)ldt) )é
jJ ij J
(R[S e g

The second inequélity from the last comes from writing ’

. ®r ”—

Y

delj 3 and seelng that

@(,Ulfi}) S Z f‘f filcl?é;ilfil
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. L B 2l S e 1)
B VL DT N N Py

LN
eosentlally by Holder's inequality. We also use Khintchine's

Inequality for p 1. The rest is easy.

#

Theorem 7/ buppose X and Y are fp or L5

spaces, not both £, spaces. Then X &p Y is a Sp-space.

, , ‘ A . .
Proot: We have already seen that X ®p Y is either a

i

£, or fp-space. We show it cannot be a $,-space.
Without loss of generality we may assume X 1s a

fp-~space. Then X contains a subspace 7 complemented

in X and isomorphic to lp . If 'y is any nonzero
Q

element of Y then it is easy to see that Z ® Ry 1is
‘a closed subspace of X @p Y isomorphic to 1p .  But

so0 cannot be

“then X &p Y cannot be isomorphic to’ l?_

'~ a £, space. i
#

@
Y
5

i

"Theorem 8- Let X be either a fp or £2 space. . .Then

"X & 1 is isometric to (ZX) -' .
PP o ' p

Proof: Without loss of generality, X 1is an actual
Vo ' '

complemented subspace of L,[0,17.
. o © “?:

=
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Suppose now Y is the closed linear span 1n LF[O,I]
)
of a sequence of disjoint measurable sets of positive

. . . . . A .
et SUT € . [hen {14 itoometric to lf S50 )(CJ)F IF i9
) ) )

- N N N /\
foometrin Lo KMYY -
)

Pt the brometty hetweon XM(VY and | ZX) foilowe-
) F'y

[y

- \ #
To determine the isomorphism types of the spaces

E 4
A ]
Xta Y  where X and Y ranqge over the known complemented
[ / PP

subspacts of’ LPFO,IT seems difficult. Tt is usually

eacy to say that a particular tensor product is a complemented

¢, : .
subspace of a known nontrivial fp-s$pace. However, it is
» . , :

not even Known, say, whethler the ‘complemented subspaces

fe]
—+

. only X i 1 &L . lven determininc
Xp are only p’lp’lQ anc o l2 ven determining

the complemerted subspaces of lp@lz‘ (they are the obvious
ones) was very difficult. (This was done by a student of
pelczyﬁski but it is ngt yet published and I do not yet

. | 5 : ‘

have a preprint. The result was communicated in Israel.)

3



CHAPITR 3

SUBSEQUENCES OF THE HAAR SYSTIM IN LpfO,l]

In this chapter we deal with the classification of

’

th: isomorphic types of closed linear spans of subseguences
of the Haar system in LpfO,]] . (1 e p ).

This is a partial result in the direction of finding
all separable gp-spaces (1 <P (‘%Q with unconditional
basis; in fact, finding all Rhose:with unconditional basis
and complement with unconditional basis is.the same problem
as thét of détefmininq the iso%orphic types of subseqguences
of arbitrary unconditional bases for LpfO,l] . (1 <« p ~ )
Since the Haar system 1s in a sense the most meiqgdr basis

; : L ;‘t;
for LpfO,l] , 1t is a patural starting boint. Note

that by fhe results of [6], all sp-spaces have bases.

oncerning subsequences seems a good beginning.

a

The Haar functions on the unit interval are usually
N L4

defined as follows: A

.



- f !
y, (1) =1
Loy tmer o e
TR ST
iy (f) = ) -1 114 el - b
o 7o ) IR B NI
[}
O otherwi e
[ N
for o= O .0 and m o= | ... N
i
Ftods standard to normalize the Haar functions S0
) . B . S . T - .t h
that the bilorthoqgonal functional associated with 1he i
Haar function is simply lntegration with respect to the
th i e o ) L , .
! Haar function. Lor our purposes, however, 11 is
more convenient to have these functions normalized with
4
S SUDTEMUmM norm as apove,
o e \)‘ ~
Iois well-knowrtHal 1he taar functions torm an
unconditional %Hasis for LpfO,l] if 1 < p <. The
proof is due to R.E.A.C. Paley and J. Marcinkiewicz and
i
can be found in I. Singer [18].
We now state some well-known properties of unconditional
basic sequences and some properties of 1 and L 0,17 .
. 7 . P P

which we will use. . .o

F}




[emms 1 If {Ki }ooie an unconditionalsbasic sequence and

{x. b ‘)llk>',f‘t4\x(lrlr;F:, theon the map b

Plx. ) = x. , o= b ... and P(xi),: O‘ for nfher

iTdices, defines a projection of in] onto Yxi 1. 1n
0

fact an upper bound can be given for the norms\of such
projections from a particular unconditingal ba;2§~ -

e

a PBespace X if [x.] 14 complemented in X by a

projection P and {yi} 1s a sequence in X wibh

/. ”ﬁ” “X{H H?i - yiH ~ 1 where x{ is the coefficient

i=]

functional associated with Xy s then {yi} 1s an
unconditional basic sequence, ryij 1s complemented in

X ~and the correspondence X; * y; defines an isomorphism (27 .
' o8

.
’

‘Lemma 3 An Mfinite-dimensional complemented subspace of

lp is isomorphic. to 1p . (1 <« p <o) [147.



emna 4 A closed sublattice of Lp{o,l] is complemented

by a projection of norm 1. (1 - p - ’Q 7.

O
Y

We are now ready 1o state and phove:

Theorem: et {xi} be sutﬂ»uggnlcp of the Haar cyster.

heo if 1 -« p - and 4 15 the closed linear span of

(x.} i 1L TO,1] either

i Y
o X is isomorphic to 1 :
o )
sor
X 15 isomorphic to Lﬁr@,lj .
Proof:

Consilder the set

A= {t e (0,10 [+ ¢ support x;
The set A 1s clearly Feasnrable. T
We show‘fhaT: ,
i u(a) = 0 Bhen x ~ 1
if u(A) >0 tgen X o~ Lp[O,l] ’

where -~ means, as usual, isomorphic.

Case 1 u(A) =0
R d J

+

for infinitely many indices 1 } .



A6 -

[

|
We will whow that % 1o a complemented subspace of

A space disometric to | Aand appeal to [emma 3. { x 1%
[ [

clearly infinite-dimensional <ince 1t arises from a <ub-

GEC eI Ee (inffinite) of g’ bhasi Se*qlwr;(o.)

Pirstly it 1o clear that fif {S“} i2 a sequence of

mutually disjoint measurable sets with _u([O,H -uU S )=0

n
and X ' . 15 the restriction of X to the set f”;” then
.)(‘ ) V
u i - o 3 !Q\ -
( X Jr)r is & subspace of LF[O,IW which contairs
B i '

X . The space X 1s clearly complemented In any such

space by restriction of the projection

-
~

f ”Ip(®71}, onto

A qgiven in Lemma 1. '

se sets {‘7[} with the above properties
1

fad]

We will now choc

~d

and so that ( §j X | ﬁn)r will obviously be isome*ric to
! -

1p . In fact we will pick the sets so that X . is constant

, .

Consider the sets A ., n= 0, 1, ...y :

on each one.

A, = {t & [0,1] Pt e support  x; for exactly n

o

indices 1} . We mean of course the supports as given

by the original definition of the Haar functions and not

-
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ry

N </

4

theosuppord of a4 tunction equal ae to a Haar tunciion.

t

[he weta A and A are clearly palrwise dicjoint

and  TOJET -y AL A o thl et has measure zero.
. .

Pix o for a moment ad consider tonly those functions

vl appear in the definition of Al - By a
i

o / . , . . ,

mayima ity argument repeatéd o timea we can oplit this

'

fpoanibly finite) sequende into 1 subsequences {x'i } 1 ¢ B L
‘ I
‘ . ’-

5 YL
7 e o with each cubsequencélconsisting of disjoint

furictrons and o that the ﬁnphﬁrti get finer, that is:

if i+ B . Afor j -2 then there exists k ¢ B . -
f14 ) - ) A H,J—l
with ~upp Kp ' SuUpp K (Frﬁﬁﬁriyya. \
- - i \ ;’\
Tt 15 then easy to aece that Aﬁ\i U (Aﬂ N supp Xk)
Wkeb o
\ H,“ '
+ . - A
= U (Aﬁ 0 supp xk) U ) (Aﬁ N supp XQ) . )
kepB kel 0 X
n,n Il,ﬂ o \

Ihe cets 1o the final union clearly are disjoint, have
union A“ and X is constandban each one.

The case n = O ,}g ~asy since X 1is constant O

"

on A_ . o T , .
o) , ‘ . :
, - / I . . LY N
Doing this for a}l - and numbering our sets properly,
: l, ) | A ) , N
- N \ v
A
l&' Al
. ) VY
/ 8
N

\

?



[' .
o
we a1 Tive gt the ppomiacd et ; X 1o constant on
AT T ; S 1 = T el e (Y o 1 dimepisional

tor all r

Cone p(A) 0

A i, ('qv”l{‘lf‘mé?fﬂ6;(1;}l1 | [071,‘ with

By 1 emma |
) b K .
: N }7'7 y

complement AN gay
Suprose weocan chow that o X containe a subspace. Y

isomoarphic to I,r‘f(f),]'} and with complement, say Y! K in
Wee will then get

IRV S T
X Ay AR A Lﬁ(02117, Lp(o,li X @ X

r)(j )Th"f 7 A [N - :'\ , .
A | o 8,

- .
Y T - O yr) @ D
R I,erO,]] (v “o Y') T I,p(O,ﬁﬁ

. 1 [0, e Y e L
plO 11 o p !

~ 1 (051w v
Py’ ! p o <
B Y o
pv

~ X



S 2

nuh

R
I
o
4
NN -
- o Tos T AN
oo N T L >}‘
Ao () g w
\}' I\>=’l i )l
(o )
Ili] { P
(> 1 o,
hiﬁl ! }
Folo, 1)
| ’
" Hernoe If - A 4?; Ipr(?,lq " i;f();l'] ,  our desired

We niow procked to oot roed ﬁUCh a tnbﬁpacp Yo,
Consider the soqueron {?i} - By dnduction and

maximal ity argument we can {ind a countable pumer of

Lubsequentens {F{} i F ), (k = 1 i;a)_? nach possibly
Linite or infinite, with . ;.
M NHg= o if kA G '
’ = J
U Hk )
1, j ¢ Nk forvsome 'k , then supp ?i N supp‘xg = ¢
o unleqgs i.= j
1€ My, for some - k > 7 4 then there exists
j £ N 1 with supp’ ?iAC supp X5
" )
- : i ’

reault



Whiat wee have peally done b op b v the e e Tnto
cocotnrtabbe pambeer ol ube e e G oyt e O f
Stunetione, gqet Tiner brom cree abeceaoene s ta thie e a0 e
Lot b e {\llu’"?]mru'. Vi ifitr Graee '.H};‘,i‘«'{!l'-ivf"" e ilﬁ](")]ix?
fronn o ganot her s H.xl‘. i "-lll»-ll,al b wha bt wee, odl in Pl
previotin cace on the /\[ ~  Prom the fact thay h/\) a0,
H
Pl sy ta caers from owhat follows that we actiually have
atc dnfbnite pmbeer o mubeee e e K
11 i ot diffiaurld to are 1hat the aeln ,"\}; - U cupn
/ . 1FHk
AT f’if*fTi-;if.lfifi, r:(”)fl':-:'l;lfi i\ Al N /\}: - N .
b=
lor 1= -1, O, ~an  and gliven posdlive conatant Gy o
A - .
pick b inereasingly sttictly with 1o om0 "f,h‘?*
J
it A =/ B -
- i( ko :\) i
n
i e Tree Tunct lrn bi, 1 = 1, Py aas as follows:
by = 2, X b, = 5
Lo g A ’ T qen, b
RO TS Tk
-] )
and inductively thereafter by - i
, + N
b = > s for 1el supp x. © supp (b .
N i Tk i MO CTN Yo |
> 4m ‘ - n g ' VAR N ErSs
Lf -m . is odd -
- < ?
+ .
- o
= i
|

7o:



S
‘tlwl
b > oo tor b ANNE v Upg (1
i i k ? i L= omd ]
Moo I ot
, .
‘ . ! A - Ry
i m Fhoevien, for o=l e and m= 1 L. L D .
[ e i‘,: of coursey, no paoblem with canvergenoce fneo
b all cacen we ape taking dicjoint aumes of functions wil il
abnolute valoe 1,
7 .
Wee will chiow that i{ the constant- o are picked
[}
“rmall oenongh™ in some cenne yet o to be determined, then an
IppTopTiate subasgquence of {lzi} will yield our deqired
".r%ﬂ( [ ‘{ -
Define oy = |h; . and d. = b for 1 » 2 .
1 "1 | Iy an i J|/\
Writs D for the spacéd generaled by {d.} .
Wee now search for conditions lon the constants ¢ 50
1
5 . \ : e . .
thatz 1., the correspondence di Yy deflnés an isomorphism
‘ . .
. P 1 7 = " .Y A |
betwesn - D and LF’F()’H whicl preserves lattice structure
and . 2. > “di’” ||d.1—bi|| “is smdll enough where the summation
| ' . :
15 over some syitable set of inteqers. .
. ! -
“ N
~ =
/



Pow 1f
(b )

1

Yot

T thie

b oo )

. \
2 em | A

P ] gt | in o we v
ulb )
' Mn!/\
t }
pul b ' b= (b N T )
Sl L S 1 l/\
. :
H(" ) = H(l' ()
P ?”4m‘A
= il ) RS -
- I t
MEARN S P)
other hand
N ,},
= ulbh .
=1 cmtl .
> 47(!%‘—71 ‘/\
o 4 . 4+
= ulb 1 o ) ulh m -
N~ + 1 - ~n~-1 . cm+] . C
N e AT A
= % U(bn,] mt1 . H(bfﬂllf mt+1- 6)
2O o ST AT
1
- u(b c R C
n=1, cmtl r-1
/ PRRUEY
o [ 5]

Combining these two and using induction we get

4
ulhb
.2 +m|A.

7

) 2 7&‘1&““’9) -

Q.
J

.
Lo

'éj_n oo

» =



—~

Ihi

Since the upports ol 1

Bt

o can bhie o rewr il

by def inition:

aar functions are easily computed,
.

“((’1) = u(l»l) anrl u(yl) = 1 .

Hence we et the above lnequality holding for all i

“7:(',{‘}"11 { O1 qij] 5 \/{ u

On the other hand
wlh ) < ulb ) -
o m | A 2m

ulb ) - = H(bf)
f)“+m ‘/\’ - f)n+1
which implies '
+
U(di ) ‘ )
v T u(by)  for 1 = .
Yi p
Bu1 then u(dl) < ¢yt u(A) .
-
W



A

]
Wee finally qet
u(vil*)
Ly + ol A) " ~oala) ;( PREN
U(‘/*l ) B )
e U(/\) H(lr‘) » U(lrl) ¢ | 4 “(/\> -
I we now consider conntands )y %17 “ ey }\” an WI"it;?
0 1)
b= (Y wa (1) = ) s X, = (1Y v (1) = )
\ L= 11 A . 171
i=1 i=]
then thie set Y} is a union {(disjoint) of sets of the form

j
supp y;t . The set UX 1s the corresponding union of

disjoint sets cupp doto. hia 15 because the functions
di and Yy attaln the same values and the functions behave
: ~

with vespett to one another in the same lattice fashion.

From this observation and the inequalities just

obtained we qget ¢, + u(A) = IR—Y—Q‘ > u(A) - chQJ
! A

This implies in turn that if >\'l"" A, @are constants then

P

| G DR T 7N _
(c_pru(an /P p S T30 o (a) = ) o PR
T L I Z }‘iyi“‘ - U‘ Z I

It is then easy to see that if ch23+l < u{A)



[ 23

.
then e SO e pondes e '\(!ji) = vy defined a4 lattice
%”.'-’5<>rn<>r}vhinm Betweerns 0 g [V(),l .

: K

We i fact have

I ER UV
e Cula) - Z‘ P a ) and H'T&IH - (e pt “(AHI/P -

Thus, with the above requitement, D forms a sublattice

ol L f(ﬂ),lrl SO 1 complemanted by a projection of norm 1 .

Concider the indey et I ronsisting of 2 and all

. - -0 - .
inteqgers of the form 2 4m for n =1 ... and m= 1 ... :
We wiat to dmpose additional restrictions on the

constants ¢ o that the closed linear span of {b.]}

will do for our space Y .

Firstly rvijﬁ - is cmmﬁ]?@ﬁﬁtéd in LpfO,lj by a

projection wvdth norm less than or equal 1o a constant K

which depends only on the Ha??rqut@m and the number p ..

We can tzen see that [di]'

je1 1S complementedwln ?

by a projection with norm less than or equal to K|ITl| HTA1H
and hence also in LpfO,]] by a projection with no

greater norm.: (D is complemered, norm 1 , in Lp[Q,l] .)



R

¢
- €~

We wish o apply femia @ to [d0) 0 and (b))

1 j i } )
2o that (ii, - ‘/ill for frvery |

But the functional ‘/'l’ Copslnta dn l[;‘\@(“;lf}ﬁ(; with

pespect to oy, but witt a normalizing factor thrown in.

bt not difficult to determine that |y L | = :;“/r’ )
' ©4n
‘ ! /
L N I A I 11 A AT Zc/,:ﬂ“)l/p
2 4m 7 4m . j

Secondly

Hd ] - b H = (’U(}'i . Al/\c))l/ﬁi Cnl/r’

n.o 0 n
So4m 7 4m ol 1 /

Thus 11 ;

Z HI'H H‘i;H ”dl”bln = W ’ we have

el
c_ytulha) 1/p in v/l “di,“bi”

W <« K , N . 7
- B U(A) - ZCJ7]+1 (JJ(A) ~ ZCJ?J+1)1]6

c 4+ ulA) 11/[) ¢ /Py Zc.l/DQJ"le_/p

O

< ¥V e — K
T s Qe j (1)




-5/ ~

T

Hence we can make W o 1 by making

J(-J,ﬁ,iiﬂ) , L X o

and

=y
o -
b )
l/}\+ S—j(ll/Fw)f]/}fI h
oo e | /4
(L(A) - Ei[)V’*l)l/‘
' A

s can eanily be done st the came time as making

&
We then get that fh11= R 15 complemented in LT[O7]]
X }
50 also In YWY  and that by oo d defines an 1somorphism.
;?/ However, wa already know that Yy defines an

isomorphism. Thus | ST T 15 isomorphic to N D,
q [ h [ )1jlf‘f ) omorphic tg [‘yl]LﬁTf

f T and unconditionality of the Haar system

i

Ry ‘our cholce ¢

this space i< clearly isomorphic to LffD,%] hence also
)

to Lp(ﬂ,li ) : -
‘ / The space [b ]IFT' satisfles our desired propertiés.
£ s
5 #
We feel thaS a qgood, though probably difficult, next
‘ . . . :
step in finding gp-space« is to find the isomorphi¢ types
T - of complemented closed linear spans of blocks with respect to
" ““ V -

. ' he o
e ¥ : e
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Phiee 1o uywl\'-ln .nwl//ur Showling that o large o lass of

h ,S‘i\-',;..u e, g be Ml)ffiil)“(i jll 1'\1‘9 W.ly.

Hote: It ha< been pointed out to us that there are ecanier

ways to get the aete Nk in the proof. H.P . KRocenthal points
) , o’ .
out. that 1f an element x of the Haar system 15 called a

predecessor of another element y of the Haar system when

~

support x ) support y  but x £y , then

N i x. has exactly® k-1 predecessors in §x. | .
: [k },l l x, has exactly® k-1 predecessors in ix&}

Lt haw alco been pointed out by:AMeir that if

. ) , ‘ ; ‘ o 7 P
Mo %i | the i'th Haar function belongs to the sequence %lej
then the statement :"M has positive density in the positive

. lntegers" also separates the cases 1 and L .
nX p P
rd ) ~ I J
\ '3., '
- ’?‘E,
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