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Abstract

The logistic regression procedure for Differential Item Functioning (DIF)
detection is a model-based approach designed to identify both uniform and nonuniform
DIF (Swaminathan & Rogers, 1990). Past studies have identified an inflated Type I error
rate that is problematic because it results in the inefficient use of testing resources and
interferes with understanding the underlying psychology of DIF. Zumbo and Thomas
(1996) developed an effect size measure for use with the logistic regression DIF
procedure and suggested a classification method based on Cohen’s (1988) effect size
measures. This study develops a new classification method based on those established
for the Simultaneous Item Bias Test (Roussos & Stout, 1996b). A simulation study is
also conducted to determine if the effect size measure affects the Type I error and power
rates for the logistic regression DIF procedure across sample size, ability distribution, and
percentage of DIF items included on a test. Results from this study indicate that the
inclusion of the effect size measure can substantially reduce Type I error rates when large

sample sizes are used although there is a reduction in power that must also be considered.



Acknowledgements
To Jeff, Steve, Todd, and Bruno: Thank you for your helpful comments on the
manuscript. Your comments and probing questions have forced me to clarify my
thoughts and their expression.

To my colleagues (and friends) Don and Dianne: I’'m sure you will see many of
the ideas we’ve discussed (pre-hoc) in the text that follows — those discussions (with their
sometimes practically pragmatic topics) have made my time here much more personally
and academically rewarding.

To Mark: A quick look at the professional interests on my CV (Item Response
Theory, DIF, and Computer Adaptive Testing) hints at your influence. Thank you for
your patient mentoring — I believe you are largely responsible for the opportunities I find
myself leaving to pursue.

To Dad, Mom, Floyd, and Angie: Your support and understanding is greatly
appreciated. You may not have always ‘understood’ what I was doing but your genuine
interest and unconditional love was more helpful than you know.

To Delaine: You are the blessing for which I am most thankful. I can not imagine
my life without your strength, your determination, and your love. May God bless

everyone with what I find in you.

Michael



Table of Contents
Literature Review
Introduction
The Logistic Regression DIF Procedure
R’A: A Weighted Least Squares Effect Size Measure for LR
Classification of Negligible, Moderate and Large DIF Using R°A
Method
Simulation Study
Data Generation and Analysis
Results
10% DIF
20% DIF
10%/10% DIF
Discussion and Conclusion
Endnotes
Tables 1-8
Figures 1-3

Bibliography

Page
Page
Page

Page

Page

Page

Page
Page
Page
Page
Page
Page
Page

Page

14

5-7

7-8

8-10

11-12

13-14

15-17
17-18
18

19-21
22

23-30
31-33

34-37



Table 1.

Table 2.

Table 3.

Table 4.

Table S.

Table 6.

Table 7.

Table 8.

List of Tables

Item Parameters for Non-DIF Items.

Item Parameters Used to Generate DIF Items.

Frequencies and Percentages for LR and LR with R?A for 10% DIF

Equal Ability Distribution Condition.
Frequencies and Percentages for LR and LR with R2A for 10% DIF

Unequal Ability Distribution Condition
Frequencies and Percentages for LR and LR with R?A for 20% DIF

Equal Ability Distribution Condition.
Frequencies and Percentages for LR and LR with R>A for 20% DIF

Unequal Ability Distribution Condition.
Frequencies and Percentages for LR and LR with R?A for 10%/10%

DIF Equal Ability Distribution Condition.
Frequencies and Percentages for LR and LR with R>A for 10%/10%

DIF Unequal Ability Distribution Condition.

Page 23

Page 24

Page 25

Page 26

Page 27

Page 28

Page 29

Page 30



List of Figures

Figure 1. Typical uniform DIF item. Page 31
Figure 2. Typical nonuniform DIF item. Page 32

Figure 3. Scatterplot for four large-scale achievement tests and cubic

regression curve predicting R?A-U from I‘B”l Page 33



Logistic Regression for DIF Detection !

Literature Review
Introduction

Differential Item Functioning (DIF) procedures are currently the dominant
psychometric methods for addressing fairness in standardized achievement, aptitude,
certification, and licensure testing (for a review of these procedures see Clauser & Mazor,
1998; Millsap & Everson, 1993). These procedures reflect, in large part, a response to
the legal and ethical need to ensure that comparable examinees are treated equally.
Generally, examinees are split into two groups. The reference group consists of majority
or advantaged group members and the focal group consists of minority or disadvantaged
group members. DIF analysis then involves matching members of the reference and
focal groups on a measure of ability to ensure comparable examinees are being compared
and implementing statistical procedures to identify group differences on individual test
items.

These group differences may take two forms that can be visually represented with
item response functions. Most DIF procedures are designed to identify uniform
(unidirectional) DIF which occurs when an item favors one group over another
throughout the ability continuum. Figure 1 shows item response functions for a typical
uniform DIF item where the difficulty of the item for the reference and focal group differ.
Occasionally, DIF procedures may identify nonuniform (crossing) DIF which occurs
when there is an ability by group membership interaction, but generally DIF procedures
are not designed to do so. Figure 2 provides an example of nonuniform DIF where item

discrimination differs for the reference and focal groups.
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Swaminathan and Rogers (1990) applied the Logistic Regression (LR) procedure
to DIF detection. This was a response, in part, to the belief that the identification of both
uniform and nonuniform DIF was important. The strengths of this procedure are well
documented. It is a flexible model-based approach designed specifically to detect
uniform and nonuniform DIF with the capability to accommodate continuous and
multiple ability estimates. Furthermore, simulation studies have demonstrated
comparable power in the detection of uniform and superior power in the detection of
nonuniform DIF compared to the Mantel-Haenszel (MH) and Simultaneous Item Bias
Test (SIB) procedures (Li & Stout, 1996; Rogers & Swaminathan, 1993; Swaminathan &
Rogers, 1990). These studies also identified two major weaknesses in the LR DIF
procedure: 1) the Type I error or false positive rate was higher than expected, and 2) the
lack of an effect size measure.

In the context of DIF, a Type I error is the incorrect identification of an item as
displaying DIF when, in fact, it does not. Type I errors are problematic for two reasons.
First, the incorrect identification of DIF items could lead to the removal of satisfactory
items resulting in the inefficient use of limited testing resources. Second, it could
interfere with the development of a better understanding of the nature or underlying
psychology associated with DIF. In fact, the Type I error inflation under several
commonly occurring situations was severe enough to lead to a third problem: It made
meaningful power comparisons between MH, SIB, and LR DIF procedures problematic
(Li & Stout, 1996).

Another disadvantage of the LR DIF procedure is the use of a statistical test

without an associated effect size measure (i.e., a descriptive statistic for the degree or
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magnitude of DIF). The use of null hypothesis significance testing in the absence of
effect size measures has been, and continues to be, scrutinized (e.g., Cohen, 1988, 1990,
1992, 1994; Kirk, 1996). That is, since the sensitivity or power of the statistical test of a
hypothesis is dependent on the sample size employed, a measure to distinguish statistical
significance from practical significance or meaningfulness is vital to this type of research.
As Potenza and Dorans (1995) noted, “to be used effectively, a DIF detection technique
needs an interpretable measure of the amount of DIF” (p.33).

One explanation for the inflated Type I error rate associated with the LR DIF
procedure is that statistically significant DIF was being flagged and, by implication,
misinterpreted as practically significant DIF. This explanation seems reasonable since
the associated chi-square statistic is sensitive to large sample sizes. Thus, large sample
sizes may result in high power that is identifying small but non-zero DIF. This seems to
be a plausible explanation since several studies have demonstrated high power and
increasingly inflated Type I error rates for the LR DIF procedure as the sample sizes of
the reference and focal groups became larger (Narayanan & Swaminathan, 1996; Rogers
& Swaminathan, 1993; Swaminathan & Rogers, 1990). In addition, the majority of
studies to date have made comparisons of Type I error and power rates for procedures
based only on their statistical tests. In the one exception identified, the use of an effect
size measure in conjunction with a statistical test reduced Type I errors with the MH and
SIB procedures (Roussos & Stout, 1996b). Unfortunately, this study did not consider the
potential effects the inclusion of the effect size measure could have on power. Moreover,
the LR DIF procedure was not considered as an effect size measure had not yet been

proposed. This leaves a void in the DIF literature.
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Recently, Zumbo and Thomas (1996; also see Zumbo, 1999) proposed RA, a
weighted least squares effect size measure for the LR DIF procedure, that could be used
to quantify the magnitude of uniform or nonuniform DIF in items. Implementing
Cohen’s (1992) small, medium, and large effect size guidelines, they used R?A to
interpret selected items from an example data set. However, this effect size measure has
undergone little additional investigation. At least two factors are worthy of further
consideration. First, a systematic comparison between R?A and existing DIF effect size
measure classification guidelines needs to be conducted to either justify the use of the
existing or establish new guidelines. Second, an investigation into the ability of R’A to
reduce Type I errors in the LR DIF procedure may provide a preferable alternative to the
alpha adjustments suggested in Narayanan and Swaminathan (1996) that would reduce
the power of DIF procedures.

Therefore, the purpose of this study is twofold. First, following a review of the
LR DIF procedure developed by Swaminathan and Rogers (1990) with a suggested
modification to improve the power of uniform DIF detection and the effect size measure
proposed by Zumbo and Thomas (1996), an empirical standard setting approach to
classify negligible, moderate, and large DIF is conducted. Second, a simulation study of
the Type I error and power rates for the chi-square statistical test alone and in conjunction
with the proposed modification and effect size measure is presented. Implications for the

substantive review of DIF and future simulation studies are also discussed.



Logistic Regression for DIF Detection S

The Logistic Regression DIF Procedure

The probability of a correct response to an item using the LR model for the

identification of DIF is given by Swaminathan and Rogers (1990):

e To+10+ 7,8 +73(6k )

1+ e’o*’lg*’fzg"’fs (&) - (D

Plu=116,g)=

In this model, @is the ability or observed trait level of an examinee usually denoted by
total test score. Group membership of the examinee, g, is typically coded 1 or O for an
examinee belonging to the reference or focal group, respectively. The parameters

Ty» T1» T, and 7, represent the intercept and the weights for the ability, group

difference, and ability by group interaction terms, respectively.

Uniform DIF occurs when 7, #0 and 7, =0. Furthermore, the uniform DIF
favors the reference group when 7, >0 and the focal group when 7, <0. Nonuniform
DIF is present when 7, # O regardless of the value of 7,. When 7, > 0, the item favors
higher ability members of the reference group and lower ability members of the focal
group. In contrast, items with negative values for 7, favor higher ability members of the

focal group and lower ability members of the reference group.

The null and alternative hypotheses for the simultaneous test of uniform and
nonuniform DIF are H,: 7, =7, =0 and H;: 7, #0 or 7, #0, respectively. The
difference between the -2 log likelihood of the compact model (including
7, and 7,6 only ) and the augmented model [z, + 7,6 + 7,g + 7,(6g)] is associated with a

chi-square distribution with two degrees of freedom. Typically, when the chi-square test
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statistic surpasses x3,, the hypothesis of no DIF is rejected and the item is sent for

review by content specialists.

LR was the first procedure purposefully designed to identify both uniform and
nonuniform DIF. The two degree of freedom chi-square test was designed to maximize
the ability to identify both uniform and nonuniform DIF and control the overall Type I
error rate. It was important to control Type I errors given the multiple tests that are
conducted in DIF analyses and the inflated false positive rate discussed earlier.
Furthermore, there was incomplete information on the prevalence of nonuniform DIF.
The intervening years have provided a clearer notion on the nature of DIF. At present, it
is commonly acknowledged that nonuniform DIF does occur although with substantially
lower frequency than uniform DIF (Camilli & Shepard, 1994; Gierl, Rogers, & Klinger,
1999). Therefore, it seems appropriate to frame DIF tests to focus on uniform DIF but
not at the exclusion of nonuniform DIF.

Swaminathan and Rogers (1990) noted, “In the LR model, the interaction term
may adversely affect the power of the procedure when only uniform DIF is present
because one degree of freedom is lost unnecessarily” (p. 366). Working under the
premise that an effective effect size measure can control Type I errors, it seems
reasonable to modify the two degree of freedom chi-square test into separate one degree
of freedom tests of uniform and nonuniform DIF, respectively. Theoretically, this change
should result in superior power in the detection of uniform DIF and nominal Type I errors
if an appropriate effect size measure is available. This would enable practitioners to
ensure high standards of equity by enhancing the detection of the most common form of

DIF in addition to considering nonuniform DIF. However, this will only be prudent if the
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effect size measure adequately controls Type I errors providing the efficiency required in
a testing program.
R’ A: A Weighted Least Squares Effect Size Measure for LR

As Zumbo & Thomas (1996) note, the LR model for the identification of DIF
given in Equation 1 is nonlinear with respect to the odds or probability. Equivalently, it

can be expressed as linear with respect to the odds by

ln(l Pp)=to+t,9+12g+2'3(0g), )

where P is the probability of responding correctly given 8, and g (u=1). This equation
can then be considered a weighted least squares model by applying Pregibon’s (1981)
result that the vector of maximum likelihood estimators 7, of the LR coefficients in

equations | and 2, can be expressed in terms of weighted least squares by
7 =(XVX)'XVz 3)

where, z=XT+V'r, r=(u—- ?) ., V is a NxN diagonal matrix with elements
E(l - 13:),1 =1,...,N,, X is a Nx4 data matrix with rows [1, 6;, g, 0;gi], P is a Nx1 vector

of the fitted values of the LR model, u is a Nx1 vector of examinee responses, and N is
the combined sample size of the reference and focal groups.
Given the LR DIF procedure could be considered a weighted least squares model,

Zumbo and Thomas (1996) extended Pratt’s (1987) demonstration that an additive
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partitioning of the explanatory variables in a LR was reasonable through the geometry of
least squares. Furthermore, they applied it specifically to the LR DIF procedure noting

that the contribution of each explanatory variable could be defined by
R’A = R* —R*:, 4)

where R? and R? are the sums of the products of the standardized regression coefficient

for each explanatory variable and the correlation between the response and each
explanatory variable (i.e., 2 B;r; for jexplanatory variables ) for the augmented and
1

compact models, respectively. Substantively, the R?A values corresponding to the
uniform and nonuniform terms in the LR DIF procedure, 7,g and 7,(fg) respectively,
could be interpreted as a quantification of magnitude of uniform and nonuniform DIF

present in an item and will be referred to as R?A-U and R?A-N .

Classification of Negligible, Moderate and Large DIF Using R?A

Based on Cohen’s (1992) conventions for small, medium, and large effects,
Zumbo and Thomas (1996) suggested a negligible, moderate, and large classification
method for R?A. They proposed R?A values below 0.13 for negligible DIF, between 0.13
and 0.26 for moderate DIF, and above 0.26 for large DIF. Both the moderate and large
categories also required the item to be flagged as statistically significant with the two

degree of freedom chi-square test.

Both MH and SIB have established effect size measures with criteria to

distinguish negligible, moderate, and large DIF that are well accepted (Roussos & Stout
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1996b; Zwick & Ercikan, 1989). Although MH may be considered the ‘gold standard’ in
DIF detection (Roussos & Stout, 1996a, 1996b), SIB was chosen as the basis of
comparison because it is able to detect both uniform and nonuniform DIF, and has been
demonstrated to have superior statistical characteristics in comparison to MH in both
uniform and nonuniform DIF detection (Narayanan & Swaminathan, 1994; Roussos &

Stout, 1996b; Shealy & Stout, 1993).
To determine if there was a relationship between the SIB effect size measure, 3,, .

and R?A, four data sets from a large-scale achievement testing program in Canada were

examined. These data sets contained a range of DIF effect sizes when the SIB procedure
was used. The first two data sets considered English-French translation DIF for 50-item
Grade 6 Social Studies and Mathematics achievement tests with 2200 examinees in both

the reference and focal groups. Similarly, the second two data sets considered gender

DIF for 70-item Grade 12 Social Studies diploma exams. For each data set, ,BU and R?A-

U values were calculated. ,B’U can be both positive and negative indicating whether the
focal or reference group is favored whereas R?A-U is always positive with the direction
of advantage indicated by 7,, as discussed previously. Therefore, the absolute value of
ﬁu was used in order to facilitate comparison with R?°A-U. Bivariate scatterplots of each

individual and the combined data sets revealed a consistent curvilinear relationship.

Subsequently, cubic curve regression was conducted to predict R?A-U from ,BU with the

combined data set because it contained the most data. Furthermore, the cubic model
provided the smallest error term of the models fit to the data. Figure 3 portrays the

scatterplot and superimposed cubic regression curve for the combined data sets.
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Roussos and Stout (1996b) suggested BU classification values of 0.059 to
distinguish negligible from moderate DIF, and 0.088 to distinguish moderate from large
DIF. These BU values were substituted into the cubic regression equation to calculate
classification scores for R?A-U>. This procedure indicates the following criteria be used
with R*A-U:

e Negligible or A-level DIF: R*°A-U < 0.035,

® Moderate or B-level DIF: Null hypothesis is rejected and 0.035 <R?A-U < 0.070,

e Large or C-level DIF: Null hypothesis is rejected and R*A-U 2 0.070.

These values are also suggested for use with R?A-N since criteria for the classification of
nonuniform DIF effect size measures have not yet been developed by the psychometric
community.

The large difference between the classification scores for R*A suggested by
Zumbo and Thomas (1996) and those derived from a comparison with 3,, are striking.

In order to investigate the utility of the classification scores developed above, a
simulation study was designed to consider the Type I error and power rates of the LR DIF

procedure.
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Method

Simulation Study

Examinee response data were simulated under a variety of conditions expected to
affect the Type I error and power rates of DIF procedures. Three factors were
manipulated: sample size, ability distribution differences, and percentage of items
containing DIF. Furthermore, the levels of each factor were designed to reflect those that
might be found in real data and to facilitate comparisons with previous studies. Test
length was not manipulated; 40 item tests were constructed as in Narayanan and
Swaminathan (1994), Narayanan and Swaminathan (1996), and Rogers and Swaminathan
(1993) to represent a short but reliable standardized achievement test.

First, sample size is an important factor in any examination of power. Type I
error and power rates for MH, SIB, and LR DIF procedures increase as the sample size of
the reference and focal groups increase when only significance tests are used (Narayanan
& Swaminathan 1994; Rogers & Swaminathan, 1993; Roussos & Stout, 1996b). Three
reference group sample sizes (Ng=250, Ng=500, Nr=1000) were crossed with three focal
group sample sizes (Np=250, Np=500, Ng=1000) with the restriction that Ng>Ng to
produce six sample size combinations.

Second, ability distribution differences were considered. Although several studies
have demonstrated adherence to nominal Type I error rates with ability differences as
large as one standard deviation between the reference and focal groups (Narayanan &
Swaminathan, 1994; Rogers & Swaminathan, 1993), ability differences are a common
phenomenon and can have significant interactions with other variables. Hence, two

levels were considered in this study. In the equal ability distribution condition, both the
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reference and focal group abilities were randomly generated to form normal distributions
with mean 0.0 and standard deviation 1.0. In the unequal ability distribution condition,
the focal group ability was modified to a normal distribution with mean -0.5 and standard
deviation 1.0.

Third, the percentage of items containing DIF was a factor of interest. Because
the percentage of DIF items can reduce the validity of the matching variable, it is also
expected to affect Type I error and power rates. Three levels were considered: 10% of
the items favoring the reference group, 20% of the items favoring the reference group,
and 20% of the items containing DIF with 10% favoring the reference and 10% favoring
the focal group (e.g., four, eight, and eight items, respectively). The first two conditions
in which all the items favor the reference group were designed to represent the situation
where some form of systematic difference is present in the DIF items. Such a situation
might be expected, for example, in gender comparisons where females consistently
outperform males. The third condition, which will be referred to as 10%/10% DIF, is
intended to reflect situations where differences would be random rather than systematic.
In situations such as test translation, there is often insufficient a priori evidence to suggest
a systematic reason for items to favor only one group because translation errors tend to be
random.

Thus, DIF analyses for datasets with six levels of sample size, two levels of
ability distributions, and three levels of DIF item percentages were fully crossed for 36
conditions. Each condition was replicated 100 times to facilitate Type I error and power

calculations.
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Data Generation and Analysis

The three parameter logistic itemn response model was used for the generation of
examinee response data which necessitated the stipulation of item parameters for both the
non-DIF and DIF items. The non-DIF items included in each test were randomly
selected from an administration of the Graduate Management Admissions Test, as cited
in Narayanan and Swaminathan (1994). The same item parameters were used for both
the reference and focal groups resulting in unbiased items that were expected to reflect
realistic items that were free of DIF. These item parameters are shown in Table 1. The
first 32 items were used for the non-DIF items needed in the 20% and 10%/10%
conditions and all 36 items in the 10% DIF condition.

The DIF items included in each test were designed to reflect those which may be
found in standardized tests. Several characteristics of these items should be highlighted
and are included with item parameters in Table 2. Items with a range of discriminations
and difficulties were included, as were uniform and nonuniform items. For each test, the
ratio of uniform to nonuniform DIF items was kept at 3:1 to reflect the more frequent
occurrence of uniform DIF. Furthermore, DIF effect sizes based on the area between
item response functions (Raju, 1988) were limited to 0.4 and 0.6 to reflect DIF of
moderate size. Larger DIF effect sizes were not simulated because they have been shown
to be flagged with high frequency by MH, SIB, and LR DIF procedures (Narayanan &
Swaminathan, 1994; Rogers & Swaminathan, 1993). In addition, large DIF is
infrequently found in practice (Linn, 1993). The first four items were used in the 10%

DIF percentage condition. All eight items were used in the 20% and 10%/10% DIF
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conditions, with the focal and reference group parameters for items 3, 6, 7, and 8
interchanged for the 10%/10% DIF condition.

For each condition, the probability of a correct response for an item given the
three parameter logistic model was calculated by substituting the appropriate item and
ability parameters for each examinee. The item was scored correct if the probability of a
correct response exceeded a random number from a uniform distribution in the interval
[0, 1] and incorrect otherwise. This was completed with an Excel macro.

In computing the chi-square and R?A values, the sum of the test items was used
for the matching variable. Furthermore, in order to avoid collinearity problems between
the interaction term and the other explanatory variables, @ and g were centered through z-
score transformations before creating the interaction term 8g (see Zumbo & Thomas,
1996, p. 3). LR statistics were computed with SPSS.

To enable comparisons between the two degree of freedom chi-square test and the
separate one degree of freedom chi-square tests which included the effect size measures
R?A-U and R?A-N, the following definitions were applied for Type I error and power.
For the two degree of freedom chi-square test, a DIF item was correctly identified if the
probability of the two degree of freedom test was less than 0.05 and a Type I error
occurred if a non-DIF item was similarly flagged. For the separate one degree of
freedom chi-square tests, an DIF item was correctly identified if the probability of either
one degree of freedom test was less than 0.05 and the corresponding R?A was greater than
or equal to 0.035. Similarly, a Type I error occurred if a non-DIF item met this

condition.
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Results

The results of the simulation study are presented below for the 10%, 20%, and
10%/10% conditions. In each condition, results for the equal ability distributions are
presented before the unequal ability distributions with Type I error discussions preceding
overall. uniform, and nonuniform power discussions, respectively.

10% DIF

Table 3 displays the Type I error and power frequencies and percentages for the
10% DIF condition with equal ability distributions for both the two degree of freedom
chi-square test and the separate one degree of freedom chi-square tests with R’A
classification method using the rules described above.

The Type I errors rate for the two degree of freedom chi-square test exceeded the
nominal level for all sample sizes and increased from 5.3% to 7.3% for the Ng=250,
Ng=250 and Ng=1000, Ne=1000 conditions, respectively. The opposite trend was
observed when R*A was used. Type I errors decreased as sample size increased with a
1.0% Type I error rate in the Ng=1000, Ng=1000 condition. This corresponds to 35 false
positives of 3600 non-DIF items.

The overall power of both procedures increased as sample size increased with the
exception of the Ng=1000, Ng=250 ccndition when the R?A procedure was employed.
The power of the R*A procedure for this unbalanced condition was lower than the
Nr=500, Ng=500 condition. Similarly, the power to detect uniform DIF increased as
sample sizes increased with the exception of the most unbalanced design using the R*A
procedure. The low power for the Ng=1000, Ng=250 sample size was problematic across

DIF percentage and ability distributions often resulting in lower power than the Ng=500,
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Nr=250 condition. At present, no explanation is available for this outcome. The power to
detect nonuniform DIF increased from 19% to 82% for the two degree of freedom chi-
square test whereas sample size made little difference in the power of the R’A procedure
that varied between 23% and 35%. Finally, with the exception of only the Ng=250,
N#=250 condition, the power of the two degree of freedom chi-square test exceeded that
of the R?A procedure. For example, in the Ng=1000, Ng=1000 condition the overall
power of the two degree of freedom chi-square test was 95.5% compared to 82.3% for
the R’A procedure. However, this result needs to be tempered by considering the large
differences in the Type I error rates when larger sample sizes are used.

Although the inflated Type I rates have been discussed in previous studies, a
comparison of the Type I error and power frequencies more clearly demonstrates the
problem. For the Ngr=1000, Ng=1000 condition, 264 of the 646 items identified as
containing DIF were false positives for the two degree of freedom chi-square test as
compared to 35 of 364 for the R*A procedure. That is, nearly 41% of the items flagged as
containing DIF were Type I errors when only the two degree of freedom chi-square test
was used. Normally, large sample sizes and a low percentage of items containing DIF, as
simulated in this condition, is considered ideal. However, the ratio of Type I errors to
items flagged as containing DIF is highest with large sample sizes and when the
percentage of items containing DIF is low. Clearly, consideration of both Type I error
and power frequencies are essential to balance high identification of DIF items and
efficient use of resources.

Table 4 shows the Type I error and power results for the 10% DIF with unequal

ability distributions condition. As in the previous condition, Type I errors increased as
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sample sizes increased but the Type I error rate was higher. In contrast, the overall,
uniform, and nonuniform power were lower in the unequal ability distribution. However,
power trends were consistent with those described in the 10% DIF with equal ability
distribution condition.

20% DIF

Tables 5 and 6 show the results for the 20% DIF with equal and unequal ability
distribution conditions, respectively. As with the 10% DIF conditions, Type I errors
increased as sample size increased for the two degree of freedom chi-square procedure
and decreased for the R?A procedure. Still, the Type I error rate was higher for
comparable sample sizes and ability distributions for both conditions peaking at 15.8%
for the Nr=1000, Np=1000 unequal ability distribution condition with the two degree of
freedom chi-square test.

The trend of power increasing with sample size was comparable to the 10% DIF
conditions. However, a comparison of power for the 10% and 20% DIF conditions is
complicated by the different properties of the items containing DIF in the 20% condition.
Uniform DIF power is generally lower for the 20% DIF conditions which may be
partially due to the inclusion of relatively easy and difficult items. Item characteristics
such as difficulty and discrimination have been demonstrated to effect the power of DIF
procedures. Similarly, nonuniform DIF detection generally improved for the 20% DIF
conditions. This outcome is likely due to the inclusion of a second nonuniform DIF item
with a larger effect size (i.e., area between item response function equal to 0.6) and not
related to the percentage of DIF items present. A comparison of the power of those items

included in both the 10% and 20% DIF conditions indicates superior power in the 10%
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DIF condition. This supports the findings reported by Rogers and Swaminathan (1993)
and Narayanan and Swaminathan (1996).
10/10% DIF

Tables 7 and 8 show the results for the 10%/10% DIF with equal and unequal
ability distribution conditions, respectively. Type I error and power trends were
consistent with those reported in the 10% and 20% DIF conditions. Generally, the power
was higher and the Type I error rates were lower for the 10%/10% DIF condition than
either the 10% or 20% DIF conditions for comparable sample sizes and ability
distributions. Two hypotheses for this interesting result seem reasonable. First, the bias
present in the individual DIF items when aggregated would result, overall, in an
approximately unbiased test. In turn, this would provide a superior conditioning variable.
Second, the balancing of items favoring both the focal and reference groups may benefit
from the compensatory nature of current DIF procedures which typically have effect sizes

that sum to approximately zero across items (Camilli, 1993; Williams, 1997).
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Discussion and Conclusion

The first purpose of this study was the systematic comparison of R?A to existing
measures and the development of negligible, moderate, and large DIF classification
guidelines based on this comparison. Visual representation of data from a large-scale

testing program suggests a consistent curvilinear relationship between R*A-U and the SIB

effect size measure f,. The cubic regression procedure resulted in guidelines very

different from those suggested by Zumbo and Thomas (1996). This contrast is intriguing
in light of the ongoing difficulties in linking statistical and substantive DIF reviews (e.g.,
Camilli & Shepard, 1994; Linn, 1993; O’Neill & McPeek, 1993, Roussos & Stout,
1996a; Willingham & Cole, 1997).

Cohen (1988) defined small, medium, and large effect sizes as follows: A small
effect size is noticeably smaller than medium but not so small as to be necessarily trivial,
a medium effect size is likely to be visible to the naked eye of a careful observer, and a
large effect size is the same distance above medium as small is below it. The effect sizes
used in this study, as modeled by item response functions, meet, at minimum, the criteria
for a medium effect size. Recall, for uniform DIF items, difficulty parameters differed by
0.50 and 0.75 while for nonuniform DIF items discrimination parameters differed by 0.35
and 0.85 for the reference and focal groups. Yet by the classification methods outlined
by Zumbo and Thomas (1996), only 6.8% of the DIF items in this study would be
identified as containing moderate DIF. In contrast, these same items were identified as
containing at least moderate DIF by the criteria derived from those in use with SIB 68.2%
of the time. On the other hand if an interpretation similar to other R? measures is applied,

only 3.5% of the variation explained by the grouping variable would trigger the moderate
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DIF classification. Some social scientists would consider this effect small rather than
moderate or large. Thus, two alternative statistical approaches suggest notably different
perspectives on the expectation to substantively explain the underlying psychology of
statistically flagged DIF. That is, differences in item response functions we hope to
interpret substantively are flagged by effect sizes that, in turn, account for a small
proportion of variance in the dependent variable. The juxtaposition of these two
statistical interpretations may provide a partial explanation for the current discontinuity
between statistical and substantive interpretations and merits continued investigation.

The second purpose of this study was to consider the effects the inclusion of R’A
had on both Type I error and power rates of the LR DIF procedure. To investigate this
approach a simulation study considering sample size, ability distribution differences, and
percentage of items containing DIF was conducted. Type I errors decreased as sample
size increased when R?A was used and generally were below the nominal alpha level of
.05 when the combined sample size exceeded 1000. When small sample sizes were used,
Type I errors were above the nominal level.

In general, power decreased with the inclusion of R?A although with larger
sample sizes the benefit of reduced Type I errors may supercede the loss of power. The
power to detect uniform DIF seems reasonable at 75.3% across all 36 conditions although
sample size needs to be considered. This finding is similar to Rogers and Swaminathan
(1993) who reported 73% power for uniform DIF on 40 item tests. The power to detect
nonuniform DIF was much lower at 32.5% across all conditions. Initially, an
inappropriate classification value for R°A-N was believed to produce this result.

However, further analysis of the source of Type I errors indicated approximately half the
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errors were a result of uniform DIF being flagged and the other half the result of
nonuniform DIF being flagged (i.e., 2740 uniform; 2798 nonuniform; 89 both uniform
and nonuniform). This suggests the classification scores for R?A-N are appropriate.
However, only two nonuniform DIF items were considered in this study, therefore, this
classification guideline warrants additional study and comparison to the effect size
measure associated with the Crossing Simultaneous Item Bias Test. Furthermore, this
outcome suggests if only uniform DIF were screened Type I errors would be
approximately half of those reported in this study.

Finally, for both uniform and nonuniform DIF, the Ng=1000, Ng=250 condition
was problematic resulting in unusually low power. Approximately equal sample sizes
should be used to alleviate this concern whenever possible. In addition, future research
should further investigate the effects of unequal reference and focal group sample sizes
on DIF detection.

In conclusion, it warrants repeating that an inclusive view of the variables
associated with statistical inferences is required in DIF. Sample size, Type I error rate,
power, and effect sizes are intertwined and need to be considered together with careful
attention to the inferences, and their consequences, drawn from a statistical test. Future
research comparing statistical approaches to identify DIF must include effect size
measures with attention to both Type I error and power. These considerations will

improve the generalizability of results from simulation studies to practice.
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Endnotes

! Because the R’A effect size measure may be additively partitioned, it need not
consider explanatory variables in isolation. Indeed, Zumbo and Thomas (1996)
suggested considering the uniform and nonuniform terms simultaneously. The separate
uniform and nonuniform approach is based on the assumption that this specific
information may assist content reviewers in interpreting DIF.

? Each data set was also fit separately with a cubic regression model to develop a
regression equation. The SIB cutscores were substituted into these regression equations
to determine comparable cut scores. The mean of these values, across the four data sets,
corresponded to cutscores of 0.036 and 0.070. The values for the combined data set were

0.035 and 0.069. Given the similarity of the two approaches only one is reported in text.



Table 1

Item Parameters for Non-DIF Items

Item A B C Item A B C
1 044 -030 020 19 055 1.09 020
2 055 -1.06 020 20 140 1.64 0.20
3 082 1.02 020 21 092 1.13 020
4 052 -196 020 22 0.64 -1.55 0.20
5 1.02 128 020 23 1.01 0.81 020
6 082 061 020 24 061 -0.53 0.20
7 092 042 020 25 070 1.05 0.20
8 065 1.68 020 26 1.02 0.64 0.20
9 056 -2.70 0.20 27 048 2.12 0.20
10 0.29 -1.39 020 28 1.01 091 0.20
11 035 -1.12 020 29 0.53 0.87 0.20
12 031 -1.37 020 30 0.36 -2.63 0.20
13 1.05 0.10 020 31 1.12 -1.21 0.20
14 0.51 -0.09 020 32 0.86 -0.57 0.20
15 073 0.61 020 33 0.59 -1.29 0.20
16 0.88 095 020 34 0.56 040 0.20
17 1.11 -035 020 35 1.09 1.11 020
18 1.32 057 020 36 0.88 -0.93 0.20
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Note. A, B, and C correspond to the discrimination, difficulty, and pseudo-guessing

parameters in the 3-PL IRT model.
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Table 2

Item Parameters Used to Generate DIF Items

Item AR Br Cr Afr Br Cr Area DIF Type

1 1.25 -0.25 0.20 1.25 0.25 020 040 Uniform
2 050 -0.38 0.20 050 0.38 0.20 0.60 Uniform
3090 -1.63 0.20 090 -0.88 0.20 0.60 Uniform
4 045 0.00 020 0.79 0.00 0.20 0.60 Nonuniform
5090 1.00 0.20 090 1.50 0.20 040 Uniform
6 1.25 088 0.20 1.25 1.63 0.20 0.60 Uniform
7 090 -0.25 0.20 090 025 0.20 040 Uniform

8 0.80 0.00 0.20 1.65 0.00 0.20 0.40 Nonuniform

Note. A, B, and C correspond to the discrimination, difficulty, and pseudo-guessing

parameters in the 3-PL IRT model.
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Table 3

Frequencies and Percentages for LR and LR with R>A for 10% DIF Equal Ability

Distribution Condition

Frequency Percentage
r RA 2 RA
Nr=250, Ng=250 Overall power 237 249 59.3 62.3
Uniform power 218 226 72.7 75.3
Nonuniform power 19 23 19.0 23.0
Type I error 190 269 5.3 7.5
Nr=500, Ng=250 Overall power 270 265 67.5 66.3
Uniform power 244 237 81.3 79.0
Nonuniform power 26 28 26.0 28.0
Type I error 219 199 6.1 55
Nr=500, Ng=500 Overall power 331 300 82.8 75.0
Uniform power 288 265 960 883
Nonuniform power 43 35 430 35.0
Type I error 189 119 5.3 33
Nr=1000, Ng=250 Overall power 317 253 79.3 63.3
Uniform power 269 227 89.7 75.7
Nonuniform power 48 26 48.0 26.0
Type I error 204 94 5.7 2.6
Nr=1000, Ng=500 Overall power 356 303 89.0 75.8
Uniform power 296 273 98.7 91.0
Nonuniform power 60 30 60.0 30.0
Type I error 255 73 7.1 2.0
Ng=1000, N,.=1000 Overall power 382 329 95.5 82.3
Uniform power 300 295 100.0 98.3
Nonuniform power 82 34 82.0 340
Type I error 264 35 13 1.0
Across sample size  Overall power 316 283 79.0 70.8
Uniform power 269 254 89.7 84.6
Nonuniform power 46 29 46.0 29.0
Type I error 220 132 6.1 3.7
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Table 4

Frequencies and Percentages for LR and LR with R>A for 10% DIF Unequal Ability

Distribution Condition

Frequency Percentage
rr Ra 2 RaA
Ngr=250, Ng=250 Overall power 253 250 63.3 62.5
Uniform power 232 227 773 75.7
Nonuniform power 21 23 21.0 23.0
Type I error 252 379 7.0 10.5
Ngr=500, N&=250 Overall power 274 258 68.5 64.5
Uniform power 249 235 83.0 78.3
Nonuniform power 25 23 250 23.0
Type I error 304 266 84 74
Nr=500, Ng=500 Overall power 313 292 78.3 73.0
Uniform power 268 261 89.3 87.0
Nonuniform power 45 31 45.0 31.0
Type I error 313 191 8.7 5.3
Nr=1000, N,.=250  Overall power 304 231 76.0 57.8
Uniform power 270 215 90.0 71.7
Nonuniform power 34 16 34.0 16.0
Type I error 327 160 9.1 4.4
Nr=1000, Ng=500 Overall power 337 280 843 70.0
Uniform power 293 261 97.7 87.0
Nonuniform power 44 19 44 .0 19.0
Type I error 383 113 10.6 3.1
Nr=1000, Np=1000 Overall power 367 309 91.8 77.3
Uniform power 296 278 98.7 92.7
Nonuniform power 71 31 71.0 31.0
Type I error 471 71 13.1 2.0
Across sample size  Overall power 308 253 770 63.3
Uniform power 268 229 89.3 76.4
Nonuniform power 40 24 40.0 24.0
Type I error 342 197 9.5 5.5
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Table 5

Frequencies and Percentages for LR and LR with R>A for 20% DIF Equal Ability

Distribution Condition

Frequency Percentage
z RPA 2 R’A
Nr=250, Ng=250 Overall power 437 454 54.6 56.8
Uniform power 362 374 60.3 62.3
Nonuniform power 75 80 375 40.0
Type I error 231 317 7.2 9.9
Ngr=500, Ng=250 Overall power 527 450 65.9 56.3
Uniform power 427 372 71.2 62.0
Nonuniform power 100 78 50.0 39.0
Type I error 238 232 7.4 7.3
Nr=500, Ng=500 Overall power 653 525 81.6 65.6
Uniform power 522 439 87.0 73.2
Nonuniform power 131 86 65.5 43.0
Type I error 262 166 8.2 5.2
Nr=1000, Ng=250 Overall power 592 384 74.0 48.0
Uniform power 478 343 79.7 57.2
Nonuniform power 114 41 57.0 20.5
Type I error 264 98 8.3 3.1
Nr=1000, Ng=500 Overall power 715 516 89.4 64.5
Uniform power 552 432 92.0 72.0
Nonuniform power 163 84 81.5 42.0
Type I error 289 76 9.0 24
Nr=1000, Ng=1000 Overall power 771 582 96.4 72.8
Uniform power 588 491 98.0 81.8
Nonuniform power 183 91 91.5 455
Type I error 336 47 10.5 1.5
Across sample size  Overall power 616 485 77.0 60.6
Uniform power 488 409 81.4 68.1
Nonuniform power 128 77 63.8 383
Type I error 270 156 8.4 4.9
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Table 6

Frequencies and Percentages for LR and LR with R2A for 20% DIF Unequal Ability

Distribution Condition

Frequency Percentage
7 RA 2 RA
Ngr=250, Ng=250 Overall power 415 421 51.9 52.6
Uniform power 369 372 61.5 62.0
Nonuniform power 46 49 230 245
Type I error 229 3i4 7.2 9.8
Nr=500, Ng=250 Overall power 482 397 60.3 49.6
Uniform power 418 351 69.7 58.5
Nonuniform power 64 46 32.0 23.0
Type I error 272 272 8.5 8.5
Nr=500, Ng=500 Overall power 597 481 74.6 60.1
Uniform power 511 429 85.2 71.5
Nonuniform power 86 52 430 26.0
Type I error 364 219 11.4 6.8
Ng=1000, N,=250  Overall power 513 315 64.1 394
Uniform power 445 289 74.2 482
Nonuniform power 68 26 34.0 13.0
Type I error 333 140 10.4 4.4
Ngr=1000, Ng=500  Overall power 670 451 83.8 56.4
Uniform power 547 405 91.2 67.5
Nonuniform power 123 46 61.5 23.0
Type I error 436 143 13.6 4.5
Ngr=1000, N,.=1000 Overall power 739 508 924 63.5
Uniform power 577 463 96.2 77.2
Nonuniform power 162 45 81.0 225
Type I error 506 81 15.8 25
Across sample size  Overall power 569 429 71.2 53.6
Uniform power 478 385 79.6 64.1
Nonuniform power 92 44 45.8 220
Type I error 357 195 11.1 6.1
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Table 7

Frequencies and Percentages for LR and LR with R?A for 10%/10% DIF Equal Ability

Distribution Condition

Frequency Percentage
7 RA R’A
Ngr=250, Ng=250 Overall power 508 543 63.5 67.9
Uniform power 438 457 73.0 76.2
Nonuniform power 70 86 35.0 43.0
Type I error 182 261 5.7 8.2
Ngr=500, Ng=250 Overall power 599 544 749 68.0
Uniform power 497 465 82.8 77.5
Nonuniform power 102 79 S1.0 395
Type L error 164 162 5.1 5.1
Nr=500, Ng=500 Overall power 685 603 85.6 754
Uniform power 559 517 93.2 86.2
Nonuniform power 126 86 63.0 43.0
Type I error 137 104 43 33
Ng=1000, Ng=250  Overall power 661 497 82.6 62.1
Uniform power 541 448 90.2 74.7
Nonuniform power 120 49  60.0 24.5
Type I error 170 76 53 24
Nr=1000, Ng=500 Overall power 735 617 91.9 77.1
Uniform power 585 531 97.5 88.5
Nonuniform power 150 86 75.0 43.0
Type I error 159 48 5.0 1.5
Nr=1000, Ng=1000  Overall power 773 666 96.6 83.3
Uniform power 596 563 99.3 93.8
Nonuniform power 177 103 88.5 51.5
Type I error 163 30 5.1 0.9
Across sample size  Overall power 660 578 82.5 72.3
Uniform power 536 497 89.3 82.8
Nonuniform power 124 82 62.1 40.8
Type I error 163 114 5.1 3.5
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Table 8

Frequencies and Percentages for LR and LR with RA for 10%/10% DIF Unequal Ability

Distribution Condition

Frequency Percentage
Pe R°A 2 RA
Nr=250, Ng=250 Overall power 491 504 61.4 63.0
Uniform power 423 432 70.5 72.0
Nonuniform power 68 72 34.0 36.0
Type I error 214 306 6.7 9.6
Ngr=500, Ng=250 Overall power 561 502 70.1 62.8
Uniform power 460 424 76.7 70.7
Nonuniform power 101 78 50.5 39.0
Type I error 205 195 6.4 6.1
Ngr=500, Ng=500 Overall power 684 580 85.5 72.5
Uniform pover 546 489 91.0 81.5
Nonuniform power 138 91 69.0 45.5
Type I error 227 149 7.1 4.7
Nr=1000, Ng=250 Overall power 614 434 76.8 54.3
Uniform power 499 387 83.2 64.5
Nonuniform power 115 47 575 235
Type I error 228 102 7.1 32
Nr=1000, Ng=500 Overall power 734 565 91.8 70.6
Uniform power 576 469 96.0 78.2
Nonuniform power 158 96 79.0 48.0
Type 1 error 253 72 7.9 23
Ngr=1000, Ng=1000 Overall power 780 637 97.5 79.6
Uniform power 595 533 99.2 88.8
Nonuniform power 185 104 92.5 520
Type I error 285 48 8.9 1.5
Across sample size  Overall power 644 537 80.5 67.1
Uniform power 517 456 86.1 75.9
Nonuniform power 128 81 63.8 40.7
Type I error 235 145 7.4 4.5
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