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Abstract 

The extraction of knowledge from data is a relatively recent computational pursuit which has been the 

focus of significant research attention and has an extensive field of potential applications. With the advent 

of widespread data collection describing a variety of systems spanning many fields of expertise, the 

extraction of useful knowledge from data, for prediction or insight, has extraordinary potential and 

significant value. This realization has led to the development of machine learning, a collection of 

computational processes and algorithms through which sophisticated computer models can be constructed 

on the basis of data. Human centric systems, and more specifically certain forms of fuzzy systems, are a 

notable subset of machine learning which focus on knowledge extraction using multi-valued logic and set 

theory. Fuzzy systems are particularly well-suited to human-centric modelling as fuzzy sets describe real 

world systems, as perceived by humans, much more accurately than binary models. Fuzzy rule-based 

models are a form of fuzzy model which is particularly well-suited to human centric tasks due to the high 

degree of readability and interpretability conveyed to an expert reader. This, combined with their strong 

predictive ability, makes fuzzy rule-based systems an excellent candidate for those computational 

modelling pursuits where predictive accuracy may not be the singular requirement of a model.  

The objective of this dissertation is to design, analyze, and develop novel applications, methodologies, 

and algorithms for use with fuzzy rule-based systems, seeking to further their utility in predictive and 

human-centric modelling. In this dissertation, fuzzy rule-based systems are applied to different problem 

types, combined with existing computational data-structures and architectures, extracted from data in 

novel manners and formats, and analyzed to assess certain aspects of rule quality. Acknowledging the 

critical role of human centricity in computational modelling, we develop a set of fuzzy rule stability 

criteria which aim to quantify aspects of fuzzy rule quality while capturing critical non-numerical aspects 

of rule quality such as repeatability, consistency, and generalizability. We examine the generation of 

fuzzy rule-based models using hierarchical clustering and extract granular fuzzy models from data, 

forming information granules in the consequent parts of the fuzzy rules. We make use of fuzzy rule-based 
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systems as the component models (weak learners) of a boosted ensemble, exploring their predictive 

power and adaptability in this environment. Finally, a novel fuzzy rule architecture is proposed using a 

hierarchical structure, alongside a generation procedure for extracting this hierarchical structure form 

data, with the aim of improving predictive performance and increasing the interpretability of the system. 

Each of these topics are justified with extensive experimental studies, using real-world data sets available 

from public repositories, demonstrating the feasibility or superiority of the proposed methods as 

compared to existing methodologies. 
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1 INTRODUCTION 

Computational modelling is a powerful framework which can be used to help humans interact with and 

understand complex data and systems in a meaningful and productive way. Using complex algorithms, 

researchers can extract knowledge from data, forming highly accurate models describing complex 

systems with relative ease. As computational modelling and machine learning has developed as an area of 

research interest, the accuracy, or ability to correctly predict system behavior, of the models has been the 

overwhelming focus of much of the research. While model correctness, and consequent accuracy, is 

obviously important, another factor of modeling – human readability and interpretability – has received 

significantly less attention but is also valuable. The goal of interpretable models is to present the extracted 

knowledge in a format which is meaningful and digestible to a human reader, a factor which is critical in 

many areas of expertise. 

Fuzzy sets and systems are a useful tool in constructing human-centric models. Fuzzy modelling provides 

a critical component for human readable systems, as it pulls computational operations out of a binary state 

and into a more analog space. The consideration of models described by fuzzy constructs has two 

advantages. First, fuzzy modelling provides a strong basis for machine learning as fuzzy models can 

describe complex systems in compact formats. Secondly, the analog nature of fuzzy systems results in 

more intuitively interpretable models as the real-world systems we attempt to describe with computation 

models are necessarily non-binary, or indeed, fuzzy. 

Fuzzy rule-based systems offer a powerful yet concise format for representing complex systems in a 

compact, readable, and accurate manner. These systems are often derived from data using Fuzzy C Means 

clustering [1], and least squares output estimation. Fuzzy rule-based systems come in a variety of formats 

designed to address regression [2][3][4] and classification problems [5][6][7]. 

The application of fuzzy rules to computational modeling and knowledge extraction from data has a long 

and robust history, with significant research effort having been applied in this area for some time 

[8][9][10][11][12][13][14][15][16]. Fuzzy rules, in varying formats to accommodate their specific tasks, 

have been applied to a huge range of modeling problems, and have found success as applied to many 

areas of ongoing research. In this study, we examine fuzzy rules from several different perspectives, 

performing rule quality meta-analysis in the form of fuzzy rule stability criteria, exploring the application 

of information granulation to fuzzy rules, applying fuzzy rule-based systems to a boosted ensemble, and 

constructing a hierarchical rule-based architecture. 
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The question of fuzzy rule quality is one which is classically addressed through the evaluation of 

predictive performance; however, we can easily recognize that this is not the only facet of a high-quality 

rule-base. In this dissertation, we propose the concept of fuzzy rule stability, defining rule stability to be 

the ability of a dataset and algorithmic combination to consistently produce the same or similar rules from 

the same or similar data. In this sense, we view fuzzy rule stability as how well the rules represent 

underlying patterns or knowledge in data, as reflected by how readily they are reproducible. We assert 

that if a rule is readily reproducible from the data then it is of high quality as it would appear to describe 

stable system knowledge. In this study, we seek to quantify the concept of rule stability by introducing 

three numerical stability metrics, each of which aims to capture a different facet of rule stability, and 

which can be used in combination to assess the overall stability of rules produced from a given 

methodology. 

Traditional fuzzy rule formats express underlying fuzzy sets and fuzzy memberships functions through 

single numerical representations, obfuscating the complex underlying fuzzy landscape from the reader. 

This inability to communicate the full complexity of the model to the reader is undesirable as it limits 

interpretability and human readability. The study of information granules provides an avenue for 

improving readability by relaying more useful information to the reader, while maintaining an easy to 

understand format. Information granulation has been extensively studied in the literature 

[17][18][19][20][21][20][22][23], and its applications frequently overlap with fuzzy sets and systems due 

to their mutual interest in representing complex structures in a simple way, as well as their imprecise 

natures. In this dissertation, we apply interval-based information granules to the output parts of fuzzy 

rules, with the goal of providing a rule format which simultaneously transmits more crucial system 

knowledge to the user, while also providing a clear, easy to understand rule format which does not require 

extensive effort to interpret. 

Ensemble learning is the concept of predicting system behavior using a set of models in combination, 

with the hope of producing better overall performance from the ensemble (group of models) than a single 

model could provide on its own. The idea behind these strategies is that diverse component models can 

make up for the weaknesses of other component models when making predictions as a group. Boosting is 

a well-known variation of the idea of ensemble learning, which strictly defines an iterative process for 

generating a weighted ensemble. Boosting functions by tracking data weights, where a higher weight 

indicates that the current ensemble does not adequately describe the behavior of that instance. These 

weights are updated at each iteration to reflect the new ensemble state, and weights are used in the 

computation of new learners with the goal of addressing the weakness of the existing ensemble. Boosting 

was originally proposed as AdaBoost by Freund and Shapire [24][25] who provided a well-defined 
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framework for the generation of a weighted ensemble in a two-class environment. Since this initial study, 

boosting has been the focus of an enormous amount of research and it has been applied to a wide range of 

topics and problems. Despite this attention, the application of fuzzy models in a boosted ensemble has not 

been extensively studied, with only a few cursory papers being published to date [26][26][27]. In this 

dissertation, we provide some first steps in filling this void by proposing a methodology for boosting with 

fuzzy rule-based systems. The goal of this research is to attain the improved predictive power of a boosted 

ensemble, while maintaining the advantages of fuzzy rules, including interpretability and relative 

simplicity. We propose a novel weak learner architecture for use in a standard boosted ensemble and 

demonstrate the ability of the ensemble to successfully improve classification accuracy as compared to a 

single fuzzy rule-based system. 

While fuzzy rule-based systems provide a powerful tool for generating predictive models, their efficacy, 

both with respect to predictive power and interpretability, is drastically lowered in the presence of high 

dimensional data. This drawback is known as the curse of dimensionality and is qualified as the 

exponential growth of a problems search space as the number of features increases. This causes a serious 

headache for rule-based modelling, as the number of possible combinations of linguistic terns becomes 

very large, meaning that we either accept poor performance through a small, readable number of rules, or 

accept rule explosion in an attempt to accurately model a system. An additional drawback to rule 

explosions is its effect on human readability. Research in psychology has demonstrated that the human 

mind does not meaningfully comprehend large sets of objects at one time, and this human limitation 

affects model readability when we model a large number of features. A candidate solution, which is not 

well explored in the literature, is the construction of a hierarchical fuzzy rule-based model. By generating 

and evaluating rules in a hierarchical architecture (as opposed to a flat architecture) we can represent 

significantly more complex constructs, while maintaining a small number of simple rules at each level of 

the hierarchy. In this study, we propose a novel hierarchical rule-based model architecture which seeks to 

not only improve the readability of the model, but also to reduce the overall model size and improve 

predictive ability as compared to a flat model of similar size. This is achieved through the construction of 

a cascading topology in which simple rules describing a limited number of features are built in a 

hierarchical manner. These rules are connected through their output parts, where predictions from 

previous layers are considered in subsequent computations, effectively refining the predictive process 

through the addition of further system knowledge. 

In this dissertation, each of these topics are presented in detail as distinct studies, and the proposed 

methodologies are justified through extensive experimentation and analysis using publicly available real-

world datasets. 
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1.1 RESEARCH OBJECTIVES AND ORIGINALITY 

The key objectives of the presented research are as follows: 

• To develop a set of quantitative criteria for assessing the quality of fuzzy rules from the 

perspective of fuzzy rule stability, to demonstrate the application of the defined criteria through 

experimentation, and to provide general guidelines for the use of the stability criteria in assessing 

model quality. 

• To define a methodology for the generation of interval based granular fuzzy rules from data using 

hierarchical clustering as a vehicle for rule extraction, to assess the feasibility of hierarchical 

clustering as a tool for rule generation, and to define and assess evaluation techniques for granular 

fuzzy models. 

• To propose a workflow for the application of fuzzy rule-based systems as the component weak 

learner in a boosted ensemble, to demonstrate the successful improvement of classification 

accuracy compared to a single learner, and to assess the performance of the fuzzy rule ensemble 

as compared to standard weak learners. 

• To design, construct, and evaluate a novel hierarchical fuzzy rule-based architecture with the goal 

of improving the predictive power of fuzzy rule-based models, to fight the curse of 

dimensionality, and to maintain or improve the interpretability of complex systems.  

These topics exhibit several aspects of novelty which expand the existing research on fuzzy rules in 

several distinct categories. Additionally, the presented research raises further questions, providing 

opportunities for future study on the presented topics in most cases. The proposed stability criteria are of 

paramount novelty, with no other quantitative work having been developed in this field to our knowledge. 

The application of fuzzy models to a boosted ensemble has seen extremely limited attention and no other 

study addresses the use of a fuzzy rule-based system as a component weak learner. The hierarchical 

structure proposed is, to our knowledge, unique and demonstrates a clear improvement in predictive 

power and interpretability. Our use of hierarchical clustering in fuzzy rule extraction has not been 

previously examined, to our knowledge, and the application of information granules is generally 

somewhat limited. 

Each of these topics exhibit significant novelty in their specific areas of research and prompt further 

opportunity for study. These topics make use of existing work and well-known methodologies, but with 

key aspects of originality.  

These topics demonstrate originality in the following specific aspects: 
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• A novel evaluation of fuzzy rule quality quantifiably expressed through the evaluation of stability 

metrics which are novel both in their formulations and method of computation. 

• A novel approach to granular fuzzy rule generation using hierarchical clustering as the vehicle for 

rule extraction from data. 

• The novel use of fuzzy rule-based models as the component weak learner in a classic boosted 

ensemble, with novel modifications to the fuzzy rules to maximize adaptability. 

• A novel model architecture in the form of a hierarchical rule-based model, and a novel 

methodology for the extraction of this structure from data. 

1.2 DISSERTATION ORGANIZATION 

The chapters of this document are structured as follows: 

 

Chapter 2: State of the Art 

This chapter offers a focused literature review on those topics fully relevant to the research presented in 

this dissertation, including the state of fuzzy modelling with a focus on fuzzy rule-based systems and their 

analysis, the uses of information granulation in fuzzy rule-based systems, the applications of boosting in 

both fuzzy and non-fuzzy contexts, and a focused examination of hierarchical fuzzy structures. 

 

Chapter 3: Theoretical Background 

This chapter presents the details of many established algorithms and processes which are used in the 

construction of novel fuzzy models and other research in later sections. The topics covered include Fuzzy 

C-Means clustering, extraction of fuzzy rules from data, boosting, gradient descent, particle swarm 

optimization, hierarchical clustering, and cluster validity indices. 

 

Chapter 4: Rule Stability Criterion 

This chapter presents three novel fuzzy rule stability criteria and outlines their definitions, uses, and 

applications to the successful analysis of a fuzzy rule-based system. This chapter contains technical 

definitions of the criteria, experimentation, and discussion of the obtained results with respect to the 

implications on rule stability and quality. 
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Chapter 5: Fuzzy rules from hierarchical clustering with information granules 

This chapter provides a methodology for the formation of partially granularized fuzzy rules, and their 

extraction from data. This topic experiments with the use of hierarchical clustering as a vehicle for rule 

extraction from data, and experimentally compares this methodology to the well-known Fuzzy C-Means 

methodology. We additionally assess the performance of the granular models through specialized 

evaluation measures and discuss the usage of these measures in quantifying granular performance. 

 

Chapter 6: Boosting with Fuzzy Rules 

This chapter is concerned with the application of small fuzzy rule-based systems as the component weak 

learners in a boosted ensemble. We present a specialized fuzzy classification rule architecture for 

maximizing learner flexibility in a boosted environment and present the necessary changes to established 

algorithms for considering boosting data weights in model generation. Further, we experimentally 

demonstrate the improved performance of the boosted ensemble as compared to a single learner and 

compare the proposed methodology to standard weak learners. 

 

Chapter 7: Hierarchical fuzzy rule-based modelling 

In this chapter we present a novel hierarchical fuzzy rule-based architecture and define a complete 

methodology for the extraction of this architecture from data. We present extensive experimentation 

showing the improved performance of the new topology versus a flat fuzzy rule-based system and discuss 

the interpretability implications of this type of model format. 

 

Chapter 8: Conclusions and Future Studies 

The work presented in this dissertation is summarized, and we identify both the limitations of the current 

work and various directions of future research on the topics presented. 
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2 STATE OF THE ART 

A critical aspect of modern science and engineering is the topic of computational modelling and 

knowledge extraction from data, as applied to real world problems and systems. There is a desire to 

develop computational and mathematical methods for creating robust models which can provide key 

insight into real world systems, presenting the extracted system knowledge to expert users in an 

understandable way, and for these models to make high quality, accurate predictions regarding the 

behavior of complex systems. In many fields, it is critical that predictive models are human-readable, as 

we need to know both the predicted behavior and what knowledge has been applied to reach that 

conclusion. As many of these systems represent real-world phenomenon, the application of binary logic to 

these fundamentally analog problems does not always make sense. The use of fuzzy logic and fuzzy 

modes to describe real world systems has shown a great deal of promise, as fuzzy models are able to 

provide concise meaningful knowledge representation in a human-readable format. 

The concept of fuzzy logic, and by extension fuzzy sets, has been around since the 1960s when it was first 

proposed in the famous inaugural paper Fuzzy sets by Zadeh [28]. This founding work laid the framework 

for an entire field of study by proposing a logic system in which truth values and set memberships could 

be defined in a non-binary fashion. Further seminal works over the years include the definition of fuzzy 

relation by Sanchez in the 1970s [29], the development of triangular norms by Menger in 1942 [30], and 

then later applied to fuzzy systems by Sklar in the 1960s [31]. These studies, along with a large host of 

additional research in the area of fuzzy logic and fuzzy sets, have resulted in a well-defined robust fuzzy 

mathematical framework. Notable works in the area include seminal papers on fuzzy logic control by Lee 

[32], on fuzzy rules by Dubois and Prade [33], and on linguistic quantifiers and information granules and 

their applications in a fuzzy framework by Zadeh [34][17]. 

The remainder of this section provides a focused literature review on several specific topics of fuzzy 

modeling, focusing on those studies most relevant to the research presented in later chapters of this 

dissertation. 

2.1 FUZZY RULES AND THEIR GENERATION FROM DATA 

The first appearance of fuzzy rules in literature was by Mamdani in his famous paper on industrial 

processing plant control [35]. In this paper, Mamdani proposed that a simple chain of if-then rules could 

be used to successfully control a complex system, such as an industrial plant. This type of rule-base later 

became known as a Mamdani style fuzzy rules, and the concept was generalized by Takagi and Sugeno 
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[36] allowing for arbitrary functions as the consequent part of the rules. This generalized form has since 

been known as Takagi-Sugeno style fuzzy rules, or TS fuzzy rules. While the initial Mamdani style rules 

targeted linguistic quantifiers, Takagi-Sugeno style rules formalized the ability of rules to predict in a real 

valued output space, making them candidate solutions to continuous function estimation or regression 

problems. Additionally, more recent works have derived formats for the application of fuzzy rules to 

classification problems [37][38]. Since these introductory studies, there have been countless 

developments and applications of fuzzy rules in the literature, and their study is the focus of significant 

ongoing research. 

A critical aspect of fuzzy rules is their ability to be extracted from data. This topic has received a great 

deal of research attention over the years, and a wide variety of methodologies are available. These include 

strategies using evolutionary or genetic algorithms [39][40][41][12][42][43][44][4][45][37], particle 

swarm optimization [46][47] and other optimization techniques [48][3][49][50], support vector 

methodologies [14][51][52], and input space division strategies [53][8][54], amongst others 

[13][15][55][56]. This is an open topic with many recent studies and ongoing research efforts. In the work 

presented in this dissertation, we are primarily focused on the use of fuzzy clustering techniques for rule 

extraction from data, a topic which has been extensively covered in the existing literature 

[57][48][58][59][60][61][62][63]; however, it is critical to note that, as shown through the extensive 

number of available references, there are many feasible approaches to rule extraction, all of which have 

shown experimental success. 

The inaugural studies on fuzzy rule-based systems proposed a flat rule base in which rules are only 

considered as a single IF-ELSE chained architecture. More recent studies have proposed the application 

of fuzzy rule structures in different architectures in attempts to improve performance, reduce the number 

and complexity of rules, or address some other specific issue. Some example formats proposed in the 

existing literature include hierarchical schemes [54], ensembles [64] and boosted ensembles 

[65][26][27][66][6], and fuzzy rule trees [67] or forests [68]. 

Due to their powerful predictive properties, adaptability to different situations, and interpretability, fuzzy 

rule-based systems have been applied to a huge number of problem spaces. Existing applications of fuzzy 

rule-based systems include medical diagnostics [69][70][7][71][72][73][74] and medical imaging [75], 

image classification and computer vision [6][76][77], learning assessment [78], financial decision making 

[79] or other economic or stock related problems [38][80][81], signal transmission problems [82], traffic 

and other transportation problems [83][84][85], weather forecasting [68], biometrics [86], intrusion 

detection [87], soil spectroscopy [49], hydrology [88], software reliability [89], recommender systems 

[90], and other engineering systems [91][92][93], to list some recent examples. Many of these 
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applications highlight domains where model interpretability is an important factor in choosing which 

formats are best suited to a given problem, and the significant use of fuzzy rules in these fields further 

motivates a research focus on interpretability alongside predictive accuracy. 

In additional to the research attention allotted to the generation and application of fuzzy rules, fuzzy rules 

have additionally prompted a great deal of related meta-research. This includes such topics as cluster 

validity indices for determining the correct number of rules for a given system 

[94][95][96][59][97][98][99][100] and the analysis of various aspects of rule quality and interpretability, 

along with studies aimed at addressing these issues [101][102][103][104][105][106][107], to highlight 

two relevant and well-studied areas. Choosing an appropriate number of rules is an important factor in 

experimental setup, and we make use of such indices in both Chapters 4 and 7. The study of rule 

interpretability, especially those topics discussed in [102], is of critical importance to our development of 

a set of rules stability criteria, as it is a similar aspect of qualitative rule quality we are attempting to 

quantitatively capture. Interpretability is also a major consideration in the formation of information 

granules in Chapter 5 as well as a motivating factor in the formation of a hierarchical architecture in 

Chapter 7, and we draw on many of the concepts discussed in these studies in our own work and in the 

analysis of the proposed methodologies. 

Fuzzy rules continue to be a significant research topic with much ongoing work in the area as their 

application to human-centric computing continues to show positive results. 

2.2 INFORMATION GRANULATION IN FUZZY MODELS 

Information granulation comes naturally as a symbiotic partner to fuzzy logic, as it provides a mechanism 

for improved linguistic representations of knowledge. Information granules have been used extensively in 

fuzzy modelling, including applications involving fuzzy rules, and have been the topic of substantial 

standalone research. Generally, research on information granulation seeks to provide solutions to 

interpretability and human centricity problems arising from traditional machine learning algorithms, 

moving computational models towards a format better suited to describe linguistic quantifiers. This 

concept is outlined by Zadeh in his well-known paper “Fuzzy logic = computing with words” [34], where 

the fundamentals of the concept are laid out. Further studies, including [17], [108], and [109], have 

contributed to formalizing various aspects of information granulation over the years. 

In fuzzy rule-based systems, information granulation has been applied to classification problems [110], 

regression problems [111][112][113], and time series problems [114]. The application of information 

granules to regression style fuzzy rules notably includes the research presented in Chapter 5 of this 
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dissertation [111], which makes use of the existing work in this field. Additional applications of 

information granulation include their application to fuzzy radial basis networks [22], their application in 

forming linguistic representations from membership functions [21] or fuzzy clusters [20], their use in 

novel clustering algorithms [115][116], applications in hierarchical models [23], the development of 

higher order information granules [117], their use in fuzzy cognitive maps [118], and in knowledge 

transfer [119]. As demonstrated by the existing literature, the scope of potential applications is broad; 

however, it is interesting to note that there does not appear to be any singular application which has 

received a large amount of focused attention. 

Shadowed sets define a three valued set representations [19], which can be used to provide a more 

interpretable view of a given membership function [18] and represent a specific form of information 

granule, which is extracted from a fuzzy set [120]. While the literature on this topic is limited, studies 

making use of shadowed sets have included automatic selection of threshold parameters in clustering 

[121] and other applications in fuzzy clustering algorithms [122][123], the selection of data subsets for 

neural network training [124], and the approximation of fuzzy numbers [125]. Rough and fuzzy rough 

sets [126][127][128] are closely related to shadowed sets and information granules, containing lower and 

upper approximation sets which define the rough designated area for a given set. Rough sets have been 

applied to fuzzy modelling in a handful of studies, including fuzzy-rough feature selection [129], image 

classification [130], image compression [131], and fuzzy rule interpolation [132]. 

2.3 BOOSTING IN A FUZZY ENVIRONMENT 

Boosting was first developed in the 1990s by Freund and Schapire [24][25] as AdaBoost. Since this initial 

study, there has been significant research on the topic of boosting, and additional algorithms, 

improvements, and variants have been proposed. Outside of the original binary classification algorithm, 

studies have proposed altered algorithms for gradient boosting [133][134][135][136] and modifications to 

handle multi-class problems [137][138]. 

Due to the widespread, generally successful application of boosting in many different fields, boosted 

ensembles have been proposed as candidate solutions to many different computational problems. Some 

example applications include speech recognition [139], population dynamics [140], various image 

classification tasks [141][142][6][143][144] and image feature detection tasks [145][146][147][148] 

[149][150][151][147][152], defect prediction [153], fault detection [154], bankruptcy prediction 

[155][156][157][158], travel time prediction [134], insurance cost modelling [159], solar power 

forecasting [160], resource consumption modelling [161][162], gender recognition [163], natural event 
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prediction and assessment [164][165], fingerprint classification [166], smoke detection [167][168], and 

medical diagnosis [169]. While this list of boosting applications is substantial, it is only a small fraction 

of the full literature on the topic, as the range of application is very extensive. 

Boosted ensembles have also been studied in a fuzzy context, although the existing literature is quite 

limited. Fuzzy applications of boosting include a handful of works on the generation of individual fuzzy 

rules through boosting [27][66][26][170] and similar rule building methods [5]. Additional research in the 

realm of fuzzy systems has been done to compare the use of fuzzy versus non-fuzzy operators for 

ensemble prediction [171], boosting with the related concept of granular models [172], and fuzzy 

classifier ensembles [64]. As indicated by the comparatively small amount of literature on the topic of 

fuzzy boosting as compared to the plethora of non-fuzzy studies, this topic has not received a great deal of 

research attention. Both the use of fuzzy learners in a boosted ensemble, and the fuzzification of boosting 

techniques have not been thoroughly studied, and this gap in the existing literature provides motivation 

for our work on this topic in Chapter 6 of this dissertation. 

2.4 HIERARCHICAL FUZZY MODELS 

Hierarchical fuzzy modelling has different meanings in different contexts, and for this reason the topic 

may cause some confusion to the reader. We can separate hierarchical fuzzy models into two primary 

categories: those studies which generate fuzzy models through hierarchical methodologies and those 

studies which construct a fuzzy model consisting of a hierarchical topology or architecture. 

Regarding hierarchical model generation techniques, several studies exist applying different approaches. 

Certain studies such as [5] and [173] are hierarchical only in their use of divisive “hierarchical” model 

generation strategies, used to compute high quality or highly specific rules. In these studies, the 

generation procedure is the hierarchical aspect of the study and the resulting fuzzy model remains flat. As 

such, this type of hierarchical model is not of particular relevance to the proposed hierarchical research in 

this dissertation. 

Some studies propose hierarchical fuzzy architectures taking novel forms, often based on similar non-

fuzzy model architectures. This includes [174], [175] and [176], which form tree-like structures where 

higher level layers act to direct the flow of the decision making process through the model. In these 

studies, the branches of the fuzzy trees do not contribute to the decision-making process but act only to 

direct the traversal of the tree to the appropriate leaf node where a prediction is made. These studies all 

form hierarchical fuzzy structures resembling a decision tree. The hierarchical aspect of these studies is in 

the topological design of the model; however, the relegation of output prediction to only the lowest levels 
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of the tree marks a clear distinction between these types of models and our proposed hierarchical rule-

base. 

Of the remaining studies concerned with hierarchical fuzzy architectures, much of the existing literature is 

focused on strictly two-level systems. This includes [177] which generates a two level structure through 

genetic algorithms, [117] which forms hierarchical information granules, and [178] which uses a higher-

level generalized rule structure with lower level sub-rules optimized through particle swarm optimization. 

These are examples of simple hierarchical topologies which serve a very specific purpose, often 

generating specialized sub rules to improve performance. 

Finally, we arrive at the topic of general fuzzy hierarchical structures, focusing on those studies which 

concern themselves with fuzzy rules. In these studies, more generalized hierarchical topologies are 

proposed for classification or function estimation. In [179], the authors propose a specialized hierarchical 

structure in which poorly fitted data is set aside after generating each hierarchical level, forming 

increasingly specialized rules as the algorithm progresses. Another study, [180] proposes a much simpler 

hierarchical structure in the form of a feed-forward fuzzy rule-based network, using the predictions of 

previous layers as inputs to the next layer of rules with the goal of preventing rule explosion. Two studies 

by Joo and Lee, [181] and [182] define a hierarchical feed-forward structure in which the predictions 

from previous rules are used in the output part of subsequent rules, avoiding interpretability issues arising 

from a lack of physical meaning to intermediary values. A similar study [183] concerns similar topics but 

discusses a few different hierarchical topologies, but more as a thought experiment, as experiments are 

very limited. All these papers are simple introductory works in which an idea is proposed, generally with 

the aim of reducing the number of involved rules in a system, and in each case the proposed research fails 

to examine any data-driven modeling, relying fully on expert developed rules. Despite these limitations, 

the work proposed in [180], [181] and [182] represents the most relevant existing work to the research 

proposed in Chapter 7 of this dissertation, as they propose similar hierarchical architectures and these 

studies are primarily limited by their lack of either a well-defined rule generation procedure or extensive 

experimentation. 

2.5 FINAL REMARKS 

This chapter identifies and discusses a great deal of existing literature relevant to this thesis. The work 

presented in this dissertation builds upon the research established in many existing studies, including but 

not limited to those studies discussed in this chapter. Some of the cited literature represents foundational 
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work in its field from which entire areas of interest have arisen, and many of these concepts are used 

extensively throughout this dissertation. 
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3 BACKGROUND 

This chapter provides the complete necessary background knowledge for the research topics presented in 

Chapters 4 through 7. The information contained in this chapter assumes a basic familiarity with fuzzy 

logic and fuzzy sets, as well as a foundational understanding of machine learning. This section provides 

the specifics of Fuzzy C-Means clustering, Hierarchical Clustering, Particle Swarm Optimization, the 

design and extraction of TS-fuzzy rules from data, Boosting, and Gradient Descent.  

3.1 FUZZY C MEANS 

Fuzzy C-Means (FCM) [1][185] is well-known fuzzy clustering algorithm, in which a fuzzy partition is 

formed on an input data set. Fuzzy clustering is similar to Boolean clustering, with the key difference that 

fuzzy clusters are not mutually exclusive, and that cluster assignments are non-binary. These two criteria 

are interlaced, as it is fuzzy membership which allows for instances to “belong” to more than one cluster 

to varying degrees. 

The goal of FCM clustering is to form a fuzzy partition from the provided data. Formally, this results in 

the computation of two key structures – the fuzzy partition matrix, U, defining data membership to 

clusters, and the cluster prototypes, V, defining the cluster centers. FCM clustering is computed for a 

given number of clusters, c, provided as an input parameter to the algorithm, and requires a fuzzification 

coefficient, m, which controls the “fuzziness” of the computed partition (this value is commonly taken as 

m = 2.0 in the literature). 

FCM clustering is realized through the minimization of an objective function, Q: 

𝑄 =  ∑ ∑ 𝑢𝑖𝑘
𝑚

𝑁

𝑘=1

‖𝒙𝒌 − 𝒗𝒊‖2

𝑐

𝑖=1

 

(3.1) 

where c is the number of clusters, N is the size of the input dataset, xk is the kth input data instance, vi is 

the ith cluster prototype, m is the fuzzification coefficient, uik is the fuzzy membership of the kth instance 

to the ith cluster, and || . || is a distance function, commonly taken to be Euclidean distance or a scaled 

version thereof. 

The algorithm is initialized by randomizing U, and then proceeds iteratively by first updating the cluster 

prototypes: 
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 𝒗𝒊 =  
∑ 𝑢𝑖𝑘

𝑚𝒙𝒌
𝑁
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1

 

(3.2) 

followed by the re-computation of the partition matrix with the new prototype locations using the 

following membership function: 

𝑢𝑖𝑘 =  
1

∑ (
‖𝒙𝒌 − 𝒗𝒊‖

‖𝒙𝒌 − 𝒗𝒋‖
)

2/(𝑚−1)

𝑐
𝑗=1

 

(3.3) 

Where (3.2) is computed for each cluster, i = 1, 2, … c, and (3.3) is computed for each data instance and 

each cluster, i = 1, 2, … c and k = 1, 2, … N. 

The algorithm is stopped when the given termination criteria are met; commonly either a maximum 

number of iterations or when the change in the partition matrix is less than some specified threshold 

value. 

‖𝑈(𝑡) − 𝑈(𝑡 − 1)‖ <  𝜀 

(3.4) 

Where t indicates a given iteration index, and ε is the specified error threshold. The exact algorithm is 

readily available in the literature [1][184]. 

3.2 HIERARCHICAL CLUSTERING 

Hierarchical clustering is a well-known clustering algorithm which computes data groupings (clusters) in 

a hierarchical manner, as the name implies. This form of clustering is generally based on a nearest 

neighbor distance function, which provides the basis for hierarchical groupings [185][186]. There are two 

possible approaches to forming a hierarchical partition: Top down (a divisive approach) or bottom up (an 

agglomerative approach). Although both approaches form valid partitions, the bottom up approach is 

significantly more computationally efficient, and is the focus of this section. 

Bottom up hierarchical clustering is realized by grouping data points closest to one another to form sub-

clusters, and then iteratively combining these sub clusters in a hierarchical manner. Which data points and 
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sub-clusters are combined at what time is determined through a linkage policy. The three most common 

linkage policies are as follows [186]: 

Average linkage: one determines an average distance of the data to be clustered to the points located in 

the sub cluster. 

Single linkage: the strategy is based on determining the shortest distance of the data to be clustered to the 

data occurring in the sub cluster. 

Complete linkage: the strategy is based on the determination of the largest distance of the data to be 

clustered to the data present in the sub cluster. 

A useful byproduct of hierarchical clustering is that the algorithm naturally produces a graphical 

visualization of the clustering structure known as a dendrogram, an example of this structure is given in 

Figure 3.1. This is the raw result of the clustering process, showing the hierarchical linkage of the 

clustered data. This can be a useful tool for assessing the structure of the data, or for determining which 

linkage policy suites the needs of the problem best. 

To obtain formalized clusters from a dendrogram we use one of two methods: 1) cutoff: a point in the tree 

is chosen as the cutoff point, and the subtrees resulting from this cut are taken as clusters. 2) distance: 

some distance between two sub clusters is given as a maximum for which clusters can merge. 

The dendrogram in Figure 3.1 shows an example of the cutoff method, denoted by the dotted line. In this 

case, we chose a cutoff which forms exactly 4 clusters. Dendrograms can be visually useful in 

determining the natural number of clusters, as we can examine the high-level structure of the graph. For 

example, in Figure 3.1, the rightmost sub-cluster is clearly distinct from the rest of the graph. 

Figure 3.1: Dendrogram showing hierarchical clustering structure. Dotted line indicates a cluster cutoff strategy 

for c = 4 
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The distance strategy is useful as it is capable of automatically selecting a natural number of clusters; 

however, as distances are highly data-set dependent, this method requires an intimate knowledge of the 

dataset or extensive experimentation to determine an appropriate value.  

Hierarchical clustering is realized in an iterative manner. At each iteration, the current sub-clusters (and 

un-clustered data points) are examined in pairs to determine which pair should be merged, according to 

the specified linkage policy. The identified pair is then merged, the data structure is updated, and the 

process continues until a complete hierarchical structure (dendrogram) is formed. In this dissertation we 

make use of existing hierarchical clustering implementations found in the MATLAB machine learning 

toolbox. 

3.3 PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) [187] is an optimization procedure which aims to mimic swarm 

behaviors often observed in nature [188]. The algorithm functions by defining a set of particles which 

reside within some error space and are capable of “moving” through the error space and evaluating their 

current position. At each iteration the particles update their position based on their individual historical 

best position, and a universally known global best position. To help avoid local minima, a degree of 

randomness if injected into the particle’s movement patterns, helping to insure a more thorough 

exploration of the error space.  

Each particle retains three individual attributes – its personal best position (historical), its current position, 

and its velocity. These values are used in combination with a universally known global best position to 

iteratively update the particles velocities at each iteration: 

𝒗𝒊
𝒕+𝟏 = 𝒗𝒊

𝒕 + 𝛼𝝐𝟏[𝒈∗ − 𝒙𝒊
𝒕] + 𝛽𝝐𝟐[𝒙𝒊

∗(𝒕)
− 𝒙𝒊

𝒕] 

(3.5) 

Where vi and xi are the velocity and position of the ith particle, t indicates a given iteration, and 𝝐𝟏 and 𝝐𝟐 

are two random vectors taking values in the unit interval, and g* is the global best position. The 

parameters 𝛼 and 𝛽 are learning parameters (also known as acceleration constants), and they are often 

taken to be around 2. 

Computed velocities are then used to update particle positions: 

𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 + 𝒗𝒊
𝒕+𝟏 
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(3.6) 

There are several proposed variants to the original PSO algorithm. One notable, and largely successful, 

improvement is the addition of a momentum term or inertia function 𝜃(𝑡): 

𝒗𝒊
𝒕+𝟏 = 𝜃𝒗𝒊

𝒕 + 𝛼𝝐𝟏[𝒈∗ − 𝒙𝒊
𝒕] + 𝛽𝝐𝟐[𝒙𝒊

∗(𝒕)
− 𝒙𝒊

𝒕] 

(3.7) 

Where 𝜃 evaluates to a value between 0 and 1. In the simplest case, we take the inertia function as a 

constant value. This addition introduces a virtual mass to the particle, with the intent of making the 

algorithm converge more quickly [189]. Other improvements include accelerated PSO which does away 

with each particles individual best, relying solely on the global best [190]. While this algorithm seems 

overly simplistic, studies have shown that this algorithm is still capable of fast global convergence[191]. 

3.4 THE DESIGN OF FUZZY RULES 

Fuzzy rules are a powerful machine learning tool which offer many modelling advantages. Their 

combination of predictive power and readability makes them well-suited for many areas of research 

where the need to understand the reasoning behind model behavior is crucial. In their most general form, 

a fuzzy rule takes the following format: 

𝐼𝐹 𝒙 𝑖𝑠 𝐴𝑖  𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝑓𝑖(𝒙, 𝑝𝑖)  

(3.8) 

Where x is the input to the fuzzy rule, Ai is a fuzzy set, y is the predicted output for the instance given as a 

function, f(x, pi) where pi is a functional parameterization. In this format, the functional consequent of the 

rule can be any function, although polynomials are most common. This results in a rule which defines a 

fuzzy functional mapping between the input and output space of a problem. This rule format is known as 

Takagi-Sugeno (TS) [36] fuzzy rules, and their use in machine learning and fuzzy modelling has been 

extensively studied. 

By computing a collection of fuzzy rules and using them as a set of IF-ELSE conditions, we form a fuzzy 

rule-based system (FRBS). As we are concerned with fuzzy rules, to whom membership is defined to a 

degree, the rule base may involve multiple rules, to varying degrees, in the decision-making process. 

Specifically, the output of a FRBS is given by: 
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�̂�𝑘 =  ∑ 𝐴𝑖(𝒙𝒌)𝑓𝑖(𝑥𝑘 , 𝑝𝑖)

𝑐

𝑖=1

 

(3.9) 

Where �̂�𝑘 is the predicted output for the kth data point. 

If rule consequents are constant values, we refer to the rule format as Mamdani style fuzzy rules [35]: 

𝐼𝐹 𝒙 𝑖𝑠 𝐴𝑖  𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝑏𝑖  

(3.10) 

Where bi is a constant valued output to the rule, representing the center of an underlying fuzzy set. This 

can be interpreted as a 0th order polynomial, making them a special case of TS-fuzzy rules. As discussed 

in Chapter 2, this was the original proposition of FRBSs, and the generalized format was developed later. 

In a similar fashion, the output of this style of rule-base system is given by: 

�̂�𝑘 =  ∑ 𝐴𝑖(𝒙𝒌)𝑏𝑖

𝑐

𝑖=1

 

(3.11) 

Where bi is the constant valued output of the ith fuzzy rule. This rule format has the advantage of being 

significantly more readable and interpretable to a human agent wishing to analyze the response of a 

model, and in many scenarios constant outputs can be interpreted as linguistic terms. 

3.4.1 The generation of fuzzy rules from data 

The goal of most machine learning research is to extract useful system knowledge from simple data. This 

allows collected data to be used in a useful manner, often with the goal of predicting future system 

behavior. There are a variety of ways through which fuzzy rules can be extracted from data, one of which 

is using fuzzy clustering and output estimation. 

The computation of fuzzy rules is considered in two parts – the condition and consequent parts of the rule. 

A common approach is to use FCM clustering to generate rule conditions. Using this procedure, 

clustering is performed only in the input space of the considered dataset, and the cluster prototypes are 

used to form the conditional fuzzy sets for the rule-base. Considering the format given in (3.8), we utilize 

the n-dimensional fuzzy sets defined by the combination of the memberships in Ui and the prototype vi to 
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denote the condition part of a rule Ai. The prototype location denotes the center of Ai, and the shape of the 

fuzzy set is described by the fuzzy partition in Ui. 

The output parts of fuzzy rules are formed using least squares estimation. For the simplest case, Mamdani 

style rules, the format is given in (3.10). In this format, rule consequents are constants and the problem 

can be formulated as follows: 

𝒚 = 𝑈𝒃 

(3.12) 

Where y is the vector of N target output values, U is the partition matrix from fuzzy clustering, and b is a 

vector of constant values (rule consequents). In this case, b is the unknown to be solve for, and the 

problem takes the form of a well-known matrix equation with several known solutions. In many cases, 

least squares estimation is the most practical solution, as matrix inversion is computationally time 

consuming. 

In the case of higher order TS-style fuzzy rules, the format for which is given in (3.8), the output 

estimation problem becomes more complex. For example, the linear case is described by: 

𝑦 = 𝒃𝒊
𝑻[𝒙𝒌, 1] 

(3.13) 

Where bi is now a vector of functional parameters of length n+1 for n-dimensional data. The additional of 

the constant value, 1, to the input vector serves as the intercept in the computed linear equations. This 

calculation results in linear outputs: 

𝑦 =  𝑏1 𝑥1  +  𝑏2 𝑥2  +  … +  𝑏𝑛 𝑥𝑛  +  𝑏𝑛+1  

(3.14) 

Where 𝑥𝑗 indicates the jth feature of the instance under consideration. The solution matrix also becomes 

more complex: 

𝒛𝒊𝒌 = 𝑢𝑖𝑘[𝒙𝑘 , 1] 

  (3.15) 

𝑍 =  [

𝒛𝟏𝟏 ⋯ 𝒛𝒄𝟏

⋮ ⋱ ⋮
𝒛𝟏𝑵 ⋯ 𝒛𝒄𝑵

], 𝑏 =  [
𝒃𝟏

…
𝒃𝒄

], and 𝑦 =  [

𝑦1

…
𝑦𝑁

] 
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(3.16) 

Here Z is a (c x (n+1)) by N matrix containing each zik for i = 1, 2, … c, and k = 1, 2, … N, b is a c x (n 

+1) length vector representing all the parameters of a linear functional output, and y is a N length vector 

of target values from data. We now have a parameter estimation problem in the form: 

𝑦 = 𝑍𝒃 

(3.17) 

This is a very similar problem to the one presented in (3.12), although Z is much larger than U, and a 

solution can be computed in the same manner. Once functional parameters have been calculated, 

predictions can be computed by solving the following linear equation: 

�̂�𝑘 = [𝒛𝟏𝒌
𝑻 𝒛𝟐𝒌

𝑻 … 𝒛𝒄𝒌
𝑻] [

𝒃𝟏

…
𝒃𝒄

] 

(3.18) 

The result of (3.18) is a fuzzy membership weighted averaging of each rule’s predicted output according 

to the linear functions defined by b. 

This process of output estimation can be extended to higher order polynomials if desired, although the 

computational complexity of the estimation grows with the order of the polynomial [192]. 

3.4.2 Evaluation of fuzzy rule-based models 

With any machine learning task, the ability to evaluate and assess the quality of a model is of the utmost 

importance. There are many ways in which models can be assessed, and those criteria pertinent to the 

research in this dissertation are outlined in this section. 

3.4.2.1 Reconstruction Error 

Without considering the predictive power of a fuzzy model, the simplest way to evaluate model quality is 

to assess how well the model describes the modelled data. One way this can be accomplished is through 

the evaluation of reconstruction error. Reconstruction error (RE) is, as the name implies, an assessment of 

how accurately a model can reconstruct the input data. As this is an error measurement, RE measures the 

discrepancy between the model’s representation of the training data and the actual training data. We 

consider reconstruction error to be a normalized version of FCM’s objective function, consider: 
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𝑅𝐸 =  
1

𝑁
∑ ∑ 𝑢𝑖𝑘

𝑚‖𝒙𝒌 − 𝒗𝒊‖2

𝑐

𝑖=1

𝑁

𝑘=1

 

(3.19) 

Which closely resembles (3.1).  

This is a simple and intuitive measure for representing the accumulated error of a model with respect to 

its ability to represent the data; however, this evaluation metric has obvious drawbacks, most notably the 

fact that it does not consider a model’s predictive accuracy, and that RE tends to decrease as model 

complexity increases. 

3.4.2.2 Error for continuous outputs 

The most common and intuitive form of model assessment is to consider a model’s predictive accuracy. 

These measures provide an indication of how well a model predicts system behavior, considered over the 

scope of the evaluated dataset. 

When dealing with continuous output domains, accuracy is measured as the difference between the 

predicted output and the actual output for a given data instance, aggregated across the dataset. A common 

aggregator is root mean squared error (RMSE): 

𝑅𝑀𝑆𝐸 =  √∑
(𝑦𝑘 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑘)2

𝑁

𝑁

𝑘=1

 

(3.20) 

Where yk represents the predicted output for a given instance, and targetk is the actual output value from 

the dataset. 

Another error evaluation metric is mean absolute error (MAE), which assess the predictive error of a 

model in a somewhat simpler manner: 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦𝑘 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑘|

𝑁

𝑘=1

 

(3.21) 

This measures the average difference between the predicted and actual outputs across the dataset. The key 

difference between these two measures is in their handling of extreme values. While MAE provides a 
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very fair and even assessment of the error, treating all points equally, RMSE has the advantage of 

highlighting large errors, and minimizing small errors. While this is not always a desirable characteristic, 

it is often beneficial in computational modelling, as it provides an easier avenue for identifying certain 

types of modelling issues such as outliers or unbalanced datasets. 

3.4.2.3 Classification Accuracy 

When considering a classification problem, the calculation of accuracy is more straightforward. When 

classifying, the quality of a model is simply assessed through the percentage of correctly classified 

instances in the dataset: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑁
∑ 𝐼(𝑐𝑘 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑘)

𝑁

𝑘=1

 

(3.22) 

Where ck is the class label of the kth instance, predictedk is the predicted class for the kth instance, and I is 

an identity function: 

𝐼(𝑎, 𝑏) =  {
𝑖𝑓 𝑎 = 𝑏 𝑡ℎ𝑒𝑛 1

𝑒𝑙𝑠𝑒 0
 

(3.23) 

Hence, the calculated accuracy indicates the percentage of correctly classified instances. For the most 

part, higher accuracy is always better. 

3.4.2.4 Training, Testing and Overfitting 

The previous sections outline equations for evaluating the predictive performance of computation models. 

In these sections, we state that higher accuracy/lower error are generally better; however, we must be 

wary of overarching generality, as it ignores the subtleties of modelling and the inevitability of 

incomplete or imperfect data. 

One of the most important aspects of modelling which is not described by accuracy alone is the issue of 

overfitting. If we accept that the available data will never be a perfect representation of the underlying 

system, it stands to reason that a model which perfectly models the provided data does not necessarily 

perfectly model generalized system behavior – it may have only memorized the training data. This issue 

is known as memorization or overfitting and reflects the concern that a complex model runs the risk of 

learning the patterns of specific training inputs instead of learning useful generalizable knowledge about a 

system. 
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Memorization is often detectable when comparing training and testing performance, where testing 

performance is defined by the evaluation of a withheld dataset which has not been used to construct the 

model. In many cases, we observe that, as the model becomes more complex, there comes a point where 

training and testing performance begin to diverge. This is a sign of overfitting, as the algorithm may 

continue to improve training performance, but those improvements are not observed when evaluating the 

withheld testing dataset. 

In Figure 3.2, we show the performance index (Q) for fuzzy clustering on a sample dataset, plotting Q for 

the training and testing partitions as the number of computed rules increases. We observe a growing gap 

between training and testing performance as the model becomes more complex (additional rules), 

indicating that memorization is being observed.  

There are a few techniques which assist in avoiding overfitting. The first is a simple split of the available 

data into training and testing partitions. This strategy constructs the model using only the data instances 

contained in the training partition, and exclusively uses the testing partition to evaluate the predictive 

power of a model after training is complete. This type of validation testing is crucial to high quality 

modelling, as testing accuracy provides a much better indication of actual predictive accuracy. Testing 

datasets help eliminate training biases, as we expect the model to respond well to those instances used to 

train it, and the way in which it handles instances it has not seen before is more pertinent. Using the 

knowledge gained from evaluating a testing dataset, researchers can halt training at a point where 

performance is maximized while memorization is minimized. 

While the principle of a training/testing data split is sensible, there remain certain issues with this simple 

approach. First, as some data is never used in the computation of the model, we are forced to accept a 

2 3 4 5 6 7 8 9 10 11 12 13 14 15

c

Q

Q vs c for AutoMPG

Figure 3.2: Performance index, Q vs the number of clusters, c for AutoMPG [194] (solid line is training data, 

dotted line is testing data) 
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lower quality model as it is likely possible to obtain better performance using the full dataset. Second, the 

specific split of the testing and training sets may skew performance in one direction or the other, 

depending on which instances end up where, or on the class/output designations in the testing data.  

One way to avoid some of these issues is known as cross-validation. Cross validation is performed over a 

series of k folds, and a distinct model is trained from a distinct training/testing data split at each fold. 

Typically, the dataset is split into k equal partitions, and at each fold, the model is trained with the 

amalgamation of k–1 partitions and tested with the remaining kth partition. Over the course of cross-

validation, each partition is used as the testing partition once. Upon completion, an overall training and 

testing accuracy can be calculated as the average of the training and testing accuracies over all k-folds. 

The advantage of this method is that, at some fold, each instance is used as part of the test set, so the 

average performance of the model across all k-folds provides a better overall indication of model quality 

than a single split. The drawback to this method is that, for each experimental parameterization, k separate 

models need to be generated and evaluated – this can be computationally prohibitive in complex 

modelling cases. 

3.4.2.5 Cluster validity indices 

Many clustering tasks, including FCM clustering, require the number of clusters to be provided as an 

input parameter to the algorithm. This results in a pertinent research question regarding correct or best 

number of clusters for a given problem. The need to answer this question has resulted in the topic of fuzzy 

cluster validity indices. This field is well-studied, and the proposed indices are defined with the goal 

selecting the best number of clusters (rules) for a problem in an objective numerical fashion. 

There has been significant research in this area, with different studies applying different priorities and 

ideas towards defining what constitutes the best choice. Existing indices typically use some combination 

of the input data, the fuzzy partition matrix, and the cluster prototype locations. 

One of the first forays into fuzzy cluster validity indices was proposed by Bezdek in [39], and is known as 

the partition coefficient: 

𝑉𝑃𝐶 =  
1

𝑁
∑ ∑ 𝑢𝑖𝑘

2

𝑁

𝑘=1

𝑐

𝑖=1

 

(3.24) 

This coefficient measures the degree to which clusters in a system share data instances, and the key 

weakness of this coefficient is that it shows a clear monotonically decreasing tendency as c increases, 
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strongly favoring small c values. Since this early proposition, many additional indices of increasing 

complexity have been proposed, including the following well known options: 

The Xie-Beni Index [97]: 

𝑉𝑋𝐵 =  
∑ ∑ 𝑢𝑖𝑘

𝑚‖𝒙𝒌 − 𝒗𝒊‖2𝑁
𝑘=1

𝑐
𝑖=1

𝑁 𝑚𝑖𝑛𝑖,𝑗‖𝒗𝒊 − 𝒗𝒋‖
 

(3.25) 

The Fukuyama and Sugeno Index [193]: 

𝑉𝐹𝑆 =  ∑ ∑ 𝑢𝑖𝑘
𝑚‖𝒙𝒋 − 𝒗𝒊‖

2
𝑁

𝑘=1

− ∑ ∑ 𝑢𝑖𝑘
𝑚‖𝒗𝒊 − �̅�‖2

𝑁

𝑘=1

𝑐

𝑖=1

𝑐

𝑖=1

 

(3.26) 

The Fuzzy Hyper volume Index [194]: 

𝑉𝐹𝐻𝑉 =  ∑[det (𝐹𝑖)]1/2

𝑐

𝑖=1

 

(3.27) 

𝐹𝑖 =  
∑ 𝑢𝑖𝑘

𝑀 (𝒙𝒌 − 𝒗𝒊)(𝒙𝒌 − 𝒗𝒊)𝑇𝑁
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1

 

(3.28) 

Where all symbols are consistent with those used in Section 3.1. Each of these indices incorporates the 

input data into the calculation in addition to the partition matrix and cluster prototypes. More recent 

developments are increasingly complex, and examine factors such as cluster separation, overlap, and 

compactness in attempts to improve the overall applicability of the indices. Examples of more recent 

indices can be found in [195] and [94]. 

3.4.2.6 Non-numeric rule quality assessment 

While accuracy provides a good indication of a model’s predictive ability, there are other less quantifiable 

aspects of model quality which are also important. Consider the field of human-centric computing, which 

targets computational models whose structure and predictions are presented in a way which can be 

reasonably assessed and understood by a human agent. In this context, the absolute accuracy of a model is 
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not the epitome of model quality, as very complex black-box models completely fail to provide useful 

decision-making information to an outside observer, decreasing the value of any extracted knowledge. 

In the interest of more formally defining what we mean by human-centric systems, we define additional 

quality evaluation criteria such as coverage, completeness, distinguishability and complementarity. In 

[102] these are identified as qualities associated with low-level interpretability, that is, aspects of a model 

which aim to capture specific aspects of quality associated with data representation. These terms aim to 

capture those aspects of data representation which adhere to human information categorization, 

maintaining model sanity from a reader’s perspective. Consider the following definitions: 

Distinguishability: Fuzzy sets should be distinct within the input space such that each 

membership function is able to represent a clear linguistic term and have clear semantic meaning. 

Coverage/Completeness: The fuzzy sets should cover the entirety of the universe of discourse 

such that every input instance belongs to at least one rule. 

Complementarity: For a given input instance, the sum of its memberships to all rules should 

always be one. 

Readability is another crucial aspect of human-centric modelling which focuses on the intrinsic need to 

understand how a model arrives at a given prediction. These aspects include simplicity, readability, 

consistency, completeness, and transparency. Again, referring to [102], these terms are defined as high-

level interpretability criteria, synonymous with human readability: 

Simplicity: The best model will be the model which fits the data well, with the least amount of 

complexity. This can take the form of limiting the number of rules, lowering the order of a TS 

fuzzy model etc. 

Readability: A given rule should be understandable to a human, meaning that we need to limit the 

number of conditions to around a maximum of seven. 

Consistency: Rules in a system should not contradict one another. 

Completeness: Same as for low level interpretability, a rule should exist for every possible input 

instance. 

Transparency: The structure of fuzzy rules should embody human knowledge about a system’s 

behavior. The consequents and conclusions of the rules should be meaningful to a human reader, 

and their meaning should be clear. 
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 These criteria serve as the founding principles of model interpretability and, in this dissertation, we make 

use of them in our quantification of rule stability.  

3.5 BOOSTING 

Boosting is the general principle of constructing a group of models (ensemble) which, as a collective, 

outperform any single member of the group. The ensemble is constructed iteratively, with later models 

trained to address the weaknesses of previous models. The resulting collection makes predictions as a unit 

in a weighted manner, with each member’s weight dependent on its individual performance. 

The most well-known boosting implementation is AdaBoost, which was originally proposed in the mid 

1990’s by Freund and Schapire [24][25]. This algorithm is applicable to two-class classification problems 

only. 

3.5.1 Bagging 

Boosting algorithms seek to generate a set of diverse weak learners which, in combination, provide a 

single strong classifier. As many learners are being trained to address the same problem (as posed by 

data), all learners are generated from a limited dataset. Generally, each learner in an ensemble is trained 

using the same procedure – that is, excepting data weights, each learner is computed in the same way. 

This has the potential to be highly detrimental, as using the same data for all learners may decrease their 

diversity. A helpful addition, which aids in the avoidance of this problem, is data selection through 

bagging, and boosting commonly makes use of bagging for this reason. 

Bagging is the process of selecting a subset of some size randomly from the training dataset, with the 

important caveat that repeat selections are permitted. This allows for training datasets of adequate size to 

be generated many times while still being distinct from one another. This promotes stronger overall 

ensemble training with a simple method. 

As potentially relevant in a boosted environment where data is weighted, bagging can also be performed 

in a weighted manner, such that more heavily weighted instances are more likely to be selected. In the 

case of a weak learner generation procedure which poorly considers data weights, weighted bagging can 

be used to help achieve successful boosting without modification to the original algorithm. 
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3.5.2 AdaBoost 

AdaBoost [24] is the most recognizable variant of boosting and it has been successfully applied to a wide 

range of classification problems. The AdaBoost algorithm is defined for a generalized weak learner and 

assumes a two-class problem with class labels taking the values of 1 or –1. 

The goal of the algorithm is to compute an ensemble, denoted F, starting with an empty ensemble, 

denoted F(0). We also initialize a set of data weights, one per training instances, stored in a vector W. 

Initially, each weight is set to the same value, wi = 1/N, for j = 1, 2, … N.  

The algorithm proceeds iteratively, and at each iteration a new weak learner is trained from bagged data 

and the current data weights. The learner computed at iteration t is denoted as ht(x). The weak learner 

generation procedure is generic; that is, any classifier can be used as a component weak learner of a 

boosted ensemble, so long as the learner generation process is able to consider changing data weights in 

its calculations, or weighted bagging is employed. 

Once a weak learner has been generated, its performance is evaluated according to the following 

formulation: 

𝜀𝑡 = ∑ 𝑤𝑖𝐸(ℎ𝑡(𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

 

(3.29) 

Where 𝜀𝑡 is the weighted error for the learner ht(x) and E is the given error function, computed in terms of 

the weak learner and the known output for instance i, yi.  

Consider the error function produced by the original AdaBoost algorithm: 

𝐸(ℎ(𝑥), 𝑦) = 𝑒−𝑦ℎ(𝑥) 

(3.30) 

AdaBoost is valid for a binary classification problem; hence, the class predictions take either a value of 1 

or –1 indicating belongingness of the data point to one of the problems two classes. 

The weighted error is then used in the calculation of the new learner’s ensemble weight, ∝𝑡: 

∝𝑡=
1

2
𝑙𝑛 (

1 − 𝜀𝑡

𝜀𝑡
) 

(3.31) 
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The existing ensemble from the previous iteration, F(t–1), is then updated to include the new learner 

obtained at iteration t: 

𝐹(𝑡) = 𝐹(𝑡 − 1) + ∝𝑡 ℎ𝑡 

(3.32) 

And finally, the data weights are updated with respect to the new learner and its ensemble weight: 

𝑤𝑖,𝑡+1 = 𝑤𝑖,𝑡𝑓(𝑦𝑖 , ∝𝑡 , ℎ𝑡,𝑖) 

𝑓(𝑦𝑖 , ∝𝑡 , ℎ𝑡,𝑖) = 𝑒−𝑦𝑖∝𝑡ℎ𝑡(𝑥𝑖) 

(3.33) 

Where wi,t is the weight of instance i at iteration t, and f is an evaluation function for the error of a given 

input instance, for a given weak learner, with its given ensemble weight. 

These steps are taken iteratively until an ensemble of the desired size is constructed, or some other 

termination criteria is met. It is imperative that the weak learner generation procedure takes the data 

weighting into consideration, as this is the mechanism through which overall ensemble performance is 

achieved. 

When the time comes to use the ensemble to make classification predictions, the whole ensemble can be 

used to obtain a single prediction in the following manner: 

𝐹(𝑥) = ∑ ∝𝑡 ℎ𝑡(𝒙)

𝑚

𝑡=1

 

(3.34) 

Where x is a given instance, F is the completed ensemble and m is the size of the ensemble. The manner 

in which the weak learner is evaluated is specific to the model used; however, the expectation is that a 

single class prediction is provided. 

3.5.2.1 AdaBoost M1 Variant 

The AdaBoost M1 variant is a modification to the AdaBoost algorithm proposed by Freund and Schapire 

to extend their original algorithm to the multi-class space [25]. The M1 variation of AdaBoost makes the 

following simple changes.  

First, the error rate of a weak learner is changed to be compatible with a non-binary classification: 
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𝑝𝑡 =
𝑤𝑡

∑ 𝑤𝑖
𝑡𝑁

𝑖=1

 

𝜀𝑡 =  ∑ 𝑝𝑖
𝑡⟦ℎ𝑡(𝒙𝒊) ≠ 𝑦𝑖⟧

𝑁

𝑖=1

 

(3.35) 

Where ⟦ . ⟧ describes an indicator function which returns 1 if the expression is true and 0 otherwise, and 

wt is an instance weight at iteration t. 

In the M1 variant, if the newest learner is weak, determined by εt > ½, then the learner is rejected, and the 

algorithm is stopped. Otherwise, the procedure continues with a few further modifications. In a similar 

manner to the update to the error calculation, the weight updates are also modified: 

𝛽𝑡 =
𝜀𝑡

1 − 𝜀𝑡
 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡𝛽𝑖
1−⟦ℎ𝑡(𝒙𝒊)≠𝑦𝑖⟧

 

(3.36) 

Finally, we consider the updated equation for obtaining a hypothesis from the boosted ensemble: 

𝐹(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶 ∑(𝑙𝑜𝑔
1

𝛽𝑡
)⟦ℎ𝑡(𝒙𝒊) ≠ 𝑦𝑖⟧

𝑚

𝑡=1

 

(3.37) 

Where C is the set of class labels in the problem space, and F is the completed ensemble comprised of m 

weak learners. This variation of AdaBoost for the multi class case is very simple, and many of the 

modified equations are intuitive extensions of the binary case with the updated computation of a multi-

class error rate. 

3.5.3 SAMME 

As the original AdaBoost algorithm is only applicable to two-class problems, many studies have proposed 

variants for the extension of the boosting mechanism to a multi-class scenario (including the M1 variant 

previously described). Another of these variants is the SAMME algorithm (Stage-wise Additive Modeling 

using a Multi-class Exponential loss function) [137]. This algorithm operates on the same general 
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principles as AdaBoost, but with specific changes to certain formulations to accommodate a multi-class 

environment. 

The first aspect which needs modification is the error function, previously given in (3.29). The AdaBoost 

variant functions with the assumption of binary output (–1, or 1); hence, for a multi-class scenario where 

class assignments are simply distinct labels, modifications must be made. Consider the formula: 

𝜀𝑡 =
∑ 𝑤𝑖¬𝐼(𝑐𝑖 , ℎ𝑡(𝒙𝒊))𝑁

𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 

(3.38) 

Where I is an indicator function, namely: 

𝐼(𝑎, 𝑏) = {
1 𝑖𝑓 𝑎 = 𝑏
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3.39) 

And its negation is described as: 

¬𝐼(𝑎, 𝑏) = {
0 𝑖𝑓 𝑎 = 𝑏
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3.40) 

The result of (3.38) is a weighted error with respect to training data weights. This is not strictly equivalent 

to the AdaBoost formulation but serves a similar purpose. 

Secondly, the ensemble weight calculation needs modification. In AdaBoost, the computed weights 

become negative if the accuracy of the weak learner is worse than ½. This is reasonable as we should 

reject learners whose performance is worse than a random guess; however, this criterion changes for a 

multi-class scenario, where the threshold for a better than random guess becomes 1/K where K is the 

number of classes. Consider the multi-class modification: 

∝𝑡= 𝑙𝑜𝑔 (
1 − 𝜀𝑡

𝜀𝑡
) + 𝑙𝑜𝑔(𝐾 − 1) 

(3.41) 

Finally, the equation for updating data weights is modified. In a similar manner to the error equation, the 

formulation is updated to consider correct or incorrect class predictions.  

Consider: 
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𝑤𝑖 = 𝑤𝑖𝑒𝑥𝑝 (∝𝑡 ¬𝐼(𝑐𝑖 , ℎ𝑡(𝒙𝒊))) 

(3.42) 

Which modifies the weight update calculation to similarly match the error calculation in (3.38). 

Other than these changes, the SAMME algorithm functions identically to AdaBoost – the algorithm 

proceeds by iteratively calculating a generalized weak learner, assessing said learner, and updating 

algorithm data on this basis. 

3.6 GRADIENT DESCENT 

Gradient descent is a well-known iterative optimization tool which uses knowledge of a problems 

derivative function (or an approximation thereof) to search for a local minimum by following the 

direction of the negative gradient. 

Gradient descent functions by iteratively evaluating the gradient (derivative) of a function at the current 

search location and aiming the search path in the direction of the negative gradient. We begin the search 

at an arbitrary point in the search space and update the current search position according to: 

𝒙𝒏+𝟏 = 𝒙𝒏 − 𝛾∇𝑓(𝒙𝒏) 

(3.43) 

Where ∇𝑓 is the first derivative of the function we wish to optimize, and γ is a predefined step size. We 

iteratively update the position of x, moving in the direction of the negative gradient until either a local 

minimum is found (∇𝑓(𝒙𝒏) = 0), or some other termination criterion is met, for example a maximum 

number of iterations. 

In its simplest form, gradient descent is highly susceptible to local minima, so we may wish to make 

modifications to improve the likelihood of finding a global minimum. A common modification is the 

addition of a momentum term, which helps accelerate the search vectors in the right directions, speeding 

up optimizations, and helping avoid shallow local minima. In the simplest case, the addition of a 

momentum term takes the following form: 

∆𝒙𝒏 =  𝛽∆𝒙𝒏−𝟏 −  𝛾∇𝑓(𝒙𝒏) 

𝒙𝒏+𝟏 = 𝒙𝒏 −  ∆𝒙𝒏 

(3.44) 
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Where ∆𝒙𝒏 conceptually represents the velocity of the search, which is now updated with an added term, 

weighted by the parameter β, which remembers the velocity of the search at the previous iteration. 

Gradient decent is an optimization tool which is appropriate for scenarios with known error functions. 

When configured correctly, it is a fast and reliable optimization technique which is used extensively in 

many fields. 
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4 CRITERIA FOR FUZZY RULE STABILITY 

Fuzzy rule-based models are a pillar of fuzzy modelling which provide a concise, human-readable, and 

computationally powerful way to express complex system knowledge. The most established and well-

studied form of fuzzy rules are Takagi-Sugeno style rules, and their specifics are described in detail in 

Section 3.4. Typically, the focus of studies concerned with fuzzy rules tends towards the improvement of 

model accuracy, while other aspects, such as interpretability, readability, and comprehensibility, fall by 

the wayside. 

This is not to imply that these softer aspects of model quality have been completely ignored. Section 

3.4.2.6 provides examples of literature focusing on definitions concerned with aspects of interpretability; 

however, the properties discussed in these studies lack concrete quantifiable meaning and measurement. 

In other words, while these definitions are useful for academic discussion of rule quality, we lack any 

calculable metrics to quantify these concepts, limiting their real-world usefulness. 

In this chapter, we explore the novel concept of providing a quantitative consistent measure targeting 

certain aspects of rule quality; specifically, we focus on the quantification of rule stability. For our 

purposes, we define rule stability as the ability of a rule generation procedure to consistently generate 

similar rules for similar training data. This includes the extraction stable knowledge, even when there are 

small fluctuations in the training data. This is a desirable characteristic, as we expect rules to convey 

essential knowledge about the system, and fluctuations in initialization conditions and training data 

should not affect what we hope is concrete knowledge. Put another way, if the knowledge extracted from 

data highlights meaningful system behavior, we would expect this knowledge to be reproducible 

regardless of the exact training data used. 

Formally, consider the following three quantifiable aspects rule stability: 

Multiplicity of rules – Rules are produced with identical conditions and conclusions. Identical 

rules appearing consistently in experimentation is an indicator of stable knowledge. 

Conflicting rules – Rules are identified with identical condition parts, but different conclusions. 

Such rules are brittle, as they do not provide a coherent prediction of system behavior, indicating 

lower quality rules.  

Generalizable rules – Rules whose condition parts are slightly different; however, their 

conclusions are the same. These can be combined into a single rule whose condition part becomes 

more general; hence, the quality of the rule itself becomes higher. 
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These metrics outline what we consider to be the crucial aspects of fuzzy rule stability, and, in this 

chapter, we propose a methodology for the computation of numerical metrics quantifying each aspect 

independently. 

In this chapter, we define model stability as the production of similar rules given similar data and input 

conditions. That is, for a given problem, when using consistent parameters and algorithms, we expect 

consistent models to be generated. Furthermore, if the quality of the rules produced by these models is 

high (they describe the data well), we would expect that similar rules should be produced from a random 

subset of the data, given that the subset is of sufficient size. 

The essential issue in this study is to provide a comprehensive characterization of certain qualitative (non-

numeric) properties of FRBSs. When dealing with a fuzzy model constructed from data, how do we 

define the multiplicity, generalizability and conflicting properties of the model? The objective of this 

research is to define these properties in a numeric manner and to analyze their use for assessing the 

quality of rules extracted from data.  

Our stability criteria seek to deliver an essential qualitative view of rule quality. To achieve this, we 

abstract away from the numeric details of individual rules (such as those captured by membership 

functions), and focus instead on rules as pieces of knowledge, providing insight into the brittleness and 

volatility of rules. To this end, we pose the following pertinent research questions: 

• To what degree are the rules stable, and to what extent do they offer consistent knowledge about 

the system? Are they resilient to small changes in data? 

• Can rules be generalized, and in what manner? 

To assess the stability of fuzzy rules, we devise a strategy for generating a set of fuzzy rule-based models 

from subsets of the training data to enable rule comparisons. Consider a family of fuzzy models, each 

with the same number of fuzzy rules. We divide the training data into equally sized subsets and generate a 

fuzzy rule-based model from each subset using identical parameterization. The fuzzy rules generated in 

this manner are then analyzed en mass to assess the consistency with which certain information is 

extracted from the data given varying training data and initial conditions (but identical parameterizations). 

Our method of analysis is to construct rules using identical design parameters using subsets of the data 

D1, D2, …, Dp (which are not identical to D but share the same or very similar statistical properties as 

those of D). We then assess the properties outlined above.   
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Our approach realizes an additional higher-level layer of knowledge representation. This higher-level is 

used to abstract away from numerical details without modifying the original model, providing a linguistic 

space in which stability analysis can be more easily performed, visualized in Figure 4.1.  

4.1 INTERPRETATION OF RULES - A SYMBOLIC VIEW 

In this study, we consider Takagi-Sugeno style fuzzy rules. To assess rule quality, we need a way to 

compare rules from independently generated models (data sub-sets) in a simple manner. Fuzzy rules are 

meant to provide generalized knowledge about a system and, as such, we consider them to be a high-level 

representations of system knowledge. When comparing fuzzy rules across multiple rule-based models, it 

is this high-level structure that we would like to compare. Expanding on this concept, when comparing 

rules, we want to abstract the comparison away from the numerical details of the model and focus on the 

high-level structure of each rule. This implies a linguistic rule format, where rule conditions and 

conclusions are represented as linguistic quantifiers, granularizing each feature for the sake of 

interpretability. 

To accomplish this, we propose the following “unfolding” procedure which functions by projecting the 

rule prototypes onto each input variable to form pseudo-linguistic labelling. An example of such a 

projection and subsequent labelling is shown visually in Figure 4.2. 

accuracy

interpretability 

(at numeric level)  

multiplicity of rules

conflicting rules

stability of rules

CHARACTERIZATION       

FUZZY MODEL 

Data

LINGUISTIC FUZZY 

MODEL 

Figure 4.1: Fuzzy models and an augmentation of its characterization at the linguistic level of information 

granules 
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By performing this granulation on each FRBS, we are left with a rule format which is more conducive to 

high level rule comparisons. This format will be essential to our analysis of rule stability, where the 

ability to abstract away from minor rule variability and concentrate on overarching rule structure is 

critical. By assigning a linear integer ordering over each input dimension of the rule, we create a granular 

rule format composed of pseudo-linguistic variables. In the resulting rules, we intuitively understand that 

linguistic variables are implicitly assigned in increasing order for each input dimension. We represent the 

result of this process in an integer format, which generalizes fuzzy rules to a symbolic rule space. 

For instance, referring to Figure 4.2, the three rules expressed in the defined symbolic format would read 

as follows: 

(1,1) → 1; (2,3) → 3, (3,2) → 2 

(𝑠𝑚𝑎𝑙𝑙, 𝑠𝑚𝑎𝑙𝑙) → 𝑠𝑚𝑎𝑙𝑙; (𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑎𝑟𝑔𝑒) → 𝑙𝑎𝑟𝑔𝑒, (𝑙𝑎𝑟𝑔𝑒, 𝑚𝑒𝑑𝑖𝑢𝑚) → 𝑚𝑒𝑑𝑖𝑢𝑚 

 

(4.1) 

Considering both the integer and implicit linguistic assignments for each rule. 

This format will be used as the basis for rule comparison in upcoming sections, where the quantitative 

aspects of rule quality and stability are more formally defined. 

In this simplified format, the distance between two rules can easily be computed as a rectilinear distance: 

Figure 4.2: Unfolding rules with the use of Cartesian products by projecting prototypes on individual input 

variables. 



39 

 

‖𝑎 − 𝑏‖ =  ∑|𝑎𝑗 − 𝑏𝑗|

𝑛

𝑗=1

 

(4.2) 

Where a and b are two integer format rules, each defined for n input features. Generally, we consider the 

distance between two rules to consider only the input dimensions, addressing the consequent parts of the 

rules separately in future sections. 

4.2 MEASURES OF RULE STABILITY 

As outlined previously, we consider rules extracted from data to provide a high-level representation of the 

patterns expressed by the data – it’s contained knowledge. We intuitively expect that, to some degree, the 

rules produced in a high-quality model will show a degree of stability if the same procedure is executed 

again. Put another way, we expect the variance of rules generated in the same way using the same (or 

similar) data to be small. Further, if the rules represent stable system knowledge, then small fluctuations 

or variations in the training data should not significantly impact the computed rules.  

These metrics aim to quantify the degree of stability by using the granulation strategy described in 

Section 4.1. The granulation procedure maps the rules into a symbolic space, where we can easily 

compare rules based on their high-level linguistic interpretations. This is useful both because it makes the 

comparison of fuzzy rules simpler, and because variations in training data, which may cause rules to shift, 

are effectively removed through this process, revealing the relevant structure. 

The goal of this research is to assess the rule stability of a system. Consider an environment in which we 

have some dataset D, which is split into a number of equally sized subsets, D1 … Dp. Each subset is used 

as the training data for a FRBS using identical input parameters. This results in a set of p FRBS’s. This 

collection, or family, of fuzzy models can then be granularized using the procedure in Section 4.1 and 

analyzed en mass. 

Each of the following three sub sections describes one of three stability metrics: multiplicity, 

generalization, and conflict. 

4.2.1 Multiplicity 

The goal of the multiplicity metric is to evaluate the degree to which rules repeat within a family of fuzzy 

models. If a given rule is consistently generated, it is likely that it expresses meaningful system 

knowledge and is hence of high quality. Given a collection of p FRBS’s, each containing c rules, an 
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analyzed family of fuzzy models contains a total of p*c fuzzy rules. By searching through this collection 

for the number of times a specific rule appears, we determine a multiplicity score for that rule. The 

possible range of a multiplicity score is therefore 1 (the rule occurs a single time) to p (the rule occurs in 

every model). A higher multiplicity score indicates a more stable (readily producible) rule. Formally, we 

define multiplicity as the following; given the set of all rules, S, the multiplicity score for some rule i is 

given by: 

𝑀𝑖 = |𝑩𝒊|  

𝑩𝒊 =  {𝒙 | ‖𝒙 − 𝒊‖ = 0, ∀𝒙 ∈ 𝑺, 𝑖 ∈ 𝑺} 

(4.3) 

For i = 1, 2, … r where r is the cardinality of S. In the computation of (4.3), | · | denotes the length of a 

set, and || · || denotes the distance between two rules, given in (4.2). The result of this computation, Bi, is 

the set of all matching rules, and the multiplicity of the ith rule is given by the length of this set. 

Defining multiplicity on a per rule basis is a useful; however, to assess the quality of modelling more 

generally, we need to define a more generalized measure. To achieve this, we define a parameter 

independent variation, Θ. This metric is defined by dividing the system’s total multiplicity score (M) by 

the maximum possible multiplicity score for that system. 

First, we calculate the total multiplicity score for a system as: 

𝑀 = ∑(𝑀𝑖  − 1)

𝑟

𝑖=1

 

(4.4) 

Where Mi is the multiplicity for the ith rule, computed over all r unique rules. For the purposes of these 

calculations we consider multiplicity to be calculated once for each unique granularized rule in the family 

of FRBSs. To assess the desired parameter independent variant, we then normalize M by the maximum 

possible score: 

𝛩 =
M

c * (p - 1)
 

(4.5) 

We subtract one from each rule’s multiplicity such that rules which only occur once do not contribute to 

the generalized multiplicity score. This has the added benefit of providing scoring priority to singles rules 
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occurring many times over many rules occurring a few times (e.g. A rule with some score q should be 

weighed higher than two rules with scores q/2 in combination). In the normalization component 

(denominator) of this equation, the summed score is divided by the maximum possible multiplicity score 

given the previous stipulations such that a value of 𝛩 = 0  results from no repeating rules, and a value of 

𝛩 = 1 results from identical rule sets in every model. 

4.2.2 Generalization 

Generalization is a complementary metric to multiplicity which aims to quantify the degree of similar but 

not identical rules in a family of FRBSs. In this instance, we are interested in similarities in the condition 

part of the rules, and we require matching consequents for two rules to generalize. Two rules are defined 

as generalizable if their rectilinear distance is smaller than some threshold e: 

𝜌(𝑰, 𝑰′)  =  |𝑖 − 𝑖′| + |𝑗 − 𝑗′| + |𝑘 − 𝑘′|+. . . +|𝑙 − 𝑙′| 

(4.6) 

For two rules I and I’ defined as: 

𝑰: (𝑖, 𝑗, 𝑘, . . . 𝑙)  →  𝑧 𝑎𝑛𝑑 𝑰′: (𝑖′, 𝑗′, 𝑘′, . . . 𝑙′)  →  𝑧 

(4.7) 

Note that the distance evaluated in these calculations excludes rule consequents, which must be equal for 

a potential generalization. From these definitions, we state that two rules generalize each other if ρ(I, I’) ≤ 

e, where e is the generalization threshold. In the simplest case, we take a threshold of e = 1, meaning that 

we allow a distance of one granular input value between the two rules. Considering the granular format, if 

integer granulations are not consecutive, then the distance between two rules is greater than 1. For e = 1, 

a generalized rule takes the following form: 

(𝑖 𝑜𝑟 𝑖′, 𝑗, 𝑘, . . . 𝑙)  ⟶  𝑧 

(4.8) 

Where i and i’ differ at most by e.  

Generalized rules are of higher quality, as they convey a greater amount of system knowledge – the single 

rule applies to a larger amount of the input domain without change in the predicted value. 
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To compute a generalization score for a family of FRBS’s, we consider the total number of generalized 

rule pairs. The previously defined multiplicity measure needs to be considered in this calculation, as 

repeating rules form generalized pairs in combination. Consider the visualization shown in Figure 4.3. In 

this graph, each rule is represented by a circular node, with multiplicity values given as the internal node 

label. Rules connected by an edge generalize one another (e = 1), with the generalization score indicated 

by the edge value. Visually, the generalization score of this family of fuzzy rules is given by the sum of 

all edge weights. This graphical format is a useful tool for visualizing the degree of multiplicity and 

generalization, as well as visualizing how generalized pairs relate to one another in the granularized input 

space. 

As with multiplicity, we define a parameter independent score for generalization, K. Recall from (4.3) the 

set S: 

K=
|G|

c*p
 

G = {(x, y) | ρ(x, y) = 1,‖ zx- zy‖ = 0, ∀x ∈ S, ∀y ∈ S} 

(4.9) 

Where zx and zy are the consequents of rules x and y respectively, | · | is a length operator, || · || is a 

distance function, and G is a set of rule pairs, notated as (x, y), denoting two rules, x and y. The function 

ρ(x, y) is the distance measure from (4.6). 

Figure 4.3: Generalization visualization as connected rules. Nodes represent individual rules, with the contained 

values being multiplicity. Edge values indicate generalization 
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4.2.3 Conflict 

The last of our stability metrics measures the degree of conflict or disagreement within a family of fuzzy 

rules. We define two rules to conflict with one another if they have identical conditions, but different 

consequents. Unlike multiplicity and generalization, conflict is a generally undesirable feature of fuzzy 

rules, as it indicates inconsistency and ambiguity regarding the behavior of the system. Using a similar 

format to (4.7), we defined two conflicting rules, I and I’ as: 

I = (a,b,c…) → z and I'= (a,b,c…) → z' 

(4.10) 

Where I and I’ are in conflict if z ≠ z’. Conflict leads to lower quality rules, as the response of the system 

is either less specific or contradictory. From the definition given in (4.10), we recognize that conflict 

occurs to some degree, depending on the absolute difference between z and z’. The granular values of z 

and z’ may be similar, only differing by a small amount (e.g. 5 and 6 differing by 1), or the difference 

may be large (e.g. 2 and 10, differing by 8). While any degree of conflict indicates that the rules are of 

lower quality, it is important to recognize that the degree of conflict has important implications. A small 

degree of conflict is less concerning than larger discrepancies. With these considerations, we can 

formalize a degree of conflict between two rules: 

δ(I, I')=|z - z'| 

(4.11) 

Where we consider conflict only between rules with identical conditions. 

Again, we establish an overall measure of conflict, as well as a parameter independent measure for use in 

comparative experiments. We define Z as the sum of conflict in a system, normalized by the parameters c 

and p: 

Z = 
∑ δ(Fi)

r
i=1

p*c
 

F = {(x, y) | ρ(x, y) = 0, | zx – zy| > 0 ,∀x ∈ S, ∀y ∈ S } 

(4.12) 

Where F forms set of rule pairs of length r, notated as (x, y), denoting two rules, x and y, which are in 

conflict. 
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4.3 CASE STUDIES 

This section provides a set of experimental studies demonstrating how the proposed stability metrics can 

be applied to assess the quality of extracted fuzzy rules. In addition to experiments on conflict, 

generalization, and multiplicity, we also provide further analysis of the selected datasets to aid in 

experimental parameterizations. 

4.3.1 Evaluation of the number of desired clusters 

In this section, we perform experiments to obtain appropriate c values for later use. This is done through a 

combination of graphical analysis and cluster validity indices. In the full study [101], these experiments 

are performed using a larger number of datasets, but for the sake of brevity, we only include a sample in 

this dissertation. 

First, we graph the performance index (Q) and output error (E) versus c, the formulations for which are 

given in (3.1) and (3.20) respectively. In this dissertation, we examine the AutoMPG and Abalone 

datasets, both available from the UCI machine learning repository [196]. 

Figure 4.4 plots the performance index vs c for the two data sets under consideration. What we are 

looking for in these graphs is a clear pivot point, where the performance index ceases to decrease rapidly 

and starts to level out. In the AutoMPG plot, this point is quite visible at around 3-5 rules. The abalone 

graph is less obvious. We may postulate that a pivot exists at around 8 rules, or possibly that the leveling 

off occurs at 2 rules and the whole of the visible graph is the flatter part. 
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Figure 4.4: Performance index Q versus the number of rules c. Solid line refers to training data, dotted line concern 

test data 
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The equivalent curves for output errors are shown in Figure 4.5. In these cases, the relationships between 

performance and the number of rules is less monotonically linear, so the choice is less obvious for both 

datasets. Abalone appears to drop somewhat dramatically at around 7 rules before clearly leveling off, 

and AutoMPG is perhaps best suited to 5 or 6 rules, although this data is unconvincing.  

Another strategy for selecting c values are fuzzy validity indices, discussed in Section 3.4.2.5. For these 

experiments, we compute the partition coefficient (Vpc), partition entropy (Vpe), and the Xie-Beni index 

(Vxb). 

Using the cluster validity indices and graphic approaches in combination we select a set of feasible c 

values for each dataset for use in upcoming experiments, given in Table 4.1. 

Table 4.1 Chosen c values from the analysis of performance index, error, and fuzzy cluster validity indices 

Data set c choices 

Method AutoMPG Abalone California House Ailerons Pole 

Q Graph 3, 5 2, 8, 12 4, 7, 15 4, 6 3, 4 n/a 

E Graph 6 8 7, 10 2 n/a 3, 11 

Vpc 2 2 2 2 2 2 

Vpe 2 2 2 2 2 2 

Vxb 3, 5 13, 15 5, 11 2 3 2 

Other 10, 15 n/a n/a 10 10 15 

Final Choices 2, 3, 5, 6, 10, 15 2, 8, 12, 15 2, 4, 7, 10, 15 2, 4, 6, 10 2, 3, 4, 10 3, 11, 15 
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Figure 4.5: Output error E versus the number of rules c. Solid line is train data, dotted line is test data 
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4.3.2 Case study for Stability Metrics 

In this section, we discuss in detail the assessment and analysis of the proposed stability metrics. This 

section provides a comprehensive outline of the experimental processes used in later studies, and also 

serves to clearly demonstrate what is being quantified by each metric. 

For this case study, we consider the AutoMPG dataset once again. The presented results use the following 

parameterizations in combination: c = 4, 10 and p = 2, 8. These values are selected such that some 

interesting cases are exposed (small and large values for each parameter).  

Experiments assessing multiplicity are presented in Figure 4.6. On the left, repeating rules are given, with 

the value in brackets indicating their multiplicity (number of times repeated). This data translates directly 

into the histograms shown on the right. In histogram format, axes are omitted for compactness, and 

because exact values are not what concern us most. Note that only rules with multiplicity > 1 are reported, 

so in the case of c = 10 and p = 8, few cases are shown as there are only a small number of repeating 

rules. The purpose of this graphic is to visually demonstrate the multiplicity in a system. In all cases 

where this histogram format is given, the y-axis is scaled to the maximum possible value for each rule to 

have repeated, p. We use these histograms to quickly gain an overview of the multiplicity in a system, 

looking for repeating rules and their relative frequencies. 

In Section 4.2.1, a system wide and parameter independent variation of multiplicity is defined, which 

aims to provide a quantitative assessment of the concept. These values, M and 𝜃, are presented for this 

case study in Table 4.2. 

 

Figure 4.6: AutoMPG multiplicity, recurring rules and histograms for 4 parameterizations 
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Table 4.2: Multiplicity and Θ values for 4 parameterizations 

 
c = 4, p = 2 c = 4, p = 8 

M 1 16 

Θ 0.25 0.57 
 

c = 10, p = 2 c = 10, p = 8 

M 2 3 

Θ 0.20 0.04 

  

Recall that higher values of multiplicity indicate a more stable rule base, as we can assert that the rules 

formed are more readily reproducible. In the example given, we identify the case of c = 4 and p = 8 to 

have produced the most stable rules, as indicated by the highest value of theta. 

In Section 4.2.2, the definition of a generalization is given as the distance between two rules being less 

than some threshold. While this is intuitive to understand as a relationship between two rules, the way in 

which multiple rules may interact through generalizations, and the way in which generalization and 

multiplicity are related, may be less intuitively clear. To aid in the understanding of this concept, we 

present generalization graphs, which show how rules are connected within a family of FRBSs. 

Figure 4.7 provides the generalization graphs for the four case study parameterizations, once again with 

respect to the AutoMPG dataset. In these graphs, a node represents a rule in the family of FRBSs, and 

edges indicate generalization between two rules. The value given inside a node indicates the multiplicity 

of that rule, and the value of the edge indicates the generalization value between connected nodes. 

This graphical format provides additional information beyond scalar values, showing how the rules in a 

system relate to one another. We can see that, for certain parameterizations, the linkage amongst the rules 

is substantial, showing that although rules may not always be identical (multiplicity), very similar rules 

are regularly produced. Recognize that in the case of (a) and (c), the number of partitions is two, so the 

largest multiplicity (and likely generalization) is also two, and similarly for (b) and (d), but with p = 8. 

We identify that in many cases (a, b, c), rules form interconnected (generalized) clusters of p rules (visible 

for two cases in (a), two cases in (c) and two cases in (b) with one cluster having 7 connected rules). This 

is an indicator of relatively stable system knowledge as, even though the rules differ, they are similar 

enough to form generalized clusters. This type of insight is enabled through this graphical format and 

would not be possible given only numerical data. 
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Table 4.3: Generalization and K scores for 4 parameterizations 

 
c = 4, p = 2 c = 4, p = 8 

|G| 2 20 

K 0.25 0.63 
 

c = 10, p = 2 c = 10, p = 8 

|G| 2 5 

K 0.10 0.06 

 

Figure 4.7: Generalization graphs: (a) c = 4, p = 2 (b) c = 4, p = 8 (c) c = 10, p = 2 (d) c = 10, p = 8.  For clarity of 

visualization, rules which are not generalized have been excluded 
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In addition to the generalization graph, we also compute the generalization scores for the systems; 

specifically, the overall score G (graphically in Figure 4.7 as the sum of all edge weights) and the 

parameter independent variant K, given in Table 4.3. Generalization scores are tricky to analyze on their 

own, as they are so strongly linked with multiplicity. Generally, we would say that a higher degree is 

better; however, more generalized rules is not desirable at the cost of repeating rules. 

The final measure of fuzzy rule stability is conflict, defined in Section 4.2.3. 

Figure 4.8 shows the single parameterization from the four case studies in which conflict occurred (in the 

other three cases there were no conflicting rules). In this figure, conflict is shown through ambiguity in 

the consequent parts of the fuzzy rules. Recalling that conflict is computed to a degree, we identify that 

most conflicts in this case only occur to a degree of 1, with a single case where the degree is 2. As 

discussed in Section 4.2.3, small degrees of conflict can be understood as a generalization in the 

consequent of the fuzzy rules. While we observe some rule instability, these small degrees of conflict 

indicate slightly less specific system knowledge, as opposed to horrifically contradictory rules. 

The total system conflict is then calculated, similarly to multiplicity and generalization, with a sum of 

conflict and the parameter independent variant given in Table 4.4. 

Table 4.4: Conflict and Z scores for 4 parameterizations 

 
c = 4, p = 2 c = 4, p = 8 

Ʃ(δ(F)) 0 0 

Z 0.00 0.00 
 

c = 10, p = 2 c = 10, p = 8 

Ʃ(δ(F)) 0 6 

Z 0.00 0.075 

 

Figure 4.8: Conflicting rules from 4 parameterizations 
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As already mentioned, the conflict for 3 of the 4 cases was reported as zero, and we can see that in the 

case with non-zero conflict the resulting Z is very small. 

4.3.3 Quantitative comparison of granular assignments 

Our stability metrics are reliant on the integer-based granulation format defined in Section 4.1; however, 

to this point, we have not assessed the validity of this abstraction. The following set of experiments 

provides justification for the use of this methodology as a legitimate rule comparison methodology by 

examining the actual similarity of fuzzy sets which are considered equivalent in the granular format. 

The presented data is calculated by identifying the set of numeric values (cluster prototypes, rule outputs) 

associated with a given integer label for each feature and calculating the mean and standard deviation of 

each of these sets. The mean and spread are normalized to the unit interval to eliminate questions of scale 

within the dataset and to simplify visualization. 

Figure 4.9 visualizes the results of this analysis for the AutoMPG dataset using c = 5 and p = 8. The x-

axis categorically lists each feature in the problem space, and each series represents the mean values (with 

spread shown as error bars) for integer labels one through five, in increasing order bottom to top. This 

plot demonstrates that, in the vast majority of cases, we are justified in rule comparison using our integer 

format. This is demonstrated by the clear distinction between the mean values of each label and the 

minimal overlap between their deviations. A more thorough study, and further analysis and discussion, is 

provided in the full article [101], which applies this analysis to additional datasets. This type of 

experiment allows us to confidently proceed with our granular abstraction, having experimentally 

justified rule comparisons in this format. 
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Figure 4.9: Granule assignment similarity for the AutoMPG dataset 
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4.4 STABILITY EXPERIMENTS 

In this section, we provide a set of multiplicity histograms and a tabulated set of results for the parameter 

independent variations of each stability metric, given for a handful of real-world datasets. The full text of 

this study presents experiments for a more extensive number of datasets; however, for the purposes of this 

document we provide a reduced set considering the following datasets:  

• AutoMPG 

• California 

• Pole 

These datasets are all available from the UCI machine learning repository and provide a representative 

sample of the types of results presented in the full study. 

Table 4.5: Θ, Z, and K metrics for AutoMPG dataset 

c p Θ K Z 

2 2 1.00 0.00 0.00 

2 8 0.86 0.88 0.00 

2 14 0.92 0.93 0.00 

3 2 0.33 0.00 0.00 

3 8 0.71 1.00 0.00 

3 14 0.77 2.48 0.00 

5 2 0.40 0.20 0.00 

5 8 0.43 0.83 0.05 
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Figure 4.10: Multiplicity histogram for AutoMPG dataset 
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5 14 0.45 1.21 0.06 

6 2 0.33 0.00 0.00 

6 8 0.33 0.56 0.04 

6 14 0.24 0.95 0.07 

10 2 0.00 0.20 0.00 

10 8 0.06 0.09 0.00 

10 14 0.02 0.11 0.05 

15 2 0.00 0.00 0.00 

15 8 0.01 0.00 0.03 

15 14 0.01 0.03 0.00 

 

Figure 4.10 and Table 4.5 present the first set of experimental results using the AutoMPG dataset. These 

experiments, as with upcoming experiments, are performed using the choices of c determined 

experimentally in Table 4.1 and p = 2, 8, 14 (representing a small, moderate, and large choice of p). In all 

experiments, only an interesting subset of multiplicity histograms are presented for brevity. In this case, 

Figure 4.10 shows that, in almost all experiments, the AutoMPG dataset produces one rule which is very 

common amongst partitions, indicating a very stable piece of system knowledge. This is the primary 

takeaway from the presented histograms, as otherwise we simply identify a significant number of rules 

which repeat with moderate frequency. 

Moving our attention to Table 4.5, we can make clearer sense of the multiplicity histograms through 

combined knowledge of the overall system multiplicity as well as the degree of generalization and 

conflict. An initial point of interest is that when Θ = 1, K = 0. This is by definition, as a perfect 

multiplicity score results in no generalizations; however, it is of interest to our analysis as this is the only 

case where high multiplicity in combination with low generalization should be considered a stable result. 

A further observation is concerned with cases where the number of partitions is low, e.g. p = 2. In these 

cases, the values of certain metrics are inconsistent with those reported using higher p values. This is 

likely a classic example of trying to generalize from a small sample size, and this is a limitation we must 

be cognizant of in our analysis.  

Concentrating on individual scores, we note that, as c increases, the reported values of Θ and K decrease 

rapidly. This is generally an indication of decreasing rule stability, which is further supported by some 

cases of conflict beginning to arise. Overall, for values of c in the range of 2-6 the metrics indicate that 
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rule formation is a stable process, which implies that the knowledge extracted from the system is 

representative. 

Table 4.6: Θ, Z, and K metrics for California dataset 

c p Θ K Z 

2 2 1.00 0.00 0.00 

2 8 1.00 0.00 0.00 

2 14 0.85 0.93 0.00 

4 2 0.50 0.25 0.00 

4 8 0.46 0.59 0.25 

4 14 0.52 0.79 0.29 

7 2 0.29 0.07 0.00 

7 8 0.12 0.09 0.41 

7 14 0.08 0.13 0.59 

10 2 0.20 0.00 0.00 

10 8 0.03 0.03 0.28 

10 14 0.03 0.06 0.14 

15 2 0.00 0.03 0.00 

15 8 0.01 0.01 0.08 

15 14 0.01 0.02 0.00 

 

The California data set, results given in Figure 4.11 and Table 4.6, provides an additional example of 

stable rule formation as identified by our analysis. Many of the same patterns are visible for this dataset as 

for the AutoMPG dataset; however, we note that higher conflict is visible much more quickly in this 

instance. Once again, the apparent rule stability decreases as the number of rules per partition increases, at 

a similar rate to those seen using AutoMPG. This dataset provides a good example to highlight why we 

must assess multiplicity and generalization as intertwined metrics, demonstrated for c = 4. While the 
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Figure 4.11: Multiplicity histogram for California dataset 
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experiments record multiplicity scores of only around 0.5, the generalization scores are high, and we 

should interpret the stability of these rules more positively as a result of this combination.  

Table 4.6 also provides an opportunity to discuss the nature of conflict in rule stability. In the case study 

in Section 4.3.2, we presented some example conflict for a system, and we noted that conflict occurs to a 

degree. This means that, in cases where the degree of conflict is small, we may be seeing conflict 

manifested as rule generalization in the output space of the problem. This type of conflict is still 

undesirable, as it implies weaker predictive power of the resulting model; however, it is important to 

understand that small degrees of conflict should not cause undue alarm in stability analysis. 

Table 4.7: Θ, Z, and K metrics for Pole dataset 

c p Θ K Z 

3 2 0.33 0.00 0.33 

3 8 0.90 0.00 0.08 

3 14 0.87 0.00 0.24 

11 2 0.09 0.00 1.82 

11 8 0.27 0.00 7.23 

11 14 0.48 0.00 7.71 

15 2 0.00 0.00 2.07 

15 8 0.30 0.00 8.57 

15 14 0.35 0.02 14.39 

 

0

5

10

1 2 3 4 5

c=3, p=8

0

10

20

1 2 3 4 5 6

c=3, p=14

0

5

1 3 5 7 9 11 13 15 17

c=11, p=8

0

5

10

1 8 15 22 29 36 43

c=11, p=14

0

5

1 6 11 16 21 26

c=15, p=8

0

5

10

1 9 17 25 33 41 49

c=15, p=14

Figure 4.12: Multiplicity histogram for Pole dataset 
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Our final in-depth analysis considers the Pole dataset, results given in Table 4.7 and Figure 4.12. This 

result is of an entirely different nature to the two previously analyzed experiments and demonstrates the 

behavior of the proposed stability metrics when the modelling process does not go well. To begin, notice 

that the multiplicity histograms in Figure 4.12 contain cases where there are many rules that repeat more 

than once, but with very few rules occur a large number of times, with the phenomenon being more 

pronounced as c increases. Overall, these histograms appear chaotic and do not show trends towards 

stable rules. Next, we examine Table 4.7. Notice that generalizations scores are very small across the 

board. This, when coupled with higher multiplicity, is a red flag, indicating that even those rules 

generated repeatedly are likely not describing meaningful system knowledge. Furthermore, a simple 

glance at the conflict column tells us that a huge number of conflicting rules are being generated and that, 

at least in some cases, the degree of conflict is large. This is an additional indication of unstable rule 

formation, and the consistency of this type of result across all parameterizations speaks strongly to the 

instability of the system. 

4.5 FURTHER ANALYSIS 

In this section, we provide focused analysis on each of the proposed stability metrics and the parameter p, 

discussing in general terms how these metrics can be used, what we have observed experimentally, and 

what further steps for their application and improvement may be available. 

4.5.1 The parameter p 

The effect of the parameter p was not explicitly examined in this study. In our experimentation, we 

deliberately picked a small, moderate, and large value of p in our experiments, to cover our options 

without making the experimental results too long. From our observations, we have identified two key 

factors in the choice of p. 1) If p is too small then it is difficult to draw meaningful conclusions from our 

stability metrics, as the sample size is simply too small, and the results may not be representative. 2) If p 

is too large we may segment the dataset into partitions containing too few instances to form high quality 

models, invalidating any stability analysis performed. These observations are at odds with one another, 

meaning that the choice of p will always be dataset dependent, as a smaller dataset will require more care 

with respect to point 2, but a larger data set may not have any such concerns. As such, our only 

conclusion can be that the choice of p should be made intelligently by the researcher, finding a reasonable 

balance between the size of the dataset and the desire for more robust stability analysis. 
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4.5.2 Multiplicity 

For evaluating the stability of a FRBS, Θ indicates how consistently similar, or nearly identical, rules are 

produced. Multiplicity provides a straightforward quantification of how often the same rules are produced 

from data, with consistently extracted knowledge implying higher quality rules. As shown in our 

experiments, the parameter p can have a significant impact on the ability to meaningfully assess 

multiplicity, as if it is chosen to be small the total number of rules under analysis is also small. Generally, 

we consider a higher value of Θ to indicate more stable rules, and this metric is the most straightforward 

in its analysis. 

4.5.3 Generalization 

The value of K is closely linked to that of Θ. This is intuitive and desirable, as K is designed to capture a 

degree of similarly amongst non-identical rules. The relationship between multiplicity and generalization 

is clearly illustrated in the generalization graphs, and these two metrics in combination provide the overall 

indicator of stability. For the most part, ignoring edge cases, we expect Θ and K to vary together, with 

higher Θ scores being accompanied by higher K scores. The absence of one of these scores in the 

presence of the other is a red flag indicating that something is amiss, as demonstrated experimentally by 

the Pole dataset. On its own, generalization does not provide definitive stability knowledge, and its 

analytical power comes in combination with multiplicity. 

4.5.4 Conflict 

A system exhibiting a significant degree of conflict is intuitively understood to be one of low stability, as 

conflict indicates uncertainty is system behavior, manifested through inconsistent predictions for certain 

inputs. This makes conflict a useful measure of instability, and it can be used independently to show the 

likelihood of poor predictive quality (implied by inconsistent predictions), or of inconsistencies in the 

modelling process resulting in vastly different models from similar data. Conflict is also useful in 

combination with the other two metrics, as it can help confirm conclusions drawn from multiplicity and 

generalization. We note that small amounts of conflict are acceptable, especially when considering large 

systems. A small degree of conflict is a form of generalization in the output parts of the rules, and while 

this decreases rule specificity, these slightly lower quality rules are not intrinsically unstable, and some 

(small) degree of conflict should be expected when analyzing large sets of fuzzy rules. 
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4.6 CONCLUDING REMARKS 

This chapter proposed three metrics for assessing the stability of fuzzy rules extracted from data. The goal 

of these metrics is to provide an indication of rule quality through the lens of rule stability, assessed via 

their reproducibility from a subset of data. Our stability metrics can be applied in combination to achieve 

a comprehensive view of model quality, with each metric assessing a different aspect of rule stability. 

Multiplicity and generalization quantify the degree of repeating rules; multiplicity through exact rule 

matching, and generalizations through the identification of similar rules. These metrics are closely linked, 

and we wish to maximize their assessed values. Providing a contrasting view, conflict quantifies the 

undesirable aspect of disagreeing or inconsistent rules, and we seek to minimize the degree of conflict in 

order to maximize rule quality. 

The stability metrics in this study are computed through the division of data into some number of subsets, 

such that the rules produced from each subset can by analyzed en mass. To simplify the task of rule 

comparison we have defined a simple granulation method through which rules are transformed from their 

original form into a higher-level granular format. This allows us to clearly define the formulations of our 

stability metrics and abstract away from any slight rule variances caused by fluctuating data. We propose 

this rule granulation as a form of linguistic interpretation, moving rules away from their numeric details 

and into a higher-level knowledge space. In many ways, rule comparison at this level of abstraction 

improves the quality of our analysis, as we compare rules in a human-centric linguistic space, which is 

more compatible with the concept of stable system knowledge. 

We have applied the proposed metrics to assess rule stability for a selection of publicly available data sets 

and have shown experimentally how our metrics can be used in combination to gain a complete 

understanding of rule stability for a given algorithm and dataset. 
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5 GRANULAR FUZZY RULE-BASED MODELS 

Information granulation is a form of knowledge representation which attempts to the improve human 

readability and interpretability of complex data structures. In this chapter, we examine the use of 

information granules in the consequent parts of fuzzy rules, replacing the functional outputs of a standard 

TS-fuzzy model with information granules. From a human readability perspective, a polynomial rule 

consequent is a poor representation of the system knowledge, as it is difficult for a casual reader to grasp 

the overall behavior of the system at a glance. While we can appreciate that, in the context of a fuzzy rule, 

a functional consequent represents a complexly shaped fuzzy set, the limited information regarding the 

shape and size of this structure makes interpretation challenging. Information granulation can help resolve 

such issues by providing more information to the reader, while still maintaining a concise and accurate 

format. 

In this chapter, we employ hierarchical clustering as an alternative to FCM clustering for the purposes of 

rule extraction. This methodology is not studied in the existing literature and provides an additional aspect 

of novelty to our study. The goals of the research presented in this chapter are therefore twofold. First, to 

explore the use of hierarchical clustering as a vehicle for fuzzy rule extraction from data, and secondly, to 

improve model interpretability by applying interval-base information granules to the consequent parts of 

fuzzy rules. As an additional related point of interest, we also assess the performance of hierarchical 

clustering as a rule generation procedure in comparison to FCM cluster and discuss strategies for the 

evaluation of granular fuzzy models. 

This chapter contains significant novelty with respect to two primary topics. First, as mentioned, the use 

of hierarchical clustering for fuzzy rule extraction has not been studied in the existing literature, and our 

use of hierarchical clustering for this purpose is therefore novel. Further, the methodology for extracting 

fuzzy rules from data using hierarchical clustering contains certain additional aspects of novel work 

which arise from the use of this algorithm. Second, the application of interval-based information granules 

to the consequents of fuzzy rules has not been well-studied, and the extraction of these structures from 

data, as well as the successful evaluation of this form of fuzzy rule-based model, provides substantial 

further novelty.  

We recognize the combination of information granules and FRBSs to be a logical progression in human-

centric computing, given that a major advantage of fuzzy rule-based systems is their interpretability.  
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5.1  FUZZY RULE GENERATION WITH HIERARCHICAL CLUSTERING 

This section outlines a procedure for generating a FRBS from data using hierarchical clustering. This 

method is based on the computation of cluster prototypes, similar to those obtained from FCM, from a 

crisp data partition. The initial crisp data partition is formed using a cutoff clustering strategy from the 

hierarchical clustering dendrogram. For details on hierarchical clustering and cluster formation through a 

cutoff strategy refer to Section 3.2. The crisp partition is subsequently fuzzified using a standard fuzzy 

membership function and cluster prototypes are calculated from the partitions. Prototypes are computed 

as the mean position of each crisp partition: 

vi = 
1

Ni

∑ xj

Ni

j=1

  

(5.1) 

Where the sum is taken over certain data points j = 1, 2, …, Ni, where the considered data points belong to 

the crisp partition i, i = 1, 2, … c, for a c cluster partition. Once we have computed the prototype 

locations, we fuzzify the partition using a standard fuzzy membership function: 

Ai(x)= 
1

∑ (
‖x-vi‖

‖x-vj‖
)

1/(2-m)

c
j=1

 

(5.2) 

Where Ai(x) is the membership of point x to cluster i, m is a fuzzification coefficient, m > 1, and || . || is a 

distance measure. 

At this juncture, we have computed identical data structures to those resulting from FCM clustering; 

notably, a set of cluster prototypes and a fuzzy partition matrix. From here, we follow a standard fuzzy 

rule generation procedure, assigning one rule condition per cluster prototype, resulting in Mamdani style 

fuzzy rules. 

The prototypes produced by FCM and hierarchical clustering are different. As they are the essential 

structural components of the rule-based models, it is beneficial to quantify their similarity (proximity), to 

assess how the use of hierarchical clustering impacts rule locations. Consider v1, v2, … vc to be the 

prototypes generated by FCM. The prototypes obtained using some hierarchical linkage policy are 

denoted f1, f2,..,fc. We compute weighted Euclidean distances (the same as used in clustering) between vi 

and fj, say rij, and organize the results as a matrix, R = [rij]. To assess the similarity among the prototypes, 
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we determine the minimum entry in each row of R, ri = min j=1,2,.., c rij  and sum up these partial results, 

attaining an overall cluster similarity measure, denoted r: 

𝑟 = ∑ 𝑟𝑖

𝑐

𝑖=1

 

(5.3) 

This index is an indicator of cluster similarity between any two clustering results. In this chapter, we use 

this measure to compare rules generated using FCM and hierarchical clustering. 

5.2 GRANULARIZATION OF THE FUZZY MODEL 

The use of hierarchical clustering in this chapter is only the secondary focus of the proposed work. The 

primary concern of this study is the topic of information granulation; specifically, the granulation of the 

consequent part of the fuzzy rules. In the following section, we define a strategy for the extension of 

Mamdani style fuzzy rules into a partially granular format. The motivation for the granularization of 

fuzzy rules is rooted in a desire to make fuzzy models more realistic in how they portray structures 

representing real-world data. In traditional Mamdani rules, rule consequents are represented by single 

values (constant functions). While the researcher is aware that there are underlying fuzzy sets beneath 

these simplistic representations, it is difficult, if not impossible, to accurately interpret many aspects of 

the underlying fuzzy structure, e.g. Support, core, etc. By forming an information granule in the 

consequent part of a rule, we provide an additional dimension to the knowledge presented by the model 

through a simple and easy to understand modification. 

Consider a granular model whose output is given by:  

𝑌 =  ∑ 𝐴𝑖(𝒙)⨂𝐵𝑖

𝑐

𝑖=1

 

(5.4) 

Where Bi = [bi
–, bi

+] is an interval built around the traditional numeric consequent bi, Y is an interval–

valued output prediction, and ⨂ is an interval multiplication operator. The calculation of a single 

predicted output is given by a predicted interval:  

[𝑦−, 𝑦+] = ∑ 𝐴𝑖(𝒙)[𝑏𝑖
−, 𝑏𝑖

+]

𝑐

𝑖=1
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(5.5) 

Taken over each rule, i = 1, 2, …c. 

The system described by these equations, (5.4) and (5.5), represents the desired granular format. Next, we 

define a methodology for the computation of these intervals. When forming information granules, we are 

concerned with the satisfaction of the two conflicting criteria of justifiable granularity; that is, it is 

desirable for the granule both to encapsulate as much of the data it represents as possible, while remaining 

as specific as possible. 

Consider the total sum of fuzzy memberships belonging to a single fuzzy rule:  

𝑢𝑖,𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑢𝑖𝑘

𝑁

𝑘=1

 

(5.6) 

Due the formulation for fuzzy memberships, many of the memberships to a given rule are likely to be 

very small, as a side effect of membership summation to one. Consequently, we do not want to capture 

every point with non-zero membership in the information granule. Rather, we only want to capture those 

data points which meaningfully belong to a given rule. To accomplish this, we apply some threshold, ρ ∈ 

[0,1] and we form an information granule defined as the smallest possible interval containing a total 

membership less than or equal to *ui_total. This granule (interval) simultaneously targets both aspects of 

justifiable granularity. By making the interval as small as possible, we target the maximization of granule 

specificity, and by including the bulk of the total membership (dependent on the choice of ), we justify 

the granule with as much relevant data as possible. Each interval is formed iteratively, by selecting in turn 

those data points with the highest membership to the relevant rule until the desired membership threshold 

is reached. Once the collection of relevant data is established, the interval is formed from the maximum 

and minimum output values in set, defined as [bi
–, bi

+]. This process is repeated for each fuzzy rule, 

resulting in a FRBS with interval valued consequents. 

5.3 EVALUATION OF GRANULAR FUZZY MODELS 

With a fully defined methodology for the extraction of a granular fuzzy rule-based model from data, we 

shift our attention to the evaluation of format. Traditional evaluation methods, such as RMSE, are 

incompatible with a granularized output; hence, new evaluation metrics are needed. In this section, we 

define two evaluation metrics encapsulating the two aspects of justifiable granularity, coverage and 
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specificity. These criteria will be used in combination to assess the quality of the computed granular fuzzy 

model. 

5.3.1 Coverage 

When considering what constitutes an accurate response from a granular fuzzy system, it is intuitively 

desirable that the target value should be contained within the predicted interval. To quantify this concept, 

we define a Boolean test for interval accuracy. For any given instance, we test if the predicted interval 

contains the target value, and compute coverage as the percentage of predicted intervals passing this test: 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
1

𝑁
∑ 𝜑𝑌𝑘(𝑦)

𝑁

𝑘=1

 

(5.7) 

Where 𝜑𝑌𝑘(𝑦) is a characteristic function indicating containment within the interval Yk. As this is a 

percentage calculation, coverage scores take values in the unit interval, [0,1], where 1 indicates that all 

predicted intervals contained their target values. At this juncture, we highlight that the coverage scores for 

a system varies with the parameter  As  increases, so too do the size of the resulting rule intervals, and 

consequently the predicted intervals. Obviously, the larger the predicted interval, the more likely that 

interval is to contain the predicted value. 

5.3.2 Specificity 

Arbitrarily high coverage is easily attainable by predicting arbitrarily large intervals; however, the 

usefulness of such a model is highly questionable as the resulting intervals (granules) are too vague to 

provide meaningful insight. For this reason, coverage alone is not a sufficient judge of model quality. To 

counteract this shortcoming, we propose a conflicting evaluation metric which encapsulates the concept 

of specificity. Specificity describes how specific a prediction is, which in the context of a granular model 

incorporates the degree of predictive certainty. Specificity is linked to the size of the predicted intervals; 

the smaller the interval, the higher it’s specificity. Specific intervals are desirable, as they describe system 

behavior with a greater degree of precision and help maintain the linguistic meaning of predicted 

granules. 

Consider the following definition for the specificity of an interval, Y:  

𝑠𝑝𝑒𝑐(𝑌) = 1 − exp ( −
𝑙𝑒𝑛𝑔𝑡ℎ(𝑌)

|𝑚𝑎𝑥 − 𝑚𝑖𝑛|
) 
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(5.8) 

In this equation, the length of a predicted interval is normalized by the cardinality of the input space, with 

min and max being the minimum and maximum values of the domain over which Y is defined. Applying 

this definition to the evaluation of a granular FRBS, we compute the average specificity of all predicted 

intervals: 

𝑠𝑝𝑒𝑐 =  
1

𝑁
∑ [1 − exp (−

𝑙𝑒𝑛𝑔𝑡ℎ(𝑌𝑘)

|𝑚𝑎𝑥 − 𝑚𝑖𝑛|
)]

𝑁

𝑘=1

 

(5.9) 

This formulation is proposed such that more specific intervals result in a higher specificity score. 

We have now defined two conflicting metrics for the evaluation of a granular fuzzy model, coverage and 

specificity. By using these conflicting metrics in combination, we have taken steps to avoid certain 

pitfalls of granular modelling, while providing a quantitative assessment of granular model quality. When 

assessing the quality of a granular model, it is desirable to maximize both metrics and, given their 

conflicting nature, to find the ideal balance between the two. 

5.4 EXPERIMENTAL STUDIES 

This section contains presents experimental studies using the granular fuzzy rule extraction methodology 

established previously in this chapter. We first examine the application of hierarchical clustering in detail 

and run some simple experiments to determine the best parameterization for this algorithm. Next, we 

assess the quality of fuzzy models generated by the proposed methodology using of the granular 

evaluation criteria defined in Section 5.3. 

5.4.1 Linkage Assessment 

In these initial experiments, we consider the AutoMPG dataset, available from the UCI machine learning 

repository, as a useful case study. The complete study [111] provides more comprehensive experiments, 

using a larger number of datasets to more convincingly assert our findings. 

Models are constructed and evaluated using training and testing data partitions, with the training part 

containing 70% of the full dataset and the testing part containing the remaining 30%. Each experiment is 

repeated 10 times, using unique data partitions, to enable statistical analysis. We consider the 

fuzzification coefficient, m, and the number of fuzzy rules in a model, c, to be essential parameters whose 



64 

 

values need to be assessed experimentally. When assessing the quality of a non-granular model, we 

consider RMSE to be the critical indicator of performance. 

First, let us examine in detail the process of hierarchical clustering. Consider the following set of 

dendrograms produced by the three linkage policies defined in Section 3.2, single linkage, average 

linkage, and complete linkage, shown in Figure 5.1. 

 

The dendrograms presented in Figure 5.1 demonstrate the significant impact the choice of linkage policy 

has on the resulting clusters. Notice specifically that single linkage is very susceptible to the effects of 

outlier data and is likely to form unbalanced clusters. Conversely, complete and average linkage form a 

more balanced cluster structure, more similar those formed by FCM. 

We quantify these differences by computing their closeness, r, defined in (5.3), to assess the relative 

similarity between hierarchical linkage policies and FCM. The r values for a set of sample parameters are 

given in Table 5.1 and shown graphically in Figure 5.2. 

Table 5.1: Closeness measure (r) for AutoMPG compared with FCM 

AutoMPG 

c m link r 

3 2 average 6.97 

3 2 single 18.51 

3 2 complete 5.60 

5 2 average 10.50 

Figure 5.1: Dendrograms for average, single, and complete linkage, horizontal bar indicates 

level of clustering for c=3 
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5 2 single 17.08 

5 2 complete 10.68 

8 2 average 6.75 

8 2 single 13.71 

8 2 complete 3.22 

 

These experiments provide insight into the structures formed by different linkage policies. As previously 

identified through dendrograms, the computation of r confirms our initial observations that average and 

complete linkage policies generate clusters more similar to FCM, and that single linkage produces 

significantly different structures. 

Different linkage policies resulting in different data structures is interesting, and we wish to explore how 

these differences impact the performance of the FRBS. It is not intrinsically detrimental that hierarchical 

clustering and FCM return different rules, and if the clustering results were identical there would be no 

value to the exploration of this topic. To assess the impact of hierarchical clustering on rule formation, we 

evaluate the predictive performance of FRBSs formed through different hierarchical linkage policies and 

compare their performance.  

 

0.00

5.00

10.00

15.00

20.00

3 5 8

r

# rules

Auto MPG closeness

Average Single Complete

Figure 5.2: Bar plots showing closeness results for all data sets. Each grouping contains results for 

linkage types, average, single and complete, respectively 
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Table 5.2: RMSE results for Auto MPG, various parameterization 

Auto MPG - RMSE ± std_dev 

c m Average linkage Single linkage Complete linkage FCM-based model 

3 1.1  6.30±1.41  6.99±1.36  4.72±0.47  4.55±0.36 

3 1.5  5.76±1.06  7.37±1.04  4.60±0.45  4.37±0.36 

3 2  5.64±0.91  7.55±0.85  4.71±0.43  4.30±0.34 

3 2.5  5.74±0.83  7.64±0.75  4.99±0.41  4.31±0.32 

3 3  5.89±0.77  7.69±0.72  5.30±0.40  4.35±0.31 

5 1.1  5.68±0.86  6.67±1.67  4.79±0.73  4.25±0.33 

5 1.5  5.50±0.74  6.59±1.57  4.70±0.66  4.14±0.31 

5 2  5.48±0.71  6.45±1.38  4.79±0.61  4.08±0.30 

5 2.5  5.59±0.71  6.41±1.25  5.02±0.57  4.07±0.28 

5 3  5.76±0.71  6.48±1.21  5.29±0.54  4.11±0.29 

10 1.1  5.30±0.83  6.61±1.45  5.00±0.48  4.11±0.27 

10 1.5  5.14±0.74  6.13±1.32  4.80±0.46  4.05±0.27 

10 2  5.01±0.66  5.71±0.93  4.69±0.45  4.06±0.29 

10 2.5  5.05±0.58  5.55±0.60  4.80±0.41  4.12±0.29 

10 3  5.21±0.53  5.59±0.49  5.03±0.37  4.16±0.29 

Analyzing the experimental results in Table 5.2 (graphically shown in Figure 5.3), we recognize that, in 

general, hierarchical clustering is unable to produce rule-based models that are of higher quality than 

those constructed using FCM. The differences are statistically significant (t-test completed for a 

confidence level p = 0.05) with the exception of the first two experiments reported in Table 5.2, namely c 
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Figure 5.3: Bar graphs for RMSE, stddev as error bars, x-label is m. Each grouping contains, from left to 

right, RMSE for three linkage types, average, single and complete as well as FCM 
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= 3 and ρ = 1.1 and 1.5, shown in italics. In these two specific cases, complete linkage demonstrates 

similar performance to FCM; however, average and single linkage are still easily outperformed. 

Figure 5.4: Specificity (y-axis) vs Coverage (x-axis), c = [3;5;8], m = [1.1;2.0;3.0], linkage = [single, 

average, complete], 𝜌 = 0, 0.1, 0.2; … 1.0 
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As the use of hierarchical clustering for fuzzy rule extraction is not a well-studied methodology, we 

should not blindly trust traditionally accepted values of the fuzzification coefficient without experimental 

justification. In [111], this aspect is thoroughly explored through a set of exploratory experiments, and in 

this dissertation, Figure 5.3 and Table 5.2 can be used to assess this parameter. These results reinforce our 

previous observations that complete linkage seems to perform best in the formation of fuzzy rules. With 

respect to the choice of m, these results, as well as more experimentation in [111], indicate that m does not 

have a clear impact on the performance of the model. As such, we do not commit to any single value and 

continue to experiment with a range of potential fuzzification coefficients.  

5.4.2 Coverage vs Specificity 

The experiments in Section 5.4.1 are performed using a non-granular FRBS, with the intent of exploring 

the effect of the fuzzification coefficient and linkage policy on the formation of fuzzy rules via 

hierarchical clustering. In this study, we are primarily concerned with the development of partially 

granular fuzzy rules, and in this section, we present experimental results focused on granular fuzzy 

models and their evaluation through coverage and specificity. 

In the proposed methodology, the size of the information granules (intervals) are controlled by an input 

parameter 𝜌. This parameter, by growing and shrinking the granules, has the apparent effect of controlling 

the tradeoff of justifiable granularity: coverage at the cost of specificity. As a result, the choice of 𝜌 is a 

critical parameter which deserves specific attention. We analyze this parameter by varying its value in the 

range [0,1], and comparing the resulting coverage and specificity scores. 

Figure 5.4 contains the curves resulting from these experiments, performed using 5 real world datasets 

from the UCI machine learning repository [196]. As expected, we observe that when 𝜌 = 0 specificity is 

maximized but coverage is zero; this is an obvious side effect of zero length intervals. At the other 

extreme, when 𝜌 = 1, we attain 100% coverage; however, specificity is extremely poor as the predicted 

intervals are arbitrarily large in order to fully contain the data. Examining the shape of each curve, we 

look to find those values of 𝜌 where the tradeoff between coverage and specificity is maximized. A 

pattern in these graphs is that only small values of 𝜌 are required to attain relatively high coverage, and 

that, as the size of the intervals grows, the payoff of increased coverage dwindles quickly. This is an 

encouraging observation, as it demonstrates that our models are able to achieve a high degree of coverage 

without requiring large (unspecific) granules. 

In Table 5.3, we compute the Area Under the Curve (AUC) for the above plots. AUC values are useful in 

determining which parameterizations perform best, as we want to maximize both coverage and 

specificity. Certain results are highlight in bold, indicating promising parameterizations. When analyzing 
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AUC, a higher value indicates better performance, as it is our goal to maximize both evaluation metrics, 

and a larger AUC quantifies this goal across the full range of ρ values. Once again, as in previous 

experiments, FCM generally outperforms hierarchical clustering, and of the linkage policies tested 

complete linkage performs best on average. 

Table 5.3: AUC values for coverage vs specificity. Higher values in bold, lower underlined. 

Parameters AUC 

c m Link Type AutoMPG Abalone Wine-Red Wine-White Concrete 

3 1.1 Average 0.792 0.766 0.715 0.723 0.727 

Single 0.781 0.763 0.719 0.723 0.723 

Complete 0.795 0.779 0.725 0.719 0.732 

FCM 0.796 0.754 0.707 0.726 0.729 

2 Average 0.803 0.762 0.715 0.738 0.727 

Single 0.758 0.768 0.715 0.738 0.724 

Complete 0.801 0.795 0.739 0.737 0.725 

FCM 0.810 0.805 0.742 0.748 0.729 

3 Average 0.786 0.749 0.715 0.730 0.715 

Single 0.745 0.758 0.721 0.729 0.715 

Complete 0.787 0.787 0.737 0.729 0.713 

FCM 0.791 0.804 0.729 0.734 0.708 

5 1.1 Average 0.797 0.780 0.724 0.729 0.732 

Single 0.786 0.780 0.718 0.732 0.724 

Complete 0.801 0.792 0.732 0.740 0.741 

FCM 0.812 0.785 0.686 0.727 0.745 

2 Average 0.811 0.791 0.741 0.740 0.723 

Single 0.767 0.797 0.727 0.744 0.721 

Complete 0.809 0.806 0.750 0.744 0.734 

FCM 0.824 0.818 0.767 0.757 0.738 

3 Average 0.787 0.775 0.735 0.733 0.709 

Single 0.755 0.779 0.729 0.740 0.713 

Complete 0.783 0.789 0.739 0.740 0.722 

FCM 0.819 0.810 0.762 0.736 0.707 

8 1.1 Average 0.803 0.789 0.731 0.739 0.738 

Single 0.796 0.798 0.715 0.740 0.732 

Complete 0.806 0.798 0.729 0.746 0.750 

FCM 0.814 0.807 0.705 0.743 0.758 

2 Average 0.824 0.818 0.740 0.748 0.731 

Single 0.795 0.812 0.745 0.751 0.728 

Complete 0.820 0.825 0.765 0.758 0.742 

FCM 0.841 0.834 0.780 0.771 0.741 

3 Average 0.795 0.789 0.740 0.740 0.713 

Single 0.774 0.787 0.748 0.738 0.713 

Complete 0.793 0.797 0.757 0.746 0.727 

FCM 0.822 0.814 0.758 0.755 0.709 
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Visualized graphically in Figure 5.5, the general trends of each linkage policy are more easily assessed. 
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Figure 5.5: AUC values for AutoMPG. Bar series represent the average, single, and complete linkage 

policies followed by FCM in left to right order for each parameterization. 
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First, we notice that the single linkage policy is almost never the best performer. Indeed, out of all the 

presented experiments, on only two occasions does single linkage result in the highest AUC, both for the 

red wine quality dataset, and both when m = 1.1. Second, we recognize the continued pattern of FCM 

outperforming all linkage policies on average. This is visible to different extents for all tested datasets, 

with complete linkage being the second-best methodology overall. 

5.4.3 Selected Experimental Results 

In previous experiments, we have explored and analyzed the potential parameterizations of our 

methodology. We use this data to perform a focused set experiments using the strongest parameterizations 

based on previous findings. The choice of 𝜌 in the following experiments is determined for each dataset 

from inspection of the curves given in Section 5.4.1 and are chosen to be a “good” choice, rather than a 

necessarily optimal one. 

Table 5.4: Selected specificity and coverage results 

c m link  Coverage Specificity 

AutoMPG 

5 2 average 0.50 0.92 ± 0.04 0.60 ± 0.05 

5 2 complete 0.50 0.92 ± 0.04 0.61 ± 0.05 

8 2 average 0.50 0.90 ± 0.04 0.63 ± 0.05 

8 2 complete 0.50 0.89 ± 0.04 0.64 ± 0.06 

Abalone 

5 2 complete 0.20 0.96 ± 0.02 0.53 ± 0.03 

8 2 average 0.20 0.97 ± 0.02 0.54 ± 0.03 

8 2 single 0.20 0.98 ± 0.02 0.53 ± 0.03 

8 2 complete 0.20 0.99 ± 0.01 0.54 ± 0.03 

Wine-red quality 

5 2 complete 0.20 0.95 ± 0.04 0.49 ± 0.03 

8 2 complete 0.20 0.94 ± 0.03 0.54 ± 0.01 

8 3 single 0.20 0.98 ± 0.00 0.46 ± 0.02 

8 3 complete 0.20 0.97 ± 0.01 0.50 ± 0.02 

Wine-white quality 

8 2 average 0.10 0.95 ± 0.01 0.53 ± 0.02 

8 2 single 0.10 0.95 ± 0.01 0.54 ± 0.02 
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8 2 complete 0.10 0.95 ± 0.01 0.55 ± 0.02 

8 3 complete 0.10 0.96 ± 0.02 0.52 ± 0.02 

Concrete 

5 1.1 complete 0.50 0.95 ± 0.01 0.47 ± 0.02 

8 1.1 average 0.50 0.94 ± 0.02 0.48 ± 0.02 

8 1.1 complete 0.50 0.92 ± 0.03 0.50 ± 0.02 

8 2 complete 0.50 0.98 ± 0.01 0.41 ± 0.01 

 

The results of these focused experiments are presented in Table 5.4. First, let us focus on which 

parameterizations resulted in the best performing models. The choice c is often skewer towards higher 

values, which is not surprising as error decreases monotonically with the # rules; however, the best 

performing fuzzification coefficients are evenly spread amongst the tested values but are often consistent 

within a given datasets. This is indicative of data set dependent parametrization, which suggests that the 

methodology itself is not biased towards a specific choice of m. The choice of 𝜌 is also widely varied, 

again indicating that our methodology is able to generate high quality models given the correct 

parameterizations, but that the specific choices of each parameter are dataset dependent. Finally, all three 

linkage policies make an appearance, though we acknowledge that, consistent with previously 

experiments, complete linkage is clearly dominant.  

As a final point of discussion, we take a more thorough look at the choice of the interval parameter 𝜌. 

Particularly, we observe that high coverage is achieved with very small values of 𝜌 in the case of the 

white wine dataset, and a slightly larger value in the case of the red wine and abalone datasets. In the case 

of the other two datasets a more conservative value of 0.5 is also successful in achieving high degrees of 

coverage. This spread suggests that a more thorough study focusing the choice of this parameter may be 

warranted, or that optimization procedures targeting this parameter could be used to obtain a more 

carefully tuned model. Expanding on this idea, a more robust methodology may consider different 𝜌 

values for different information granules within a single model, potentially improving overall 

performance. 

5.4.4 Effectiveness of the proposed methodology 

The previous sections provide a significant amount of experimental data demonstrating the behavior of 

the proposed granular FRBSs constructed through the use of hierarchical clustering, and at this juncture 

we assess the overall effectiveness of our methodology as a modelling tool. We are interested in 

answering three main questions: 
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• Is hierarchical clustering an effective tool for fuzzy rule generation?  

• How well does the proposed granular rule format realistically improve model interpretability? 

• Are the evaluation methods proposed for this type of model sufficient? 

Our experiments have demonstrated that hierarchical clustering is not a convincing alternative to FCM for 

the extraction of fuzzy rules from data. Throughout our experiments, and regardless of linkage policy, 

hierarchical clustering was at best only able to match the performance of FCM and never demonstrated a 

consistent ability to provide a better result. This, in combination with the fact that hierarchical clustering 

is more computationally intensive, leaves no good argument for the application of hierarchical clustering 

to fuzzy rule extraction. 

While our experimentation is focused on assessing the quantitative performance of the granular models, a 

key facet of information granulation is the desire to improve human readability. While we have stated that 

information granules (intervals) improve model interpretability, so far, we have failed to concretely 

demonstrate this assertion. To address this, we provide a sample granular rule-base at this juncture for 

consideration, shown in Figure 5.6. 

 = 0.2 [6.0 160.6 122.6 2913.3 12.6 80.6 3.0] − [18.0 36.4]  

 

[4.5 138.9 84.8 2557.6 16.4 76.5 1.7] − [20.0 37.0]  

 

[8.0 346.3 160.0 4137.6 12.7 73.8 1.00] − [13.0 17.5]  

  
 = 0.8 [6.0 160.6 122.6 2913.3 12.6 80.6 3.0] − [11.0 39.1]  

 

[4.5 138.9 84.8 2557.6 16.4 76.5 1.7] − [18.0 46.6]  

 

[8.0 346.3 160.0 4137.6 12.7 73.8 1.0] − [9.0 19.4]  

Figure 5.6: Sample granular rule-base, Link: average; Clusters: 3; m: 2.00 

If contrasted directly with Mamdani style fuzzy rules, the advantage is, we believe, clear. A single value 

representing a fuzzy set is very difficult to interpret, as the degree of information communicated is very 

limited. The simple process of forming an interval (information granule) provides significantly more 

information to the reader regarding the domain of each fuzzy rule, and consequently the predicted 

outputs.  By using information granules, readers are made more aware of a prediction’s context; 

specifically, a predicted interval communicates a value and a degree of uncertainty, as implied by the size 

of the interval. Further, if a reader studies the rules themselves, the knowledge extracted from the system 
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benefits from these same advantages, and information such as the degree of rule overlap and uncertainty 

are effectively communicated. 

Finally, let us discuss the evaluation metrics proposed for this type of granular model. In this study, we 

use coverage and specificity in combination to evaluate the performance of a granular model. Coverage 

provides an intuitive granular equivalent to accuracy, as predictions are (to some degree of uncertainty) 

correct when the target value is contained within the predicted interval. This is counteracted by the 

measure of specificity, which promotes narrow intervals in the interest of keeping the predicted values as 

precise as possible. In combination, these two metrics are a satisfactory indicator of performance; 

however, an open question would be their relative degrees of importance. Can these criteria can be 

effectively combined into a single evaluation metric, and if so, through what operator or equation? The 

tradeoff between coverage and specificity is realized through the parameter 𝜌, and further study of this 

parameter has already been mentioned as a promising direction of future research. 

5.5 CONCLUDING REMARKS 

This chapter has detailed a methodology for the generation and evaluation of a partially granular fuzzy 

rule-based model, constructed through hierarchical clustering and justifiable granularity.  We have 

defined two contrasting evaluation metrics, coverage and specificity, for assessing this model format, and 

have provided extensive experimentation demonstrating the effectiveness of the proposed rule generation, 

granulation, and granular evaluation methodologies. On the topic of using hierarchical clustering as a 

vehicle for rule extraction, we have contrasted the use of hierarchical clustering with the standard choice 

FCM clustering to assess its feasibility. 

The use of hierarchical clustering as a rule generation strategy is not convincing as compared to FCM, as 

demonstrated through our experimentation. Complete linkage provided the most promising results of the 

tested policies; however, even the best hierarchical results were only on par with FCM. It is possible that 

by using different, more complex, or specifically tailored rule generation strategies, improved 

performance could be attained; however, using our straightforward methodology, no visible advantage 

has been observed, and we would not endorse the use of hierarchical clustering in this manner for fuzzy 

rule extraction. 

The granularization of the FRBS provided a significantly more positive result. Our application of 

information granules successfully improved the interpretability of the fuzzy rule-based model, and the 

proposed evaluation metrics satisfy both requirements of justifiable granularity, providing conflicting 

measures of quality through which an appropriate balance can be attained. The presented example 
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granular rules demonstrate the improved interpretability of this model format, and coverage and 

specificity provide an adequate indication of model performance. There remains ample room for further 

study in this area, both on the topic of granular evaluation strategies, and on the optimization of modelling 

parameters. Our experiments have demonstrated the successful evaluation of granular rule-based model 

performance, and we have established that the proposed methodology is easily able to attain very high 

degrees of coverage for most datasets, while keeping intervals adequately specific. 

Granular fuzzy models are an area of research which holds a great deal of potential for future study. In 

this chapter, we have taken one small step into the realm on information granules in fuzzy modeling and 

identified many avenues for further improvement and advancement. Although the use of hierarchical 

clustering did not provide any improvement versus FCM, it is important for researchers to continue to 

examine such unexplored areas so that informed decisions can be made in future studies. 
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6 BOOSTING WITH FUZZY RULES 

Boosting has been a pivotal development in machine learning, and the topic has been thoroughly studied, 

with applications in many areas of expertise. Boosting defines a methodology through which a collection 

of relatively poor (weak) learners can be combined into an ensemble which functions as a single strong 

learner. This performance improvement is achieved by identifying those training instances which are 

poorly modelled by the existing ensemble and targeting them at the next iteration of learner generation.  

Due to the overwhelming success boosting has enjoyed as a generalized ensemble building methodology, 

the application of boosting has been widespread, covering diverse weak learner architectures, and many 

areas of expertise. Despite this significant research attention, boosting with fuzzy systems has not been 

well-studied. This gap in the literature motivates us to explore the topic of weak fuzzy learners in a 

boosted ensemble. The general topic of boosting with fuzzy learners is of significant interest; however, 

the scope of potential weak fuzzy learners is quite large, and the existing literature quite limited. For this 

reason, we limit this initial research to a specific case study, applying one type of fuzzy learner and 

assessing how it performs in a boosted ensemble. 

In this chapter, we are interested in the application of FRBSs as the weak learners in a boosted ensemble, 

a topic which, to our knowledge, has not been addressed in the literature. We pose and answer such 

crucial questions as:  

• To what degree can accuracy be improved with an ensemble of FRBS?  

• How well do fuzzy classification rules function as weak learners in a boosted ensemble?  

And address necessary subsequent technical queries such as: 

• How well does the rule generation process adapt to weighted data? 

• Are the weak learners diverse enough to promote successful boosting? 

• How well are fuzzy classification rules able to perform? 

• Compared to a single fuzzy rule-base? 

• Compared to other boosted weak learners? 

To the extent to which they are necessary in a boosting context. 
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We are also motivated to explore the effects of certain parameterizations, such as the number of rules in 

each weak learner. As the number of fuzzy rules generally implies the accuracy of a FRBS, we explore 

the effect of this relationship in an ensemble: are fewer rules able to match more complex rule bases in 

terms of accuracy through boosting? To our knowledge, the use of FRBS in a boosted ensemble has never 

been studied, and the style of classification rules used in this research have not been widely applied. 

In this work, we make use of some well-known constructs for both the generation of the weak learners, 

and the construction of a boosted ensemble. The component weak learner takes the form of a tailored 

fuzzy classification rule-based system. For the construction of the boosted ensemble we use a multi-class 

variant of AdaBoost, SAMME, the implementation details of which are defined in Section 3.5.3. The 

general workflow of our methodology is given in Figure 6.1, and defines a multi-class boosting approach 

in which FRBSs are used as the component weak learners of the ensemble. 

6.1 DESIGN OF THE WEAK LEARNER 

This section outlines a detailed methodology for the construction of a fuzzy classification rule-based 

system, to be used as the component weak learner in a boosted ensemble. While many aspects of this 

model architecture are similar to a standard TS-style FRBS, we make key changes to address the 

requirements of the boosting process and a classification setting. 

With respect to the goal and function of the boosting mechanism, the critical component of weak learner 

generation is the response of the procedure to weighted data. Boosting improves ensemble performance 

by identifying those instances which are poorly modelling by the current ensemble and increasing the 

relative weight of those instances. Consequently, the new weak learner must consider these weights 

during its construction. 

Figure 6.1: Generalized Boosting Workflow 
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In this chapter, we target classification problems and are therefore concerned with the construction of 

fuzzy classification rules. This is a step away from classical TS-fuzzy rules, so a new rule format and 

generation procedure must be defined. While defining the classification architecture, we additionally look 

for opportunities to promote successful boosting. In our case, this takes the form of ensuring ample 

opportunity for the generation procedure to incorporate data weights into the rule extraction process. 

6.1.1 Weighted Fuzzy C-Means Clustering 

The computation of a fuzzy partition, used to form the condition parts of fuzzy rules, is unchanged from 

standard procedure outlined in Section 3.1 and 3.4, with one key difference: data weights. The 

consideration of data weights in the rule generation procedure is key to successful boosting, and as a 

result, we need to define a variation of FCM which takes them into account. 

The key component to weighted FCM is the modification of the objective function, given for the original 

algorithm in (3.1), to: 

𝑄 = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑤𝑗‖𝒙𝒋 − 𝒗𝒊‖

2
𝑐

𝑖=1

𝑁

𝑗=1

 

(6.1) 

Where we have made the addition of wj, indicating the weight of the jth instance. Recalculating the 

necessary equations from this modified objective function, we find that the membership function is 

unchanged, and the computation of cluster prototypes, originally given in (3.2), becomes: 

𝒗𝒊 =  
∑ 𝑢𝑖𝑘

𝑚𝑤𝑘𝒙𝒌
𝑁
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑤𝑘

𝑁
𝑘=1

 

(6.2) 

Where once again we have added data weights to the equation in two places. The modified FCM 

algorithm can now be used in a weighted environment for the computation of rule conditions. 

6.1.2 Design of Fuzzy Classification Rules 

The standard fuzzy rule format (TS-style fuzzy rules) is only compatible with real valued consequents. In 

this chapter, we are interested in tackling classification problems, which possess nominal class labels and 

not real valued outputs. For this reason, we need to design a new format of fuzzy rule which is compatible 

with a classification setting. 



79 

 

In Mamdani style fuzzy rules, described in (3.10), the output part of the rule, bi, is a real value. To update 

this format for handling classification problems, we consider the following modification to the consequent 

of the rule: 

𝒃𝒊 = [𝑝𝑐𝑙𝑎𝑠𝑠1, 𝑝𝑐𝑙𝑎𝑠𝑠2, … , 𝑝𝑐𝑙𝑎𝑠𝑠𝐾] 

(6.3) 

Where pclass indicates the probability of an instance matching that rule belonging to a given class, for 

some K class classification problem. In this format, the class label of a given instance is predicted by the 

following equation: 

𝒄𝒍𝒂𝒔𝒔𝒌 = ∑ 𝑢𝑖𝑘𝒃𝒊

𝑐

𝑖=1

 

(6.4) 

Where classk is a vector of class probabilities, c is the number of rules, uik is the degree of membership of 

instance k to rule i from the partition matrix U, and bi is, as before, the consequent of rule i. To distill this 

vector into a predicted class, we find the highest predicted probability, and predict the class label 

associated with that value: 

𝑐𝑙 =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑗=1,2,…𝐾𝒄𝒍𝒂𝒔𝒔𝒋 

(6.5) 

Where cl is the predicted class label, determined by the index of the maximum value in the computed 

array of class probabilities, and argmax returns the index of the maximum value of a vector. 

With a classification rule format defined, we are left with the task of rule consequent extraction from data. 

The consequents in the proposed format represent the probabilities of matching data belonging to a given 

class. Probabilities can be computed by considering the number of instances in a cluster with a given class 

label and calculating the consequent probabilities based on this knowledge. To maintain compatibility 

with boosting, we consider data weights in this formulation. Formally, the consequent probability for each 

class is calculated at each cluster according to: 

𝑝𝑐𝑙𝑎𝑠𝑠𝑗
=  

∑ 𝑤𝑘𝐼 (𝑐𝑙𝑎𝑠𝑠𝑗, 𝑐𝑙𝑎𝑠𝑠(𝒙𝒌))
𝑀𝑖
𝑘=1

𝑀𝑖
 

(6.6) 
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Where pclass_j is the consequent probability of an instance with class label j belonging to the rule under 

consideration, here denoted i, for j = 1, 2, … K. This computation is performed for each rule, i = 1, 2, …c, 

and Mi denotes the number of training instances belonging to cluster i. Importantly, the summation in the 

numerator is computed only for the set of training instances belonging to the rule under consideration. 

Finally, I is an indicator function: 

𝐼(𝑎, 𝑏) = {
1 𝑖𝑓 𝑎 = 𝑏
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(6.7) 

And its negation is described as: 

¬𝐼(𝑎, 𝑏) = {
0 𝑖𝑓 𝑎 = 𝑏
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(6.8) 

To determine which training instances belong to which rules, we consider the maximum fuzzy 

membership in the partition matrix U to indicate the rule to which it belongs: 

𝑠𝑘 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖=1,2,…𝑐𝑢𝑘 

(6.9) 

Where sk indicates the cluster to which instance xk belongs, and uk is the kth column of U, containing the 

degrees of membership of xk to each of the c fuzzy rules. This represents a defuzzification of the fuzzy 

partition, allowing us to assign each instance to a single cluster when performing consequent calculations. 

The resulting crisp partition is then used in (6.6), where we use c distinct sets of training instances, with 

the rule assignment of each instance determined by (6.9).  

The final component of our weak learner design is a modifier function on the output of the system; 

specifically, a sigmoidal modifier whose parameters are tuned to maximize predictive ability. The 

motivation for this addition is twofold. First, when configured with a high steepness, a sigmoidal 

modification layer results in near binary outputs, and consequently much clearer classification. Second, 

by optimizing the parameters of each sigmoidal modifier, we introduce an additional degree of flexibility 

in the training of the weak learners. This serves both to promote better individual learner performance and 

to provide another vector for learner adaption to changing data weights. 

Each learner exhibits a single sigmoidal function per class. The sigmoidal functions take the following 

form: 
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𝜑𝑗𝑘 =
1

1 + 𝑒𝑥𝑝(−𝑎(𝑐𝑙𝑎𝑠𝑠𝑗𝑘 − 𝑧))
 

(6.10) 

Where 𝜑𝑗𝑘 is the final class certainty for the jth class with respect to the kth input instance, a is a 

steepness parameter, classjk is the input certainty for the jth class of the kth input from the FRBS 

computed using (6.4), and z is a configurable parameter. These z parameters are optimized through 

gradient decent with the goal of maximizing classification accuracy. 

Our completed learner architecture, visualized in Figure 6.2, is composed of c fuzzy classification rules, 

each of which predict class labels through a probability based consequent scheme, and whose predictions 

are combined through (6.4). These class probabilities are then modified by the optimized sigmoidal 

functions, defined in (6.10), before a final class prediction is made by determining the maximum resulting 

class probability, as formulated in (6.9). 

6.2 FUZZY RULE BOOSTING 

To this point, we have concentrated on the generation of the weak learners for use in a boosted ensemble. 

What remains are the specifics of the boosting implementation, in combination with the proposed learner. 

In this study, we use the SAMME boosting algorithm to tackle multi-class classification problems, the 

specifics for which are given in Section 3.5.2, and the fuzzy classification rule-based model defined in 

Section 6.1 is used as the component weak learner. 

Figure 6.2: Architecture of the weak learner 
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Boosting is performed in the standard manner, by iteratively generating weak learners using data selected 

through bagging and the current data weights. The new learner is evaluated, its ensemble weight is 

computed, and data weights are updated in accordance with the new learner’s performance. As is 

common in boosting studies, a safety condition is added at the end of each iteration that checks if the new 

learner improves the overall ensemble classification accuracy. If it does not, the new learner is rejected 

and not added to the ensemble. This safety measure guards against difficult to mitigate situations such as 

poorly initialized models, which would otherwise negatively contribute to the ensemble. 

The prediction of the completed ensemble for a given input instance is a standard boosting approach: 

𝐹(𝒙) = ∑ ∝𝑡 ℎ𝑡(𝒙)

𝑚

𝑡=1

  

(6.11) 

Where x is a given instance, F is the completed ensemble and m is the size of the ensemble. Each member 

fuzzy model, ht, is evaluated according to (6.4) and (6.9) considering the addition of the sigmoidal 

modifier (6.10): 

 

𝑐𝑙 =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑗=1,2,…𝐾𝜑𝑗(𝑐𝑙𝑎𝑠𝑠𝒋) 

(6.12) 

Where cl indicates the class label prediction, and (6.12) is a modified version of (6.9), which passes the 

initial class certainties from the fuzzy classification rules through the sigmoidal modification functions 

Figure 6.3: Weak Learner Generation procedure 
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before making a final prediction. Ensembles are computed to a certain size, as specified by an input 

parameter. 

The generalized workflow for weak learner generation (Fuzzy Classification Rules) is given in Figure 6.3. 

This sub-process is used in combination with the generalized boosting workflow given in Figure 6.1 to 

fully define the proposed methodology. 

6.3 EXPERIMENTAL STUDIES 

This section provides a comprehensive set of experimental studies, examining in detail the performance 

of our fuzzy rule boosting methodology. First, we provide some detailed case studies, demonstrating the 

behavior of the proposed weak learners outside of an ensemble. Next, we examine a sample boosted 

ensemble in detail, demonstrating accuracy improvement as the ensemble grows. Finally, we provide two 

sets of comprehensive boosting results. The first set highlights the degree of accuracy improvement 

exhibited by the boosted ensembles as compared to a single FRBS. The second set compares the proposed 

methodology to equivalent ensembles composed of standard weak learners. All of these experiments are 

performed with publicly available real-world data sets. 

The proposed methodology makes use of several algorithms which require configuration via input 

parameters. We keep these parameters consistent throughout our experiments wherever possible for 

consistency. For FCM clustering, the fuzzification coefficient m = 2.0 is used and the termination criteria 

is set as a change in objective function of less than 10–5 or a maximum of 500 iterations. This 

configuration aims to achieve reasonable runtimes without sacrificing accuracy, and the fuzzification 

coefficient used is a standard choice which performs well in most situations. The sigmoidal steepness 

parameter 𝛼 is chosen to be adequately high such that the model’s classification is near binary; we have 

chosen a value of 𝛼 = 20. For gradient descent we use a descent rate of 0.1 and a momentum term of 0.5. 

These values were finalized experimentally by finding a balance between the number of iterations 

required to reach equilibrium and the precision of the optimized parameters. The same termination 

criterion as those defined for FCM are used here, with a similar goal and justification. 

6.3.1 Case Study Experiments 

This section details two simple case studies, providing insight into the performance of both the proposed 

learner as a standalone model and as a component weak learner in a boosted ensemble.  
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6.3.1.1 Sigmoidal Modifier Case Study 

First, we examine a simple case study demonstrating the effect of the sigmoidal modifier on the predictive 

accuracy of a single learner. This demonstrates the ability of the sigmoidal modifier to effect 

classification, justifying its inclusion in the architecture. We use the well-known Iris dataset from the UCI 

machine learning repository [196] as a simple example for these initial experiments. 

Using the learner generation methodology defined in Section 6.1, we construct a single FRBS and 

optimize the sigmoidal modifier using gradient decent. At this juncture, we assert that the purpose of the 

sigmoidal modifier is not strictly to improve classification accuracy, but rather to add additional degrees 

of flexibility to the learner, with the goal of enhancing learner responsiveness in boosting.  

In the following examples, five models (weak learners) are generated independently from one another 

using the Iris dataset, and a 75%/25% training/testing data split. Each model is constructed with two rules, 

c = 2, and the state of each model is recorded after training is complete. For each model, classification 

accuracies are calculated with and without the addition of the sigmoidal modifier, listed as without 

sigmoid, and with sigmoid. Table 6.1 reports the training and testing accuracies for each of the five 

learners, listed as M1 through M5 denoting the first through fifth model. 

Table 6.1: Accuracies with and without sigmoidal modifier 

Model With Sigmoid Without Sigmoid 

Train Test Train Test 

M1 0.678 0.632 0.678 0.632 

M2 0.705 0.737 0.67 0.658 

M3 0.678 0.658 0.67 0.658 

M4 0.67 0.658 0.67 0.658 

M5 0.714 0.553 0.705 0.553 

 

The accuracies presented in Table 6.1 provide insight into the effect of the sigmoidal modifier on 

classification performance. The critical observation to be make from these experiments is that in no 

experiments does the performance of the model decrease from this addition, and in certain cases (M2, 

M5), the modifier improves the classification rate. This demonstrates that the modifier is having its 

intended effect, and we may expect some increase in classification accuracy from some weak learners 

from its inclusion.  
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6.3.1.2 Boosted Ensemble Case Study 

Next, we examine the boosting process is greater detail; specifically, how boosting improves 

classification accuracy through the iterative generation of specialized weak learners. Once again, we use 

the Iris dataset as the sample problem for this case study. 

In all boosting experiments in this chapter, the number of rules in each weak learner is static within the 

ensemble, as are all other algorithmic parameters. Consider, as a first example, a boosted ensemble where 

each model is constructed with two fuzzy rules and an ensemble size of four. 

Table 6.2: Boosting progression, Iris, rule-base side of 2s, ensemble size of 4 

Iteration  α Accuracy 

1 2.72 0.88 

2 1.97 0.89 

3 1.39 0.92 

4 1.8 0.94 

 

Table 6.2 presents two key values: the weight each weak learner in the ensemble, α, and the ensemble 

accuracy at each iteration. This data serves two purposes. First, and most important, the increase in 

accuracy as boosting proceeds indicates successful ensemble construction. Second, learner weights taking 

reasonable values suggests that each learner is contributing positively to the decision-making process, and 

that the ensemble is functioning as an ensemble, not as a single dominant learner bearing the brunt of the 

decision-making load. This simple example demonstrates the feasibility of the proposed methodology and 

the soundness of the implementation through the improvement in accuracy as the ensemble grows. 

6.3.2 Accuracy Improvement through Boosting 

This section presents experimental results demonstrating the improved classification performance of the 

proposed methodology, as compared to a single fuzzy classification rule-based system. This serves as a 

litmus test for the successful application of boosting with the proposed weak learner and indicates how 

powerful of a tool boosting can be in this context. 

All experiments in this section are performed with 10-fold cross-validation, and all individual FRBSs 

used for comparison contain the same number of fuzzy rules as a single component weak learner in the 

ensemble. For each dataset, boosting is performed using a range of model sizes and ensemble sizes which 

are considered in combination. Boosting is designed to construct a single strong learner from a set of 
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weak learners, and consequently, the number of fuzzy rules making up each learner must be kept small to 

preserve their weak nature; hence, we experiment with c values in the range of 2-4. 

We consider a number of datasets from the UCI machine learning repository in addition to the Iris 

dataset: 

• Wisconsin – Predict breast cancer diagnosis from tumor metrics. 

• Wine Quality – Classify wine into one of three regions from chemical measurements 

•  Glass Identification – Classify the type of glass from physical properties 

• Magic – Detect signal from a telescope from observations 

• Banknote Authentication -Determine if a bank note is authentic or forged 

And certain additional datasets coming from the KEEL dataset repository [197]:  

• Heart Disease – Predict heart disease diagnosis from medical metrics 

• Appendicitis – Diagnose appendicitis from patient symptoms  

• Bupa – Diagnose liver disorder from lifestyle metrics 

The following results provide comparative accuracies for the listed datasets using a range of experimental 

parameters. Each dataset is modelled using c = 2, 3, 4 and ensemble sizes of m = 2, 4, 6. 

Table 6.3: Boosting results for Iris 

Parameters Boosting Single Model 

Size Rules Training Testing Training Testing  

2 2 0.733 0.720 0.659 0.633 

4 2 0.872 0.880 

6 2 0.890 0.860 

2 3 0.912 0.860 0.848 0.840 

4 3 0.953 0.927 

6 3 0.961 0.933 

2 4 0.947 0.907 0.874 0.860 

4 4 0.961 0.960 

6 4 0.977 0.967 
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The first set of comparative results is given in Table 6.3 and considers the Iris dataset. This table presents 

training and testing accuracies for two sets of experiments – boosted ensembles and single learners, with 

single learner accuracies presented only once for each c. 

Analyzing the results, we identify two keys points of discussion. First, we compare the performance of 

the boosted ensemble with a single model. In this case, the boosting improvement is obvious and can be 

observed in all experiments. In fact, there are several cases where the improvement is substantial, 

including when c = 2, where accuracy is improved from 66% to 89% with an ensemble of size 6. In this 

case, the results are quite clear: boosting has a significant and positive impact on the classification rate, 

achieving much higher accuracies than a single rule-based model. Our second point of discussion is the 

performance improvement resulting from increased ensemble size, and improvement is clearly visible in 

Table 6.3. The corollary of this is that there is certainly an upper limit to the achievable improvement 

through boosting using FRBSs, and we see evidence of this in the results. With larger ensembles, there 

are indications that the degree of improvement levels off. In the case of two rules, the jump in accuracy 

from two learners to four results in a 14% improvement, while the addition of two more learners only 

adds an additional 2%. This pattern is visible in later results as well. 

Table 6.4: Boosting results for Wine Quality 

Parameters Boosting Single Model 

Size Rules Training Testing Training Testing 

2 2 0.689 0.695 0.663 0.635 

4 2 0.714 0.697 

6 2 0.754 0.715 

2 3 0.725 0.709 0.672 0.650 

4 3 0.741 0.733 

6 3 0.778 0.733 

2 4 0.765 0.754 0.723 0.700 

4 4 0.789 0.768 

6 4 0.810 0.819 

 

Table 6.4 presents similar results modelling the Wine Quality dataset. Generally, the results are similar in 

nature to Iris experiments, with boosted ensembles easily outperforming single learners and improvement 

increasing with ensemble size. In this case, the improvement is less marked, and the increases in 

performance are incremental, likely indicating that the problem is more difficult for the proposed weak 
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learner. A notable difference to the previous case is that in this instance we do not necessarily see signs of 

tapering accuracy improvement, so it may be possible to attain additional improvement with even larger 

ensemble sizes. 

Table 6.5: Boosting results for Wisconsin 

Parameters Boosting Single Model 

Size Rules Training Testing Training Testing  

2 2 0.969 0.969 0.969 0.969 

4 2 0.970 0.968 

6 2 0.970 0.966 

2 3 0.971 0.972 0.970 0.968 

4 3 0.972 0.968 

6 3 0.976 0.971 

2 4 0.973 0.968 0.971 0.968 

4 4 0.977 0.971 

6 4 0.978 0.971 

 

As a final detailed example, we examine the Wisconsin dataset, results given in Table 6.5. These 

experiments represent a slightly different scenario, as the accuracies attained by a single learner are very 

high to begin with (an indication of a simple classification problem). This provides an opportunity to 

analyze how boosting performs in the case where there are very few remaining misclassified instances, 

and consequently little room for improvement. Examining Table 6.5, we note that boosting does not seem 

to provide improvement in this scenario, regardless of the number of rules or the size of the ensemble. In 

fact, all experiments perform at about the same level. This may simply indicate that the final few 

instances which have not been correctly classified are outliers or very difficult instances to classify. More 

cynically, it may indicate that the architecture of the weak learner is simply unable to handle these 

instances for whatever reason. 

These focused experiments on boosting improvement have demonstrated the ability of the proposed 

methodology to compute boosted ensembles, successfully improving classification accuracy. As 

additional experimental evidence, we present a condensed set of comparative experiments modelling the 

remaining datasets. 
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Table 6.6: Performance improvement with a boosted ensemble 

Dataset Dataset attributes Rules Accuracy % Improvement 
 

# Input Variables # Classes 
 

Training Testing Training Testing 

Iris 4 3 2 0.890 0.860 23.19% 22.67% 

3 0.961 0.933 11.33% 9.33% 

4 0.977 0.967 10.30% 10.67% 

Wine Quality 13 3 2 0.754 0.715 9.16% 8.02% 

3 0.778 0.733 10.61% 8.26% 

4 0.810 0.819 8.72% 11.93% 

Wisconsin 9 2 2 0.970 0.966 0.11% –0.29% 

3 0.976 0.971 0.55% 0.29% 

4 0.978 0.971 0.70% 0.29% 

Heart Disease 13 2 2 0.658 0.637 7.86% 9.63% 

3 0.712 0.681 9.96% 4.81% 

4 0.718 0.700 8.89% 10.37% 

Appendicitis 7 2 2 0.877 0.871 5.25% 4.25% 

3 0.897 0.870 3.28% 1.25% 

4 0.900 0.835 2.66% –1.00% 

Glass 9 7 2 0.518 0.464 15.36% 16.91% 

3 0.599 0.530 17.17% 13.98% 

4 0.625 0.591 11.53% 12.93% 

Bupa 6 2 2 0.584 0.574 1.74% 3.02% 

3 0.593 0.566 1.19% –1.10% 

4 0.614 0.608 3.13% 1.91% 

Magic 10 2 2 0.648 0.648 0.00% 0.00% 

3 0.665 0.663 2.15% 1.79% 

4 0.698 0.697 5.33% 5.21% 

Banknote Auth. 4 2 2 0.645 0.632 6.36% 4.26% 

3 0.764 0.769 15.83% 15.44% 

4 0.968 0.962 8.99% 8.52% 
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Table 6.6 presents the additional comparative experiments for all datasets in a reduced format. The 

training and testing accuracies reported for the boosted ensembles are for an ensemble size of 6 and the % 

improvement is reported in comparison to a single model of the same parameterization. 

As visible in the % increase columns, boosting using small sets of fuzzy classification rules as weak 

learners is largely successful. The Iris dataset demonstrates the most successful case – with only 2 rules 

per learner, the use of a boosted ensemble increases classification accuracy by nearly 30%. The Wine, 

Heart Disease, Glass, Appendicitis, and Banknote Authentication datasets each show varying degrees of 

success, with consistent accuracy improvements.  The Wisconsin, Bupa, and Magic datasets show less 

successful cases, where little or no improvement is achieved. The reason for these poor performing 

experiments could be attributed to a handful of factors. First, higher dimensional problems (Wine, Heart) 

are less suitable to FRBSs, and datasets with many classes (Glass) may be more difficult for our 

probability-based classification rules to model. Given this, we speculate that the weaknesses of the 

component learners likely exhibit themselves in a boosted ensemble. Second, because rules are always 

formed via clustering (weighted), and class distributions may not be structured in a clustered manner, it is 

intuitively obvious that the proposed weak learner may not be capable of modelling certain problems. 

Finally, when the number of classes is large, weak learners containing a small number of rules will have 

difficulty partitioning data into class labels when there are more classes than rules – it is impossible to 

accurately classify five classes using only two rules. 

The results in Table 6.6 allow us to answer an unaddressed question posed earlier in this study: 

• How well does the rule generation process adapt to weighted data? 
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To answer this question, we focus on the % increases in accuracy, shown graphically in Figures 6.4 and 

6.5. The degree of improvement serves as the primary indicator for learner adaptability, as each new 

instance which is correctly classified indicates a successful adaptation of the new learner to changing 

weights. The degree of success is varied by dataset, but overall the results are positive, and show marked 

improvement. This provides confidence that the rule generation procedure adapts well to changing data 

weights and affirms that this aspect of our study is a success.  

We can also address queries specific to the experimental proceedure: 

• How does the number of rules per learner effect performance? 

• Does the number of classes have a visible effect? 

Figures 6.4 and 6.5 provide key insights, allowing us to answer these questions through visual analysis. 

By comparing the degree improvement with the number of rules for each dataset, we can make some 

useful observations. While we would expect intuitively that weaker learners (those with fewer fuzzy 

rules) would have more room for improvement via the boosting mechanism (and hence have higher 

degrees of improvement) the results do not support this intuition. Visually, we observe that those 

ensembles with the most improvement are not obviously correlated with the number of rules, preventing 

us from making conclusions on this matter. This pattern (or lack thereof) is likely related to how well a 

certain number of rules fits a given dataset’s internal structure, among other factors, and suggests that the 

interactions of weak learners in a boosted ensemble are complex. 

Returning to Table 6.6, we identify Wine Quality, Heart Disease, and Magic to be three datasets with 

higher dimensionality, and Glass to be the dataset with many classes. We see no clear pattern with respect 

to improvement and dimensionality, as two results (Heart Disease, Wine Quality) show moderate 

improvement, and one (Magic) shows minimal improvement. This indicates that the specifics of a 

problem are a larger factor than the dimensionality of the dataset. With only one dataset having a large 

number of classes, and with the experiments showing substantial improvement (as shown in Figure 6.4 

and 6.5), we can only conclude that the number classes are not hugely detrimental to our methodology. 

Generally, we conclude that while dataset characteristics play a role in the quality of individual 

component learners, the weaknesses of the component learners seem to be readily addressed through 

boosting. 

6.3.3 Comparative Studies 

In this final set of experimental studies, we compare the performance of the proposed methodology to 

equivalent boosted ensembles composed of simple established weak learners. These results provide 



92 

 

meaningful insight into the relative performance of our methodology, contrasted against what are 

considered standard learners for use in a boosted ensemble. 

These comparative experiments are performed with existing machine learning tools, namely MATLAB 

and WEKA. Five different weak learners are utilized in the generation of boosted ensembles – a decision 

tree, a decision stub, the OneR rule procedure, the ZeroR rule algorithm, and the NaiveBayes 

classification method. Decision tree experiments are executed using the MATLAB machine learning 

toolbox, and all other experiments make use of WEKA’s built in functionality. The learner generation 

procedures are all built in and readily available components of the software. To maintain consistency with 

our previous experiments, all comparative studies are evaluated with 10-fold cross-validation, and each 

comparative experiment considers an ensemble size of 10. The learning rate is set to 0.1, as with the fuzzy 

rule boosting experiments. When working with MATLAB the AdaBoost.M1 and AdaBoost.M2 

algorithms are used for two-class and multi-class problems respectively. For those experiments performed 

using WEKA, AdaBoost.M1 is used for binary classification and LogitBoost is used for multi-class 

problems. 

To further expand the scope of our experiments, we consider some additional datasets: 

• Bands – A classification problem from rotogravure printing, the task is to determine a given piece 

is a cylinder band 

• Cleveland – A specific difficult subset of the heart disease dataset 

• Coil 2000 – An insurance company benchmark problem  

• Phoneme – Predict if a sound is nasal or oral from vowel sounds 

• Pima – Data concerning diabetes diagnosis predicted based on certain medical measurements 

• Yeast – Categorizing yeast species from test results  

All of which are available from the KEEL repository. These additions target the inclusion of larger 

problems (more instances) as well as more multi-class problems. 

Table 6.7: Comparative Boosting Results 

Dataset Weak Learner 

FR-Boosting Decision Tree Decision Stub Naïve Bayes OneR ZeroR 

Wdbc 0.931 0.946 0.951 0.956 0.916 0.627 

Bands 0.594 0.588 0.714 0.627 0.679 0.579 

Cleveland 0.565 0.555 0.576 - 0.512 0.539 

Coil2000 0.940 0.940 0.940 0.907 0.939 0.940 
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Phoneme 0.776 0.799 0.777 0.760 0.753 0.707 

Pima 0.703 0.755 0.757 0.757 0.697 0.651 

Iris 0.977 0.887 0.953 0.933 0.927 0.333 

Wine-Quality 0.810 0.854 0.983 - 0.882 0.399 

Wisconsin 0.978 0.949 1.000 0.994 1.000 0.650 

Heart Disease 0.718 0.796 0.804 0.830 0.719 0.556 

Appendicitis 0.900 0.868 0.830 0.840 0.868 0.802 

Glass 0.625 0.687 0.715 - 0.533 0.355 

Bupa 0.614 0.677 0.670 0.638 0.588 0.580 

Banknote Auth 0.968 0.962 0.945 0.983 0.896 0.555 

Yeast 0.492 0.552 0.617 - 0.379 0.312 

 

Table 6.7 and Figure 6.6 present the results of our comparative boosting experiments for all considered 

datasets. 

In multi-class experimentation, the NaiveBayes learner is incompatible with the boosting algorithm 

provided by WEKA, so results are not applicable. These experiments allow us to address the final 

question posed at the beginning of this study: 

• How well are fuzzy classification rules able to perform? 
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Figure 6.6: Boosting performance for various weak learners 
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The experiments in Table 6.7 allow us to address this question by directly comparing the predictive 

performance of the proposed methodology to standard weak learners. The results demonstrate that our 

methodology is generally on par in terms of classification accuracy, with a few results swinging to either 

side of the spectrum. In a couple cases, Iris and Appendicitis, our methodology outperforms the all other 

learners by a small amount. In other cases, Glass, Heart Disease, Yeast and Bands, our learner is 

noticeably poorer than the top performing experiments. This is not too concerning, as we readily accept 

that different learners will have different strengths and weaknesses which are still apparent in a boosted 

ensemble. 

We have included the ZeroR “learner” in these experiments to help analyze the meaningfulness of certain 

results. This algorithm is a dummy learner which simply predicts the majority class (the class with the 

largest number of instances) 100% of the time (or the weighted majority class when part of a boosted 

ensemble). This provides some context to certain results, such as Coil2000, where no predictor provided 

meaningful insight into the problem, and some learners, such as Naïve Bayes, performed strictly worse 

than this simplistic method. Additionally, we highlight the Cleveland dataset, where all three compatible 

algorithms barely outperformed ZeroR, indicating that very little knowledge was extracted from the 

system by any learner. Examining the Appendicitis dataset, the performance of the proposed algorithm 

exhibits what appears to be a small increase in classification accuracy; however, in the context of ZeroR 

accuracy, we can assert that this performance increase is notably more significant. 

A handful of interesting results have been highlighted in Table 6.7 (in bold) where the proposed method 

performed well with respect to other learners. 

6.3.4 Final Remarks 

This chapter proposes a methodology for the generation of a novel fuzzy weak learner, in the form of 

fuzzy classification rules, for use in a boosted ensemble. The goal of this research is to explore the 

feasibility of applying a fuzzy rule-based system as the component weak learner of a boosted ensemble, 

and to study the adaptability of such systems in a weighted environment. The topic of fuzzy models in 

boosted ensembles has not been well-studied, and we present this specific methodology as an initial case-

study on the topic. 

Through our experimentation, we have asserted the feasibility of the proposed methodology. Through 

insightful case studies, we have demonstrated the proposed learner’s ability to improve classification 

performance in an ensemble and shown the effects of the sigmoidal modifier on classification 

performance and model adaptability. Initial boosting experiments demonstrated the improved 

classification rates achieved by the ensemble as compared to individual classifiers, and further 



95 

 

experiments compared the performance of the fuzzy rule ensemble to established weak learners, with the 

proposed methodology generally performing at a reasonable rate. 

We consider this study to be a successful foray into the topic of boosting with fuzzy models. This study is 

an initial exploration of this topic, as we have only addressed a single case study in what could be an 

expansive research topic on generalized boosting with fuzzy models. There is ample opportunity for 

further research, both considering the refinement of our methodology and the application of completely 

different weak fuzzy learners to boosted ensembles. As the adaptability and diversity of the component 

learners is critical to successful boosting, future research could consider different avenues for the 

expansion of learner flexibility, as well as more sophisticated methodologies for classification rule 

extraction from data. 

  



96 

 

7 GENERATING HIERARCHICAL FUZZY RULE BASED MODELS FROM 

DATA 

So far, we have examined fuzzy rules from a number of different perspectives, including the analysis of 

their stability, their use as weak learners in an ensemble, and the exploration of different generation 

methodologies and rule formats. The commonality in the presented work is that each chapter is concerned 

with a traditional, flat, fuzzy rule-based system. This standardized form of FRBS is well-studied and 

established; however, the modification of the standard form provides substantial opportunity for novel 

research and potential avenues for improvement. 

 In this chapter, we propose a novel fuzzy rule-based architecture, defining a hierarchical rule structure in 

a cascading format. The goals of this research are twofold. First, we seek to improve the predictive 

performance of the fuzzy model, as compared to the traditional format, through increased rule specificity 

and division of labor. Second, we target the readability and interpretability of the fuzzy model through the 

formation of simpler individual rules, which are more easily understood by a human reader. Improving 

the performance of FRBSs has been addressed extensively in the literature, including many studies 

proposing novel rule extraction techniques aimed at reducing error. For the most part, research in this area 

has focused on improving the quality of individual rules through advanced extraction techniques, but with 

the final rule architecture remaining unchanged from the well-known form. Although less common, 

studies proposing novel fuzzy rule structures or system architecture do exist. These sophisticated 

architectures can be used to improve the predictive ability of the model, while still maintaining a high 

degree of interpretability. Focusing on the topic of this study, we are interested in hierarchical fuzzy rule-

based models; specifically, those model topologies which divide the predictive responsibility between 

multiple layers of fuzzy rules. The literature on this topic is limited, and the existing relevant studies are 

discussed in detail in Section 2.4. 

In this chapter, we propose a hierarchical rule-based architecture and a companion methodology for the 

extraction of the defined architecture from data. In the proposed format, we apply the predictions of the 

previous hierarchical layer in the output part of the fuzzy rules. We consider a cascading style of 

hierarchical structure, where lower level rules serve to refine or fine-tune those coarser predictions made 

at higher levels of the model. Additionally, we explore strategies for the selection of critical modeling 

parameters, including the number of fuzzy rules to compute at each level of the hierarchy, and the 

selection of which features to use at which levels of the hierarchy. These parameters are critical to the 

successful generation of a high-quality hierarchical model, so their intelligent selection is important. We 
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provide extensive experimental results demonstrating the feasibility of the proposed architecture, case 

studies outlining the behavior of parameter selection techniques, and some comprehensive experiments 

showing the relative performance of the proposed methodology versus a standard TS-FRBS.  

The work presented in this chapter exhibits several aspects of novelty. First, a complete methodology for 

the autonomous extraction of a hierarchical FRBS from data is fully novel, as all previous studies have 

only considered expert generated systems and have not addressed rule extraction from data. Second, the 

use of feature selection strategies and making autonomous choices regarding the number of rules at each 

level has not been addressed in previous works. Finally, the existing literature on hierarchical fuzzy 

models is primarily concerned with the reduction of the number of required fuzzy rules, with a focus on 

interpretability. This study also demonstrates the high degree of interpretability attained by the proposed 

format, but additionally demonstrates that, in many cases, we are able to attain significant performance 

improvement using a hierarchical scheme.  

7.1 ARCHITECTURE OF THE HIERARCHICAL FUZZY RULE-BASED MODEL 

This section outlines the architecture of the proposed hierarchical fuzzy rule-base, as well as related 

computations pertaining to feature selection and choosing the number of rules. The model format 

proposed in this study is constructed in an iterative fashion, and lower levels of the hierarchy are 

incrementally computed and added to the architecture as training proceeds. 

7.1.1 Overview of the Model Architecture 

The proposed architecture takes the form of a cascading hierarchical structure. At each level of this 

structure, some number of input features are used to generate a set of first order TS-fuzzy rules. At the 

second through nth level of the model, the predictions made at the previous layers are considered as a 

feature in the consequent part of the fuzzy rules. The generalized architecture takes the form shown in 

Figure 7.1, where it is important to note that the predictions of the previous layer are only applied to the 

output parts of the subsequent rules. In this format, lower level rules act to fine-tune higher level 

predictions, using new feature knowledge to construct increasingly specific fuzzy rules. The number of 

features used at each level is fully configurable but should be kept low to ensure rule specificity. 
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In this format, the contribution of the previous layer is used in the output part of the next layer: 

𝑦(𝑡) = 𝑏0𝑦(𝑡 − 1) + 𝑓(𝒙𝒕, 𝑏) 

(7.1) 

Where t is a given level of the hierarchy for t > 1, b0 is a functional parameter specific to the previous 

layers output prediction, xt is the vector of features used at level t, and b is the additional set (array) of 

functional parameters associated with the relevant input features at this layer. This is a modified version 

of a standard first order TS-fuzzy rule as given in (3.8). As a simple example, consider a hierarchical level 

where we have selected two features to model, xs and xd. The consequent of a given rule at this level 

would take the following format: 

𝑦𝑖,𝑡 = 𝑏0𝑦𝑡−1 + 𝑏1𝑥𝑠 + 𝑏2𝑥𝑑 

(7.2) 

Where yi,t is the output of the ith rule at the tth level. 

In Section 3.4.1, we define a methodology for estimation of functional parameters for a first order TS-

FRBS using equations (3.13) through (3.18). With the addition of the previous layer’s prediction, the 

problem needs to be reformulated. The equation (3.13) is modified to: 

𝑦𝑡 = 𝒃𝒊
𝑻[𝒙𝒌, 𝑦𝑡−1] 

(7.3) 

And (3.15) is similarly changed: 

Figure 7.1: Generalized architecture of the hierarchical fuzzy rule-based model 
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𝒛𝒊𝒌 = 𝑢𝑖𝑘[𝒙𝑘 , 𝑦𝑡−1] 

(7.4) 

With these modifications, we now consider the prediction from a previous layer to act as the y-intercept 

of the multi-dimensional linear equation for each rule. This is an intuitive way to handle this problem, as 

the linear equations for each rule effectively treat the last prediction as a starting point, and the functional 

parameters associated with the new input features are used to adjust this initial value as described by their 

relationship to the output feature. This is in line with our previous description of the hierarchical 

architecture, using lower layers to continuously fine tune the prediction, hopefully resulting in overall 

better performance. 

The prediction of each layer is similar to the standard equation, previously defined in (3.11) with the 

addition of the previous layer’s prediction: 

𝑦𝑡 =  ∑ 𝑢𝑖𝑘𝑦𝑖,𝑡

𝑐

𝑖=1

 

(7.5) 

Where yi,t is given in (7.2), and uik is the fuzzy membership of the instance to the rule. 

7.1.2 Interpretability of the hierarchical model 

This section briefly demonstrates how the described architecture of hierarchical fuzzy-rules can be 

“unfolded” into rules similar to a flat rule-base (if desired), and how the hierarchical architecture can 

improve overall interpretability by decreasing the complexity of each individual rule, even though more 

rules are generated and activated in total. 

The hierarchical architecture can have the activated rules from each level combined into a single larger 

rule if desired. The flattened output equation for the activated rules would look something like the 

following: 

�̂� =  𝑢𝐿𝑏𝐿−1,0 (. . . (𝑢2𝑏3,0(𝑢1𝑏2,0(𝑏1,1𝑥1 + 𝑏1,2𝑥2) + 𝑏2,1𝑥3 + 𝑏2,2𝑥4)) + ⋯ ) + 𝑏𝑛,1𝑥𝑛−1 + 𝑏𝑛,2𝑥𝑛 

(7.6) 

Where ui is the membership of the given input instance to the activated rule at the lth level, ba,b is the bth 

functional parameter for the rule activated at the ath level, xi, i= 1, 2, … n are the n input features in the 

order in which they are selected, and L is the number of hierarchical levels. In a real-world application, u 



100 

 

values are constant for a given input instance and b values are static once the model is trained; hence, the 

equation is significantly simplified as these numeric values are easily reduced algebraically. Obviously, in 

a fuzzy environment this does not tell the full story, as multiple rules may be activated at each level to 

different degrees; however, for the purposes of presenting the highly activated rules to provide human 

readable feedback, this format is useful.  

A similar equation can be formulated to provide a flat representation of the activated input parts of the 

rule: 

𝐼𝐹 𝑥1 𝑖𝑠 𝐴𝑖1 𝐴𝑁𝐷 𝑥2 𝑖𝑠 𝐴𝑖2 𝐴𝑁𝐷 … 𝐴𝑁𝐷 𝑥𝑛 𝑖𝑠 𝐴𝑖𝑛 𝑇𝐻𝐸𝑁 … 

(7.7) 

Where xi are the features in their chosen order for the hierarchical model, and Aij indicates the fuzzy set 

associated with feature j at rule i, for the activated rule at a given level. Again, there is the potential for 

multiple rule activations at each level, but for human readability the transparency is still present. 

The other aspect of model interpretability which may be of interest is how the division of otherwise 

complex fuzzy rules from a flat topology into a series of simpler rules is beneficial to human readability. 

In a traditional flat fuzzy model containing some c fuzzy rules, each considering n input features, it can 

often be difficult for a human reader to assess the effect of individual features on system behavior, 

especially when considering linear rule consequents. In our hierarchical topology, the individual rules at 

each level are significantly simpler, and the number of rules at each level can be tailored to the feature(s) 

under consideration. This improves model interpretability, both by making the influence of individual 

features clearer and by making rules easier to digest (as they are less complex). 

7.1.3 Features selection in a Hierarchical Model 

The hierarchical architecture defined in the previous section is computed incrementally, adding a new 

layer using new input features to compute new fuzzy rules. This naturally raises the question of which 

features should be used at what levels of the hierarchy, and how we make this decision.  

The general question of feature selection is one which has received significant research attention, 

although most studies focus on classification problems and the elimination of less useful features from the 

modelling process. That being said, feature selection for continuous problems does exist, with a few 

notable strategies. The goal of feature selection is to choose the best features from those available in the 

dataset according to some metric, usually in order to eliminate less useful features simplifying the model 

or improving performance. In our case, we use feature selection to determine the order in which features 

are modelled by the hierarchical architecture, and because this choice is made as a step in an iterative 
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process, we must be cognizant of the computational cost of each potential solution. We should be 

especially cognizant of any overly complex feature selection strategies, as for a small number of features 

they may be outperformed by simple enumeration. For the purposes of this study, we consider two feature 

selection strategies: the use of a correlation coefficient and a performance-based strategy. 

In the proposed methodology, we are interested in the selection of a small number of features at each 

iteration. As such, we first consider the extremely simple strategy of enumerating of the available 

features, and the selecting the subset of features which results in the best immediate performance. This 

strategy has some obvious strengths and weaknesses. First, we note that when evaluating our options 

through enumeration, the complexity of the computation is tied to the total number of features and the 

number selected, and that as the number of desired features increases, this complexity increases 

exponentially. Further, we expect that the previous features selected have an impact on the choice of the 

next features, so the evaluation needs to be made for each remaining feature at each iteration of the rule 

extraction process. This results in an overall relatively high computational cost, which may negatively 

affect modelling large or highly dimensional datasets. On the other hand, this selection strategy is very 

simple, intuitive to understand, and provides some guarantee of performance-based feature selection. This 

is an example of greedy strategy, where the best immediate choice is always taken. 

The second strategy we consider is the use of a simple statistical measure, such as correlation, to select 

features at each level of the hierarchy. A correlation coefficient can be used to select those features with 

the strongest linear correlation to the output feature first, and then proceed to fine tune the model with less 

and less meaningfully correlated features. This strategy has a degree of logical justification, as the fuzzy 

rules generated at each level are first order TS-fuzzy rules, and contain linear consequents; hence, we 

would expect those features with a high degree of correlation to produce stronger initial predictions, 

enabling lower level rules to fulfil their role as fine tuning components. This strategy is not without its 

drawbacks. A correlation coefficient fails to capture localized linear relationships, which are easily 

modelled by a set of first order fuzzy rules, and there are other aspects to a features desirability in 

modelling which are not captured by linear correlation. Regardless, a correlation coefficient is 

significantly more computationally efficient than the performance strategy discussed previously, and the 

coefficient values can be calculated once at the beginning of the modelling process, and do not need to be 

recalculated during iterative model construction. 

We consider the Pearson’s Correlation Coefficient, r, defined by the following equation: 

𝑟 =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1
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(7.8) 

Where �̅� and �̅� are the sample means for the two features under consideration, and the computed value, r, 

is the sample correlation coefficient between the two features. Higher r values indicate a higher degree of 

correlation, so when considering the correlation between an input and output variable a higher value is 

considered to be a better immediate choice. 

7.1.4 Determining the Number of Rules 

An important parameter in fuzzy rule generation, when using FCM clustering, is the choice of the number 

of clusters (rules), denoted c. The selection of this parameter has critical implications regarding the 

performance of the model, as well as the quality of the resulting knowledge. There several important 

considerations when selecting c, including the identification of the “natural” number of rules for a given 

dataset or feature, the trade-off between performance and memorization, and the complexity 

(interpretability) of the resulting model. 

In a more complex model topology, such as the hierarchical structure proposed in this chapter, the choice 

of c gains additional importance, as the selection of this parameter is made at each level of the hierarchy. 

This means that good or bad choices of c have far reaching implications on the quality of the model as the 

effects compound over the course of model construction. Additionally, as features are considered 

independently or in small sets, we are provided with an opportunity to make feature specific parameter 

selection, which may improve overall model quality.  

Cluster validity indices are a topic which has received significant attention in the existing literature, 

although few of these studies are recent. Such indices perform some computation on a clustering result (in 

our case fuzzy clustering) and return a numerical indication of cluster quality. The evaluation of cluster 

quality is often computed considering factors such as data representation, cluster compactness, and cluster 

separation. The index is computed for a range of potential c values, and the results are compared to 

determine the “best choice” from the evaluated options. There are a large number of cluster validity 

indices available, and one index which has shown good overall performance in the literature [96] is the 

Xie-Beni index [97], defined previously in (3.25). This index considers a combination of data 

belongingness and inter-cluster separation to give an indication of the feasibility for a given choice of c. 

In our experiments, we make use of this index by computing Vxb for a range of potential c values at each 

level of the hierarch and using this information to make autonomous choices of c during hierarchical 

model construction. 
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A second option for the autonomous selection of c is the use of a validation (testing) dataset during 

training, which enables us to select c based on balancing training and testing accuracies, with the goal of 

maximizing performance while avoiding memorization. This strategy focuses on finding the value of c at 

which training performance is maximized, but the difference in error for the validation set is minimized. 

To accomplish this, we consider two values. First, the difference between the training and testing errors 

indicates the degree of overtraining, and we target the minimization of this value. Second, we wish to 

minimize the training error (maximize performance), and we address both these criteria simultaneously 

through the following index: 

𝑉𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑡𝑟𝑎𝑖𝑛|𝐸𝑡𝑟𝑎𝑖𝑛 − 𝐸𝑡𝑒𝑠𝑡| 

(7.9) 

Where Etrain and Etest are the training and testing RMSE’s respectively. We employ this index in a similar 

manner to a standard cluster validity index, evaluating different choices of c, and selecting the best choice 

based on the lowest score. 

7.2 EXPERIMENTS 

This section provides several experimental results covering a range of exploratory case-studies on 

important parameterizations, and extensive comparative experiments demonstrating the performance of 

the proposed methodology. 

An aspect of the hierarchical FRBS which has not yet been discussed is the choice of how many features 

should be used at each level. In our experiments, we consider the simplest case, using two features at the 

first level and one additional feature at all subsequent levels. This maximizes the degree of hierarchy, 

with the aim of promoting any apparent effects from this structure. 

7.2.1 Case Study – Improvement through hierarchy 

As an initial case-study, we examine the ability of the hierarchical topology to continuously improve 

modelling performance as additional levels (features) are added. It is imperative that we establish 

improvement through additional hierarchical levels, as this is a major justification of the proposed 

methodology. Additionally, we may find experimentally that not all features contribute positively to 

predictive performance, or that using too many features results in memorization effects. 

For these experiments we use two real-world datasets from the KEEL repository [197]: 
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• Forest Fires – A data set which uses weather metrics to predict the size of a forest fire burn zone. 

This dataset has been modified to remove date information for compatibility reasons. 

• Concrete – A problem which uses chemical and physical measurements from concrete samples 

to predict compressive strength. 

Our first set of experiments briefly visualizes the error rates of a model over the course of hierarchical 

construction. Error values given here indicate the performance of the model if generation was stopped at 

this iteration. Each dataset is split into a training and testing partition with a 75/25% split. A small range 

of static c values are tested in the range of 3 to 10, and we use the performance-based feature selection 

strategy from Section 7.1.3. 

Figure 7.2 provides RMSE’s for the forest fires dataset. As shown graphically, over the course of model 

construction the training error is consistently decreased by the addition of an additional feature (level). 

The degree to which the model is improved varies, and in certain application it may be beneficial to stop 
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construction early to generate a simpler model. The testing figure indicates that much of this improvement 

may come at the cost of significant overtraining, as in some cases, particularly c = 10, the testing error 

rises rapidly with the number of levels. Other cases, such as c = 8, show that memorization effects can be 

avoided, while still significantly increasing model performance when good parameterizations are used. 

Figure 7.3 provides a similar graphic for the Concrete dataset, generated using the same experimental 

setup. This experiment results in a standard curve shape for RMSE as model complexity is added, this 

time with a far smaller degree of memorization. Note that the choice of c remains critical as the degree of 

overfitting varies with respect to this parameter. 

7.2.2 Case study – feature selection strategies 

Next, we examine case studies exploring the behavior of the proposed feature selection strategies. The 

considered strategies are those outline in Section 7.1.3, and all experiments are performed with 10-fold 

cross validation. 

Figure 7.4 graphically presents the performance of the hierarchical method using two features selection 

techniques, each evaluated for a small set of c values. We observe that the feature selection strategy does 

not noticeably impact the performance of the final models. In fact, looking at the concrete dataset, the 

simpler correlation strategy slightly outperforms the performance strategy. This demonstrates that a 

greedy strategy may not always be the best choice. Regarding the forest fires plot, huge memorization 

effects are visible as c is increased, making analysis somewhat difficult; however, we note that this spike 

occurs at a smaller c value using the performance method (c = 8) than with correlation (c = 10). 

These case studies indicate that there does not seem to be a substantial difference between feature 

selection strategies, but that, on the balance of the results, the correlation coefficient seems a slightly 

0

20

40

60

80

100

3 5 8 10

R
M

SE

# Rules

Forest Fires

Correlation Train Correlation Test

Performance Train Performance Test

0

2

4

6

8

10

3 5 8 10

R
M

SE

# Rules

Concrete

Correlation Train Correlation Test

Performance Train Performance Test

Figure 7.4: Training and testing errors for 3 sample datasets for different feature selection strategies 



106 

 

more stable choice, with the additional benefit of a lower computational cost. Further experiments, or 

more sophisticated strategies may be able to improve the model to a greater extent than observed in this 

section. 

7.2.3 Case study – tuning the number of rules 

As alluded to many times in previous sections, the choice of c at each level of the hierarchy is critical to 

high quality modelling. Section 7.1.4 outlines the candidate strategies for determining the value of this 

parameter automatically, and in this section, we present experiments to examine the effects of each 

strategy on the quality of the completed model. All experiments are conducted with 10-fold cross 

validation and use the standard choice of m = 2.0. 

Figure 7.5 displays the graphical results using a static c value at each level, varying from c = 2 through 

10. As shown in Section 7.2.2, larger c values frequently result in overtraining, and this effect is most 

visible in the Forest Fire experiments. Using a static c is simplistic and is the result of uninformed choices 

of c at each level.  

Next, we examine the use of a cluster validation index, specially the Xie-Beni index as defined in (3.25). 

Table 7.1: RMSE when choosing c by validation index 

Data Set Performance Correlation 

Train Test Train Test 

Forest Fires 54.70 51.42 53.77 52.25 

Concrete 7.44 8.06 7.37 7.86 
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Figure 7.5: Static # rules for example datasets, training and testing data for two feature selection strategies 
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Table 7.1 provides a brief set of reported RMSE’s selecting c at each level using VXB. First, we observe 

that this strategy seems to avoid significant memorization effects automatically, with training and testing 

errors remaining similar throughout. The fact that this strategy may automatically avoid overtraining 

without external expertise is a major point in its favor. 

Table 7.2: Sample results for static c values 

Data Set # rules Performance Correlation 

Train Test Train Test 

Forest Fires 4 53.89 55.82 56.28 54.70 

Concrete 5 7.52 8.09 7.39 7.78 

 

Table 7.2 provides sample errors for those static c values most closely matching the cluster validation 

results for comparison purposes. With respect to the Forest Fires dataset, the validation index performs 

slightly better on average. In the case of the Concrete dataset, we would say that the results are very 

similar between the two cases, with the primary advantage to the validation index being that no prior 

knowledge of the problem was needed. 

Finally, we examine the use of a validation dataset. For this strategy the fitness of a given c value is 

expressed as a function of testing and training errors, as defined in (7.9). 

Table 7.3: Errors for choosing c using a validation dataset 

Data Set Performance Correlation 

Train Test Train Test 

Forest Fires 38.92 56.70 38.15 57.04 

Concrete 8.13 8.49 7.19 7.65 

 

Analyzing the results in Table 7.3, we compare these errors to those from the previously examined 

strategies. With respect to the forest fires dataset, we note that this strategy results in a greater degree of 

memorization, but the that overfitted testing errors are comparable with those from previous strategies. 

The concrete dataset results in larger errors when using performance to choose features, and lower errors 

when considering the correlation coefficient. This implies a potential interaction between the two 

parameter selection strategies. 

These case-studies demonstrate the feasibility of both automatic parameter selection strategies proposed 

in this study. These experiments indicate that making an autonomous choice of c at each level results in 
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higher quality models than a static value, in addition to eliminating an otherwise necessary input 

parameter. These experiments do not provide definitive evidence in favor of one method or the other but 

do provide some useful feedback on each strategy. 

7.2.4 Comparative experimental results 

Previous experimental subsections provide useful case studies exploring the proposed options for feature 

and c selection strategies. The case studies considered allow us to move forward with more 

comprehensive experiments, using a larger number of real-world datasets. In this section, we provide 

extensive experimental results which demonstrate the quality of the hierarchical fuzzy models generated 

using the proposed methodology. To establish a relative degree of performance, we record the error rates 

of the proposed architecture alongside the error rates of an equivalent flat FRBS, as a baseline. 

In addition to the forest fire and concrete datasets considered previously, we provide experimental results 

for the following datasets from the KEEL repository [197]. 

• Abalone – Predict the age of an Abalone from physical measurements 

• AutoMPG – Predict the fuel efficiency of an automobile from make and model information 

• Baseball – Uses baseball statistics to predict the salary of players 

• Compactiv – Determine user CPU usage percentage from other computational information 

• Pole – A telecommunications problem 

• Treasury – Determine the monthly CD rate from various financial data 

• Wizmir – Various weather data is used to predict a mean temperature 

• Friedman – A synthetic benchmark dataset 

• Mortgage – Predict the conventional mortgage rate from financial data 

• Wankara – Predict the mean temperature of a region from weather information 

• California – Housing price prediction based on location and house features in California 

• House – House price prediction based on house features and location in the United States 

• Puma32h – A dataset concerned with the control systems of a robot arm 

This represents a comprehensive set of regression problems with a wide range of problem types, dataset 

sizes, and dimensionalities. 

To demonstrate any statistical significance in error differences between the hierarchical and flat fuzzy 

models, we perform an unpaired T-Test on the resulting RMSE’s from 10-folds of cross validation and 

report the resulting p values alongside the results. When analyzing p to determine significance, we 

consider a standard threshold of p < 0.05 to indicate a significant difference between the errors. 
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Due to the number of considered datasets, and the complexity of the parameterization choices, 

comparative experiments are split into two sections. Initial comparative results are presented using a static 

c, and a reduced result set promoting the best performing experiments from the proposed c and feature 

selection strategies is given afterwards. 

Table 7.4: Comparative Errors for Hierarchical vs Standard FRBS 

  
Hierarchical Flat T-Tests 

Data Set c Train Test Train Test p train p test 

Abalone 5 2.14 2.17 2.09 2.12 0.000 0.496 

AutoMPG6 5 2.77 2.98 2.78 3.01 0.637 0.936 

Baseball 5 721 1049 772 1042 0.000 0.947 

Concrete 5 7.54 8.03 9.31 9.79 0.000 0.000 

Compactiv 5 2.91 2.99 4.41 4.56 0.000 0.000 

Pole 5 14.3 14.4 18.2 1679.0 0.000 0.113 

Treasury 5 0.206 0.221 0.181 0.203 0.000 0.179 

Wizmir 5 1.14 1.19 1.10 1.15 0.000 0.437 

Friedman 5 1.80 1.86 1.80 117.67 0.913 0.029 

Mortgage 5 0.099 0.105 0.071 0.080 0.000 0.000 

Wankara 5 1.30 1.679 1.14 1.39 0.000 0.001 

California 5 72482 72662 66700 66976 0.000 0.000 

House 5 37904 38348 43092 704559 0.000 0.088 

Puma32h 5 0.024 0.025 0.026 0.712 0.000 0.000 

Forest Fires 5 46.3 59.4 61.0 52.0 0.000 0.699 

 

Table 7.4 contains a comprehensive list of comparative experiments using a static c value of c = 5, chosen 

as a reasonable general choice given the results of past experimentation. Bolded entries indicate a superior 

performance and italicized entries indicate a weaker performance of the hierarchical method with respect 

to the flat topology. Over this large set of regression datasets, we observe generally mixed results. In 

many instances, the hierarchical topology outperforms the flat topology; however, there are a few 

instances of equivalent performance, and some cases where the proposed hierarchical scheme is 

outperformed by a flat FRBS. 

Looking first at the positive results, we identify the Concrete, Compactiv, Pole, House, Puma32h, and 

Forest Fires datasets. In these experiments, the resulting RMSE’s and p values demonstrate a statistically 
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significant improvement in modelling performance as compared to a flat FRBS, sometimes with a 

relatively large decrease in error. Those datasets for which the hierarchical topology resulted in equivalent 

error rates to the flat FRBS include the AutoMPG and Friedman datasets, where, as demonstrated by the 

t-tests, any differences between errors are not considered significant. Finally, we note that the Abalone, 

Treasury, Wizmir, Mortgage, Wankara and California datasets show a decrease in modelling performance 

when compared to a standard FRBS. Note that this is only for the case of a static c value. 

For some of these datasets (specifically Baseball, Pole, Abalone, Treasury, Wizmir, House, and Forest 

Fires) the differences between reported RMSE’s are only significant for the training partition. 

Explanations for this behavior vary. In the case of the Pole dataset, we note that the flat model suffers 

from significant overtraining, potentially causing chaotic behavior, and similar characteristics are 

observed for the House and Puma32h datasets. In other cases, the specific reasons for poor testing 

performance are less obvious, but it would seem a fair assumption that certain models demonstrate 

significant instability between folds, destabilizing the t-test results. 

As a final set of experiments, we provide a reduced set of comparative results using the feature and c 

selection strategies, continuing to use of 10-fold cross validation. In the cases where a given c selection 

strategy is used in the hierarchical case, the identical strategy is used to choose the number of rules in the 

flat model. While this may not always result in directly analogous models, depending on the values 

chosen, it seems the fairest strategy as both models are constructed and evaluated on identical objective 

criteria.  

Table 7.5: Highlighted Comparative results using feature and rule selection strategies 

Dataset Parameterizations Hierarchical Flat T-Tests 

Features Rules Train Test Train Test p train p test 

Abalone Performance Index 2.13 2.17 2.15 2.19 0.080 0.859 

Auto MPG Correlation Index 2.65 2.93 2.79 3.03 0.001 0.639 

Baseball Correlation Validation 736 945 785 879 0.157 0.323 

Concrete Correlation Validation 7.30 7.64 8.74 9.18 0.001 0.000 

Compactiv Performance Validation 3.08 3.58 4.94 4.99 0.000 0.003 

Pole Performance Index 13.16 13.22 23.69 23.83 0.000 0.000 

Treasury Performance Validation 0.19 0.22 0.19 0.20 0.651 0.464 

Wizmir Correlation Validation 1.12 1.25 1.09 1.14 0.096 0.153 

Friedman Performance Index 1.77 1.87 2.15 3.78 0.000 0.014 

Mortgage Performance Validation 0.09 0.10 0.08 0.08 0.039 0.028 
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Wankara Performance Validation 1.19 1.78 1.18 1.28 0.545 0.003 

California Correlation Validation 72713 72815 66517 66806 0.000 0.000 

House Correlation Validation 37600 38419 44627 52970 0.000 0.048 

Puma32h Correlation Index 0.01 0.01 0.03 582672 0.000 0.000 

Forest Fires Performance Index 54.51 50.72 62.44 48.06 0.056 0.896 

 

Table 7.5 presents the reduced results from extensive experimentation using the proposed feature and c 

selection techniques. This table represents the best performing hierarchical models for each dataset from 

the parameterizations tested. Once again, we indicate positive results as bolded entries, and poor results in 

italics. In general, the comparative performance of the hierarchical models is improved versus those 

results given in Table 7.4. These results indicate the best performing choices of feature and c selection 

strategies, and as shown in the table, there is no single dominant strategy for either parameter. This could 

be construed as a positive as it implies that further work experimenting with more sophisticated strategies 

may result in further performance improvements. Examining only positive (bolded) results, the split 

between c selection techniques is even; however, feature selection is skewed towards the use of a 

correlation coefficient. Interestingly, all three poorly performing datasets (italicized) make use of the 

validation strategy for choosing c, and two out of three use the performance-based feature selection 

protocol. 

Examining the relative performance of the hierarchical model versus the flat topology, we observe that, 

when using the defined parameter selection techniques, the hierarchical methodology matches or beats the 

flat rule-base in all but a couple cases, including some datasets where this was not the case when c was 

chosen as a static parameter; specifically, Treasury and Wizmir both display neutral results, while 

Friedman is now a positive result. We further highlight that the c selection strategies, in combination with 

the hierarchical architecture, have autonomously avoided overtraining, which is not the case with the flat 

rule-based models or the use of a static c. The absolute errors are not always lower in these cases than in 

Table 7.4, but the elimination of overtraining effects and an overall better balance between the training 

and testing errors is a significant positive which would seem worth the cost. 
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These results demonstrate that the proposed methodology can produce high quality interpretable fuzzy 

rule-based models with a bare minimum of input parameterizations and prior knowledge of the dataset. In 

those cases where improvement is seen, the degree of error reduction achieved by the hierarchical 

architecture is high. The percent reduction in RMSE as seen in Table 7.5 is visualized in Figure 7.6. We 

highlight the Puma32h (66%), House (16%), Compactiv (38%), Pole (44%), Friedman (18%), and 

Concrete (16%) datasets, where the values given in brackets are the percent reduction in training error, 

with the degree of improvement being greater or equivalent in the testing case for all datasets other than 

Compactiv. Many of these datasets are of high dimensionality, and the experiments indicate that the 

hierarchical scheme likely aids in dealing with highly dimensional datasets, a traditional weak point for 

FRBS’s due to rule explosion and the curse of dimensionality. We acknowledge that these experiments 

show some cases where the performance of the FRBS is decreased by moving towards a hierarchical 

topology. Specifically, the Mortgage and California datasets produced a 13% and 9% increase in training 

error with the hierarchical architecture, respectively. We can only speculate that these are dataset specific 

issues, which may be resolvable through a different rule generation procedure which is better able to 

model system knowledge. Over the full range of datasets tested we report an average reduction in training 

error of 6%, and an average reduction of testing error of 11%. 
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Figure 7.6: Percent reduction of RMSE using a hierarchical topology 
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7.3 FINAL REMARKS 

This chapter proposes a hierarchical FRBS architecture, alongside a well-defined procedure for the 

extraction of this hierarchical structure from data. The proposed architecture contains a cascading 

structure of fuzzy rules, in which the predictions of the previous layer are considered in the output part of 

the rules at the next level. This allows for the refinement of model predictions as the input is processed 

down the hierarchical structure and avoids interpretability issues regarding meaningless intermediate 

values. We assert that the proposed topology does not negatively impact the overall interpretability of the 

FRBS, as it results in simpler individual rules, which, if needed, can be recombined into a classical 

format. 

We have provided comprehensive experiments which demonstrate the feasibility of the proposed 

methodology, established the behavior of the proposed parameter selection strategies, and compared the 

performance of the hierarchical model to equivalently complex flat FRBS’s. We have shown 

experimentally that the hierarchical FRBS’s are able to provide a significant performance improvement 

versus a flat topology for the majority of datasets tested, without the loss of model interpretability. 

This study proposes a methodology for the extraction of a hierarchical FRBS from data using only a 

single rule extracting algorithm. Future research in this area could include exploring the performance of 

different rule extraction techniques to observe the quality of the resulting hierarchical model. On a similar 

note, our study was limited to considering only rudimentary feature selection techniques, and only one 

cluster validation index as parameter selection strategies. Both of these topics contain a significant 

amount of existing work which could be applied to this type of model, improving the performance, 

efficiency, or both of the methodology. There remains significant room for further work in the area of 

hierarchical rule-based systems, especially in relation to refining the extraction process.  
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8 CONCLUSIONS AND FUTURE STUDIES 

Fuzzy rule-based systems provide a compact and powerful platform for the development of human 

readable computational models. FRBSs are useful in their own right in the standard TS or Mamdani 

formats; however, the flexibility of the format, alongside diverse generation options, enables many 

opportunities for further research, some directions of which are explored in this dissertation. Due to the 

flexibility and simplicity of the format, FRBSs are a strong candidate for the exploration and analysis of 

novel architectures, topologies, or data structures. In this thesis, we studied this topic from two 

perspectives. First, we examined the use of information granules as a component part of a FRBS, 

applying information granules to the consequent part of the fuzzy rules, with the goals of furthering the 

applications of information granulation in computational modeling and improving the interpretability of 

the model. We assessed this rule structure experimentally through coverage and specificity and 

demonstrated the performance of this new rule format. Second, we have proposed and studied a novel 

hierarchical fuzzy rule-based architecture in which the decision-making load is divided between several 

specialized hierarchical levels, with the intent of simplifying the rules involved in decision making as well 

as improving predictive performance. The ability of the hierarchical fuzzy rule-based architecture to 

improve predictive performance was demonstrated experimentally, and the implications of this structure 

on model interpretability have been analyzed in detail. 

In addition to the use of new data structures and novel architectures, FRBS’s can also be applied as 

component parts of more complex computational structures. In this dissertation, we explored the concept 

of using small FRBS as the component weak learners of a boosted ensemble, demonstrating that the 

classification rate of the boosted ensemble comfortably outperforms a single FRBS, indicating a 

successful integration of this structure in a boosted context. We further showed that the classification rate 

of the ensemble composed of FRBS’s is generally on par with standard choices of weak learners for the 

datasets tested, indicating that the proposed learner is at least feasible in this context. 

The extensive applications of FRBS’s have resulted in significant research effort being applied to certain 

areas of meta research. This includes the evaluation of fuzzy rule interpretability and human readability, 

the development of indices for evaluating the difficult choice of selecting the correct number of rules, and 

other methods for qualitatively evaluating certain aspects of rule quality. In this dissertation, we proposed 

three quantitative rule quality metrics, aimed at assessing the degree of rule quality through the lens of 

rule stability. We defined rule stability as the ability of a methodology to consistently produce the same 

high-level rules, with reproducibility indicating that rules are a good fit for the modeled data. We 

demonstrated experimentally how the proposed metrics can be used to assess certain aspects of rule 
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quality, and how the evaluated quantities can be used in combination to obtain an overarching evaluation 

of rule quality.  

This dissertation examines fuzzy rule-based systems from many perspectives, including their design, 

applications, and analysis. We propose novel fuzzy rule architectures, explore novel rule extraction 

methodologies, examine the application of information granulation, apply fuzzy rules to boosted 

ensembles, and analyze and define certain aspects of rule stability. The work proposed in this dissertation 

highlights many interesting research topics regarding fuzzy rule-based systems, and we assert the 

following key findings from our studies: 

• The proposed rule stability metrics successfully indicate the degree of rule reproducibility from 

data, providing a meaningful assessment of rule quality. 

• Different rule stability metrics indicate different aspects of rule quality, with multiplicity and 

generalization indicating a degree of increased stability, and conflict providing a contrasting 

perspective. 

• The application of information granules in the output part of fuzzy rules significantly improves 

the human readability of the model as compared to a standard TS-FRBS. 

• Fuzzy rules are successfully generated through hierarchical clustering, although we demonstrate 

that in most cases hierarchical clustering is outperformed by Fuzzy C-Means clustering in the 

proposed format and in standard Mamdani style fuzzy rules. 

• The application of small FRBS’s to a boosted ensemble demonstrated increased classification 

performance when compared to a single equivalent learner, indicating a successful integration of 

FRBS’s and boosting technology. 

• The use of a weighted FCM and a sigmoidal modifier on the output part of the classification rules 

introduced significant flexibility in the FRBS and promoted the effectiveness of boosting. 

• The proposed hierarchical architecture is shown experimentally to frequently improve predictive 

accuracy as compared to a standard flat fuzzy rule-base. 

• The rules making up the hierarchical structure are simpler as they employ fewer features at a 

time, improving the readability of the system as well as producing more specialized rules with 

respect to individual features. 

• The parameterization strategies used in the formation of the hierarchical structure are shown to 

autonomously avoid overfitting and produce high quality models, successfully simplifying the 

model generation configuration. 
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These items highlight the major points of interest as studied and analyzed in this dissertation and 

represent a brief indication of the knowledge gained through the presented work. 

8.1 POSSIBLE LIMITATIONS OF THE RESEARCH 

Most of the research presented in this dissertation demonstrated positive results with respect to the goals 

of each study; however, in each case we identify certain limitations or weaknesses in the presented work.  

In the case of our stability metrics, we identify that, in the proposed formulations, the scaling factors do 

not fully compensate for the apparent favoritism towards a lower number of rules. While we intuitively 

expect smaller models to produce more repeatable rules, this behavior is undesirable as we would prefer 

that the metrics point towards those cases where the rules best fit the data. This behavior is most clearly 

shown through multiplicity, which tends to decrease as the number of rules increases, but this limitation is 

extended logically to the other two metrics as well. Generalization scores tend to increase with a larger 

number of rules simply because the problem space becomes larger, and so generalizations become more 

likely. Similarly, conflicts are also more likely as the number of consequent granules is increased with the 

number of rules. These limitations are identified in the full study as a significant weakness of the 

proposed stability metrics, and we suggest that resolving this issue would be a major step towards 

improving their usability. 

In our application of information granules to the output parts of fuzzy rules, there are two primary 

limitations in the proposed work. First, the application of the information granules is limited to the output 

part of the rules, and only considers the very simple data structure of an interval. More complex granular 

data formats exist in the literature which could improve the descriptive or interpretative aspect of the 

model, and the possibility of extending the proposed methodology to a fully granular FRBS exists. 

Second, the proposed format is evaluated though coverage and specificity; specifically, the trade-off 

between these two criteria, as a function of interval size. It is difficult to assess the performance of a 

granular model due to the obvious incompatibilities between a predicted granule and a numerical target. 

While coverage and specificity do a good job of capturing the critical aspects of justifiable granularity, 

the relative importance of each measure is difficult to determine and may be dataset specific. In our study, 

we do not delve into this topic, instead opting to assess models through an area under the curve 

measurement, avoiding any focused discussion the optimal choice of the interval generation parameter. 

When discussing boosted ensembles, we have limited our research to a single methodology for the 

generation of the weak learners (FRBS) from weighted data. The literature contains countless studies 

detailing different methodologies for the extraction of fuzzy rules from data, and many of these could be 
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adapted to a boosted environment, possibly improving the overall performance of the ensemble. 

Secondly, our study considers only one form of fuzzy classification rules. Other classification rule 

formats have been proposed in the literature, and, in the interests of developing a complete knowledge-

base on boosting with fuzzy rules, the use of these formats should be considered. In addition to these two 

primary limitations, there are certain minor considerations which have not addressed. These include the 

detailed examination of modelling parameters, such as the fuzzification coefficient, and the exploration of 

different boosting algorithms. 

The generation of a hierarchical FRBS is also limited to fuzzy rule extraction using only FCM clustering, 

and there is certainly potential for further improvement of predictive performance through more 

sophisticated rule extraction methodologies. Further, we have only scratched the surface of feasible 

parameter selection strategies, having only considered a single cluster validation index alongside 

simplistic feature selection tools. The features selected, and the number of rules generated at each level, 

have critical implications on the behavior (and subsequently performance) of the hierarchical model, and 

our limited study of this topic highlights a limitation of the presented work. Finally, when choosing the 

number of features, our study is limited to the simplest case of adding one feature at each level. This 

choice was made to maximize the degree of hierarchy in our experiments; however, as we have left this 

facet of hierarchical modelling fully unexplored, it represents another limitation of the presented work. 

8.2 FUTURE RESEARCH DIRECTIONS 

There is significant opportunity for further research in each of the topics addressed in this dissertation. 

Many of the studies proposed in this thesis are necessarily limited to specific methodologies or 

parameterizations to keep the scope of the study manageable, and these limitations provide avenues for 

further research. 

Our stability metrics represent an initial foray into the evaluating fuzzy rule quality from the perspective 

of rule stability, and with additional research it is likely our metrics could be refined or improved. As 

mentioned in the previous section, certain metrics are biased towards smaller numbers of rules, and the 

integer abstraction methodology we employ is a very simple one. Both aspects are candidates for 

improvement and further study. By improving the “parameter independent” variants of each stability 

metric, the quality of the stability analysis would be greatly improved, as researchers looking to use our 

metrics to analyze the quality of fuzzy rules would not need to be cognizant of the weaknesses we have 

discussed. While determining a natural number of rules for a problem is not the primary focus of our 

stability metrics, eliminating this weakness would significantly improve the usability of the proposed 
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metrics. Another aspect of our methodology which could provide an opportunity for further research is 

the improvement or modification of the rule abstraction methodology. The goal of rule abstraction is 

simply to facilitate rule comparison for stability analysis, and any other methodology which meets this 

criterion could be viable. More sophisticated strategies may result in higher quality rule comparisons, 

which would hopefully, in turn, result in higher quality stability analysis. 

Our study on partially granularized fuzzy rules has limited options regarding future research directions. 

We experimented with the use of hierarchical clustering as a vehicle for fuzzy rule generation, but 

ultimately found that it performed consistently worse than FCM clustering. As such, pushing on in this 

direction seems inadvisable. The other available research direction is further granularization of the FRBS, 

applying information granules to the condition parts of the fuzzy rules as well. This type of fully granular 

model may improve model interpretability and knowledge representation; however, granular conditions 

would result in additional complications, such as determining a degree of membership to granular rules, 

and in many senses such a study would no longer be on the topic of fuzzy rule-based systems, as the 

fuzziness is largely removed from the system.  

When constructing a boosted ensemble using FRBS’s, we have only considered a rudimentary 

classification rule format, and only one rule extraction procedure. Both items provide ample opportunity 

for additional research. As we have mentioned a few times already in this dissertation, many fuzzy rule 

extraction methodologies exist, and it is possible that a different rule extraction methodology would result 

in a greater degree of improvement through boosting. Similarly, more sophisticated fuzzy classification 

rule formats may also prove beneficial to overall performance and would certainly be worthy of future 

research effort. The study of these variations would eventually lead to a well-defined generalized fuzzy 

rule boosting methodology. In the interest of defining a complete fuzzy boosting methodology, we may 

also wish to consider different boosting algorithms or other types of fuzzy classifier. The application of 

fuzzy models to a boosted environment has very limited existing literature, and as a result, this topic has 

plenty of opportunity for further research. Our work represents an initial case study on the topic of 

applying fuzzy models to boosted ensembles, and, on the more general topic of boosting with fuzzy 

models, there remains a great deal of unexplored potential. 

Our hierarchical fuzzy rule-based architecture also provides opportunity for further study. In the presented 

methodology and subsequent experiments, we have limited our study to only consider a single additional 

feature at each level of the hierarchy. Future research could employ some strategy to make an informed 

choice of this configuration parameter, possibly adjusting the number of features used at each level 

dynamically during the hierarchical construction process. While there is no guarantee, this direction of 

experimentation may prove beneficial to overall predictive performance, and there are opportunities for 
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interpretability improvements as well (e.g. grouping linguistically related features). As discussed in the 

previous section highlighting certain limitations of our research, there is additional opportunity for 

improvement with respect to the parameter selection strategies employed by our methodology. First, 

when choosing the number of rules to compute at each level, we have considered only one cluster 

validation index out of many available options, and other strategies for selecting this parameter exist. 

Second, we examine only a couple of simple feature selection techniques, and improvement, or at least 

useful research, could be made regarding this aspect of model construction. Finally, as with our boosting 

study and the partially granular FRBS, there are many rule extraction methodologies available, some of 

which are compatible with the proposed hierarchical structure. 

Generally, the work presented in this thesis is limited to a single rule extraction strategy, and this 

specificity in our work allows for variations on the proposed methodologies to be explored.  Another 

common theme in this section is the identification of the limited parameterization options tested in our 

studies. This is largely the result of maintaining a reasonable scope for each topic; however, we recognize 

this facet as both a weakness in the existing work as well as an opportunity for further research wishing to 

generalize our initial studies. 
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