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Abstract

The two most important methods used to measure blood pressure, the cuff-based methods

of oscillometry and auscultation, are analyzed in this work. The goal is to understand the

principles and shortcomings of each method in order to suggest some improvements that can

be immediately implemented in the devices used in their application, or in the development

of an improved technique.

The discussion on the oscillometric method is approached by a study on the Maximum

Amplitude Ratio Algorithm, believed to be one of the most common options that automated

devices use to estimate blood pressure. The study includes analyzing different options of

data representation and how this affects the accuracy of the method.

Blood pressure measurement through auscultation is boarded from the perspective of

psychoacoustics to understand how the human operator perceives the Korotkoff sounds that

define the measurement. A study on the masking of these sounds serves as the foundation

for a proposed algorithm to automate the procedure.

Finally, physics-based mathematical models of the phenomena involved in each cuff-based

measurement are derived based on models found in the literature. The equations obtained

are compared to measured data by means of a non-linear least squares regression analysis,

to determine which model most effectively represents the observed phenomena.
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Chapter 1

Introduction

Blood pressure (BP) is one of the four vital signs used to assess a person’s health and quality

of life. It is commonly measured in any routine physical examination, although simple and

inexpensive devices allow for this vital sign to be measured in practically any location of

convenience. Blood pressure is the measure of the amount of pressure blood exerts on the

arterial walls during a cardiac cycle. It is expressed as a ratio of two quantities: the numerator

is the pressure on the vessels during systole, when the heart contracts and expels blood to the

system. This is known as systolic blood pressure (SBP). The denominator is the pressure on

the vessels when the heart relaxes and fills with blood, or diastole, and it is known as diastolic

blood pressure (DBP). These pressures are expressed in units of millimetres of mercury, or

mmHg.

Maintaining a record of BP over time is important, since abnormalities or deviations from

average values are good indicators of underlying conditions and other more serious diseases.

For instance, hypertension, or raised blood pressure, presents no symptoms and is otherwise

almost impossible to detect without periodic BP measurements, yet is the most important

risk factor for cardiovascular diseases (CVD). The World Health Organization reports CVD

as the leading cause of death in the world in 2019, with ischaemic heart disease in the first

place [8].

Hypertension is also associated to other CVD, such as intracerebral haemorrhage, aneurysms,

myocardial infarction and peripheral arterial disease [9], and has a strong correlation to

chronic kidney disease and brain atrophy [10, 11]. Recent studies have also found that hy-

pertension is one of the most common comorbidities in patients with COVID-19. While there

is no evidence that hypertension is a risk factor for this disease, patients with hypertension

were most likely to be more severely affected by it, particularly those who were not managing
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this condition [12–15].

Hypertension affects approximately 1 in 5 Canadian adults and represents a significant

burden in the national healthcare costs, which were estimated to be close to $14 billion CAD

in 2010 ($1.4 billion in the province of Alberta) [16]. In 2014 the prevalence of hypertension in

US adults over the age of 20 was 34%, and projections estimate that by 2030 approximately

41.4% of US adults will have hypertension [17].

It is evident, thus, that BP measurement is an important practice. The accuracy of the

measurement is also critical, given that a systematic error of under/overestimating BP by 5

mmHg could misclassify millions of people and prevent them from getting necessary care, or

exposing them to the burden of needless treatment [18].

The gold standard for BP measurement for many years has been auscultation with a

mercury manometer, and this is the reference method against which all others must be

compared. However, this was not the first method used, nor the only one. In the following

section we briefly introduce some of the different BP measurement methods used, to give the

reader a broader scope of the status of this research topic, its progress and complications.

1.1 Blood Pressure Measurement Methods

The most accurate, and one of the first ever used, method of obtaining beat-to-beat BP

variations is through the invasive intra-arterial method. A cannula is inserted in the artery

and, in modern times, a transducer converts the pressure variations in the artery into an

electric signal that can be viewed in a monitor. Besides requiring special equipment and

trained personnel, this method is painful and has the potential for infections and blood loss

if there is an accidental disconnection of the tubing. For these reasons this method is usually

reserved for patients in Intensive Care Units (ICUs), or in cases where an indirect method

of measuring BP is not possible. In the earlier studies on BP measurement this method was

used as the standard to compare the accuracy of indirect methods.

Methods to measure BP departed from invasive techniques with the discovery that the

application of counter pressure to a limb could be used towards this end. The French physiol-

ogist E. J. Marey was responsible for the first experiments in 1876 that applied this concept.

He realized that by applying counter pressure to the arm immersed in a water reservoir he

could observe oscillations in the pressure inside the reservoir. At a critical counter pressure,
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oscillations ceased and the arm blanched, indicating blood was no longer flowing through it

[19].

The first sphygmomanometers, which are practical applications of this concept, developed

by Marey and others were cumbersome and impractical for routine clinical use. A revolu-

tionary advance in this technique came with the advent of pneumatic arm-encircling devices,

which could be filled with water or inflated with air to apply counter pressure to a section

of the arm or leg. Precursors to present-day cuffs are the devices proposed by Riva Rocci

and Hill and Barnard. Using these cuffs and Marey’s observations BP could be practically

measured in the clinic, although at first only systolic pressure and mean arterial pressure

(MAP) could be measured. Mean arterial pressure is the average pressure on the arteries

during a cardiac cycle.

In 1907 the Russian surgeon Nikolai Korotkoff discovered that BP could be measured

by auscultation using a pneumatic cuff and a stethoscope. He discovered the Korotkoff

sounds, named in his honour, which are the basis of this method. The greatest advantage

of auscultation over its precursors is that it was the only method available to measure both

SBP and DBP.

The development of microprocessors and electronic transducers made it possible to revisit

Marey’s concept and develop a simplified, portable, and automated version of what is known

as the oscillometric technique. This is another method that requires the use of a cuff and

relies on the observed pressure oscillations inside the cuff to estimate BP. Automated BP

measurement devices that operate under this method have become increasingly popular and

are slowly replacing the auscultation method in most clinics.

Other methods to estimate BP that do not require a cuff have been developed in more

recent years, although their accuracy is not as good as that of cuff methods. One example is

arterial tonometry, which consists of flattening a superficial arterial wall against an underlying

structure, preferably bone, and using a sensor plate to detect the force produced by blood

pressure on the artery [20]. Tonometry delivers satisfactory results when compared against

invasive BP measurements in normotensive subjects and in patients with uncomplicated

hypertension [21], however it does not always provide accurate values of SBP and DBP. It

depends on proper sensor positioning and is very susceptible to motion artifacts.

Another example is that of the volume clamp method, which consists of using a small cuff

around a finger with a diode on one side of the finger and a photodetector on the opposite
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side. Light transmitted from the diode and detected on the other side is proportional to the

volume of tissue it passes, which changes each cardiac cycle with the passage of blood. Using

this relationship, the small cuff is inflated and deflated accordingly to maintain a constant

volume, and the variations in pressure in the cuff can be detected and correlated to arterial

pressure. This is often referred to as the Peñaz method, given that Dr. J. Peñaz was the

first to describe this device with a feedback loop to control cuff volume [22].

This type of device is also very susceptible to motion artifact, given that its meant to be

applied to the fingers. Another disadvantage is that SBP and DBP estimated at this location

are different to those measured at the upper arm, where cuff methods measure them. BP

at the peripheral arteries is usually greater than at the central arteries given that reflection

sites are closer at these locations and that these arteries are stiffer. Estimates of BP at both

locations are not usually directly correlated and accuracy can be greatly compromised.

A popular method in cuff-less BP estimation is the use of pulse wave velocity (PWV) or

pulse transit time (PTT), which essentially measure the propagation rate of pressure pulses

to determined locations of the arterial tree. This is done by detecting pressure pulses at

two different locations of the body, like the wrist and the leg, for instance, and measuring

the time difference between peaks or troughs of these two pulses with the use of a third

signal as reference to correlate them. This third signal is generally one of the peaks from an

electrocardiogram (ECG). These measures have been found to relate to BP and the presence

of hypertension [23–26], although results may not be consistent depending on the site of

measurement in the case of PTT in particular [27]. Other major drawbacks of this method

are the need for additional equipment to obtain the ECG, and the difficulty in making an

accurate estimate of the distance between the measurement sites.

1.1.1 State of the Art

An important part of current research dedicated to BP measurement is related to improving

existing methods. For instance, novel techniques that were not easily available in the past,

such as neural networks and artificial intelligence, are used to process the information ob-

tained with the current measurement techniques. On the other hand, different features of the

data obtained with current methods that were not previously considered are also extensively

researched in the hopes of obtaining a parameter that better correlates to BP. Such is the

focus of the work presented in this thesis.
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The other topic of interest in current BP measurement research is the development of

new devices with a very important feature: the ability to continuously monitor BP without

inconveniencing the user. The importance of this feature is perhaps better appreciated in the

case of the diagnosis of hypertension. The gold standard for hypertension diagnosis is the

ambulatory blood pressure measurement (ABPM), which consists of tracking BP for a period

of 24 hours to observe its progression during everyday activities and sleep. This ABPM is

particularly important since it reveals a broad picture of a subject’s BP profile instead of

a single specific moment in an uncharacteristic situation, such as the physician’s office. It

is also an ideal method to reveal nocturnal BP patterns, where preferably mean BP should

“dip” to values 10% lower than awake mean BP. Evidence of the contrary is associated with

elevated risk of heart, brain, and kidney injury, and CVD [28].

Currently, ABPM is done with specialized oscillometric devices consisting of a cuff worn on

the upper arm and a monitor attached to a strap that can be worn around the neck or fastened

to the belt. These devices collect BP measurements every 30 to 60 minutes during the day, and

at least every 60 minutes during the night. Needless to say, these devices are cumbersome

and uncomfortable, and can make the user self-conscious, purposefully modifying normal

daytime activities. There is also some evidence that the use of these monitors affects the

sleep BP patterns, which prevents from making an adequate assessment of the occurrence or

absence of dipping in mean nighttime BP [29].

For this reason, the newly developed devices are intended to be cuff-less and wearable,

or at least easily accessible. A popular approach is to design wearable technology that es-

timates BP based on PTT. Some of these new devices make use of photoplethysmography

(PPG), which consists in detecting light absorption/reflection in tissues, to detect the blood

volume waveform where the timing of the pulses can be measured. This is because photodi-

odes and photodetectors can be easily implemented in strap-based [30] or watch-based [31]

configurations, which can also include an ECG as an additional strap or as part of the watch.

Fibre optic technology is another candidate for cuff-less watch-based devices [43]. Fibre

Bragg gratings are highly sensitive to strain variations, which in principle makes them a good

candidate to detect the faint pulsations of the radial artery at the wrist. However, they are a

costly alternative to other strain-sensing technology, and the main issue with such sensitive

transducers is the removal of motion artifact.

Ballistocardiography (BCG), which is the measurement of the reaction forces of the body
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in response to the ejection of blood from the heart to the aorta, has received renewed attention

as an alternative to the ECG reference in PTT [32] or as a separate method of estimating BP.

This can be done either by relating the timing between the BCG and the PPG waveforms

to BP [33] or by relating specific features of the BCG waveform to BP [34]. The advantage

of BCG is that sensors can be easily implemented in simple everyday objects, such as seat

cushions, mattresses or weight scales.

Neural networks have also been an important tool in the development of wearable tech-

nology. An example is their use in the analysis of certain features in the PPG signal to derive

BP estimates [35, 36].

Smartphone technology has also been exploited in the search of a convenient method to

estimate BP, given that this is the technology that perhaps the vast majority of people is

most familiar with. Heart sound signals measured with the smartphone’s microphone or a

stethoscope attachment have been analyzed in their frequency domain [37] or with respect

to pulse signals recorded by the smartphone’s camera [38].

Finally, an interesting development in sensors that has great potential in the measurement

of BP is the incorporation of flexible display technology in the design of photodiodes and

detectors for PPG that can be worn in a smart bandage-style configuration [39], and the

development of the called “epidermal electronics”, which consist of stretchable strain sensors

that can be adhered to the skin similar to stickers or temporary tattoos [40–42]. While this

technology has not yet been tested for BP estimation, they show promise as wearable, durable

technology.

1.2 Objectives

Naturally, the most appealing topic of research, based on the introduction given above, is the

development of cuff-less technology for ambulatory BP measurement. Large companies have

entered the race to develop an accurate method of estimating BP that can also be imple-

mented in devices as simple as smart watches, for instance. However, the most challenging

hurdle this technology needs to overcome first is ensuring cuff-less BP estimates correspond

to BP measurements obtained through traditional methods.

The BP measurements cuff-less devices should aim to replicate are those obtained through

manual auscultation, which we have pointed out previously, is the gold standard in BP



Chapter 1. Introduction 7

measurement. Unfortunately, manual auscultation requires specific conditions and trained

personnel in order to be performed correctly. This can slow down the progress of device

development and even introduce unwanted sources of error, which we’ll discuss in following

chapters. The most convenient solution is to use automated devices, although there exist

few automated devices that estimate BP through auscultation, and furthermore, there is no

guarantee that they can faithfully reproduce the results of manual auscultation.

Therefore, the first approach of most research groups to test and calibrate novel ambula-

tory devices is by comparison to automated oscillometric devices. This is a reasonable option,

given the convenience of using these oscillometric devices which, as we shall see, require no

training or specialized background for use. However, it should be noted that oscillometry is

not the ideal reference because of some accuracy issues it has compared to the gold standard

(auscultation) that will also be subject of commentary in the following chapters.

The author believes, thus, that before continuing the discussion of ambulatory devices, the

two basic cuff-based methods of auscultation and oscillometry, and their particular challenges,

have to be addressed first.

As is generally the case, unexpected issues and complications arising in any physical

system can be overcome with a deeper understanding of the phenomena and processes in-

volved. Physics-based mathematical analyses of these cuff-based BP measurement systems,

however, are not of the highest priority in recent literature. The oscillometric method relies

on empirical results that currently do not have a well-defined theoretical background and

the phenomenon of Korotkoff sounds that define the method of BP measurement through

auscultation, and that will be discussed in detail in the following chapters, has not been fully

explained either. Some of the available models have been derived from in vitro experiments,

while others from general principles of fluid dynamics and linear mechanics. Although these

models seem to reproduce ideal case measurements, to the author’s knowledge, they have not

been tested in an inverse-problem scenario to verify whether they can be applicable to real

data.

The main objective of this work is, thus, to focus on these two cuff-based BP measurement

methods, from understanding the most general principles of their operation, to studying the

phenomena and processes discussed above. To achieve this, three specific paths will be

explored:

1. The method of oscillometry and the algorithms automated oscillometric devices use
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for BP estimation will be reviewed first, following the observation that this is the first

reference for ambulatory device development, and the method that is set to replace

manual auscultation in the clinic. The aim is to understand the importance of this

method and the reasons why the algorithms established are at times deficient. In

particular, we will focus on the most used algorithm for BP estimation, the maximum-

amplitude-ratio algorithm, and propose some modifications that can be practically

implemented in automated devices to improve their accuracy. Another objective is

to verify the applicability of the method to individual subjects. This last objective

will serve as commentary on the use of this method as reference for cuff-less device

development.

2. The next step is to analyze the method of auscultation to try and propose a solution

to the concerns mentioned above. Particularly, the fact that since this method is part

of the gold standard for BP measurement, there should be an effective way to use it

as reference for all other device development. The author believes that this can be

done with an analysis of the Korotkoff sounds from a psychoacoustical perspective.

The advantage of following this approach is that the topic of psychoacoustics deals

with human perception of sound. The goal is to address the lack of an automated

auscultation device that reproduces the measurements of manual auscultation. The

objective of this section, in particular, is to be able to design an algorithm based

on the results of the psychoacoustical study that will estimate BP similar to a human

observer. This, additionally, will benefit the completion of the second part of the thesis,

simplifying the processing of the data and optimizing the computation of results.

3. Finally, having established the basics of the two methods and having developed an

automated auscultation method, we focus the second half of the thesis on the physics-

based mathematical analysis of the phenomena. Separate mathematical models for

each method will be derived based on previous models found in the literature and each

will be tested on measured data by means of non-linear least squares regressions. One

of the goals is to validate these models and to determine which is the better candidate

to describe the observed phenomena. Another goal is to take advantage of the results

of the regressions themselves to obtain more information on the main components of

the cuff-based methods, namely the underlying brachial artery and the cuff itself.



Chapter 1. Introduction 9

The overall goal of this thesis is, naturally, to contribute in the advancement of BP mea-

surement methods for improved healthcare and quality of life. The contributions in the first

part of this thesis can be directly applied on the existing methods and on the development

of new technologies. The analyses in the second part of this thesis, although based on simple

models, will hopefully pave the way for other analyses of this nature, with improved models

and computational techniques. The procedures described in this second section can also be

potentially applied to existing technology to obtain a broader scope of a subject’s health,

so that physicians and other healthcare providers can make better informed decisions on

diagnosis and treatment.

This thesis is organized as follows:

• Chapter 1 is the present introduction, where the importance of BP measurement is

stated, and a brief review of the different methods is given with some historical context.

The objectives are stated in this chapter as well.

• Chapter 2 is devoted to describing the implementation of the oscillometric method, its

advantages and disadvantages. The algorithms used in the automated devices that use

this principle are discussed, and some improvements are suggested based on the results

of a study performed on one of these algorithms. The study discussed here culminated

in a publication, which is included in the Appendix section.

• In chapter 3 we go into more detail on the method of auscultation. Psychoacoustics

and how their principles can be exploited in the accurate measurement of BP through

auscultation are discussed here. Evidence found in the literature is used to propose a

study on how to automate this measurement and an original algorithm is proposed and

implemented. Results of this study are presented and discussed.

• The first mathematical model is presented in chapter 4. This is a model of oscillometry,

and its functional equation is applied to a set of measurements in a regression analysis.

Results and implications of this procedure are discussed.

• The second mathematical model is developed in chapter 5. This is a model of ausculta-

tion and the generation of Korotkoff sounds. Similar to the work described in chapter
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4, a regression analysis is also performed on a set of measured data with the equation

resulting from the model, and the results of the analysis are discussed.

• The final chapter, chapter 6, summarizes the findings of this thesis. The overall project

is discussed and the conclusions derived from it are presented here, as well as some

suggestions for future work.
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Chapter 2

Oscillometric Blood Pressure

Measurement

The Oscillometric Blood Pressure Measurement (OBPM) is currently the most popular

method used to estimate blood pressure (BP). It pre-dates the auscultatory method by al-

most 30 years and was initially demonstrated in 1876 by the French physiologist E. J. Marey.

Its premise is that BP can be estimated from a series of pressure oscillations that are observed

when a limb is enclosed by a device that can apply counterpressure, if a pressure transducer is

connected to this device. In Marey’s case, the bare arm was placed in a closed cylinder filled

with water and connected to a water reservoir that could be elevated to induce a change in

pressure. In modern times an inflatable cuff is used as the means to apply pressure, usually

to the upper arm.

Oscillometry was not widely used when it was first demonstrated. The only correct

prediction it could make related to BP was that of the point of Mean Arterial Pressure

(MAP), which was found to correspond to the counterpressure at which the oscillations

reached a maximum amplitude. There was no agreement for a long time on the correct

estimation of systolic and diastolic blood pressures. This was particularly difficult since at the

time the available devices were hard to implement in a clinical setting, and manual analysis of

the data was cumbersome. Major breakthroughs on the characterization of the oscillometric

method would come until the 1970s, when microprocessors and miniature pressure sensors

provided a means of automating the process. For instance, Maynard Ramsey III published

and filed some of the first patents about automated devices that determined MAP from an

OBPM [44].

Modern oscillometry is now a fully automated process that is able to estimate systolic



Chapter 2. Oscillometric Blood Pressure Measurement 12

blood pressure (SBP) and diastolic blood pressure (DBP) in addition to MAP. While auscul-

tation is still the gold standard for clinical estimation of BP, some medical guidelines have

recognized the advantages of switching to these automated oscillometric devices for clinical

practice [45]. The Canadian Hypertension guidelines fully recommend the use of automated

(oscillometric) methods to measure BP instead of auscultation [46].

Oscillometric devices are preferred over the more traditional method of auscultation be-

cause they prevent many of the human-sourced errors inherent to auscultation, require less

training to operate, can collect multiple readings for averaging, and reduce the incidence of

white-coat hypertension and white-coat effect. White-coat hypertension is defined as persis-

tent hypertensive BP estimates in clinical recordings for an individual with otherwise normal

BP outside the physician’s office. White-coat effect is the spurious rise in BP that occurs

when BP is measured in the presence of a physician or in a clinical setting for a hypertensive

individual that normally has controlled levels of BP (with the use of medication). While these

last two conditions do not appear to have negative effects in a subject’s overall health, they

may lead to an incorrect diagnosis of hypertension and to the prescription of unnecessary

medication [47–49].

Another important advantage of automated oscillometric devices is their application to

out-of-office BP measurements, such as at-home or ambulatory blood pressure measurement

(ABPM). ABPM is the gold standard for diagnosing hypertension. It allows the observation

of BP fluctuations throughout a 24-h period, and the presence of conditions not measur-

able in the office, such as white-coat effect, masked hypertension (which is the opposite of

white-coat hypertension), and nondipping or reverse-dipping BP during nighttime. This last

condition refers to the absence or reversal of the usual decrease in BP that occurs during

sleep. ABPM along with home BP measurements have been shown to be stronger predictors

of cardiovascular events compared to office measurements [45, 50–52].

Automated devices are also advantageous in the prevention of the transmission of highly

contagious diseases, such as COVID-19. Proximity to a physician is not required and many

devices currently have storage and bluetooth transmission capabilities. This allows patients to

easily share their at-home measurements with their physician remotely to ensure continued

care and disease management when in-person consultations present a health risk to the

patient.

It is evident, thus, that with such widespread use the accuracy of these devices is a
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primary concern. Unfortunately, the oscillometric method has a number of disadvantages

that affect it. It has been found that the accuracy of oscillometric devices can be lower in

the elderly, in patients with diabetes, and in those with increased arterial stiffness [53–56].

Special considerations must be made for BP measurement in children and pregnant people

and there are less recommended devices for these populations compared to those intended

for average users. The use of oscillometry is also challenging in subjects with abnormal

heart-rates, such as those with atrial fibrillation.

The methods of data collection, filtering and subsequent processing of most automated

devices are usually proprietary. There is no regulation of the algorithms used in these devices,

therefore devices are not interchangeable, even if they come from the same manufacturer.

Even though devices are required to undergo strict validation procedures before they are

recommended for use1, there are several cheap devices in the market that have not met these

requirements.

As a reminder, in this chapter we intend to understand these different processes followed

during an OBPM: how the data is collected, filtered and presented before an estimate of BP

can be made. At the same time, commentary on how variations in these steps can affect a

device’s accuracy are offered. The goal is to analyze the most widely used algorithm for BP

estimation by means of an extensive study of the method using measurements collected from

a large number of volunteers. In particular, the objective of this study was to verify if certain

modifications in the data presentation could be beneficial to the accuracy of the method, and

if they had any implication on the applicability of the method to individual subjects.

Therefore, in the following sections we first review oscillometry in more detail, how data

is collected and filtered, and what are its most important components. At the same time, we

show some examples of how different processing of the data may change the final outcome.

Second, we discuss the main methods used in the literature and, possibly, in automated

devices to estimate BP. The focus is then centred in the algorithm of interest, and in following

sections we discuss the study mentioned above: the experimental procedure followed, the

results, and finally the discussion and conclusions derived from this work. Some results of

this study are also part of a published article, a copy of which is included in Appendix A.

1A list of recommended devices is available at www.dableducational.org
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2.1 Data Processing in OBPM

The oscillometric process is fairly simple: an inflatable cuff is wrapped around the upper arm

and air is pumped into the cuff until the pressure inside is above estimated SBP. A valve

then slowly releases the air until the pressure inside the cuff is below DBP. A pressure sensor

is connected to the cuff to register pressure variations in the cuff. This information is filtered

and processed to obtain what is known as the oscillometric waveform (OMW), from which

BP is estimated using a choice of algorithms that take certain features of this OMW into

consideration. The process generally takes around a minute to complete.

At this point we can already encounter some potential sources of error that are not related

to the device’s processing algorithms. If the measurement is not collected in the appropriate

conditions the BP estimate will likely be inaccurate. It is recommended that prior to a BP

measurement the subject not consume any type of food or beverage, particularly caffeine or

alcohol, and that they perform no strenuous physical activity. The measurement should also

be performed in a quiet room with controlled temperature, since cold temperatures cause the

peripheral arteries to contract. The subject should be seated in a comfortable position with

their back supported and the arm on which the cuff will be placed should be resting on an

elevated support so that the cuff is at heart level. Talking or sudden movements during the

measurement are to be avoided as well.

An important consideration that is often overlooked when measuring BP at home is

the choice of a cuff of the correct size (width). This decision depends on the subject’s

arm circumference, and many of the commercial devices will not provide recommendation

or guidance, but will instead include a single standard cuff. Narrow cuffs require higher

pressures to completely occlude the artery and therefore give higher estimates of SBP and

DBP. Geddes and Tivey found that a recommended cuff width was that measuring 38% of the

arm’s circumference [57], so the general recommendation is to use a cuff width that is close

to 40% of the subject’s arm circumference [58]. Overcuffing, which is the opposite procedure

of applying a larger cuff, has also been found to negatively impact oscillometry, resulting in

lower estimates of BP [59]. A study by Palatini et al also suggests that obese patients with

upper arms of a conical shape would benefit from the use of cuffs that follow this conical

shape [60].

Once these external details of the procedure are taken care of, we can turn to the process

that happens inside the device. To collect data some devices use the inflation sequence while
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others the deflation. In this work we shall only consider those that record pressure signals

during deflation. These type of devices have the advantage of providing a cleaner signal since

often during inflation the pump’s operation adds a significant amount of noise. Among the

devices that measure BP during deflation there are those that deflate at a constant rate,

and those that use a step deflation, where cuff pressure is maintained constant for a few

seconds and then lowered a few mmHg where the process repeats. The former type of device

is considered in this work.

As mentioned above, the cuff is inflated to suprasystolic pressures in order to completely

collapse the artery that runs inside the upper arm, that is, the brachial artery, and to prevent

the flow of blood towards the lower part of the limb. Once the cuff is slowly deflated, ideally

at a constant rate of 3 to 5 mmHg/s, the artery is able to reopen and allow a progressively

increasing amount of blood to flow past the length of the cuff. As the cuff is being deflated

two distinct features can be appreciated in the pressure signal recorded by the sensor: the

overall signal decreases monotonically and there are periodic oscillations present in the signal.

The constant decrease in overall pressure corresponds to the slow release of air from the cuff.

The periodic oscillations are caused by blood volume pulsations that occur at each cardiac

cycle.

2.1.1 The Oscillometric Waveform

The oscillations in the pressure signal are observed to begin at suprasystolic cuff pressures.

Their amplitude increases as cuff pressure approaches SBP, reaches a maximum when cuff

pressure equals MAP, and finally decreases as cuff pressure reaches DBP. The oscillations

can also be observed at subdiastolic pressures where they are of smaller and mostly constant

amplitude. These oscillations make up the oscillometric waveform mentioned above, and are

one of the most important components of the OBPM. They can be separated from the main

signal by means of band-pass or high-pass filters that remove the lower frequency signals of

the constant deflation signal, or by fitting a curve to the deflation signal and subtracting it

from the total pressure signal. The manner in which the OMW is obtained may affect BP

estimates: filters can modify the shape of the individual pulses in the OMW [61] or can alter

the values assumed to correspond to the decreasing pressure signal and give an incorrect

estimate of the pressure in the cuff at a given time [62].
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To extract the OMW by fitting a curve to the deflating signal a few different approaches

can be considered. A polynomial function can be fitted to the signal, for instance. High

order polynomials provide a good fit, although one must take care when fitting a curve with

high order polynomials. Due to their oscillatory nature and their tendency to approach

+/− infinite values at a rate proportional to their order, unwanted oscillations at the data

endpoints can appear.

Another option is to construct a curve that passes through specific points of the signal.

These points can be a location related to the cardiac cycle as indicated by an electrocardio-

gram (ECG), or a choice of the highest or lowest points of each individual pulse, for example.

The first option relates heart activity to a point in the pressure signal and will benefit from

a consistent location not affected by noise in the signal. The main problem is that it requires

additional equipment that cannot be incorporated into the cuff. The second option requires

sectioning the signal into individual pulses to locate the highest/lowest points. Noise in the

signal will affect these locations, particularly noise derived from motion artifact or irregular

oscillations.

An example of a raw pressure record from an OBPM is shown in figure 2.1, which comes

from a measurement taken from a volunteer. In this case, the deflating signal was obtained

by an asymmetric least squares fit to the lowest points in each pulse. The dotted red line

shows the fit, or baseline, and the horizontal blue lines mark the location of SBP and DBP.

Subtracting this baseline from the signal results in the OMW shown in figure 2.2. De-

pending on the effectiveness of the baseline estimation the OMW can be presented as the

absolute magnitude of the pulses, with the lowest values coinciding with zero. Otherwise

additional steps can be taken to ensure this levelling of the data, which is useful in some of

the BP estimation algorithms described in the following section. It is customary to present

the OMW as a function of the baseline as it progresses in time, that is, from highest to lowest

pressure to represent cuff deflation. The changes in pulse amplitude mentioned previously

are better appreciated with this representation as well.

SBP, DBP and MAP are marked by the vertical lines in figure 2.2. To the left of the red

SBP line one can verify the existence of suprasystolic oscillations, and to the right of the blue

DBP line the existence of subdiastolic oscillations. In this case there was no simultaneous

measurement of MAP to verify that it corresponds to the point of maximum amplitude,

so the magenta line that marks MAP in figure 2.2 was drawn after the fact, assuming the
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Figure 2.1: Pressure detected by the pressure sensor and estimated baseline.
BP = 135.5/69.75 mmHg is marked by the horizontal blue dashed lines.

Figure 2.2: Oscillometric Waveform with locations for SBP, DBP and MAP
marked by dashed vertical lines.
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relationship is correct. It was previously stated that studies in the past have confirmed this

relationship, however in this case we can not assert this statement for reasons that will be

explained in the following section.

Using the maximum amplitude approach, MAP = 99.62 mmHg for the example in figure

2.2. A popular formula for calculating an approximate MAP is: MAP = DBP + 1

3
(SBP −

DBP ). In this case SBP = 135.5 mmHg and DBP = 69.75 mmHg, which results in a MAP

= 91.66 mmHg with the use of this formula. There is a difference of almost 8 mmHg in these

two estimates, however this formula is a very simplified method of obtaining a quick estimate

of MAP. We can not conclusively state that the maximum amplitude approach in this case

is incorrect on the basis of this calculation alone.

2.1.2 The Oscillometric Waveform Envelope

SBP and DBP are estimated by empirical relationships derived between the amplitude of

the pulses and the location of these pressures in relation to the OMW. To simplify analysis

it is common to use the oscillometric waveform envelope (OMWE) instead of the OMW to

estimate BP. Depending on the shape of the extracted OMW, the OMWE will be obtained

in a few different ways, but its purpose is always to showcase the absolute amplitude of the

pulses with no regards to their individual shape.

Two examples of an OMWE obtained for the same OMW following different procedures

are shown in figure 2.3. The top row corresponds to the OMW obtained by fitting a ninth-

order polynomial function to the deflation pressure signal and subtracting the approximated

function from the original signal. The bottom row is the OMW obtained from fitting a

baseline (fit of a curve to the lowest points of the oscillations) as described in the previous

section and exemplified in figures 2.1 and 2.2.

Here we can appreciate the advantage of fitting a baseline instead of a polynomial function

to the pressure signal. In the top row case (figure 2.3a) a piecewise cubic interpolation was

done for the highest points of each oscillation (marked in red) and another for the lowest

points (marked in blue). The lower envelope (blue) was subtracted from the upper envelope

(red) and the result is the OMWE in figure 2.3b. In the bottom row case (figure 2.3c)

the subtraction of the baseline already results in the data expressed as absolute amplitudes

and only some minor adjustments are needed to make sure all the lowest points of the
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Figure 2.3: Different presentations of the OMW and the OMWEs obtained
from each. a.OMW obtained from subtracting a 9th-order polynomial to the
pressure signal with cubic interpolations to the highest (red) and lowest (blue)
points in the oscillations. b.OMWE obtained from subtracting the interpola-
tions in a. c.OMW obtained from subtracting a baseline to the pressure signal.
d.OMWE obtained from a cubic interpolation to the maximum amplitudes of

the OMW in c.
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Figure 2.4: Comparison of the OMWEs obtained from the different repre-
sentations of the OMW from figure 2.3.

oscillations coincide with zero. The OMWE in this case (figure 2.3d) is a single piecewise

cubic interpolation to all the maximum amplitude points in the OMW of figure 2.3c.

Both OMWEs are plotted together in figure 2.4. The OMWE obtained from the OMW

in figure 2.3a was labeled as “Env. Diff. OMWE” in relation to its origin from a difference

of envelopes. The OMWE obtained from the OMW in figure 2.3c was labeled as “Abs.

Amp. OMWE” in reference to the interpolation of the absolute amplitudes. We can readily

appreciate that there is a difference in the magnitude of the maximum amplitude of the

envelopes and some differences in their shapes.

It is clear, thus, that each step of the data processing in oscillometry can introduce a

certain amount of error to the BP estimate. The effect that the filtering of the data has on

the accuracy was already described above. Figure 2.4 gives us an example of how following

different steps to obtain the OMWE contribute another source of inaccuracy. Furthermore,

differences in the shape of the OMWE can also affect the measurement’s accuracy [61, 63,

64]. Figure 2.5 shows four OMWE representations of the OMW in figure 2.3c.

In the following sections we will discuss how using these different OMWE affects the BP

estimate. Figures 2.5a and 2.5d are two common fits to the maximum amplitude points:
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a linear interpolation and a Gaussian function, respectively. The 6th and 8th degree poly-

nomials shown in figures 2.5b and 2.5c, respectively, are not a common approach to fitting

the envelope, but were analyzed after a suggestion from Dr. Alexander Kobryn, a Senior

Research Officer at the National Research Council Canada.

2.2 Blood Pressure Estimation Methods

The methods used to estimate BP from an OMW or an OMWE are usually one of four

methods, or a combination of any of them: pulse morphology, maximum slopes, maximum

amplitude ratios, or envelope modelling. Currently, all of these methods use empirical ref-

erences to estimate BP and there is no formal physical reasoning behind these references.

The most effective and well established method is that of maximum amplitude ratios (MAR)

and, even though the processes followed by commercial devices are unknown, it is likely that

most of them use a version of this method. The maximum slopes (MS) method is similar

in application to the MAR method but it is not as robust, and is probably only used as a

complement to MAR, if at all. Pulse morphology and envelope modelling are BP estimation

methods that have gained more interest in recent years, although they are apparently not yet

considered as viable replacements to the MAR method. A brief description of each method

is given below.

Pulse Morphology. This method looks at the shape of individual pulses and tries

to relate observed temporal and amplitude features of the pulses to arterial mechanics and

wave transmission in the arterial tree. Under normal conditions (in the absence of a cuff)

the pressure pulse can be obtained from either intra-arterial measurements or with the use

of a tonometer. An immediate observation is that the shape and maximum amplitude of

the pulse change depending on the site where it is measured. Amplitude increases at the

periphery due to the proximity of reflection sites in the arterial tree. At peripheral arteries

waves are reflected sooner and forward and backward waves will superimpose at the systolic

phase of the pulse resulting in the observed amplitude increase. For this reason, BP values

are higher when measured at the wrist when compared to those measured at the upper arm,

for instance. The timing of the reflected waves also gives a measure of arterial stiffness.
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In general, the pressure pulses are rich in information. MAP can be obtained, as well as

pulse pressure, duration of systolic and diastolic phases, and other parameters closely related

to heart activity if the pulses are measured at the ascending aorta [65]. During an OBPM the

pulses are modified by the interaction of cuff and arterial mechanics. Unfortunately, unlike

auscultation (discussed in Chapter 4), specific features that a pulse must meet in order to

assign one particular pulse of the OMW to either SBP or DBP haven’t yet been determined.

Some recent approaches to estimating BP from pulse morphology include relating temporal

features of the pulse, such as the timing between the foot and the maximum amplitude of the

pulse, to SBP [66], or using neural networks to identify temporal relations between successive

pulses [67], or teaching them to identify certain characteristics in the pulses to relate them

to auscultation data [68].

Maximum Slopes Algorithm. As its name indicates, this algorithm relates SBP and

DBP to maximum slopes found in the OMWE. It is assumed that the locations where there

is a maximum change in pulse amplitude correspond to these pressures. When the OMWE

is presented as a function of decreasing cuff pressure, SBP is estimated where there is a max-

imum positive slope on the rising phase of the OMWE, before the location of the maximum

amplitude. DBP is estimated where there is a maximum negative slope on the descending

phase of the OMWE, past the location of the maximum amplitude.

A look a the envelopes in figure 2.5 already gives an idea of how the OMWE representation

will affect the location of these maximum slopes. Figure 2.6, a measurement obtained from a

different volunteer, shows the BP estimates obtained with the MS algorithm for two envelope

representations, and compared to true BP. One of the envelopes, that obtained from the linear

interpolation in figure 2.6a, contains more inflexions, while the other, obtained from a fit to

a Gaussian function in figure 2.6b, presents a smooth profile.

The dashed vertical red lines indicate the location of true BP. The locations of the dashed

vertical blue lines were obtained using the MS method. A numerical first derivative is applied

to the envelope and its minimum and maximum values correspond to the locations of SBP

and DBP, respectively.

True BP was estimated as 128.00/76.25 mmHg, while that obtained with the MS algo-

rithm was estimated as 120.90/80.52 mmHg for the linearly interpolated envelope, and as

123.18/79.06 mmHg for the Gaussian envelope. The errors in the MS algorithm (measured
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Figure 2.6: Comparison between the true BP (red) and the estimate from
MS algorithm (blue) for two envelope representations. True BP = 128.00/76.25
mmHg. a.Linearly interpolated OMWE. MS algorithm BP = 120.90/80.52
mmHg. b.Gaussian function OMWE. MS algorithm BP = 123.18/79.06 mmHg.

values minus algorithm values) are +7.1/ − 4.27 mmHg and +4.82/ − 2.81 mmHg, respec-

tively, which means SBP was underestimated and DBP overestimated in both cases. Sudden

variations in pulse amplitude can also affect the estimate by giving false maximum and min-

imum slopes.

Maximum Amplitude Ratio Algorithm. This algorithm was formally established by

the work of Geddes et al in the early 1980s [69]. This group measured the amplitudes of the

maximum oscillations (those corresponding to MAP), and of the oscillations corresponding

to SBP and DBP. These amplitudes were labeled AM , AS, and AD, respectively. They

then noticed that for a data set of 3 measurements obtained for each of 23 subjects, the

ratios AS/AM and AD/AM would consistently fall within the limits 0.45-0.57 and 0.75-0.86,

respectively. This means that SBP can be located on the rising phase of the OMWE where its

amplitude is approximately 50% of the maximum amplitude. DBP on the other hand, can be

located on the descending phase when the OMWE’s amplitude is approximately 80% of the

maximum amplitude. The authors, however, made sure to point out that these percentages

depend on BP.

The method is exemplified in figure 2.7. Several studies have confirmed the repeatability
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Figure 2.7: Location of the maximum amplitude AM and the ratios AS/AM =
0.5 and AD/AM = 0.8 on an OMWE.

of these ranges of percentages or ratios. For this reason, the MAR algorithm became the

most implemented method on automated devices for BP estimation. In cases of BP outside

of normotensive ranges, such as in hypertension or hypotension, the ratios may fall outside

of the expected ranges and a simple MAR algorithm becomes less effective. In these cases, a

multicomponent algorithm that uses a variable ratio or adjusts for BP level is used.

Mathematical models have been developed to identify the possible sources of error of the

MAR ratio. Studies agree that the oscillometric ratios are mainly affected by arterial stiff-

ness and the amplitude of the pressure pulse (PP) [6, 70, 71]. These findings are helpful in

explaining why the method fails for hypertensive and older subjects. These populations will,

in general, have increased arterial stiffness and an amplification of the pulse pressure due to

the higher prevalence of isolated systolic hypertension in the particular case of older subjects.

Envelope Modelling. To avoid a deterministic selection of ratios that may not apply to

all populations equally, recent studies have turned to modelling the envelope with mathemat-

ical functions that often stem from measured functions of arterial mechanics [72–74]. These

models include several parameters that can be adjusted as the mathematical function is fitted
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to measured data. Some of these procedures essentially require a form of least squares curve

fitting, and the resulting parameters are expected to be unique for every measurement.

This method of BP estimation proposes a patient-specific and measurement-specific ap-

proach, which may circumvent the sources of error of the MAR algorithm discussed above.

The challenges this type of approach faces are similar to the rest, particularly the processes

of data extraction and filtering. The effectiveness of the mathematical models will depend

on how closely they represent the OMWE, provided the OMWE is properly obtained in the

first place. Another constraint that this method has is the complexity of the models used to

fit the OMWE. The model must be simple enough to be computationally economical, but

sophisticated enough to properly describe the shape of the OMWE.

Certainly other methods have been developed that do not fall within these four categories,

but most are related to extracting features from the OMWE, or approaching one of these

methods with a different technique.

2.3 Results of a Study on the MAR Algorithm

A study on the popular algorithm of maximum amplitude ratios to measure BP through

oscillometry was completed and published in a collaboration of the departments of Physics

and Medicine of the University of Alberta and the National Research Council, Canada.

Data were collected and partially processed at the Department of Medicine. The resulting

article was published in the journal Blood Pressure Monitoring [75] and a copy is included in

Appendix A. The purpose of the study was to verify optimum ranges of maximum amplitude

ratios for a custom-made automated oscillometric device, as well as the influence that different

representations of the OMWE have on the accuracy of the MAR algorithm. In this section

we shall discuss the findings of this study in detail, including some results that were not

published.

2.3.1 Experimental Method: Data Collection

Data were collected from 74 subjects by the group from the Department of Medicine of the

University of Alberta with approval from the University of Alberta Research Ethics Board.

BP measurements were performed in a manner similar to that of validation protocols and
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following the International Standard Organization (ISO) 2013 protocol [76]. The procedure

is as follows: subjects are seated in a quiet, temperature-controlled room on a chair with

back support and the measurement arm propped up to heart level. Cuff size was selected

according to arm circumference and cuffs could be interchangeably connected to a mercury

sphygmomanometer and to a custom made oscillometric device.

Three observers were present for data collection: two would perform auscultation simul-

taneously using a dual-headed stethoscope while being blinded from each other’s results.

The third observer collected their BP estimates and ensured they were within 4 mmHg from

each other. A total of five auscultatory measurements and four oscillometric measurements

were taken in alternating fashion beginning with auscultation. The first measurements of

each method were discarded and not considered for analysis. An auscultatory measurement

was equal to the mean of the measurements from the two observers. “True” BP is that as-

sumed to correspond to the oscillometric measurement; this was calculated as the mean of

the auscultation measurements taken immediately before and immediately after. Therefore,

a total of 3 oscillometric measurements were obtained for each patient. Data from one sub-

ject were discarded since they had an underlying health condition. In total, there were 219

measurements of oscillometry.

Subject ages ranged from 19 to 79 years, (mean ± SD: 51±18 yrs), and 63% were female.

SBPs ranged from 82 to 155 mmHg (115 ± 16 mmHg), DBPs from 51 to 93 mmHg (69 ± 8

mmHg), and PPs from 24 to 88 mmHg (46±14 mmHg). Age, SBP, DBP and PP distributions

are given in figures 2.8 through 2.11, respectively.

2.3.2 Experimental Method: Data Processing

The initial processing of the collected pressure data was done by the collaborators in the

Department of Medicine. From their description of the procedure, the data was processed as

follows.

The complete data set was processed on Matlab (The MathWorks, Inc., Natick, Mas-

sachusetts, USA). The signal obtained from the custom oscillometric device is filtered and

arranged by their algorithm to look like what is shown in figure 2.1. The baseline for each

measurement was obtained as described in previous sections, by fitting a curve to the low-

est points in each oscillation. Subtracting the baselines from the original signals resulted in

OMWs that were adjusted to present absolute amplitudes similar to the one shown in figure
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Figure 2.8: Age distribution for the 73-subject sample.

Figure 2.9: SBP distribution for the 219-measurement dataset.
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Figure 2.10: DBP distribution for the 219-measurement dataset.

Figure 2.11: PP distribution for the 219-measurement dataset.
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2.2. The OMWs were further processed to remove outliers from motion artifact. The points

of maximum amplitude in each oscillation were selected and outliers were identified as points

of much higher or much lower amplitude than the neighbouring ones by means of a function

that uses statistics of a seven-point window. They were then replaced by a point that was

the result of a linear interpolation between the points located before and after.

These OMWs were the final product that the author made use of for the envelope and

MAR algorithm study. As mentioned at the start of this section, one of the objectives of

this study was to verify the influence the OMWE’s shape has on the MAR algorithm. For

this reason, four different fits to the peak points of each oscillation were used to model the

OMWE. These fits are the same ones shown in figure 2.5: a linear interpolation between the

peaks, polynomials of 6th and 8th order, and a Gaussian function.

The linear interpolation has the advantage of exactly following each data point and provid-

ing real amplitude information at these locations. Its main disadvantage is that the removal

of outliers is a necessary step in the process, otherwise it will follow those locations as well

and introduce a potential error in the measurement. Polynomials of 6th and 8th order as well

as Gaussian functions have a smoother profile. While they may affect the estimate of MAP

to some degree, the appearance of outliers does not significantly affect the fit, unless they

are higher than the maximum amplitude. This is usually not the case, since any outliers of

this size represent a significant amount of motion artifact and the measurement as a whole

is discarded.

2.3.3 Results

One of the first observations done in this published work is how the amplitude ratios do not

depend exclusively on a subject’s BP. Geddes et al reported a systolic ratio (SR = AS/AM)

of 0.55 and a diastolic ratio (DR = AD/AM) of 0.82 for what was considered a “typical” BP

of 120/80 mmHg [69]. Using these ratios to estimate BP from a measurement where BP =

118/80 mmHg resulted in underestimation of both SBP and DBP for all four representations

of the OMWE. The highest differences came from the SBP estimate, of up to 13 mmHg.

This result provides an initial confirmation to the studies that found that arterial mechanics

play an important role in the correct selection of amplitude ratios. Even if BP is the same

in a number of individuals, each will have different artery configurations.
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The second step in the analysis was to estimate BP using a range of amplitude ratios

applied to each of the four representations of OMWE to determine which combination resulted

in the lowest mean error. For SRs the range between 0.28 and 0.89 was used in increments

of 0.01. For DRs the range between 0.3 to 0.99 was likewise sampled in steps of 0.01. The

BPs that resulted from the application of each of these ratios to each of the OMWEs were

compared to the estimates of true BPs. The error in the measurement was calculated as true

BP minus BP obtained from the algorithm. Ratios that were considered accurate for this

sample population where those where the mean of the errors (ME) was ≤ ±5 mmHg and the

standard deviation of the error (SDE) was < 8 mmHg. These limits are of clinical relevance

for diagnosis and treatment and considered in device validation recommendations.

Accurate SRs were found to fall on average between 0.44 and 0.66 for the linear inter-

polation and the polynomial functions, and were shifted to higher ratios for the Gaussian

function, between 0.5 and 0.74. These ranges extend to higher ratios than those reported

originally by Geddes et al, but are consistent with those reported by other groups. In the

case of DRs the accurate ratios fall between 0.56 and 0.83 on average from all OMWE rep-

resentations, with no significant shift for the Gaussian function. Here the ratios extend to

lower values than those reported by Geddes et al, but are also consistent with other reports.

The optimal ratios from each OMWE representation were chosen as those that had the

lowest values of ME ± SDE. These ratios and their statistics are shown in table 2.1. On

average, optimal SRs are close to 60% of the maximum amplitude and optimal DRs to 70%.

The SR for the Gaussian function is slightly shifted to a higher value compared to the other

fits, in accordance with the shift observed for the ranges of accurate ratios. This shift is

directly related to how each function represents the OMWE. The ME and the SDE for all

four representations are significantly small, although the best results are obtained in the SBP

estimates for the 6th degree polynomial envelope, and in the DBP estimates for the 8th degree

polynomial envelope.

We can appreciate in figure 2.12 a comparison of the different fits for a measurement.

In this case we can observe how the maximum amplitudes of the polynomial and Gaussian

envelopes are lower with respect to the linear interpolation, and their location shifted to-

wards lower pressures. The mean and standard deviations of these amplitude differences and

location shifts were calculated using the linear interpolation as reference. The results are

shown in table 2.2.
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Table 2.1: Systolic and diastolic amplitude ratios with lowest values of
ME±SDE for each envelope function.

Envelope Function SR ME ± SDE (mmHg) DR ME ± SDE (mmHg)
Linear interpolation 0.54 0.0± 6.6 0.64 −0.1± 6.9
6th degree polynomial 0.57 0.0± 6.2 0.71 −0.1± 6.8
8th degree polynomial 0.56 0.2± 6.5 0.68 0.0± 6.5
Gaussian 0.62 −0.2± 5.7 0.74 0.2± 7.3

Figure 2.12: Comparison of the different representations of the OMWE used
in the author’s published study.
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Table 2.2: Mean and SD of the amplitude differences and shifts in peak
locations resulting from polynomial and Gaussian functions using linear inter-

polation data as reference.

Envelope Function Amplitude difference Peak location shift
Mean±SD (mmHg) Mean±SD (mmHg)

6th degree polynomial 0.16 ± 0.17 -0.50 ± 5.48
8th degree polynomial 0.08 ± 0.24 0.40 ± 6.77
Gaussian 0.27 ± 0.19 -2.09 ± 6.22

The Gaussian function results in lower amplitudes and in larger shifts towards higher

pressures compared to the polynomial functions. The Gaussian function envelope will, on

average, overestimate MAP more so than the polynomial functions. These differences reflect

the overall higher ratios required for a better accuracy using a Gaussian function to fit the

OMWE.

A final important result discussed in the publication was the percentage of volunteers

that had BP estimates that fall within the acceptable accuracy limits of ME ≤ ± 5 mmHg.

To verify this the absolute values of the errors of the three BP estimates for each subject,

obtained with the optimal ratios for each envelope, were averaged. This average is considered

a measure of the performance of a device for a specific subject that operates based on the

most accurate ratios for the population, and for each OMWE function. The results for all

volunteers are shown in figure 2.13, and in figures 2.14 and 2.15 the same results are now

divided by age groups.

The numbers atop each bar are the percentages that each one represents. Results in

figures 2.13 through 2.15 show that the device would be recommendable for about 70% of

the subjects regardless of OMWE function. When related to the age of the subjects, those

aged between 41 and 62 years have lower accuracy in SBP estimates, and those aged 63 and

above have lower accuracy for DBP estimates.

2.4 Discussion and Conclusion

In this chapter we reviewed the basic operation of the OBPM, its advantages and disad-

vantages, and the different processes followed in order to obtain an estimate of BP. The
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Figure 2.13: Percentage of volunteers with BP estimates within three ranges
of accuracy depending on envelope representation.
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Figure 2.14: Percentage of volunteers with SBP estimates within three ranges
of accuracy and divided by age group, depending on envelope representation.
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Figure 2.15: Percentage of volunteers with DBP estimates within three ranges
of accuracy and divided by age group, depending on envelope representation.
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practicality of the automated oscillometric devices often supersedes their limitations, and

they are slowly but surely set to replace the method of auscultation altogether. Their poor

performance on some target populations makes this replacement challenging.

Errors in the measurement usually come from three different sources: subject/operator

(human-based), procedure (cuff size selection, adequate environmental conditions), and de-

vice operation (filtering and algorithms). Human-based and procedural errors can introduce

large inaccuracies, but are addressable with proper technique, although this is not easy to

ensure in a busy clinical environment. The most difficult issues to resolve are those based on

device operation. The black-box quality that most commercial devices have makes this task

particularly difficult.

The most important components of the OBPM related to data processing are the base-

line or estimated cuff pressure, the oscillometric waveform, which is a collection of periodic

oscillations present in the pressure signal, and the oscillometric waveform envelope, which is

the representation of the amplitude of these oscillations. Several steps must be followed to

obtain these components, and unfortunately each step carries a potential source of error.

The OMW is rich in information. It is probably the most important part of the OBPM and

it is a reflection of how cuff and arterial mechanics modify the pressure pulse. The OMWE

is a simplification of this OMW and BP is estimated from empirical constants derived from

relating this envelope to intra-arterial or auscultation BP measurements. Unfortunately,

there is an extensive number of options and combination of procedures to obtain these two

components, and there is no single ideal set that will equally benefit all types of populations.

Adaptive solutions to this problem have been proposed in recent years, however these methods

have not yet been validated.

Currently the best option for BP estimation is the method of maximum amplitude ratios.

Many commercial devices that have been validated are likely to use this algorithm, and their

statistics show that they have consistently accurate results. The ratios that some commercial

devices use have been approximately derived [77] and have been confirmed to be different

from each other. The results of the study published by the author show that there is a

significant range of ratios that will yield accurate results, and a device will probably have

favourable statistics if the ratios fall anywhere within this range.

Another contribution of this publication is the confirmation that there are several other

physiological factors affecting the measurement apart from BP. A major advantage of this
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study was the wide range of ages and pressures from the subjects available. This allows

comparisons of the effects of arterial stiffness and PP on the MAR algorithm. The sample

did not include subjects with underlying health conditions, therefore it was not possible to

quantify the effect that these might have on the procedure and on the selection of ratios and

envelope function.

An important result of the publication was the demonstration of how population statistics

don’t represent individual requirements. When individual cases are considered more than a

quarter of the sample had inaccurate BP estimates with errors greater than 5 mmHg. In

other studies oscillometry has been found to be persistently unreliable for some subjects that

don’t necessarily have underlying health conditions [78]. The results of said studies were

obtained over the course of several visits to the physician’s office. It would be interesting to

see if, were the subjects discussed in this thesis to return for another set of measurements,

the same effect is observed.

Perhaps most surprising was the fact that the most affected population was that aged

between 41 to 62 years, and that the most unreliable result was that of their SBP estimation

in all OMWE representations. Only about 54 to 67% of the individuals in this age bracket

had SBP estimates with an error < 5 mmHg. It was expected that this would be the case in

older individuals, however the method overall performed well in the age bracket of 63 to 79

years, with only lesser accuracy in the DBP estimate when functions other than the linear

interpolation were used.

One of the objectives established at the beginning of this document was to offer sugges-

tions for the overall improvement of the OBPM method. The first suggestion for improvement

is the use of envelopes with smoother profiles than a linear interpolation. Even though the

linear interpolation may better reflect the value of pressure at each instant, the different fea-

tures of such a function may confound the algorithm and lead to incorrect amplitude choices

if there are unexpected rises or dips in the signal that an initial filter may have not been able

to correct. This suggestion is backed by the better statistics obtained with the polynomial

functions.

A second suggestion is the use of a combination of envelopes and ratios during the mea-

surement. Figure 2.13 further confirms the results from table 2.1, showing how the percentage

of subjects with better estimates increases when using these envelope functions. However, it

is important to mention that, once the age group is considered, the definition of ideal choice
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of envelopes and ratios changes. Overall, the potential improvements can be summarized as

considering the possibility of having a device that allows customizable settings. Said device

can be calibrated for the intended user by their healthcare provider, and the selection of

envelope with its corresponding ratio would be set according to this calibration. Even if the

device is not calibrated by a professional, the device could offer recommended settings in its

user manual.

The author is unaware of the existence of such customizable devices, although there is

a high probability that they exist in the market. It is also very likely that these devices

won’t disclose their method of operation, as is common with automated devices, so it is

possible that the results offered in this chapter offer a novel approach to this possibility of

customization.

The final important comment done on this method, and established in the objectives of

the thesis, is the applicability of automated oscillometric devices as reference to calibrate

newly developed cuff-less devices. Based on the results presented here we can confirm that

there is good reason why this is a preferred first approach to test these new devices. It is

evident that good accuracy in automated oscillometric devices is easily achievable with a

wide range of amplitude ratios in the MAR algorithm. However, we have also confirmed

that users and research groups must be cautious when relying on this method, considering

the results of figures 2.13 to 2.15. Testing of devices, particularly those under development,

must consider not only the type of population, but also the age bracket of the population.

Once again, the suggestion of a customizable device may greatly benefit research as well,

broadening the options of testing conditions.

As an overall conclusion, the OBPM method surpasses other BP measurement methods

in terms of convenience and reach. It is unfortunate, however, that currently we have been

unable to exploit the full extent of the information contained in its components. We instead

rely on a set of empirical constants that have been repeatedly found to render the method

unreliable for a majority of the population. In this chapter some suggestions have been

offered to minimize the errors incurred in the procedure that are simple and easy to apply.

The author firmly believes, however, that the most valuable contribution that can be done

to the method requires a deeper understanding of the physical phenomenon, and an effective

comparison between the theories that describe it and measured data. One of these possible

theories and its subsequent comparison will be the subject of a later chapter.
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Chapter 3

Auscultation for Blood Pressure

Measurement

Auscultation is one of the most ancient procedures used to evaluate a subject’s condition.

In essence, it is the act of listening to the internal sounds of the human body, ideally with a

stethoscope. The use of auscultation for BP estimation came about in 1905 when the Russian

surgeon Nicolai Korotkoff discovered the series of periodic sounds now called Korotkoff Sounds

in his honour.

Korotkoff realized that, when compressing a limb with a cuff to occlude the flow of blood

through an artery towards the periphery, the method of palpation alone was not enough to

verify that the artery was completely occluded. If only partial occlusion was achieved, a

small volume of blood could still flow through the length of the cuff, yet the pulse would not

perceptibly transmit to the surface. Instead, Korotkoff correctly concluded that sound was a

more efficient marker of total occlusion. He noticed that when pressure in the cuff was high

enough to completely collapse the artery no sounds would come through the stethoscope, but

as pressure decreased in the cuff and flow of blood was slowly restored, what he described as

“clapping sounds” could be heard, even before the reappearance of pulsations in the periphery

of the limb [79].

Korotkoff sounds (KS) were later found to be an efficient method to estimate BP in a non-

invasive way. Korotkoff himself theorized that the appearance of sounds marked the point

where the arterial pressure wave initially surpassed the point of occlusion, that is, the instant

when the artery first reopens, and thus indicates the point of SBP. As the cuff continues to

be deflated and the pressure it applies on the artery decreases, there comes a point where

the KS disappear. Korotkoff assigned the location of DBP to this event, assuming that at
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this moment the pressure pulse wave was free to pass under the cuff. Comparisons of intra-

arterial pressure measurements and the appearance/disappearance of KS later confirmed

these associations to SBP and DBP.

Currently, blinded, two-observer manual auscultation to estimate BP is considered the

gold standard. Definitions of the thresholds of BP that correspond to reduced risks of car-

diovascular disease are based on statistical data obtained initially from standardized single

observer auscultation (and later from oscillometric measurement). Two-observer auscultation

is also recommended to validate any type of automated device.

However, as mentioned in the previous chapter, use of auscultatory BP measurement for

clinical care or population surveillance purposes is slowly being phased out and replaced with

automated devices for the following reasons:

1. Proper auscultation is ideally, and most accurately, performed using a mercury sphyg-

momanometer; however, due to concerns regarding mercury toxicity, many jurisdictions

have banned the use of mercury sphygmomanometers.

2. Auscultation is more operator dependent than automated measurement, underscoring

the need for training and periodic recertification. This means that subjective decisions

made by the operator are a source of error and inaccuracy. For instance, terminal digit

preference, such as consistent rounding of the values to the nearest zero or to a specific

value of BP commonly occurs. As an example, a study found that when a target

BP (SBP = 150 mmHg) was set for a particular hypertensive group under treatment,

reported values in follow-up measurements would repeatedly fall on the same value (148

mmHg), potentially overestimating the number of subjects that achieved the goal [80].

A most important source of error, and one that is sought to be addressed in this work,

is the ability of the operator to properly identify the sounds that are the basis of the

method. Often times the sounds that signal the location of SBP and DBP are faint

and easy to miss, resulting in an under/over-estimation of the respective pressures. The

DBP estimate is particularly difficult with this method. Hearing acuity of the operator

may be a factor to consider, although hearing loss from aging or from damage occurs

first at high frequencies [81] which, as will be discussed in the next sections, does not

necessarily affect KS perception. Instead, it is considered in this work that the effect
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known as masking of sounds has a greater impact in this source of error. The principles

of this effect will be discussed in depth and how they relate to auscultation below.

3. Auscultation requires the observer to be next to the subject, which leads to prevalence

of white-coat effect and white-coat hypertension.

Automated devices for BP measurement that use auscultation and sound processing are

available, but in a much smaller proportion compared to oscillometry based devices. These

devices use certain features of the KS, like amplitude and frequency content, to determine

SBP and DBP. However, similar to the empirical ratios in oscillometry, the exploited features

often come from results observed for certain populations that vary from one study to another.

As pointed out in the introduction, the author firmly believes that in order for an au-

tomated auscultation device for BP measurement to be successful, it must reproduce the

results of its true definition: measurement of BP based on human judgement of the sounds

heard through the stethoscope. Therefore, in this chapter the goal is to address this need for

a device that can estimate BP in a similar way that a human operator would.

The most useful approach we can take, thus, is analyzing the method under a psychoa-

coustical perspective. Psychoacoustics studies sound perception, and the effect that sound

characteristics such as frequency and amplitude have on human interpretation of it. For this

reason, the author theorizes that a psychoacoustical analysis of the KS in particular is the

key to an automated auscultation algorithm and subsequent device.

In this chapter, a review of the characteristics that define the KS is presented first. By

doing so, we can narrow the broad subject of psychoacoustics to those concepts that will be

of use for the study. Next, the basic concepts of psychoacoustics will be defined in detail,

specifically the effect known as masking of sounds which will be central to the development

of the algorithm. Finally, this theory will be applied to a set of digitized auscultation sounds,

and the results and discussion of this study will serve as basis to develop the proposed

automated auscultation algorithm.

The implications of these results, and how they align with the objectives set in the

introduction will be discussed in detail in the final section of the chapter. Particularly, the

possibilities this algorithm represents, as well as the challenges that need to be addressed

before it can be implemented in a device.
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3.1 The Korotkoff Sounds

The procedure followed to estimate BP through auscultation is initially similar to that fol-

lowed in oscillometry. The same considerations of optimum measurement conditions (room

temperature, body and arm position, etc.) and proper cuff selection followed in an oscillo-

metric BP measurement (OBPM) are observed for an auscultation measurement. Just as in

an OBPM, an inflatable cuff is wrapped around the upper arm of the subject, although in

this method the transducer is now a stethoscope. The head-piece of the stethoscope is placed

on top of the brachial artery at the distal end of the cuff, usually on the diaphragm side.

The cuff is inflated until the pressure transmitted to the arm reaches suspected suprasys-

tolic levels and the brachial artery is fully occluded, which can be verified with the stethoscope

by the absence of sounds. Air in the cuff is released to decrease cuff pressure, preferably at

a rate of 2-3 mmHg/s, which is a lower rate than that used in oscillometry. Inflation and

deflation are usually done manually and this requires practice to be able to achieve the ideal

deflation rate. The cuff is connected to a mercury or aneroid sphygmomanometer to keep

track of the pressure inside.

As cuff pressure reaches SBP the first KS appears, and these tapping sounds continue

in a periodic fashion following the cardiac cycle. As the measurement progresses and cuff

pressure continues decreasing KS change their intensity and quality. When cuff pressure

reaches DBP, the sounds disappear. KS are categorized into five different phases according

to these changes:

• Phase I marks the onset of KS and the pressure corresponding to SBP. In some cases

they are faint, easy to miss sounds. At least two consecutive beats should be heard to

be categorized as SBP; in some cases sporadic single beats (or artifact from movement

of the stethoscope or arm) can be heard at suprasystolic pressure levels but these are

not considered part of phase I.

• Phase II sounds are more defined than in phase I and there may be a rumble following

the initial tap.

• Phase III sounds have the highest intensity. A murmur or rumble may also follow the

initial tap, but of shorter duration than in phase II.
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• Phase IV is usually known as the muffling phase. Sounds become abruptly softer and

appear to be muffled.

• Phase V marks the complete disappearance of sounds. The general consensus is to

measure DBP at this phase as “the first sound that is not heard”1.

There is an additional phenomenon called the auscultatory gap where the sounds disap-

pear for a couple of beats between phases I and III, after SBP has been identified without

doubt. If the cuff has not been inflated to a BP level that is above systolic, the end of the

auscultatory gap can be mistaken for systole. Phases II and III have no clinical significance to

date. In some individuals there is no phase V, or it appears at extremely low cuff pressures.

In these cases, for DBP measurement the onset of phase IV is recorded along with phase V,

if present.

Measurement of DBP had been a contentious issue for some time until phase V was

generally accepted as its location. Phase V often underestimates intra-arterial DBP, yet

phase IV clearly overestimates it. In general, however, cuff BP measurements have been

found to underestimate intra-arterial SBP and overestimate intra-arterial DBP, regardless of

the method used [82].

3.1.1 Time and Frequency Description of the KS

Korotkoff sounds have been closely analyzed since their discovery in 1905. An interesting

and extensive qualitative description was published by McCutcheon and Rushmer in 1967

that includes a description of the degree of collapse of the arteries, and of the flow velocity

and arterial wall movements at each of the phases described above [83].

The total duration of a KS has been reported to range between 41 and 127.5 ms [84].

Durations were found to increase as cuff pressure decreases, until they reach a maximum

probably around phase II, and then decrease until they disappear [85]. The author of the

present work has encountered KS of durations potentially as short as 14 ms and as long as 300

ms, although this was not part of a controlled experiment with a large number of samples,

and the start and end points of individual KS are difficult to identify from noise present in

the signal. What is certain is that the increase and decrease pattern in their duration as

measurement progresses was definitely observed.

1From Drs. Ringrose and Padwal’s most useful instructions on how to measure blood pressure.
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Description of the most energetic frequencies present in KS varies from one publication

to the next. However, there are two fundamental results that all research agrees on: 1. there

are no characteristic fundamental frequencies or the presence of harmonics, and 2. there is

no significant content in frequencies above 400 Hz.

The change in sound quality from one phase to the other has prompted frequency analysis

of each phase as a whole in hopes of identifying representative frequencies. The greatest

content has been found, in general, at frequencies below 250 Hz, sometimes as low as < 10

Hz, below the human hearing spectrum [86]. There is some discrepancy on which frequency

bands characterize each phase.

Results by Geddes et al indicate that the first three phases have lower frequencies, between

40 - 60 Hz, and that the last two phases see an increase to frequencies between 50 and 70

Hz [87]. On the other hand, Allen et al found that phases I through III have most of their

frequency content below 280 Hz, and that this decreased to below 100 Hz in phases IV and V

[88]. Ware and Anderson reported that in phase I higher energy is predominant at frequencies

below 50 Hz, and that during phases II and III higher-frequency components appear near

200 Hz, which disappear once again in phases IV and V [89]. They also found that strenuous

exercise significantly increases the energy of the high-frequency components in all phases.

In the case of BP estimation, these types of analysis have been applied towards the design

of frequency filters that single out KS from the rest of the signal. Maurer and Noordegraaf

proposed a bandpass filter ranging from 50 to 160 Hz for this purpose [90]. Golden Jr. et al

chose a set of more specific narrow-band filters to specifically identify SBP and DBP. They

found that at SBP there was a maximum spectral amplitude increase between 18 - 34 Hz,

and a maximum decrease at 40 - 60 Hz at DBP [91]. These results were later used to develop

and automated auscultation BP measurement device [92].

3.1.2 Theories on the Origin of KS

One of the reasons why developing accurate automated auscultation devices (and oscillo-

metric devices as well, for that matter) has been challenging is the difficulty researchers

have encountered in satisfactorily describing the physics of the method. Estimates of SBP

and DBP would be more accurate if there was a better understanding of the mechanisms

responsible for the sounds that mark the location of these pressures.
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A wealth of theories have been proposed since the discovery of the KS. Due to the nature

of the phenomenon these theories are inevitably related to flow rate phenomena, pressure

differential effects, or the properties of the arterial walls.

Korotkoff himself initially proposed that the section of the artery distal to the compression

was fully collapsed and the Korotkoff sounds originated because the pulse wave front forced

the arterial walls apart causing vibration and sound production [93]. In reality, the artery is

not fully relaxed past the distal end of the cuff, therefore there is no forceful opening of the

artery at this point.

An observed property of the transmitted pressure waves, namely the steepening of the

ascending limb of the pulse wave, preceded by smaller waves, whenever the artery was com-

pressed by the cuff, led to the shock wave theory [94, 95]. This phenomenon is not always

present, so this theory was dismissed as well.

Another interesting observation was the potential presence of the Bernoulli effect in the

arteries. This effect could originate due to an increased flow velocity in the semi-compressed

arteries that would cause a drop in lateral pressure that further constricts the artery. The

artery would then suddenly expand as flow velocity comes close to zero, causing a “flut-

tering” effect [96, 97]. The viscosity of the medium in which the artery is immersed may,

however, provide enough damping to render the energy of this fluttering as insufficient for

the production of sound.

A natural later conclusion was that flow turbulence was responsible for the origin of KS.

It was proposed that the blood that flows through the constriction becomes turbulent, and

in turn releases energy that transforms into acoustic energy [98, 99]. Others proposed that

a combination of this turbulence along with a sudden separation of the arterial walls gave

origin to the tapping sounds and the rumbling sounds that accompany some of them [83,

100].

Theories related to arterial wall properties propose that cuff pressure interacts with arte-

rial mechanics to generate instability and cause vibrations [101–103]. This is made possible

due to the nonlinear compliance of the artery, which is a topic that will be discussed in the

following chapters.

Finally, improved computational equipment and modelling techniques have made it possi-

ble to combine and analyze fluid dynamics and arterial mechanics. For instance, simulations

of the flow and pressure differentials, and how arterial wall mechanics change by the presence
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of cuff pressure, are now possible for the generation of artificial KS [3, 103]. These improved

models may eventually lead to a more efficient description of the phenomena that gives origin

to the KS.

3.2 The Stethoscope

Before approaching the subject of the human perception of sound and how this affects the

detection of KS, it is important to briefly comment on one of the most important components

of auscultation: the stethoscope. In the case of manual auscultation, the stethoscope acts as

the transducer that detects vibrations at the surface of the skin and transforms their energy

into acoustic waves.

The acoustic stethoscope was invented in 1816 by the French physician Rene Theophile

Hyacinthe Laënnec, and it consisted of a hollow wooden tube. Modern stethoscopes, exem-

plified in the diagram in figure 3.1, consist of a chest-piece that can be used in two modes,

bell and diaphragm, of hollow rubber tubing that connects the chest piece to the earpieces,

and of earpieces that should fit comfortably inside the ears and fully seal the ear cavity. The

diaphragm of the stethoscope has a circular membrane that conducts the skin’s vibrations.

The bell, on the other hand, is a hollow piece that uses the skin as the membrane. The

stethoscope provides a closed acoustic system for sound conduction through a column of air.

The difference between bell and diaphragm modes of a stethoscope is related to their

transfer functions. A transfer function is defined as the ratio of sound pressure delivered

at the ears to the sound pressure detected at the chest piece as a function of frequency.

The dimensions and materials of the bell and diaphragm modes influence their resonant or

fundamental frequencies. Maximums in their transfer function are usually located near these

frequencies.

These differences in transfer functions were thoroughly demonstrated in a 1966 study

by Ertel et al where they compared the transfer functions of four different types of bell

chest-pieces and three diaphragm chest-pieces that were manufactured at the time that had

different features and dimensions [104]. The majority of the bell chest-pieces had a maximum

transmission ratio near 100 Hz and attenuated most of the frequencies above 200 Hz. The

diaphragms on the other hand acted mostly as filters, attenuating lower frequencies while

leaving higher frequencies almost undisturbed.
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amplifying sounds of interest also amplifies this noise. Manufacturers often include digital or

analog filters to remove this noise and to simulate bell and diaphragm modes of operation of

the acoustic stethoscope. These filters selectively amplify certain ranges of frequencies that

are supposed to correspond to each mode.

A study that compared four different electronic stethoscopes to an acoustic stethoscope

found significant differences in the transmitted frequencies [108]. This means that the filters

implemented in the electronic stethoscopes hardly mimic the output of an acoustic stetho-

scope, and there is an evident difference in the sound quality between one type of stethoscope

and another.

Of these four stethoscopes one was found to have the closest resemblance to an acoustic

stethoscope. The study does not mention brands, but from the description of its features

it was easy to deduce that the stethoscope in question was the One Digital Stethoscope

(Thinklabs Medical LLC, CO, USA). This stethoscope is essentially a capacitor, with the

diaphragm acting as a movable plate. It includes five filters that span different frequency

ranges, two of which are supposed to mimic bell and diaphragm mode, two that slightly shift

the frequency ranges of the first two filters to higher frequencies, and a wideband mode that

has an extended frequency range, between 20 and 2000 Hz.

This digital stethoscope was chosen as the ideal option for the analyses in this work.

The response of its wideband mode is flat over a wide range of frequencies, including those

of interest for KS auscultation, as shown in figure 3.2, which was reproduced based on the

information found in the One Digital Stethoscope webpage [109].

3.3 The Effective Detection of Korotkoff Sounds for BP

Measurements

The problem of correctly identifying the sounds that determine BP was already stated in the

introductory part of this chapter. Phase I and phase V sounds are often difficult to identify

because of their low intensity. A couple of possible solutions to this low intensity problem are

offered by electronic stethoscopes: the volume of the sounds coming through the earpieces

or headphones can be adjusted to the preference of the user, or the sounds can be recorded

and played back on a computer, for instance, where audio editing software can be used to

improve the quality of the sound.
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Figure 3.2: Approximate reproduction of the One Digital Stethoscope am-
plitude response as a function of frequency.

One would be inclined to believe that the frequency transmission differences between

acoustic and electronic stethoscopes discussed above may affect the usefulness of these solu-

tions. However, in the case of BP measurements this is not necessarily a relevant issue since

the only requirement is that the sounds are present at the proper timing, regardless of their

frequency composition.

Still, it is important to keep in mind the fact that sound cannot be modified in acoustic

stethoscopes, save for the limited selection of fundamental vibration mode in a diaphragm.

Sound recorded with electronic stethoscopes should not be substantially adjusted because

this may cause large discrepancies from acoustic results and compromise the accuracy of the

measurement.

In order to be able to propose an algorithm to automate KS identification, solving to

this problem is of immediate interest, considering that any automated device developed in

the future will have to make use of an electronic stethoscope. Additionally, in the following

chapters analysis is performed on a number oscillometric and auscultation BP measurements

simultaneously recorded, the latter of which was done with an electronic stethoscope. Auscul-

tation with an acoustic stethoscope in this situation was not possible, yet accurate estimates

of BP are necessary for the analyses. Applying an oscillometry algorithm is not an ideal

solution, as stated before, therefore the recorded KS were relied on to accurately estimate
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BP in each measurement.

A method to identify KS from these digital measurements that has a similar selection

process as that of a certified operator will also benefit, in this case, the completion of the

rest of the objectives in this thesis.

3.3.1 Psychoacoustics

Human hearing is dependent on the amplitude and the frequency of the sound pressure waves,

and this relationship is by no means linear. Humans can detect very small pressure variations

and a wide range of frequencies. The hearing threshold is defined as an RMS pressure of 20

µPa at a frequency of 1000 Hz, and the hearing spectrum extends from 20 Hz to 20 kHz.

The relationship of human hearing sensitivity to the frequency of the sound is presented

in Figure 3.3. The y-axis in this figure represents the Sound Pressure Level (SPL). This

quantity expresses the difference in pressure between any sound and a reference value, which

in this case is the auditory threshold of 20 µPa. Large differences in pressures are involved,

so it is customary to express this quantity in logarithmic scale and its units are denoted by

“dB SPL”. Each line, or contour, in figure 3.3 represents the dB SPL required for pure tones

of the corresponding frequencies to be perceived at the same level of loudness, the unit of

which is called the phon.

It is customary to also refer to a sound’s intensity level. Most experimental results related

to human sound perception are expressed in reference to this intensity level, so the discussion

that follows will be based on sound intensity levels, unless specified otherwise. This quantifi-

cation of sound is not too different from SPL. The concept is the same: it is a logarithmic

ratio of a sound’s intensity to a reference intensity. The only difference is that instead of

pressure, the energy per unit area is now measured. The reference intensity is also that of

the auditory threshold, which in this case equals 10−12 Watt/m2.

The intensity level (IL) and sound pressure level (SPL) of a plane or spherical progressive

wave are related by the following equation:

IL = SPL+ 10log10
p2ref

ρ0cIref
(3.1)

where pref and Iref are the reference pressure and intensity given above, respectively, ρ0 is

the density of air at a specific temperature and barometric pressure (ρ0 = 1.18 kg/m3 at a
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Figure 3.3: Equal-loudness contours for pure tones obtained from ISO
226:2003(E) [2].
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temperature of 295 K and a pressure of 1 atm), and c is the speed of sound in air, which is

also dependent on temperature (c ∼ 344.8 m/s at a temperature of 295 K).

One of the reasons why KS are sometimes difficult to identify can be inferred from the

information in figure 3.3. The human ear is more sensitive to higher frequencies, around

3-4 kHz, and requires increasingly larger pressure variations to be able to detect sounds of

lower frequencies. It was already established that KS are mainly composed of frequencies

below 250 Hz. This represents a difference of at least 20 dB SPL in their hearing threshold

compared to those frequencies to which the ear is more sensitive.

An interesting effect is that the hearing threshold can shift to higher or lower dB SPL

values for a number of factors. Auscultative BP measurements are directly affected by this

shift in threshold for the following reasons:

1. Binaural thresholds are lower than monaural thresholds [110, 111].

2. When sound is delivered by headphones, the auditory threshold of low frequencies is

displaced upwards by about 10 dB SPL relative to the threshold of a sound produced

by a loudspeaker located at least 1 m away from the subject. This is believed to be due

to irregular twitching of the muscles near the ears where the headphones rest [110]. In

the case of auscultation with an acoustic stethoscope the effect may not be as evident,

but a similar occurrence is possible depending on the tightness of the earpieces of the

stethoscope. The extent to which this tightness affects the threshold of audibility is yet

unknown.

3. Audibility thresholds vary from person to person. The graph shown in figure 3.3 rep-

resents statistical averages of various publications that reported on otologically normal

people2. Depending on long term exposure to loud sounds, a person’s threshold may be

lower or higher compared to that of others. Exposure to moderate sound pressure levels

also has an immediate temporal shift in auditory thresholds. For example, if the op-

erator performing auscultation was listening to music through a set of earphones right

before the measurement their auditory threshold might have shifted at that moment,

potentially impacting their BP estimate.

2Defined as a “person in a normal state of health who is free from all signs or symptoms of ear disease
and from obstructing wax in the ear canals, and who has no history of undue exposure to noise, exposure
to potentially ototoxic drugs or familial hearing loss” by the International Standard with reference number:
ISO 226:2003(E) [2].
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4. Audibility thresholds depend on the duration of the sound. For sounds lasting longer

than 200 ms the dependence of threshold on duration is constant. However, for sounds

of durations < 200 ms thresholds increase with decreasing duration at a rate of 10

dB per decade [112]. KS durations are within these ranges, with the shortest ones

occurring at the diastolic end. This shift in threshold may be one of the main reasons

why the last KS are harder to identify.

This gives further explanation as to why KS identification is challenging, and why there

can be significant differences in results between individuals, or even between measurements

done by a same individual on different occasions. Determination of the average auditory

threshold of KS could potentially help standardize the method, however this is not a simple

procedure. Measuring SPL or IL at the earpiece of an acoustic stethoscope is understandably

difficult and, although there exist calibrated microphones that assign a value of SPL to their

voltage output, this is not the case in electronic stethoscopes, and this is hardly a topic of

interest for companies that manufacture them.

Another factor that affects auditory threshold, which was not listed above, is the masking

effect. This is present in day-to-day interactions as the difficulty to hear any sound over

another, sometimes louder, sound. The auditory threshold of any sound is raised in the

presence of another masking sound. A clear example of how this affects KS identification

is observed if the measurement is collected in a busy location, with noise occurring in the

background. However, even in the ideal case of a measurement performed in a completely

silent room there will be a degree of masking present, and it is proposed in this chapter that

this effect will be of use in deriving an automated method to detect KS.

This procedure does not require knowledge of the auditory thresholds shown in figure 3.3,

only of the manner in which sounds interact with each other. The phenomenon of masking

and experimental results relevant to its application in the proposed method will be described

below and in the following section.

Masking

Masking is the effect that a sound has of reducing the ability to perceive another sound when

they are (usually) simultaneously present. Different masking effects are observed depending

on the spectral nature of the sounds, that is, whether they are pure tones, complex tones
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(sounds composed of more than one harmonic), narrow-band noise, or wide-band noise. A

way to quantify the masking effect is to determine the new auditory threshold of a test sound

in the presence of a masker. In other words, the minimum signal-to-noise ratio (SNR) of

these two sounds required to identify the test sound from the masker.

Harvey Fletcher determined that only frequencies lying near the spectrum of the test

sound are effective in masking it. He proposed the existence of critical bands, the width of

which depend on the frequency of the masked tone. Fastl and Zwicker determined that these

critical bands had a constant bandwidth of 100 Hz for centre frequencies up to 500 Hz. Past

this frequency the bandwidth increases at a rate of 0.2fc, where fc is the centre frequency

[112]. The bandwidths proposed can be calculated using the following approximation:

∆fFZ = 25 + 75[1 + 1.4(fc/1kHz)2]0.69. (3.2)

Glasberg and Moore proposed a different definition of critical bandwidths. They called

them the Equivalent Rectangular Bandwidth, or ERB, which approximates the bandwidths as

simple rectangular band-pass filters [81]. The bandwidths can be calculated by the expression:

∆fGM = 24.7 + 0.108fc[kHz], (3.3)

where the centre frequency is expressed in units of kHz, and are only valid for 100 Hz < fc <

10 kHz. This definition by Glasberg and Moore results in narrower bandwidths than those

of Fastl and Zwicker. For example, at a centre frequency of 100 Hz the bandwidth is of 35.5

Hz, and for a centre frequency of 500 Hz, 79 Hz.

In the present case it is believed that each KS acts as an individual test sound, and that

the noise in the signal is the masking sound. The masking sound in this case will be limited

to noise present in the signal by virtue of the use of electronic components. The presence of

intrinsic masking sounds has not been explored in the context of acoustic stethoscopes, yet

one might argue that they are still present in this type of measurement. The noise in this

case is not electronic in nature, but rather noise produced by sounds resonating within the

acoustic cavity produced by inherent bodily processes from both ends of the measurement.

Once more, the critical bandwidths discussed here apply to pure tones. An example of a

single KS is shown in figure 3.4a. This figure contains a 1-s long segment of sound, and the

sudden deflection in voltage observed is the KS. A 400 ms window was selected around the
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Figure 3.4: a.Single Korotkoff sound segment marked in red with immediately
preceding noise segment marked in blue. b.Energy density spectrum of the noise

segment. c.Energy density spectrum of the KS segment.
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KS, spanning 100 ms before the point of maximum positive amplitude of the KS, and 300 ms

after; this selection is marked in red and consists of the “test sound”. The selection in blue

consists of another 400 ms window selected to end immediately before the KS window. This

window is considered to be a representation of the masking sound or background noise.

The energy density spectrums of the noise and test sound are given in figures 3.4b and

3.4c, respectively. The maximum energy of the noise segment is an order of magnitude smaller

than that of the KS segment. This sample has not been filtered or altered in any way. From

these figures one can immediately discard masking effects related to pure or complex tones,

and the immediate application of either of the above equations to calculate their critical

bandwidths.

The background noise is also clearly not the white noise signal present in many electronic

devices. White noise is defined as a sound with constant spectral density independent of

frequency spanning the whole range of audible frequencies.

The most obvious conclusion derived from figure 3.4 is that KS can be considered a case

of narrow-band noise masked by another narrow-band noise. Bos and de Boer studied this

case, in which test and masking sounds were narrow-band noises of the same bandwidth [1].

What they found was that there is a minimum SNR, or intensity difference between the two

sounds, required for a human to be able to perceive the test sound above the masking sound.

This minimum intensity difference is known as the Difference Limen, DL.

The DL has been found to decrease with increasing intensity and to be independent of

frequency [113]. Bos and de Boer found that in the case of narrow-band sounds the DL

depends on their bandwidth. They also confirmed that it may also be independent of central

frequency, but it is subject-dependent. In their work they present results for the DL of the

two authors for test sounds of different bandwidths and centred at different frequencies. An

approximation of their results for a centre frequency of 500 Hz is presented in table 3.1. Their

results were obtained through binaural listening and with test sounds of 250-ms duration,

which is a similar situation in KS listening.

The bandwidths shown in table 3.1 were chosen from results in [1] for being the ones

most closely related to the critical bandwidths discussed above for pure tones centred at

frequencies below 500 Hz. The results of table 3.1 also show how the DL depend on the

subject, as there is a mean difference of approximately 1 dB between the two observers.

In the following section the results of a study of the SNR between KS and noise segments
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Table 3.1: Difference limens obtained from [1].

∆f [Hz]
Difference Limen [dB]

Observer CEB Observer EdB

20 5.1 6.6
40 4.2 5.6
80 3.5 4.4
100 2.9 3.4

like the one shown in figure 3.4 are presented. This was calculated at the four different

bandwidths in table 3.1 in an attempt to identify which one better represents the KS and

the extent to which noise in the signal is capable of masking them. The observed results

are later used in combination with the DL from Bos and de Boer to propose an automated

method to detect KS, and to potentially estimate BP, that mimics human response.

3.4 Study on the Identification of KS above Noise in a

Digital Auscultation Measurement

3.4.1 Data Collection

For this study digital auscultation measurements were collected by the author from 9 volun-

teers at the National Research Council Canada, including staff and students. Measurements

were taken in two rounds, the first including 4 volunteers, and the second including the

remaining 5. All volunteers were instructed to abstain from ingesting food and caffeinated

beverages for at least 30 minutes prior to the measurement, as well as from performing

strenuous physical activity.

Volunteers were seated with their back supported and their measurement arm propped

up so the cuff would be approximately at heart level. Unfortunately, the temperature of

the room could not be controlled in the measurement and it was lower than recommended

(∼ 20◦C ± 1◦C), however, since the purpose of this study was not strictly determining the

true BP of each volunteer, this fact may be overlooked.
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In all measurements simultaneous oscillometric and auscultation data were recorded with

the setup represented in figure 3.5. The One Digital Stethoscope, described in a previous

section, was placed on top of the brachial artery and secured to the arm of the volunteer

with the aid of medical tape. The wide-band mode of the available stethoscope’s filters was

selected, which passes frequencies between 20 Hz and 2 kHz. It was connected to a DAQ

through a 3.5-mm-jack-to-BNC cable, which in turn was connected to a computer, where

data were recorded as txt and wav files with a LabVIEW (National Instruments Corp.) code

written by Derek Weiler, a co-op student collaborating with Dr. Hiebert’s group during 2019.

The data saved in the txt files were vectors of voltage as functions of time.

For the first round of measurements the rubber tubing of the cuff was connected to a

custom oscillometric device borrowed from the Department of Medicine of the University

of Alberta, which controlled inflation and deflation of the cuff. Data in this round were

sampled at a rate of 1 kSps. For the second round the measurement was entirely manual and

the tubing was connected to an aneroid sphygmomanometer that includes a dial, a bulb and

a valve. Inflation and deflation were controlled by the operator (the author) and sampled at

a rate of 10 kSps.

To collect the pressure data the tubing attached to the cuff was connected through a “T”

connector to a pressure transducer (MPX5050GP, Freescale Semiconductor, Inc.), which in

turn was also connected to a DAQ. The computer received the data from the DAQ in the

form of voltage as a function of time, which was then converted to pressure as a function of

time following the transducer’s specifications for data conversion.

At least three consecutive measurements were collected per volunteer each session, with

a rest period of at least one minute between measurements. The group in Round 1 had BP

measurements taken in at least two occasions except for one volunteer, while the group in

round 2 participated only once. Of these, two representative measurements were selected

per volunteer for analysis, for a total of 18 measurements. None of the volunteers indicated

having underlying health conditions. Pressures in this set of 18 measurements ranged from

90.08− 138.71 mmHg for SBP, with mean ± SD of 114.71± 12.78 mmHg; DBP ranged from

47.07− 100.74 mmHg, with mean ± SD of 66.35± 13.55 mmHg.
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3.4.2 Experimental Procedure and Data Processing

Simultaneous measurement of BP with an acoustic stethoscope was not possible due to space

constraints, because the electronic stethoscope was required to be placed in the antecubital

fossa, leaving no room for another stethoscope head. For this reason, there is no estimate of

BP as determined by traditional manual auscultation with an acoustic stethoscope. Instead,

BP had to be determined by listening to the digital audio track. This was done on the free

audio editing software Audacity.

As mentioned above, the wide-band mode of the One Digital Stethoscope was used to

measure this set. As a reminder, its frequency response is maximally flat between the fre-

quencies of 100 - 1000 Hz, and frequencies below 100 Hz are attenuated, with the highest

attenuation rate occurring below 40 Hz (see figure 3.2 for reference). For this reason, to keep

the data that was least modified by the stethoscope, in the software Audacity all audio was

high-pass filtered with a cutoff frequency of 50 Hz, and then low-pass filtered with a cutoff

frequency of 400 Hz, both filters at the same roll-off rate of 36 dB/octave.

The audio was played back on at least three separate occasions for the author to identify

as many audible sounds as possible. All files were listened to at the same volume, raised

until most of the fainter sounds at the diastolic end were perceptible, yet the louder sounds

were not uncomfortable to hear. Phase I was easier to identify, with only a few differences

in some measurements, where it could be identified as commencing a beat sooner or later.

Phase V was often harder to identify, particularly because it appeared to extend to the end

of the measurement in some volunteers. SBP and DBP locations were thus estimated at the

locations most consistently identified on each separate occasion. Their pressure values were

obtained by relating their timing to the corresponding oscillometric data.

The txt files were processed using Matlab (The MathWorks, Inc., Natick, Massachusetts,

USA). The DC bias of the signal was removed first by subtracting the mean of the signal.

Then, a 6th order Butterworth band-pass filter was applied to the data between the limits of

50 - 400 Hz. This bandpass filter is the equivalent of the combination of low- and high-pass

filters applied in Audacity, and an example of how this filter alters the frequency spectrum

of the measurements is given in figure 3.6. The black trace is that of the frequency spectrum

of a complete auscultation measurement, with only the DC bias removed from it and no

filters applied. The red trace is the section of the frequency spectrum that remains after the

Butterworth band-pass filter discussed above is applied to the original signal.
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Figure 3.6: Frequency spectrum of a full auscultation measurement. In black
is the spectrum of the original signal and overlaid in red is that of the band-pass

filtered signal.

Several measurements were found to have significant energy peaks at the mains frequency

and some of its harmonics, as well as others believed to be carrier frequencies. To prevent

these frequencies from affecting the results they were attenuated with a 4th order Bandstop

Chebyshev Type II filter with edge frequencies ± 2.5 Hz from the central frequency. The

frequencies that were to be attenuated were manually selected from visual inspection of the

single-sided amplitude spectrum of the complete sound signal.

The procedure that follows is summarized in the flow diagram in figure 3.7. The sound

signal was divided in windows 700 ms long, equivalent to a heartbeat period of 85 bmp. Win-

dows with content of amplitude ≥ 0.5 mV were selected for further processing and analysis.

Each of these selected windows were identified as the windows containing the test sound and

are numbered in part 1 of the flow diagram.

The point of highest amplitude in each was identified, and the windows were re-centred

using this point as reference, extending 100 ms before and 300 ms after this point. A second

400-ms window was selected as that containing the masking sound for each test sound window.

This noise segment was chosen to end immediately before the test sound. An example of these

segment selections was given in figure 3.4 and is represented in part 2 of the flow diagram,

where the blue trace corresponds to the masking sound and the red trace to the test sound.
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Figure 3.7: Flow diagram of the calculation of the SNR between test and
masking sounds.
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To select the central frequencies for critical bandwidth determination, the spectral energy

density of the test and masking sound segments was obtained by means of a Fast Fourier

Transform (FFT). The frequency with the highest energy density in the test sound was

selected as the central frequency, fc. The four critical bands of widths 20, 40, 80 and 100

Hz were centred around this frequency. These steps are exemplified in part 3 of the flow

diagram, and the coloured areas correspond to the critical bandwidth.

Finally, the SNR was calculated as the ratio of the sum of energy over the critical bands,

which in part 4 of the flow diagram is indicated by the equation

SNR = 10log10

∑

εTS
∑

εMS

(3.4)

where εTS is the energy of the test sound and εMS of the masking sound.

3.4.3 Results

An example of one of the measurements is given in figure 3.8. Figure 3.8a is the sound

signal after having the bandpass filter applied to it. Figure 3.8b is the single-sided amplitude

spectrum of the measurement, and figure 3.8c is the single-sided amplitude spectrum of the

same measurement after the Chebyshev filters for different frequencies were applied.

The example in figure 3.8a has clear extraneous frequency peaks of higher amplitude than

the adjacent frequencies centred at 30, 45 and 60 Hz. These higher amplitude frequencies

were attenuated by 10 dB, the result of which is shown in figure 3.8c. The 60 Hz frequency is

the mains frequency that appeared because the measurement setup was powered by a power

source connected to the electrical outlet. In some measurements the harmonics 120, 240

and 360 Hz are also present. The frequencies of 30 and 45 Hz may be carrier frequencies

originating from one of the measurement setup components.

The test sounds selected can be divided in three categories: inaudible sounds, KS, and

audible sounds that are not KS, but rather noise artifact or sporadic beats resembling KS

that do not follow the periodicity of the rest of the KS. These categories are expected to be

differentiable by the overall frequency content or SNR of the sounds belonging to each. If

this is the case, these differences will be particularly important in identifying the points of

SBP and DBP.
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Figure 3.8: a.Sound measurement from a volunteer in the first round of
measurements. b.Amplitude spectrum of a. with extraneous frequency peaks
at 30,45 and 60 Hz. c.Amplitude spectrum of a. after 10 dB attenuation of the

frequencies marked in b.
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Table 3.2: Mean and standard deviation of the central frequencies found for
each type of test sound.

Test-Sound Round 1 Round 2
Type Mean ± SD [Hz] Mean ± SD [Hz]
KS 75.8 ± 12.8 102.4 ± 20.8

Inaudible 141.8 ± 50.0 94.2 ± 27.3
Noise Artifact 71.7 ± 9.5 110.6 ± 37.5

Table 3.3: Mean and standard deviation of the SNR of KS test sounds for
each critical bandwidth.

Bandwidth Round 1 Round 2
∆fc[Hz] Mean ± SD [dB] Mean ± SD [dB]

20 24.8 ± 2.2 32.9 ± 4.9
40 23.7 ± 2.2 31.7 ± 5.2
80 22.6 ± 2.1 30.0 ± 4.8
100 22.2 ± 2.0 29.4 ± 4.5

To verify if these differences exist the mean ± SD of the central frequencies for each type

of test sound and for each set is shown in table 3.2. The mean ± SD of the SNR of the

sounds identified as KS are shown in table 3.3 for both rounds and for the four bandwidths

considered. Those of the sounds classified as inaudible are given in table 3.4 and those of noise

artifact in table 3.5. Each of these results are divided into the two rounds of measurement

collection to verify if there was any difference when using automated vs manual deflation, or

lower and higher sampling rates.

Figures 3.9 through 3.12 show how the SNR changes in the vicinity of SBP and DBP,

when it is calculated from bandwidths of 20, 40, 80 and 100 Hz, respectively. The markers

are the mean value of the SNR of all the measurements and the error bars represent ± 1

standard deviation. The corresponding DL from each observer in table 3.1 are indicated by

the horizontal dashed lines.

In all four figures the red trace indicates the sound segments near SBP and the blue trace

the sound segments near DBP. On the systolic end the KS that marks SBP identified with
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Table 3.4: Mean and standard deviation of the SNR of inaudible test sounds
for each critical bandwidth.

Bandwidth Round 1 Round 2
∆fc[Hz] Mean ± SD [dB] Mean ± SD [dB]

20 2.2 ± 0.9 1.6 ± 1.1
40 1.6 ± 0.6 1.5 ± 0.9
80 1.1 ± 0.5 1.2 ± 0.5
100 1.0 ± 0.4 1.2 ± 0.5

Table 3.5: Mean and standard deviation of the SNR of noise artifact test
sounds for each critical bandwidth.

Bandwidth Round 1 Round 2
∆fc[Hz] Mean ± SD [dB] Mean ± SD [dB]

20 9.1 ± 2.7 18.0 ± 2.7
40 7.7 ± 2.6 17.5 ± 2.2
80 6.9 ± 2.4 16.7 ± 2.4
100 6.6 ± 2.4 16.6 ± 2.4
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Figure 3.9: Mean of the SNR of the sounds in the proximity of SBP and
DBP calculated for a bandwidth of 20 Hz. The DL for 20-Hz bandwidth for
each observer in [1] are indicated with horizontal dashed lines. The diastolic

plot is inverted in time.

Audacity is highlighted in black, to its left are the three preceding sound segments, and to its

right the next three KS. On the diastolic end there is no specific marker for DBP, but rather

the last three audible KS identified with Audacity are plotted to the right of the vertical

dashed line, and the sound segments that come after are plotted to its left. That is, the plot

that corresponds to the diastolic end is inverted in time, with the last sound being the first

point on the left. Another way to interpret these plots is the fact that all inaudible sounds

are to the left of the dashed vertical line, and all audible sounds to its right.

3.4.4 Discussion

The ability to record and visualize auscultation data is without doubt a significant advan-

tage electronic stethoscopes have over their acoustic counterparts. Recordings such as these

can potentially facilitate training and enable less experienced operators to acquire necessary

practice. They are particularly ideal for research purposes, such as what is presented in

this work. However, a significant drawback of utilizing electronic recordings of auscultation
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Figure 3.10: Mean of the SNR of the sounds in the proximity of SBP and
DBP calculated for a bandwidth of 40 Hz. The DL for 40-Hz bandwidth for
each observer in [1] are indicated with horizontal dashed lines. The diastolic

plot is inverted in time.

Figure 3.11: Mean of the SNR of the sounds in the proximity of SBP and
DBP calculated for a bandwidth of 80 Hz. The DL for 80-Hz bandwidth for
each observer in [1] are indicated with horizontal dashed lines. The diastolic

plot is inverted in time.
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Figure 3.12: Mean of the SNR of the sounds in the proximity of SBP and
DBP calculated for a bandwidth of 100 Hz. The DL for 100-Hz bandwidth for
each observer in [1] are indicated with horizontal dashed lines. The diastolic

plot is inverted in time.

measurements, particularly in the case of BP estimation, is found in defining which sounds

are truly relevant to obtain the correct result.

This was of significance in the development of this research, given that one of the features

electronic stethoscopes have is the option to increase the volume of the sound. As a result,

the operator now has the ability to identify the faintest sounds at the diastolic end that may

otherwise not be perceived with acoustic stethoscopes. The dilemma is then whether these

new sounds, if present, should be considered part of the measurement or not if they are not

identified with the traditional method.

The use of visual aids can also be misleading in trying to identify the relevant sounds. As

an example, we have Figure 3.8 at the diastolic end of the measurement, past the 70 s mark.

If each vertical line in the measurement, or spike in voltage, is associated with a KS, then

the smaller, yet visible, lines at the final seconds of the measurement can be interpreted as

KS. One of the purposes of this study is to verify if said lines do correspond to a KS, based

on whether a person would be able to perceive them in a measurement above the masking

sound.

Unfortunately, the appearance of external frequencies, such as the mains and carrier



Chapter 3. Auscultation for Blood Pressure Measurement 71

frequencies and their harmonics, introduces a certain amount of error to the procedure.

Attenuating these frequencies with the use of stopband filters offers a simple and immediate

solution. However, the power contained in each frequency is not uniform, therefore selecting

the attenuation level for each is not a straightforward decision. Additionally, using a stopband

filter also reduces the amplitude of all the frequencies included in the bandwidth of the filter,

as can be observed in figure 3.8c. Noticeable dips in the frequency spectrum can be observed

where the troublesome frequencies are attenuated.

It should be noted that a smaller range of frequencies can be selected in the stopband

filter, depending on the frequency resolution of the original signal. However, the sound

segments selected in the next steps of the procedure are limited to a resolution of 2.5 Hz.

This means that selecting a bandwidth for the stopband filter that is smaller than the 2.5-Hz

resolution will result in an attenuation that will most likely not have any effect on the data

of interest.

Despite these issues, the attenuation of these frequencies did prove to be beneficial for

the overall algorithm. Before the application of the stopband filters the mains or carrier

frequencies were sometimes more energetic than the rest of the spectrum, particularly at

the diastolic end. This greater energy of externally sourced frequencies would hinder the

process and result in an incorrect classification of the test sound. For example, in figure

3.13 we can appreciate the frequency spectrum of one of the measurements collected, before

the attenuation with stopband filters. We can clearly see how the line corresponding to 45

Hz dominates over those next to it. Its effect can be observed in figure 3.14, which is the

energy density plot of one of the KS of this measurement near the diastolic end, and its

corresponding masking sound.

The frequency with the highest energy in both test and masking sounds is near 45 Hz,

and the masking sound actually has a higher energy level than the test sound. When using

a critical bandwidth of 40 Hz, the resulting SNR in this case was of 3.15 dB, which would

classify the sound as inaudible with either DL. As a reminder, this test sound is an audible

KS.

After the stopband filters are applied, we encounter a situation that looks instead like

figure 3.15, where the critical frequency of the test sound has been shifted to 52.5 Hz and the

energy of the masking sound has been reduced. This is a clear example of why the use of the

stopband filters was important to the procedure. In this case, with a critical bandwidth of
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Figure 3.13: Amplitude spectrum of a sound measurement after it has been
bandpass filtered, but not stopband filtered at the mains and carrier frequencies.

The line corresponding to 45 Hz is signalled.
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Figure 3.14: Energy density of test (left) and masking (right) sounds of a sin-
gle KS segment without stopband filter application. Coloured area represents

a bandwidth of 40 Hz used to calculate a SNR = 3.15 dB.
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Figure 3.15: Energy density of test (left) and masking (right) sounds of a
single KS segment after stopband filter application. Coloured area represents

a bandwidth of 40 Hz used to calculate a SNR = 5.65 dB.

40 Hz once more, the SNR is now 5.65 dB, which allows us to correctly classify the segment

as containing an audible sound, independent of which DL is used for this classification.

Another interesting observation that can be made related to the central frequencies is

that, as expected, there are no characteristic frequencies for KS. From table 3.2 we can verify

that they are on average located below 200 Hz as reported in previous research, but they are

not significantly different from the centre frequencies of noise artifact. There is a shift in the

mean of the centre frequencies for all types of sounds between both rounds of measurements.

It is not possible to conclude that this was due to the measurement procedure or the sampling

rate, since the large SD in all cases points to this being only a statistical matter. Another

possibility is that the troublesome frequencies had a more negative impact on one case than

on the other.

The results of the mean SNR for KS show that there is a significant difference in energy

between the test sound and the masking noise. This difference in energy is significantly

higher on average for KS than it is for noise artifact. This may be a useful result for filtering

out unwanted sounds in the signal that may affect the estimate of BP. This observation is
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limited, however, to the case where noise artifact is not particularly intense, for instance a

sound coming from tapping on the stethoscope headpiece or considerable movement from the

limb. These situations are preferably avoided in BP measurements, so this criterion could

be applied to any measurement. In the case of inaudible sound segments the SNR is close to

zero, meaning there is little to no difference between the segment selected as the test sound

and the segment of masking noise as expected.

It is important to mention that there were occasions of incorrect sound classification that

were not related to the previous discussion of application of stopband filters. That is, there

were still inaudible sounds with a SNR higher than the mean, or KS identified from the audio

track that had a SNR considerably smaller than the mean. This was particularly observed

at the diastolic end, but not exclusively. Two reasons for these deviations from the mean

have been identified. The first reason is the presence of the mains and carrier frequencies and

their harmonics in the audio tracks. These were not removed in Audacity before listening

to the audio and could have masked some lower intensity sounds. The second reason is the

overlap of the masking sound segments with intermediate vibrations. This happens because

the algorithm selects the vibrations with the highest amplitude as the test sound, but within

the window there might be another smaller vibration. Once the test sound and masking

sound windows are selected, the smaller vibration may fall within the masking sound’s range,

contributing to the energy of this segment.

Figures 3.9 through 3.12 demonstrate how the DL reported in [1] are related to the

measurement of BP. The DL in said publication refer to the difference in sound intensity of

the test and masking sounds, which as mentioned before is a measure of the power of sound.

In this case the SNR was calculated from the power spectrum of the data, which is why the

DL can be directly applied to the results.

The sounds identified as corresponding to SBP by listening to the audio tracks, and

those that follow, are several dB above both DL, independent of the critical bandwidth. This

indicates that KS belonging to the first phases have enough energy to not be masked by nearby

frequencies. There is also a large jump in SNR between the sound marking SBP and that

preceding it, which is also usually below the limits of perception. The sound corresponding

to SBP, however, has a lower SNR on average than the following sounds, sometimes even

close to the DL. This confirms that the onset of the KS may be a softer sound compared to

the ones that follow, explaining why this sound is easy to miss or to be misinterpreted on
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occasion.

By contrast, the sounds that were assumed to be the last three audible sounds in the

signal when the audio was listened to are much closer to the DL. An important observation

is that the sound that comes immediately after (the third marker from left to right) in all

cases is between or above both limits, and the following two are not too far from them.

This is a clear example of how sound perception is subject dependent. In the cases of 20

and 40-Hz bandwidths one observer would “correctly” estimate DBP, while the other would

underestimate it. For wider critical bandwidths both observers would likely have greater

difficulty in accurately estimating DBP.

This observation may very well apply to the author’s assumptions of where the last audible

sounds are located. However, two important points must be made in favour of the author’s

definition of last audible sounds. The first is that, while KS effective frequency bandwidths

may not be constant, the sounds in phases IV and V are neither as complex nor as energetic

as those in the preceding phases. This may point to a narrower bandwidth of the last KS,

and thus to only a narrow noise bandwidth contributing to the masking effect. The second

observation is that the three sounds assumed to be inaudible all have approximately similar

values of SNR. If the blue plots in each figure are read from right to left (in correct temporal

order) one can identify a gradual decrease in SNR until it reaches an almost constant value

in the final three sounds.

These observations may indicate that the author’s estimate of audible sounds is accurate,

and that narrower critical bandwidths may be more effective in studying the masking of KS.

The possibility also exists that, because mains and carrier frequencies were not removed

from the audio track before playback, these could influence the location of the last audible

sounds. However this effect would likely be the equivalent of the situation represented in

figures 3.9 and 3.10, where in some instances the sounds are perceived and, in some instances,

not, depending on the subject.

Finally, it is important to point out that, to the author’s knowledge, this is the first

analysis of KS done from the psychoacoustics topic of sound masking and difference limens.

Other KS research related to psychoacoustics and human hearing threshold exists in the

literature [114], however, a significant advantage of this method in comparison is that no

information on the microphone’s pressure-to-voltage conversion is necessary, and the gain of

the apparatus will not affect the results. Another important advantage is that the method
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is self-sufficient in the sense that there is no need for an external reference, given that all

comparisons are done within a single measurement. From this, the natural progression is to

attempt the development of an algorithm to automate auscultation based on the results of

this section.

3.5 Proposed Method to Automatically detect KS

The method was applied initially to the 18 measurements described in the previous section so

they could serve as a “training” set of data. Once the method was fully established with these

measurements, it was applied to a larger set including most of the measurements collected.

In what follows the processing of the data and the selection criteria are described. The

effectiveness of the method will be determined by the correct location of the sounds that

mark SBP and the last audible KS. Some comment on the accuracy of a hypothetical device

is included at the end of this section.

An important caveat in the validity of BP estimation and the accuracy of the method

is the fact that BP was estimated to the best of the author’s ability. The author is by

no means an expert in auscultative BP estimation, so the results are based on instruction

received by more capable personnel and the limited amount of experience acquired through

the completion of this work.

The data were in general processed in a very similar manner to what is described in the

previous section, only adjusted to make the method applicable to sets containing a larger

number of measurements. The DC bias is removed as a first step from the original signal by

subtracting the mean, and a 6th order bandpass Butterworth filter is applied to the data. The

same criterion is used as in the previous section for the filter: the bandpass ranged between

the frequencies of 50 - 400 Hz.

In the previous section the external frequencies were visually identified and specifically

filtered in each measurement. For a larger number of measurements this individual selection

becomes a time-consuming task. For this reason, it was decided that a set of defined fre-

quencies would be filtered based on those that appeared most often in all measurements. In

this case the frequencies 30, 45, 60, 120, 240 and 360 Hz, were all equally attenuated 10 dB

for all measurements.
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Figure 3.16: Visual example of the classification of audible and inaudible
sounds by the proposed algorithm. “a” is the label for audible sounds and “n”

the label for inaudible sounds.

The rest of the procedure is the same as that described in the previous section. The signal

was divided in windows of 700-ms length, test sounds were selected from windows with content

≥ 0.5 mV, and the windows recentred and shortened to 400-ms length. Their corresponding

masking segments were selected immediately preceding each test sound. Central frequencies

were identified from the amplitude spectrum, and SNR was calculated for each within one of

the four bandwidths under study.

The first objective of the algorithm is, of course, to differentiate the audible sounds

from the inaudible ones. A visual example of this is given in figure 3.16, where a sound

measurement is plotted as a function of cuff deflation pressure and the segments are labeled

according to their classification. For this purpose, the DL from table 3.1 were used as cut-off

values. In the training set both DL were used for each bandwidth to determine the optimum

limit.

An important relationship between KS that was not extensively discussed in the previous

section was their periodicity. For subjects with regular heartbeats, KS are spaced by an

approximately constant period of time. Clearly, audible sounds that are separated by a

length of time greater than the average heartbeat period do not correspond to the set of KS.
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This spacing in time was the next criteria to filter out sounds that are not of interest.

To further narrow down the selection of audible candidates to KS only, other results from

the previous section can be applied. In the case of SBP, it is observed that the SNR of the KS

that marks SBP is considerably higher than that of the preceding segment, which is usually

an inaudible test sound. Therefore, part of the selection criteria for SBP includes considering

this difference.

The case of DBP is far more complicated, since there don’t appear to be other relevant

characteristics that separate one phase from another. After the DL criteria is considered

to determine the last few audible sounds, the last KS is identified as that occurring within

a temporal separation lower than a couple of standard deviations from the mean of the

heartbeat period.

In the training set the most effective combination for BP estimation was obtained with a

bandwidth of 40 Hz and the lowest of the two DL, that is, 4.2 dB. Of all the sound segments

selected by the algorithm in the training set, 852 were identified to be audible sounds, and

365 to be inaudible sounds. This combination had a classification accuracy of 99% for audible

sounds (847/852) and of 88% for inaudible sounds (324/365). SBP was accurately estimated

88% of the time (16/18) and DBP 55% of the time (10/18). These values of critical bandwidth

and DL were thus applied to the complete set of measurements collected by the author. A

visual example of the results of the algorithm is given in figure 3.17, which corresponds to

the same measurement as in figure 3.16.

A total of 60 measurements is considered for the overall measure of the algorithm’s per-

formance, including the 18 measurements of the training set. In these measurements SBP

ranged from 90.08− 138.71 mmHg, with mean ± SD of 110.53± 13.18 mmHg; DBP ranged

from 44.49− 100.74 mmHg and mean ± SD of 63.60± 11.61 mmHg.

Of the 60 SBP measurements, 53 were exactly determined by the method. Of the re-

maining 7, three were incorrectly estimated because there was a gap in the sounds, which

shifted the selection to lower pressures where there were uninterrupted occurrences of the

KS, as exemplified in figure 3.18. The gap could be an auscultatory gap or the result of poor

contact between the stethoscope and the skin caused by movement. The other four incorrect

estimates missed the SBP mark by a single vibration.

Of the 60 DBP measurements, 23 were exactly determined by the method. 16 measure-

ments of the 60 missed the DBP mark by a single vibration, 12 missed it by 2 vibrations,
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Figure 3.17: Visual example of the estimate of BP obtained with the proposed
algorithm corresponding to the measurement in figure 3.16. The intermediate
sounds between SBP and DBP are marked as “k”, corresponding to Korotkoff

sounds.

and 9 by 3 or more vibrations. On 22 instances of these errors, however, it was observed

that the cause was the periodicity selection criteria, not the DL criterion, as shown in figure

3.18. That is, the sound segments were correctly identified as audible/inaudible sounds, but

the second filter used to select the point of DBP based on their temporal separation was

insufficient. This second filter depends on the mean and SD of the period of the sounds,

however in some instances sounds are separated by more than one or two SD.

As a BP measurement method, the resulting mean ± SD of the errors for the set of 60

measurements was 0.19 ± 1.18 mmHg for SBP and 0.02 ± 2.81 mmHg for DBP. This is below

the limits of clinical relevance. Overall, only one of the SBP estimates was beyond this limit

of clinical relevance and only 3 of the DBP estimates.

3.5.1 Final Remarks

The results presented here provide some evidence for the effective bandwidth containing

the main frequency components of the KS, and that exploiting the available knowledge of
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Figure 3.18: Example of a measurement with incorrect BP classification
containing both a gap at the systolic end, and audible sounds not classified as

KS at the diastolic end framed in red.

the masking phenomenon is useful to explain how these sounds are perceived by a human

operator. They confirm some of the findings of Bos and de Boer and set a precedent on how

to establish critical bandwidths for masked short-duration sounds with frequency content in

the lower frequency end of the auditory spectrum.

It should be noted that some disadvantages in this study are the limited number of

measurements and that strict protocols were not followed to collect such measurements.

Unfortunately, a real estimate of BP through simultaneous auscultation with an acoustic

stethoscope was also not possible.

Nevertheless, BP measurement through auscultation relies on correctly identifying the

start and endpoints of the KS, regardless of the conditions of the measurement. These points

were identified by real human response, that is, by listening to the sounds as they were

recorded, and the method proposed here appears to effectively mimic these observations.

It is important to emphasize the fact that this is an original method proposed by the

author based on the observations and results obtained above. The main purpose of such a

method was to address the need of an automated auscultation device that could faithfully

reproduce the results of manual auscultation. The other objective was to develop this method
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to optimize the computations of the following sections. These objectives were successfully

accomplished, considering of course that the method can still be improved, although the

algorithm presented has far more important implications for BP measurement and future

device development.

A potential automated device that uses this algorithm, based on auscultation rather than

oscillometry, would be of particular importance considering that manual auscultation is part

of the gold standard for estimating BP, and that its application is entirely reliant on human

perception of sound. The author believes that, if any automated auscultation device is to

be developed, the ideal one would be one that can apply psychoacoustic principles into its

selection algorithm.

It is also the author’s belief that this device based on psychoacoustics would have greater

accuracy in BP estimates compared to devices based on oscillometry. The reason behind this

is that, as we have discussed in the previous chapter, oscillometric devices are most likely

based on empirical constants whose accuracy depends on the individual; a device operating

under the proposed algorithm would, instead, rely on the well-established definition of BP

measurement. This definition of BP measurement, while having some exceptions for certain

cardiovascular conditions, applies to more types of populations.

A potential disadvantage this proposed method could have compared to oscillometric

devices, is its application to noisier environments. So far, the discussion above has been

limited to masking by electronic noise from the stethoscope. The possibility exists of the

stethoscope detecting external sound from the measurement setting, such as a busy clinic,

adding to the noise masking the KS. In this case, however, if we were to design an algorithm

that is capable of performing accurately in these situations, further analysis of the interaction

between KS and other types of background noise is necessary. As we should recall, the method

proposed here is based on the assumption that a narrow-band sound in masked by another

narrow-band sound. Depending on the type of background external noise the stethoscope

is able to detect during a measurement, the possibility exists that we would now have to

consider white noise or complex tones masking the narrow-band KS. The effect these type of

sounds have on KS could force us to modify the algorithm in order to define new DL and a

new set of steps to identify SBP/DBP in the measurement.

An example of these cases of other types of external noise detected by the stethoscope is

given in Appendix B. In these cases no further analysis of the psychoacoustics has been done;
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the algorithm designed here is tested “as is”. The purpose of this exercise is to confirm the

need for more analysis on specific types of background noise, and to verify how a potential

device based on this original principle would perform in other less than ideal situations.

Despite this disadvantage the algorithm has compared to oscillometric devices, we should

not overlook the fact that there are still a large number of applications where a device

operating under this algorithm would excel above other automated devices by virtue of its

greater accuracy. At-home measurements, for instance, would be greatly benefited since

they are usually performed in quieter settings where additional background noise is not a

significant concern. If a patient were to share measurements collected with this device with

their physician, diagnosis and treatment decisions would have the added confidence of being

based on results that the physician would have obtained themselves.

Another advantage of this device, and one that was set to be addressed in the introduction

of this text, is its use as reference for other devices. Cuff-less ambulatory devices could now

be calibrated with this potential device and the added uncertainty in BP estimation through

oscillometric devices can be avoided altogether. Research groups would now have direct

“gold-standard type” estimates to calibrate their devices, increasing the confidence in the

results obtained with their own devices.

A final important example of another application of this proposed algorithm/device, that

cannot be addressed by other automated devices, is the validation of automated devices. This

procedure is costly and time-consuming, requiring certified operators and a large number of

participants. The algorithm proposed here could replace one or all of the required operators,

translating in potentially large savings in human and economic resources. Other devices

that are also based on auscultation have been proposed previously to aid in this validation

[115, 116], however, they require the verification of their results by a trained operator. The

algorithm proposed here dispenses with the need of this additional verification.

There are, certainly, several other instances of automated devices available in the market

based on auscultation. Older patents use a simple approach to identify KS based on content

detected at certain frequency ranges [92, 117–119], or at certain predetermined amplitudes

[120]. These criteria are, as discussed previously, not ideal, considering that the frequencies

contained in KS are not consistent, and any intensity (or amplitude) threshold would be

arbitrary with the potential of selecting sounds not related to KS, or eliminating fainter

sounds at the diastolic end. The method proposed here has a significant advantage on that
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front, considering that it adapts the frequency “filters” to the components of each individual

sound, and that there must be a clear separation between KS and masking sounds, not just

an arbitrary intensity level.

Other interesting applications of digital auscultation make use of the sound data as a

visual aid to determine BP [115, 116, 121]. The user can see the auscultation measurement

in a computer or a smartphone, and it looks just as the data shown here in figure 3.8a. The

disadvantage in doing this, which was mentioned in the previous sections, is that this visual

aid may be misleading, particularly in the diastolic end, especially if the user is not familiar

with KS or is properly trained to identify them. The method proposed here can go a step

further and visually indicate which voltage spikes are audible, inaudible, or KS, like what is

shown in figures 3.16 and 3.17.

Next Steps

Before implementing the proposed method in a device that can fulfill all the potential appli-

cations discussed above, necessary next steps include improving the KS selection algorithm,

particularly on the diastolic end, and to implement a decision process that can deal with

auscultatory gaps and arrhythmias. In the future it will also be important to increase the

number of measurements and observers to properly calibrate the method, particularly en-

listing the aid of an expert in KS identification. Real-time auscultation is possible with the

type of stethoscope used here with an audio splitter, so the DL of the KS can be better

characterized, and the method further improved to mimic human response. The greatest

disadvantage is that this characterization would not be possible with acoustic stethoscopes,

although an electronic stethoscope can be calibrated to a certain extent so that the audio

output is as close as possible to that of the acoustic counterpart.

With the objective of further developing the algorithm, tests have been done on a separate

set of auscultation measurements collected by the British and Irish Hypertension Society

(BIHS) that are publicly available on the internet. Some preliminary results from those tests

are included in Appendix C. These results indicate that the procedure can independent of

the equipment used to record the sound, as long as certain considerations are made about the

noise contained in the signal and its frequency components. It has also become evident that

some improvements are necessary to be able to apply the method to different cardiovascular

conditions.
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In recent years Artificial Intelligence (AI) and Neural Networks (NN) have seen increased

application in the medical field. This is also true in the case of auscultation. NN are taught

to identify certain features of the KS, such as temporal relations and energy or frequency

content [122, 123], in order to estimate BP. Perhaps the features identified here can also be

implemented in a NN in the future.
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Chapter 4

Physics-Based Mathematical Model and

Regression Analysis of the Oscillometric

Method

Up to this point, the reader is now hopefully familiar with the oscillometric blood pressure

measurement (OBPM) method, and its advantages and shortcomings. The method was

qualitatively described in chapter 2, and the discussion in that chapter centred on the filtering

processes and the algorithms used to estimate BP. As one might recall, these algorithms are

based on empirical evidence and their accuracy is often compromised in populations that

deviate from average cardiovascular conditions.

It was pointed out in the introduction of this thesis that, to date, there is no formal

theoretical background that explains the particular choice of features used to estimate BP

with the OBPM method. To understand the influence that various factors have on these

estimates, detailed mathematical description of the physical phenomena involved has been

derived by a few research groups. These mathematical models take into consideration fluid

dynamics, cuff and arterial mechanics, and may become increasingly more elaborate if other

factors are included, such as mechanics of the tissue surrounding the artery or the influence

of veins and capillaries. Often, these models consist of several equations that must be solved

by elaborate numerical methods.

These models are useful to visualize the effect that certain parameters have on the ex-

pected result. Their result is a synthetic representation of the observed oscillations that re-

sembles the overall features of measured data. For instance, the work of Ursino and Cristalli

has revealed that arterial mechanics play a significant role on the definition of the MAR
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algorithm to estimate BP [6]. However, these models are not usually directly verified on

measured data.

The goal of this chapter, as set in the introduction, is to approach this challenge, and

preferably to do so in a practical manner. This means deriving a simple, yet effective,

mathematical description of the physics behind the generation of the oscillometric waveform

(OMW), so that it can be readily compared to data typically obtained during a cuff mea-

surement. This comparison between mathematical model and measured data is intended to

validate the model in question, or at least reveal potential improvements that can be made

to the model, and at the same time provide information about parameters directly related

to the components of the system.

The chapter begins with the derivation of the mathematical functions that make up the

model in question. As we shall see, there are several possible expressions for the component of

the model that describes arterial mechanics. These have been formulated from experimental

data obtained in settings different to those of an oscillometric measurement. The comparison

performed in this chapter will also help identify which one of these formulations may be

better suited to describe arterial mechanics in a cuff-based measurement.

Once the necessary equations have been established, these will be fitted to oscillometric

data collected from the volunteers mentioned in the previous chapter by means of a non-linear

least squares regression. The resulting parameters will be analyzed to verify if their values

are representative of the phenomena under study.

4.1 Mathematical Model of the Oscillometric Waveform

The model derived below is based on a derivation by Charles F. Babbs included in this publi-

cation [4]. This derivation was followed because it allows us to obtain a simple mathematical

expression for the OMW, as we shall see in the text below. The pressure signal where the

oscillometric information is extracted from is a monotonically decreasing function of time

that contains small oscillations (see figure 2.1). The small oscillations correspond to the

OMW, and one of the methods described in chapter 2 to extract this information from the

original signal consisted of fitting a baseline to the signal and subtracting it. Mathematically

the combination of the OMW and the baseline can be described as:
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P (t) = Pbase(t) +OMW (t) (4.1)

where P(t) is the total pressure signal as recorded by the pressure sensor. The function

Pbase(t) is assumed to be the mean pressure inside the cuff that decreases in time as air is

slowly being released by the valve, that is, Pbase = Pc.

One thing that was not discussed in chapter 2 is that the small oscillations in the signal,

or the OMW, originate from the changes in blood volume flowing through the arterial tree

during each cardiac cycle. These volume changes are also periodic oscillations and when

expressed as a function of time they form what is know as the blood volume waveform.

When the pressure in the cuff is above SBP blood cannot flow towards the distal end of

the cuff and the lower extremity. The blood volume pulses impact on the proximal edge of

the cuff and the variations are minimally transmitted to the cuff, which is why we observe

small oscillations in the pressure signal even at suprasystolic cuff pressures. As pressure in

the cuff decreases the artery slowly reopens and allows increasing amounts of blood to flow

across the whole section of the artery that is under the cuff. Once cuff pressure is below

diastolic pressure the artery remains open and blood flows freely as it would under normal

(cuffless) conditions.

This interaction between cuff pressure and the oscillating blood volume waveform is re-

sponsible for the varying amplitude of the pulses in the OMW. The relationship between

blood volume and the pressure pulses in the OMW is not exactly linear. To describe the

connection between the blood volume waveform and the OMW we make use of Boyle’s law

assuming an isothermal system:

P1V1 = P2V2. (4.2)

If we consider P2 = P1 +∆P and V2 = V1 +∆V , where ∆P and ∆V are small pressure and

volume variations, respectively, occurring after a change in time, ∆t:

PV = (P +∆P )(V +∆V ) (4.3)

where the indices are dropped and P and V are understood to be the absolute pressure and

total volume of the air in the cuff.

If the variations are sufficiently small, we can obtain
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PV ≈ PV + P∆V + V∆P (4.4)

and thus,

V

P
≈ −

∆V

∆P
. (4.5)

The ratio V/P is defined as the cuff’s compliance. In the strict sense of the definition,

this ratio refers to the compliance of the air inside the cuff, not to the material the cuff is

made of. However, to simplify the discussion and to avoid confusion, we shall refer to it as

cuff compliance. Drzewiecki et al studied cuff mechanics and derived an expression for this

compliance [7]. Their findings indicate that the Pressure-Volume relationship of a cuff is non-

linear at low cuff pressures, but can be approximated as a linear function as cuff pressure

increases. This approximation is most effective at pressures beyond the range of what is

normally used in a BP measurement. However, we can still assume a linear behaviour, or

constant compliance, at pressures measured during a BP measurement.

From equation 4.1 we know that total cuff pressure in an OBPM is the sum of two

components. Therefore, if there exist variations in total cuff pressure, ∆P , there will naturally

exist variations in each of these components:

P +∆P = (Pbase +∆Pbase) + (OMW +∆OMW ). (4.6)

and eliminating terms with the equality in equation 4.1 we thus conclude that the variation

in cuff pressure is the sum of the variation in each component: ∆P = ∆Pbase + ∆OMW .

Likewise, the total volume variation in the cuff is the result of variations in both baseline

and oscillating components (∆V = ∆Vbase +∆Vosc). The baseline component of the volume

function is the steady decrease in cuff volume as the cuff is deflated; the oscillating component

of the volume function is the direct and opposite result of the blood volume variations, or

−∆Vosc = ∆Va, where Va is the arterial blood volume.

Substituting these definitions in equation 4.1 we obtain an expression that relates vari-

ations in volume to the variations in pressure through cuff compliance. If compliance is

assumed constant we can also assume that the variations in the linear component of the

volume are directly responsible for the variations in the linear component of the pressure.

Likewise, variations in the oscillating component of the pressure are a result of the variations
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in the oscillating component of the volume, that is, variations in blood volume. With these

considerations in mind, for the oscillometric waveform we have:

∆OMW =
1

Cc

∆Va, (4.7)

This last equation shows that the relationship between the OMW and the blood volume

waveform is approximately linear only to the extent that cuff compliance can be considered

constant. The quantity Va is rarely measured, so the next step now is to relate the OMW to

the variable of interest, that is, blood pressure.

4.1.1 Arterial Compliance

We assume the OMW variations, and thus the blood volume variations, in equation 4.7

happen over a small fraction of time, ∆t, which in the limit when ∆t → 0 can be expressed

as the derivative

d

dt
OMW =

1

Cc

d

dt
Va. (4.8)

Under normal hemodynamic conditions (no cuff) the only pressure applied on the arterial

walls is that of regular blood pressure on the internal side of the arterial wall. During an

OBPM there is an additional pressure applied by the cuff acting on the external side of the

arterial wall. Therefore, the difference between these two pressures will be the “net” effect

perceived by the artery. This difference is called the transmural pressure, Pt, and is defined

by,

Pt = Pa − Pc (4.9)

where Pa is the internal, or arterial, pressure, and Pc is the external, or cuff pressure.

At the start of the measurement the artery is collapsed because the pressure in the cuff

exceeds the highest pressure attained in the circulatory system (SBP), and Pt < 0. Blood

flow is occluded and at this point there is minimal blood volume variation under the cuff. As

the measurement progresses and cuff pressure descends past SBP there is a continuous shift

on which side of the artery “feels” the highest pressure. That is, transmural pressure will

oscillate between negative and positive values. When pressure inside the artery is greater,



Chapter 4. Physics-Based Mathematical Model and Regression Analysis of the

Oscillometric Method
91

that is Pt > 0, the artery is able to open and there is an increased flow of blood under the

cuff.

At cuff pressures higher than SBP the blood volume is observed to pulsate against a point

of occlusion at the proximal end of the cuff, which is why there is minimal volume variation,

even at high cuff pressures. When cuff pressure is below, yet close to, SBP transmural

pressure is positive for a small fraction of time and minor variations in the volume Va occur

under the cuff. As cuff pressure continues decreasing there comes a point where it is in the

vicinity of MAP. This means that the pressure outside the arterial wall is, on average, equal

to the pressure inside most of the time, and the mean value of Pt is equal to zero. At this

point the artery is collapsed the same amount of time that it is open, causing the largest

variations in blood volume of the measurement. Once the pressure in the cuff is past MAP

and is closer to, or below, DBP the influence of the pressure on the outside of the arterial

wall will be minimum and blood flow conditions eventually return to normal.

From these interactions it is clear that arterial volume is a function of transmural pressure,

that is, Va = Va(Pt). Expanding the time derivative of Va in equation 4.8 results in

d

dt
OMW =

1

Cc

·
dVa

dPt

·
dPt

dt
=

1

Cc

· Ca ·
dPt

dt
. (4.10)

The term Ca is the arterial compliance defined as Ca = dVa/dPt or as Ca = dA/dPt,

where A is the artery’s cross-sectional area. Finally, if we expand the definition of Pt we

obtain a complete expression for the time derivative of the OMW:

d

dt
OMW =

Ca

Cc

·

(

dPa

dt
−

dPc

dt

)

. (4.11)

With this final equation we arrive at a simple model that potentially describes the mea-

sured OMW and that also contains information about arterial mechanics. The use of this

model is further simplified by the fact that one of its variables is information easily obtained

from a cuff measurement, that is, Pc. The arterial pressure waveform, Pa, is a variable that is

only faithfully obtained through an invasive measurement, however it can be modelled with

the use of a Fourier series following a few approximations that will be described in following

sections.

The only parameters that are left for consideration are the compliances. Since cuff com-

pliance is assumed constant, we only need to estimate its order of magnitude. Models of
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arterial compliance are discussed in what follows.

Models of Arterial Compliance

Obtaining an accurate expression for arterial compliance, Ca, is perhaps the most challeng-

ing part of equation 4.11. This parameter is difficult to measure during a cuff measurement

and most of the information available has been obtained from in vitro experiments. Arte-

rial properties change significantly when excised from the body, and the changes are more

pronounced the longer it remains outside in vivo conditions.

Some Pressure-Volume or Pressure-Area relationships for the artery have nevertheless

been derived from experiments with rubber tubbing and excised animal arteries. The main

observation is that this function follows a sigmoidal shape to account for the observed be-

haviour at different transmural pressures. Namely, the minimal variations in volume at

negative and positive transmural pressures, and the large variations near zero transmural

pressure.

Figure 4.1a shows an example of a few models of these relationships found in the literature,

each labeled with the last name of the first author in the publication they were obtained from

[3–6]. The plots were drawn using the same parameters reported in each publication, except

for [6], where an artery of a smaller radius was considered. In all cases a 1-cm-long segment

of artery was assumed.

The models shown in figure 4.1, and many others in the literature, make different con-

siderations for each side of Pt in the P-V or compliance function. The region where Pt > 0

is often modelled as an exponential [4, 70, 124] or logarithmic [5, 125] function. The region

where Pt < 0 is also often modelled as an exponential function [4, 70], or as a hyperbolic

function [5]. Some authors have instead described the relationship as Pt = f(A), where the

function is usually a polynomial or power function of the area (or volume), and different

formulations of these functions are used to model each region [3, 6, 126].

To complete the formulation for the OMW stated in equation 4.11 two of the models

plotted in figure 4.1 were selected to represent arterial compliance. The other two models,

unfortunately, are the type of models that describe Pt as a function of the cross-sectional area,

and they are complex functions that cannot be rewritten in terms of the transmural pressure.

In the case of a cuff measurement like the one we are considering here, the information we

have available is that of Pt.
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Figure 4.1: a.Pressure-Volume relationship models for a human arterial wall.
b.Arterial compliances derived from these models. Each model is labeled by

the first author’s last name from [3–6].

The first model selected is the one formulated by Drzewiecki et al in [5], which com-

bines the observations of arterial distention following a logarithmic function, and collapse a

hyperbolic relationship:

A = d
ln(aPt + b)

1 + e−cPt

(4.12)

where A is the lumen (cross-sectional) area and a, b, c, d are empirical constants, which

in Drzewiecki’s case were obtained from a fit to measured data from a canine carotid. The

constant d acts as a scaling parameter, so the function can be rewritten in terms of arterial

volume by assuming that the multiplication times the length dimension is included in this

constant.

The second model selected makes an explicit separation between positive and negative

transmural pressures, and assumes that both sides behave exponentially. The differences in

the behaviour at both sides are accounted for in the constants of each exponential function.

The formulation for this P-V function was taken from Babbs’ publication [4], which is a

simplified version of the equation used by Baker et al [70]:
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V =

{

V0e
aBPt for Pt < 0,

V0

[

1 + aB
bB
(1− e−bBPt)

]

for Pt ≥ 0.
(4.13)

The constants aB and bB are also empirical constants that can be derived from experiments

and V0 is the zero pressure volume.

In equation 4.13 it is always assumed that the maximum arterial compliance occurs at

Pt = 0, while in equation 4.12 this point can be adjusted with the constants. Deriving these

expressions with respect to transmural pressure will give the function of arterial compliance

that can be substituted in equation 4.11. For the purpose of comparison, both functions will

be used in the OMW model.

4.1.2 Arterial Pressure Waveform

The arterial pressure waveform (APW) is a periodic signal that shows the pressure changes

in a given artery at each cardiac cycle. Its shape and amplitude vary depending on the

location of the arterial tree where it is being measured, mostly due to the proximity of

reflection sites to this location. It oscillates between SBP and DBP, meaning its maximum

amplitude is the pulse pressure (PP), defined as the difference between these two pressures,

or PP = SBP −DBP .

Like any periodic signal, it can be synthesized with a Fourier Series (FS), and the constant

term in the series can be related to an arterial pressure parameter. Mean Arterial Pressure

(MAP) was briefly mentioned in chapter 2 and an approximate definition of this pressure

was given as

MAP = DBP + 1/3PP. (4.14)

However, as MAP is the mean pressure recorded in a patient’s arteries during a cardiac

cycle, we can also use the following equation to determine its value:

MAP =
1

T

∫ T

0

Pa(t)dt (4.15)

where T is the period of the cycle and Pa the arterial pressure waveform. This integral is

reminiscent of the definition of the constant term in the FS:
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Figure 4.2: Simulated arterial pressure waveform for BP = 120/80 mmHg.

a0 =
2

T

∫ T/2

−T/2

f(t)dt (4.16)

from where we can conclude that MAP = a0/2. Therefore, the APW can be expressed by

the following FS:

Pa(t) = MAP +
3

∑

n=1

[an cos(2nπft) + bn sin(2nπft)] (4.17)

where for simplicity only three harmonics are considered. An example of this is shown in fig-

ure 4.2, where the FS coefficients are: MAP = 102.9, a1 = −6.285, a2 = −2.989, a3 = −0.935,

b1 = 14.594, b2 = 5.981, and b3 = 2.926, all measured in mmHg.

4.2 Model Fitting to Oscillometric Data

4.2.1 Non-Linear Least Squares Regression

A simple method to fit an equation to measured data is by means of a Non-Linear Least

Squares (NLLS) regression, which can be stated as an optimization process that seeks to

minimize the function
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S =
N
∑

i=1

ε2i =
N
∑

i=1

[yi − f(xi, ~β)]
2. (4.18)

The measured variable yi is compared to the function f(xi, ~β), which is the output of

the equation used to describe the observed phenomenon when an independent variable xi,

measured at the same time as yi, is used as input. Multiplying the independent variable

are a number of unknown parameters listed in the vector ~β. The function S is the sum of

the square of the errors or residuals, ε, which are the differences between measured variables

and function-generated variables. This function is minimized when the ideal combination of

parameter values is found.

In the present case, the measured variable yi corresponds to the OMW obtained from the

oscillometric measurement. The function f(xi, ~β) will be obtained from using equation 4.11

along with equations 4.17, which has a time dependency, and 4.12 or 4.13, which depend

on transmural pressure, that ultimately also depends on time. Therefore, the independent

variable xi in this case is the time, and the parameters in vector ~β are all the constants

included in the equations mentioned above that have not yet been accounted for, such as

the constants in the FS that represents the APW, and the empirical constants in the arterial

P-V functions.

NLLS requires the use of an iterative procedure. An initial parameter estimate vector, ~β0,

is provided for an initial computation of the function S. The values of the parameters are then

adjusted in each iteration depending on whether the function S is minimized with respect to

the previous iteration or not. For this reason, NLLS is unfortunately very sensitive to the

initial estimate. This must be reasonably close to the real parameter estimates, otherwise

the function may not converge, or it may converge to a local minimum rather than a global

minimum [127].

Limits and constraints can be set for this type of optimization problem to narrow down

the search region of parameter values. Given that the parameters in this case are related

to the two functions Pa and Ca, the limits and constraints can be easily visualized by the

properties of these functions.

In the case of Pa the MAP and the heartbeat frequency, f, can be limited to reasonable

values. The other series constants are harder to limit, but the overall maximum and minimum

points of the waveform can be expected to have values close to SBP and DBP, respectively.
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The parameters in the Ca functions are assumed to be positive real numbers. Additionally,

since the Ca function originates from the P-V relationship of the artery, it should be expected

that if the resulting parameters are used to generate a function of the type V = V (Pt), this

function should be positive for all the range of transmural pressures. In the case of equation

4.13 the requirement of positive real values is sufficient to ensure this condition. However, in

the case of equation 4.12, the logarithm in the expression requires that

ln(aPt + b) ≥ 0

or that the parameters be constrained as

a ≤
1− b

Pt

for Pt < 0.

Including these limits and constraints into the optimization algorithm will help ensure

that the resulting parameter values are a good estimate of their true values. Given that we

have little to no knowledge on the parameters that define arterial mechanics, we must make

use of the knowledge we have available to make sure the chosen solution best represents the

measured data.

Observations from Synthetic Data

In order to establish the algorithm and to ensure the NLLS regression will be effective with

measured oscillometric data, the regression was first applied to a few synthetic cases created

with equations 4.11, 4.12 or 4.13, and 4.17. One can think of this regression to synthetic

data as an exercise in numerical modelling to get familiarized with the functions available in

the computational language of choice, their requirements according to the model in question,

and the nuisances or errors that may arise during the procedure. This exercise will also help

in giving an idea of what are the expected results and how to interpret them.

The first step was to generate the synthetic data, which was done by creating an APW

with equation 4.17, a cuff pressure function, Pc, and using these to create the transmural

pressure waveform to be used in the compliance functions. The APW generated was that

shown in figure 4.2, for a BP of 120/80 mmHg, and the cuff pressure was assumed linear,

deflating at a constant rate of 3 mmHg/s from a maximum pressure of 140 mmHg. Differences

in OMW were obtained by setting different values of the constants a through d in equation
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Figure 4.3: Cuff P-V relationship obtained from the results in [7] in the range
60 – 140 mmHg. A linear function fit to the data is shown by the dashed red

line.

4.12, and constants V0, aB, and bB in equation 4.13. Cuff compliance was approximated from

Drzewiecki’s work on cuff mechanics, which is reproduced in figure 4.3 for cuff pressures

between 60 and 140 mmHg. The dashed red line represents a simple linear fit to the data

performed with a Matlab function. The result is the linear function V = 0.39Pc+259.1, from

which we can obtain a cuff compliance of ∼ 0.4 cm3/mmHg.

The data were generated for a total duration of 30 s, and sampling frequencies of 100

and 1000 Sps were assumed. Equation 4.11 was numerically integrated by a simple Euler

method, the step size of which was required to be the inverse of the sampling frequency,

and three different OMW were generated per compliance model. An example of one of these

synthetic OMW is shown in figure 4.4, obtained from using equation 4.12 in the model and

the constants used by Drzewiecki in his publication ([5]).

The NLLS regression to these sets of synthetic data was performed with the lsqcurvefit

function in Matlab. Several initial estimate vectors, ~β0,m, were tried to verify if the regression

returned the original set of parameters independent of initial estimate, or if several solutions

to the problem existed. The initial estimate vectors were generated with the aid of a Latin

hypercube sample matrix (LHSM), which in the case of Matlab creates a matrix of size
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Figure 4.4: OMW obtained by integrating equation 4.10 with the compliance
model from equation 4.12. The value of the constants are: a = 0.03 mmHg−1,

b = 3.3, c = 0.1 mmHg−1, and (d× L)/Cc = 2 mmHg.

m × n and randomly distributes the elements in each column with one from each interval

(0, 1/n), (1/n, 2/n), ..., (1− 1/n, 1), and then randomly permutes them. Each column in this

case corresponds to a parameter, and each row to an initial guess vector.

A few observations from the obtained results, which are applicable to both compliance

model sets, are:

1. The regression is possible regardless of sampling frequency (time step).

2. Some initial guess vectors did not lead to any result because the search could not

converge to a solution.

3. The cases that did lead to a solution were not always sensible results, which could

be confirmed by plotting the OMW function (eq. 4.11) obtained with the parameter

estimates in question. These resulted in oscillations that had no resemblance to the

original OMW.

4. The correct answer to the parameter estimates, considered to be that which returned the

original values used to generate the synthetic OMW, was always the one corresponding

to the lowest value of the function S, as expected, which was usually of the order of

10−5.
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5. Results with function S values within the approximate limits of 1 × 10−4 < S < 1

were also close estimates of the original OMW (confirmed visually). As the function S

approached smaller values, the corresponding estimates approached the values of the

correct solution.

6. If the APW was used as input to the model instead of including the FS constants as

part of the parameter vector, the regression was more effective. That is, the regression

would return less correct estimates if the FS constants were also sought during the

regression.

These observations indicate that, in our experimental cases, we should expect to obtain

several resulting combinations of parameters that do not correspond to any sensible solution,

and that the best way to filter these cases out is via visual confirmation (plotting the solution).

Once these cases are removed, the best solution is then expected to be that with the lowest

value of function S.

4.2.2 Experimental Procedure

The oscillometric data used in this analysis were the same collected simultaneous to the KS

data as in chapter 3 with the setup in figure 3.5. As a reminder, in this setup pressure from

the cuff was detected with a pressure transducer (MPX5050GP, Freescale Semiconductor,

Inc.) connected to the inflatable cuff, and converted from a voltage signal to a pressure

signal according to the transducer’s specifications. For the first round of measurements (4

volunteers) a custom oscillometric device was borrowed from the Department of Medicine of

the University of Alberta. This device controlled inflation and deflation of the cuff. The data

were sampled at a rate of 1 kSps. For the second round (5 volunteers) inflation and deflation

were done manually. The cuff used in this round was connected to an aneroid gauge that

had a rubber bulb and a valve. In this case the data were sampled at a rate of 10 kSps.

Given that the regression is effective even at low sampling rates, to simplify the procedure

and to save computational time all data were decimated to a sampling rate of 100 Sps. The

OMW was obtained from the original pressure signal using the same procedure described in

chapter 2. As a reminder, the baseline, or Pc, is obtained from fitting a curve to the lowest

value of each oscillation in the decreasing pressure signal. When this baseline is subtracted

the result is the OMW.
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From the observation that excluding the FS in the synthetic cases led to better results,

two trials were performed on the data for each compliance equation. The difference between

these trials is summarized in the schematic in figure 4.5. The measured OMW corresponds

to the variable yi in equation 4.18 and the mathematical model corresponding to function

f(xi, ~β) is the integration of equation 4.11. The two cases discussed are derived from the

two different compliance equations, obtained from the derivative of the P-A and P-V equa-

tions, correspondingly. The two trials, furthermore, correspond to the number of parameters

included in vector ~β and how the APW is considered, which is described below.

The first trial consisted of the original idea of including the constants in the FS as part

of the parameter vector. This meant that the frequency, MAP, and the other six constants

in the FS were part of the vector (denoted by KFS in figure 4.5) along with the constants

in each compliance equation (KC in figure 4.5). Similar to the synthetic case, several initial

guess vectors were sampled in the NLLS regression. The parameters in KFS in all these initial

guess vectors were set as follows: the frequency of the FS was set as the mean frequency of

the oscillations of the measured OMW; the MAP was calculated with equation 4.14; the rest

of the constants in the FS were all set to zero. The constants in the compliance equations

(KC) were randomly generated with the aid of a LHSM. The values for each constant in

the LHSM took on values within the limits of 0.1 to 10 multiplied by their respective order

of magnitude, to allow the initial guess vectors to constitute a wide range of values. 300

different combinations of initial guess vectors were sampled.

Equation 4.11 was integrated with the Euler method, and the result compared to the

measured OMW in the regression. This problem was solved using Matlab’s fmincon function

which, unlike the function lsqcurvefit, allows the problem to be constrained in addition to

having limits imposed on the value of the parameter estimates. During a first test it was

observed, however, that if the values of the constants were limited to any small range of

values, then the regression would not succeed. Thus, the FS constants were allowed to take

any positive or negative value, and only an additional limit was imposed on the overall

FS, that required that the maximum and minimum values were within ±20 mmHg of the

measured BP. The compliance related constants were limited to only positive values. These

changes fixed the issue and the regression could perform normally.

Resulting values of the function S were of a high order after a first regression. In hopes of

obtaining a better estimate, a second regression was performed based on the results obtained.
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Figure 4.5: Schematic of the trials used in the NLLS or oscillometric data.
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From the first regression all the results that were associated to values of S ≤ Smin +
1

2
Smin,

where Smin is the lowest value of S obtained, were selected and the mean of the compliance

related parameters was calculated from all these results. A new initial guess matrix was

generated, but this time the guesses had these constants limited to values within ±20% of

the calculated means, a percentage that was arbitrarily chosen. This second matrix was

200 rows in length. Results from this second regression were also selected based on those

associated to values of S ≤ Smin + 1

2
Smin, and saved along with the results of the initial

regression.

In the second trial, the attempt to model the APW as a FS was removed from the

equation. The conclusion is that, as in the case of the synthetic data, the inclusion of the FS

in the model affects the regression to a higher extent than expected. On closer observation,

this was determined to be the most likely reason why the function S cannot go below certain

values, particularly owed to the fact that the model of APW can only account for a fixed

oscillation frequency. The oscillations in the measured OMWs do not have a fixed frequency

and, while the variation is not drastic, it is persistent and not constant throughout the

whole measurement. This means that assuming an APW (or FS) with a fixed frequency will

eventually cause the modelled OMW to shift its phase with respect to that of the measured

OMW, aggravating the error in the fit.

Unfortunately, the most ideal solution to this problem is to measure the APW directly

and simultaneous to the OBPM. The most accurate way of doing so is by invasive means,

which would completely defeat the purpose of this study that intends to be as practical as

possible. In an attempt to circumvent this issue a different approach is proposed in the

second trial: to construct an APW with the same frequency variations in its oscillations as

those observed in the measured OMW.

This was done by isolating a single oscillation in the OMW, generally the last oscillation

measured, at Pc values below DBP, normalizing it to an amplitude of 1, and fitting to it

a FS of three harmonics, as shown in figure 4.6. The last oscillation was selected given

that past the point of DBP the oscillations have a smoother shape and the fit to the FS

would be significantly easier. Once the parameters of this FS were obtained, the APW

was constructed by creating individual oscillations with the parameters of the FS, but with

frequencies adjusted to the individual oscillations of the measured OMW. That is, a sequence

of oscillations was created based on the single FS, and then pieced together in sequence to
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Figure 4.6: Last oscillation of the OMW of a volunteer (black), with an
approximation to a FS (red).

create a train of oscillations that had the same shape, but different frequencies.

The result of doing this is shown in figure 4.7. Naturally, this is not the most ideal solution

to the problem of the varying frequencies. While there is little discontinuity in most of the

generated waveform, given that most of the oscillations have the same frequency, there are

some oscillations where the difference in frequency results in a significant variation in the

oscillation. An example of such a variation is marked after the first oscillation in figure 4.7,

where the FS fit does not match the frequency of that particular oscillation, and a drastic drop

in the amplitude occurs. These drops do not occur often, and in most cases are not as large

as the one shown in figure 4.7. Therefore, it is expected that they will not significantly affect

the regression, and that the benefit of having a waveform with similar frequency variations as

that of the measured data will far outweigh any error these amplitude variations may induce.

With an APW of this form as an input to the model we can now reduce the amount of

parameters by eliminating those related to the FS, and instead having two parameters that

will adjust the APW to its expected values: the DBP which adjusts the bias, and the PP

which adjusts the amplitude. It was also found to be more effective if the parameter estimates

related to BP were not limited to specific values and only conditioned to be positive real

numbers. It was also found that the regression would work better if the function lsqcurvefit
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Figure 4.7: A 2-s long section of APW created by joining oscillations gen-
erated from the fit to FS of a single oscillation (figure 4.6) from the measured
OMW. The discontinuity framed by the red rectangle is due to the mismatch

in frequencies in the original OMW.

from Matlab was used instead. Unfortunately this function does not allow constraints to be

imposed on the parameters as does fmincon, so the results for the model using equation 4.12

for arterial mechanics will have to be selected after the fact to include only those that comply

with the required constraint.

In this trial only one regression was considered necessary. The results were selected first

on the basis of those that produced S ≤ Smin + 1

2
Smin. A second filter required that only

those results with reasonable values of DBP and PP were finally selected. This second filter

was necessary since the parameters were unbound, and DBP and PP estimates of the result

with the lowest value of S were not always sensible.

4.2.3 Results

Of the measurements available, 40 were kept for analysis and the rest were discarded. This

was because in some of the measurements that were discarded there was no solution obtained

in at least one of the four regressions performed. To make a better comparison, only those

measurements that had a complete set of solutions are considered.
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As mentioned above, the first regression trial required two rounds of regressions performed,

the second of which was done with the initial guess vectors limited to a region defined the

parameter estimates obtained in the first round, and that were associated to the lowest values

of S. This procedure was found to be effective in some of the measurements; in all cases the

resulting estimates had a lower value of S, yet only in some cases did these new results

produce a fit that resembled the OMW. This means that, even though there are parameter

estimates that somehow produce a model with low value of S, the plot of this model is a line

that in no way approximates measured data, or even synthetic data like the one shown in

figure 4.4. Despite the filters placed to select an appropriate solution, the results still had to

be filtered manually to remove the incorrect estimates. The final solution was selected from

the remaining parameter estimate vectors as the one with the lowest value of S.

Figures 4.8 and 4.9 are an example of one of such solutions obtained from the same mea-

surement, where the function f was constructed with equations 4.12 and 4.13, respectively,

and fitted to the measured data. Since these results are from the first trial, the APW was

approximated in conjunction to the compliance constants. The subject in this case had BP

= 93.77/60.81 mmHg. The measured OMW is plotted in black as a function of deflating cuff

pressure, and the result of the fit is plotted in red.

Figures 4.10 and 4.11 represent the arterial mechanics of the vessel from the same data

in figures 4.8 and 4.9. Figures 4.10a and 4.10b are the P-V relationship and arterial compli-

ance, respectively, obtained from substituting the parameters estimates found from the fit in

equation 4.12 and its derivative with respect to Pt. Figures 4.11a and 4.11b contain the same

information, but substituting the parameter estimates in equation 4.13 and its derivative,

respectively.

The APW obtained in both cases is plotted in figure 4.12, where model “DRZ” refers to

the results obtained from using equation 4.12 in the regression and is related to the results in

figures 4.8 and 4.10, and model “BBS” refers to the results obtained from using equation 4.13

and is related to the results in figures 4.9 and 4.11. The dashed horizontal lines correspond

to the measured BP of 93.77/60.81 mmHg. The shape of the FS is not significantly different,

and both cases resulted in an estimated frequency of 1.02 Hz. MAP for model DRZ was

estimated to be 70.96 mmHg, and for model BBS it was estimated to be 78.38 mmHg. When

calculated with equation 4.14 MAP = 71.80 mmHg.
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Figure 4.8: Measured data (black) with a result for function f(xi, ~β) (red)
obtained from equation 4.12 during the first trial.
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Figure 4.9: Measured data (black) with a result for function f(xi, ~β) (red)
obtained from equation 4.13 during the first trial.
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Figure 4.10: a.Pressure-Volume function obtained from equation 4.12 with
the parameter estimates obtained from the fit. b.Arterial compliance obtained
from the derivative of equation 4.12 and the parameter estimates obtained from

the fit. Results obtained from the first trial.
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Figure 4.11: a.Pressure-Volume function obtained from equation 4.13 with
the parameter estimates obtained from the fit. b.Arterial compliance obtained
from the derivative of equation 4.13 and the parameter estimates obtained from

the fit. Results obtained from the first trial.
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Figure 4.12: Modelled APW obtained with the FS constant estimates from
the regressions in the first trial. Model DRZ refers to the use of equation 4.12
and model BBS refers to the use of equation 4.13. The dashed lines correspond

to the measured BP = 93.77/60.81 mmHg.

BP in this case is estimated from the maximum and minimum values of the FS ob-

tained. The difference in the BP estimate, calculated as measured BP minus estimated BP,

is 10.60/2.48 mmHg for model DRZ, and −4.64/3.35 mmHg for model BBS. The value of

function S obtained with model DRZ was 668.51 mmHg2, and that obtained with model

BBS was 697.18 mmHg2.

In the second trial, on the other hand, there were just as in the first trial a few cases

where the results associated to the lowest value of S were not correct, so these results had to

be manually removed until a satisfactory result was obtained. In this second trial, however,

there were fewer of these cases than in the first. Figures 4.13 and 4.14, show the results

corresponding to the same measurement discussed above, now obtained from the second

regression trials. Figures 4.15 and 4.16 represent the P-V function and the Ca function

obtained, and figure 4.17 is a section of the APW that results from multiplying the waveform

used as input times the estimated PP, and adding the estimated value of DBP to it, as

obtained by the regression.

In this case of the second trial, the APW has the same shape for both models, and the

same varying frequency as the measured OMW. MAP was not estimated in this case, but
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Figure 4.13: Measured data (black) with a result for function f(xi, ~β) (red)
obtained from equation 4.12 during the second trial.
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Figure 4.14: Measured data (black) with a result for function f(xi, ~β) (red)
obtained from equation 4.13 during the second trial.
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Figure 4.15: a.Pressure-Volume function obtained from equation 4.12 with
the parameter estimates obtained from the fit. b.Arterial compliance obtained
from the derivative of equation 4.12 and the parameter estimates obtained from

the fit. Results obtained from the second trial.
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Figure 4.16: a.Pressure-Volume function obtained from equation 4.13 with
the parameter estimates obtained from the fit. b.Arterial compliance obtained
from the derivative of equation 4.13 and the parameter estimates obtained from

the fit. Results obtained from the second trial.



Chapter 4. Physics-Based Mathematical Model and Regression Analysis of the

Oscillometric Method
116

Figure 4.17: Modelled APW obtained with the PP and DBP estimates from
the regressions in the second trial. Model DRZ refers to the use of equation 4.12
and model BBS refers to the use of equation 4.13. The dashed lines correspond

to the measured BP = 93.77/60.81 mmHg.

DBP is directly obtained as a parameter, and SBP is calculated by adding to this value the

estimated PP. The difference in BP values for the DRZ model are 10.57/5.63 mmHg, while

those for the BBS model are 5.44/1.22 mmHg. The values of function S were 605.72 mmHg2

and 630.42 mmHg2 for the DRZ and BBS model, respectively.

Figure 4.18 shows a comparison of the arterial mechanics obtained in all cases and table

4.1 gives a summary of the constant estimates for this particular measurement. The labels

DRZ1 and DRZ2 correspond to the results from using equation 4.12 in the first and second

trials, respectively, and BBS1 and BBS2 from using equation 4.13 in the first and second

trial, respectively. For each case the maximum value of the arterial compliance, Ca,max, was

calculated, and this value is shown in table 4.2 along with the value of function S and the

difference in BP vales, BP∆.

The results presented in figure 4.18 and in tables 4.1 and 4.2 correspond to a single mea-

surement. However, the relationship between parameter estimates and the other calculated

values is considered to be representative of how they relate in most of the cases. For in-

stance, we can observe how the value of the function S is lower for the regressions where the

constants of the APW were not part of the parameter vector, and the BP estimate is closer



Chapter 4. Physics-Based Mathematical Model and Regression Analysis of the

Oscillometric Method
117

Figure 4.18: a.Comparison of the Pressure-Volume function obtained
from using both compliance equations and after both regression trials.
b.Corresponding comparison of the arterial compliance. DRZ1 and DRZ2 cor-
respond to first and second trials using equation 4.12, and BBS1 and BBS2 to

the first and second trials using equation 4.13.

Table 4.1: Summary of the estimated parameter values obtained for each
regression for the case discussed in figures 4.8 through 4.18.

Model Parameter Estimates

a [mmHg−1] b c× 10−2 [mmHg−1] (d× L)/Cc [mmHg]
DRZ1 7.14× 10−5 1.71 7.33 11.31
DRZ2 7.47× 10−1 67.34 7.68 1.34

aB [mmHg−1] bB [mmHg−1] Vo/Cc [mmHg]
BBS1 5.86× 10−2 2.77× 10−2 1.52
BBS2 4.66× 10−3 0.24 2.62
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Table 4.2: Values of maximum arterial compliance, Ca,max, S, and difference
in the BP values, BP∆, calculated for each regression for the case discussed in

figures 4.8 through 4.18.

Model
Ca,max × 10−3 S BP∆

[cm3/mmHg] [mmHg2] [mmHg]

DRZ1 11.19 668.51 10.60/2.48
DRZ2 11.59 605.72 10.57/5.63
BBS1 8.92 697.18 −4.64/3.35
BBS2 1.22 630.24 5.44/1.22

Table 4.3: Population mean ± SD of the difference between measured values
of SBP and DBP and their estimates according to regression type and trial.

SBP difference = SBP∆, and DBP difference = DBP∆.

Model
SBP∆ DBP∆

[mmHg] [mmHg]

DRZ1 14.79± 6.37 0.08± 8.07
DRZ2 10.80± 5.59 11.24± 11.55
BBS1 4.41± 6.12 −0.27± 5.59
BBS2 7.79± 5.64 4.85± 10.43

to the measured value for the regressions performed using equation 4.13.

Figure 4.19 confirms that, overall, the value of S is lower for the regressions that did not

include the FS in the parameter estimates. The results presented in table 4.3 represent the

population mean ± SD of the difference in systolic and diastolic estimates compared to the

measured values. The regressions where equation 4.13 was involved, or model BBS, have BP

estimates closer to the measured values and smaller SD, particularly the first one.

An effect that was expected to be observed was consistency between the estimated pa-

rameters related to arterial mechanics of an individual. That is, in a short period of time

the values of the constants that define arterial P-V or Ca functions should not differ signif-

icantly for a single individual. Tables 4.4 and 4.5 show the mean ± SD of the parameter

estimates of four volunteers who had at least three measurements where all four regressions

were successful.
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Figure 4.19: Comparison of the value of function S for all 40 measurements
according to the regression, where DRZ stands for those performed using equa-
tion 4.12, BBS for those using equation 4.13, and the numbers relate to the

first or second trial.

Table 4.4: Mean ± SD of the arterial mechanics constants found for 4 volun-
teers during a session using equation 4.12 in the two trials.

ID Model a [mmHg−1] b
c× 10−2 (d× L)/Cc Ca,max × 10−3

[mmHg−1] [mmHg] [cm3/mmHg]

V1
DRZ1 4.41± 3.07× 10−4 5.41± 3.07 8.75± 0.88 3.87± 1.62 11.21± 0.46
DRZ2 8.32± 8.50× 10−1 76.25± 77.67 8.08± 0.86 1.70± 1.03 10.13± 1.61

V2
DRZ1 6.85± 1.95× 10−4 7.85± 1.95 9.12± 1.87 2.27± 0.23 10.36± 0.65
DRZ2 2.29± 1.90× 10−2 100.51± 88.26 6.23± 0.70 1.67± 0.61 8.54± 1.80

V3
DRZ1 3.29± 5.49× 10−3 34.05± 54.70 7.16± 0.94 3.79± 2.55 8.04± 1.50
DRZ2 2.65± 3.48× 10−1 719.72± 1168.93 6.29± 1.53 1.01± 0.44 7.06± 1.19

V4
DRZ1 8.82± 19.57× 10−2 1367.27± 3039.37 13.21± 1.58 2.23± 1.26 13.65± 4.28
DRZ2 7.72± 17.19× 10−2 617.62± 1169.25 9.16± 0.83 1.70± 1.92 9.20± 1.22
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Table 4.5: Mean ± SD of the arterial mechanics constants found for 4 volun-
teers during a session using equation 4.13 in the two trials.

ID Model
aB × 10−2 bB × 10−2 Vo/Cc × 10−1 Ca,max × 10−3

[mmHg−1] [mmHg−1] [mmHg] [cm3/mmHg]

V1
BBS1 5.82± 1.32 13.26± 8.96 14.61± 2.04 8.37± 1.38
BBS2 0.46± 0.04 24.80± 3.22 24.89± 5.35 1.14± 0.21

V2
BBS1 8.31± 2.65 4.85± 4.28 9.43± 2.86 7.33± 0.61
BBS2 0.41± 0.06 51.65± 43.53 24.66± 8.31 0.99± 0.29

V3
BBS1 7.25± 0.10 5.77± 2.85 11.61± 0.78 8.42± 0.65
BBS2 0.44± 0.03 28.52± 1.88 20.25± 1.35 0.89± 0.07

V4
BBS1 8.96± 0.86 6.79± 0.86 12.98± 2.75 11.56± 2.25
BBS2 0.53± 0.08 50.52± 14.44 21.84± 4.57 1.12± 0.16

For an additional analysis of consistency in the arterial mechanics parameters, the author

collected measurements of a single individual over an extended period of time. These results

are shown in tables 4.6 and 4.7 and represent the compliance constants and maximum com-

pliance obtained from measurements performed during five nonconsecutive days. The results

shown are the mean ± SD of the parameters for each day. The overall mean ± SD is given

in the final row.

4.2.4 Discussion

While analyzing the results presented in the previous section it is important to keep in

mind that NLLS regression is highly susceptible to outliers and incorrect initial parameter

estimates. Unfortunately, the outliers in the measurement are difficult to remove, given that

these outliers may be present in the form of uneven oscillation amplitudes, not just noise

in the signal. Synthetic OMW, such as the one shown in figure 4.4, present smooth, even

envelope profiles, yet the measured data hardly follow this constant increase and decrease in

oscillation amplitudes.

The modelled OMW shown in figures 4.8, 4.9, 4.13, and 4.14 show how the result tends to

follow the overall shape of the synthetic case, but is not able to account for larger amplitudes

at higher cuff pressures, or to properly centre the location of the maximum amplitude. The

first effect may perhaps lead one to conclude that a P-V or compliance function that does not



Chapter 4. Physics-Based Mathematical Model and Regression Analysis of the

Oscillometric Method
121

Table 4.6: Parameter estimates for a single individual over the course of 5
non-consecutive days, using equation4.12 in both trials.

D# Model a [mmHg−1] b
c× 10−2 (d× L)/Cc Ca,max × 10−3

[mmHg−1] [mmHg] [cm3/mmHg]

1
DRZ1 2.83± 2.38× 10−4 9.12± 8.06 7.85± 1.32 2.92± 1.84 8.59± 0.64
DRZ2 3.15± 4.38× 10−1 27.47± 38.57 6.69± 0.50 2.00± 0.66 8.64± 1.82

2
DRZ1 4.41± 3.07× 10−4 5.41± 3.07 8.75± 0.88 3.87± 1.62 11.21± 0.46
DRZ2 8.32± 8.50× 10−1 76.25± 77.67 8.08± 0.86 1.70± 1.03 10.13± 1.61

3
DRZ1 4.05± 4.07× 10−4 10.67± 9.34 7.51± 0.59 3.18± 2.56 8.22± 5.85
DRZ2 8.01± 12.85× 10−1 117.08± 100.66 6.82± 0.28 1.01± 0.32 7.29± 2.27

4
DRZ1 1.31± 2.22× 10−3 105.53± 222.46 7.86± 0.47 6.73± 6.08 12.90± 3.43
DRZ2 9.48± 9.61× 10−1 87.28± 88.37 7.86± 0.33 1.54± 0.74 11.31± 1.49

5
DRZ1 1.66± 1.37× 10−4 2.66± 1.37 8.02± 0.91 9.11± 11.28 7.61± 1.40
DRZ2 1.18± 1.36 107.84± 122.76 7.53± 0.36 1.01± 0.36 7.57± 1.75

DRZ1 5.81± 11.61× 10−4 32.59± 114.14 8.02± 0.85 5.46± 6.07 10.01± 3.41
DRZ2 8.48± 9.55× 10−1 84.55± 86.03 7.49± 0.71 1.45± 0.72 9.22± 2.25

Table 4.7: Parameter estimates for a single individual over the course of 5
non-consecutive days using equation 4.13 in both trials.

D# Model
aB × 10−2 bB × 10−2 Vo/Cc × 10−1 Ca,max × 10−3

[mmHg−1] [mmHg−1] [mmHg] [cm3/mmHg]

1
BBS1 6.72± 2.10 2.72± 0.46 10.10± 2.83 6.45± 0.79
BBS2 0.43± 0.04 1.75± 0.37 18.99± 2.21 0.81± 0.06

2
BBS1 5.82± 1.32 13.26± 8.96 14.61± 2.04 8.37± 1.38
BBS2 0.46± 0.04 24.80± 3.22 24.89± 5.35 1.14± 0.21

3
BBS1 7.08± 1.28 12.37± 13.65 9.80± 3.04 6.78± 1.60
BBS2 0.44± 0.03 2.29± 0.29 18.10± 4.30 0.79± 0.13

4
BBS1 5.95± 0.51 3.17± 0.39 16.35± 1.98 9.71± 1.21
BBS2 0.46± 0.01 2.43± 0.42 27.66± 3.14 1.27± 0.17

5
BBS1 5.93± 0.51 5.74± 2.98 12.37± 1.48 7.32± 0.94
BBS2 0.43± 0.01 2.45± 0.33 18.95± 3.43 0.80± 0.14

BBS1 6.22± 1.11 7.22± 7.34 13.13± 3.19 7.95± 1.65
BBS2 0.44± 0.03 2.31± 0.41 22.36± 5.32 1.00± 0.26
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decrease rapidly towards zero at negative transmural pressures is better suited to describe

the observed OMW. That is, if one remembers the different models of arterial mechanics

that were presented in figure 4.1, the model obtained from Ursino and Cristalli’s publication

([6]), for instance, assumes that the volume of the artery does not fully decrease to zero at

the same negative transmural pressures as the rest of the models. This observation makes

sense if one considers that the other models describe a point in the artery segment that

fully collapses and reduces its volume to zero at moderately negative Pt. In an OBPM the

oscillations observed at higher cuff pressures, associated with larger negative values of Pt,

originate because the artery does not fully collapse through the entire length of the cuff.

Certainly, a model that accounts for this bias in the arterial volume may adjust better for

oscillations of higher amplitudes on this high cuff pressure end of the measurement.

The shift in the location of the point of maximum amplitude in the oscillations is not

critical in all cases. An interesting thing to point out in this case, however, is how this

shift in the maximum amplitude relates to the estimates of BP obtained from the regression,

especially considering that the BP estimates in an OBPM depend on the location of certain

amplitudes in the OMWE. This means that, although BP estimates can be obtained directly

from the regression, either from the FS extreme values or from the estimates of DBP and

PP, a future interesting analysis may include obtaining BP estimates from the modelled

OMW through the MAR algorithm and comparing those to the estimates obtained from the

regression. Perhaps this comparison could further confirm if the parameter estimates from

the regression are correct, or it could instead be related to how the cuff estimates are different

from intra-arterial values. The latter stems from the fact that the APW is part of equation

4.11, and this is a value that is measured intra-arterially.

P-V and Ca functions obtained with the parameter estimates from the regression are very

similar to what was expected, except for those obtained with model BBS2 shown in figure

4.16. The P-V function in the other three cases follows the expected sigmoidal shape, and

maximum compliance values are within the expected order of magnitude when compared to

the values obtained when using the parameters in the literature, as observed in figure 4.1. It is

interesting to observe that the case of model BBS2 is slightly better at fitting the oscillations

on the high cuff pressure end than the other three models, so this might reinforce the notion

that a P-V or Ca function that doesn’t fully decrease to zero at negative transmural pressures

may offer an advantage in the regression. Overall, the most significant difference between
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the estimated arterial mechanics for the three cases that had the expected shapes seems to

be the assumed dimensions of the artery, as one can appreciate from figure 4.18, and from

the values of the parameters related to the amplification of the function in table 4.1, such as

(d× L)/Cc and Vo/Cc.

The regressions involving equation 4.13 resulted in a BP estimate closer to the measured

BP. This result is not necessarily an indicative of a better/worse fit, which is why the dif-

ference between estimated and measured values was purposefully not identified as an error

in the measurement. As mentioned above, the APW considered in these models is assumed

to be representative of intra-arterial values, and cuff measurements often misrepresent these

values. It is not unreasonable to accept that an APW of different extreme values compared

to the final BP estimate is responsible for the observed OMW.

It is important to mention, however, that in the case of the first trial, where the APW was

estimated as a FS, in some measurements the resulting FS would tend to the limits imposed on

its values. This indicates that the limits were perhaps too restrictive, and different estimates

might have been obtained if they were expanded or removed altogether, although results with

unreasonable values would still have been discarded. Another important observation is the

fact that the estimate of MAP in the case of model DRZ1 for most of the OMW obtained from

the measurements sampled at 10 kSps resulted in 85 mmHg. This is a strange occurrence,

especially considering that the initial guess vectors had this value set at the MAP calculated

for each individual, and only one had a MAP of ∼ 85 mmHg. At the moment there is no

explanation of why this was the case, but perhaps it is also somehow related to the limits

imposed on the FS. Since all measurements were decimated to a sampling frequency of 100

Sps the possibility that the sampling rate had any influence on this result is discarded. Since

this result was not observed in the case of BBS1, we could also discard the effect that manual

deflation has on the data.

The value of function S does not change significantly if one equation or another is used

for arterial mechanics in a same trial, although the removal of the FS constants from the

parameter vector significantly improved its value as expected. This confirms that the fre-

quency of the oscillations plays a major role in the success of the regression. Unfortunately,

the values of S are several orders of magnitude bigger than those of the perfect fits in the

synthetic case, which, although expected, indicate that the parameter estimates may be far

from their true values. We can still affirm, however, that the results from the second trial
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may be closer to the real values than the results from the first trial, and that the procedure

greatly benefits from having a measured APW used as input to the model. Even if this is not

possible, there may be a more effective way to construct the APW than what is proposed in

this work, that avoids the sudden discontinuities in pulse amplitude.

It can be observed in tables 4.4 through 4.7 that there is a very wide spread for some of the

parameter estimates between individuals. The most consistent estimates appear to be those

for constants c and d where equation 4.12 was used, assuming that L and Cc are constant for

all volunteers, and constants aB and Vo where equation 4.13 was used, once more assuming

that Cc is constant for all volunteers. Somewhat surprising is the fact that maximum arterial

compliance, Ca,max appears to be consistent for all individuals, inferred from the lower spread

of values around the mean. In the case of equation 4.12 perhaps the values of constants a

and b are not necessarily a good point of reference, since one may compensate for the other

in order to fit the constraint placed on them. The case of the second trial with equation

4.13, or BBS2, was already observed to result in a poor representation of arterial mechanics,

therefore the accuracy of those parameters is put into question.

Nevertheless, a positive result is observed in the fact that maximum arterial compliance

seems to tend towards a specific value depending on subject. This is observed not only in

the estimates of the four different volunteers in tables 4.4 and 4.5, but also in those for a

single individual over the course of several days, as shown in tables 4.6 and 4.7. These last

two results for a single individual show that overall the spread of values is not too large over

the 5 days, so it would be an interesting follow up experiment to perform an OBPM on the

rest of the volunteers over an extended period of time. If this same trend is observed, then

the correct estimates of the parameters is not a critical result. Similar to the case of BP, the

important observation would be the trend in the value collected over an extended period of

time. Some of these parameters, such as those that present less spread in their values, can

be observed over time and deviations in their values could potentially be associated to an

underlying modification of the arterial mechanics.

4.2.5 Conclusions

The result of the regressions presented in this chapter offer a positive first approach to

validating a mathematical model of the physical phenomena occurring during an OBPM.

The comparison between measured and modelled data show that, while the model may not
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account for all possible variations in the measured OMW, the mathematical expression seems

to be able to reproduce most of the measured waveform, particularly on the diastolic end.

At this stage in the development of the mathematical model we cannot conclusively validate

one model over the other, however we can appreciate how this simple set of equations serve

as a good basis to describe the observed phenomena.

Some improvements could be implemented in the model and in the processing of the

data for more successful regressions. For instance, considering cuff compliance as constant

may have a greater influence in the results than expected, and a function dependent on

transmural pressure may be better suited. This would mean, however, that equation 4.11

is no longer valid and a different derivation would be required. Another possibility to avoid

modifying the equation could be to limit the analysis to the OMW obtained exclusively at

high cuff pressures where cuff compliance is more likely to be constant. This will also have the

advantage of resulting in pressure pulses of consistent shape, which, although not presented

in this work for not being of immediate interest to the analysis, has been observed to change

as cuff pressure decreases, mostly owed to wave reflections.

Overall, the use of equation 4.12 without including the APW in the regression seems to

be the most promising option. It results in lower values of S when compared to the cases

where the FS constants are estimated, and in a better representation of arterial mechanics

compared to the use of equation 4.13. The inconsistency in constants a and b for different

individuals may be overlooked and the rest of the constants can be used as reference to

track variations in arterial mechanics. It would appear that the inclusion of more constant

parameters to the regression model may have been beneficial, giving the model more freedom

to adjust to the measured data. It is also possible that this model has better success owed

to the fact that it does not assume maximum compliance at zero Pt.

Measured data can also be modified to a certain extent to simplify the regression. Outliers

in the form of oscillations with higher/lower amplitudes than the neighbouring oscillations

are already adjusted as discussed in Chapter 2. Perhaps more results from that chapter

can be extended to the present analysis, like using one of the OMWEs discussed previously

to smoothen the amplitude profile and simplifying the regression process. It was already

observed that the use of different OMWE provided more accurate estimates of BP, so nor-

malizing the oscillation amplitudes to a Gaussian envelope, for example, may improve the

expected results.
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Finally, the most important implication for the results of this chapter is the possibility of

verifying the influence arterial mechanics have on BP estimates through the MAR algorithm.

This assumption is based on the work of Ursino and Cristalli mentioned at the start of this

chapter, and is overall the greatest contribution intended of this work. Once an improved

model is derived based on the observations discussed above and more effective regressions

are obtained, the relationship between the obtained parameters and the features of the MAR

algorithm can be directly analyzed from measured data. The results of such a study could

potentially help us improve this algorithm and the overall accuracy of oscillometric devices,

which is the overall goal of the work done in this chapter.
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Chapter 5

Physics-Based Mathematical Model and

Regression Analysis of the Auscultation

Method

In this chapter we arrive at the final component of the analysis of the two most popular BP

measurement methods. The true origin of Korotkoff sounds is hard to pinpoint, as research

and evidence over the years have demonstrated. Undeniably, these are a product of the

interaction between fluid mechanics, arterial wall mechanics, and wave transmission along

the viscoelastic brachial artery. However, this interaction is a formidable mathematical and

physical problem that can only be solved if certain simplifications are made when deriving

the descriptive models.

Similar to the case of oscillometry, several mathematical models have been developed and

numerically solved to generate synthetic KS. The models have been successful in their purpose

of creating traces that resemble KS and that also have frequency characteristics proper to

KS. However, the complexity of these models makes it hard to compare them directly to

measured data. Likewise, the complexity of the data means that no simple function can be

fitted to it and characteristic parameters are usually approximated from in vitro measured

data.

The objective set for this chapter in the introduction was, thus, to obtain a deeper un-

derstanding of this phenomena involved in the generation of KS, and it is believed that this

can be accomplished by validating a physics-based model with measured data. Similar to

the work in chapter 4, the author believes that the best approach is of a practical nature,

which means applying a simple model that can be readily compared to measured auscultation
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sounds without requiring a significant computational cost.

In this chapter the author intends to do so by following the approach of assuming that KS

are generated by arterial wall mechanical properties. In particular, the model derived here

will be based on the one proposed by Babbs [103], where it is assumed that KS are generated

by vibrations of the arterial wall.

In the following section we will first be introduced to this model and how KS are assumed

to be generated. A simple modification to the model is also proposed by the author of

the present text, based on previous observations done of the arterial mechanics, and both

representations will be compared afterwards to measured data by means of a NLLS regression.

In this case, we shall see that testing the model on synthetic cases first is of particular

relevance to determining the best way to interpret the results and selecting the appropriate

solutions.

The final sections of this chapter include the discussion of the results, and how they

align with the objectives of this thesis. That is, commentary is given on the possibility of

validating this model, on possible additional considerations, and on the implication that the

obtained parameters have for overall cardiovascular health. Just as in the case of chapter

4, the regressions performed in this chapter may provide us with information of parameters

related to the brachial artery, which are ordinarily obtained by specialized procedures such

as ultrasound.

5.1 Harmonic Oscillator Model

The premise of this idea, as stated by Babbs in his publication, is that KS are generated due

to transient vibrations of the arterial wall caused by a change in elastic response to the forces

applied to it. This is due to the nature of the artery, which becomes more rigid in the region

where Pt reaches large positive vales to prevent rupture from high internal pressures, and

is easily deformed when under compression. These features can be verified by any rubber

tube or elastic band: they offer more resistance to stretching, yet require minimal effort in

comparison to make opposite ends come in contact.

We can make a visual distinction between these two regions of different elastic response

by the shape of the arterial cross-section. Where the artery is stiffer, we can think of it as a

cylinder, with a circular cross-sectional shape. Where the artery is more easily deformed it
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adopts a cross-sectional form closer to an ellipse, then resembles an hourglass before opposite

sides come into contact, and it ultimately flattens. The point that connects these two regions

is called the buckling point. Babbs states that once the artery crosses the buckling point as

it is changing from its elliptical to its circular shape it suffers a sudden deceleration, which

is responsible for the vibrations that give origin to the KS.

To describe this motion mathematically, we can consider a section of the arterial wall,

and assume it moves along a single horizontal axis, as exemplified by the red square in the

diagram in figure 5.1. For simplicity any longitudinal or torsional stretching effects, as well

as wave transmission are ignored. We can identify the buckling point as a distance along this

axis that marks the location where the artery shifts from circular to elliptical (and vice-versa)

cross-sectional area. This distance is labeled xb on the figure, and we can now differentiate

the two regions depending on whether the movement is occurring at x < xb or at x > xb.

The section of wall can be thought of as a mass attached to a couple of springs and, since

biological tissues are viscoelastic materials, to a dashpot to represent its viscosity. In each

region separated by the buckling point only one of the springs is compressed at the time.

That is, as once can see in the diagram in figure 5.1, when the artery is at x > xb, only

the spring represented by k1 is compressed. In the region where x ≤ xb, only the spring

represented by the constant k2 is compressed. For simplicity, it is assumed that the viscosity

of the wall remains constant throughout the entire movement, therefore there is no separate

constant for the dashpot in either region.

The system is driven by an oscillating force which in this case is originated by the trans-

mural pressure. That is, the driving force is the result of the interaction between internal and

external forces applied to the arterial wall originated by the internal arterial pressure and

the external cuff pressure. Including these observations into a harmonic oscillator equation

we can write:

mẍ = FD + FS1 + Ft(t) for x > xb (5.1a)

mẍ = FD + FS2 + Ft(t) for x ≤ xb (5.1b)
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where m represents the oscillating mass, FS1 and FS2 are the two restoring forces correspond-

ing to the two spring constants mentioned above, respectively, FD is the restoring force of the

viscous component, and Ft the force originating from transmural pressure, Pt. The solution

to this equation represents the position of the section of arterial wall along the axis, and, as

we shall see, the first derivative is used as a surrogate for sound pressure.

A first approximation of the restoring force FS1 is of a linear elastic force, FS1 = −k1(x−

xb), for x > xb, which was proposed by Babbs in his work. Under normal pressure ranges,

without the influence of an external cuff, this linear force is a good approximation. However,

one might recall from the models of arterial mechanics (figure 4.1) that the rate of increase

in arterial volume (or cross-sectional area) is fast near zero Pt, but very quickly slows down

and becomes almost constant past the point where Pt ∼ DBP.

This clearly indicates that the restoring force is not constant throughout the whole range

of positive transmural pressures, but that it has a rather gradual increase as we move further

away from Pt = 0. To convey this, in this work we now propose that we consider the arterial

wall in this region as a “hard” spring, which includes additional terms in the Taylor series

expansion of the force, such that FS1(x) = −k1(x − xb) − k3(x − xb)
3, where k3 must be a

positive constant to prevent an unstable system. The difference between the two approxima-

tions is shown in figure 5.2. Both cases will be considered in this analysis to compare which

approach is more effective.

The restoring force, FS2 is small for most of the distance x < xb, and then approaches an

infinitely large value when the opposite walls come in contact. The force in this case can be

described by an equation of the form

f(x) = −a
x− xb

x
, (5.2)

such that

FS2 = −k2(x− xb) = −a
x− xb

x
. (5.3)

This last expression implies that in this case k2 is not necessarily constant, but rather a

function of the position of the arterial wall: k2(x) = a/x.

The damping force, FD, is naturally dependent on the velocity of the arterial wall. As

mentioned above, it has the same expression for both regions, FD = −βẋ, where β is the
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Figure 5.2: Restoring forces in the regions where x < xb and x > xb.

viscosity of the arterial wall. The driving force Ft has already been established to correspond

to the transmural pressure Pt acting on a section of arterial wall of area A. Rewriting equation

5.1 to include the constants discussed above results in:

mẍ = PtA− βẋ− k1(x− xb)− k3(x− xb)
3 for x > xb (5.4a)

mẍ = PtA− βẋ− k2(x− xb) for x ≤ xb (5.4b)

where the equation reduces to the linear case when k3 = 0.

5.1.1 Complete Expression of the Harmonic Oscillator Equation

The constants associated to each term in equation 5.4 can be further related to arterial wall

parameters. The derivation for the spring constants k1 and k2 is included in Appendix D.

The derivation is based on Babbs’ work, which results in spring constants

k1 =
Eh

ro
· δθL (5.5)
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and

k2 = 4
E

π2
·
h2

r2o
· δθL, (5.6)

where E is the Young’s modulus of the arterial wall, h its thickness, ro the neutral radius of

the artery, δθ the angle that defines the section of arterial wall, and L the length of arterial

wall.

Constant a from equation 5.2 is solved from its established relationship to spring constant

k2:

a

x
= 4

E

π2
·
h2

r2o
· δθL, (5.7)

however, a special consideration must be made given that the position x is in the denominator.

The initial position of the arterial wall is located at x = 0, yet this condition results in a

division by zero and an equation that diverges. This would eliminate the initial position as

a solution and result in an error when attempting to solve the equation by computational

means. To avoid this, we can assume that the asymptote is located at a distance beyond

x = 0, and express this as

a

x+ η
= 4

E

π2
·
h2

r2o
· δθL, (5.8)

where we assume that η << ro. At the point of maximum flattening, where x = 0:

a = 4
E

π2
·
h2

r2o
· ηδθL. (5.9)

In his publication, Babbs recognized the need to include the term η in the equation and

assumed that η = h. In this case we shall assume the same equality.

The arterial wall in this case was assumed to be represented by a single viscous component

for both regions. The change in elastic properties in these two cases is in part due to how the

wall’s components (elastin, collagen, smooth muscle fibres) are recruited differently to take

on the burden of the forces applied to the wall. This means that, potentially, the viscosity of

the wall could also be different for both regions. However, in the normal state of the artery

the wall is positioned at x > xb, and mechanics in this state are believed to dominate over

those in the region where x < xb. There is also more information available of the artery
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m = ρtroδθL (5.11)

where ρ is the lumped density of the tissue.

Finally, the buckling point, xb is believed to occur at the position of the neutral radius of

the artery, ro. Setting xb = ro and substituting equations 5.5, 5.6, 5.10, and 5.11 in equation

5.1, along with the expression for the driving force, the common variable δθL is eliminated

to give the final expression for the harmonic oscillator equation:

ẍ =
1

ρtro

[

Pt(t)ro −D
h

ro
ẋ− E

h

ro
(x− ro)− γ(x− ro)

3

]

for x > ro (5.12a)

ẍ =
1

ρtro

[

Pt(t)ro −D
h

ro
ẋ−

4E

π2

h3

r2o

x− ro
x+ h

]

for x ≤ ro. (5.12b)

Where the case of the hard spring is marked by the inclusion of the term γ(x − ro)
3 to

the equation effective in the region x > ro, where we assume that

γ =
k3
Lδθ

, (5.13)

and which simplifies to the linear spring when γ = 0.

5.2 Model Fitting to Auscultation Data

5.2.1 NLLS Regression and Parameter Ranges

Similar to the case of the OMW the harmonic oscillator model can be fitted to measured

auscultation data to confirm the validity of the model and to obtain approximate values of

the parameters in the equation. Once more, a non-linear least squares (NLLS) regression is

an ideal method to perform this fit. As a reminder, for this regression the measured data

is compared to simulated data generated by the equation in the model, and the difference

between each point in the two vectors is calculated. The goal is to minimize the sum of the

squared differences, or the function
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S =
N
∑

i=1

ε2i =
N
∑

i=1

[yi − f(xi, ~β)]
2, (5.14)

which was also used in chapter 4. This minimization is accomplished by adjusting the value

of the parameters in the vector ~β, and the process, being an iterative process, requires an

initial parameter value guess to start the search in the region of this guess.

In this case the measured variable vector, yi, is the sound vector that contains the KS,

which is measured in volts. The vector f(xi, ~β) will be generated from the harmonic oscillator

equation 5.12. The voltage output of a capacitor microphone, such as the one the One Digital

Stethoscope is based on, is directly proportional to the velocity of movement of the plate. As

this plate is in direct contact with the skin, it moves at the same rate as the tissue that the

artery displaces. Therefore, the velocity of the harmonic oscillator, obtained from integrating

equation 5.12 once, and multiplied by a proportionality constant, becomes the vector f(xi, ~β).

The parameters in the vector ~β are, thus, the arterial wall variables that define the har-

monic oscillator equation, namely the Young’s (E ) and damping (D) moduli, the neutral

radius (ro) and thickness (h) of the artery, the constant associated to the non-linear spring

case (γ), the tissue properties of density (ρ) and thickness (t), and the proportionality con-

stant that relates voltage to velocity. The variable associated to the driving force, Pt, is not

included in the parameters since this will be an input to the model obtained from measured

data, which will be discussed in the following sections.

The initial guess vector, ~β0, and the limiting values for the parameters can be determined

from previously reported experimental results. While most measurements have not been

performed under the same conditions as the experiment in this work, the values obtained

will be helpful in establishing limits and selecting correct answers.

For instance, Babbs mentions that Young’s modulus is commonly obtained for an artery

under normal pressure conditions, but that it might be up to four times greater than what can

be measured when the artery collapses. Values of E can range from 0.5 to 8 ×106 dyne/cm2

under normal conditions, according to his publication, and Nichols et al mention in their

book E ranges between 2 and 8 ×106 dyne/cm2 [128]. They also indicate, in a summary

of previous studies, that the value of E of the brachial artery was higher in males than in

females, and that higher pulse pressure present in diabetic subjects also tended to increase

the value of E [129]. Overall, we can consider values of the Young’s modulus varying from



Chapter 5. Physics-Based Mathematical Model and Regression Analysis of the

Auscultation Method
137

approximately 0.1 - 8 ×106 dyne/cm2.

To obtain a range of possible damping modulus values, Babbs cites the results of several

studies likewise mentioned in Nichols et al ’s book. Arterial viscosity is dependent on vibration

frequency, so the value of D is approximated by arterial wall response to frequencies of 60 Hz,

assuming these are the representative frequencies of KS. Babbs identifies a range for D from

∼ 286 dyne-s/cm2 to 845 dyne-s/cm2. However, we have previously identified in chapter 2

that some KS may have central frequencies higher than 100 Hz, therefore the range for D

may be expanded. Following Babbs approach, and using the results in Lawton’s publication

[130], the damping modulus at 100 Hz may be as low as 170 dyne-s/cm2, for an E = 1.4×106

dyne/cm2.

Values for the neutral pressure radius found by Babbs are mostly within the range of

0.15 to 0.2 cm. Tomiyama et al found upper-arm brachial artery diameters of 3.93 ± 0.49

mm [131], Arnold et al report brachial diameters of 4.53 ± 0.09 mm [132], Maruhashi et al

diameters in the range of 2.39 − 6.62 mm [133], and van der Heijden-Spek et al reported

brachial artery diameters in men of 4.52± 0.48 mm and in women of 3.68± 0.48 mm [134].

These reported diameters suggest that brachial artery radius may be within the range of

0.12− 0.33 cm.

Babbs considered for his simulations an arterial wall thickness of 0.03 cm, and a neutral

radius of 0.2 cm, which results in a ratio h/ro = 0.15. Nichols et al indicate that this ratio

for an artery under physiologic pressure is in the range 0.06−0.16 [128], and in some research

mentioned in their book, this ratio was higher in females than in males. Pedley reports in his

book that this ratio is roughly the same for every large artery, and ranges between 0.12−0.16

[135]. Considering the limits for the neutral radius, working limits for arterial wall thickness

could be within ∼ 0.07− 0.53 mm, although its actual value would be dependent on that of

the neutral radius to maintain the ratio h/ro within appropriate values.

The parameter in the hard spring approximation, γ, is not usually mentioned in the liter-

ature, since most experiments measure arterial mechanics under normal pressure conditions

where elasticity is assumed linear. The exact relation to the other arterial parameters has

also not been established to give an idea of the expected values. However, based on the rest

of the constant values, it was determined that the order of magnitude of this constant has to

be approximately > 107 for it to have any real effect in the arterial wall’s elastic properties.

The larger magnitude of this constant is in agreement with common fits to data done with
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polynomial functions; the greater the order of the polynomial, the greater the value of the

constants associated to the higher order terms.

Tissue properties vary depending on the individual. Between the brachial artery and the

outer layer of skin one may find veins, nerves, muscle, fat and skin. Each of these tissues

has its own density, and the thickness of some of these will vary between individuals. For

this reason, and to minimize computational time, the density and thickness variables were

lumped into a single parameter. Density of the aforementioned tissues is approximately 1

g/cm3, and the artery is believed to be located around 50% of the arm’s radius, so these

values can be used in the initial guess vector.

Regression of Synthetic Data

Given the complexity of the data and the number of parameters in the model, preliminary

tests were performed on a series of synthetic data generated with equation 5.12, similar

to what was done with synthetic oscillometric data in chapter 4. In this case, these tests

served a couple of purposes: first, to verify if the equation converges successfully for different

combinations of parameters, and second, to verify if the inverse solution to the problem is

unique and, if not, how much error will there be in the estimate.

Synthetic sound data were created using equation 5.12. The same transmural pressure

was used in all cases: an arterial pressure waveform, Pa, was generated for a BP or 120/80

mmHg and an oscillation frequency of 1 Hz, equivalent to 60 bmp. Cuff pressure, Pc, was

modelled as a linear function with a maximum pressure of 140 mmHg and a deflation rate

of 3 mmHg/s. The total duration was of 30 seconds and two sampling rates were tested: 1

and 10 kSps. Different combinations of the constants in equation 5.12 were used, starting

with those used by Babbs in his publication, and each constant was kept within the limits

discussed above.

To obtain velocity and position of the arterial wall, equation 5.12 was integrated with

the use of a 4th order Runge-Kutta (RK4) method. Initial tests showed that the sampling

rate of 1 kSps was not as effective in obtaining a satisfactory result of the integration as the

rate of 10 kSps. The use of the smaller sampling rate made the integration more sensitive to

changes in the constants and to the time-step used in the RK4 method. This made it difficult

to obtain velocity vectors that resembled measured KS. The higher sampling rate, on the

other hand, was less sensitive to the different combinations of constants and integration was
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Figure 5.4: Synthetic velocity.

successful on most of the attempts. It was later found that this was related to the time-step,

since ideally it had to be of the same order as the inverse of the sampling rate, and the

smaller sampling rate resulted in a larger time-step. Given that the RK4 method is sensitive

to the time-step used, the smaller it is, the more accurate the integration. For this reason,

it was decided that synthetic data would be generated only at a sampling rate of 10 kSps,

and ten sets were created for the linear spring case. For the non-linear spring case the same

constants were used as in the linear case, and only the parameter γ was included and varied

in each set.

An example of the velocity obtained from the integration in a linear spring case is plotted

in figure 5.4. This is similar to the trace reported by Babbs in his publication. To further

make this trace resemble measured data a 6th order Butterworth bandpass filter was applied

from 50 to 400 Hz. From comparing measured data to the filtered synthetic data, it was clear

that the synthetic data had to be additionally multiplied (or divided) times a constant, so

its amplitude would approximate that of the measured data. This constant corresponds to

the proportionality constant mentioned above related to capacitor microphones that converts

m/s into V , and which will be referred to as constant G in the remainder of the chapter.

The result is shown in figure 5.5. The first 0.2 s of the signal were also multiplied times zero

to remove the large jump observed at the start in figure 5.4. The non-linear spring case was

similar.

The first purpose of the synthetic experiments was fulfilled and the equation was verified
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Figure 5.5: Synthetic sound obtained by applying a 6th order Butterworth
filter between 40 - 500 Hz to the velocity shown in figure 5.4.

to converge for different combinations of parameters, not just those set by Babbs. One thing

that became evident while testing different combinations, however, was the fact that the

method was most sensitive to the combination of the values of the ratio h/ro and Young’s

modulus, E. It was observed that, usually, if the ratio and E had values on the lower end of

the allowed limits at the same time, the equation would likely not converge. In the non-linear

spring approach, the inclusion of the parameter γ was not found to significantly affect the

results, and the only limitation observed was the same one just discussed for the linear case.

Results like the one in figure 5.5 were then used as surrogate for measured data. That is,

the NLLS regression would be performed on these synthetic sounds to verify if the regression

returned a unique solution composed of the predetermined constants used to generate the

sounds, or if there were multiple solutions. Similar to the procedure in chapter 4, several

different initial guess vectors, ~β0, were used to start the search. To effectively sample a wide

range of combinations in the whole space of possible values, the vectors ~β0 were also randomly

generated with the use of a Latin hypercube sample matrix.

A parameter estimate vector is obtained for each initial guess, however not all of these

vectors are correct solutions of the regression. Given that the goal of the regression is to

minimize the value of S, vectors of parameter estimates can be selected based on its value.

Results of the regression showed that there was a significant separation between values of S :

some cases had values > 1, sometimes of orders of magnitude up to 104, and other cases were
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significantly < 1, of orders of magnitude 10−6 and below for the linear case, and 10−4 and lower

for the non-linear case. Parameter estimate vectors associated to these values of S << 1 were

plotted on top of the solution to verify if the fit was correct. Visual inspection confirmed these

combinations of parameters faithfully reproduce the original synthetic sounds. The second

objective of this experiment is partly confirmed, that is, that the solution is not unique. We

can, therefore, expect to encounter a similar situation once the regression is applied to the

experimentally measured data.

How can we, thus, select the correct answer in the experimental data from all the resulting

vectors? While we may not be able to have complete certainty that one or another is the

right answer, we can still determine how much error is in the approximation by looking at

the distribution of the results obtained with the synthetic case. For example, the histograms

in figure 5.6, obtained from estimates of one of the synthetic sets produced with the linear

spring approach, show that most of the estimates tend to group around a certain value. The

mean of the values, marked by the red vertical line, is close to the original value of the

parameter used to produce the synthetic sounds, marked by the purple vertical line, and

in some sets they overlap (where only the red line is visible). In six out of the ten sets

the original parameter values were within three standard deviations, marked by the yellow

vertical lines, of the mean of the estimates, for all seven values shown in the histogram.

It may also be difficult to appreciate at a first glance, but the estimates of Young’s

modulus E and the ratio h/ro differ from the correct values in the 6th and 8th decimal figure,

respectively. This is only an indication of the algorithm being unable to produce the exact

value; we can assume these estimates were correct for both parameters. The estimates of

the ratio h/ro were calculated after the regression, from the individual pair of estimates for

h and ro.

The remaining four cases were similar to what is shown in figure 5.7. In these cases, the

mean of most of the parameter estimates was close to the real value, except for those of the

neutral radius ro and the wall thickness h, which are outside the three SD distance. It is

interesting to see, however, that the estimate of the ratio h/ro is correct. This indicates that

it is perhaps the value h/ro and not the individual parameters what is important for the

model to converge, or at least that the value of one of the parameters is compensated by the

value of the other.

Overall, the information in figures 5.6 and 5.7 indicates that in the experimental data,
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when using the linear spring approach, the correct value of each parameter will most likely

be within three SD of the mean of the estimates. The only exception is for parameters ro

and h when analyzed individually; their ratio h/ro is the value with a higher probability of

being correctly estimated.

In the case of the non-linear spring approach the error in the estimates decreases. This

can be observed in figures 5.8 and 5.9, which have the same original values of the parameters

as the results shown in figure 5.6 and 5.7, respectively. Using the non-linear spring approach

all the means of the parameter estimates are within two SD of the correct solution. The ratio

h/ro and Young’s modulus E are also correctly estimated, just as in the linear spring case.

This result was observed in all ten sets of synthetic data. It is likely, thus, that by using

the non-linear approach, we could expect to find the correct value of each parameter in the

experimental data within two SD of the mean of the estimates.

As a final observation, table 5.1 gives a comparison of the mean ± SD of the values of the

function S for each set of synthetic data and for each case of linear and non-linear springs.

The non-linear approach gives larger values of S in comparison with the linear approach, yet

their overall values are significantly small, so this difference is not necessarily indicative of a

less effective regression in the former approach. The higher value in the function S for the

non-linear approach should have been expected given that there is an additional parameter

to estimate and that the equation is less stable given the non-linearity.

With these results we have established the second part of the second objective set for

these synthetic cases. From what is observed in the distributions discussed above, we can

now have an idea of how to filter the estimates in the experimental data in order to have

higher confidence in the results obtained. Naturally, experimental results will have a higher

error in all estimates, but this experiment with synthetic data serves as a guide for those

cases.

As a final observation, it is interesting to comment that there was another test performed

on synthetic data where one of the parameters was expressed in a different way. The ratio

h/ro can be identified to be a common factor in several of the terms in equation 5.12, and

values of this ratio are more commonly measured than wall thickness by itself. For this reason,

in this separate test the ratio was included as a parameter instead of the wall thickness h.

The result was the inability of obtaining successful regressions in all but one of the synthetic

sets, and a similar failure when it was tried in one experimental measurement. The only
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Table 5.1: Mean ± SD of the value of the function S for each set, divided by
linear and non-linear spring approach. Function S is in units of V2.

Set # Linear Non-Linear

1 0.88± 2.10× 10−12 0.72± 1.36× 10−9

2 5.25± 8.07× 10−6 2.22± 2.19× 10−8

3 0.41± 1.29× 10−10 2.32± 1.73× 10−4

4 0.64± 1.44× 10−11 0.81± 2.28× 10−5

5 0.27± 2.15× 10−9 1.63± 2.38× 10−6

6 2.41± 5.39× 10−12 1.12± 1.49× 10−4

7 4.57± 9.94× 10−11 0.72± 1.35× 10−4

8 0.39± 1.14× 10−11 8.70± 8.19× 10−5

9 0.52± 1.54× 10−11 0.54± 1.04× 10−4

10 0.17± 1.01× 10−12 3.69± 5.53× 10−5

synthetic set that had several solutions and a small value of S was that formed with the

constants used by Babbs. For the rest of the synthetic sets the estimates obtained would

not reproduce the sound signal, and had large values of S, and would only succeed when the

initial guess vector used was the exact solution. Any deviation, even a 1% deviation, from

the original values would make the regression fail.

It is still unclear why the use of the ratio as a parameter affected the regression to this

magnitude, but the author believes that these results point to the fact that equation 5.12

is most sensitive to this particular relationship. Also, the parameter ro appears by itself in

other terms in the equation, and locking the ratio h/ro as a single parameter imposes an extra

limitation on the value of ro. This limitation likely skews the search of parameter estimates

in an incorrect direction, making the regression fail. This, however, does not explain why

the regression only works for the original case in Babbs’ work; perhaps he accidentally found

the most ideal combination of parameters possible.

5.2.2 Data Processing

The data used in the NLLS regression discussed in this chapter is part of the same data

set that was used in chapters 3 and 4. Based on the observations in the previous section,

however, the analysis in this chapter was limited to the measurements collected at a sampling



Chapter 5. Physics-Based Mathematical Model and Regression Analysis of the

Auscultation Method
148

rate of 10 kSps. There were a total of 25 measurements collected from 5 individuals, which

consisted of simultaneous sound and pressure measurements. Systolic pressures ranged from

108.89 - 138.03 mmHg, with mean ± SD of 121.71± 7.05 mmHg. Diastolic pressures ranged

from 57.36 - 96.16 mmHg, and mean ± SD of 72.06± 9.17 mmHg. Pressures were obtained

with the algorithm proposed in chapter 3.

Sound data was processed in the same way as in the final section of chapter 3: the bias

in the data was first removed by subtracting the mean of the signal, then bandpass filtered

with a 6th order Butterworth bandpass filter, with edge frequencies of 50 and 400 Hz, and

had mains and carrier frequencies attenuated by 10 dB with a Chebishev Type II bandstop

filter.

In general, there is a consistent amount of base noise in the signal, as well as a few spon-

taneous voltage peaks that correspond to noise artifact. To prevent these from confounding

the fitting process, it was decided that only the sections of the signal corresponding to KS

would be maintained, and the rest of the signal would be reduced to zero. This process was

simplified by the automated KS detection method proposed in chapter 3. The results from

that chapter were directly applied here to identify the voltage oscillations that corresponded

to KS. Some KS detection results had to be manually adjusted for those measurements that

had errors in their BP estimation.

From the synthetic data obtained in the previous section, it was observed that the KS

oscillations generated by equation 5.12 have a short duration after the original velocity signal

is band-pass filtered. In the interest of simplifying the process and improving the fit of the

model to the measured data, the sections corresponding to KS were limited to a duration

of 110 ms. The segments were determined by 10 ms of signal before the maximum positive

amplitude, and the following 100 ms including the maximum amplitude point. A close-up of

a few of these oscillations is shown in figure 5.10 where we can appreciate how the rest of the

signal was reduced to zero. Data of this form will now serve as the vector yi from equation

5.14 in the NLLS regression.

The variables involved in the transmural pressure, that is, baseline pressure and the APW,

can be in part obtained from the measured oscillometric data and in part from the fit. The

baseline pressure was previously obtained so it can be directly used as input to the model.

The arterial pressure waveform, on the other hand, could be considered as another unknown

parameter, modelled as a Fourier Series as in the previous chapter, with a new set of constants
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Figure 5.10: Sound signal with KS segments of 110 ms duration 6= 0.

to be determined by the fit. This, however, would hinder the performance of the regression

considering that the amount of parameters would almost double.

Another thing to consider is that setting the frequency of the FS as a fixed parameter

would also affect the regression. The results in chapter 4 have already demonstrated the

effect that modelling the APW as a FS has on the regression of data like this, where there

are minor period or frequency variations between individual oscillations. Given that the

pressure oscillations of the APW are directly responsible for the production of KS, then we

can safely assume that the frequency of the KS is directly related to the frequency of the

APW. Fixing the frequency of the APW by modelling it as a FS would therefore require a

fixed frequency of the KS, which is not observed in the measured data.

A proposed solution to this frequency issue is to use the OMW as a surrogate for Pa.

Based on the discussion on chapter 4 it is evident that the OMW follows the frequency of the

APW and, even though arterial and cuff compliances modify the amplitude of the pulses, it

is expected that these changes will not significantly affect the regression. This decision to use

the OMW also provides the advantage of avoiding an increase in the amount of parameters

in the regression, so as to avoid an increase in computation time.
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Figure 5.11: Unfiltered OMW (black) and filtered OMW (red) obtained from
a low-pass filter attenuating frequencies above 10 Hz.

The OMW was obtained in the same way as described in chapter 4, from subtraction

of the baseline pressure, and in order to use it as input to the present model, it was first

filtered to remove as much of the noise in the signal as possible. A low-pass filter with upper

frequency limit at 10 Hz and 60 dB attenuation for frequencies above 15 Hz was implemented

in a zero-phase digital filtering process. This type of filtering process specifically preserves the

phase of the unfiltered data. The result of applying this filter is shown in figure 5.11, where

the filtered OMW (red) is superimposed on the unfiltered OMW (black) to demonstrate the

magnitude of noise removal and the preservation of the phase.

Afterwards, the filtered OMW is normalized so that all the pulses have an amplitude of

1, which was done by first subtracting the lower envelope from the signal, and then dividing

each point by the upper envelope. This process is exemplified in figure 5.12. The APW can

be obtained by multiplying the normalized OMW times the pulse pressure and by adding

the DBP. However, instead of fixing these values in the data they were set as the last pair
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Figure 5.12: a.Subtraction of the lower envelope of the OMW.
b.Normalization of the OMW by division of each point by the corresponding

point in the upper envelope.
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of parameters to be determined by the fit. By doing so, the regression will also provide

estimates of BP, which will be helpful in choosing correct solutions and in determining the

accuracy of the fit.

Just as in the synthetic data, both cases of linear and non-linear spring were tested by

removing or including the term containing the constant γ in the equation, respectively. The

algorithm developed for the synthetic case was applied here as well, first integrating equation

5.12 with an RK4 numerical integration method, then applying the 6th order Butterworth

bandpass filter, and finally reducing to zero the sections of the vector that do not correspond

to KS. The matrix of initial guess vectors was also generated with the use of a LHSM and 300

combinations were sampled. The NLLS regression was solved in Matlab using the function

“ lsqcurvefit”.

The limits for the possible values described in previous sections were extended in the

experimental data in both directions, allowing the regression to sample lower and higher

values than expected. This was done considering that the data where these limits were

determined from were measured under far different conditions than those in this experiment.

Also, no constraints were set on the relationship between the values of ro and h, given the

observations in the previous section of the sensitivity of the regression to their ratio.

5.2.3 Results

Of the 25 sets of measured data, two were excluded from analysis because the OMW could

not be satisfactorily converted to APW. A few different tests were performed initially to

determine the best way to construct the initial guess vectors and the method that would

be followed to establish an automated selection of correct results. The parameter vector, ~β,

was composed of the constants found in equation 5.12 and of the BP variables PP and DBP,

which as mentioned above, are respectively multiplied and added to the normalized OMW to

give it proper APW values. Of these parameters, the former were always randomly generated

with the LHSM. The remaining two, PP and DBP, were fixed to the measured values in one

case and to the population mean in another case.

The first observation that was evident was that fixing the PP and DBP to population

means resulted in larger values of S compared to the cases where these values were fixed

to their corresponding measured values. The other observation, and ultimately why the

approach of fixing the values to population means was discarded, was that the estimated
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values of PP and DBP had a certain error with respect to the measured values, and this was

reflected in the KS plotted with the corresponding parameters. The error in PP and DBP

would be acceptable if the voltage spikes matched those of the measured audio, indicating

only that an APW of different values could be responsible for the observed sounds. In

this case, both the estimates and the modelled KS under/over estimated measured values,

indicating that the model corresponds to a different value of BP.

Once it was determined that PP and DBP would be fixed to the measured values in ~β0,

the regression was carried on and an initial visual inspection of the data was performed, to

determine the best way to automate the selection of the correct results. This step was per-

haps the most important one, given that, even though there was a resulting set of parameters

for each ~β0, some would plot a solution like the one in figure 5.13. This example is clearly

incorrect, even though the set of parameters estimated from the regression are within reason-

able values. Once these cases were removed, it was found that the remaining cases that could

potentially be correct solutions all had very similar values of S, which also, as expected, were

the lowest values of S of the whole set of 300 potential solutions. This led to determine that

an initial filter to automatically select correct solutions was to keep only those solutions with

a value of S within ± 10% of the lowest value obtained for the corresponding measurement.

A second visual inspection of the remaining solutions had then to be performed to locate

and remove cases like the one in figure 5.14. The KS plot in 5.14a could, at a glance, be a

candidate for a correct solution. The plot of arterial wall position in 5.14b, on the other hand,

shows that there is a jump on the position at the start of the measurement and afterwards

the oscillations never return near zero. This is unexpected behaviour, particularly at high

cuff pressures as observed in this example, considering that at this point in the measurement

the arterial wall should completely collapse. Removal of these types of results had to be done

manually, as there was no relevant feature of the parameter set that could be identified for

selection. It is possible that an algorithm that recognizes this error in wall position could be

written, but that was beyond the author’s abilities at the time.

Only the solutions with BP estimates within ±1 mmHg of the measured BP were selected

for analysis. This step could have been performed for the case where the initial guess for PP

and DBP was not the measured value, but in the end it was decided this would not be the

case for two reasons: the first is that setting the initial guesses near the solution was more

likely to produce a solution that passed the filters described above, therefore producing a
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Figure 5.13: Incorrect solution to the NLLS regression. a. Plot of the audio
vector generated with the estimated parameters. b. Plot of the arterial wall

position generated with the estimated parameters.
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Figure 5.14: Incorrect solution to the NLLS regression. a. Plot of the audio
vector generated with the estimated parameters. b. Plot of the arterial wall

position generated with the estimated parameters.
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larger quantity of solutions for a better statistic analysis. The second reason is that in order

to obtain a successful NLLS regression, as mentioned before, the initial guess should ideally

be near the correct value of the parameter. Given that we have little to no knowledge of the

rest of the parameters related to the H.O. equation, it was in the best interest of the analysis

that the regression was set up in a way that made it more effective from the start.

Finally, from the remaining set of solutions, only those with values 0.01 < h/ro < 0.2

were kept for analysis. These limits are beyond those stated above, but it was decided that,

given that there exists the possibility of having some error in the measurement from different

experimental conditions, it was better to allow for minor differences in this value. In all cases,

except for one, there were sufficient solutions remaining to calculate the mean and SD of the

estimates.

One example of the sound and position vectors obtained for one of the subjects in the

linear spring approach is shown in figure 5.15. Figure 5.15a is the measured sound data and

figure 5.15b the simulated sound data obtained from using one of the vectors of parameter

estimates. Figure 5.15c corresponds to the simulated position of the arterial wall. In all

three figures BP is marked by the vertical dashed lines: in figure 5.15a the lines represent

BP measured with auscultation, 116.58/57.64 mmHg, and in figures 5.15b and 5.15c the

lines represent the estimated BP, 116.89/57.94 mmHg. In figure 5.15c the horizontal line

represents the estimated value of the zero pressure radius, ro = 0.19 cm.

Figure 5.16 shows the same results as in figure 5.15, for the same measurement, but with

the model assuming a non-linear elastic artery wall. The BP marked in figure 5.16b and c is

116.53/57.99 mmHg and the zero pressure radius marked in figure 5.16 is now 0.21 cm.

In both results shown in figures 5.15 and 5.16 a small beat can be observed at SBP, and at

DBP sounds cease completely. These points coincide with the first transition of the arterial

wall position past the buckling point, or neutral radius, and the first oscillation where the

artery wall no longer crosses this point.

Histograms of the parameter estimate distribution for a different measurement are shown

in figure 5.17 and 5.18 for the linear spring approach and the non-linear spring approach,

respectively. The red vertical line in both cases indicates the mean of the estimates. In the

case of figure 5.17 the black lines mark three SD since, as a reminder, in the results obtained

from the synthetic data in the linear spring case it was proved that the correct estimate is

most likely to be within these values. Likewise, in figure 5.18 the black vertical lines indicate
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Figure 5.15: a.Measured auscultation data with vertical lines marking BP =
116.58/57.64 mmHg. b.Simulated sound obtained from the fit results, assum-
ing a linear elastic artery wall, and vertical lines marking BP = 116.89/57.94
mmHg. c.Simulated wall position obtained from the fit results, vertical lines
mark BP = 116.89/57.94 mmHg, and horizontal dashed line a zero pressure

radius ro = 0.19 cm.
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Figure 5.16: a.Measured auscultation data with vertical lines marking BP
= 116.58/57.64 mmHg (same measurement as figure 5.15). b.Simulated sound
obtained from the fit results, assuming a non-linear elastic artery wall, and
vertical lines marking BP = 116.53/57.99 mmHg. c.Simulated wall position
obtained from the fit results, vertical lines mark BP = 116.53/57.99 mmHg,

and horizontal dashed line a zero pressure radius ro = 0.21 cm.
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two SD since it was shown in the synthetic cases that in the non-linear spring approach the

mean of the estimates was within this distance of the correct value.

It can be observed that the mean minus the determined number of SD results in negative

values for a few parameters in the linear case, and for the non-linear spring constant γ in the

non-linear spring case. This is not surprising, considering that there is a greater uncertainty

for the parameters in the linear spring approximation. The smaller uncertainty for the non-

linear spring approximation results in uncertainty limits that are mostly within measured

values, indicating that it is likely that one of the obtained estimates is close to the real

solution. As for those with uncertainties outside the proper limits, caution must be exercised

when considering these results, and perhaps more adjustments to the model and subsequent

regressions will result in better estimates.

The results are summarized in tables 5.2 and 5.3 for the parameters directly related to

arterial wall properties, that is, ro, h, their ratio h/ro, E, D, and γ for the non-linear case in

table 5.3. Figures 5.19 through 5.24 are a visual representation of this information in tables

5.2 and 5.3.

Following the reasoning applied to the histograms presented previously, the values are

given as mean ± 3SD and mean ± 2SD, respectively, considering that table 5.2 shows the

results for the linear spring case and table 5.3 those for the non-linear spring case. That is, we

continue to assume that, just as in the synthetic data, the correct values in these regressions

on experimental data are within the corresponding number of SD.

The mean value of the function S for each case is also given in the last column of the tables.

Its SD was considered irrelevant and not included, given how the results were specifically

chosen based on those that had the most similar values of S. Even though the measurements

are grouped by volunteer (V), the values of the function S are not the same in all their

measurements since each corresponds to a completely different sound vector. The regression

works differently for each so it is natural that these values are different.

Figures 5.25 through 5.29 show the comparison between the mean of the estimates ob-

tained from the linear vs non-linear elastic wall.

5.2.4 Discussion

As observed in figure 5.10 the complexity of each individual KS oscillation is certainly one

of the main factors that complicates the effectiveness of the regression. The model in its
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Figure 5.19: Mean of the estimates of the neutral radius ro for each measure-
ment, grouped by volunteer V where the measurement originated from.
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Figure 5.20: Mean of the estimates of wall thickness h for each measurement,
grouped by volunteer V where the measurement originated from.
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Figure 5.21: Mean of the estimates of the ratio h/ro for each measurement,
grouped by volunteer V where the measurement originated from.
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Figure 5.22: Mean of the estimates of Young’s modulus E for each measure-
ment, grouped by volunteer V where the measurement originated from.
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Figure 5.23: Mean of the estimates of the damping modulus D for each
measurement, grouped by volunteer V where the measurement originated from.
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Figure 5.24: Mean of the estimates of the non-linear spring constant γ for
each measurement, grouped by volunteer V where the measurement originated

from.
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Table 5.2: Mean ± 3SD of the estimated arterial wall parameter values for
the case of a linear elastic artery wall, and mean of the function S.

V #
ro × 10−1 h× 10−2 h/ro E × 106 D × 102 S

cm cm – dyne/cm2 dyne-s/cm2 V2

1

1.55± 1.58 2.68± 2.99 0.17± 0.05 7.40± 2.60 3.63± 5.00 227.76
1.75± 1.59 3.07± 2.65 0.18± 0.04 7.54± 0.84 4.65± 6.44 338.36
1.54± 1.97 2.86± 3.63 0.19± 0.03 7.94± 0.32 4.14± 5.59 106.99
1.61± 2.06 2.77± 4.10 0.17± 0.07 5.68± 6.78 4.14± 5.06 150.25
1.88± 1.45 3.51± 2.69 0.19± 0.03 5.46± 5.41 5.29± 7.22 114.43

2

2.07± 1.73 3.35± 2.98 0.16± 0.06 4.07± 6.25 4.86± 5.15 457.32
1.81± 1.37 3.23± 3.04 0.18± 0.07 3.01± 7.80 6.06± 6.39 270.19
1.46± 1.47 2.59± 2.58 0.18± 0.05 7.25± 2.65 4.20± 7.35 187.33
2.06± 1.80 3.73± 3.19 0.18± 0.03 7.09± 3.50 5.50± 7.33 170.31
1.75± 2.09 3.21± 3.95 0.18± 0.06 6.28± 5.43 5.81± 7.35 214.04

3*
1.03 1.93 0.19 1.32 3.65 93.22

1.76± 1.74 3.17± 3.35 0.18± 0.06 7.11± 2.83 5.26± 6.62 59.08
1.58± 1.18 2.86± 2.43 0.18± 0.03 6.93± 4.29 5.06± 5.06 22.74

4

1.86± 1.76 3.04± 3.25 0.16± 0.07 5.08± 5.85 5.39± 5.72 263.66
1.79± 1.52 2.95± 3.31 0.16± 0.07 4.48± 6.32 5.64± 7.04 115.64
1.57± 1.93 2.73± 3.81 0.17± 0.07 5.34± 4.67 4.53± 5.22 124.68
1.92± 1.73 3.19± 3.24 0.16± 0.07 4.84± 5.66 5.68± 5.38 8.27
1.55± 1.36 2.65± 3.18 0.17± 0.08 3.00± 6.34 6.25± 7.10 19.66

5

1.74± 1.73 2.97± 4.00 0.17± 0.09 4.83± 5.09 5.37± 3.99 100.00
1.82± 1.61 2.88± 3.03 0.16± 0.08 5.81± 6.27 5.68± 4.70 67.90
1.97± 1.77 3.28± 3.07 0.17± 0.06 4.34± 6.18 5.66± 4.63 51.17
1.82± 1.88 3.19± 3.95 0.17± 0.08 4.71± 8.36 4.48± 6.16 105.62
1.56± 1.57 2.78± 3.04 0.18± 0.04 5.96± 5.76 5.41± 6.10 38.26

*The measurement represented in the first row had a single set of parameters that complied with all the
selection filters, and therefore it was not possible to calculate a SD.
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Table 5.3: Mean ± 2SD of the estimated arterial wall parameter values for
the case of a non-linear elastic artery wall, and mean of the function S.

V #
ro × 10−1 h× 10−2 h/ro E × 106 D × 102 γ × 107 S

cm cm – dyne/cm2 dyne-s/cm2 dyne/cm4 V2

1

1.72± 0.97 2.91± 1.82 0.17± 0.04 7.56± 1.62 3.90± 2.49 6.25± 7.09 225.85
1.62± 0.62 3.00± 1.39 0.18± 0.01 7.51± 0.94 4.03± 2.81 9.14± 2.85 329.79
1.31± 0.25 2.43± 0.46 0.19± 0.01 7.71± 0.46 5.09± 5.25 3.11± 2.57 105.04
1.87± 0.90 3.15± 1.85 0.17± 0.04 6.39± 3.80 3.66± 2.77 4.98± 6.43 150.83
1.86± 0.99 3.35± 1.70 0.18± 0.02 5.92± 2.99 4.86± 4.33 6.81± 6.70 116.49

2

2.14± 1.02 3.52± 1.91 0.16± 0.05 4.20± 3.84 4.90± 2.87 4.47± 6.49 456.58
1.95± 1.13 3.43± 2.11 0.18± 0.02 4.56± 5.65 6.08± 5.48 4.21± 7.47 270.70
1.30± 1.10 2.17± 2.15 0.16± 0.03 7.88± 0.31 3.17± 1.08 9.47± 0.48 190.29
1.96± 1.11 3.41± 2.07 0.17± 0.03 6.17± 3.73 5.50± 4.66 6.25± 7.55 169.33
1.49± 0.61 2.68± 1.59 0.18± 0.04 7.29± 1.92 4.33± 6.97 4.16± 6.60 216.90

3
2.24± 1.04 2.14± 1.58 0.10± 0.07 3.67± 4.34 5.40± 4.07 5.24± 5.79 93.99
2.31± 1.08 1.87± 1.57 0.08± 0.07 2.54± 4.06 5.69± 3.81 5.03± 5.89 57.78
2.07± 1.05 2.39± 1.76 0.12± 0.07 3.82± 4.55 5.37± 3.52 4.64± 6.09 21.79

4

2.10± 1.06 3.43± 2.04 0.16± 0.04 4.94± 4.10 5.91± 3.48 4.81± 5.94 263.32
2.00± 1.09 3.28± 2.34 0.16± 0.05 5.30± 4.25 5.45± 3.74 4.45± 5.79 116.18
1.92± 0.91 3.45± 1.96 0.18± 0.03 5.25± 3.45 5.69± 3.41 4.72± 5.97 124.05
2.01± 0.95 3.39± 1.82 0.17± 0.03 5.18± 3.16 5.47± 3.71 6.09± 6.11 8.25
1.75± 0.81 2.93± 1.50 0.17± 0.03 3.22± 4.66 6.79± 4.47 3.77± 6.24 19.71

5

1.92± 1.01 3.67± 2.11 0.19± 0.03 5.89± 2.96 5.67± 4.15 6.27± 6.05 99.16
2.13± 0.81 3.08± 1.59 0.14± 0.04 4.48± 3.87 6.51± 3.05 4.67± 6.47 66.55
2.01± 0.98 3.39± 1.98 0.17± 0.04 4.68± 4.69 5.51± 3.95 3.78± 6.86 51.45
1.90± 0.94 3.19± 1.95 0.17± 0.06 5.97± 4.06 4.86± 3.93 4.32± 7.52 104.85
1.75± 1.03 3.24± 2.12 0.18± 0.03 5.54± 3.19 5.86± 4.07 4.62± 7.38 38.14
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Figure 5.25: Comparison of the mean of the estimates of the neutral radius
ro obtained from the linear elasticity approach (abscissa) vs the non-linear

elasticity one (ordinate).
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Figure 5.26: Comparison of the mean of the estimates of wall thickness h ob-
tained from the linear elasticity approach (abscissa) vs the non-linear elasticity

one (ordinate).
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Figure 5.27: Comparison of the mean of the estimates of the ratio h/ro ob-
tained from the linear elasticity approach (abscissa) vs the non-linear elasticity

one (ordinate).
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Figure 5.28: Comparison of the mean of the estimates of Young’s modulus
E obtained from the linear elasticity approach (abscissa) vs the non-linear

elasticity one (ordinate).
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Figure 5.29: Comparison of the mean of the estimates of the damping modu-
lus D obtained from the linear elasticity approach (abscissa) vs the non-linear

elasticity one (ordinate).
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present form is only able to reproduce oscillations that decay exponentially, such as would be

expected of an ideal damped harmonic oscillator. The oscillations in each KS follow a far more

elaborate shape. Perhaps by analyzing these oscillations individually an improvement on the

model can be suggested. It is interesting, nevertheless, to observe how the sound vectors

produced by the regressions, as shown in figures 5.15 and 5.16, have varying amplitude in

each KS. Perhaps if this variation were periodic or followed a certain pattern in the measured

data, the model would be able to adjust to this variation with more ease.

It is also interesting to confirm that, from the distributions in figures 5.17 and 5.18, the

estimates of the parameters follow similar distributions to those of the synthetic data. It is

also important to remind us of what the synthetic cases revealed about the accuracy of the

estimates; in the linear spring approach, the true value of the parameters was determined

to most likely be within ±3SD of the mean of the estimates, while in the non-linear spring

approach, these limits reduced to ±2SD. These inaccuracies are reflected in these histograms

and we can see how in the linear spring approach they extend to values outside of those

estimated by the regression, similar to the synthetic cases. We should also remember that in

the linear-spring approach, in some cases it was possible that the true value of some of the

parameters was outside of these limits as well, as shown in figure 5.7 for parameters ro and

h.

In the non-linear spring approach the accuracy limits of ±2SD shown in the histograms

in figure 5.18 are mostly within obtained parameter estimates. Similar to the linear case,

the possibility exists that some of the parameter true values fall outside estimates and the

designated accuracy limits. However, what is shown in this case may give us more confidence

in the parameter estimates obtained with this approach. One must point out as well that the

value of the function S was many orders of magnitude smaller in the synthetic cases than in

the experimental cases. Lowering the value of this function by including corrections to the

model may significantly improve the estimates and the inaccuracies in both approaches.

A detailed observation of the results shown in tables 5.2 and 5.3 or figures 5.19 through

5.24 reveals how the mean of the estimates of certain parameters tends to be around a certain

value depending on the individual they were obtained from. It is interesting to see how this

is mostly the case of the most sensitive parameters discussed above: the ratio h/ro and each

of the two variables separately, and Young’s modulus E, and that for variable D this is more

evident in the non-linear spring approach. This is a promising result in the potential use of
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this technique to obtain estimates of these parameters specific to each individual.

Another particular observation from these tables is how the value of the function S is

almost the same in both linear and non-linear spring approaches. This is perhaps not surpris-

ing, considering that both equations were required to reproduce the same data, and that both

are capable of producing the exact same vibrations by adjusting the value of the parameters

accordingly.

The comparison between the mean of the estimates for each parameter in the linear

and non-linear case, as observed in figures 5.25 through 5.29 shows that similar values are

obtained for the parameter estimates in both approaches, although the non-linear spring

assumes slightly larger and thicker arteries.

Overall, the estimates of the parameters were within expected ranges. The values of

the constants ρ and G are not shown, since they are not particularly relevant to the elastic

properties of the arterial wall, but the results for these constants were similar to those of the

results that are included. Unfortunately in this case the conversion factor G of the stethoscope

used was not available, yet this is perhaps the easiest value to obtain and verify. In a future

experiment a microphone of known characteristics can be used and the data measured in V

can be converted to m/s before the regression to avoid the inclusion of additional parameters

to account for conversion factors.

In a future analysis, other terms of the harmonic oscillator equation can be also be

rewritten as functions of the arterial wall position, such as the damping force, which is not

necessarily the same in the two regions separated by the point of buckling, as assumed here.

Allowing the damping modulus to vary accordingly, for instance by separating it into two

constants, one for each region like in the case of the spring constant, may certainly improve

the model where the occurrence of KS is concerned. However, while discussing the possible

value ranges of this parameter it was pointed out that it also depends on the vibration

frequency: the damping modulus increases as the frequency decreases. This means that the

description of the arterial wall’s viscosity is far more complicated than what is presented

here, especially considering the variation in main frequency components of the KS at each

phase.

It is also important to note that we also assumed that the wall could be described by a

Kelvin-Voigt element (spring and dashpot in parallel). The literature suggests that a non-

degenerate model, where a Kelvin-Voigt element is connected in series with a spring, may
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be better suited to describe biological tissues. This model was not applied in this case since

it expresses a more complex relationship between elastic and viscous elements, and the goal

was to keep the overall harmonic oscillator model simple.

Another observation is that sound segments of 110 ms were used in the present experiment,

yet it was mentioned in chapter 3 that the duration of each KS varies as the measurement

progresses. Both the algorithm and the model can potentially be adapted to adjust to these

duration variations, although this might be a more complicated issue to address.

Finally, it was mentioned previously that estimates of BP obtained from cuff measure-

ments are different than values measured intra-arterially. This means that, while KS estimate

BP at certain locations, the underlying APW most likely has a different amplitude and DBP.

In the context of this experiment this possibility was tested, but ultimately discarded for

reasons described above. However, it is possible that the use of the OMW as a surrogate

for APW could have affected these estimates. Another option would have been to sample a

larger number of initial guess vectors so that the probability of finding correct solutions with

different values of BP increased. However, given the number of results per measurement and

the need to manually analyze individual cases is a formidable task, so this option is not really

applicable, until a better selection algorithm is written.

5.2.5 Conclusions

We might say, thus, that the results obtained in this section show that, even though the

measured signal was complex, a simple harmonic oscillator model is useful as a first approach

to describe the phenomena observed in the generation of KS. It is, by no means, a fully

accurate description of the origin of KS, but it certainly gives a potential relationship between

the sounds and arterial wall characteristics and mechanics. Clearly the model has room for

improvement, but in its present form it has the advantage of being easy to apply to a routine

measurement in a non-linear regression without a large computational cost.

Similar to the case of the models in chapter 4, at this stage unfortunately we cannot

conclusively validate this model, although this model is perhaps a better description of the

observed phenomena than those used to describe the OMW in chapter 4. The comparison is

not straightforward, considering that different values are compared in the regressions, but in

the case of the model presented in this chapter the values of function S are considerably low.
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At a glance, there is no significant difference in the results obtained by the two approaches

compared here. Computationally speaking, the linear spring case was certainly less demand-

ing, although the difference was not significant. The most significant contribution stemming

from the non-linear spring case is the level of confidence in the results. This non-linear con-

sideration allows the algorithm to converge more often to solutions that are closer to the true

value of the parameters.

The results in this thesis also show that it is very likely that arterial wall mechanics play

a bigger role in the generation of KS, and that fluid dynamics and wave transmission may

have a secondary role in their origin. This on the basis that, even though their effects were

neglected, the model seems to be able to replicate the observed phenomena. The initial model

proposed by Babbs is therefore an excellent first approach and a great basis to further build

on.

It is important to emphasize once more that the coincidence in the mean of parameter

estimates per individual is a promising result. Including this method in automated auscul-

tation would mean obtaining in a single measurement information of arterial wall mechanics

that are otherwise not easily accessible. Similar to BP, a record of these parameters can be

maintained over time, and variations in their values can potentially be traced to an alteration

of the arterial wall and to cardiovascular health. A follow-up experiment would involve ob-

taining measurements of the same individuals over an extended period of time and comparing

the obtained parameter estimates.

Finally, we can conclude that, although the objective of validating a physics-based math-

ematical model in this chapter was not fully accomplished, the foundations for a modified

version of the model used here are set, and the results point towards a favourable result.

The secondary objective of possibly obtaining information on parameters that are otherwise

not easy to measure in vivo during a cuff measurement, nevertheless seems to have been

confirmed. The accuracy of some of these estimates can still be verified by other measure-

ment techniques, such as arterial tonometry or ultrasound, but at the moment they reflect

reasonable values and seem to be subject dependent.

Next steps in this research are to improve the expression of the forces involved in the

model. The damping force is the ideal candidate based on the discussion above. The next

objective should be to derive an expression where the damping modulus is determined by the

frequencies present in each KS. Additional terms in the elastic force could also be included,
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although deriving first an expression for the associated constants in terms of arterial wall

properties is highly recommended to limit the number of parameters in the regression.
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Chapter 6

Conclusions

The work presented in this thesis shows an analysis on the most commonly used methods

to estimate BP indirectly. The importance of this measurement was well established from

the start, as well as the clinical relevance of the ±5 mmHg limit in the accuracy of the

estimates. In an age where biotelemetry is available in devices as simple as a watch, and

there is increased awareness of the necessity of a healthy lifestyle, technologic and scientific

advances on this topic are of the utmost importance.

The findings of this work can be summarized as follows:

• The work on oscillometric measurements and the main algorithms used to estimate BP

discussed in chapter 2 provided some background and insight into the many advantages

and shortcomings this method has. Evidence was provided on how minor changes to the

processing of the oscillometric data can lead to significant differences in BP estimates

between devices, and an analysis on the different representations of one of the most

important components of the method, the OMWE, led to recommendations on how the

accuracy of a device operating under these principles could be improved.

A most important result was the observation that the design that has the best accuracy

for the population as a whole will not always have the best performance for a number

of individuals in this population.

• Chapter 3 presents an analysis of the auscultation method for estimating BP from the

perspective of psychoacoustics. This analysis of KS and the way they are perceived by

human hearing in contrast to masking sounds present in the measurement has not been

described previously, to the author’s knowledge. The findings on the SNR of individual
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sound segments containing KS gives additional proof of the reason why this method is

particularly challenging, especially for the determination of DBP.

The culminating result in this chapter was the design of an algorithm that can automate

the auscultation method based on human response to sound.

• Chapters 4 and 5 present results of a NLLS regression on measured oscillometric and

auscultation data, respectively. In each chapter the derivation of a physics-based math-

ematical model that describes the observed phenomena is detailed, and these models

are used in the regression to obtain information on parameters that are relevant to the

mechanics of the brachial artery.

– The work in chapter 4 relates to the method of oscillometry and to a simple math-

ematical expression of the OMW. Two different arterial compliance functions were

tested in the regression, and that proposed by Drzewiecki and his colleagues was

found to have more promising results. The parameters obtained in the regres-

sion described in this chapter may provide information of the artery’s compliance,

which is useful in estimating the degree of arterial stiffness.

– The model described in chapter 5 attempts to give a possible explanation to the

origin of KS, and is based on the work done by Charles F. Babbs. The response

of the arterial wall to external forces is believed to be responsible for the origin

of these sounds. The original work describes this motion as a linear harmonic

oscillator, and the author’s contribution to this model is to consider the wall as a

non-linear spring in the region where the arterial cross-section has a circular shape.

The results of the regression show that both approaches have distinct advantages,

such as computation time and level of confidence in the estimates. The parameters

found in this regression give information of the arterial wall’s elastic properties and

dimensions.

Overall it can be concluded that the objectives set for this project were fulfilled and that

this work offers an important contribution to the advancement of cuff-based BP measurement

methods. The study presented in chapter 2 done in collaboration with colleagues from the

Department of Medicine confirms the need for extensive work on the method of oscillometry.

The work presented here offers the suggestions of working with different data representations
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and a combination of such to achieve better accuracy in the BP estimates. Hopefully, these

suggestions, included in the author’s publication as well, can be implemented to some degree

or considered in the design of future automated oscillometric devices.

A most important contribution is included in the work described in chapter 3 related to

the study of Korotkoff sounds under a psychoacoustical perspective. This is a novel analysis

presented by the author that offers an insight into how the human observer is able to perceive

and distinguish the sounds that define the BP measurement method through auscultation.

More important is the resulting suggestion of an algorithm that can automate this procedure

based on these findings, which is particularly relevant since it has the potential of estimating

BP in the same manner as a human observer.

The results of the NLLS regressions in chapters 4 and 5 are also promising, particularly

because evidence was obtained on how a simple routine cuff BP measurement can provide

more information on a subject’s cardiovascular health without the need of additional compli-

cated equipment. Results in both methods also offer guidance on which models seem most

effective in describing the observed phenomena, and on how these models can be improved

to provide better estimates and better fits to measured data.

The work presented in this thesis also opens new possibilities of extending the research in

the area. For instance, an immediate implementation on all fronts is clearly the recruitment

of more volunteers and collaborators. At the moment, except for what is presented in chapter

2, most of the work in this thesis was collected and analyzed by the author alone. The study

on KS perception and subsequent algorithm would greatly benefit of a collaborative effort

with experts in auscultation.

The research presented in chapters 4 and 5 can likewise be benefited from a more ex-

tensive pool of volunteers and follow-ups spanning longer periods of time. The use of more

sophisticated computational methods could also be another important contribution to the

results presented here. One such example is the Finite Element Modelling (FEM), which

is a powerful tool in computational physics. In previous research related to cardiovascular

applications, and particularly to the measurement of BP, FEM has been used to analyze

blood flow and pulse wave propagation in the arteries [136], to determine the effect that cuff

pressure has on the upper arm [137], and to aid in the design of new devices that can measure

BP noninvasively [138–140].

In the present context of verifying the physics in the cuff BP measurement methods
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FEM would offer a more detailed insight into the process. A model could potentially be

constructed, perhaps borrowing and combining ideas of the models and equations used in

the references cited in the previous paragraph. However, modelling the complete process is

challenging considering the nonlinear behaviour of the materials involved, particularly the

arterial wall. One might notice in the many articles available that modelling of the arterial

dynamics is limited to cases where the artery is fully open and where only minimal pressure

is applied to it compared to the full range of pressures applied by a cuff. On the other hand,

other literature focusing on the effect of greater cuff pressures does not deal with the arterial

response to these pressures.

A great advantage of FEM is the capability of the method of building as complex or

as simple models as the research requires. For example, the simulation software COMSOL

(COMSOL, Inc., Burlington, MA) offers an application exercise that analyzes the response

of the arterial wall to axial stretching, when the wall is modelled with two of its layers and

described as an anisotropic hyperelastic material [141]. This, however, means increasing

computational time and resources, and introducing a large number of equations. While

possible, this would defeat the purpose of obtaining a simple model that can be potentially

implemented in a small device. On the other hand, making simplifications on the model to

make the process more efficient could be akin to having a resulting set of equations than can

be solved by simpler numerical methods, such as what is already presented in this work.

Certainly FEM applied to the cuff methods is a most interesting problem, and one that

would be highly recommended as a follow-up to the research presented here. This analy-

sis would be directed mostly towards obtaining a more detailed description of the physics

involved in cuff measurements, rather than a more immediate application to routine mea-

surements as intended in this work. Unfortunately, since the application of this method is

outside the author’s current capabilities and the necessary training is not possible due to

time constraints, this will remain as a recommendation for future research.

As a final conclusion, it is important to point out how the main goal of this thesis was to

further our knowledge of the two BP measurement methods that serve as a foundation for

cardiovascular health, and to provide tools and suggestions for the improvement of current

device development. The work presented here offers a couple of distinct and promising

avenues of research that can help verify the theories established over the years related to

the physical processes occurring in each BP measurement method. Most importantly, this
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work offers tools that can be immediately applied to current research in the form of potential

improvements and a better reference for newly developed devices.

This work also offers the possibility of obtaining significant information of a subject’s

cardiovascular condition from a simple, routine measurement. While this information is not,

at present, a tool on which physicians rely to make diagnostics and treatment decisions, the

simplicity and practicality of the implementation of these algorithms allows this analysis to

be performed without hindering the procedure. It is possible that in the future, with enough

information to solidly implement the results of this thesis in cuff-based devices, more options

will become available to improve the accuracy of the methods in benefit of healthcare.
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Objective To determine if, when using the oscillometric 

method, there is a specific range of amplitude ratios in 

the fixed-ratio algorithm that will result in blood pressure 

estimates that consistently fall within a mean error 

≤5 mmHg and a SD of the error <8 mmHg. Additionally, 

to apply different representations of the oscillometric 

waveform envelope to verify if this will affect the accuracy 

of the results.

Methods SBP and DBP were obtained using the fixed-

ratios method applied to a dataset of 219 oscillometric 

measurements obtained from 73 healthy volunteers and 

compared to their corresponding auscultation values. 

Ratio and envelope analysis were done on Matlab (The 

MathWorks, Inc., Natick, Massachusetts, USA).

Results Depending on the envelope representation, 

ratios between 0.44–0.74 for systolic pressure and 

0.51–0.85 for diastolic pressure yield results within 

the limits mentioned above. When a set of optimum 

envelope representations and ratios are selected based 

on population mean, the highest percentage of subjects 

presenting blood pressure estimates within the limits were 

72.6% for systolic and 69.9% for diastolic.

Conclusion The range of ratios presenting optimum 

results appears to be independent of the degree of arterial 

stiffness given the wide range of ages of the subjects in 

the study. Different representations of the oscillometric 

waveform envelope may improve the accuracy of 

the method. However, there remains a considerable 

percentage of the population with unreliable results. It is 

therefore important to only use devices that have been 

properly validated according to standard protocol. Blood 

Press Monit 26: 53–59 Copyright © 2020 Wolters Kluwer 

Health, Inc. All rights reserved.

Blood Pressure Monitoring 2021, 26:53–59

Keywords: auscultation, oscillometric waveform envelope, oscillometry, 
pressure

Departments of aPhysics, bMedicine, University of Alberta and cNanotechnol-
ogy Research Centre, National Research Council Canada, Edmonton, Alberta, 
Canada

Correspondence to Mariana Alvarado Alvarez, MSc, Department of Physics, 
University of Alberta, 116 St. and 85 Ave., Edmonton, Alberta T6G 2R3, Canada
Tel: +15053107913; e-mail: malvarad@ualberta.ca

Received 4 May 2020 Accepted 4 August 2020

 

Introduction
Cardiovascular diseases are the leading cause for death 

and disability worldwide [1], and raised blood pressure 

(BP), or hypertension, is a key risk factor [2]. The use of 

traditional auscultation for BP depends on proper train-

ing and use of accurate devices to avoid the different 

sources of error that affect this method [3].

Automated noninvasive BP measurement, particularly 

oscillometric blood pressure measurement (OBPM), has 

therefore become the method recommend over tradi-

tional auscultation [4,5], as it may prevent many of the 

human-sourced errors in the measurement, reduce the 

risk of white-coat effect, and can collect multiple read-

ings for averaging. Ambulatory BP measurement and 

home BP measurements are generally based on OBPM 

and are stronger predictors of cardiovascular events than 

current clinic measurements [6–8].

Despite its many advantages, the OBPM also has some 

documented shortcomings that could mean that this 

method is not adequate for its target population: oscillo-

metric devices perform poorly in the elderly, in patients 

with diabetes, and in those with increased arterial stiff-

ness [9–12]. This can most likely be traced back to the 

way oscillometric devices process the data they collect to 

estimate BP. Unfortunately, the detailed inner workings 

of most commercial devices are proprietary and not avail-

able for public scrutiny.

During an oscillometric procedure, pressure oscillations 

are detected in a cuff similar to the one used in aus-

cultation. These oscillations, or their envelope, can be 

expressed as a function of the approximately linear defla-

tion pressure and are known as the oscillometric wave-

form, or the oscillometric waveform envelope (OMWE). 

An algorithm can then relate BP to this OMWE.

The method of filtering the pulses from the original sig-

nal to construct the OMWE has been found to alter the 

shape of the envelope [13,14]. The shape of the OMWE 

also affects the estimation of BP, particularly in complex 
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envelope shapes [15], or in wider envelopes, such as those 

present in subjects with documented hypertension when 

compared to those of normotensives [16]. Additionally, 

two algorithms popularly discussed in literature for BP 

estimation, the slope-based and the fixed-ratio algo-

rithms, depend on the shape of the OMWE; the former 

estimates BP based on the location of the maximum 

slopes of the envelope, while the latter on locations of 

the envelope where the height is of a certain ratio of the 

maximum amplitude.

In this study, we analyze other options for the presenta-

tion of the OMWE and we focus primarily on efficiency 

of the fixed-ratio algorithm. The ratios that define this 

algorithm are empirically determined and are thus not 

representative of all subjects. Therefore, we set out to 

answer the question of whether there are certain ratios 

that will consistently yield accurate results for a sam-

ple population, and if there are ways of improving this 

method.

Methods
Study subjects/data collection

Data were collected in a convenience sample of 73 healthy 

subjects at the University of Alberta, in Edmonton, 

Alberta, Canada. University of Alberta Research Ethics 

Board approval was obtained prior to enrolling subjects. 

BP measurement was performed in standardized fash-

ion following the International Standard Organization 

(ISO) 2013 protocol [17]. Subject ages ranged from 19 to 

79 years and BPs ranged from 82 to 155 mmHg for SBP, 

51 to 93 mmHg for DBP, and 24 to 88 mmHg for pulse 

pressure. General subject characteristics are presented in 

Table 1.

Cuff size was chosen according to arm circumference 

(based on the closest approximation to 40% of arm cir-

cumference width) and cuffs were connected to a cus-

tom made oscillometric device, by which oscillometric 

measurements were made. Two trained observers who 

were blinded to each other’s results performed aus-

cultation simultaneously with a mercury column and 

a dual earpiece stethoscope while a third observer 

ensured measurements were within 4 mmHg. A total of 

five auscultatory measurements and four oscillometric 

measurements were taken in alternate fashion on the 

same arm beginning with auscultation. The first two 

measurements were discarded and not used for anal-

ysis. The mean of the auscultatory measurements for 

the two observers was first calculated; next, the average 

of the auscultation measurements taken immediately 

before and after each oscillometric reading was taken 

and used in the analysis to compare to each oscillo-

metric reading. Therefore, a total of three oscillometric 

measurements and corresponding auscultatory compar-

isons were obtained for each subject, for a total of 219 

BP comparisons.

Applying the fixed-ratio method

The complete procedure, from filtering to estimating 

BP via the fixed-ratio method was done using Matlab 

functions (The MathWorks, Inc., Natick, Massachusetts, 

USA) and original code written for Matlab as well. The 

oscillometric waveform from each individual measure-

ment was obtained by reconstructing the baseline defla-

tion pressure and subtracting it from the original pressure 

signal. The resulting waveform was leveled to zero to 

have the absolute amplitudes of the pulses expressed 

as functions of the baseline deflation pressure. Outliers 

were identified and replaced using a function, which uses 

statistics of a seven-point window to identify these out-

liers, and then replaces them by doing a linear interpola-

tion between the two neighboring points.

There are several ways to obtain the OMWE to estimate 

BP; the exact method that each commercial device uses 

is not usually disclosed, and most likely not uniform 

across devices. Some devices obtain the envelope directly 

after extracting the OMW from the peak-to-peak ampli-

tude from each pulse, while others average a few pulses 

at certain pressures [13]. Another method to do this is 

by performing a linear interpolation between each max-

imum peak of the oscillations when they are expressed 

as absolute amplitudes. In this study, we use this latter 

method, and we also fit three other different functions 

to these peaks, selected because of their closeness-of-fit 

to an OMWE distribution and smoother profiles. These 

functions were polynomials of sixth and eigth degree and 

a Gaussian function.

We defined the systolic ratio (SR) and the diastolic ratio 

(DR), according to Geddes et al. [18], as a SR = A
s
/A

m
 

and a DR = A
d
/A

m
, where A

s
 and A

d
 were defined as the 

amplitude of the oscillations where auscultatory SBP and 

DBP were located, expressed as ratios of the amplitude 

of the maximum oscillations, A
m

, which has been previ-

ously identified as mean arterial pressure.

First, we used Geddes et al.’s ‘typical’ ratios of 0.55 for sys-

tolic and 0.82 for diastolic to examine the ability of each 

of the four methods of fitting the oscillometric envelope 

to derive BP values close to the auscultatory reference 

standard for an individual with a BP of 118/80  mmHg 

(the subject with the BP closest to what Geddes defined 

as typical: 120/80 mmHg).

Table 1 Baseline characteristics

Variable Mean ± SD or no. (%)

Age (years) 51 ± 18
Female 46 (63)
Weight (kg) 72.1 ± 14.2
Arm circumference (cm) 30.5 ± 3.7
SBP (mmHg) 115 ± 16
DBP (mmHg) 69 ± 8
Pulse pressure (mmHg) 46 ± 14
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Second, given that Geddes et al. also reported a range of 

ratios, noting that the results were dependent on the BP 

of the subject, we tested a range of SRs and DRs for each 

envelope. The four envelopes were fitted to each of the 

219 OMWs obtained from the study; SBP was calculated 

for each ratio in a range of SRs going from 0.28 to 0.89 

sampled in increments of 0.01. Likewise, DBP was calcu-

lated for each ratio in a range of DRs from 0.3 to 0.99 sam-

pled in increments of 0.01. The resulting BP values were 

then compared to the true auscultation values and the 

error was calculated for each as the auscultation minus 

the oscillometric value. The mean of the error (ME) and 

the SD of the error (SDE) were obtained for the study 

sample and were plotted against a reference of a ME 

within ±5 mmHg and a SDE <8 mmHg. These limits are 

within ISO standards [17] and are of clinical relevance for 

diagnosis and treatment.

Third, the effect of the choice of ratios was also analyzed 

for individual subjects. Instances of prevailing error in 

the oscillometric method for some patients have been 

reported [19] so it was considered of interest to verify 

the average error incurred per subject. For this purpose, 

the ratios with the lowest ME were chosen as the ratios 

under which an oscillometric device would hypotheti-

cally operate.

Using these ratios SBP and DBP were determined for 

each of the three oscillometric measurements taken 

per subject. The errors between these three results and 

their corresponding auscultatory values were averaged to 

obtain the ME for each subject. Three distributions of 

the absolute errors were analyzed: ME ≤ 5mmHg, 5 < ME 

≤ 10 mmHg, and ME ≥ 10 mmHg. The analysis was done 

with respect to the complete sample and by age group. 

The age groups were divided by tertiles: the first group 

ranging from 19 to 40 years, the second group from 41 to 

62 years, and the third group from 63 to 79 years. There is 

a total of 24 subjects included in the first two groups and 

25 subjects in the last group. See Table, Supplemental 

Digital Content 1, http://links.lww.com/BPMJ/A123, for 

summarized age and BP characteristics of the age groups.

Results
Figure 1 shows a sample diagram of the OBPM process 

for a subject with BP of 118/80  mmHg. In Fig.  1c the 

SBP/DBP (error) obtained with each envelope were 

105/77 (+13/+3) mmHg for linear interpolation; 110/74 

(+8/+6) mmHg for the sixth-degree polynomial; 107/75 

(+11/+5) mmHg for the eight-degree polynomial; and 

115/73 (+3/+7) mmHg for the Gaussian function.

Figure 2 shows the ME and SDE results determined for 

the range of ratios sampled for, plotted with the limits of 

±5 mmHg for ME and 8 mmHg for SDE marked with 

dashed horizontal lines. The ratios that correspond to a 

ME close to zero for the four different envelopes ranged 

from 0.54 to 0.63 for SRs, and 0.62 to 0.75 for DRs. The 

ranges that comply with the limits marked in Fig. 2 are 

summarized in Table 2.

The SR and DR from each envelope selected to repre-

sent the results from a hypothetical commercial device 

are presented in Table 3.

Figure 3 shows a comparison of the percentage of subjects 

from the complete sample with absolute ME ≤ 5 mmHg, 

> 5 and ≤ 10  mmHg, and > 10  mmHg, depending on 

OMWE representation. The percentages are the values 

written atop each bar. The same analysis with respect to 

the number of subjects in each age group was obtained 

(see Figure, Supplemental Digital Content 2, http://links.

lww.com/BPMJ/A124, which shows the percentage of sub-

jects from each age group with absolute ME ≤ 5 mmHg, 

> 5 and ≤ 10 mmHg, and > 10 mmHg. Top for SBP and 

bottom for DBP).

Discussion
In summary, the results of this analysis indicate that:

(1) The method of constructing the final OMWE leads to 

variation in BP estimation;

(2) results where the ME falls within ±5 mmHg and SDE 

<8 mmHg are obtained in the middle of a wide range 

of fixed ratios in all cases of OMWE construction; and

(3) for individual subject sequential measurements, the 

common method of linear interpolation is most effec-

tive in estimating SBP, but an eight-degree polyno-

mial performed better in the case of DBP.

From what is presented in Fig. 1 it is clear that a single set 

of fixed ratios does not fit every individual, even if these 

ratios had been previously determined for a similar BP. 

This confirms that the choice of ratios not only depends 

on BP alone, but on a combination of other physiologi-

cal factors. Different mathematical models of the oscil-

lometric BP measurement method have been proposed 

to determine the greatest contributors to its inaccuracy 

for different populations. These models agree in general 

that pulse pressure and arterial stiffness play a major role 

in the effectiveness of the method [20–23].

However, once the range of ratios was sampled, the linear 

behavior of the ME for the ratios indicates that there is 

indeed a limited range centered around 60% of the maxi-

mum for SBP and 70% of the maximum for DBP, as seen 

in Fig. 2, which will consistently yield results within ME 

and SDE limits for the sample. The sample includes a 

relatively wide range of pulse pressures, and arterial stiff-

ness is a natural occurrence in older patients, so these 

parameters may not affect the results of this method in 

the specific case of a healthy population.

Additional potential contributors to variability include 

different diseases (e.g. vascular disease, chronic kid-

ney disease, obesity) and altered physiological states 

(e.g. advanced age, pregnancy), however, the sample 
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examined in the present study was comprised of healthy 

subjects; thus, the findings would not be able to confirm 

or disprove the effect of these factors.

The different functions used to fit an OMWE to the 

waveforms, unlike the linear interpolation, present a 

well-defined maximum and have smooth profiles on 

both high- and low-pressure sides. These features were 

expected to improve on MAP location and subsequent 

SBP and DBP estimation. As expected, the location of 

the maximum amplitude is shifted by each function, an 

example of which can be seen in Fig. 1. Unfortunately, 

this study did not collect information on the subjects’ 

true MAP, so the magnitude of this shift is unknown.

The ME exhibits an approximately linear behavior 

within the limits for both the SRs and DRs, and for 

all four envelopes, while the SDE is always below the 

accepted limit for the ranges of interest. Although the 

behavior of the SDE across the range of fixed ratios is 

highly irregular for both SBP and DBP (Fig. 2c and d), 

the Gaussian function results in the lowest and most 

consistent systolic SDE, within the 8 mmHg limit across 

the entire range of fixed ratios.

Fig. 1

Visual schematic of the OMW extraction and OMWE fit for different envelope functions. (a) Original signal (solid) with reconstructed baseline 
(dashed) showing oscillations between SBP and DBP. (b) Leveled OMW as function of baseline pressure. (c) Different functions fitted to the 
OMW. Dashed vertical lines indicate an auscultatory BP of 118/80 mmHg; cross markers indicate estimated BP obtained for each envelope 
using a SR of 0.55 and a DR of 0.82. BP, blood pressure; DR, diastolic ratios; OMWE, oscillometric waveform envelope; SR, systolic ratios.
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Once an ideal ratio is established for each envelope, the 

methods perform similarly, with the exception that the 

lowest values for SDE were obtained with the Gaussian 

envelope for SBP and with the eight-degree polynomial 

for DBP, which indicates that a mix of methods may be 

required to achieve optimal accuracy. The value of these 

results depends on the practicality of implementing a 

mixed-method approach.

The intra-individual analysis demonstrates that optimum 

population results do not imply accuracy for all individ-

uals. The SRs of choice result in close to three-quarters 

of the population with average SBP estimates within 

acceptable error, with the linearly interpolated envelope 

performing better than the other three functions. The 

DRs of choice have results close to those of the SRs, of 

these the eight-degree polynomial envelope performed 

better than the other three envelopes. In both cases, 

however, there is almost one-quarter of the population 

with unreliable results. Because these findings demon-

strate variability within an individual over a sequence of 

readings, they must primarily represent minute-to-min-

ute physiologic changes and a greater understanding of 

this variability is needed to optimize oscillometric BP 

accuracy.

A look at the different age groups confirms that some 

representations of the OMWE are better suited for cer-

tain populations. It is interesting to note that the second 

age group (41–62 years) had the lowest accuracy for SBP, 

and the third group (63–79 years) had the lowest accu-

racy for DBP. Mean SBP and PP increase respectively by 

age group as expected, although there is not a significant 

difference in mean DBP between the last two groups. 

These observations reveal that for this population sample 

in particular arterial stiffness might not be a major factor 

in the accuracy of the method.

The primary limitation of this analysis is that it focused 

on healthy individuals recruited at a single center in 

Canada and, therefore, the results should be extrapolated 

with caution to broader populations.

In conclusion, we have determined that results with ME 

within ±5 mmHg and SDE <8 mmHg can be obtained 

within a moderately tight range of ratios for SBP and 

DBP. These ranges appear to be independent of pulse 

pressure and arterial stiffness, but possibly limited to 

Fig. 2

Mean of the error (ME) and SD of the error (SDE) obtained for all four envelopes for a sampled range of (a) systolic ratios (SR), and (b) diastolic 
ratios (DR).

Table 2 Accurate amplitude ratios

Envelope function Systolic ratios Diastolic ratios

Linear Interpolation 0.44–0.63 0.51–0.81
6th-degree polynomial 0.46–0.69 0.57–0.84
8th-degree polynomial 0.45–0.66 0.54–0.83
Gaussian 0.50–0.74 0.62–0.85

Ranges of systolic and diastolic ratios which produce population mean error 

within ±5 mmHg and SD of the error <8 mmHg.
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only healthy populations. We have also confirmed that 

an additional factor that affects the accuracy of the fixed 

ratio oscillometric method is the function used to con-

struct the final OMWE, and that a possible improvement 

to the method would be the use of a combination of 

functions. Further studies are recommended to verify if 

these findings extend to healthy populations in general, 

and if there exist similar outcomes for populations with 

varying conditions. This might result in devices with 

customizable ratios that can be set by the user depend-

ing on their condition. The extent to which this can be 

practically implemented in a given device remains to be 

determined.

It is unlikely that commercial devices operate based on 

this method alone, but rather on a combination of algo-

rithms. Therefore, results presented here may serve as 

an additional consideration in the design of a device. As 

previously mentioned, this information is not usually dis-

closed, so it is important to use only those devices that 

have been properly validated according to standard pro-

tocol [24,25]. This ensures the device has been submitted 

to rigorous testing and provides reliable measurements, 

regardless of the algorithm on which it is based.
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Appendix B

Performance of the Algorithm Proposed

to Automate Auscultation in Simulated

Noisy Environments

The algorithm proposed to automate the measurement of BP through auscultation was de-

veloped considering the masking of a narrow-band sound by another narrow-band sound

(noise). This applies to the mostly ideal case where the recorded measurement contains only

electronic noise originated by the stethoscope. In order to address the possibility of other

sources of noise in the signal, such as noise from a busy clinic, a separate analysis of masking

of sounds is required. Namely, how a sound that is no longer narrow-band in its frequency

spectrum affects our perception of KS, how it affects the auditory threshold of these KS, and

how we can define a new set of DL between noise and test sounds. This would, of course,

imply that the goal is now to develop a new algorithm specific to this new situation.

The algorithm in its current format can also be tested under these conditions, which

would be akin to testing the performance of a potential device under different situations,

even if they were not the intended use of the device. In this section, the author presents

results of a couple of tests done on the algorithm that intend to simulate the case of a noisy

environment. Measurements directly collected in a noisy environment with the setup used in

chapter 3 were not available. Therefore, background noise was added after the fact to one of

the original measurements used in said chapter.

The measurement used was selected from the 60 measurements used in chapter 3 on the

basis that BP was correctly estimated with the algorithm, which made it an ideal control

candidate. Two types of background noise were added to the original soundtrack: a segment
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of a heavy metal song and helicopter sounds. The background sounds have the same duration

as the original measurement, and the mixing and rendering of tracks was done with the free

audio software Audacity. The resulting track were saved as a “.wav” file that could be played

back and also processed in Matlab.

Ideally, when the stethoscope is placed in contact with the skin there should be no gaps

in this contact to create a perfectly closed acoustic system. In reality, however, this is not the

case, so external noise can be picked up by the stethoscope head-piece, which is the situation

we are assuming with these examples. Additionally, even if the stethoscope detects external

sounds, these will not be detected faithfully in terms of quality (frequency and amplitude of

the original source), but they will rather appear attenuated or “muffled”.

At present, it is difficult to gauge to what extent will external sounds be attenuated during

a measurement with the Thinklabs One electronic stethoscope used for the analyses in this

thesis. For this reason, before the mixing and rendering of the tracks, the background noise

was separately attenuated at different levels to analyze the effect that each sound intensity

had on the algorithm.

This attenuation was accomplished with the “Amplify” option in Audacity, and attenua-

tions of -10, -15, -20 and -25 dB with respect to the original intensity were selected. Figures

B.1a and B.2a show the comparison between the amplitude of the original segments of song

and helicopter sounds, respectively, and their different attenuation options. Figures B.1b and

B.2b show how their respective frequency spectrums compare after the application of a 6th

order Butterworth band-pass filter between the frequencies of 50 and 400 Hz with the Matlab

software. From these figures we can already identify the presence of a larger number of har-

monics in our background noises, other than the more specific mains and carrier frequencies

present in our original measurements.

Figures B.3 and B.4 show the same type of information as figures B.1 and B.2, but now in

this case we have the measured auscultation sounds mixed with the two types of background

noise. Figures B.3a and B.4a represent the amplitude of the original measurement (labelled

“Original”) and the amplitude of the measurement mixed with the song and helicopter sounds

attenuated to different levels, respectively. Figures B.3b and B.4b are the corresponding

frequency spectrums after a 6th order Butterworth band-pass filter has been applied between

the frequencies of 50 - 400 Hz with the Matlab software.

To compare the performance of the algorithm to observer response, the mixed tracks
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Figure B.1: a. Comparison of the original amplitude of the song segment
and its different levels of attenuation. b. Frequency spectrum of the different
song representations in a. after being band-pass filtered between 50 - 400 Hz

by a 6th order Butterworth band-pass filter.
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Figure B.2: a. Comparison of the original amplitude of the helicopter sounds
segment and its different levels of attenuation. b. Frequency spectrum of the
different sound representations in a. after being band-pass filtered between 50

- 400 Hz by a 6th order Butterworth band-pass filter.
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Figure B.3: a. Comparison of the original measurement and the different
levels of attenuation of the measurement and song mix. b. Frequency spectrum
of the different representations in a. after being band-pass filtered between 50

- 400 Hz by a 6th order Butterworth band-pass filter.
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Figure B.4: a. Comparison of the original measurement and the different lev-
els of attenuation of the measurement and helicopter sounds mix. b. Frequency
spectrum of the different sound representations in a. after being band-pass fil-

tered between 50 - 400 Hz by a 6th order Butterworth band-pass filter.
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Table B.1: Comparison between BP estimates of the observer and the algo-
rithm for the measurement mixed with the song segment at different levels of
attenuation. The true values of BP for the original measurement are given in

the second row.

SBP [mmHg] DBP [mmHg]
96.51 48.04

Level of Attenuation Observer Algorithm Observer Algorithm
-10 dB 93.76 N/A* 61.14 N/A*
-15 dB 93.76 94.74 55.82 56.56
-20 dB 95.65 94.74 51.02 52.55
-25 dB 96.51 94.74 51.02 49.34

*N/A = estimate could not be obtained.

were played in the Audacity software to identify how a human observer (the author) would

estimate BP in these conditions. The tracks were high-pass filtered with a cut-off frequency

of 50 Hz and a roll-off of 36 dB per octave with this software, and then low-pass filtered

with a cut-off frequency of 400 Hz and a roll-off of 36 dB per octave, to mimic the band-pass

filtering applied with Matlab. All tracks were listened to at the same volume level used in

the development of the algorithm. This also confirmed that the noise is still perceived at the

-25 dB level of attenuation.

The algorithm was finally applied in the same way that was presented in chapter 3, fol-

lowing the same steps of data processing and BP selection. Table B.1 shows the comparison

between observer and algorithm estimates of BP for the case where the measurement was

mixed with the song. Table B.2 shows this same comparison for the case where the measure-

ment was mixed with the helicopter sounds. The true value of BP for this measurement is

96.51/48.04 mmHg for reference.

In the track where the song was mixed with the measurement SBP estimates from the

observer were closer to the real value, while DBP estimates were closer in half of the mea-

surements. In the case of the helicopter sounds mixed with the measurement we can see that

the algorithm performed just as the observer in the SBP estimates, while the DBP estimates

also had closer estimates in half the measurements.

From these results we can make a few observations:
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Table B.2: Comparison between BP estimates of the observer and the algo-
rithm for the measurement mixed with the helicopter sounds at different levels
of attenuation. The true values of BP for the original measurement are given

in the second row.

SBP [mmHg] DBP [mmHg]
96.51 48.04

Level of Attenuation Observer Algorithm Observer Algorithm
-10 dB 94.74 94.74 62.20 56.56
-15 dB 94.74 94.74 56.56 54.22
-20 dB 94.74 94.74 51.02 53.52
-25 dB 95.54 95.54 51.02 54.22

1. As mentioned above, there is no real way to determine the extent of the background

sound’s intensity as recorded by the stethoscope during a real measurement. A real

possibility is that the background noise that an operator is detecting comes from a

deficient seal of the ear cavity by the ear-piece of the stethoscope. In this case, the

stethoscope head-piece would not detect this sound and the results of the algorithm

would be affected to a lesser extent. On the other hand, an example collected by the

author with the original measurement setup may give some indication of whether the

noise levels examined in this Appendix are appropriate. This example is shown in figure

B.5, which is the case of a sound that the volunteer made during the measurement.

The section of measurement represented in figure B.5 is no the lower pressure end and

we can see, by comparison to figures B.3a and B.4a, that the amplitude of this sound is

significantly smaller and does not obscure the information of the nearby KS. This is to

say that, if this is the amplitude of a sound originating from the actual volunteer, then

it is possible that the cases presented here of higher noise amplitude could represent at

least the case of a busy clinic.

2. Even though the estimates of SBP from the observer were better in the case where the

song was mixed into the measurement, it is possible that these measurements are biased.

Previous knowledge of the song by the author of this thesis proved to be distracting

while listening to the audio, but it may have also helped distinguish KS from the song’s
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Figure B.5: Instance of a recorded sound produced by the volunteer during
the measurement.

content. The fact that both algorithm and observer performed equally in the helicopter

case at least for SBP estimation, may serve as confirmation of this.

3. The repetitive nature of the helicopter sounds may have similarly influenced the ob-

server’s judgement, although it is difficult to identify if the influence was positive or

negative.

These observations demonstrate how the different type of frequency content considered

in these examples has a different effect on human perception of KS. Nevertheless, further

analysis of cases like the ones studied here may help us define these effects and a new method

to process and interpret the measured data.

Finally, it is important to point out how, despite the less than ideal conditions that the

algorithm was subject to here, the BP estimates are not far from those of a human observer

in most of the cases. The accuracy of the estimates compared to the true value of BP is not
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ideal, particularly that of DBP, yet the algorithm still accomplishes its goal of mimicking

human response to a certain extent. It is possible that improving the algorithm for these

types of situations may only require setting an additional number of frequency filters to

obtain a “cleaner” signal.
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Appendix C

Application of the Algorithm Proposed

to Automate Auscultation to

Measurements from the BIHS

The algorithm proposed to automate the measurement of BP through auscultation presented

in chapter 3 should, ideally, be self sufficient. This means that, since its based on the ob-

server’s ability to perceive test sounds above the base noise of the stethoscope, here considered

as the masking noise, then the algorithm should be applicable regardless of instrumentation

(type of stethoscope) used. To verify this, the algorithm was applied to a set of measurements

collected by the British and Irish Hypertension Society (BIHS).

These measurements are publicly available as YouTube c© videos grouped in a playlist

in the BIHS account, and a link to the videos, as well as a pdf with information on each

measurement, is included in the BIHS webpage1. Permission to use them was obtained by

electronic communication (e-mail). They consist of 29 measurements obtained from individu-

als with varying cardiovascular conditions, such as atrial fibrillation or tachycardia, and were

intended to serve as interactive tutorials to teach how to apply the method of auscultation.

The videos consist of the basic components of a manual measurement of BP through auscul-

tation: the mercury manometer is shown with the height of the mercury column progressively

decreasing, and the audio is a record of the sounds coming through a stethoscope.

Given the nature of the videos, once they are converted to files that can be processed in

Matlab, the vectors produced only contain information of the sound amplitude measured in

1https://bihsoc.org/resources/bp-measurement/bp-measurement-auscultatory-tutorials/ Last checked:

January 12, 2022
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Figure C.1: Frequency spectrum of the full auscultation measurement (black)
and the spectrum that remains (red) after the band-pass filter with edge fre-

quencies between 20 and 400 Hz is applied.

volts. There is no corresponding pressure vector, so the only correlation that can be made

to the measured BP is through the time vector. To do this, careful inspection of the videos

and the obtained vectors must be made to ensure the right sound segments are chosen as

KS, and furthermore, that the times corresponding to SBP and DBP are properly identified.

These values were identified using the document provided by the BIHS, which includes the

correct BP values for each measurement.

Three examples of the application of the proposed algorithm to these measurements are

discussed below. The data was processed with some minor modifications. The bias in the

signal is equally removed from the sound vector by subtracting its mean. Afterwards, the

6th order Butterworth band-pass filter was modified to now have edge frequencies between

20 and 400 Hz, instead of 50 - 400 Hz as in chapter 3. An example of how this filter modifies

the frequency spectrum of the data is shown in figure C.1. This was considered to be a better

range of frequencies given that there is no information available on the type of stethoscope

used to collect the measurements, nor on the method used to digitize them. Therefore, the

lower frequency of the band-pass filter corresponds to the lowest frequency a human can

perceive.
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Figure C.2: a.Sound vector of the measurement labelled as BP11.
b.Frequency spectrum of BP11 with the prominent frequencies of 25, 100, 150
and 250 Hz labelled. c.Frequency spectrum of BP11 after the labelled frequen-

cies have been attenuated 15 dB with a Chebyshev Type II filter.

It was observed that these measurements also contained prominent frequency peaks at the

mains and carrier frequencies as shown in figure C.2. In this case, however, we can see that

these frequencies are different than those present in the measurements from chapter 3. The

reason behind this is that the mains frequency in the European continent is 50 Hz instead of

60 Hz as in the American continent. Despite these differences, this doesn’t really affect the

algorithm since, as we may remember, in the training set the mains and carrier frequencies

were manually selected and attenuated. In the case shown in figure C.2 the frequencies of

25, 100, 150 and 250 Hz were attenuated 15 dB using a Chebyshev Type II filter.

Once these filters were applied to the data, the rest of the procedure followed the same

steps as in chapter 3. The sound vector was segmented into smaller sections. Those sections

containing voltage amplitudes above the 0.5 mV threshold were used for analysis, resized
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to 400-ms long segments, and the test and masking sounds were identified in each of these

segments. Finally, their SNR was calculated for a bandwidth of 40 Hz centred at the test

sound’s highest energy frequency, and the DL of 4.2 dB was used to classify the sounds as

audible and inaudible. The same criteria to locate SBP and DBP were applied to these

measurements, and this selection was not affected by the lack of a baseline pressure since it

only depends on the temporal relationship between segments identified as KS.

Figure C.3 shows the first example of how the algorithm estimated BP for the measure-

ment labelled BP1 by the BIHS. Measured BP = 170/120 mmHg, and the document includes

the following comment for this measurement:

“Phase 1 is clearly heard at 170mmHg and auscultatory sounds continue until

120mmHg (although with less amplification 122 mmHg may be the last sound

heard). This patient is in sinus rhythm. It is important to remember that the

cuff pressure should be reduced at a rate of 2-3mmHg per second or per pulse

beat. This cuff has been released too quickly”.

For this measurement the frequencies 50, 100, 150, 200, 230 and 300 Hz were attenuated

15 dB with the Chebyshev filter and the sound vector was initially segmented into sections

of 500-ms duration. SBP in this case was determined to be located at/near a time of 14.44

s, and the last audible Korotkoff sound is at/near 28.09 s. We can see from figure C.3 that

the algorithm correctly located BP in this case.

The second example shown in figure C.4 corresponds to the case labelled BP5. In this

case BP = 178/122 mmHg, and the comments for this measurement are as follows:

“The subject is in atrial fibrillation. This column demonstrates the difficulties of

estimating blood pressure in arrhythmias. In atrial fibrillation, stroke volume and

hence blood pressure vary depending on the preceding pulse interval. Thus blood

pressure will be a rough estimate which can perhaps be improved upon only by

repeated measurements. A very soft sound can be detected at 120 mmHg with

amplification.”

In this case the frequencies 25, 50, 150, and 250 Hz were attenuated 10 dB and because of

the irregular heartbeat, the sound vector was segmented into 400-ms long segments to avoid

losing as much information as possible. The location of SBP was determined to be at/near a
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Figure C.3: Visual representation of the result obtained with the proposed
algorithm for measurement BP1.

time of 13.94 s, and the last audible Korotkoff sound at/near 35.96 s. Unfortunately, in this

case the algorithm located SBP at a time of 11.90 s, although it correctly located the last

audible KS.

The third and final example is the one labeled as BP11, where BP = 104/86 mmHg, and

the only comment for this case is: “The subject is in sinus rhythm”. This is the same case

shown in figure C.2, and the results of the algorithm are given in figure C.5. This sound

vector was segmented into 700-ms long sections.

In this case SBP is located at/near a time of 16.59 s, and the last audible KS at/near

25.86 s. The algorithm correctly identified SBP, and while it also correctly classified the last

audible KS as audible, the previous sound was classified as inaudible, causing the algorithm

to ultimately locate DBP at the incorrect position. At a glance, one might infer why this

was the case, however, a close-up of this is shown in figure C.6.

The sound segment that was incorrectly classified as inaudible, which corresponds to peak

#26 shown in figure C.6a, contains two large voltage peaks. Because of the separation of

the peaks with respect to those before and after, the second peak was selected as the test

sound, making the preceding one as part of the masking sound. This, naturally, resulted in a
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Figure C.4: Visual representation of the result obtained with the proposed
algorithm for measurement BP5.

Figure C.5: Visual representation of the result obtained with the proposed
algorithm for measurement BP5.



Appendix C. Application of the Algorithm Proposed to Automate Auscultation to

Measurements from the BIHS
223

Figure C.6: a.Sound segment labelled as #26 for measurement BP11. Mask-
ing sound is coloured in blue and test sound in red. b.Energy density of the
masking sound with the bandwidth used in the SNR marked by the coloured
area. c.Energy density of the test sound. Relevant bandwidth is also repre-

sented by the coloured area.

SNR = -7.67. The energy density of the two sounds is shown in figures C.6b for the masker,

and C.6c for the test sound. The masking sound is actually more energetic that the test sound.

The results presented in this Appendix show that the algorithm, in principle, can be

applied to different instances of auscultation recordings. Measurement BP1 represents an

ideal case, where the algorithm provides accurate results of BP, provided some adjustments

are made first to accommodate for some differences. Situations present in case BP11 like

that shown in figure C.6 are common, and it is very likely that these “double peaks” also

affected some of the measurements discussed in chapter 3. A fail-safe set of instructions can
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be added to the algorithm in the future for it to be able to deal with these cases where there

is a very energetic peak selected as the masker. Overall the method works for case BP11,

since the rest of the segments and SBP were correctly classified and located.

Measurement BP5 represents a more challenging situation, although the comments pro-

vided by the BIHS on this case already state that the value of BP given is but a rough

estimate. In general, automated devices are not suited for subjects with atrial fibrillation,

where the judgement of an expert is necessary. Nevertheless, the proposed algorithm obtained

the answer for SBP given by the BIHS. It may be worth exploring the psychoacoustics of

other cases of atrial fibrillation to determine if the relations used in this algorithm to identify

SBP apply equally to this cardiovascular condition. At the moment, the algorithm in cases

of atrial fibrillation could be a useful visual aid for the operator to identify audible sounds

and make a more informed decision on the estimate of BP.

In conclusion, we can see that the proposed algorithm is mostly independent of instru-

mentation. The subject of frequency content and individual cardiovascular condition are

certainly variables that should not be an obstacle for its performance. However, assuming

the proposed algorithm is implemented into an automated device, the stethoscope or micro-

phone used in the device would be fully characterized, so the filtering of the right frequencies

would no longer be an issue. Another important thing to point out is how measurement BP1

corresponds to an individual with hypertension. The document from the BIHS doesn’t ex-

plicitly state it, but a BP of 170/120 mmHg is well above the threshold of what is considered

normal pressure. This indicates that the algorithm also performs accurately for hypertensive

subjects, which is usually challenging in automated oscillometric devices. Other cardiovascu-

lar conditions need to be addressed more carefully, but it is possible that with further research

a version of this algorithm can be catered specifically to different types of populations.
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Appendix D

Spring Constants

Spring constant k1 can be related to arterial wall parameters by considering the artery to

be an elastic cylinder. Its cross-sectional area is a circular shell, like the one shown in figure

D.1, of thickness h and neutral radius, ro. Because of the curvature of the tube, the internal

angular strain, σθθ, produces radial strain, σrr, directed towards the centre of the artery. If

the artery is in equilibrium, from basic trigonometry the strains are related as

σrr · Arr + 2 · σθθ · sin

(

δθ

2

)

· Aθθ = 0 (D.1)

where Arr is the area perpendicular to the direction where strain σrr is directed, ansd Aθθ is

the area perpendicular to σθθ.

If we are considering a segment of length L the areas are: Arr = roδθL and Aθθ = hL.

With the small angle approximation, sin(δθ/2) ≈ δθ/2, and substituting the areas in equation

D.1, we arrive at a simple relationship between the strains:

σθθ =
ro
h
σrr. (D.2)

Using the stress-strain relationships for an elastic solid given by

εxx =
1

E
[σxx − ν(σrr + σθθ)] (D.3a)

εrr =
1

E
[σrr − ν(σθθ + σxx)] (D.3b)

εθθ =
1

E
[σθθ − ν(σxx + σrr)] (D.3c)
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which we can finally relate to a force applied in the radial direction on the perpendicular

area Arr mentioned above as

Frr =
Eh

ro
· δθL ·∆r, (D.7)

and from this expression relate the spring constant k1 to the parameters of the arterial wall:

k1 ≈
Eh

ro
· δθL. (D.8)

When the artery is deformed by an external pressure and its cross-sectional area resembles

an ellipse or hourglass, the restoring force FS2 can be assumed to arise from bending moments

that result from the external force and from the compression and extension of the arterial

wall. When the artery flattens, the curving of the arterial wall at the extremes of the “ellipse”

will result in perpendicular compressive stresses below the neutral axis, as shown in figure

D.2 by the arrows labeled as σC , and in perpendicular tensive stresses above the neutral

axis, labelled σT in figure D.2. These stresses will shorten or lengthen the wall, respectively,

causing a change in arc length at these sections.

Based on the scheme in figure D.2, we assume that the neutral axis of the wall is located

a distance y from the zero Pt radius, ro. The plane parallel to this neutral axis will not suffer

any change in length from the stresses. The strain relative to this segment can be expressed

as

ε =
roδθ − (ro + y)δθ

(ro + y)δθ
=

y

ro + y
, (D.9)

which, from equation D.3, is related to the stresses by

σ = E · εθθ = E
y

ro + y
(D.10)

where once more we consider no stress in any of the other two directions. The moment

generated by this stress is rσdA, where r refers to the distance where the force σdA is

applied at. The area dA is considered for a wall segment of length L. The moment here will

therefore be equal to

M =

∫ h

0

(ro + y) · E
y

ro + y
· Ldy =

1

2
ELh2. (D.11)
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k2 ≈ 4
E

π2
·
h2

r2o
· Lδθ. (D.14)
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