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Abstract

Fracking, or hydraulic fracturing, is a process where high permeability fractures are in-

duced in low permeability reservoir rocks in order to create a more conductive pathway for

oil production. Production from shale and other low permeability reservoirs is a complex

multi-physics problem. The interaction between the natural fractures already present in the

formation and the fractures induced from the fracking process, coupled with the uncertain

spatial distribution of the heterogeneous features, introduce even more uncertainty to the

production estimates. Numerical modelling of tight and shale formations is, for this reason,

still challenging.

Various numerical methods have been used to study flow and immiscible displacement

through fractured reservoirs. While all numerical methods make compromises due to the

highly complex nature of oil reservoirs, the discrete fracture (DF) method based on the

Mixed Finite Element (MFE) discretization scheme proves to be a superior alternative for

computational analysis of fractured media. While the numerical accuracy of the three most

common schemes to study transport in oil formation; the finite difference (FD), finite element

(FE), and finite volume (FV) method, strongly rely on the grid size of the matrix cells, the

MFE formulation can be frame din such a way to relax this dependency. Additionally,

while local mass continuity cannot be ensured in the conventional finite element method,

it is naturally incorporated in the mixed finite element formulation. A novel modelling

framework is proposed where point-source well models are incorporated in order to simulate

production from tight reservoirs with natural and hydraulic fractures. To eliminate the need

for local grid refinement when implementing the discrete fracture model, both natural and

hydraulic fractures are represented physically as lower-dimensional features in the numerical
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domain, making our method a computationally efficient approach.

The proposed model is suitable to account for reservoir heterogeneities and is also able

to handle irregular reservoir geometries and arbitrary fracture orientation; which are some

of the major drawback of many existing numerical algorithms used to study tight reservoirs.

We Modelled single phase flow moving inside a fractured reservoir, using the Discrete Frac-

ture Network approach where fractures are represented by lower dimensional spatial features

in the computational domain to avoid grid refinement. The model introduced a point source

well model based on Darcy’s law applied inside the fracture network. The results of this

thesis demonstrated that model accuracy of the MFE-based numerical scheme is achieved

using a much lower mesh density when comparing to conventional Finite Elements-based

commercial software. Additionally, the developed model, coupled with the point source well

model predicted very similar production profiles to popular reservoir simulators, assuming

orthogonal fractures. When studying non-orthogonal fractures the model indicated that

uniformly distributed, well connected fracture networks will impact positively the oil pro-

duction, and that for the cases where the hydraulic fractures are well connected, regardless

of fracture orientation, the fracture pressure is almost constant.

Although the MFE formulation has been implemented to model fractured reservoirs in

the past, an implementation used to study the production/extraction process from uncon-

ventional formations by means of a well model using a natural MFE scheme is novel.

Keywords: Tight reservoirs, discrete fracture network, mixed finite elements, porous media

flow, computational fluid dynamics
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Chapter 1

Introduction

In this chapter, I briefly describe the origin of the problem we are studying, and explain our

motivation to complete this work. Additionally, we clearly presents the contributions of this

thesis, and present the structure of this document per chapter.

1.1 Shale Formations and The Fracking Process for

Unconventional Oil Recovery

Shale formations are believed to be formed around 300 million years ago, via deposition of

fine silt and clay particles in enclosed bodies of water [1]. Organic matter trapped inside

these low permeability layers became what we know today as shale gas and shale oil. Tight

oil was formed around the same time, but by different mechanisms. Both shale and tight oil

are considered unconventional oil resources.

Some of these unconventional formations confine large amounts of petroleum and natural

gas. The US Department of Energy, the unproved recoverable shale gas in the United States

of America is estimated at around 482 trillion cubic feet, and the estimated proved and

unproved shale gas reserves is estimated at around 542 trillion cubic feet [1, 2]. In Canada,

the average daily production from shale gas was estimated at 2 billion cubic feet in the year

2012, helping to establish North America as the world’s largest production of shale gas [3].

Fracking, or hydraulic fracturing, is a production stimulation technique where mechanical

and chemical enhancement of the rock/fluid interactions is achieved by injecting a pressurized

fluid into the extraordinary impermeable formation in order to create high permeability

conduits (fractures) in an otherwise low or ultra-low permeability reservoir, as explained

by King and Durham [4]. Via this process, oil production from shale formations and other

geological formation with low and ultra-low permeability and porosity can be enhanced

Fracking technology became popular due to the large amounts of natural resources

trapped inside geological formations with very low permeability. Early predictions stated
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that by the year 2035, approximately 13.6 trillion cubic feet of oil per year will be produced

from shale formations; representing around 49 percent of the total U.S. dry gas produc-

tion [2]. Therefore, fracking will continue to have an important role on some of the most

powerful economies in the world.

With numerous instances of successful implementation of fracking low permeability for-

mations in North America, this process has proven to be a very effective technique. However,

issues that are related to fracturing and should be optimized include:

• Water utilization. A single well may require up to 10 million gallons of water to perform

hydraulic fracturing, which can be an issue especially in places where water is not an

abundant resource [5, 6].

• Groundwater contamination. Whether the contamination originates from the fracking

fluid breaking the rock and reaching underground aquifers, of by oil spills at the surface

level, the impact and risks of fracking remain a controversial topic [5, 7].

• Seismic activity. Although the U.S. Department of Energy reported that the energy

released to subsurface geomorphology is not large enough to trigger seismic activity

that could be felt in the surface, induced seismic events are often attributed to the

fracking process and thus require additional research [5, 8].

Thus, the fracking process and production from fractured, horizontal wells are still full

of unexplored areas. Further studies related to fracture spacing and fracture connectivity

optimization could lead to a significant reduction of utilized water, thus decreasing the

changes of underground water contamination and fracking induced seismic activity. For

this, we need to improve our current numerical models.

1.2 Motivation

As indicated by the U.S. Department of Energy [1] and the Canadian Office of the Par-

liament [3], North America is a region rich in unconventional resources. Their proper ex-

ploitation could lead to great revenue and a shift on the economies of the two countries.

Worldwide, shale gas production may be one of the keys to extend the life of fossil fuels as

an accessible energy source.

To better design the fracking process, the transport mechanisms and the rock-fluid inter-

actions, numerical models are the key. Due to the scales of these geological formations, lab

studies and other performance prediction tools are not suitable when accuracy is important,

thus lab scale models are generally not the best alternative to study fracking and production.
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Furthermore, even numerical models face difficulties when we look at the fracking process.

Fracking a horizontal well generally consists on more than one fracking stage, thus the

connecting surface between matrix and fracture of each stage plays a fundamental role on oil

production. Additionally, the difference in spatial scales (horizontal wells are in the meter

to centimetre scale in diameter but in between the hundred-meter scale and the kilometre

scale in length, fractures are well within the centimetre scale, fracking stages are in the

hundred metre scale, and the complete formation is usually in the kilometre scale), the

correct modelling approach remains a debatable topic. To handle wells, well models are

popular alternatives [9]

Moreover, in addition to all the characteristics previously mentioned, sub-surface forma-

tions are generally heterogeneous, and natural discontinuities (natural fractures that occur

inside the shale formations, which were not created by the fracking process and rather by

the deposition mechanism of the silt and clay that created the formations hundred of mil-

lion years ago, as well as natural seismic movement) may also interact with the production

process from a fractured reservoir. Additionally, these natural occurring fractures may not

have the same spatial scale or distribution than the hydraulic fractures, which while not

orthogonal but are often oriented on a similar irregular pattern.

Studying the different ways in which fracture networks can be represented and modelled,

leading then to a more accurate oil production model, would provide a solid first-step in

the process of creating the next generation computer models and frameworks of study for

fractured reservoirs with irregular fracture distributions.

Numerous existing modelling schemes and simulation packages exist, but they all have

deficiencies that could be solved by implementing a different modelling approach. Generalist

commercial packages based on the conventional finite element method such as COMSOL

[10] can be used to model fractured reservoir, but they require extensive grid refinement to

accommodate the fractures due to their spatial scale. Commercial packages such as CMG

[11, 12] can be used to model fractured reservoirs as well, but they require fractures to be

of orthogonal orientation and this assumption is unrealistic due to the irregular, tortuous

nature of the fractures obtained when performing hydraulic fracturing. Software such as

Intersect [13] can be used to model complex fracture networks, but higher order numerical

solution schemes could be implemented. Individual researchers have developed numerical

schemes to study fractured reservoirs as well [14, 15], but due to the use of control-volume

approaches and the necessity to use two point or multi point flux approximations, results

may not be locally conservative for fluxes and velocity fields.

In addition, popular schemes used to model subsurface flow such the the conventional

Finite Element Method, the Control Volume Finite Difference and Control Volume Finite

Element can’t ensure local mass conservation due to the irregular domains being used.
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Previously, advanced modelling formulations have been implemented in the form of the

Mixed Finite Element Method (MFE), but they were not focused on unconventional oil pro-

duction, they focused on immiscible displacement of oil by water; with notable contributions

made by Hoteit and Firoozabadi [16, 17]. This thesis takes the methodology documented

by Hoteit and Firoozabadi [16] and Hoteit and Firoozabadi [17], simplified the MFE formu-

lation to a more natural discretization scheme where the solution variables are pressure and

velocities instead of just pressures, and incorporates a point source well model. The MFE

method has the conventional mesh flexibility of the conventional finite element method, and

also adds local mass conservation. This makes the MFE method a more accurate numerical

scheme in terms of flow pattern predictions than all numerical schemes previously discussed

in this section.

1.3 Contributions

In this thesis we present a methodology to model single phase flow through fractured, uncon-

ventional, slightly compressible reservoirs with well models to study oil production. While

The MFE scheme was already proven to be an effective way to include fractures as hetero-

geneities in DFN models. For this work, we extended the MFE implementation to simulate

production from a single fracking plane presenting different fracture configurations; thus

creating a model which is able to handle heterogeneities, flexibility to be used in DFN for-

mulations, and is both locally and globally mass conservative. For the test cases evaluated,

we assumed homogeneous effective transport properties, and confirmed the validity of the

MFE formulation using a commercial FEM package and a commercial black oil reservoir

simulation package. We use a sequential validation approach, where we validate first the

MFE solver, then the integration of the fracture network, and finally the point source well

models.

The novelty of this thesis is that we couple one of the most robust numerical schemes used

to model flow through porous media and fractures at different spatial scales with a simple

yet effective well model in order to study the transport mechanism of hydraulic fractures at

different orientations. The foundations for this thesis started with the work done by Hoteit

and Firoozabadi [17] and Hoteit and Firoozabadi [16], where a more conventional formulation

of the MFE method was used, and a well model was added to study the production process

rather than immiscible displacement. The main contributions of this thesis are:

• A model based on the conventional Mixed Finite Element method, where flow potential

is evaluated at the center of the elements and fluxes or velocities are evaluated at the

edges of the elements.
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• Incorporation of a well model to study the transport mechanism of hydraulic fractures

in unconventional reservoirs, and the ability to directly compare the obtained results

with well established simulation packages.

• A methodology to build irregular domains that contain natural and hydraulic fractures

based on mesh generation techniques created for the Finite Element Method.

1.4 Structure of the Thesis

This documents presents a framework to study unsteady, single-phase flow through sub-

surface geological formations with ultra-low permeability and with natural and hydraulic

fractures. The basic concept of fracking, the motivation for this project, and the main

contributions of this thesis are presented in Chapter 1. The literature review regarding the

different methods used to model fractured porous media and the different numerical schemes

and numerical solution approach are all presented in Chapter 2. The governing equations,

proposed well production model, and numerical discretization of our proposed modelling

framework using the Mixed Finite Element Method is presented in Chapter 3. Results

from our validation studies, and selected implementation to quantify the applicability of our

proposed model is presented in Chapter 4. Finally, Chapter 5 presents our final remarks,

contributions, and directions for future work.
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Chapter 2

Literature Review

2.1 Numerical Schemes for Simulation of Flow in Un-

conventional Reservoirs

Fractures exist in nature, and are relevant in a variety of scenarios, all relevant to the scien-

tific community. Geology and geomorphology, unconventional oil and gas reservoirs, human

physiology, and design of solid structures such as buildings, water dams and nuclear reactors

are just some examples of how fractures interact with other physical phenomena. Mechani-

cally inducing fractures on low permeability reservoirs has increased their exploitation and

overall economical feasibility, and thus accurate modelling of fractured media is imperative,

and as stated by Narr et al. [18], all reservoirs should be considered fractured unless there

is certainty about the absence of such spatial heterogeneities. Over recent years, research

about modelling and discretization of discrete fracture networks has increased significantly,

and open source solutions such as the Alghalandis discrete fracture network engineering

package [19], which specialized on fracture discretization and statistical properties of frac-

ture networks; and the Matlab Reservoir Simulation Toolbox (MRST), developed and doc-

umented by Krogstad et al. [15], which is a general purpose framework for black oil and

compositional reservoir simulation, have arisen. Yet, modelling fractured media remains a

demanding, complex task. Although, current research is rapidly improving and correcting

the present limitations for discrete fracture modelling on unconventional reservoirs.

All computational studies of fracture network in unconventional reservoirs can be grouped

into three main categories, as presented by Hoteit and Firoozabadi [17] and references therein:

single porosity models, dual porosity models, and discrete fracture network models. Re-

gardless of the modelling approach, all reservoir simulations are based on either the finite

difference method, the finite element method, control volume methods, and more recently

the mixed finite element method.

The Finite Difference Method is very popular for sub-surface flow researchers due to
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its simplicity, and easy incorporation with other techniques widely used in the oil and gas

industry such as streamline simulations and inclusion of PVT properties. Yan et al. [20]

developed a mimetic finite difference method to study DFN on structured grids, and since

fractures are represented by lines in a 2-dimensional domain the model is easy to implement,

very computationally efficient, and has the capability to easily representing very complex

fracture networks; but due to the utilization of an orthogonal grid, fractures at an arbitrary

angle are not represented by this model. Zhang et al. [21] took the concept of mimetic

finite difference schemes further to represent field-scale problems by the incorporation of

multiscale modelling, where the interactions between the matrix and fractures is captured

by multi-scale basis functions which are obtained from the mimetic finite difference method

on a local fine grid, and multiple fine-scale grids form a coarse grid cell. Although the finite

difference scheme can be used with irregular grids as shown by Liu and Yuan [22], Zingg and

Lomax [23], most of the work on this area is done with orthogonal, regular domains with the

aid of grid refinement when needed. Higher order finite difference schemes have also been

implemented, for instance by Li and Yuan [24] and Douglas et al. [25] respectively; but while

all these schemes are generally robust and computationally efficient, their implementation on

only orthogonal grids severely hinders their applicability. The simulation package offered by

CMG [11], is a commercial reservoir simulation suite based on the finite difference scheme

capable of modelling natural and hydraulic fractures using the single porosity simulation

approach; but its utilization to study unconventional reservoirs is limited to geometries

meshed using orthogonal grids; thus becomes impossible to model fracture at an arbitrary

orientation.

The Finite Element Method is a powerful numerical scheme to solve multi-physics prob-

lems, particularly suited for irregular computational domains as stated by Bramble and

Zlámal [26], Zienkiewicz et al. [27]. With a more complex mathematical background, the

FEM has been successfully implemented to study oil and gas flow on reservoirs and frac-

tured porous media, as reported by Jiang and Dahi Taleghani [28], Chavent and Jaffre

[29, 30], Noorishad and Mehran [31], and references therein. Commercial software solu-

tions based on the finite element method such as COMSOL [10] have been used to model

fractured reservoirs as documented by Yan et al. [32], Mi et al. [33]. The FEM is suitable

for DFN implementation; however, as pointed out by Durlofsky [34], Klausen and Russell

[35], the conventional finite element method is not locally mass conservative and therefore

post-processing techniques are usually required to guide the results to satisfy local mass

conservation across the element faces.

The Control Volume Finite Difference and Control Volume Finite Element methods com-

bine the local mass conservation from the Control Volume formulation, but add flexibility

of allocating triangular domains to model flow through porous media and discrete fracture
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networks [36–41]. While certainly allowing the implementation of a model using the DFN

approach, the control volume based schemes such as the CVFD rely on Two-Point Flux

Approximation (TPFA) or Multi-Point Flux Approximation (MPFA) [40, 42, 43], to esti-

mate the fluxes based on the pressures of the control volumes, hindering accuracy of the

models and thus having a linked dependency between grid orientation and the validity of

the results. Some of the well known issues with CVFE schemes is the fact that they may

become invalid when the capillary pressure at the fractures is zero, as referred by Hoteit and

Firoozabadi [17]. Additionally, since some discrete fracture network numerical models with

control volume-based schemes rely on averaging matrix and fracture properties on a control

volume, the difference of length scales (centimetre scale for fractures, kilometre scale for the

matrix) may cause unrealistic flow between matrix and fracture cells.

A promising alternative for modelling subsurface flow came along in the form of the

mixed finite element method. While keeping the strengths of the conventional Galerkin

finite element method, the Mixed Finite Element method is by definition also locally mass

conservative, as explained by Klausen and Russell [35], Brezzi and Fortin [44], Brezzi et al.

[45], Raviart and Thomas [46], A. Raviart and M. Thomas [47], Liu et al. [48] and references

therein. Although the mixed finite element method has not been implemented on commercial

modelling solutions for subsurface flow through porous and fractured media, the coupling

between DFN and MFE emerges as a very strong candidate for accurate flow modelling

for unconventional tight reservoirs; being locally conservative, computationally efficient, and

suitable for the modelling of irregular, heterogeneous porous media even with nonconforming

grids, as previously demonstrated by Hoteit and Firoozabadi [16, 17], Vohraĺık et al. [49], Frih

et al. [50], Masud and Hughes [51], Hughes et al. [52], Hoteit and Firoozabadi [53, 54], Fuč́ık

and Mikyška [55], Hoteit and Firoozabadi [56], Maryška et al. [57, 58], Vohraĺık et al. [59].

2.2 Single Porosity Models

Regardless of the solution method and implemented numerical schemes, single porosity mod-

els (SPM) are often viewed as the modelling benchmark. These models represent fractures

explicitly in the computational domain, so the whole reservoir is represented as a continuum

model. Tomin and Pergament [60] presented a single porosity model for two-phase flow

through porous media with high conductivity fractures; based on capillary equilibrium and

to account for the different scales and general anisotropy of two phase flow through fractured

reservoir systems grid refined was required to produce adequate results. Abdel-Ghani [61]

created pseudo-relative permeability curves for oil-water systems to account for the higher

conductivity of fractures without modifying the computational domain, thus relaxing the

necessity of grid refining but now requiring an accurate way to represent the pseudo relative
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permeability curves to allow water and oil to interact as observed in field and laboratory

settings. Ghorayeb and Firoozabadi [62] generated a SPM to study a single-phase, dual com-

ponent fluid flow scenario under a linear temperature variation profile in order top look at

the effects of temperature and fracture parameters such as aperture and connectivity on fluid

compositional variation. While having a very strong link with the physics that take place

in subsurface flow, single porosity model have the drawback of being generally a complex

example of heterogeneous reservoir where the matrix and fractures are meshed equally on

the domain and thus complex geometries involving the fracture network; the different scales

between matrix reservoir; hydraulic fractures, and natural fractures; and fracture orientation

can make these models very difficult to formulate and solve numerically. Since natural frac-

tures and hydraulic fractures have very distinct origins, their dimensional scales will likely

be very different; thus not only the difference of scales between fractures and reservoirs is

important, but also the possible difference of scales within fractures plays an important role

on the modelling criteria, and adds an extra layer of complexity.

2.3 Dual Porosity Models

Dual porosity models (DPM) are numerical schemes in which the matrix and fractures are

two networks which overlap in the computational domain, and the interaction between matrix

and fractures is captured by transfer functions which are empirically obtained, as indicated

by Barenblatt et al. [63]. Doe et al. [64] provided one of the first examples of DPM on numer-

ical simulations of fractured reservoirs, where matrix-fracture interactions were represented

by a matrix storage element associated with each fracture, but the level of integrity of the

proposed simulation methodology relied on the selection of adequate storage element size

and shape. Warren and Root [65] provided initial analytical solutions for naturally fractured

reservoirs but did not include source terms to study the production process. Arbogast [66]

developed an analytical solution for incompressible, immiscible flow through naturally frac-

tured porous media using the dual porosity approach; but while it allows the incorporation

of combined Dirichlet and Neumann boundary conditions in order to potentially define well

models, this work did not focus on unconventional, ultra low permeability rock formation

with hydraulic fractures. Bai et al. [67] introduced a non-linear dual porosity single-phase

model in which the flow potential for matrix and fractures is decoupled and solved individ-

ually by assuming quasi-steady state flow through the matrix, but such assumption will not

hold true for ultra low permeability reservoirs with high conductivity hydraulic fractures,

particularly for early production dates. Presho et al. [68] used the DPM for single-phase

tracer flow modelling through fractured reservoirs and studied the different shape factors

which can be used to fully formulate the models and transfer functions between matrix and
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fractures, but appropriate selection of shape factors continued to affect the numerical re-

sults. Guo et al. [69] used dual porosity models to study gas sequestration inside permeable,

fractured media assuming buoyant segregation under unsteady, two-phase flow conditions;

where the fracture domain was formulated to reduce one modelling dimension due to vertical

segregation, thus simplifying the model from fully 3D to 2D. The common issue of all DPMs

is that their accuracy depends on the quality of the transfer functions and their ability to

capture the matrix-fracture interactions precisely, and this issue becomes even more criti-

cal for multi-phase, multi-component flow as further explained by Hoteit and Firoozabadi

[17], Lim and Aziz [70]. Gong and Rossen [71] reported on a methodology to study shape fac-

tors between matrix and fractures and concluded that fractures that are not well connected

or fracture networks that have a wide range of aperture values do not contribute to the flow

pattern of fractures reservoirs and that instead shape factors should be selected based on the

fracture sub-domain which carries most of the injected fluid for enhanced oil recovery sce-

narios. Similarly, Douglas et al. [25] studied water flooding under incompressible, two-phase,

immiscible conditions for naturally fractured reservoirs using a finite difference scheme and

demonstrated that accuracy of the results is related to the gridblock size. Zimmerman et al.

[72] eliminated the need to grid matrix gridblock for two-phase flow by using average val-

ues of pressure, saturation and other thermodynamic properties and incorporating them as

source terms for the fracture cells, which due to the high conductivity are more relevant,

but the approach did not extend to ultra-low permeability scenarios where capillary pressure

may be discontinuous between matrix and fracture cells. Wu and Pruess [73] proposed an

extension to the dual porosity model in which flow between matrix and fracture is assumed

to be transient, and while not as computationally efficient as the steady or quasi-steady flow

between matrix and fractures, the approach proved to be superior thus revealing the need

of more complex modelling mechanism for the transfer functions beyond the solution space

of gradients between matrix and fractures.

2.4 Discrete Fracture Models

The last category of fractured media models are known as Discrete fracture network (DFN)

models. DFNs are a simplification of single porosity models, where fractures are represented

as a lower dimension for the meshing process, but still explicitly taken into consideration dur-

ing the mathematical formulation modelling process. Noorishad and Mehran [31] compared

one and two dimensional analytical solutions with a discrete fracture model using the finite

element method, but the validation studies were performed in a centimetre scale, where the

magnitude and dimensionality of the fracture networks do not correspond to those observed

in field scale production from unconventional reservoirs. Also based on a finite element
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technique, Baca et al. [74] developed a DFN model based on the superposition of separate

matrix and fracture networks, but well models and the oil production process were not in

the scope of this study. More recently, Sandve et al. [40] used a control volume modelling

approach coupled with the multi-point flux approximation, which proved superior to results

from similar modelling approaches using a simple version of the two-point flux approxima-

tion for two-dimensional simulations. Haegland et al. [75] also used the MPFA approach,

but compared the cell centred control volume approach with equi-dimensional fractures with

the vertex-centred control volume approach with lower dimensional fractures and concluded

that lower-dimensional representation of the fractures is justifiable numerically only when

the fractures are highly permeable. The two-point flux approximation has also been success-

fully implemented with higher order schemes, such as the Control Volume Finite Difference

formulation developed by Karimi-Fard et al. [76]. Mustapha et al. [77] designed a meshing

algorithm for DFN models in three-dimensions, where fractures were represented by two-

dimensional inclined planes and demonstrated the ability of representing complex fracture

geometries with computationally efficient three-dimensional domains. Other control-volume

based methods have been implemented by Monteagudo and Firoozabadi [37, 38, 39], where

approaches such as cross-flow equilibrium between matrix and fractures, and reservoir wet-

tability; and averaging techniques to represent the high degree of reservoir heterogeneity

encountered in field applications. Hoteit and Firoozabadi [17] introduced a variation of the

mixed finite element method in which the solution variables are the matrix and fracture flow

potentials to formulate and solve two-phase flow through fractured porous media, reducing

the numerical dispersion and convergence rates for unstructured meshes, but considering

immiscible displacement only and well models and oil production were not included. DFN

models are attractive because they are completely based on the subsurface physics governing

the flow; the fact that fractures are represented in a (n-1)-D dimensions for an n-D compu-

tational domain, thus removing the requirement for extensive grid refinement to represent

even the smallest of features, and therefore being nearly as computationally efficient as DPM

schemes.

However, DNF schemes also have many challenges for accurately describing unconven-

tional reservoirs with natural and hydraulic fractures. With fractures being represented as

lower dimensional features int he physical domain, information about thickness variability is

lost in the formulation. The Finite Difference (FD), Finite Element Method (FEM), Con-

trol Volume Finite Difference (CVFD), Control Volume Finite Element (CVFE), and the

Mixed Finite Element (MFE) method are some of the schemes that have been successfully

implemented using the DFM approach.
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2.5 Generating the Computational Domain

Multiphysics problems for subsurface flow are often too complex to be represented by an-

alytical solutions. Thus, dividing the spatial domain we want to study into many, smaller

sub-domains and then discretizing the governing equations to solve them inside each of the

created sub-domains is often the path taken by researchers and scientists.

These sub-domains take often the form of primitive geometric figures, such as tetrahedra

in three-dimensional spaces and triangles in two dimensional spaces. The process and results

from dividing the physical domain into smaller sub-domains is known as computational mesh

generation, and the process in which governing equations are discretized and solved inside

these sub-domains is known as Computational Fluid Dynamics (CFD).

A mesh can be structured, unstructured, and hybrid/non conforming. In a structured

mesh [78, 79], the main characteristic feature is the regular connectivity of the elements,

where the elements are regularly oriented in a orthogonal fashion, as shown in Figure 2.1.

Structure meshes are very computationally efficient, but their orthogonality hinders the

complexity of geometries that can be modelled. Finite difference schemes and control-volume

based schemes can be easily coupled with structured meshes.

Figure 2.1 – Structured mesh with quadrilateral elements.

An unstructured mesh [78–81] is characterized by an irregular connectivity of the ele-

ments. Since their connectivity is not limited to orthogonal directions, virtually any ge-

ometry can be decomposed using unstructured meshes. These meshes are very suitable for

control volume schemes and finite element-based schemes. The main downside of unstruc-

tured meshes is that they require additional (sometimes substantial) storage because of the

irregular element interconnectivity, which means that information about a discrete element

and it’s interaction with other elements must be stored. A typical unstructured mesh is

presented in Figure 2.2.

The Perpendicular Bisector (PEBI) grids are also a popular variation of unstructured

grids used for reservoir simulations [82–84] where the mesh is created by placing points
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Figure 2.2 – Unstructured mesh with triangular elements.

around the geometry of the desired domain, and then creating cells by creating perpendicular

bisection lines between these points in space. Grid refinement is naturally taken into account

by controlling the spacing between the points before creating the bisection planes.

A hybrid mesh [79, 85–87] is a discretization scheme where particular spatial regions

are discretized using different meshing geometries. A hybrid mesh could be a combination

of structured and unstructured meshes, but could also be a combination of two distinct

unstructured meshes as well (such as triangular and irregular quadrilateral elements). A

simple hybrid mesh with structured and unstructured elements is presented in Figure 2.3.

Figure 2.3 – Hybrid mesh, with a combination of structured quadrilateral elements and un-
structured quadrilateral elements.
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Chapter 3

Discrete Fracture Network Model

In this chapter, we formulate the governing equation for a slightly compressible, unsteady,

single-phase reservoir with hydraulic fractures and well models. The equations are then

discretized over a triangular, two-dimensional domain using the MFE method, which has

been proven to be efficient for flow modelling on irregular grids, as discussed by Vohraĺık

et al. [59], Ewing et al. [88]. The well model selected is based on Darcy’s law and incorporated

as an additional source term.

From here onward, we will refer to the continuous portion of the reservoir simply as

matrix or matrix network. Likewise, the fractured portion of the reservoir will be referred

to as fractures or fracture network.

3.1 Governing Equations and Model Description

The governing equations for single-phase flow through porous media is fully defined by

Darcy’s Law for conservation of momentum, and the Continuity equation for mass conser-

vation. The assumptions used to formulate the model are:

• Negligible gravity effects

• Slightly compressible, single phase flow

• Flow regime is not affected by turbulence effects

• Constant PVT properties

• Two dimensional geometry

With the neglecting of turbulence effects, Darcy’s law would not be valid to study shale

formations with pore sizes in the nano-metre scale, but would describe tight formations such

14



as carbonates and impermeable limestones. Turbulent effects could be added to Darcy’s law

in order to overcome this shortcoming [89].

The equations for the matrix and fracture networks are formulated separately, but they

are coupled by a source term that represents the flow between the matrix to the fracture

elements.

The governing equations for the matrix and the fracture networks are, respectively:

�V = −
��K

μ
∇P

φco
∂P

∂t
+∇ · �V = Qt −Qff

(3.1)

�V f = −
��Kf

μ
∇P f

φfcfo
∂P f

∂t
+∇ · �V f = Qf

t +Qff

(3.2)

where �V is the total Darcy Velocity vector,
��K is the absolute permeability tensor, μ is the

oil viscosity, P is the reservoir pressure, φ is the porosity of the reservoir, co is the total

reservoir compressibility, and Qt is a general mass source term. The superscript f denotes

the fracture network.

In the matrix term, the term Qff in Equation (3.1) implies that in some instances,

flow will travel from the matrix network to the fracture network, so we add this additional

source term; which will play a significant role in the coupling of the two networks during the

discretization process. This term could be negative under certain conditions, but the form

of the term would remain unchanged.

Since fractures are represented as a lower dimensional entity in the physical domain, we

account by the flow moving from the matrix cell to the fracture by the additional source term

Qff in Equation (3.2). The present work focuses only on natural and hydraulic fractures as

high permeability conduits to aid oil production from ultra-low permeability porous media,

and thus instances in which fractures act as flow barriers are not taken into consideration.

For a fracture acting as a barrier, we would have to implement the fracture as a wall boundary

condition, and while this task is simple at this point I did not include this configuration on

the scope of the problem being studied.

Figure 3.1 presents the proposed approach to describe the flow profile from the reservoir

matrix to the fracture network. For two adjacent triangular elements, K+ and K−, sharing

a fracture edge Kf , the flow from matrix to fracture follow the relationship:

Qff = QK+ +QK− (3.3)
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Figure 3.1 – Matrix-fracture discretization interaction, showing the flow going from matrix
to fracture and mimicking the flow profile of hydraulic fractures in unconventional
reservoirs.

To model the flow from the matrix to the fracture we assume that flow always goes

from the matrix to the fracture (the physics of the production process consists on fracture

networks interconnected, serving as high conductivity conduit for the oil to move from the

ultra low permeability rock into the fracture, and to the production well).

3.2 Discretization using Mixed Finite Element Method

The Mixed Finite Element Method is a technique in which stress fields and displacement

fields are both approximated simultaneously as primary variables, as stated by Arnold [90].

In the conventional finite element method, the flux through cell interfaces is obtained after

post-processing the pressure field. This method is usually known as the Pressure-Correction

Method, extensively described by Connell and Stow [91]. When using mixed finite elements,

pressure and fluxes are calculated simultaneously over different solution spaces but using the

same computational domain.

To apply the MFE method, the discrete pressure values, a scalar variable) are approxi-

mated at the centroid of the triangular elements. The velocity values, which are gradients of

the pressure, require a set of vector-based shape functions to complete the MFE formulation.

We selected the lowest order Raviart-Thomas elements, RT0, initially presented by Raviart
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and Thomas [46] to study general second order elliptic partial differential equations (PDEs)

to discretize the velocity field and complete the MFE formulation. Figure 3.2 presents the

RT0 element and the corresponding lowest-order shape functions, which are outward-pointing

vectors coming out perpendicularly from the midpoint of each of the sides of the triangular

element. Furthermore, other elements such as Nedelec elements over triangular computa-

tional domains can be used to represent similar PDE systems, as initially demonstrated by

[92].

Figure 3.2 – Reference element and degrees of freedom for the lowest order Raviart Thomas
MFE triangle in 2D and the simplified implementation for 1D, used for the dis-
cretization of the velocity vector field for the matrix and fracture networks.

Consider a general domain with M triangular matrix elements with N edges, and MF

number of linear fracture elements with NF edges. Our implementation estimates the av-

erage pressure located at the center of the elements, and estimates the velocity at the edges

as normal vectors.

To implement the MFE method, the velocity and pressure fields for matrix and fractures,

respectively, are discretely represented by:

�V =
N∑
i=1

viΦi

P =
M∑
i=1

piΨi

(3.4)

for the matrix grid cells, and
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�V f =
NF∑
i=1

vfi Φ
f
i

P f =
MF∑
i=1

pfi Ψ
f
i

(3.5)

for the fracture gridcells. The shape functions for the pressure discretization in matrix and

fractures are defined as:

Ψi =

{
1 over triangular element i

0 over any other element
(3.6)

Ψf
i =

{
1 over line element i

0 over any other element
(3.7)

When implementing the MFE method, the interpolation functions for the velocity fields

are vector functions. Considering a two dimensional simple domain with two adjacent el-

ements, as shown in Figure 3.3, the RT0 shape functions for the matrix are then defined

as:

Figure 3.3 – Reference elements K− and K+, with shape function defined at edge Ei.

Φi = Φi(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|Ei|
2 |K+| (x− ζ+) if x ∈ K+

− |Ei|
2 |K−| (x− ζ−) if x ∈ K−

0 everywhere else

(3.8)
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where |Ei| is the length of edge i; |K+| and |K−| are the corresponding areas of triangular

elements K+ and K− respectively; and ζ+ and ζ− are the vertex opposite to edge Ei in

elements K+ and K− respectively. Locally, we can define the RT0 shape functions as:

Φi = σi
|Ei|
2 |K| (x− ζ) (3.9)

in Equation (3.9), σi is either 1, −1 or 0 depending on the element location with respect to

edge i, as illustrated in Figure 3.3.

The shape functions for the velocity discretization in the fracture network can be similarly

formulated for line elements as:

Φf
i = σf

i

1

2 |L|
(
x− ζf

)
(3.10)

where σf
i is either 1, −1 or 0 depending on the location of x relative to the line edge i, |L|

is the length of the line element where the velocity is being interpolated, and ζf is the line

edge opposite to line edge i.

The variational formulation of the governing equations can be write as:

∫
φ co

∂P

∂t
Ψk dA+

∫ (
∇ · �V

)
Ψk dA =

∫
QT Ψk dA∫ (

��m−1 · �V +∇P
)
· Φk dA = 0

(3.11)

∫
φf cfo

∂P f

∂t
Ψf

k dA+

∫ (
∇ · �V f

)
Ψf

k dA =

∫ (
Qf

t +Qff
)
Ψf

k dA∫ (
��mf−1 · �V f +∇P f

)
· Φf

k dA = 0

(3.12)

where ��m and ��mf are defined as:

��m =
��K

μ
��mf =

��Kf

μ
(3.13)

and

QT = Qt −Qff (3.14)

To handle the effects of representing fractures as lower-dimensional features, for a two-

dimensional case we have the following expression to represent the area integral of the frac-

ture:

dA = � dL (3.15)
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where � represents the fracture aperture and dL represents a line integral. For this thesis,

I consider a as a constant value

After some basic rearranging, and omitting the summation signs over all the elements

for simplicity, the velocity and pressure approximations can be introduced, and using the

Divergence Theorem, Equations (3.11) and (3.12) can be expressed as:

∑
i

vi

∫
(∇ · Φi)Ψk dA+

∑
j

dpj
dt

∫
φ coΨj Ψk dA =

∫
Qt Ψk dA

∑
i

vi

∫ (
��m−1 · Φj

)
· Φk dA−

∑
j

pj

∫
(∇ · Φk)Ψj dA = −

∫
pb (�n · Φk) dl

(3.16)

∑
i

vfi

∫ (
∇ · Φf

i

)
Ψf

k dA+
∑
j

dpfj
dt

∫
φf cfoΨ

f
j Ψ

f
k dA =

∫ (
Qf

t +Qff
)
Ψf

k dA

∑
i

vfi

∫ (
��mf−1 · Φf

j

)
· Φf

k dA−
∑
j

pfj

∫ (
∇ · Φf

k

)
Ψf

j dA = −
∫

pfb

(
�n · Φf

k

)
dl

(3.17)

where pb and pfb represent pressure values prescribed as boundary conditions for the matrix

and the fracture networks, respectively. The time derivative of the pressure approximation in

Equations(3.16) and (3.17) can be approximated numerically using Taylor series expansion.

Due to its simplicity, an implicit backward-differencing scheme where pressure values at the

current and previous time-steps is used,

dp

dt
≈ pn − pn−1

Δt
(3.18)

where pn is the pressure value at the current time step, and pn−1 represents the pressure

value at the previous time step. Next, the governing equations can be approximated by the

following linear equations:

∑
i

vi

∫
(∇ · Φi)Ψk dA+

∑
j

pnj
Δt

∫
φ coΨj Ψk dA =

∫
Qt Ψk dA+

∑
j

pn−1j

Δt

∫
φ coΨj Ψk dA

(3.19)

∑
i

vi

∫ (
��m−1 · Φj

)
· Φk dA−

∑
j

pj

∫
(∇ · Φk)Ψj dA = −

∫
pb (�n · Φk) dl (3.20)
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∑
i

vfi

∫ (
∇ · Φf

i

)
Ψf

k dA+
∑
j

pf,nj

Δt

∫
φf cfoΨ

f
j Ψ

f
k dA =

∫ (
Qf

t +Qff
)
Ψk dA+

∑
j

pf,n−1j

Δt

∫
φf cfoΨ

f
j Ψ

f
k dA

(3.21)

∑
i

vfi

∫ (
��mf−1 · Φf

j

)
· Φf

k dA−
∑
j

pfj

∫ (
∇ · Φf

k

)
Ψf

j dA =

−
∫

pfb

(
�n · Φf

k

)
dl

(3.22)

The Qff term in Equation (3.22) is still defined as previously indicated in Equation (3.3).

Finally, the governing equations for matrix and fracture networks, for a single element, can

be assembled into the following linear system of equations:

⎡
⎢⎢⎣
A B 0 0
C D 0 0
Ef 0 Af Bf

0 0 Cf Df

⎤
⎥⎥⎦
⎛
⎜⎜⎝

v
p
vf

pf

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
r1
r2
rf1
rf2

⎞
⎟⎟⎠ (3.23)

where after omitting the summation signs the non-zero entries of the sub-matrices are:

A =
∑
i

∫
(∇ · Φi)Ψk dA (3.24)

B =
∑
j

1

Δt

∫
φ coΨj Ψk dA (3.25)

C =
∑
i

∫ (
��m−1 · Φj

)
· Φk dA (3.26)

D = −
∑
j

∫
(∇ · Φk)Ψj dA (3.27)

Af =
∑
i

∫ (
∇ · Φf

i

)
Ψf

k dA (3.28)

Bf =
∑
j

1

Δt

∫
φf cfoΨ

f
j Ψ

f
k dA (3.29)

Cf =
∑
i

∫ (
��mf−1 · Φf

j

)
· Φf

k dA (3.30)

Df = −
∑
j

∫ (
∇ · Φf

k

)
Ψf

j dA (3.31)
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r1 =

∫
Qt Ψk dA+

∑
j

pn−1j

Δt

∫
φ coΨj Ψk dA (3.32)

r2 = −
∫

pb (�n · Φk) dl (3.33)

rf1 =

∫ (
Qf

t +Qff
)
Ψk dA+

∑
j

pf,n−1j

Δt

∫
φf cfoΨ

f
j Ψ

f
k dA (3.34)

rf2 = −
∫

pfb

(
�n · Φf

k

)
dl (3.35)

and the non-zero entries of matrix Ef are given by:

Ef
i,j =

[|Ei| |Ej|
]

(3.36)

Thus, the resulting linear system for all elements in the computational domain is of size

M + N + MF + NF . The selected Raviart-Thomas shape functions have the following

properties, which are useful to compute exact solutions for the integrals in Equations (3.24)

to (3.36):

∇ · Φi =

⎧⎨
⎩σi

|Ei|
|K| on element K

0 elsewhere
(3.37)

∇ · Φf
j =

⎧⎨
⎩σf

j

2

|Ej| on line element j

0 elsewhere
(3.38)

�n · Φi =

{
1 along edge i

0 along any other edge
(3.39)

�n · Φf
j =

⎧⎨
⎩
1

2
on line vertex j

0 on any other line vertex
(3.40)

The computational domains for all cases were created using GMSH, a grid generator

tailored specifically for Finite Element applications [78]. We selected the Delaunay trian-

gulation meshing scheme [93, 94] to create the discrete triangular elements.

Using the expressions and identities from Equations (3.37) to (3.40), the integrals pre-

sented in Equations (3.24) to (3.35) have an exact analytical form. For a typical system,

most coefficient entries of the sub-matrices represented by Equations (3.24) to (3.35) will be

zero. The non-zero entries for the global system of equations are given by:
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Â =

∫
(∇ · Φi)Ψk dA = σi|Ei| (3.41)

which has a size of M × N and which non-zero entries will happen only when triangular

element i contains edge k,

B̂ =
1

Δt

∫
φ coΨj Ψk dA =

φ co
Δt
|K| (3.42)

which has a size of M×M and is a diagonal matrix. The diagonal terms survive just because

of the fact that the term Ψj Ψk is equivalent to δj,k,

Ĉ =

∫ (
��m−1 · Φj

)
· Φk dA

=
μo

km

3∑
j=1

3∑
k=1

σj σk
|Ej||Ek|

4 |Kj,k ∈ K |2
∫

(x− ζj) · (x− ζk) dA
(3.43)

is a squared matrix of size N×N and has an integral of a quadratic function over a triangular

element; which can be readily solved using quadrature rules and the term km is the matrix

permeability (assumed to be constant),

D̂ = −
∫

(∇ · Φk)Ψj dA = −ÂT (3.44)

is a matrix of size N ×M , and is the negative transpose of matrix Â. The vector r̂1 is of

length M , and is defined as:

r̂1 =

[∫ (
Qt −Qff

)
Ψk dA+

pn−1j

Δt

∫
φ coΨj Ψk dA

]

=

(
Qt + φ co

pn−1j

Δt

)
|K| −

∫
QffΨk dA

(3.45)

where the term Qff will require special attention, similar to the implementation of certain

boundary conditions. These conditions are explained in Section 3.4. Similarly, the vector r̂2

is of length N , and is defined as:

r̂2 = −
∫

pb (�n · Φk) dl = −pb|Ek| (3.46)

The matrix Âf , of size MF×NF , is the counterpart of matrix Â for the fracture network.

It takes the following form:

Âf =

∫ (
∇ · Φf

i

)
Ψf

k dA = 2 σf
i (3.47)
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Matrix B̂f is a diagonal matrix of size MF ×MF , and the non-zero elements are given by:

B̂f =
1

Δt

∫
φf cfoΨ

f
j Ψ

f
k dA =

φf cfo
Δt

|E| (3.48)

Matrix Ĉf has a size of NF ×NF , and the corresponding non-zero entries are given by:

Ĉf =

∫ (
��mf−1 · Φf

j

)
· Φf

k dA

= σjfσf
k

2∑
j=1

2∑
k=1

μo

4 kf |Ej| |Ek|
∫ (

x− ζfj

)
·
(
x− ζfk

)
dA

(3.49)

where kf is the absolute permeability of the fracture network which is assumed to be constant

across the computational domain. The area integral of the fracture elements are defined as

lines, thus exact solutions for the integral of this quadratic function can be obtained using

quadrature rules.

Matrix D̂f has a size of NF ×MF , and the non-zero terms are given by:

D̂f = −
∫ (

∇ · Φf
k

)
Ψf

j dA = −Âf
T

(3.50)

The non-zero entries corresponding to the vectors
ˆ
rf1 and

ˆ
rf2 are given by:

ˆ
rf1 =

∫ (
Qf

t +Qff
)
Ψk dA+

pf,n−1j

Δt

∫
φf cfoΨ

f
j Ψ

f
k dA

=

(
Qf

t + φf cfo
pf,n−1j

Δt

)
|E|+

∫
QffΨf

k dA

(3.51)

ˆ
rf2 = −

∫
pfb

(
�n · Φf

k

)
dl = −pfb

2
(3.52)

where vector
ˆ
rf1 is of size MF and vector

ˆ
rf2 is of size NF . If no pressure boundary condition

is prescribed on the fracture network, the value of
ˆ
rf2 is equal to zero.

Thus, the preliminary of the solution matrix for this thesis is given by a linear system

of the following form, once we ignore boundary conditions, well models and matrix-fracture

interactions:

⎡
⎢⎢⎢⎣
Â B̂ 0 0

Ĉ D̂ 0 0

0 0 Âf B̂f

0 0 Ĉf D̂f

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎝

v
p
vf

pf

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝
r̂1
r2̂
ˆ
rf1
ˆ
rf2

⎞
⎟⎟⎟⎠ (3.53)
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The special considerations that must be taken into account to solve the complete system

of equations while implementing boundary conditions, as well as the final form of the term

Qff are further explained in Section 3.4.

With this formulation I do not require grid refinement in order to represent fractures

of any aperture size. Therefore, the computational efficiency from the space allocation

and memory management of the developed numerical framework is superior to the schemes

present in a software such as COMSOL. If no fractures are present and a grid with the

same order of elements is used, the MFE model will be at a disadvantage when compared

to COMSOL, because while the number of unknowns of COMSOL will be 2E (where E

represents the number of edges/vertex of the computational domain), the MFE formula-

tion will require K + 3E unknowns (where K is the number of triangular elements in the

computational domain).

3.3 Point-Source Well Model

Well models are incorporated using a point-source approach based on Darcy’s Law. Wells are

to be located at a hydraulic fracture, so cases where the well is located in the matrix network

are not taken into consideration in our proposed formulation. Similar to the assumption used

by Bai et al. [67], flow to the well is only fed by the fractures and not the matrix. Consider the

diagram shown in Figure 3.4, where two adjacent fractures share a point-source, pressure

constrained production well. The flow coming from both fracture elements to the well is

approximated using superposition by:

Qw = − k1
A1 μΔL1

(p1 − pwf )− k2
A2 μΔL2

(p2 − pwf ) (3.54)

where A is the flow cross sectional area and ΔL is the fracture half length. Assuming equal

fracture permeabilities, uniform aperture size and same half length (which is controlled by

the meshing algorithm), we have the following:

Qw =
k

AμΔL
(p1 + p2 − 2pwf ) = 2

k

AμΔL

(
p1 + p2

2
− pwf

)
(3.55)

Qw =
2 k

AμΔL
(p̄− pwf ) = J (p̄− pwf ) (3.56)

Since J is constant, we have a formulation that relates the flow to the pressure values

of the fractures connected to the well. The same procedure can be utilized to place a well

model at an intersection of three or more fractures, for nf fractures the general form of the

well model will be:
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Qw =
nf k

AμΔL

(∑nf
i=1 pi
nf

− pwf

)
(3.57)

Figure 3.4 – Connected hydraulic fractures with pressure driven well.

To validate the analytical expression we used to define our well model, we set up a CMG

IMEX simulation and plotted oil rate at Reservoir Conditions (units of m3/s)versus Δp,

where

Δp = p− pwf (3.58)

We used a linear fit on the obtained profile, and estimated the value of J as the slope

of the linearisation of oil rate versus Δp. Figure 3.5 presents the procedure described on

this section, where we can identify the predicted value of J to be 2.72× 10−11 m3 Pa−1 s−1.

Additionally, we can see that the estimated intersect in the y-axis of the generated plot

is 6.56 × 10−14m3/s, which means the form of the predicted curve is very similar to that

described by Equation (3.57) and the intersect is negligible. Finally, we can see the R2 value

of the linear fit is 1.00, meaning that our linear equation is able to describe the data to a

nearly perfect fit for early production times.

From the well model, we compared the expression we use to compute J from Equa-

tion (3.57) as a function of grid size, along with the single point obtained from CMG IMEX.

Figure 3.6 demonstrates that our proposed well model is in very good agreement with the J

value obtained after linearisation of the flow rate versus pressure difference. Our algebraic

model under predicted the value J to be 2.50 × 10−11 m3 Pa−1 s−1, which is within 8% of

the value that resulted from the CMG IMEX simulation setup. While this difference will

certainly cause our numerical results to slightly underpredict oil production rates, the es-

timates from our mixed finite element formulation coupled with this algebraic point-source

well model will fit well in between a satisfactory margin or error.
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Figure 3.5 – Scatter plot of oil rate versus Δp from CMG IMEX, linear fit, and R2 value for
early production times.

Figure 3.6 – J as a function of fracture half length, compared with CMG IMEX production
profile.
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3.4 Special Considerations of Modelling Approach

To complete the formulation presented in Equation (3.53), we must consider three separate

scenarios:

• Boundary conditions

• Well models

• Qff , the matrix-fracture interactions

3.4.1 Special Case: Boundary Conditions

Pressure conditions prescribed at the boundaries of the proposed model are called natural

boundary conditions, because they become part of the model formulation itself. We have

a tern pb, which is only non-zero at the boundaries where the pressure is prescribed. To

implement prescribed values for fluxes and velocities at the boundaries, the linear system of

equations needs to be modified. The no slip condition at the walls is a clear example of this

special case of boundary conditions. The basic form of these equations is:

vboundary = vo (3.59)

where vo is the velocity value prescribed at the boundary. Figure 3.7 shows a simple, unfrac-

tured reservoir and how the linear system of equations will look like under normal pressure-

driven conditions, and Figure 3.8 shows how a wall boundary condition is implemented; the

terms affected by these are sub-matrices Ĉ and D̂, and the vector r̂2.

3.4.2 Special Case: Well Models

Consider the diagram presented in Figure 3.4, where two intersecting fractures share a

pressure-controlled well. For a case of only two fractures, Equation (3.56) can be written as:

Qw = J

(
pf1 + pf2

2
− pwf

)
(3.60)

Qw =
vw
ACf

= J
pf1
2

+ J
pf2
2
− J pwf (3.61)

where ACf is the flow cross sectional area of the fractures. This leads to an expression that

relates the velocity (our solution variable) to the adjacent fracture pressures:

vw = J ACf
pf1
2

+ J ACf
pf2
2
− J ACf pwf (3.62)
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Figure 3.7 – Simple mesh with 4 triangular elements and 8 edges, and no fractures; and the
shape of the corresponding system of linear equations with no boundary conditions
prescribed.
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Figure 3.8 – Simple mesh with 4 triangular elements and 8 edges, and no fractures; and
the shape of the corresponding system of linear equations with wall boundary
conditions prescribed at Edge # 1.
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Each pressure controlled well will have a corresponding equation of the same form. This

equation will replace a complete row in Equation (3.53), involving the sub-matrices Ĉf and

D̂f , and the vector
ˆ
rf2 . An example of this special condition is illustrated in Figure 3.9,

and the linear system of equations for this condition are shown in Figure 3.10, where for

convenience we neglected the Qff terms who capture the matrix-fracture interactions.

Figure 3.9 – Simple mesh with 2 triangular elements, 7 matrix edges, 2 fracture elements, 3
fracture edges, and a single well.

3.4.3 Special Case: Matrix-Fracture Interaction

The matrix-fracture interactions are captured by the term Qff , and this term is present

in both the matrix mass conservation and the fracture mass conservation. As indicated

in Equation (3.3), the term Qff is expressed as a function of fluxes. To use the solution

variables, which are pressures and velocities, we can rewrite Equation (3.3) as:

Qff = vK+ ACmf + vK−ACmf (3.63)

where ACmf is the cross sectional area between the matrix and the fractures. In two-

dimensional domains, this cross sectional area is equal to the fracture length multiplied by

the reservoir thickness. For this studies, we assume a unit thickness for all calculations.

Since the length of the fracture element is the same as the length of the edge elements where

the fracture is defined, the previous equation can be re-written as:
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Figure 3.10 – Linear system of equations demonstrating how well boundary conditions are
incorporated with the DFN model. Top: default systems of equations. Bottom:
systems of equations with the well model.
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Qff = vK+ |Ef,+|+ vK− |Ef,−| (3.64)

where |Ef,+| and |Ef,−| are the edges where the velocities vK+ and vK− are defined, respec-

tively. While treated as different edges, |Ef,+| and |Ef,−| have the same length. When we

incorporate these terms on the matrix network, sub-matrix Â, and vector r̂1 are affected.

While the form of sub-matrix Â remains almost identical to previous cases where fractures

are not present, the velocity at edges E8 and E9 is assumed to be always going from the ma-

trix to the fracture; and we do this by always assigning a positive sign to the corresponding

shape functions for the edge velocities v8 and v9.

When we incorporate the effects described by Equation (3.3), the vector
ˆ
rf1 will be mod-

ified, and additional terms we combine into sub-matrix Êf will be introduced into the linear

system in Equation (3.53):

⎡
⎢⎢⎢⎣
Â B̂ 0 0

Ĉ D̂ 0 0

Êf 0 Âf B̂f

0 0 Ĉf D̂f

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎝

v
p
vf

pf

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝
r̂1
r2̂
ˆ
rf1
ˆ
rf2

⎞
⎟⎟⎟⎠ (3.65)

An example of a simple mesh with 4 matrix elements, 1 fracture element, 9 matrix edges

and 2 fracture edges is shown in Figure 3.11. The shape of the linear systems of equations and

the sub-matrix Êf is shown in Figure 3.12, where for convenience the effects of flux/velocity

boundary conditions and well models are neglected.

Figure 3.11 – Sample mesh with four triangular matrix elements and a single fracture element
to illustrate the matrix-fracture interactions.
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Figure 3.12 – General form of the linear system of equations for a fractured reservoir, ignoring
effects of flux/velocity boundary conditions and well models.

3.5 Framework Diagram and Project Strategy

The schematic diagram showing the flow of the framework we developed to study tight

reservoirs with multiscale fractures is presented in Figure 3.13. Although other alternatives

exist, we selected FORTRAN [95–97] as the programming language for the computational

framework, GMSH [78] as the unstructured mesh generation, and VisIT [98] as the scientific

visualization tool.

Figure 3.14 presents the schematic diagram for the completion of the proposed thesis.

Once the proposed discrete fracture network model is developed, we implement a multi-

step validation process with commercial simulation packages. Once the solvers developed

in-house are validated, we then present the comparisons between fracture configurations and

the impact of fracture orientation.
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Figure 3.13 – Schematic diagram of the solution process from our developed computational
framework to study flow thought shale and tight reservoirs with multi-scale frac-
tures.

Figure 3.14 – Schematic diagram of the process followed to complete this thesis using our
developed computational framework to study flow thought shale and tight reservoirs
with multi-scale fractures.
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Chapter 4

Results and Discussions

This chapter presents the results of the work done for the completion of this thesis. The

first section describes the validation studies completed in order to demonstrate the accuracy

and feasibility of the numerical model. Then, the following chapter presents the case studies

where the true strength of the proposed modelling methodology is examined. Finally, the

third section of this chapter presents the conclusions, relevant discussion, and final remarks

of the chapter.

4.1 Model Validation

Prior to using the proposed model to evaluate and estimate oil production from unconven-

tional, tight reservoirs; we set up a three-step validation process, each step with an increasing

level of complexity.

Due to the large uncertainties linked to sub-surface flow and our lack of ability to directly

corroborate by observations how the flow behaviour evolves in real formations at the field

scale, validation studies play an important role to determine if the assumptions made while

formulating the numerical model are in agreement with the multi physics process of trans-

port phenomena that are know to characterize such formations and the corresponding flow

patterns, and thus this process will help researchers to assess the integrity of the numerical

results.

The geometry for the validation and application cases is the same rectangular domain,

200m by 500m representing a single hydraulic fracturing stage. An example of a horizontal

well with two fracking stages is presented in Figure 4.1. For simplicity, we assume that a

fracking stage consists of a single hydraulic fracture, although in field scale applications each

fracking stage contains several hydraulic fractures, where fracture spacing optimization plays

an important role in oil production. Table 4.1 presents a description of all the test cases and

validation cases presented on this chapter.
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Figure 4.1 – Two-stages of hydraulic fractures on a single horizontal well.

Table 4.1 – Description of test cases and validation cases used to evaluate the proposed DFN
model.

Name Configuration Comments
Test 01 Pressure BC, No fractures Validated with COMSOL
Test 02 Formation stresses, No fractures Validated with COMSOL
Test 03 DFN validation Validated with COMSOL
Test 04 Well model validation Validated with CMG IMEX
Application Non-Orthogonal fractures Parametric study
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4.1.1 MFE Validation

For the first validation case, Test 01, the MFE formulation is compared with the conventional

FEM for a simple pressure driven flow example on a rectangular domain. The MFE validation

consists of a configuration with no fractures and each of the boundaries of a rectangular

domain has a prescribed pressure value, which activates after the simulation starts at time

t = 0; so we compare the evolution of the pressure maps and velocity fields across the whole

domain.

The selected boundary conditions and relevant model setup information are shown in

Table 4.2. The boundary conditions for this validation case are illustrated in Figure 4.2.

The initial conditions were prescribed as:

p(t = 0) = 0

v(t = 0) = 0
(4.1)

Table 4.2 – Transport properties for all test cases used for model validation, with appropriate
references where applicable.

Property Value Units Reference if applicable
Fracture compressibility 2.5× 10−4 psi−1 [99]
Fracture permeability 1× 10−12 m2 [100]
Fracture porosity 0.8 − [99]
Fracture aperture 3.05× 10−3 m [100–103]
Matrix compressibility 2.51× 10−4 psi−1 [99]
Matrix permeability 1× 10−15 m2 [104, 105]
Matrix porosity 0.1 − [99, 105]
Oil density 900 kg m−3 [106]
Oil viscosity 0.1 Pa · s [106]

The computational domain and pressure distribution for this configuration is shown in

Figure 4.3, where the pressure distribution obtained from COMSOL is also presented. Due

to the physics-controlled meshing ability of COMSOL, is not practical to show the compu-

tational mesh used in COMSOL since it will automatically use local grid refinement where

pressure distributions are changing rapidly. However, from the presented results we can

clearly observe the similarities between the two pressure distribution maps.

Moreover, the numerical agreement between the two solutions if further demonstrated

by a cross-plot of the pressure values as a function of location, shown in Figure 4.4. The

correlation coefficient between the two solutions was 0.998, and while it is very close to

unity the R-squared value for the correlation may be influenced by small inaccuracies in the

38



Figure 4.2 – Boundary conditions for the first MFE validation case, Test 01.

Figure 4.3 – Computational domain and flow potential map for COMSOL and our in-house
MFE implementation corresponding to Test 01, unfractured reservoir. a) Com-
putational mesh for the in-house MFE solver; b) Pressure distribution from the
in-house solver; c) Pressure distribution map generated from COMSOL simulator.
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Figure 4.4 – Cross plot between COMSOL and FORTRAN for Test 01, correlation coefficient
= 0.998.

locations generated from the process we used to select two matching locations based in a

minimization procedure of the distance between the vertex of the COMSOL elements and the

centroids of the DFN model. Additionally, COMSOL simulations are strictly incompressible,

while our configuration requires a non-zero compressibility.

The computational time required to complete the simulations using out in-house Mixed

Finite Element solver was nearly ten times larger than the time required by COMSOL to

obtain similar solutions. Although the number of unknowns increases on a mesh of the

same size when using the mixed finite elements as opposed to conventional Galerkin finite

elements, COMSOL is clearly superior in terms of speed when compared to our numerical

framework and solution package.

We tested a second pressure-driven configuration, Test 02, whose boundary conditions

are resented in Figure 4.5. This second MFE validation case is not only intended to validate

our results with COMSOL, but also to see how well the model will respond to a field-scale

configuration where the tectonic stresses surrounding the reservoir are unequal. The devel-

oped framework allows to prescribe pressure boundary conditions as a function of reservoir

position rather than a uniform value, but such considerations will not be taken into account

for this thesis. The model parameters and configurations are presented in Table 4.2

The computational domain used for this configuration contained 800 triangular elements.

The mesh, as well as the pressure maps generated from COMSOL and from our Mixed Finite

Element implementation are shown in Figure 4.6. We can observe a very good agreement
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Figure 4.5 – Boundary conditions for the second MFE validation case, Test 02.

between the two numerical solutions, but the solutions generated from the implementation of

the mixed finite element method is not as smooth due to mesh restrictions. While providing

valid results in terms of values and predicting trends, our proposed Mixed Finite Element

formulation is limited by the grid resolution when pressure values fluctuate at the boundaries.

COMSOL uses local grid refinement to overcome this limitation, but our implementation

lacks this capability. Smoothing of numerical solutions is not part of the scope of this project,

but our proposed methodology could certainly benefit from a similar implementation.

The cross plot and regression line corresponding to this configuration, which compares

the values of pressure at a specified location for both the Mixed Finite Element implemen-

tation in-house and the conventional Finite Element Method implemented with COMSOL

is presented in Figure 4.7. The correlation coefficient for this configuration is 0.991, lower

than that we obtained for Test 01, due to lower number of pressure level jumps. The corre-

lation coefficient is close to unity, which reveals that the numerical results produced by our

implementation is indeed in good agreement with COMSOL.

4.1.2 DFN Validation

Our testing procedure to validate the DFN formulation, referred here as Test 03, involves a

direct comparison between our proposed model and an equivalent single-porosity fractured
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Figure 4.6 – Computational domain and flow potential map for COMSOL and our in-house
MFE implementation corresponding to Test 02, unfractured reservoir. a) Com-
putational mesh for the in-house MFE solver; b) Pressure distribution from the
in-house solver; c) Pressure distribution map generated from COMSOL simulator.

model set up using COMSOL [10]. The boundary conditions for this validation case are

described on Table 4.3, along with the relevant simulation parameters.

Table 4.3 – Summary table for the DFN validation case studies, using COMSOL as the
benchmark.

Property FORTRAN COMSOL
Triangular Elements 3352 4730
Boundary Conditions Pressure Driven Flow Pressure Driven Flow
Total Compressibility 2.15× 10−15 kPa−1 0
Matrix Porosity 0.1 0.1
Matrix Permeability 1× 10−15m2 1× 10−15m2

Fracture Porosity 0.8 0.8
Fracture Permeability 1× 10−10m2 1× 10−10m2

The computational domain and pressure maps are shown in Figure 4.8. To account for
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Figure 4.7 – Cross plot between COMSOL and FORTRAN for Test 02, correlation coefficient
= 0.991.

Figure 4.8 – Computational domain and flow potential map for COMSOL and our in-house
MFE implementation, fractured reservoir. a) Computational mesh for the in-house
MFE solver; b) Pressure distribution from the in-house solver; c) Pressure distri-
bution map generated from COMSOL simulator.

the fact that COMSOL uses a single porosity model approach to represent fractures while

our proposed model uses a DFN, we set the equivalent fracture transmissibility (the product
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of fracture permeability and fracture aperture) to be the same for both configurations.

Figure 4.8 reveals that the area of impact of the fracture network is sufficiently close

between the two formulations. Although some features observed in the single-porosity model

cannot be observed in the discrete fracture network model, values such as average fracture

pressure and velocities are in very good agreement, despite the fact that the DFN required

only a fraction of the elements to generate valid solutions. With closer examination, we can

still appreciate that grid resolution makes an impact on the plotting quality of the numerical

solutions from our proposed Mixed Finite Element framework.

4.1.3 Well Model and Oil Production Validation

For the last validation step, Test 04, production from a tight-reservoir with a single, vertical

hydraulic fracture was modelled with CMG-IMEX, [12], and compared to our implementation

with point-source well models.

We used a single-porosity model approach for the CMG configurations, thus we required

grid refinement. However, even with grid refinement is not practical to mesh a fracture

aperture in the order of a few centimetres on a reservoir with dimensions 200 metres by

500 metres. Therefore, we used the equivalent transmissibility approach described in Sec-

tion 4.1.2, where in order to mesh a fracture size ten times larger than the commonly observed

values, decreasing the fracture permeability value by a tenfold will suffice. The parameters

used to set up the simulation are those indicated by Table 4.2. To ensure gas is not pro-

duced, a value of 15 kPa for Bubble point pressure was used, 5 kPa above the initial reservoir

pressure.

The mesh, pressure maps, and oil production from both configurations is shown in Fig-

ure 4.9 and Figure 4.10. The agreement difference the two production profiles is on average

12.7%, revealing that our modelling methodology can be used to study production process

from fractured reservoirs.

Differences between the two production profiles can be attributed to the well models used.

While our model is based on a simple, natural implementation of Darcy’s law, CMG used

a more elaborated and rigorous well model based on Darcy’s laww as well, but taking into

account radial flow from the cell where the wellbore is placed to the production or injection

well; as formulated in the investigation originally published by Peaceman [9].

4.2 Case Studies

The application set-up consists on a single fracking stage, where non-orthogonal fractures are

introduced by recognizing that during the fracking process the fracture propagation will fol-
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Figure 4.9 – Pressure profile comparison between the DFN model with well models using
MFE implemented using FORTRAN, and CMG IMEX after 10 days.
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Figure 4.10 – Flow rate comparison between the DFN model with well models using MFE
implemented using FORTRAN, and CMG IMEX. Production well is located at the
center of the computational domain.

low an irregular pattern rather that an orthogonal, organized pattern. The effective transport

properties, simulation set-up and operating conditions are the same used in Section 4.1.3.

Two cases were set up to demonstrate the applicability of the proposed framework, the only

difference being the fracture orientation and intensity.

The fracture distributions, computational domains and flow potential at two different

times for the application cases is shown in Figure 4.11. Table 4.4 summarises the properties

of the two configurations.

Table 4.4 – Summary table for the application case studies.

Property Case A Case B
Matrix gridcells 1141 1056
Fracture gridcells 121 86
Matrix interfaces 1678 1456
Fracture interfaces 130 90

The flow rates from the two configurations is shown in Figure 4.12, compared against the

flow rate originally obtained from the validation case used in Section 4.1.3. When fracture

intensity increases and they are well connected, such as the configuration shown in Case A,

the production rates increase proportionally; but reservoir depletion rates are also accelerated
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Figure 4.11 – Computational domain and flow potential for the selected application case stud-
ies, with non-orthogonal fractures. Well located at the center of the computational
domain.
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accordingly.

Fractures that are not very well distributed along the reservoir will display lower oil

production rates, lower depletion rates, longer production times and lower performance since

the reservoir pressure will not be uniform and thus some areas from the reservoir far from

the fracture influence will not be produced effectively.

Figure 4.12 – Flow rate comparison between the DFN model with well models using MFE
implemented using FORTRAN for Case A and Cased B, compared with the Base
Case used in Section 4.1.3.

4.3 Effects of Fracture Aperture on Pressure Distribu-

tion

One of the most important features of the proposed modelling framework is that fractures are

represented as lines in 2 dimensions, and planes in 3 dimensions in order to avoid the process

of meshing them and using grid refinement as we would be required to do when modelling

fracture networks using COMSOL, CMG, or any other general finite element solver.

While our proposed modelling framework allowed us to create such fracture network

configurations where grid refinement is no longer a requirement for modelling, the effects

of such assumptions on the pressure distribution around the fracture have not been clearly

documented yet. In this section we use COMSOL to study the validity of such assumption.

We used a computational domain of 100mW × 30mH and three fracture configurations:

a horizontal fracture of 10m length located at the center of the reservoir, a vertical fracture
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of 10m length located at the center of the reservoir, and two intersecting fractures, 10m

length each oriented at 45 and 135o also located at the center of the reservoir.

We used the single phase Darcy’s Law solver of COMSOL to create the model, with

the boundary conditions shown in Figure 4.13. The transport properties of the modelling

configuration are the same used in Section 4.2. To keep the model consistent, when the

fracture thickness is changed we also modify the fracture permeability, leaving the total

transmissibility of the fracture network constant as detailed in Section 4.2.

Figure 4.13 – Boundary Conditions for the tested configurations looking at the effects of
fracture thickness on pressure distribution.

Pressure distribution for the three tested configurations is shown in Figure 4.14, and

the pressure value at the center of the fracture for different fracture apertures is shown in

Table 4.5.

As observed, the effects of fracture aperture are very minimal when the fracture orien-

tation was crossed at angles of 45 and 135o (Case a) and vertical (Case c). When the main

fracture length was oriented along the longest pressure drop, we saw some variation of the

pressure values as the aperture value decreased, because along the length of the fracture the

pressure drop was the most significant out of the three configurations.

Results form this section demonstrate that the assumption of dimensionless fracture has

a minor impact on pressure distribution, when the fracture length is along the direction

of the largest pressure drop. However, for this tested configuration we prescribed a pres-

sure gradient of 1 × 1013 Pa/m, which is quite significant in order to better quantify the

possible effects of fracture orientation. Under normal operating conditions, such pressure

drops are not very common. Therefore, even with minor effects on pressure distribution, the

assumption of aperture-less fractures does not invalidate the numerical results.
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Figure 4.14 – Pressure distribution maps for the tested configurations looking at the effects
of fracture thickness.
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Table 4.5 – Summary table for pressure values as a function of fracture aperture.

Fracture Aperture Pressure Case a) Pressure Case b) Pressure Case c)
3.2m 4.999 1014 Pa 5.001 1014 Pa 5.000 1014 Pa
1.6m 5.000 1014 Pa 5.003 1014 Pa 5.000 1014 Pa
0.8m 4.999 1014 Pa 5.006 1014 Pa 5.000 1014 Pa
0.4m 5.000 1014 Pa 5.011 1014 Pa 5.000 1014 Pa
0.2m 5.000 1014 Pa 5.020 1014 Pa 5.000 1014 Pa
0.1m 5.000 1014 Pa 5.037 1014 Pa 5.000 1014 Pa
0.05m 5.000 1014 Pa 5.068 1014 Pa 5.000 1014 Pa
0.025m 5.000 1014 Pa 5.117 1014 Pa 5.000 1014 Pa
0.0125m 5.000 1014 Pa 5.187 1014 Pa 5.000 1014 Pa
0.00625m 5.000 1014 Pa 5.267 1014 Pa 5.000 1014 Pa
0.003125m 5.000 1014 Pa 5.343 1014 Pa 5.000 1014 Pa
0.001563m 5.000 1014 Pa 5.401 1014 Pa 5.000 1014 Pa
0.000781m 5.000 1014 Pa 5.441 1014 Pa 5.000 1014 Pa

4.4 Discussion and Final Remarks

The results obtained at the end of this Chapter are very encouraging. In the past, the Mixed

Finite Element method has been proven to be a great modelling alternative to study flow

through fracture reservoirs, but the scope of most studies was not focus on tight and shale

formations, and the numerical solutions of the oil production process is still at an early stage

of exploration.

Our model demonstrated to be a robust alternative to the conventional Finite Ele-

ment Method, and predicted results from simple configurations with no fractures compared

favourably with COMSOL. With complex pressure boundary conditions, where pressure val-

ues jump at adjacent edges, the inability of our model to automatically perform local grid

refinement put it at a slight disadvantage when comparing it to COMSOL. However, as the

results generated from CMG IMEX revealed, such features are not implemented on some

of the commercial oil simulators either. Other factor where COMSOL was superior to our

developed Mixed Finite Element framework was computational time required to generate

valid numerical solutions, where solution time increased by almost a tenfold when compared

to the time required to generate solutions using COMSOL.

When compared to CMG IMEX with a single, orthogonal hydraulic fracture, our compu-

tational framework underpredicted oil production rates by approximately 10%. The reason

for this discrepancy is attributed to:

• The well model, which underpredicts oil production rates by 8% for a simple configu-
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ration with a vertical hydraulic fracture oriented at 90o.

• Model accuracy, since for similar sized meshes, the mixed finite element method is

more accurate than the numerical schemes implemented in CMG IMEX.

Moreover, our model revealed that the fracture pressure when the hydraulic fractures are

well connected is almost constant, so there is minimum pressure drop inside well connected

fracture networks.

Furthermore, when fractures are well connected oil production is directly proportional to

the hydraulic fracture volume, and reservoir depletion takes place at a much longer time when

the fracture network is small and does not extend to the reservoir boundaries to promote a

sustainable pressure drop. This is under the assumptions that the fracture stage is isolated

and that if multiple fracking stages exists, they are far enough that they do not exert any

influence to other fracking stages.
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Chapter 5

Conclusions, Final Remarks and
Future Work

In this chapter, we present our final conclusions and remarks. Also, we revisit the con-

tributions made by the end of this thesis, and outline the directions for future work as a

continuation of this work.

5.1 Conclusions

After finishing these studies, we verified that the Mixed Finite Element Method is a great

alternative to perform numerical simulation of sub-surface flow, offering many advantages

and none of the shortcomings of other numerical schemes such as the conventional Finite

Element Method and the control Volume method, other than the increase in the number

of unknowns, but this is partially alleviated by the direct computation of pressure and

fluxes values, rather than involving an additional step and solving two systems of equations

separately. Our validation studies demonstrated that pressure maps generated from the

Mixed Finite Element Method are as accurate as pressure maps generated from COMSOL,

a well established multi-physics package based on the conventional Finite Element Method.

Additionally, our studies demonstrated that fracture connectivity plays a key role in pro-

duction performance from ultra-low permeability fractured rock formations. In test studies,

reservoirs with fractures not connected to the network that feeds the well displayed almost

identical production profiles than configurations where such disconnected fractures were re-

moved; thus reinforcing the hypothesis that while some fractures are key factors on reservoir

performance we must be accurately depicted discretely for results and predictions to be

fully representative, other fractures can be excluded from the model and still prediction and

results’ integrity is maintained.
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5.2 Contributions of this Thesis

With the culmination of this thesis, we proposed a methodology to look at unconventional

rock formations with natural and hydraulic fractures. Fractures are discretely represented,

but using lower dimensions for their physical presence in the computational domain allows

for efficient grids without the need of extensive grid refinement due to the differences in

spatial scales. The model is flexible enough to allow the integration of different fracture

networks with different properties, thus allowing researchers to look at natural and hydraulic

fractures with the same model, at the same time, and capturing the interaction between the

two fracture networks.

A point-source well model was incorporated, thus we are able to study the production

process from ultra-low permeability formations. The formulation of the model is well out-

lined, and based on a conventional implementation of the Mixed Finite Element Method,

where pressure values are evaluated at the center of triangular elements, and pressure gradi-

ents (velocities or fluxes) are evaluated the the boundaries of the triangular elements. The

utilization of the Mixed Finite Element Method ensures that the methodology we followed

enforces mass conservation both locally and globally, thus being a more robust alternative

in this aspect that methodologies based on the conventional Finite Element method, Fi-

nite Volume method, Control Volume-Based methods with two point or multi point flux

approximations, and the Finite Difference method.

The implemented mesh generation approach worked very well to represent fractures as a

lower-dimensional physical entity in the physical domain. For all test cases and case studies

considered, the Delaunay triangulation meshing technique generated robust meshes with

seamless fracture integration.

5.3 Directions for Future Work

Future work for the presented DFN formulation should incorporate the multi-phase aspect

of flow through tight, fractured reservoirs. Black oil simulators often can be considered as

the foundation for more complex, elaborated models. Extending the presented model to two

or three phases will provide additional insight to the behaviour of naturally and hydraulic

fractured unconventional reservoirs.

Due to the difference in scales, well models are often the link between reservoir behaviour,

reservoir pressure distribution, and reservoir performance. Therefore, additional research can

be completed regarding the utilization of more advanced well models for production from

fractured, unconventional reservoirs. With the model implemented on this thesis, point-

source well models are simple to implement yet effective at describing oil production, but
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other options can definitely be considered.

Furthermore, for rock formations where the permeability is ultra-low, such as tight shale

formations, where formation pressures are high, the fracking process will create ultra-high

conductivity conduits for the flow to be produced. Due to the small spacial dimensions of

the fractures and the high flow rates one might encounter, the validity of Darcy’s law, which

ignores the effects of turbulent flow, might be questionable.

The present methodology is hindered by the computational time required to compute

numerical solutions. This work would also benefit from additional research into parallel

computing and efficient solutions for linear systems of equations where the stiffness matrix

is not symmetric.

Finally, the continuation of this project would benefit tremendously if the proposed

methodology is coupled with a complete procedure to perform upscaling analysis; which

is one of the preferred techniques to acknowledge that there is certain amount of uncertainty

in such sub-surface flow model due to the inability to accurately describe the geomorphology

of the formations, and at the same time introduce the uncertainty back into the simulations

by providing a normalized distribution rather than a single value for the oil production pro-

files. Moreover, upscaling can also be used to create a framework to determine at which

point is more feasible to remove fractures out of the model if their overall impact on produc-

tion performance is not significant, based on fracture orientation, fracture density, fracture

connectivity, and distance from the production well.
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editors, Large-Scale Scientific Computing, pages 417–424, Berlin, Heidelberg, 2001.

Springer Berlin Heidelberg. ISBN 978-3-540-45346-8.
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