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1. LITERATURE SURVEY 

1.1. Evolution of IT Infrastructure  

Figure 1: Stages in IT infrastructure Evolutions [1] [2] 

 

The excursion of IT infrastructure development throughout the last 60 years has been quite lengthy 

and complicated with the steady pace of progress at each spending days. Today cloud computing 

is driving the next wave of change in the world of infrastructure [3]. Cloud computing is the third 

incarnation of the platform eras [4]: 

 

 The first era was the mainframe, which dominated the industry from the 1950s through the 

early 1980s. 

 The client-server architecture was established as the dominant second platform from the 

1980s right up until the second decade of the 21st century. 

 The "as a service" movement in IT has broadly been termed cloud computing, and it defines 

the third platform era of the cloud-based, server-less world we now occupy. 

 

Today, cloud computing has changed the way business works. With the minimal investment, high 

productivity, and security, it has gained attention from 'startups' and big organization to cut the 

annual cost for running a business. The software-driven nature of cloud computing has empowered 

a significant number of innovations [3].  
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1.2. Introduction of Cloud Computing  
 

Cloud computing is the on-request accessibility of computer system resources (e.g., networks, 

servers, storage, applications, and services) and applications via the Internet with pay-as-you-

go pricing [5].  

 
Figure 2 : Cloud computing [6] [7] 

The main pillars of cloud computing are Software as a Service (SaaS), Platform as a Service (PaaS) 

and Infrastructure as a Service (IaaS). IaaS provides only hardware infrastructure support (e.g. 

servers, storage, network etc.) on a utility basis; however, the customer is responsible for its 

operation & security in all aspects except physical security. In addition to IaaS, PaaS supports the 

operating system and requisite core applications of the OS to provide a platform for the customer 

to install & run their applications. As PaaS supports both hardware and the necessary platform to 

run customer applications, users do not need to worry on weekly scheduled downtime for 

maintenance.  On the other hand, SaaS is a complete solution, including IaaS, PaaS, and support 

for both hosted applications and its supporting hardware.  

 

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/System_resource
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Based on business needs, several cloud deployment models are public, private, hybrid & 

community cloud. Public cloud shares a pool of virtualized resources among multiple users on pay-

per-use or subscription basis. In contrast, the private cloud is committed to an individual user, 

providing control of its security. Hybrid cloud is the blend of public and private cloud. Businesses 

experiencing demand fluctuation throughout the year like financial service organizations, 

companies dealing with big data can take advantage of the hybrid cloud approach to secure 

sensitive applications/data using private cloud and move other applications to the public cloud. 

Community cloud offers a hosted private cloud's security features and public cloud computing 

benefits but restricted to a particular industry. Industry domains like automotive, energy, financial 

and health care use specific applications that only apply to them and not others. Such organizations 

belong to the same backgrounds and share infrastructure, resources and data using community 

cloud [7]. 

 

1.2.1.  Virtualized Networking in Cloud 

 

In traditional physical networking, dedicated servers (email, web, DC, DNS etc.) are configured 

for each application and connected to physical network individually. With the high dependencies 

on hardware, physical infrastructure becomes very rigid and expensive to operate, introducing 

specific concerns regarding the network's inefficiency, flexibility, and scalability. For example, if 

a server running a particular application is not fully utilized, the resource is wasted as no other 

application can acquire that server to run its own execution. On the other hand, the server 

sometimes overruns due to heavy memory consumption and more processing power. In such a 

scenario, infrastructure is not fully flexible enough to allocate required memory storage on demand 

and release it later. The need for manufacturing-specific hardware, long standardization process 

between different vendors and operators, and network complexity makes it hard to introduce new 

functionalities or changes in the network for management, configuration, and control. Such a 

situation demands network transformation to make much more flexible, agile and moldable 

infrastructure.  

 

Virtualization is the pioneering initiative in the network transformation and initially instigated with 

the concept of VLAN. VLAN is used to divide one physical network into separate, individual 

virtual networks. Network devices in the same VLAN can directly communicate with each other 

however routing device (router, L3 switch, firewall) is required for communicating between 

devices in different VLAN. Virtualization was further extended into hardware by consolidating 

multiple segregated resources (virtual machines running various services) into a single high 

computing physical server. A hypervisor is a robust software used to create a virtual environment 

by allocating a certain amount of CPU, RAM & storage to each VMs as per requirement. Bare-

metal hypervisors (type 1) like VMWare vSphere/ESXi, Microsoft Hyper-V are directly installed 

on hardware while hosted hypervisor (type 2) like Vmware workstation, Oracle VirtualBox is 

installed on host OS. 
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Figure 3: Virtual Network Connectivity 

As shown in fig.3 physical diagram, a physical server is installed with type1 hypervisor, and four 

NICs are plugged into the physical switch. The virtual network consisting of virtual machines, 

virtual switch and a virtual router is configured using a hypervisor. A virtual switch can be mapped 

to physical NICs and play an essential role in connectivity between physical and virtual networks. 

Also, each virtual machine is allocated with a certain amount of CPU, RAM and storage as per the 

need of application/service running on it however total amount doesn't exceed the capacity of a 

physical server. Due to such flexibility, the on-demand rise of storage or memory for a specific 

virtual machine can be assigned and release later on. As shown in fig. 3 logical diagram, there are 

two isolated networks. Network green includes VM1, VM3, VM5 while network blue has VM2, 

VM4, VM6. Virtual machines in the same network communicate using a logical switch and 

encapsulation protocol used by hypervisor host. For example, VMware uses vXLAN protocol to 

encapsulate virtual packet within the frame; hence physical switch will not be aware of the virtual 

network. In this case, logical switch 1 & 2 are assigned with identifier 10000 and 20000 to 

differentiate between two networks. Table 1 below describes the packet flow between different 

virtual machines in the same or another network. 
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Communication  Virtual Machine Flow of the packet 
Within Network 
Green 

VM1, VM3, VM5 From VM1 to VM3 : 
VM1  Logical SW1  NIC1(packet encapsulation)  
NIC2(packet decapsulation) Logical SW1VM3 

Within Network 
Blue 

VM2, VM4, VM6 From VM2 to VM6 : 
VM2  Logical SW2  NIC1(packet encapsulation)  
NIC3(packet decapsulation) Logical SW2VM6 

Between different 
network but same 
host 

VM1 & VM2,  
VM3 & VM4,  
VM5 & VM6 

From VM1 to VM2 : 
VM1  Logical SW1  virtual router Logical 
SW2VM2 

Between different 

network and host 

VM1 to VM4/VM6 

VM2 to VM3/VM5 
VM3 to VM2/VM6 
or likewise 

From VM1 to VM6: 

VM1  Logical SW1  virtual router  NIC1(packet 
encapsulation)  NIC3(packet decapsulation)  Logical 
SW2VM6 

Table 1: Packet flow between virtual machines 

1.2.2. Benefits & challenges of Cloud computing 

 

1. Service Availability & Reliability: It is challenging to keep the network up at all times with 

the traditional on-premise infrastructure. In contrast, most cloud service providers now 

days strive for 99.99% uptime which is practically 8s per day. Hence, cloud service users 

have almost 24/7 availability of resources when and wherever required. Also, with the 

multi-platform service availability, cloud computing avoids device/platform dependency to 

access resources. 

 

2. Scalability & Elasticity: With virtualization, cloud service providers can provide limitless 

server capacity to users as per demand. It means that business has the flexibility to scale 

the number of computing resources to use. More servers can be allocated to cope with 

growing business demands and release it later on when not in use. 

 

3. Reduce Cost: With the rise in demands, companies have to invest more in purchasing or 

upgrading their existing on-premise hardware resources to cope with growing networking 

traffic. Also, managing high redundancy with 99.99% uptime of resources is massively 

expensive for the organization. Cloud computing and virtualized networking reduce 

installation, maintenance and operational cost for the organization with a pay-for-what-

you-use pricing model. 

 

Along with many benefits, cloud computing has specific challenges like security, service outages, 

compliance etc. As cloud service providers manage data centrally, any failure to secure their data 

centres can result in massive data loss. Also, consumers are not aware of where their data is stored 

and who has access on it, e.g. any data stored in the US could be within the US government's reach 

because of the PATRIOT Act. Due to multitenancy nature of cloud computing, data belonging to 

different customers reside on the same physical server, which brings the possibility that such data 

could be accessed intentionally or accidentally by other customers [8].  
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1.3. Cloud Computing Used Cases 

 

1.3.1. Services provided by Deloitte to The US Navy's Tactical Networks Program Office [9] 

 

1.3.2. Honeywell [10] 

 

About  PMW 160 of US Navy is The Tactical Networks Program Office responsible for 

robust network infrastructure and essential network information distribution 

services. One of the program office's critical priorities is to train sailors who operate 

and manage the CANES (consolidated afloat Networks and Enterprise Services) 

network. 

Existing 

Approach 

Physical network racks are used as training equipment at two training sites to provide 

advanced CANES training 

Challenges Limitation to train several sailors each year, high operational and maintenance cost, 

training provided on legacy CANES systems based upon earlier technologies, 

Restricted training environment to a single Hardware-Software (HW-SW) version 

combination 

Adapted 

Approach 

(SaaS) 

Leveraging Amazon AWS cloud, AWS CloudFormation, Amazon Machine Images, 

Amazon EC2 Bare Metal, VM Import/Export, AWS security tools, and custom 

configurations, Deloitte team had re-platformed multiple variations of the CANES 

shipboard network on AWS GovCloud  

Result/Benefits 1. Fastest CANES installation in the Navy: More than forty instance networks 

created, configured, and deployed in under 40 minutes using Cloud Formation, 

APIs, and custom code. 

2. Expanded training capabilities to training sites worldwide four times higher by 

increasing no. of training scenarios, troubleshooting activities and conducting 

real-life situation training. 

3. Increase training throughput to 840 sailors a year which is four times higher 

than usual. 

4. Cost reduced to 50% than building and sustaining physical training equipment. 

About  Honeywell's Process Solutions provides the control systems for a wide range of 

industrial operations like mining, refining, oil and gas, wastewater systems 

Existing 

Approach 

Initial Physical Infrastructure with servers & clients moved to Open Virtual 

Engineering Platform (VEP), virtualized environment to develop the control systems 

on their own internal cloud and providing read-only access of the control system to 

clients.  

Challenges Clients have requested for full access and virtualized off-premise lab specific to them 

for executing their own projects. However, with bandwidth limitation, it was 

challenging to replicate multiple clients on existing cloud 

Adapted 

Approach 

 VMWare-based Open Virtual Engineering Platform environment has been moved 

to the IBM Cloud which  provides seamless VMWare portability along with the 

control of stack from microchip level 

Result/Benefits Improve productivity, increase efficiency and gain agility for customers 
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1.3.3. Cisco CloudLock [11] 

 

1.3.4. Immedion, LLC [12] 

1.3.5.  

About  CloudLock is a cloud data security company launched in 2007 and acquired by Cisco. 

Existing 

Approach 

Initially, on-premise security solution was built using Amazon Web Services 

Challenges Helping those companies facing challenges for federal & legal regulatory 

requirements to move their data on the cloud, build a scalable application to 

accommodate user growth, provide highly secure Google's infrastructure to protect 

data, manage the app with minimal staff resources 

Adapted 

Approach 

(PaaS) 

Started to use Google App Engine in 2011 to leverage Google's highly secure, 

reliable infrastructure and took advantage of crucial App Engine features like the 

Datastore to accommodate growth in user data, OpenID/Single Sign-On secure 

access to CloudLock's service through existing Google accounts. Also, the in-built 

administration console enabled performance monitoring and error log analysis. 

Result/Benefits 1. Achieved a 20-fold  increment in users within a year  

2. Saved  almost $200,000  every year in compensation costs 

3. Supported more than 200 clients with a  solitary staff member 

About  Immedion is a cloud and managed services provider with seven data centres across 

North Carolina, South Carolina and Ohio.  It delivers the enterprise-level solutions 

of a national data centre and cloud provider  with the hands-on attention and agility 

of a local business 

Existing 

Approach 

Initially, physical servers provisioning took up to four weeks which was improved 

by five days using manual VM provisioning.   

Challenges 1. Speed customer onboarding and provisioning to keep up with significant 

growth & customer demand  

2. Enable secure multi-tenancy by isolating customers into logical security 

segments  

3. Meet customer demand for self-service 

4. Provide resource visibility and administration to customers for making any 

necessary changes 

Adapted 

Approach (IaaS) 

Deployed VMware vCloud Director, cloud management platform to speed 

provisioning, providing resource visibility and management to customers   

Result/Benefits 1. Build up a new environment takes five minutes while server deployment 

and configuration can be finished within a few seconds 

2. Enabled greater efficiency with  80% reduction in day-to-day activities via 

automation  

3. Meets customer self-service and security needs 

4. Speeds customer onboarding and business growth  

5. Ensures workload security and automated resource control 
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2. CLOUD NETWORKING  
 

 

Figure 4: Data Center Evolution [13] 

Datacenter evolution has gone through a massive transformation from the dump client terminal 

connected to mainframe computers in the 1960s to the latest cloud-based modular data centre. This 

voyage was first started with big sized mainframe computers connected to teleprinter through 

proprietary connection. With the development of chip technology and the emergence of integrated 

circuits in the late 1970s, big sized expensive mainframe computers were replaced with a smaller 

size, low-cost minicomputers. These minicomputers and multiple client terminals are connected 

through the shared network by proprietary connection protocol. It has initiated the concept of 

distributed computing to access numerous resources from different locations. In the late 1980s, 

standalone workstation computers came into the picture to save minicomputers/mainframes' 

computing power by accessing documentary information directly from servers and presenting it to 

clients through desktop computers. As more and more business started to accommodate technology 

advancement with multiple servers and desktops in LAN, no. of LAN ports and bandwidth 

requirement were increasing rapidly. It has accelerated the specialized data centre's evolution from 

standalone server to rack-mounted computers and blade server system. Using the new industry 

initiative of Fiber Channel over Ethernet (FCoE), both data and storage traffic converge onto a 

single ethernet network in the data centre. While enterprise networking has connected multiple 

clients (wired and wireless) through high-bandwidth and efficient local area network, cloud 

networking is another era in developing the latest data centres. Cloud networking has majorly 

changed the way information is accessed, and computing resources are managed today. Cloud data 

centres contain thousands of big sized specialized rack/units, including servers, storage, 

networking, power, and cooling and clients are accessing these resources using the Internet from 

anywhere-anytime [13]. 
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2.1. Data Center Network Topologies 
 

Initially, clients are connected to servers and storage using LAN technology in traditional data 

centre architecture. However, with growing demand, business needs to increase servers and storage 

capacity with high-performance network capabilities. Most traditional data centres are equipped 

with high-end networking equipment from the same vendor to meet a business requirement with 

ease of management and operational support.            

Figure 5: Traditional Data Center Architecture [13] 
 

As shown in fig.5, servers within the rack are connected via the top of rack (ToR) switches in a 

star topology. Each server in the rack typically uses dedicated 1GbE link to ToR switch and 

multiple 1GbE/10GbE/optical links between aggregation and core switch. A typical rack may 

contain 40 or more servers; ToR switches contain up to 48 10GbE ports and four 40GbE uplink 

ports connected to aggregation switches. Aggregation switches connect to core switch or router to 

forward traffic to another aggregation switch or outside the network. Below table describes how 

data travels within the datacenter and to outside network [13]. 

Data Traffic Path to forward traffic 

From one VM to other on the same physical server Routed through vSwitch within the server 

From one physical server to another on the same rack Routed through vSwitch and ToR switch  

Between different racks Routed through vSwitch, ToR switch and 
aggregation / EoR switch 

From one network to another in the same datacenter Routed through vSwitch, ToR switch, 

aggregation switch and core switch 

From one datacenter to other/outside network Routed through vSwitch, ToR switch, 
aggregation switch, core switch to the Internet 

Table 2: Flow of data traffic within the data centre network 
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Figure 6: Transition in the use of ToR switch [13] 

As discussed earlier, 10GbE ports can use low-cost copper cabling for a short distance between 

server and ToR switch while optical fibre is used for long-distance between ToR & Aggregation 

switch. Single modular chassis-based EoR switch is designed to reduce the cost of earlier topology. 

EoR eliminates the need for separate power supplies, cooling fans, and CPU subsystems in every 

ToR and aggregation switch. It also provides central management to manage multiple ToR 

switches. However one of the drawbacks with EoR switch is additional cable cost and cable drivers 

to connect all servers of the racks to EoR chassis. To eliminate the need for optical cables or 

10GBase-T cables while still providing some of the cost benefits available with EoR switches, 

fabric extenders were developed. Fabric Extenders are controlled and monitored through a central 

controlling bridge. Fabric extenders provide a unified management model while allowing the same 

cabling topologies used with ToR and aggregation switches. Standard low cost, low latency, direct 

attach copper cables can be used between the fabric extender and the servers while high-bandwidth 

optical cables with a much lower cable count are used between the server racks and controlling 

bridge. The controlling bridge also has switch functionality. The entire configuration can be 

managed through a shared CPU control plane card in the controlling bridge, acting as a single 

logical EoR switch, easing configuration time and overhead [13]. 
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Challenges with traditional enterprise data centre architecture: 

 

1. High Capital and Operating expense 

 

There are mainly two types of the expense involved in a building data centre with thousands of 

servers' racks. First, capital expense includes equipment acquisition costs, cabling cost, purchasing 

datacentre facilities and various software. Second, Operating expense includes electricity, 

personnel to operate and maintain the equipment, hardware and software maintenance agreements.  

 

Datacenter aggregation and core switches/routers with high-bandwidth ports are costly. Most core 

switches/routers support many layer-3 features like OSPF, MPLS, BGP, IP-IP, VPLS, VPWS and 

many other tunnelling protocols. Many of these features are not used, adding cost for features that 

are not required. Traditional data centres may have separate software for configuring, virtualizing, 

and maintaining the servers; different software for configuring and preserving storage resources 

and associated storage networks; and particular software for configuring and maintaining the data 

network. In many cases, they also have separate IT administrators with specialized expertise in 

these different areas. Because of the cost associated with traditional enterprise data centre 

architecture, the 2-tiered cloud data centre is developed [13].  

 

2. Performance  

 

The conventional enterprise-data centre has certain limitations which have spurred new industry 

standards for bandwidth optimization, congestion control and efficient data transfer. Traditional 

Ethernet workgroup based ToR switches operated at 10, 100, or 1000Mbps. Multicore-servers that 

host multiple virtual machines (VMs) can rapidly immerse a 1GbE link, and at times, work  at peak 

data rates of up to 10Gbps. While ethernet links operate at 1Gbps, storage network using optical 

fibre channel operates at 2 or 4 Gbps. Thus, the emergence of multicore processor and desire to 

transmit both storage and data traffic on the same physical link has driven the ToR switch port 

bandwidth requirement up to 10Gbps. 

 

There are specific issues related to packet latency in the traditional enterprise data centre. First, 

packets need to take multiple hops when travelling between servers. It increases latency and latency 

variation between servers. For example, the packet may need to travel two hops between servers 

in a given rack or four hops rack-to-rack. Core routers may contain switch chips that use external 

buffer memory along with store and forward mechanisms where the port-to-port latency is 

relatively high, and the latency varies depending on packet size. Depending on the nature of the 

application, latency plays a significant impact on performance. For example, applications based on 

financial trading, real-time data analytics, and cloud-based high-performance computing require 

minimal latency.  
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Second, enterprise networks will drop packets during periods of high congestion. As the core 

switch/router has to deal with layer-3 forwarding functions, it requires more extensive frame 

header processing at very high bandwidth which adds more congestion to the network. The 

traditional Ethernet workgroup based switches or aggregation switches have been designed to drop 

traffic during high congestion periods. It cannot be tolerated by higher layer protocols such as Fiber 

Channel over Ethernet used for storage traffic due to the long retransmission latencies involved. 

Thus, data centre networks transmitting storage traffic must separate traffic classes and lossless 

operation for storage traffic. Legacy enterprise networking gear cannot support this, requiring new 

data centre bridging features. 

2.1.1. Cloud Data centre Architecture  

Figure 7: Cloud Data Center Network [13] 

As the enterprise datacentre with three-tiered approaches adds cost, complexity and latency, a two-

tiered flat cloud datacentre was developed. With a large cloud data centre, service providers started 

to use their networking software and custom-built networking equipment from major ODMs to 

reduce cost. Most data centre networks have been designed for north-south traffic; however, 

nowadays, more data centre traffic travels in the east-west direction due to server virtualization 

and changing server workloads. Because of this, data centre network designers are moving towards 

a flat network topology, as shown in Fig.7. With a 2-tier network, bandwidth over-provisioning 

can be used to reduce the probability of congestion hot spots. By assigning 10GbE links to the rack 

servers, the network can uphold storage and data traffic intermingling into one network, decreasing 

expenses. ToR switches use high-bandwidth connections to the core. The core routers have been 

supplanted with simple core switches having a larger number of ports permitting them to ingest 

the aggregation function, making this a "flatter" network. This network type can better support all 

east-west traffic in large data centres today with lower latency and lower latency variation [13].  
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2.2. Server Virtualization 

Figure 8: Before Virtualization [14] 

Figure 9: Server Virtualization [14] 

 

Server virtualization is a widely adopted technology in today's cloud computing era. It allows 

resource pooling where multiple customers share the standard underlying hardware. As shown in 

Fig. 8, physical server hardware run one operating system and mostly one specific application 

program like email, database, web hosting etc. initially. However, the only fraction of server 

resources are utilized (CPU, RAM, and NIC etc.) by a single application, which is not cost-

effective considering that the organization has to invest for each server. Multiple applications can 

be installed on the same host with a single OS to improve server utilization; however, any problem 

with one application might affect all. Also, the OS reboot would take down all the apps running on 

the same host. It led to the development of server virtualization. As shown in Fig. 9, high server 

utilization can be achieved by running multiple apps on the individual guest OS sharing the same 

physical hardware. Each separate instance with the guest OS running single application is called 

as virtual machines. Hypervisors from the various virtualization vendors like VMware vSphere, 

Microsoft Hyper-V are used to manage multiple instances on the same physical hardware [14]. 

Virtual machines communicate with each other using virtual switches.  
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2.2.1. Virtual Switching 

2.2.1.1. VMware vSphere Virtual Switch 

 

VMware vSphere has two main types of virtual switches: Standard & Distributed. VSphere 

Standard Switch provides network connectivity for hosts and virtual machines and handles 

VMKernel Traffic. The standard switch works with only one ESXi host and bridges the traffic 

internally between virtual machines in the same VLAN. It does not require enterprise plus licensing 

for usage. The hosts' physical NICs are connected to uplink ports on the standard switch to provide 

network connectivity to hosts and virtual machines. Virtual machines have network adapters 

(vNICs) that are connected to port groups on the standard switch. Every port group can utilize one 

or more physical NICs to handle its network traffic. On the off chance that a port group does not 

have a physical NIC associated with it, virtual machines on the similar port group can only 

communicate with each other but not with the outside network. 

Figure 10: Logical diagram of a vSphere distributed switch [13] 

As shown in Fig. 10, vSphere Distributed Switch provides centralized management and monitoring 

of all hosts' networking configuration associated with the switch. It is used to connect multiple 

ESXi hosts and consists of two logical sections: the data plane and the management plane. The 

data plane implements the packet switching, filtering, tagging, and so on, and management plane 

is the control structure used to configure the data plane functionality. A vSphere Distributed Switch 

separates the data plane and the management plane. The distributed switch's management 

functionality resides on the vCenter Server system to administer the networking configuration on 

a data centre level. The data plane remains locally on every host that is associated with the 

distributed switch. The data plane section of the distributed switch is called a host proxy switch. 

The networking configuration that is created on the vCenter Server (the management plane) is 

automatically pushed down to all host proxy switches (the data plane) [15]. 



 

19 
 

2.2.1.2. Microsoft Hyper-V Switch 

 

As shown in Fig. 11, Hyper-V hypervisor utilizes parent partition to create and manage distinctive 

VMs called child partitions. Child partitions communicate with the parent partition through a 

virtual bus called the VMbus. All requests to access hardware like network interface controller 

(NIC) are made through the parent partition. The parent partition also implements a virtual layer 2 

switching functions to switch between local VMs and arbitrate access to the physical network. It 

additionally offers a virtual NIC (vNIC) function for each VM connected to the VMbus. The vNIC 

resembles a physical NIC to the VM while the parent partition converts these local VM transactions 

into function calls to the physical NIC [13]. 

Figure 11: Logical diagram of a Hyper-V server 

 

The Hyper-V virtual switch has three modes of operation: private, internal and public. Hyper-V 

Private switch allows VMs to communicate with each other only when they are on the same host. 

The Private virtual switch cannot communicate to any network outside of the host. The Hyper-V 

Internal switch is slightly different in that the VMs on the switch can communicate with each other 

and the Hyper-V host itself. It can commonly be used as a file exchange mechanism. The internal 

mode includes virtual adapters (vNICs) within each VM. Public mode allows communication 

between VMs and also to the outside physical network through vNICs. With Windows Server 

2012, Microsoft has added additional functionality like Port ACL Rules, network traffic 

monitoring, VLAN isolation, minimum bandwidth guarantee and traffic shaping, ARP spoofing 

protection, neighbour discovery spoofing etc. [13].  
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2.2.1.3. Open vSwitch 

 

 

Figure 12: Logical Diagram of Open vSwitch [16] 
 

Open vSwitch is a software execution of a virtual multilayer network switch that enables network 

automation effectively through programmatic extensions and supports standard management 

interfaces and protocols such as SPAN, RSPAN, CLI, LACP, NetFlow, and 802.1ag. Open 

vSwitch is also designed to support transparent distribution across multiple physical servers by 

empowering the conception of cross-server switches to abstracts out the fundamental server 

architecture, similar to the VMware distributed vSwitch. Open vSwitch functions both as a 

software-based network switch and as the control stack for dedicated switching. Moreover, open 

vSwitch has been integrated into various cloud computing software platforms and virtualization 

management systems, including openQRM, OpenNebula. It is the default network switch in 

the XenServer virtualization platform since its version 6.0 [16].  

 

2.2.2. VM Migration 

 

In some cases, a running VM must be moved from one host to another due to failure, maintenance, 

a performance upgrade, or for network optimization. It is known as VM migration, live migration, 

or vendor-specific names like vMotion from VMware. Most customer applications cannot tolerate 

downtime while this migration happens. The migration is called "seamless" when the downtime is 

not noticeable by the end-user. Low latency networking with the lossless operation is the 

fundamental requirement during the migration. Besides, the network addressing and forwarding 

must be updated quickly and seamlessly once the migration is complete. The first step in VM 

migration is storage migration. Storage is copied from a hard drive or solid-state drive on the old 

host to a new host's drive over the network. Sometimes, VM uses pooled storage, in which case a 

new VM only needs to learn the address information of the network's storage location. Next step 

is memory migration in which hypervisor copies pages of memory from local DRAM on the old 

VM to the new VM over the network.  

https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/Switched_Port_Analyzer
https://en.wikipedia.org/wiki/RSPAN
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol
https://en.wikipedia.org/wiki/NetFlow
https://en.wikipedia.org/wiki/802.1ag
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/OpenQRM
https://en.wikipedia.org/wiki/OpenNebula
https://en.wikipedia.org/wiki/XenServer
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Once the storage and memory are moved over, the old VM operation can be suspended while the 

CPU's execution state and register state is moved over to the new CPU. Next, the new VM is started 

up. The downtime during the migration process is not usually noticeable if it's less than a second. 

After the new VM is brought to life, there may still be some clean-up work to do in order to make 

sure memory and storage are consistent between the old VM and the new VM. Next necessary 

process is network migration to update the new location of the VM in the data centre network [13].  

Figure 13: Network Utilization during & after VM Migration [13] 

  

Fig. 13 shows an example of VM migration for network optimization. Let's assume a data centre 

tenant is running applications on two VMs located on different data centre racks, and they are 

accessing storage from a third rack as shown on the left side of Fig. 13. It is inefficient and 

consumes unnecessary bandwidth in the data centre network. After VM migration, two VMs and 

shared storage reside within the same host server within the rack. Now the VM to VM traffic runs 

on the local vSwitch within the server and storage to VM traffic runs on the network within the 

rack. Only client traffic runs out of the rack, reducing the load within the data centre network. 

During the VM migration process, storage and server state information must be moved quickly 

with minimal downtime, requiring high network bandwidth. The network administrator must 

allocate the necessary bandwidth using data centre bridging mechanisms and add temporary hot 

spots to the network. The high-bandwidth NIC operation on the servers hosting these VMs may 

consume CPU resources, slowing down other applications running on those CPUs. Thus, network 

& server administrator must have to work in coordination to ensure smooth VM migration. To 

eliminate any possible human errors and maintain critical timings, the entire process can be 

automated using emerging network technology called Software-Defined Networking (SDN) [13]. 

In conjunction with Network Function Virtualization, SDN can achieve high-level automation with 

minimal time investment for providing necessary resources on the fly whenever required. 
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2.3. Network Virtualization 

 

 

     

Figure 14: Multitenant Data centre network [13] 
 

While server virtualization provides multiple virtual machines (virtual servers) within a single 

physical server, network virtualization provides multiple virtual networks like a private network 

within one physical network. It is a useful phenomenon in applications such as multitenant data 

centre environments where each tenant can be allocated multiple virtual machines and a virtual 

network connecting them. As shown in Fig.14, physical resources are divided up among three 

different tenants. Multiple virtual machines residing on different servers are allocated to each 

tenant, and virtual networks provide interconnectivity among tenant's virtual machines. 

 

 
Figure 15: Networking in Multitenant Cloud Environment 

 

Let's consider the scenario where red and blue tenant virtual machines are connected to two servers, 

as shown in Fig. 15. If both tenants are using same subnets (e.g. 10.0.0.0/16) within their network, 

it is challenging to differentiate traffic of two tenants travelling from one server to another.  Along 

with that, multitenancy cloud nature raises a few concerns related to networking as below:  

 

 Layer 2 adjacencies across layer-3 boundaries 

 Logical separation for virtual networks(security and overlapping addressing) 

 Logical separation of virtual networks from the underlay network 

 Requires support for large no. of VLANs for each virtual machines in the cloud however 

traditional 802.1Q VLAN mechanism only supports 4096 VLAN tags 

 Forwarding tables on switches becoming large due to no. of VMs in the cloud  
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2.3.1. VXLAN  

 

To alleviate such challenges, various tunnelling protocols have been developed.  Tunnelling 

protocols like VXLAN create overlay network/virtual tunnel on top of underlying physical 

infrastructure. While the underlay network provides physical connectivity, overlay networks 

provide logical connectivity to carry multitenant traffic over a single virtual network. Fig.16 

represents the frame format of the VXLAN protocol. 

Figure 16: VXLAN Frame Format [17] 

 

VXLAN includes 50 bytes on top of the original Ethernet frame (with standard 1500 bytes) and 

encapsulates source ethernet frame in new UDP packet. Hence, the minimum MTU for VXLAN 

is 1550 bytes. VXLAN protocol encapsulates original frame containing MAC addresses and 

VLAN tag using VXLAN header and a UDP header. The entire combination is then routed through 

layer 3 network using IP addresses. As VXLAN protocol provides isolation between different 

virtual layer 2 network domains, each tenant can use its own MAC address pool using VXLAN 

network identifier (VNI). The VXLAN Network ID (VNI-24-bit value) inserted in the VXLAN 

header and can identify up to 16 million unique virtual networks. As original inner TCP/IP header 

within the original ethernet frame provides reliable transmission through error detection and 

retransmission, VXLAN prefers UDP protocol for encapsulation. Source tunnel endpoint provides 

source port in VXLAN frame while destination port is set to a well-known UDP port number 4789. 

VXLAN Tunnel End Point (VTEP) is the point in the network where frame encapsulation and de-

encapsulation occurs. The outer IP addresses forward data between these VTEPs through the data 

centre layer 3 networks. These endpoints can be inside the hypervisor, the NIC, or a physical switch 

[13].  
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VXLAN Encapsulation & De-encapsulation:  
 

The VXLAN Tunnel End Point (VTEP) is the VXLAN encapsulation point connected to a traffic 

source that may be a standalone server or virtual machine. VTEP needs to know where VMs are 

located for each tenant. For example, if virtual switch shown in Fig. 15 is considered as VTEP, 

vSwitch maps MAC address to IP address through manual, push, pull or dynamic learning. Manual 

is configured in the lab environment. In the push method, the SDN controller is useful to acquired 

mapping at VTEP while in the pull method, VTEP requests mapping information from a central 

database. The dynamic method is more analogous to the layer 2 switch learning process. Let's 

discuss the dynamic learning process shown in fig.17 below where the red 1 virtual machine on 

server 1 is trying to communicate the red2 virtual machine on server 2.When VMs are powered 

on, both VTEP joins multicast group 239.1.1.100, and each VTEP has empty forwarding table 

initially.  

 
Figure 17: VTEP forwarding table entry 

Below is the process of forwarding table entry on server 2 VTEP [18].  

 

1. Red1 on server1 sends ARP packet with Destination MAC as "FFFFFFFFFFF" 

2. VTEP on server1 encapsulates the Ethernet broadcast packet into a UDP header with a 

destination IP address as "239.1.1.100"(multicast)  and the source IP address as 

"192.168.1.10"(VTEP address) 

3. All hosts on the multicast group (with IP address "239.1.1.100" ) receive a multicast packet 

sent by the physical network. 

4. When VTEP on server 2 receives the encapsulated packet, it makes an entry in the 

forwarding table based on the outer and inner header that shows the virtual machine's (red1) 

MAC address mapping to VTEP. Here, the virtual machine MAC1 running on server 1 is 

associated with VTEP IP "192.168.1.10". Based on the segment ID or VXLAN logical 

network ID (5001) in the external header, VTEP decides to deliver packet further to host. 

5. The de-encapsulated packet is delivered to the virtual machine (red2) connected on that 

logical network VXLAN 5001. 
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As shown in Figure 18, the entry in the forwarding table of server 2 VTEP (vSwitch) is used during 

the lookup process to respond with unicast ARP reply from red 2 to red1.   

 

Figure 18: VTEP Encapsulation and De-encapsulation 

Below is the process of forwarding table lookup on server 2 VTEP [18]:  

1. Red 2 (MAC2) on server 2 sends a unicast packet (Destination Ethernet MAC address: 

MAC1) in response to ARP request  

2. VTEP on server 2 performs a lookup for the destination MAC address("MAC1" ) match in 

the forwarding table. The VTEP now knows that it has to send a packet to VTEP with IP 

address "192.168.1.10" in order to deliver the packet to red 1(MAC1) on server 1. 

3. The VTEP on server 2 creates a unicast packet with the destination IP address as 

"192.168.1.10" and sends it out. 

4. When VTEP on server 1 receives the encapsulated packet, it makes an entry in the 

forwarding table based on the outer and inner header that shows the mapping of the virtual 

machine MAC address and the VTEP. In this example, red 2(MAC2) running on server 2 

is associated with VTEP IP "192.168.2.20". Based on segment ID or VXLAN logical 

network ID (5001) in the external header, VTEP decides to deliver the packet to host. 

5. The de-encapsulated packet is delivered to the virtual machine (red1) connected on that 

logical network VXLAN 5001. 

The same mechanism is used for blue tenant also which uses the same internal network 

(10.0.0.0/16) as a red tenant; however, VXLAN logical ID (VNI) for the blue tenant will be 

different (e.g. 5002). Different VNI can differentiate traffic of each tenant.  
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2.3.2. Network Function Virtualization (NFV) 

 

Traditional corporate data centres use hardware from large original equipment manufacturers 

(OEMs) with proprietary software. Most network devices from the same vendors are used in data 

centres to reduce management and configuration complexity. Migration to other vendor's hardware 

platform resulted in significant upheaval at the application layer. Also, network devices incorporate 

many features that are not needed or not utilized effectively in data centre networks. Due to vendor-

lock in, capital expense and operating expense increases. In addition to increased expenses, 

network environment has to endure the dynamics of faults and adapt to load changes. The control 

plane decides how to handle network traffic while data plane forwards traffic according to its 

decision. Both control and data plane are bundled inside the networking device, reducing flexibility 

and hindering innovation and evolution of networking infrastructure. 

Network Function Virtualization (NFV) and Software-Defined Networking (SDN) are two pillars 

to change the existing network infrastructure limitations. While NFV virtualizes the network, 

which reduces timing for the new deployment, SDN provides network reachability for those newly 

created resources. Main functions of NFV are softwarization, virtualization and orchestration. NFV 

replaces costly dedicated purpose-built network hardware with generic hardware (e.g. HP and dell 

blade servers). As shown in Fig. 19, three main components of NFV which ensures interoperability 

and tight coupling between hardware and software are NFV infrastructure (NFVI), Virtual 

Network Function (VNF) and NFV Management and orchestration (MANO). NFVI hosts all 

compute, storage and network hardware (virtual and physical). VNF hosts actual applications 

related to individual network services. Single VNF can be deployed over multiple VMs. VNF is 

equivalent to a physical network capable of performing network functions like routing, switching, 

and security provision by decoupling network services from supporting hardware. That means it is 

easy to scale up or scale down capacity without affecting physical network hardware. MANO is 

responsible for controlling the entire cloud or network through automation, provisioning, and 

workflows coordination to VIM and VNF managers. 

 

Figure 19: NFV Framework [19] 
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3. SOFTWARE DEFINED NETWORKING (SDN) 

Figure 20: Traditional vs SDN based Network 

 

As shown in fig. 20, the traditional network consists of a data plane, control plane and management 

plane. Data plane route traffic from one device to another. The control plane is responsible for 

taking routing decision. Every router has its own control logic for deciding the best path to route 

the traffic. The management plane is responsible for the maintenance and operations of the 

network. Alerts and various network reports are generated at a management plane. Configuration 

to generate reports and alerts are done individually on each device. On the other side, software-

defined networking (SDN) is an emerging network architecture that is fully programmable, 

dynamic, adaptable and cost-effective. It offers on-demand scaling by breaking vertical integration 

of control and data plane. There are four fundamental principles of SDN networks [20].  

1. It makes networking and IP routing flexible using software and dynamic algorithms where 

forwarding decisions are based on flow-based instead of destination-based. A flow is a set 

of packet field values acting as a match (filter) criterion and a set of actions (instructions). 

2. Decoupling control and data plane. Data plane resides on routers while the centralized 

controller handles control plane 

3. It provides centralized monitoring of the entire network as control logic is moved to an 

external entity, called the SDN controller or NOS. 

4. Abstraction is the core of SDN. It provides a programmable network with agility for any 

needs. Control plane is directly programmable while underlying infrastructure is abstracted 

for applications and network services.  End-user can request the SDN controller via 

network application on the web portal for any changes to adjust network resources, change 

configuration, provision or de-provision bandwidth. 

Thus, SDN brings resilience in the network by providing a holistic decision on the entire network.  

The key fundamental works for separating data and control plane between a network switch and 

SDN controller is a well-defined programming interface called API. OpenFlow is one of such 

prominent example of API.  
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3.1. SDN Architecture 

 

 

Figure 21: SDN Architecture [20] 

Fig. 21 displays SDN architecture with three fundamental planes: Data, Control and application. 

(i) Data Plane 

Data plane or the infrastructure layer is composed of network devices (switches, routers) to 

transport and process data according to the SDN control plane's decision. As compared to 

traditional network devices, network devices in SDN data plane are simple forwarding entities; 

lacking embedded control or software to take an independent decision. The forwarding devices 

take appropriate actions on incoming packets based on well-defined instruction sets (e.g. flow 

rules). To implement SDN, there are two fundamental requirements [21]: 

1. Common logical architecture for all network devices to be managed by the SDN controller. 

It can be implemented differently on different vendor equipment; however, the SDN 

controller sees uniform logical switch functionality. 

2. The need for standard and secured protocol between the SDN controller and network device 

is required to ensure communication-configuration compatibility and interoperability 

among different data and control plane devices 
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The above requirements are addressed by OpenFlow, which is both a standard protocol between 

SDN controllers and network devices and a specification of the logical structure of the network 

switch functionality. OpenFlow was published by the Open Networking Foundation (ONF) and 

defined as the OpenFlow Switch Specification [20]. The OpenFlow switch process incoming 

packet based on the pipeline of flow tables. Flow tables have mainly three parts: 1) matching rules; 

2) actions to execute based on matching packets; 3) counters that keep statistics of matching 

packets.  

 

Figure 22: OpenFlow based SDN network device [21] 

When a packet is received, the lookup process starts with the first table of pipeline and ends with 

either match or a drop (when no rule matches). As illustrated in Fig. 22, a flow rule can be defined 

by combining different matching fields. In case no default rule is configured, the packet will be 

discarded. If default rule is found, switch sends a packet to the controller. The precedence of the 

rules follows the regular succession number of the flow table for a match. Possible actions to 

perform are 1. Forward the packet to outgoing port(s) 2.Encapsulate packet and forward it to the 

controller 3. drop packet 4. Send packet to the standard processing pipeline or send it to the next 

flow table/special tables(group or metering tables introduced in the latest OpenFlow protocol) [20] 

[22]. 

(ii) Control Plane  

Control plane works as a bridge between data and control plane that provides a global view of an 

entire network. It manages flow control of forwarding devices in data plane using southbound 

interfaces while northbound APIs interact with the application plane for network management. 

Control plane creates forwarding table entries using the local data set. Such data sets used to store 

network topology are called a routing information base (RIB). Forwarding table entries used by 

the data plane to forward traffic between ingress and egress port are called forwarding information 

base (FIB). Control plane provides various functions such as shortest path forwarding, notification 

manager, security mechanisms, topology manager, statistics manage and device manager [23]-

[25]. 
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The brain of control plane performing all intelligent tasks is the SDN controller. It mostly contains 

a set of modules that can perform a different task. The functionality provided by the SDN controller 

can be viewed as Network Operation System (NOS). SDN controller has diversified properties, 

including essential network services. Some controllers like NOX, POX have centralized 

architecture while others like a floodlight, OpenDaylight are distributed in nature.    

 NOX: First OpenFlow controller is written in C++. Due to lack of proper documentation 

regarding its internal working flow and other issues, it wasn't widely implemented [26]. 

 POX: Python only version of NOX (POX) has a user-friendly API with well-prepared 

documentation. It also provides a web-based graphical user interface written in python. 

Compared to other implementation languages, shortening experimental and development 

cycles were broadly accepted by SDN developers and engineers [27]. 

 Floodlight: Java-based SDN controller developed by an open community of developers and 

offered initially by Big Switch. It uses OpenFlow protocol to orchestrate traffic flow of 

SDN environment. It was built using Apache Ant and gained lots of popularity. It has an 

active community allowing for many different features to be created that can be added and 

tailored to specific environments [28].  

 OpenDaylight: OpenDaylight is widely developed largest open source SDN controller. It 

is a modular open platform for scaling and customizing network of any size. It is a Linux 

Foundation collaborative project that has been highly supported by major industry players 

such as Cisco and Big Switch. OpenDaylight is written in JAVA and uses REST API and 

a web-based GUI. With the third release of OpenDaylight (Helium SR3), virtualization and 

scalability became a reality and was chosen as the technology to create the world's first 

software-defined city in Bristol, England as part of the 'Bristol is Open' project. The ODL 

community is very active and leading various projects, the same as Bristol [29]. 

 

(iii)  Application Plane 
 

Application plane, also known as management plane, plays a crucial role in the SDN 

implementation. SDN is implemented on a wide range of network from home to enterprise and 

data centre, which uses various applications like a load balancer, policy enforcement, routing, 

firewall etc. Using such applications, application-layer provides numerous services like data centre 

networking, mobility & wireless, traffic engineering, information-centric networking, monitoring 

and security. As an example scenario of traffic engineering, load balancer application can evenly 

distribute traffic among available network paths using an abstracted view of network topology 

provided by the SDN control plane. Implementation of such different applications in traditional 

networks is challenging; considering each device's control plane needs to be configured 

independently. Using SDN, an application plane provides a straightforward solution to implement 

these applications [20][21]. 
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(iv) SDN Interfaces 

SDN interfaces known as Application Programmable Interfaces (API) are a key fundamental 

architectural component of SDN.  

A) Southbound API : 

Southbound API (SBI) is a communication protocol between control and data plane. It provides a 

common interface to the upper layer while pushing configuration information and install flow 

entries in the data plane (lower layer). Southbound interfaces enable control plane to support 

different protocols like OpenFlow, OVSDB, ForCES to manage existing or new physical/virtual 

devices in the data plane. Such a mechanism is essential for backward compatibility and 

heterogeneity. Therefore data plane can accommodate a mix of physical devices, virtual devices 

(Open vSwitch, vRouter etc.) and various device interfaces (OpenFlow, OVSDB, NetConf, 

SNMP). Amon all southbound interfaces, OpenFlow is a leader and widely used standard [21]. 

 OpenFlow:  

As shown in Fig.23, OpenFlow switch has three main components [30]:  

1. Flow tables & Group tables: It performs packet lookups by 

matching incoming packet to particular flow and forwards it based 

on specified matching actions. Multiple flow tables work in a 

pipeline fashion. A flow table may forward a flow to a group table 

 

2. OpenFlow Protocol: The switch communicates with the 

controller and controller manages switch via OpenFlow protocol 

running over Transport Layer Security (TLS).  
     

  

      Figure 23: OpenFlow Switch [30] 
 

3. OpenFlow Channel:  Each switch connects to other OpenFlow switches, to the controller 

or end-user devices (sources and destinations of packet flows) via OpenFlow ports. On the 

switch side, the interface is known as an OpenFlow channel.   

 

OpenFlow ports work as the network interfaces to pass packets between OpenFlow processing and 

rest of the network. OpenFlow ports available for OpenFlow processing may or may not be 

identical to the number of network interfaces provided by switch hardware. OpenFlow switch may 

have OpenFlow disabled on network interfaces or can define additional OpenFlow ports. Ingress 

ports are useful for matching incoming OpenFlow packets. OpenFlow pipeline process the packets 

received on ingress port and forward them to output port [30].  
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There are three types of ports in OpenFlow Switch [30]:  

1. Physical Ports: Corresponds to a hardware interface of the switch. For example, physical 

ports map one to one to the Ethernet interfaces of the switch. If OpenFlow switch is 

virtualized over the switch hardware, OpenFlow physical port represents a virtual slice of 

the switch's corresponding hardware interface. 

 

2. Logical Ports: Doesn't correspond directly to a hardware interface of the switch. Logical 

ports are a higher-level abstraction that can be mapped to various physical ports. Logical 

ports may be defined as non-OpenFlow methods (e.g. link aggregation groups, tunnels, 

loopback interfaces) and perform packet encapsulation. Logical ports must interact 

transparently with OpenFlow processing in a similar way as OpenFlow physical ports. The 

only thing which differentiates logical ports from physical ports is that a packet associated 

with a logical port may have an extra metadata field called Tunnel-ID associated with it. 

Both logical port and its underlying physical port are reported to the controller if the packet 

from the logical port is sent to the controller. 

 

3. Reserved Ports: The OpenFlow reserved ports indicate general forwarding actions such 

as flooding, sending to the controller or forwarding using non-OpenFlow methods(e.g. 

"normal" switch processing). A switch might not support all reserved ports, just those 

marked "Required". 

 

Flow Table:  

 Figure 24: OpenFlow Table Entry Format [20] 

Each packet entering into switch passes through one or more flow tables. Each flow table consists 

of several rows called flow entries. Each flow entry is consisting of seven components, as shown 

in Fig. 24(a).  
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Each flow table entry contains [30]: ˆ  

 Match fields: Selects a packet that matches values in the fields. These consist of the ingress 

port, egress port, packet headers and optionally metadata specified by a previous table, 

physical port, VLAN ID etc. ˆ  

 Priority: Defines relative priority of the flow entry. It is a 16-bit field with 0 correspondings 

to the lowest priority and maximum possible 65536(216) priority levels. ˆ  

 Counters: Updated when packets are matched. ˆ  

 Instructions: Instructions to be performed if a match occurs. ˆ  

 Timeout: Maximum amount of time or idle time before the switch expires flow. Each flow 

entry has two timeouts associated with it :  

o A nonzero hard_timeout field: Flow entry is removed after the given number of 

seconds configured in timeout, regardless of how many packets it has matched. 

o A nonzero idle_timeout field: Flow entry is removed when it has matched no 

packets in the given number of seconds. 

 Cookie: Controller chooses 64-bit opaque data value to filter flow statistics, flow 

modification and flow deletion. It is not used during packet processing. 

 Flags: Flags controls the management of flow entries. As an example, the flag OFPFF_ 

SEND_FLOW_REM stimulates flow removed messages for that flow entry. 

As shown in Fig. 24(b), the match field component of a table entry consists of the following 

required fields [20]: 

 Ingress port: Port identifier for packet arrival. It may be a physical port or a switch-defined 

virtual port. It is required in ingress tables. 

 Egress port: The identifier of the egress port from the action set. Required in egress tables. 

 Ethernet source and destination addresses: Each entry can be an exact hardware address, a 

bitmasked value for which only some address bits or wildcard value are checked. 

 Ethernet type field: Indicates the type of the Ethernet packet payload. 

 IP: Version 4 or 6. 

 IPv4/IPv6 source address and destination address: Each entry can be an exact address, a 

subnet mask value, a bitmasked value, or a wildcard value. 

 TCP source and destination ports: Exact match or wildcard value. 

 UDP source and destination ports: Exact match or wildcard value. 

 

As shown in Fig. 24(c), the group table entry contains a list of action buckets with specific 

semantics dependent on the group type.  
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Operation:  

Figure 25: Packet Flow in OpenFlow Switch [30] 

OpenFlow Switch implements the functions shown in Figure 25 upon arrival of the packet on the 

ingress port. Firstly, the switch performs a table lookup in the first flow table (table 0) and may 

perform further table lookups in other flow tables based on pipeline processing. Flow entries match 

packets in precedence order with a first matching entry in each table is used. If an entry is matching, 

the action associated with the specific flow entry is executed, and associated counters are updated. 

For no match in a flow table, the outcome depends on the table-miss flow entry configuration. 

Table-miss flow entry is the one that wildcards all fields (all fields omitted) and has priority equal 

to zero. A table-miss flow entry specifies the process to follow for unmatched packets, including 

dropping packets, passing packets to another table or sending them to the controller over the control 

channel via packet-in messages. In case table-miss flow entry is not present, packets unmatched 

by flow entries are dropped (discarded) by default. Instructions related to each flow entry either 

include actions or modifies the pipeline process. Actions included in instructions defines packet 

forwarding, packet modification and group table processing. Pipeline processing instructions may 

be sent packets to successive tables for further processing and allow information (metadata) to be 

communicated between tables. If the instruction set associated with a matching flow entry does 

not specify the next table; table pipeline process stops, and the packet is usually modified and 

forwarded. Additional processing may introduced if packets are directed to a group based on 

actions specified in   flow entries. Groups define sets of actions for flooding and more complex 

forwarding semantics like fast reroute, link aggregation and multipath. Groups can also enable 

multiple flow entries as a general layer of indirection  to deliver to a single identifier like IP 

forwarding to a common next hop. This abstraction allows common output actions to be changed 

efficiently across flow entries [30].  
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B) East/Westbound API:  

While SDN provides network programmability with centralized control & management, it also 

faces certain challenges like scalability, security and availability at enterprise/data centre level 

where network traffic flow is massive.  

 With the exponential increase in demand, the number of network devices required to 

provide reliable services on demand also increases. A single controller cannot manage 

underlying network resources beyond its capabilities which impose scalability issue. 

 

 If the SDN controller is compromised by a DDOS attack, ransomware attack or any security 

breaches, the entire network is affected. 

 

 Data plane network devices need continuous involvement of the SDN controller to process 

incoming packets. The overloaded controller might not be available at all the times for all 

devices due to limitation of controller capability. Also, the SDN controller is the single 

point of network failure.  

Such issues can be addressed by implementing multiple distributed controllers. Widely adopted 

approaches for such implementation are:  

1. Distributed Architecture:  Each controller manages its own underlying domain but 

synchronized with other neighbouring controllers to share information regarding device 

capability, topology changes, reachability etc.   

 

2. Hierarchical Architecture: It has two layers of the controller. Domain/local controller and 

root controller. Domain controller manages its underlying domain and updates the root 

controller but doesn't communicate directly with the neighbouring controller. Root 

controller manages all domain controllers. 

To provide common compatibility, interoperability between multiple distributed controllers and 

interoperability of new SDN domain with traditional legacy network, standard east/westbound 

interfaces were developed. East represents SDN-SDN communication, while the west represents 

legacy-SDN communication. East/Westbound API may require specific communication protocol 

for the essential functions such as exchange reachability information to facilitate inter-SDN 

routing; coordinate flow setup originated by applications, reachability update to keep the network 

state consistent etc. [21].  Examples of few East/Westbound interfaces are : 

  

 ODL [27][31]: Uses SDNi to exchange reachability information across multiple domains 

 Onix[32]:  Uses Zookeeper for easy application development by providing a Distributed 

Hash Table (DHT) storage and group membership 

 Hyperflow [33]: Uses WheelFS as a file system for controller communication in a domain 

 DISCO[34]: Uses advanced message queuing protocol (AMQP) based on messenger and 

agent approach responsible for the advanced distribution of data and control information 
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C) Northbound API:  
 

Northbound interfaces play an important role as a bridge between control and application plane to 

provide the network's programming abstraction for application development. Northbound API is a 

software-based interface rather than hardware-dependent and lacks widely accepted 

standardization like OpenFlow southbound interface. Due to variation in applications, their 

requirements, application portability and interoperability among different control platforms, it is 

challenging to develop open & standard northbound interface. For example, the API requirement 

for security applications is different than routing, monitoring or financial applications.   

 

To address common and standard northbound API, Open Networking Foundation (ONF) created 

Northbound Interface Working Group (NBI-WG) in 2013 to define and develop the prototype for 

the NBI. There is a broad range of northbound APIs used by SDN controllers and mainly divided 

as 1. RESTful API, 2. Programming languages used by northbound API and 3. Specialized Ad-

hoc APIs.   

 

1. REST(Representational state transfer) API 

REST is a de-facto standard for interactive applications. It defines six constraints to restrict server-

client interaction in a way to gain desirable performance, maximum scalability and interoperability 

of software interaction. Below are the six constraints every API needs to follow in order to be 

RESTful [35]:  

 

1. Client-Server Architecture 

Separation of user interface concern from data storage is the key principle of client-server 

constraints. It improves the scalability for server components and portability of the user interface 

across multiple platforms. That means different applications; using different programming 

languages can use the same function of RESTful API in SDN. Applications in the SDN serves as 

"client" while SDN controller works as a "server".    

 

2. Stateless  

Client-server interaction contains intrinsic and extrinsic state. Intrinsic state, also known as 

resource state, consists of information that is independent of the server's context and stored on the 

server. This makes the information shareable to all clients of the server. Extrinsic state, also known 

as application state, is stored on each client rather than the server, making the communication 

stateless. It consists of information that is dependent on the server's context and so cannot share. 

Clients are accountable for passing the application state to the server when it needs it. It also 

improves reliability, scalability and simplifies implementation; however, network performance 

may decrease as redundant data to be sent in a series of requests may increase.   
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3. Cache 

To improve network performance and scalability by reducing client-server interaction 

partially or entirely, commonly used information can be stored locally on the client-side. 

Cache constraints required that data within responses are labelled implicitly or explicitly 

as cacheable or non-cacheable. If the response is cacheable, data can be reused from the 

cache without requesting the same information. However, it imposes trade-off on reduced 

reliability if stale data on cache differs from the server's information response if the request 

was made.  

 

4. Layered System 

With this constraint, REST API must be developed to not see beyond the immediate layer 

with which it interacts. For example, application (client) interacts with neighbours (proxy, 

load balancer, server etc.) cannot see beyond neighbour. With REST northbound API, the 

application doesn't need to learn or understand southbound API languages like SNMP, 

SSH.  Security can also be added as a layer on top of the web services which splits business 

logic from security logic. It enforces security policies on data crossing an organizational 

boundary by adding security as a separate layer. Some disadvantages with this constraint 

are added overhead and increased latency which ultimately affects user experience. 

 

5. Uniform Interface  

Uniform Interface between components is a fundamental architectural need of RESTful 

API. Information retrieved can be in a different format; however, it is presented in the same 

way. In addition to simplifying the overall system architecture, visibility of interactions is 

also improved by applying generality to the component interface.  

 

6. Code-In-Demand 

Optional REST constraint as some security appliance configuration doesn't support it. It 

extends the API functionality by transferring executable code into API calls to run on 

server-side. Compiled components like Java applets and client-side scripts such 

as JavaScript are examples of executable applets and scripts. 

 

In SDN, an application may use REST APIs to send an HTTP/HTTPS GET message through an 

SDN controller's IP address while POST requests are used to create, update, and delete data. 

RESTful API is predominantly used northbound interface till the date. SDN Controllers that use 

RESTful API as their Northbound API include DISCO, ElastiCon, Floodlight, HP VAN SDN, 

Unified controller, OpenContrail, OpenDaylight, ONOS and sMaRtLight.  

 

 

 

 

https://en.wikipedia.org/wiki/Security_policy
https://en.wikipedia.org/wiki/Java_applet
https://en.wikipedia.org/wiki/JavaScript
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2. Programming Languages  

 
Another variant of the northbound interface offered by the SDN controller is in the form of 

programming languages. As computer languages are shifted from assembly level language ( x86 

architectures) to high-level programming languages (Python and Java), network programming 

languages are also evolved from low-level (OpenFlow) to high-level programming languages 

(Frenetic, Procera, Nettle etc.). In SDN, high-level programming language enables various benefits 

like a high-level abstraction to simplify programming of forwarding devices, code-reusability in 

the control plane, software modularization, and productive and problem-focused environment to 

speed up development and innovation of network virtualization etc. The biggest challenge 

addressed by programming languages in pure OpenFlow based SDN is to ensure multiple tasks 

(routing, access control, monitoring) running on a single application. Typically, each application 

defines its own rules and policies without knowing rules generated by another application. In such 

a case, underlying forwarding devices might have a conflicting set of rules generated and installed 

by different applications, hindering regular network operation. Programing languages help to 

resolve such issues using reactive or proactive flow installation mechanism. Table 3 depicts the 

classification of SDN programming language[36]:  

 
Table 3: SDN programming language classification [36] 

Flow Installation defines how forwarding rules can be installed on switches. 

 

 Reactive Approach: Packet is forwarded to the controller if no flow information available 

when a packet arrives. It introduces latency as each packet is sent to the controller for flow 

installation. 

 

 Proactive Approach: Pre-defined rules and actions are installed on flow tables, and 

programming language performs proactive installation and pre-compute forwarding tables for 

the entire network. Simultaneously, the controller only modifies flow table in case of link 

failure or external event. As every packet isn't sent to the controller in this approach, it 

eliminates latency.  
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Programming Paradigm provides different ways of building the structure and elements of any 

program. The imperative approach is traditional and specifies every step to resolve any particulate 

issue; however declarative approach defines the program's nature and its result but not its 

functionality or working mechanism. The declarative approach has sub-category [36]:  

 

 Logic Programming: Compiler executes an algorithm that scans all possible combinations  

 Event-Driven Programming: Enables program to respond to any particular event. As soon 

as an event is received, automatic action is triggered. This action can either be some 

computation or trigger another event. 

 Functional Programming: Based on evaluating some mathematical functions and reactive 

programming, it enables programs to react to external events.  

 

Policy Definition defines a set of conditions (policy rules to apply) and a respective set of actions 

to perform when there is a match. Static policies are the more traditional approach for firewall 

filters. They contain a pre-defined set of rules and actions while dynamic policies change according 

to network situation. List of certain widely used programming languages are as below [36]: 

    

 Frenetic: Defines high-level programming abstraction with reactive flow installation 

approach, dynamic policy list and function reactive programming approach 

 Procera: Provides extensible and computational framework using reactive flow installation 

approach, dynamic policy list and function reactive programming approach and used for 

policy handling. 

 Pyretic: Upgraded version of frenetic supports both reactive and proactive flow installation 

and Imperative programming approach. Same as Procera, it is used for policy handling 

 FML: It supports reactive flow installation, static list of policies and declarative(logic) 

programming approach, used in the enterprise network. 

 NetKAT: It supports both reactive and proactive flow installation with a dynamic set of 

policies and  functional programming paradigm, used for network mapping and traffic 

isolation 

 

3. Specialized Ad-hoc API  

 

Many existing SDN controllers use customized northbound interface according to their needs. 

SFNet is one of such high-level northbound API which translates application requirement into 

lower-level service request. With limited scope, it supports congestion network status request, 

bandwidth reservation, multicast etc. Yanc proposes a general control platform based on the Linux 

and virtual file system (VFS) abstraction, making it easier to develop SDN applications. NOSIX, 

PANE, NVP, SDMN are another example of northbound API. 
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3.2. SDN Controller 

 

Initiation of SDN came with the SDN controller notion, which is the network operating system 

used to automate orchestration of network by using programmable control APIs. The main 

challenges with SDN deployment are the placement of the SDN controller and its architecture to 

use. With that perspective, there are two well-known approaches for SDN deployment:  

 

1. Centralized Controller Approach: Single controller is used to facilitating and managing all 

forwarding devices in the data plane. It initially implemented to overcome traditional 

networking limitations such as scalability, complexity, vendor dependence [37]. 

 

2. Distributed Controller Approach: Multiple controllers across the network are used to facilitate 

and manage forwarding devices in large networks [37].  

Figure 26 :  Centralized vs Distributed SDN controller 

 

As shown in Fig. 26, centralized controller has a global view of the entire network and nodes in 

data plane fetches most updated data as only a single controller manages the whole network. 

Although a centralized approach provides better performance and user experience than a traditional 

network, the bottleneck is a significant issue in an extensive data centre network. As data centre 

has massive user traffic which varies according to demand, the standalone controller cannot 

process traffic efficiently; introducing latency, availability, performance and security related 

issues.  NOX controller is one of such example which cannot handle massive incoming traffic.  
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Floodlight controller is another Java-based centralized controller which Big Switch Networks 

developed. Trema, Medrian, Programmable flow, Rosemary, Ryu are few other examples of 

centralized controller approach. The distributed controllers designed to mitigate the limitations of 

a centralized controller. Distributed controller approach classified in four sub-categories: 

Physically Distributed, Logically Distributed, hierarchically distributed and hybrid controller 

distribution. 

 
Figure 27 :  Classification of Distributed Controller [36] 

In the Physically distributed approach, a large network is divided into multiple domains. Each of 

such small domains is managed and facilitated by individual local controllers. ONIX is an example 

of a physically distributed controller. Each local controller updates others periodically to maintain 

the same global view of the network in all controllers. Each controller has a different responsibility 

in the logical distributed approach and updates other controllers whenever network state changes. 

DISCO is an example of such a controller. The hierarchically distributed controller has a vertical 

structure with more than one layer of controllers in the control plane. Lower/intermediate layer 

controller manages a smaller network domain the same as physically distributed; however, they 

don't communicate internally with each other and instead update the root/top layer controller. This 

approach sidesteps a single point of failure but faces more extended path travel for traffic flow. 

Kandoo controller uses a hierarchically distributed system. Hybrid controller approach is a mixture 

of other techniques that impose each other's benefits while avoiding individual limitations. 

SOX/DSOX is an example of a hybrid approach [38].   

 

Distributed controller approach also faces specific challenges such as i) Number of Controllers and 

its placement in control plane should improve network performance without degrading control 

plane functionality ii) Inter-controller latency which varies depending on the number of controllers 

in control plane iii) Controller-forwarding device (switch/router in the data plane) mapping is static 

which means links and positions of controller-switch cannot be changed. Thus, it increases the 

chance of a local controller being overloaded with incoming traffic [38].  
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3.2.1. Industry Adoption for SDN  

 

With the emerging trend of network virtualization and SDN development, giant networking 

vendors started to adopt SDN platform in late 2012. For example, Vmware (Dominant industry in 

virtualization) acquired Nicira(Company focused on network virtualization & software-defined 

networking) in August 2012[39]. Later, Cisco acquired Cariden (Organization service: Traffic 

management solution, network planning & designing for telecommunication service providers ) in 

November 2012[40].  In the row, Juniper acquired Contrail Systems (Company focused on SDN 

& open-source network virtualization) in December 2012[41].  

 

Vmware NSX referred to network hypervisor is the SDN solution to implement virtualized 

network deployment along with zero-trust security. As server virtualization offers virtual machines 

to compute,  network virtualization using NSX enables programmatically provisioned virtual 

networks that can be managed independently from underlying physical devices. Entire network 

architecture, including L2-L7 layer network services like east-west routing, logical switching, 

firewall security, network management, bridging for VMs, automation of virtual networks can be 

configured and managed using NSX hypervisor. VMware offers two product variations of NSX: 

NSX for vSphere and NSX for multi-hypervisor. NSX for vSphere is suitable for VMware 

deployed environments, while NSX for MH is designed to support cloud environments that 

leverage open standards, such as OpenStack[42].  

 

Cisco ACI(Application Centric Infrastructure) is a new approach called spine-leaf architecture, 

leveraging SDN to provide network automation with multicloud support and zero-trust security. 

This 2-tiered data centre infrastructure offers Spine and leaf layer is also known as Network fabric. 

Access switches in leaf layer aggregate traffic from servers (EoR or ToR) while spine switch 

interconnects all leaf switches in a full-mesh topology. Once all network devices are 

interconnected, the fabric can be controlled using APIC(Application Policy Infrastructure 

Controller) [43].  

 

Juniper Contrail Networking is another SDN based solution that orchestrates virtual networks and 

network services to provide network automation, agility and interoperability for the heterogeneous 

cloud environment. Fast, scalable and open Juniper contrail solution enables changes in virtual 

networks within a second, supports open & automated cloud architecture (Openstack, Cloudstack, 

Openshift, Vmware Vsphere etc. ) for seamless integration of physical and virtual assets [44].  

 

The Linux Foundation has started open-source SDN project called "The OpenDaylight Project" on 

8th April 2013 by collaborating with the IT industry leaders like Big Switch Networks, Cisco, 

Citrix, Ericsson, IBM, Microsoft, Brocade, Juniper Networks, NEC, Red Hat and Vmware. The 

project's main objective was to create an industry-supported & community-led open-source 

platform for fast adoption and innovations of SDN & NFV [45].       
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3.2.1.1.  Juniper Contrail 

 

Contrail Networking works with any standard IP Clos architecture (type of non-blocking, 

multistage circuit-switching network that was originally used as method of switching telephone 

calls)  in a data centre. It performs configuration operations like Day 0 operations or service 

configurations using an open, adaptable and standardized protocol such as netconf/rpc.  Fig. 28 

presents the architecture of Juniper Contrail:  

Figure 28: Juniper Contrail Networking Architecture [46] 

Juniper contrail consists of the following key components :   

 

1. Contrail Networking management Web GUI and plug-ins 

Juniper contrail integrates with the service provider's operations support systems/business 

support systems (OSS/BSS) and various orchestration platforms like OpenShift, 

OpenStack, Kubernetes, Mesos, VMware vSphere. Such integrations are built, certified and 

tested with technology coalitions like Canonical, Red Hat, Mirantis, NEC. Contrail 

communicates with those orchestration platforms using the northbound REST API. 

Contrail web GUI called Contrail command is used for management and configuration 

purpose[46].  

 

Commented [MOU1]: Have you defined anywhere 
what a Clos switching architecture is? 

Commented [DP2R1]: I have not explained it explicitly 
as IP Clos but covered 3-tiered vs flat data center 
architecture in section 2.1(page no. 13-16)  
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2. Contrail Controller 

 

A centralized controller in data centre management network provides the following 

functions :  

 

1. Network Configuration  

The controller accepts a request from API for resource provisioning like adding a new 

virtual network, new endpoints etc. It converts the high-level abstract request into low-

level directions at the data plane. It also provides configuration functions via 

netconf/rpc, tftp/sftp for ZTP/image transfer, BGP/XMPP (evpn,ip-vpn) for route 

leaking, SNMP, jflow/sflow, and gRPC (for devices) for analytics collection[46]. 

 

2. Network Control 

It maintains a scalable, highly available network model and state by uniting itself with 

other peer instances. It uses Extensible Messaging and Presence Protocol (XMPP) for 

the Contrail Networking vRouters provisioning, and MP-BGP(open industry-standard) 

to exchange network connectivity and state information with peer physical routers. MP-

BGP is the protocol used for routing the overlay networks and north-south traffic 

through a high-performance cloud gateway router[46]. 

 

3. Network Monitoring 

Contrail controller collects, stores, correlates and analyzes data across the network. 

Such data can be analyzed with SQL style queries through Web GUI and presented to 

the end-user or network applications in the form of statistics, logs, events, and errors. 

Northbound REST API or Apache Kafka enables diagnostics and visualizations of 

physical underlay and virtual overlay network. Users can also configure live packet 

captures of traffic using built-in GUI features[46]. 

 

3. Contrail Networking vRouter 

  

Contrail Networking vRouter is implemented on the NFV infrastructure or cloud compute 

nodes in one of the two high-performance modes 1. As an Intel DPDK(Data Plane 

Development Kit )-based process 2. As a Linux kernel module. Each vRouter is associated 

with at least two control nodes for optimizing system resiliency. It ensures native Layer 3 

services for the containers/virtual machines of the host/ Linux host by collecting VPN, 

network tenancy, and reachability information from the control function nodes. In 

multitenant and virtualized or containerized environments, forwarding plane provides L2 

bridging & L3 routing using vRouter. Along with the load-balancing feature, vRouter's 

built-in L3 & L4 firewall functionality provides security between virtual networks in a 

multitenant environment[46]. 
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3.2.1.2.  OpenContrail 

 

Juniper Networks has launched Apache 2.0 licensed open-source project "OpenContrail" in late 

2013 to foster innovation in networking and drive SDN adoption in networks. It allows the 

developer to contribute to the project and provides flexibility to service providers and businesses 

to adjust contrail networking to their needs. The OpenContrail System has three basic 

implementation blocks : 

 

1. Multi-tenancy: Provides Closed User Groups (CUGs) to sets of VMs using virtual networks. 

It is also known as network virtualization or network slicing.  

 

2. Gateway functions: Connects virtual networks to physical networks and non-virtualized server 

or networking service to a virtual network via a gateway router (e.g., the Internet) 

 

3. Service chaining: Directs traffic flow from a sequence of virtual or physical network elements 

such as load balancers, firewalls, Deep Packet Inspection (DPI). It is also known as Network 

Function Virtualization(NFV).  

 

    Figure 29 : OpenContrail Architecture [47] 
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A. OpenContrail Architecture :  

 

OpenContrail System consists of two parts: the SDN controller and set of vRouters. It has three 

significant interfaces: a set of northbound REST APIs to communicate with Orchestration System 

and the Applications, southbound interfaces to communicate with virtual network entities (XMPP 

for vRouters) or physical network devices (BGP and Netconf for gateway routers and switches) 

and an east-west interface (standard BGP) used to peer with other controllers [47]. As shown in 

fig. 29, the controller has three main components :  

 

1. Configuration Nodes: Responsible for  storing a persistent copy of the intended 

configuration state and translating the high-level data model into the low-level abstract 

model in the form suitable for communicating with network entities 

 

2. Control Nodes: Responsible for maintaining a consistent network state by propagating low-

level state information reliably to and from network entities and peer systems.  

 

3. Analytics nodes: Responsible for capturing, abstracting and presenting real-time data from 

network elements (physical or virtual) to applications in a suitable form like statistics, logs. 

 

vRouter :  

vRouter provides the same functionality as a physical router with software-based implementation. 

vRouter routes packets from one virtual machine to another using set-of server-to-server tunnels. 

Set of tunnels form overlay network on the top of the physical ethernet network. Each vRouter has 

two major parts: User Space Agent is used to implement the control plane, and the Kernel Module 

is used to implement the forwarding engine[47]. 

 

OpenContrail Forwarding Plane :  

The forwarding plane is employed using an overlay network. The overlay network can be an L3(IP) 

or L2 (Ethernet) overlay network. Layer-3 overlay network supports both multicast and unicast. 

MPLS over GRE/UDP supports both L3 & L2 overlays while VXLAN supports layer 2 overlay. 

vRouter proxies certain type of traffic (e.g. DHCP, ARP, DNS )to avoid flooding[47]. 

 

Nodes:  

As shown in Fig. 30 below, the OpenContrail system works as a collaborating set of nodes running 

on general-purpose x86 servers. All nodes in active-active mode can be implemented as a separate 

virtual machine or physical server. Due to active-active nature of the nodes, the system provides 

fully redundant and scalable architecture. Fig. 30 doesn't represent underlying physical routers, 

switches and interface from every node to the analytics node. Gateway Nodes(physical routers, 

switches) connects the tenant’s virtual network to physical network(e.g. Internet, Datacentre, 

VPN). Service nodes are physical network elements used to provide network services like DPI, 

IDS, IPS, load balancer, WAN optimizers. Service chain is a mixture of both physical and virtual 

services [47].  
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Figure 30: OpenContrail System Implementation with Analytics & Compute Node internal structure [47] 

Analytics Node 

XMPP 
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Compute Node: Compute node is a general-purpose server that hosts tenant VMs or hosts 

virtualized services. According to the standard configuration, KVM or Xen is used as the 

hypervisor and Linux is the host OS. Fig. 30 above represents a Compute Node's internal structure. 

There are two main building blocks of compute node: vRouter Agent and vRouter Forwarding 

Plane. vRouter Agent is the user-space process running inside Linux. Each vRouter Agent is 

associated with minimum two control nodes for redundancy and responsible for exchanging 

control state & receiving low-level configuration state like routing instances, forwarding policies 

from control plane using XMPP.  It reports analytics state such as statistics, logs and events to the 

analytics nodes and works with Nova Agent to discover existence and attributes of VMs. vRouter 

Forwarding plane resides in the Linux Kernal and responsible for encapsulating and decapsulating 

packets to & from overlay network. Forwarding plane assigns the packets received from overlay 

tunnels to routing instances based on labels, VNI(virtual network identifier) or destination lookup 

in FIB  and applies forwarding policy using flow tables. Forwarding plane supports L3 forwarding 

using LPM(Longest Prefix Match), L2 forwarding using destination MAC address, MPLS over 

GRE/UDP and VXLAN encapsulation for overlay networks.   

 

Analytics Node: As shown in Fig. 30, Analytics node uses north-bound REST API to communicate 

with applications; uses distributed synchronization mechanism to interact with other analytics 

nodes;  and uses Sandesh (XML-Based protocol) for collecting high volumes of analytics 

information from control and configuration nodes to the collector. Sandesh uses two types of 

messages: Asynchronous and Synchronous.  Messages received by Analytics node to report events, 

logs and traces are called Asynchronous while messages exchanged for sending and receiving 

requests-response to collect specific operational states are called Synchronous. All information 

gathered by the collector is stored in NoSQL database.  Rules Engine collects operational state 

automatically when any specific events happen. REST API server provides a northbound interface 

to client & analytics applications to retrieve operational state and querying the analytics database.  

Query Engine is responsible for executing queries received over REST API and provides flexible 

accessibility to a large amount of analytics data.   

 

Configuration Node: Configuration Node consists of various building blocks, as shown in Fig. 31 

below. REST API server provides a north-bound interface to orchestration system or other 

applications and installs configuration state using the high-level data model. The Redis message 

bus is used to communicate among internal components. Schema Transformer learns about high-

level data model changes over Redis message bus and transforms it into corresponding low-level 

data model changes. IF-MAP server pushes those compound low-level data model changes to 

control nodes using southbound interface IF-MAP. Cassandra is a scalable and fault-tolerant 

database used for insistent storage of configuration while Zookeeper is used to implement 

transactions and to allocate unique object identifiers. Configuration node interacts with the 

Orchestration system via a REST interface, with control nodes via IF-MAP and other configuration 

modes via a distributed synchronization mechanism. 
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Figure 31: Internal Structure of Configuration & Control Node [47] 

 

Control Node: As shown in Fig.31, Control node interacts with multiple other types of nodes. It 

receives configuration state from configuration nodes using IF-MAP while exchange routes with 

vRouter Agents on compute nodes using XMPP. It also exchanges routes with other control nodes 

using IBGP protocol to maintain the same network state in all control nodes. It proxies certain kind 

of traffic using XMPP on behalf of compute nodes. Control nodes use NetConf to send 

configuration and BGP to exchange routes with other Gateway nodes (switches, firewall) [47].  
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Control & Management Plane Protocol 

IF-MAP(Interface for Metadata Access Points): The IF-MAP is an open standard client/server 

protocol. It is developed as one of the core protocols of the Trusted Network Connect (TNC) open 

architecture by the Trusted Computer Group (TCG). In OpenContrail, it provides a mechanism of 

defining data model and protocol to publish, subscribe, and search datastore contents. IF-MAP 

distributes configuration information from the Configuration Nodes to the Control nodes in 

OpenContrail system. Control nodes can use subscribe mechanism to request an only interested set 

of configuration information [47].  

XMPP: The Extensible Messaging and Presence Protocol is an XML-based communication & 

messaging protocol. It was named Jabber originally and used for instant messaging, contact list 

maintenance, and to present information. Later, it was evolved extensively into general publish-

subscribe message bus. XMPP is used as a general-purpose message bus between the compute 

nodes and the control node in OpenContrail system to exchange various information like routes, 

statistics, configuration, operational state, events and logs [47].   

BGP: Border Gateway Protocol in the OpenContrail system is used to exchange routing 

information between control nodes and Gateway nodes among control nodes.  

Sandesh: Sandesh is also an XML-based protocol used for reporting analytics information. The 

XML message structure is described in published schemas. Each node has a Sandesh connection 

to one analytics node to exchange information[47].  

 

OpenStack Integration 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 32 : OpenStack Integration [47]  

Fig.32 shows the integration between OpenContrail, OpenStack, Neutron and Nova. The Nova 

Agent in the compute node creates virtual machine upon instruction receives from OpenStack Nova 

and also communicates with the OpenContrail Neutron plug-in to retrieve new virtual machine’s 

network attributes (e.g. the IP address). The Nova Agent informs the vRouter agent to configure 

the virtual network once the virtual machine is created (e.g. new routes in the routing-instance). 
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3.2.1.3.  Tungsten Fabric 

 

Juniper based OpenContrail was migrated to The Linux Foundation in March 2018 with the 

intension of making OpenContrail project more ‘open’, expanding open-source SDN developer 

community for rapid development and to attract new users. In the context of providing better 

separation between Juniper’s commercial product and Linux foundation’s open-source project, 

“OpenContrail” was named as “Tungsten Fabric”. Tungsten Fabric provides scalable networking 

platform with a single point of control, networking and security analytics and observability. It also 

supports diverse multicloud environment with public, private or hybrid cloud deployment (e.g. 

AWS, FCE) and integrating various cloud technology stacks including Mesos, Kubernetes, 

OpenStack and Vmware. Many industry leaders including Intel, Aricent, Mellanox, AT&T, Bell, 

Cavium, CertusNet, Lenovo, CloudOps, CodiLime, Juniper Networks, Mirantis, SDN Essentials, 

Netronome, Orange, TechTrueUp and Yandex came forward to contribute in open-source Linux 

based project enabling a vibrant community of end-users and developers.  

 

Tungsten Fabric provides highly scalable virtual networking platform that integrates existing and 

new physical-virtual networking infrastructure and works with various container orchestrators and 

virtual machines. Tungsten fabric impeccably connects workloads in different orchestrator domain 

using networking standards such as VXLAN overlays & BGP EVPN control plane. E.g. Containers 

managed by Kubernetes and virtual machines managed by VMware vCenter. 

 

A. Tungsten Fabric Interaction with Orchestrator:  

 

The Tungsten Fabric controller works with cloud management systems like OpenStack or 

Kubernetes to ensure network connectivity for newly created virtual machine (VM) or container 

according to the security and network policies specified in the orchestrator or controller. Tungsten 

Fabric consists of two primary software components [48]:  

 

 Tungsten Fabric Controller:  Set of software services responsible for maintaining networks 

and network policies which are running on some servers for high availability 

 

 Tungsten Fabric vRouter: Responsible to enforce network and security policies, perform 

packet forwarding and installed in every host that run workloads like virtual machines or 

containers 

 

Fig. 33 below shows the deployment of tungsten fabric. Tungsten fabric uses a software plugin to 

integrates with the orchestrator. For example, CNI (container network interface) and Kube-

network-manager components interact to network-related events using the Kubernetes k8s API, 

OpenStack implements the Neutron API. End-user can request necessary application resources via 

the portal which offers a set of services to select. The portal's requested services are translated into 

API calls that trigger underlying cloud orchestrator to create virtual machine or containers with the 

necessary disk, CPU, and memory as per user requirement. The various service offering includes 

VM with a specific disk, CPU, memory or full application stack with multiple pre-configured 

software instances[48].    
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Figure 33: Tungsten Fabric Deployment and interaction with Orchestrator[48] 

 

 



 

53 
 

As shown in fig. 33 above, an orchestrator interacts with tungsten fabric via plug-ins when any 

event triggers, which in turn sends a request to the agent for route installation in the VRFs of virtual 

networks and agent configures them the forwarder.  Each interface of the virtual machines running 

on the host has VRF containing L2 and L3 forwarding tables. The vRouter implements Integrated 

Routing and Bridging (IRB) function the same as physical routers. Fabric VRF connects to the 

physical interface of the host. Different virtual networks with overlapping IP and MAC addresses 

can be configured using VRFs however, communication between them is not allowed to avoid 

confusion between the same network and avoid network congestion. Packets from a VM on one 

host to another VM on the different host are encapsulated in MPLS over UDP/GRE.  VXLAN is 

used for encapsulation if the destination is the host IP running destination VM. The controller 

installs a set of routes in VRF of each vRouter according to network policy configuration. E.g. 

VMs in the same network communicate with each other but forbids with VMs in different networks 

by default unless network policy is explicitly configured to allow traffic. The controller 

communicates with vRouters via XMPP. Below is the logical flow of network configuration on a 

new VM with a single interface [48]:  

 

1. Networks(IP addresses pool used for new VM’s interfaces) and network policies are 

configured in either the Tungsten Fabric or an orchestrator using CLI, UI, or northbound 

REST API.  

2. The user of the orchestrator launches a VM request with the network interface. 

3. The orchestrator selects a  new VM host and requests the compute agent to fetch the VM 

image and start it.  

4. The Tungsten Fabric plugin receives API calls or events from the orchestrator’s networking 

service to set up the networking for the interface of the newly started VM. Further, 

Tungsten Fabric REST calls are sent to the Tungsten Fabric controller 

5. Tungsten Fabric controller requests vRouter agent for connecting new VM interface to the 

virtual network. The vRouter agent further instructs the vRouter Forwarder to attach the 

VM interface to the virtual network VRF. In case VRF is not present, it is created. 

6. The compute agent in vRotuter starts the VM, which then requests for interface ip address 

using DHCP requests. The vRouter proxies them and responds with the interface IP, DNS 

server addresses and default gateway. 

7. The vRouter installs routes to the VM’s IP and MAC address with a next hop of the VM 

virtual interface once the interface has IP address from DHCP  and in an active state. 

8. The vRouter installs a label route in the MPLS table and sends an XMPP message to the 

controller with a route to the new VM. The route has the server’s IP address as next-hop 

and encapsulation protocol specified by the label. 

9. The controller distributes the new VM’s routes to the other vRouters having VMs in the 

same network and in different networks with network policies that allow traffic. 

10. The controller sends routes of other VMs to the vRouter of the new VM as per policy 

configuration. 

In the end, all the vRouters in the datacenter are updated with the same routes in the VRFs to 

implement network policy configuration, considering new VM. 
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B. vRouter Architecture  

Figure 34: Tungsten Fabric vRouter  functional Architecture[48] 
 

vRouter agent runs in user space of host OS and forwarder runs as a kernel module. vRouter can 

be deployed in four ways: Kernal Module, DPDK, SR-IOV & Smart NIC. Kernal module is the 

default deployment mode while DPDK mode provides forwarding acceleration using Intel Library. 

NIC can directly access from VM in SR-IOV mode. In Smart NIC mode, vRouter forwarder is 

implemented in programmable NIC.  vRouter agent builds up session with controller and receives 

information about routes, VRFs, ACLs. vRouter agent stores all information in its database and 

uses required information to configure forwarder. Each VRFs maintains its forwarding and flow 

table. MPLS labels are selected by vRoute1r when VM interface comes up and global within just 

vRouter while VXLAN network identifier is global across all VRFs of different vRouter with the 

same virtual network in tungsten fabric domain. Each VM or container receives default gateway 

IP address in DHCP response packet.  When a packet is destined to outside subnet, ARP request is 

generated for MAC corresponding to the gateway IP address. vRouter provides fully  

distributed default gateway by responding with its own MAC address[48]. 
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C. Service Chains 

Figure 35: Service Chain Implementation [48] 

A service chain is created when traffic between two networks has to flow through multiple network 

services (e.g. firewall, load-balancer, TCP-proxy) called Virtual Network Functions (VNF). 

Tungsten Fabric supports service chains in both VMware vCenter and OpenStack environments. 

When network policies with service instances(VNF) are applied to networks, the controller installs 

routes in VRF with ‘left’ & ‘right’ VNF interfaces to direct traffic through VNFs. When the 

controller receives encapsulation routes back from vRouter VNF, it distributes routes to other 

vRouter having red & green VRF. Thus, the set of routes directs traffic between red & green 

network using service instances. The left & right label identifies interfaces in the order they become 

active upon VRF booting. Network services are included in network policies and are of three 

types[48]:  

 

 Layer 2 Transparent – Commonly used for deep packet inspection services. Ethernet frames 

sent into the service has destination MAC address of the original destination. 

 Layer 3 (In-Network) – Used for firewalls, TCP proxies, load balancers. Ethernet frames 

sent into the service has destination MAC  address of services’ ingress interface. It 

terminates L2 connection and uses a new frame with egress MAC set to source MAC.  

 Layer 3 (NAT): It is same as L3(In-Network) type; however, service changes the source IP 

address to routable one from the destination. 
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Tungsten Fabric supports the following APIs: 

 

1. REST API for controller configuration: All configuration of tungsten fabric cluster is 

accessed on port 8082 through REST API 

2. REST API for access to analytics data: Used to configure & retrieve alarms for events 

crossing the threshold at any time series stored in the analytics database 

3. Python bindings mapping to the REST configuration API: Generated automatically while 

compilation and easy to use as no usage of JSON payload 

 

Tungsten Fabric supports various virtual networking orchestrators : 

 OpenStack 

 Kubernetes 

 VMware vCenter 

 

To access external IP addresses from VMs within a data centre and to allow users from the 

outside network to access some VMs in a data centre, tungsten fabric provides several ways :  

 BGP-enabled gateway accessible via the VPN connection 

 Underlay routing connection to the local gateway in vRouter 

 Using source-based NAT(Network address translation) in vRouter 

 

Apart from that, tungsten fabric supports programming languages like C++, Python, Go, Node.js. 

Tungsten Fabric version 5.0 & later uses microservices based on docker containers. 

D. Known Limitations for Tungsten Fabric 5.0.1 

 ARP packets may not be handled correctly by DPDK-based compute node if only a single 

CPU core is assigned to vRouter  

 For DPDK based vRouter used cases(SNAT, LBaaS), jumbo MTU size is not supported 

 Analytics services do not support Keystone V3 

 HA(High Availability)provisioning of Kubernetes master is not supported. 

 Docker restart hangs uncertainly, and Docker daemon stops running post the hang. 

 OpenShift deployer code cannot choose different interface names for different physical 

nodes. 

 NTP is not installed on nodes during OpenShift deployments. It needs to be installed and 

start ntpd manually after provisioning. 

 Dynamic mirroring for VxLAN encapsulation does not work without Juniper header 

 

Due to scalable & flexible nature of Tungsten Fabric with virtual machines, bare metal, CNI 

plugins, private & public cloud, TF is widely suitable for cloud-native platforms. The scalability 

feature of Tungsten fabric makes it highly available and resilient against failure while modularity 

feature enables users to customize, read, test and maintain each module separately. 
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3.3. SDN Benefits and Limitations 

 

 SDN Advantages :  

 

1. Centralized Network Provisioning and Management 

Traditional network infrastructure doesn’t allow end-to-end monitoring of network 

elements. SDN eliminates that challenge by network automation, traffic programmability, 

and separating data & control plane, enabling unified physical and virtual network 

provision. Along with provisioning, SDN controller provides centralized and policy-driven 

network management[49].  

 

2. Greater Scalability & Agility 

Compared to traditional network infrastructure, where resource purchasing, configuration, 

and changes are time-consuming, SDN provides quick resource provisioning and rapid 

network infrastructure changes at demand[49].  

 

3. Granular Security 

The rise of virtual machine usage in enterprise network poses a challenge for content 

filtering and firewall appliances. SDN controller enables the central control point for 

enforcing policy and security in the entire network[49]. 

 

4. Reliable and timely content delivery 

SDN’s capability to manipulate data traffic enables quality of service for VoIP (Voice over 

Internet Protocol ) and multimedia transmission. It also helps to stream high-quality video 

traffic, enhancing user experience[49]. 

 

5. Hardware usage optimization 

With SDN adoption, older hardware devices can be repurposed, less expensive devices can 

be deployed at the optimal effect, and new devices with intelligence focused on SDN 

controller can become variable ‘white box’ switches. SDN allows shared resources to use 

for multiple applications at need, reducing hardware footprint noticeably compared to a 

legacy-driven network where entire hardware was used for a single purpose[49].  

 

6. Openness with Network & Cloud Abstraction  

Applications and services running on SDN technology are abstracted from underlying 

physical hardware using APIs in contract to the legacy network where management 

interfaces are tightly coupled to physical hardware. SDN provides multi-vendor 

interoperability for network & cloud resources through open-APIs like OpenFlow that 

support a wide variety of applications like SaaS, OSS/BSS, cloud orchestration, business-

critical networking apps etc.   
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 SDN Challenges 

 

1. Latency  

Virtualization comes at the cost of latency. Depending on the number of active virtualized 

resources available on the path, interaction speed reduces. It also depends on how the 

hypervisor divides or handle the traffic. With the number of IoT devices booming in the 

market, it is challenging to maintain communication speed. Additionally, in a centralized 

SDN approach, topology discovery produces high overload as the controller needs to 

frequently update underlying switches and scan all ports linearly, which increases response 

time.   

2. Network Performance 

While SDN provides centralized network service management, each network device in 

SDN deployment must be maintained  (monitor, patch, upgrade) separately. Thus, SDN 

doesn’t address the maintenance requirement of individual devices. As SDN provides 

network automation at a large scale, any human errors in configuration or implementation 

can impact the entire network on a large scale. Every first packet of new flow must be 

forwarded to the controller for inspection, and related flow entries must be programmed in 

both aggregation and core switches. An increase in several new flow packets can cause 

network instability or failure. Additionally, all network services and applications have to 

maintain coordination with the control plane for the entire network's global vision. Failure 

in maintaining the consistency of such network states among distributed functions can 

cause serious performance issues.   

   

3. Security 

Cyber attacks are mostly implemented through networks via LAN or WAN. SDN controller 

is the single point of failure for the entire network. There are various security threats in 

SDN deployment, like DDoS attacks in data plane targeting forwarding devices and 

exploiting vulnerabilities in forwarding devices. Attacks on the control plane and 

deployment of malicious applications on controllers can compromise entire network 

operations.  

 

4. Additional Cost 

SDN deployment requires reconfiguration of the entire network to accommodate SDN 

protocols, controllers and supported network devices(routers, switches). Single vendor 

SDN solution is commonly used to avoid interoperability issues. Such vendor lock-in adds 

additional cost for SDN deployment. Apart from that, expertise manpower is required to 

deploy and manage SDN based infrastructure, which adds cost to provide training.   

 

5. Troubleshooting Complexity 

In the case of network failure or faults in underlying devices, it is challenging to trace the 

root cause or figure out the traffic flow path as traffic is encapsulated in SDN. 
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3.4. SDN Used Cases 

 

SDN has numerous use cases ranging from video-collaboration applications, Mobile network 

service orchestration to cloud and virtual multi-tenant data centre networks.  Below are a few SDN 

success stories from leading IT industries. 

 

1. NANTES CHU leverages VMware for its Transformation As A “Digital Hospital” 

(VMware Customer) [50] 

 

2. Bendigo Telco & Cisco Solutions [51] 

 

Industry Health  

Company 

Profile 

The Nantes University Hospital Center in Nantes (France) carries excellence in 

organ transplants, neurosurgery, oncology, and care for severe burn victims.  It 

runs a public service mission to provide local health care for the greater Nantes 
area in France, providing cutting-edge medical expertise. 

Key 

Challenges 
  Ability to manage a large volume of resources including staff reorganization    

 and optimization as part of  Territorial Hospital Group development 

  Innovation to become Digital hospital  

  Relocate hospital’s short-stay, including emergency department by 2026. 

Solutions 

Used 

Software-Defined Data Center (SDDC) Implementation based on VMware NSX 
Data Center solution and vSAN; satisfies security, reliability, and user experience  

requirements  for the CHU’s digital services 

Business 

Benefits 

  Establishment Satisfaction hosted by  the Territorial Hospital Group 

  Increased reputation and  innovative image as a brand name  

  Increased level of security against cyber-attacks  

  Reduced operational & ownership cost 

Industry Telecommunication Service Provider 

Company 

Profile 

Bendigo Telco founded in 2000 is a regional B2B server provider of data, voice 

and cloud solution for private businesses and government organization.  

Key 

Challenges 

The need for an agile, flexible, and multicloud environment allows customers to 

change the service anytime according to their business needs.  

Solutions 

Used 

Implementation of the following architecture solutions : 

1. Cloud Automation and Orchestration: Cisco UCS Director 

2. Data Center Automation: Multi-Site ACI 
3. Security and Identity Management Platforms: Cisco ISE 

4. Email Security Appliance: Cisco ESA 

Business 

Benefits 
  Expanded capabilities, improved scalability and compliance standards 

  Reduce operational cost 

  Secured network architecture against email or endpoint device attacks  

Future 

Plans 

 Expanding software-defined network solutions across Australia & implements 

  managed security solutions for managed detections and response services 
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3. Alibaba Group Optimizes Network with OpenDaylight SDN [52] 

 

4. SURFnet builds Open, Programmable Network to Better Serve Dutch Universities and 

Researchers (Juniper Customer) [53] 

 

Industry E-Commerce  

Company 

Profile 

Alibaba Group is a top global e-commerce company that provides electronic 

payment services (Alipay),  a shopping search engine (AliCloud Search), web sales 

to consumers and businesses (Alibaba) and data-centric cloud computing services 
(Aliyun). It provides a platform for online businesses to connect with hundreds of 

millions of consumers via the Internet.  

Key 

Challenge 

Alibaba organizes the global shopping festival(the world’s biggest one-day online 

sale)  each year on November 11 (11/11) in honour of Singles’ Day. The Rise in 

order creation volumes of up to 80,000 orders per second during the 11/11 shopping 
festival challenges the existing cloud computing infrastructure. It is essential to 

implement scalable, flexible, open and cost-effective cloud network solution to 

eliminate traditional cloud network limitations for managing substantial bandwidth 

consumption and growing demand of a single day.  

Solutions 

Used 

Integration of OpenDaylight platform avoids vendor lock-ins, decouples underlay-

overlay network and separates data and control plane by leveraging VXLAN & 
OpenFlow protocol.  Open and hardware-agnostic SDN solution entirely supported 

existing hybrid cloud environment. 

Business 

Benefits 

  The open, programmable, scalable and customizable solution effectively manages 

varying amounts of traffic(peaks and lows) during every day normal operations 

and on the annual festival  

  With  more than 30,000 brands & 40,000 merchants participated in 2015, global 

shopping festivals offered a high-quality shopping experience to customers that 
resulted in the successful festival with $14.3 billion total GMV (60% higher than 

last year) 

Industry Research and Education 

Company 

Profile 

SURFnet provides network services to 1.5 million students, lecturers, and scientists 

of 190 education and research institutions in the Netherlands. It aims to create fully 
automated service deployment with next-generation network SURFnet8 (The Dutch 

national research and education network (NREN)). 

Key 

Challenge 

Needs to build up the highly available, flexible, secure, open and programmable 

network (SURFnet8) to support ‘BYOD’, research & education-specific 

equipements & softwares  anytime-anywhere in the learning environment   

Solutions 

Used 

The SURFnet8 service layer runs over the optical network with multiple 40 Tbps 
Juniper Networks MX2008 5G Universal Routing Platform and carrier-grade router 

at the core. The MX204 Universal Routing Platform is used at the edge to connect 

more than 300 locations.  Juniper NorthStar SDN controller is the brain of an entire 

network that provides traffic engineering and granular visibility. SURFnet8 uses 
standard APIs at the abstraction layer to provide open architecture. 

Business 

Benefits 

Increased flexibility and quality dramatically in a multifaceted self-service network 
that provides network automation and programmability  

  

http://www.alibaba.com/
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5. Food Passion Started a Delivery Channel in 72 Hours with Cloud Technologies (VMware 

Customer) [54] 

 

6. Gamesys streamlines Online Game Development with Private Cloud (Juniper Customer) 

[55]  

Industry Food and Beverage 

Company 

Profile 

Food Passion, founded in 1987, is a leading food business operator in Asia and 

handles seven brands in Thailand, Indonesia, Cambodia and Malaysia with nearly 

4000 employees in 200 restaurants. Bar B Q Plaza is a Japanese and Mongolian-
style barbecue flagship brand that generates considerable revenue with the dine-in 

concept of ‘cook-it-yourself’: Grill vegetables & meat at your own table. It was 

using a famous messaging app LINE  with physical cards for a membership loyalty 
program 

Key 

Challenges 
  Rigid traditional network infrastructure to cope up with technological changes, 

business needs and market competition 

  The hit of COVID-19 pandemic resulted in six weeks of lockdown, and thus an 
exponential drop in dine-in business revenue introduced the need to expand the 

LINE tool for food delivery along with the membership program. To host a new 

service of food delivery on-premise, it was challenging to afford two months 

period for new server procurement & deployment 

Solutions 

Used 

Food passion decided to migrate its essential functions on cloud solution(AIS 
Business Cloud built on VMware technologies  such as  NSX Data Center, VMware 

vSphere and VMware Cloud Director) for the following reasons :  

  Faster migration with  integration support to legacy software & hardware  

  Cloud provides flexibility to scale up or down resources based on business   

 demands with minimal investment 

  It offers extended security and governance with reduce downtime 

Business 

Benefits 

  Reduced implementation time from two months to three days 

  Increase in business revenue 10 times higher than before through food delivery 

during the global COVID-19 pandemic 

  The number of members (500,000) using a physical loyalty card increased to 

more than double (1.2 million) on the digital LINE platform 

Industry Media and Entertainment 

Company 

Profile 

Gamesys, the online gaming company founded in 2001 with few developers, is 
now leading 19 offices worldwide with more than 1300 employees. It currently 

offers various bingo and casino games like  Botemania, Virgin Games and  

Jackpotjoy through its subsidiaries. 

Key 

Challenges 

Build up agile infrastructure with end-to-end efficiency while accelerating the 

development and release of software into environments. 

Solutions 

Used 

Migration to the private virtual cloud using Red hat OpenStack for cloud 

computing and Juniper Contrail networking for network automation & 
orchestration. 

Business 

Benefits 

Full-stack and automated infrastructure deployment with security and cloud 

provisioning enable faster time-to-market for new games & features. 
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4. CLOUD NATIVE NETWORKING 

 

Cloud-native is an approach to build, run and scale applications predictably & reliably on top of 

potentially unreliable cloud-based infrastructure. The word "cloud" in cloud-native represents 

applications dwelling in the cloud rather than traditional data centres. The word "native" represents 

applications designed to run on the cloud and ultimately utilize the advantage of the versatility and 

distributed nature from the very beginning of application design [56].  

 

Figure 36:  Evolution of Cloud Native Architecture [59] 

 

The Cloud Native Computing Foundation(CNCF) was founded in 2015 under the Linux 

Foundation's umbrella. It defines the cloud-native as below :  

 

“Cloud Native Technology empowers organizations to build and run scalable applications in 

dynamic and modern environments such as public, private, and hybrid clouds. Containers, 

microservices, immutable infrastructure, service meshes, and declarative APIs are vital 

characteristics that define the cloud-native approach. It enables loosely coupled systems that are 

resilient, manageable, and observable and also allows high-impact changes to execute frequently 

and predictably with minimal toil through robust automation “ [59].  

 

The cloud-native approach uses an open-source software stack to  

 segment applications into microservices,  

 packaging each part of microservices into its container and  

 orchestrate those containers dynamically to optimize resource utilization. [59] 

 

Cloud-native has brought a major shift in network architecture, configuration and monitoring 

where core building blocks are evolved from servers to virtual machines to containers, isolation 

units are evolved from heavier to lighter weight, and closed source-single vendor evolved to open-

source multi-vendor and enabled immutability [59].  
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4.1. Motivation for Cloud-Native Architecture 

 

Companies like Netflix, Google, Uber, Airbnb, Tesla, Amazon are setting new benchmarks for the 

IT business market by adopting new technological innovations. The common characteristics 

behind this industry's success are the speed of innovation, always-available services, web-scale, 

and mobile-centric user experiences. The cloud has changed the relationship between business and 

infrastructure, while cloud-native changes the relationship between applications and infrastructure. 

Below are certain factors motivating the development of cloud-native applications :  

 

 Speed  

In today’s market, businesses that can experiment, innovate, deliver & improve quickly 

become the winner. Traditional network & application architecture is not scalable to make 

instantaneous changes or require days to deploy new technology. Hence, it is essential to 

develop cloud-native applications that fully utilise the cloud-computing model to deliver 

changes within seconds. Cloud-native applications enable rapid recovery from failure, 

reduce time to market, enable quick changes,  significantly lower development costs, and 

run across a broad range of infrastructures [57].  

  

 Safety  

Speed without direction and safety is useless. The traditional approach concentrates on 

process engineering to recover from incidents. It includes detailed documentation, an 

architectural review board, lengthy testing cycles; however, that alone is not enough to 

prevent or mitigate the impact of failure. The cloud-native application balances the need to 

move speedily with the needs of availability, stability, and durability.  

 

o Visibility 

It is necessary to enhance visibility into every component of the network and 

applications to establish a profile for normal operation. Any deviations from the 

normal should be reported with factors responsible for abnormal behaviour. Data 

visualization frameworks, monitoring, alerting, behaviour analytics are the heart of 

any cloud-native application architecture [57]. 

 

o Fault isolation & tolerance with auto-recovery 

Monolithic applications possess failure mode where failure in one component fails 

the entire application. Cloud-native applications limit the scope of failure by using 

microservices. It is also essential to prevent cascading failure in multiple dependent 

components due to failure in one of the microservices. We often follow the same 

course of actions like restart system/service, redeploy part of service or application 

with failure etc., to address issues. The cloud-native application performs 

automated detection and recovery without manual intervention[57]. 
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 Scalability 

The most successful businesses today require the ability to respond quickly to increasing 

demands. As compared to the traditional approach where large scale servers are required to 

deploy in advance, today, cloud computing and virtualization makes it possible to allocate 

resources instantaneously on demand. However, applications also need to be scalable to 

support modern cloud-based architecture. Cloud-native applications are stateless and so can 

be created & destroyed rapidly whenever required. It also enhances the ability to respond 

to changes on demand [57].  

 

 Service Integration Support 

The development of mobile applications has vastly changed the client-server interaction 

ration. For example, online banking enables access to banking services anytime from 

anywhere by anyone. The legacy system is not architectured to support this kind of demand 

with wide diversity in mobile platforms. Applications need to support requests from 

different mobile vendors that use different underlying operating systems with different 

versions. The cloud-native application addresses the burden of diversity and service 

integration through design patterns such as API gateways [57].   

 

4.1.1. Traditional vs Cloud-Native Application approach 
 

Traditional Applications Cloud-Native Application 

Traditional applications are developed 

using programming languages C, C++, 

JAVA EE, Cobol 

Takes advantage of best-of-breed modern 

development languages, frameworks and tools 

like Go, Node.js, WebSockets, Python, gRPC  

They are customized and doesn’t support 

dynamic scaling. It requires redundant 

resources to handle the demand peak. 

Some applications are monolithic and 

have strong service dependencies. 

Installing updates may require downtime 

Maximize resilience & portability through 

predictable behaviour and microservice 

architecture that decomposes applications into 

small and loosely coupled independently 

operating services. Thus, It supports scaling, 

frequent and independent updates, failover/ 

restart without impacting other services. 

It is OS-dependent and allows developers 

to form close dependencies between 

applications and hardware, storage, 

backing services, underlying OS. Hence, 

Application scaling and migration across 

new infrastructure  is complex    

It supports OS abstraction by allowing 

developers to use the platform to abstract away 

from underlying infrastructure dependencies. 

Dependant of abstract infrastructure with no 

network or storage limits  

Supports manual deployment and 

maintenance. Network, storage and 

servers are configured and maintained 

manually through human operators. 

Supports infrastructure & system automation, 

dynamic allocation & reallocation of resources 

and continuous delivery.   

 

Table 4: Traditional vs Cloud-Native Application [4][57][58]  
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4.2. Key Concepts of Cloud-Native Architecture 

 

A cloud-native approach to software development has various elements that are inter-related. The 

key characteristics that define cloud-native architecture are DevOps, Continuous Delivery, 

Containers, and Microservices[4][57]-[59].  

 

 DevOps 

DevOps is a combination of ‘Development’ and ‘Operations’ that shorten the system 

development life cycles through continuous development and integration. It builds a 

seamless relationship between development teams and IT Operations that enables speedier 

features delivery, fixes and updates. Cloud-native leverages DevOps' continuous 

development features for agile and scalable software development that can be deployed 

seamlessly across different cloud infrastructures [58].   

  

 Continuous Delivery 

Continuous Delivery is an approach where software is developed bit by bit in short 

development cycles that results in reliable software release at any time with greater speed. 

Continuous delivery also provides a high level of automation. Continuous upgrades 

integrate new software features or functionality and apply fixes easily according to business 

requirements. Automated scalability replaces manual tasks such as software testing [58].  

 

 Microservices 

Microservices represents the decomposition of monolithic applications into independently 

deployable services or protocols that are lightweight by definition and deliver business 

value. Applications built using microservices are considerably easy to test and improve 

continuously, much faster to design and deploy. As microservices decouple monolithic 

applications into individually deployable services, any changes can be made and deployed 

individually without affecting the rest of the application or technology stack. Hence, it also 

reduces the scope of risk with new technology adoption. As compared to monolithic 

applications that scale all components, microservices offer independent & efficient scaling 

of services [58][61].  

 

 Containers 

Software development usually involves many overhead and dependencies on particular 

hardware or libraries( prewritten code, configuration data) to run it properly. To overcome 

such limitations, applications and dependant elements were bundled inside a virtual 

machine; however, it came up with a massive size in multigigabytes.  Later, small-sized 

(megabytes) containers are developed. Containers enable to bundle software with 

everything needed to run it into the single executable package. Applications hosted on 

containers can be moved from one environment to another and run seamlessly within a 
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portable environment. Hence, the container is highly portable and hardware-independent 

[4]. Docker is the most extensively used container engine. Kubernetes (Kube or k8) is an 

open-source container orchestration framework built by Google to automate deployment, 

scale and manage containerized applications [58][61].  

 

o Docker : 

The emergence of Docker in 2013 has ignited widespread container adoption. 

Docker is an open-source platform to develop, ship and run applications using 

containers. As docker is open source, anyone from anywhere can contribute 

anytime to make it better and extend its capabilities to meet the organization’s 

unique needs.  Organisations can also use the thousands of programs already 

designed and created to run in docker containers for their own applications [58][61].   

 

o Kubernetes : 

Kubernetes is a portable, extensible and open-source container orchestrator for 

managing containerized workloads and services that facilitates both declarative 

configuration and automation, allows to run distributed system resiliently with 

scaling and failover for application. In a cloud-native environment, Kubernetes 

provide required visibility to developers for debugging issues, support container 

upgrades without downtime and provide a mechanism for communication between 

different containers [58][59][61].  

 

 Resilience & Rapid Recovery 

Application resilience defines an application's capability to respond to problems within any 

components while providing overall service of the whole application. On the other hand, 

rapid recovery defines the capability to bounce back from any system failure and protect 

systems, applications and data [58]. 

 

 Openstack 

Openstack is an open-source, free cloud computing platform, usually deployed as 

infrastructure-as-a-service in private and public clouds where virtual servers and other 

cloud resources are made available to users. As OpenStack is open source, users can access 

source code and apply any modifications they require without paying for it [58].  

 

 12-Factor applications & API-based collaboration 

Twelve factors define the application to be cloud-native. That includes codebase, 

dependencies, config, backing services, build-release-run, processes, port binding, 

concurrency, disposability, dev/pro parity, logs and admin processes. All of them optimize 

application design for speed, safety & scale. The services in cloud-native architecture 

interact with each other via published/versioned APIs. E.g. HTTP REST-style with JSON 

serialization [58]. 
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4.3. Cloud-Native Networking 

 

Network Architecture evolution can be represented in three versions as below [59] :  

 1.0: Separate physical devices for each service like routers, switches, firewalls 

 2.0: Physical devices converted into virtual machines has virtual network functions(VNF)  

        that runs on Vmware or OpenStack 

 3.0: Cloud-Native network functions(CNF) runs over Kubernetes on public, private or  

         hybrid clouds (Containers) 

Figure 37: Evolution from VNF to CNF [59] 

As represented in Fig. 37, VMWare hypervisor or open-source OpenStack were installed initially 

on bare metal that handles various virtual network functions. Nowadays, various orchestration 

platforms like Kubernetes, cloud foundry, OpenShift are used to manage containers. Cloud-native 

network function (CNF) is a network function designed and implemented to run inside containers 

representing independent services like firewall, IPSec VPN etc.       

Figure 38: Container networking (Port mapping) [60] 

As shown in Fig. 38, port clash arises when two container workloads want to access the same 

service (eg. HTTP : port 80) and thus require port remapping at the bridge’s external network 

interface. Some cookies or separate server might require to handle port mapping and service 

discovery. This limitation can be addressed by assigning separate individual IP addresses for each 

container. IP-per-container is now established as the best industry practice [60].  
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Cloud-Native Networking Solution mainly consists of two parts [60]:  

 

 Control Plane: Assigns IP address to containers from the pool and distribute routing 

information & policy. There are certain control plane implementation options available : 

 

o Distributed Key/value store (e.g. etcd):  Key-value store can be viewed as a huge 

hash table that stores some value under a unique key and runs across multiple 

servers. The value can be retrieved efficiently using the key or part of the key[61]. 

 

o Routing & Gossip Protocols: Routing protocol like BGP and Gossip protocol like 

weave mesh can be used for distributing reachability information across containers 

  

o Centralized Controller: Just as used in SDN, the controller is the brain of the control 

plane that controls an entire control plane network activities 

 

 Data Plane: Responsible for forwarding the packet to a destination and enforces policy. 

Forwarding engine either perform kernel forwarding or packet forwarding in userspace.  

Transport mechanism of data plane can be implemented either in an underlying network or 

on overlay using protocols like VXLAN 

 

Cloud-Native provides flexibility for network implementation according to individual needs; 

hence, it must have a generic mechanism that supports all implementations. There are mainly two 

types of plug-in models available to meet the suitability requirement. 

 

 Container Network Model(CNM/libnetwork): CNM is a standard proposed by Docker and 

designed to run on a docker runtime engine only. It requires distributed-key value store like 

zookeeper, consul to store network configuration and has been used in integration from 

companies like Cisco Contiv, VMWare, Project Calico, Open Virtual Network “OVN”[60]. 

 

 Container Network Interface (CNI): CNI is a standard proposed by CoreOS and can be 

used with any container runtime. It doesn’t require a distributed-key value store as the 

network configuration for CNI is in JSON format. CNI is accepted by Cloud Native 

Computing Foundation (CNCF) and likely to be a de-facto standard for container 

networking. It is implemented by projects like Apache Mesos, Cloud Foundry, rkt, 

Rancher, Kurma [60]. 

 

As the cloud-native network is massively connected where each network entity is connected to the 

other in mesh, the entire network's security is the biggest concern [60]. For example, if three 

container workload is actively running across three or four different servers, then data compromise 

on one container workload is likely to affect on rest all three. Hence, it is required to implement 

and enforce policy on separate application tiers. Policy enforcement may limit the scope of impact 

for any security threat.   
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4.4. Case Studies for Cloud-Native Architecture 

 

The cloud-native approach is widely accepted among various industries due to its numerous 

benefits. A few of them are listed below :   

 

1. The Financial Times cuts months off deployments while nearly eliminating errors [4] 

2. ASOS Making Fashion Statement with Cloud Native [4]  

 

Industry News and Media  

Company 

Profile 

The Financial Times of London is the first UK newspaper to report bigger 

earnings from digital subscriptions versus print) 

Key 

Challenges 
  Respond quickly to changes in the highly dynamic media business 

  Reduce time to market for business-critical applications that usually takes 3 

months to deploy 

Solutions 

Used 
  Adoption of virtualized infrastructure  

  Monolithic content platform is moved to about 150 microservices, each of 

which handles a single function or component. 

  Use of multiple containers hosted on large AWS instances controlled by its 

orchestrator build-up from open source tools 

  Adopted off-the-shelf Kubernetes orchestrator later on  

Business 

Benefits 
  Reduced hosting costs by an impressive 75 % 

  Radical reduction in error rates from 20% to less than 1% which enables      

 their ability to release small application changes more often with   

   microservices 

  Fast deployments: From 120 days to only 15 minutes 

Industry Fashion  

Company 

Profile 

As a British online fashion and cosmetic retailer, ASOS plc was founded in 

2000 in London to be the world’s top online shopping destination. The website 

sells around 850 brands and their own clothes and accessories and shipped to 

196 countries from the fulfilment centre in the UK, the Subcontinent, and 

Europe. It holds more than 18 million active customers, 21 million social media 

followers and is closing in on $3 billion in sales 

Key 

Challenges 

Ability to provide quick response to customer requirements by significantly 

increasing execution speed and involving IT staff more on strategic application 

development rather than trapped them in operational responsibilities 

Solutions 

Used 

Migration of in-house service platform to microservices that runs on the 

flexible Azure cloud infrastructure  

Business 

Benefits 
  Improves critical response time by allowing to make more granular choices 

to store and maintain data using microservices 

  Boosts application-speed-to-market 

  Successful Black Friday Sale in 2018 that exceeded all expectations for scale 

and response time across key application support 
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3. Volkswagen Hits the Development Accelerator with Cloud Native [4] 

 

4. DISH Channels Cloud Native to Take on the Big Guys [4] 

 

 

 

Industry Automobile  

Company 

Profile 

Volkswagen, the world’s largest German automaker, was founded in 1937 at 

Adolf Hitler's request and known for the iconic Beetle.  

Key 

Challenges 
  Standardizing and automating its vast IT infrastructure 

  Relatively costly IT infrastructure overall 

  Very labour intensive and lengthy Development  

  New cloud platform infrastructure is required to replace the legacy  

 infrastructure; however, it still needs to be connected to legacy platforms that 

 maintain vital data. 

Solutions 

Used 
  Decision to adopt a private cloud environment due to Germany’s ultra-strict  

 data privacy laws, which have limited Volkswagen’s public cloud options  

  Opted OpenStack as it eliminates the dependencies on any one vendor 

  Launched a DevOps culture with CI/CD toolchains for rapid testing and  

 deployment of new ideas. 

  Use of Platform-as-a-Service facilitates new tools to speed up the release  

 cycles further and improve overall application quality. 

Business 

Benefits 
  Time to provision platform resources has dropped from months to minutes,  

 requiring just a few clicks 

  Early experience has also validated the lower infrastructure costs of the  

 private cloud compared with the former infrastructure. 

Industry Entertainment  

Company 

Profile 

American multichannel video service provider based in  Englewood,  Colorado, 

is the owner of the direct-broadcast satellite provider Dish Network and holds 

around 14 million subscribers and 16000 employees 

Key 

Challenges 

Deliver desirable new services to consumers faster and more reliably than the 

competition from behemoth competitors like Verizon & Comcast &   

increasingly popular mobile services 

Solutions 

Used 

Adapted open source Cloud Foundry platform from Pivotal. Initial projects on 

the platform included mission-critical applications like applications to update 

offer and order management, applications to streamline customer sales 

interactions and applications for installation and fulfilment services 

Business 

Benefits 
  Fast & frequent software release from months to weeks meaning more and  

 better updates and ultimately better customer-facing applications. 

  Developers have more time now to prototype and innovate new ideas into   

 new applications and no longer constrained by tedious, manual development  

 tasks.  
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5. The U.S. Department of Defense (DoD) is enabling DevSecOps on F-16s and battleships 

with Kubernetes [62] 

 

6. How the city of Montréal is modernizing its 30-year-old, siloed architecture with 

Kubernetes [63] 

 

Industry Government  & National Security 

Company 

Profile 

U.S Department of Defence(DoD) is the largest government agency that 

coordinates and supervise all other agencies and government functions directly 

related to national security and the United States Armed forces 

Key 

Challenges 

Software delivery for big weapon systems takes around three to ten years using 

the waterfall method that lacks incremental delivery, minimum viable product 

and feedback loop from end-users 

Solutions 

Used 

Created DoD enterprise DevSecOps reference design with a mandate to use 

CNCF-compliant Kubernetes clusters & other open source technologies. Istio 

and Envoy Kubernetes provided control and data plane.  To demonstrate 

Kubernetes execution on F-16 Jet’s legacy hardware, the Kubernetes cluster 

on Istio was booted that launch five or six microservices within two minutes. 

Kubernetes also enabled to push production on the ship while being 

disconnected (at sea) 

Business 

Benefits 
  Achieved great time saving estimated as 100+ years across 37 programs 

  Release time reduced to one week from 3-8 months 

  The minimum viable product to install Kubernetes on an F-16 was completed 

in 45 days that might take one or two years before 

Industry Government   

Company 

Profile 

Montréal is the largest city in Canada’s Québec province. The City council is 

Montréal’s primary decision-making body that adopts municipal budgets, by-

laws, programs, subsidies and governmental agreements. 

Key 

Challenges 

A large number of legacy systems that are many years older and running over 

1000 applications lack modern standardization, velocity and efficiency. 

Solutions 

Used 

The first step was containerization that started with a small docker farm of four 

to five servers, uses Rancher(open source container management platform) to 

provide access to docker containers and their logs and use Jenkins(automated 

software testing tool for application) for deployment. Due to a lack of self-

healing and dynamic scaling based on traffic in the docker farm, Kubernetes 

opted for orchestration. Use of Prometheus for monitoring and alerting, Fluentd 

for logging, and Grafana for visualization in Kubernetes environment 

Business 

Benefits 
  Time to market reduce from many months to a few weeks 

  Deployment time reduces from months to hours 

  Improved efficiency to use compute resources, e.g. 200 application 

components run on 8 VMs in production instead of hundreds.  

  Improved visibility and vendor neutrality  
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5. CONCLUSION 
 

Computer Networks has a long and transformative evolution journey from mainframe computers 

to today’s cloud-native environment. Today, cloud-native is working across a broad range of 

business types as it underlies application development that is tightly coupled with business goals. 

It is replacing older methodologies with roots extending back to five decades and focus on 

developing high-performance, highly innovative customer-facing applications on top of the cloud-

based infrastructure that generates high revenue and profit while building customer loyalty. There 

are high chances of witnessing cloud-native adoption on a large scale in the 5G development due 

to its numerous benefits; however, no technology is without challenges or drawbacks, and cloud-

native is not exempt from it. Old applications have lots of infrastructure dependencies that 

sometimes don’t work well with the cloud. Also, cloud-native tools and frameworks are relatively 

new and under continuous improvement, so it’s challenging to decide the right tools for the right 

purpose that brings better results. The best approach is slowly and safely decommission older 

applications from legacy infrastructure in a way that preserves legacy data while relishing the 

benefits of the cloud environment.   
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ABBREVIATION  

ACL Access Control List 

AMQP Advanced Message Queuing Protocol 

API Application Programming Interface 

APIC Application Policy Infrastructure Controller 

ARP Address Resolution Protocol  

AWS Amazon Web Service 

BGP Border Gateway Protocol 

CNCF Cloud Native Computing Foundation 

CNF Cloud-native Network function  

CNI Container Network Interface 

CNM Container Network Model 

CPU Central Processing Unit 

CANES Consolidated Afloat Networks and Enterprise Services 
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DNS Domain Name System 

DPDK Data Plane Development Kit 
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IDS Intrusion Detection System 

IP Internet Protocol  

IPS Intrusion Prevention System 

IRB Integrated Routing and Bridging  

LAN Local Area Network 

MAC Media Access Control  

MPLS Multiprotocol Label Switching 

NAT Network Address Translation 

NBI Northbound Interface 

NFV Network Function Virtualization 

NFVI Network Function Virtualization infrastructure 

NIC Network Interface Card 

NOS Network Operating System 

ODM Original Design Manufacturer 

OEM Original Equipment Manufacturer 

ONF Open Networking Foundation 

OS Operating System 

PaaS Platform as a Service 
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REST Representational state transfer 
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TCP Transmission Control Protocol 
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VFS Virtual File System 
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VM Virtual Machine 

VNF Virtual Network Function 

VNI Virtual Network Identifier 

VPN Virtual Private Network 
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VXLAN Virtual Extensible LAN 

UDP User Datagram Protocol  
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