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Abstract 

Numeric data for earth sciences often represent fractions or percentages of a whole, such 

as the chemical or mineralogical composition of a rock. The individual components are 

non-negative and have a constant sum of 100%. Satisfying these constraints at unsampled 

locations after estimation or simulation is a practical requirement, but not guaranteed by 

conventional mapping and modelling techniques. The components are constrained to the 

constant sum, which means that they are not free to vary independently, and there is at 

least one negative correlation. Standard statistical techniques are therefore not suited to 

compositional data, so transformations using the logarithms of the component ratios 

(logratios) are used to overcome these problems. Linear averaging and back-

transformation of logratios results in a geometric rather than an arithmetic mean, which 

will result in a bias. A procedure using normal scores transformation of the logratio 

values and multiGaussian kriging was devised to overcome this bias. The key objective is 

to avoid estimating the logratios directly and then back-transforming into original data 

units. Instead, the conditional distributions of the components are modelled. Ordinary 

kriging, multiGaussian kriging and conditional simulation were used on data from the 

Alberta Oil Sands to assess the performance of the compositional geostatistics approach. 
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Chapter 1 Introduction 

1.1 Outline of Problem 

Compositional data is defined as representing proportions of a whole – for example, a 
sample with whole rock geochemistry that sums to 100%, or the proportion of various 
mineral species in a rock, which sum to unity. Analysis of compositional data utilizes the 
understanding that the data contains information about the relative magnitudes of the 
components, not just the absolute magnitudes, and therefore these relationships can be 
expressed as ratios. Direct mathematical analysis of ratios is problematic due to the 
constant sum constraint, however, meaning that analysis of correlations of the raw 
components and other forms of standard multivariate statistical analysis, which are 
designed for unconstrained data, are not suitable (Aitchison, 1999). 

Problems in applying standard statistical techniques to compositional data were 
recognized by Pearson in the late nineteenth century (Pearson, 1897). Chayes (1960) later 
recognized that the constant sum constraint suppressed positive and increased negative 
correlations between the components, although he did not propose a solution. Davis 
(1973, p.81) provides a very simple but effective example of how the ‘closure problem’ 
of a constant sum composition can result in a negative correlation of the relative 
magnitudes, even though the correlation between the absolute magnitudes was positive. 
At that stage, no completely satisfactory way had been developed for dealing with the 
closure problem according to Davis. It was not until Aitchison (1982, 1986) introduced 
the ‘statistical analysis of compositional data’ that methods were devised to address these 
problems. 

Aitchison (1986, p. 65) noted that the logarithms of ratios are easier to handle 
mathematically and interpret statistically than the ratios themselves. For example, there is 
no relationship between the variance (var) of (xi / xj) and variance of (xj / xi), but a 
relationship exists between the logarithms of these ratios: 

var{ln(xi / xj)} = var{ln(xj / xi)}       1-1 

Aitchison therefore
 

proposed a number of transforms of the ratios using logarithms 
(referred to as ‘logratios’). Atchley et al. (1976) had previously demonstrated that the 
direct use of ratios can result in very skewed and leptokurtic distributions as the 
coefficient of variation (CV) of the denominator increases. This leads to an increase in 
the covariances and spurious correlations between the ratio variables. Furthermore, 
standard unconstrained multivariate techniques can be applied to the logratio transformed 
data, with inferences translatable back into the original component space (Pawlowsky-
Glahn et al., 2011). More information about the main transformations and operations used 
for compositional data analysis are given in Chapter 2. 

The vast majority of work on compositional data in the last ten years has come from the 
following authors – Pawlowsky-Glahn, Martin-Fernandez and Barcelo-Vidal at Girona, 
Egozcue at Catalonia, Tolosana-Delgado at Gottingen as well as Aitchison himself at 
Glasgow. Most of this work has been published in Mathematical Geosciences (formerly 
Mathematical Geology), and various workshops/short courses under the ‘CoDaWork’ 
consortium. 
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Compositional data analysis in the earth sciences has proven to be successful in some 
non-spatial applications such as mineralogy and petrology (for example Thomas and 
Atchison, 2005 and Martin-Fernandez et al., 2005), where useful geological inferences 
can be made. Further examples are discussed in Section 2.7. The method has been 
controversial, however, and there are many critics of the techniques in the literature. 
Shurtz (2003) rejected the use of the proposed transforms as being ‘unnecessary’, and 
Baxter et al. (2005) regarded the theoretical basis as sound, but had concerns about the 
practical implementation and their empirical experience with the method – in particular, 
they found that principal component analysis (PCA) to recover cluster structure in the 
data does not work well with logratios. 

Compositional data analysis techniques were extended to spatial data in the 1990’s and 
2000’s, notably by Pawlowsky-Glahn and Olea (2004), although they have not found 
broad acceptance in geostatistics (Tolosana-Delgado et al., 2008), particularly in the 
mining industry. There are many situations in geostatistical modelling where the 
preservation of proportions of input data is of practical importance in spatial estimation or 
simulations. While a number of geostatistical estimation methods have been proposed 
(e.g., Pawlowsky-Glahn and Olea, 2004, Tolosana-Delgado et al., 2008) there have also 
been warnings in the literature (e.g., Lan et al., 2006), about the theoretical and practical 
reliability of these approaches, particularly where the estimation technique involves an 
averaging of log-transformed data. 

Lan et al. (2006) and Lan (2007) discussed the benefits of applying the logratio transform 
for statistical analysis, but they concluded that using logratios to make spatial estimates 
using a linear approach such as kriging will result in a bias. This is due to the back-
transform of the arithmetic average of logratio values returning the geometric mean of the 
proportions being studied, which is not the correct result for variables that average 
linearly. 

Tolosana-Delgado et al. (2008), however, maintained that the back-transformed results 
after a ‘standard’ geostatistical (cokriging) approach are linear, unbiased (null expected 
error) and with minimal variance between the true and estimated value on a relative scale. 
They provided an example of their approach, which utilizes the Linear Model of 
Coregionalization (LMC; Journel and Huijbregts, 1978, p. 172) on the logratio 
transformed data, and ran a cokriging. They also suggested that conditional simulation 
would be possible by a straightforward application of sequential Gaussian simulation 
(SGS) or LU decomposition. Their method yielded positive and bounded compositions, 
but this is a feature of the back-transform. In summary, this method is claimed to produce 
robust results without the need to introduce constraining algorithms or posterior 
correction. Of course, linear unbiased estimates of logratios do not lead to unbiased 
estimates of the back transformed proportions.  

1.2 Plan of Thesis 

Basic relevant geostatistical theory and descriptions of techniques used in this thesis are 
briefly presented in Chapter 1. Theory and suggested application of compositional data, 
including transformations are presented in Chapter 2, with a small worked example of 
multiGaussian kriging in Chapter 3 The full case study is introduced in Chapter 4 and is 
based on oil sands data to explore the implications of various approaches to spatial 
modelling of compositional data. Linear kriging applications and their limitations for the 
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case study compositional data are discussed in Chapter 5; followed by multiGaussian 
kriging in Chapter 6 and conditional simulation applications in Chapter 7. Chapter 8 
draws conclusions from the work and recommends areas of interest for further research. 

1.3 Geostatistics 

Geostatistics is a branch of applied statistics that deals with phenomena that fluctuate in 
space (Olea, 1991), such as gold grades in a vein, thicknesses of stratigraphic layers, or 
porosity and permeability of oil reservoirs. The term ‘geostatistics’ was first used by 
Matheron (1962), when he introduced his ‘new science’ that dealt with spatial aspects of 
variables. 

Some of the main applications of geostatistics are to provide ‘best’ estimates of 
mineral/element grades at unsampled locations (and therefore estimates of the total 
mineral resource of a deposit), and to characterize the uncertainty and risk for these 
estimates. The terminology used throughout this thesis is drawn from the mining 
industry. 

For more information on geostatistics the reader is referred to David (1977), Journel and 
Huijbregts (1978), Isaaks and Srivastava (1989), Deutsch and Journel (1998), Chiles and 
Delfiner (1999) and Sinclair and Blackwell (2002). 

1.3.1 Random Functions and Regionalized Variables 

A random variable (RV) is a variable that takes a range of values according to a 
probability distribution function. Of course, there is a real and defined value at the 
unsampled locations, but since this value is unknown, a probabilistic method using a 
distribution function is needed to estimate the value. This cumulative distribution 
function (cdf) is defined as: 

( ; ) Pr ob{ ( ) }F z Z z= ≤u u        1-2 

Where u is a spatial location and z is an outcome (or threshold) of the random variable Z. 
A Random Function (RF) is the family or set of all RVs over an area of interest – in our 
case usually a geological ‘domain’. This ‘domain’ generally implies relative homogeneity 
of some physical aspect of the geological environment, such as rock type or lithofacies. 
The concept of the Regionalized Variable (ReV) (Matheron, 1963) is an extension of the 
RV to spatial applications. 

1.3.2 Stationarity 

Strict stationarity requires all the moments of the distribution to be invariant under 
translation; i.e., exactly the same distribution at every point in the field considered. In 
mining applications this assumption is too strong, so the second-order stationarity is used 
– that is, the expected value (mean, m) of the variable is constant, and the covariance 
function (C(h)) between two points located at u and (u + h) where h is a distance vector, 
is independent of the locations of u and (u + h): 

( ) [{ ( ( ) }]C E Z m Z m= −h u) - }{ u + h      1-3 
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Stationarity is a property of the RF model, not a property of the underlying spatial 
distribution (Journel and Deutsch, 1998). The decision of stationarity cannot be proven or 
refuted apriori, but can be shown to be inappropriate after the initial decision is made. 
Therefore, the choice of domains can be an iterative process, and is a critical component 
of a geostatistical study. Even though geostatistical techniques may work for poorly 
chosen domains, the results will be less than optimal.  

1.3.3 Declustering 

Mineral exploration data (usually from drillholes) is often concentrated (or ‘clustered’) in 
zones of higher grades – therefore a raw histogram of the data for a particular geological 
domain (assuming equal sample support size) will be biased. Declustering is 
consequently required to estimate the underlying unbiased grade distribution. 
Declustering techniques assign a weight to each datum based on the proximity to other 
data. The main methods are polygonal and cell declustering (Journel, 1983; Isaaks and 
Srivastava, 1989, p.237 – 248) and kriging weight declustering (Isaaks and Srivastava, 
1989, p. 510; Deutsch, 1989). 

1.3.4 The Variogram 

The variogram is the basic tool of geostatistics, as it characterizes a regionalized variable 
and is used for geostatistical estimation (kriging) and conditional simulation techniques. 
For a stationary RF, the variogram is defined as: 

1( ) [ ( ) ( )]
2

Var Z Zγ = + −h u h u       1-4 

( ) ( ) ( )C Cγ = −h 0 h
 

with C(h) being the stationary covariance and C(0) = Var{Z(u)}. 

In practice, the experimental variogram is for a vector (h) is calculated as: 

2

1

1( ) [{ ( ) ( )} ]
2

N

i
Z Z

N
γ

=

= + −∑h u h u       1-5 

Various tolerance parameters such as the lag tolerance and bandwidth can be applied if 
the sampling is not on a regular grid. Calculation of the experimental variogram should 
also consider anisotropy in the data, for example the major direction of continuity for a 
mineralized geological unit. The experimental variogram must then be modelled so that 
the variogram value can be estimated for all distances and directions, and to ensure that 
the model is positive definite; i.e., the variance of any linear combination of the 
variogram must be positive. There are a number of models that are admissible; e.g., 
nugget, spherical, Gaussian, exponential. 
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1.3.5 Kriging 

Kriging is a linear estimator of the form: 

1
*( ) ( ) [ ( ) ( )]

n

i i i
i

Z m Z mλ
=

− = −∑u u u u       1-6 

where Z*(u) is the estimate at location u, Z(ui) are the data values i = 1,...,n, m(u) and 
m(ui) are the means of Z(u) and Z(ui), and λi are the weights applied to the data values. 
For simplification, it is easier to work with the residuals, so the linear estimator becomes: 

( ) ( ) ( )Y Z m= −u u u  

1
*( ) ( )

n

i i
i

Y Yλ
=

=∑u u         1-7 

The goal is to determine the weights that will minimize the variance of the estimator: 

2{ *( ) ( )} [ *( ) ( )]Var Y Y E Y Y− = −u u u u      1-8 

Substituting equation 1-7 into this equation and expanding results in: 

1 1 1
{ *( ) ( )} ( , ) 2 ( , ) ( )

n n n

i j i
i j i

Var Y Y C C Cλ λ λ
= = =

− = − ⋅ +∑∑ ∑u u u u u u 0i j i   1-9 

where C(ui,uj) is the covariance between data at points i and j, C(u,ui) the covariance 
between the data at point i and the location to be estimated, and C(0) the variance of the 
data. These covariances (for different distances and directions) are derived from the 
variogram model. To then minimize the kriging error variance, the partial derivatives 
with respect to the weights are set to zero: 

1

[ ( )] 2 ( , ) 2 ( , )
n

j
ji

C C Cλ
λ =

∂
= ⋅ − ⋅

∂ ∑0 u u u ui j i      i =1,…,n    1-10 

which results in the simple kriging (SK) system: 

1
( , ) ( , )

n

j
j

C Cλ
=

=∑ u u u ui j i        1-11 

with kriging variance: 

2

1
( ) ( , )

n

SK i i
i

C Cσ λ
=

= − ⋅∑0 u u
       1-12

 

For SK, the weights are not constrained, and since it works with the residuals from the 
mean, then the mean must be known. Where the mean is unknown (but constant in the 



6 

 

local neighborhood), then the weights are constrained to sum to one, leading to the 
ordinary kriging (OK) system of equations: 

1
( , ) ( , )

n

j
j

C Cλ μ
=

+ =∑ u u u ui j i      i =1,…,n     1-13 

1
1

n

j
j
λ

=

=∑  

where μ is the Lagrange parameter, and the kriging variance is: 

2

1
( ) ( , )

n

OK i i
i

C Cσ μ λ
=

= − − ⋅∑0 u u
      1-14

 

1.3.6 Cokriging 

In cases where there are one or more secondary variables that are correlated with the 
primary variable, cokriging can be used. It is particularly useful if a variable of interest 
has been under-sampled with respect to other variables (i.e., heterotopic sampling).  

Cokriging requires a joint model to describe the covariances between the variables – this 
is achieved by modelling the variograms for each variable (‘direct variograms’), plus the 
cross-variograms for each pair of variables. The cross-variogram between each pair of 
variables (Z and Y) is defined as: 

,
1( ) {( ( ) ( ))( ( ) ( ))}
2Z Y E Z Z Y Yγ = + − + −h u h u u h u

    1-15
 

For cokriging, linear combinations of variables are themselves treated as ReVs and their 
variances must be positive definite. The only practical model that ensures this condition 
is met is the LMC: 

( )

1
( ) ( )

L
l

ZY ZY l
l

C b C
=

=∑h h         1-16 

where l is the number of covariance structures 1,…,L, and b is the coefficient (variance 
contribution) for each structure. In practice, it is very difficult to model more than 3 or 4 
variables with the LMC - if n is the number of variables, then n direct variograms and 
n(n-1)/2 cross-variograms are required. Fitting of models that are consistent with the 
experimental variograms can be very demanding – automated fitting is available in some 
software packages, but in many situations the model fitting must be a compromise. 

The cokriging system is an extension of the kriging system, with the ordinary cokriging 
(OCK) estimator for two variables: 

1 2
(1)*

1 1
( ) ( ) ( ) ( ) ( )

n n

OCK i i j j
i j

Z Z Yλ λ
= =

= +∑ ∑u u u u u      1-17 
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and kriging variance: 

1 2
2

1 1
( ) ( ) ( , ) ( ) ( , )

n n

OCK ZZ i ZZ i j ZY j
i j

C C Cσ μ λ λ
= =

= − − −∑ ∑0 u u u u u u
   1-18

 

A shortcoming of OCK is that the sum of the weights for the primary variable is one, so 
the sum of the weights for the secondary variables must be zero. This means that the 
weights of the secondary variables are small, but there is the risk of high negative weights 
(Isaaks and Srivastava, 1989, pp. 400-416 and Goovaerts, 1998). Therefore, ‘rescaled’ or 
‘standardized’ cokriging (RCK) is recommended where a single unbiasedness constraint 
forces all primary and secondary weights to sum to one (Deutsch and Journel, 1998,  
p. 74). This is achieved by rescaling the secondary variable so that the mean is equal to 
the primary variable, and the cokriging estimator is: 

1 2
(1)*

2 1
1 1

( ) ( ) ( ) ( )[ ( ) ]
n n

RCK i i j j
i j

Z Z Y m mλ λ
= =

= + − +∑ ∑u u u u u    1-19 

For simple cokriging (SCK), there remain no constraints on the weights. If the means of 
the variables have been standardized to zero, with a variance of one, then SCK is 
applicable for the multiGaussian kriging approach. 

1.3.7 MultiGaussian kriging 

MultiGaussian kriging (MGK) (Verly, 1983) is a non-linear estimation technique, where 
the conditional distribution (and conditional expectation) of a variable is modelled. The 
mean, probabilities to exceed a certain cut-off (and average values above and below that 
cut-off) and value that corresponds to a p quantile can then be calculated. These 
probabilities are generally not available with linear kriging. 

Such non-linear kriging techniques (others include indicator kriging and lognormal 
kriging) are actually linear kriging applied to non-linear transform of the original data. 
Earth science data rarely have strictly Gaussian distributions, so for MGK, the variable (a 
realization of a random function Zx) is transformed into a Gaussian random field Yx with a 
mean of zero and variance of one, also known as a normal scores transform: 

1
( ) ( )( )x xY Zϕ−=         1-20 

The normal score (or Gaussian) transform φ is graphically defined by a one to one 
correspondence between the cdf of the RF Z(x) and a standard normal cdf (Journal and 
Huijbregts, 1978, p. 478). 

They key and critical assumption is that the distribution of any value Yx is multivariate 
Gaussian (Verly, 1983) i.e., every possible linear combination of the values has a normal 
distribution. For MGK, the conditional expectation (and conditional variance) at 
unsampled locations is required – SK is usually implemented to provide this. If the 
multiGaussian assumption holds, a Gaussian conditional probability density function 
where the mean is equal to the SK estimate yx

SK and the variance is equal to the SK 
variance (σx

SK)2 is produced. 
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1.3.8 Conditional Simulation 

Geostatistical simulation is a spatial extension of the concept of Monte Carlo simulation, 
where the declustered data histogram is reproduced, and the variance and spatial 
variability of data; i.e., from the variogram model is replicated. 

Geostatistical simulations generate a set of images, or ‘realizations’ as opposed to 
estimates, which output a single image. The realizations constitute a range of spatial 
images that are consistent with the known statistical moments (variogram and histogram) 
of the declustered input data, and in the case of conditional simulations, the data 
themselves. Geostatistical simulations can be used to assess uncertainty over various 
scales or volumes (e.g., mining production intervals), and can assist in evaluating drill 
hole spacing, mining selectivity and blending, and mine financial modelling. 

The two most commonly used methods for conditional simulation for continuous 
variables (e.g., metal grades) in the mining industry are: 

1. Sequential Gaussian Simulation (SGS: Isaaks, 1990). The conditioning samples 
are migrated to the closest grid node, and a random path is defined through all the 
grid nodes. SK is used to construct the conditional Gaussian distribution at each 
node in the path using the conditioning and previously simulated data. A 
simulated value is drawn from this conditional distribution and added to the grid 
node. The next node on the random path is then simulated until all nodes are 
completed. This process is then repeated to generate n realizations; and 

2. Turning Bands Simulation (TBS: Journel, 1974), which is efficient for generating 
non-conditional simulations. The method works by simulating on one-
dimensional lines regularly spaced in three dimensions and then combining in 
three-dimensional space. The conditioning is performed by a separate kriging 
step. 

Both of these simulation methods require the data to have a Gaussian distribution, which 
is extremely rare in earth sciences data, and a Gaussian transform of the data is therefore 
required. Checking that the assumption of a multivariate Gaussian distribution (as 
described above) holds is required for conditional simulation. After simulation of 
Gaussian values, the values are back-transformed into the original data space. Because 
SGS (and TBS) uses SK, the assumptions of stationarity (constant mean over the entire 
domain) are stronger than for OK (Deutsch and Journel, 1998, p. 145). 

The results from all conditional simulation methods require extensive checking against 
the input data to ensure the histogram and variogram have been honoured. 

In the multivariate case, relationships between variables are ideally preserved with joint 
simulation. For well-correlated variables, a Markov model approach can be adopted 
(Deutsch and Journel, 1998, p. 124) where the primary variable is simulated, and the 
secondary variables are simulated by collocated cokriging conditional on the simulated 
primary variable, and so on. However, the variance from the collocated cokriging can be 
inflated, which is a problem for simulations, since the variance is used directly to define 
the spread of the conditional distribution from which the random values are drawn. In 
such cases, full cosimulation, where modelling of direct and cross variograms for the 
Gaussian transformed data that conform to the LMC is recommended. 
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1.4 Concluding Comments for Chapter 1 

The aim of the work presented here is to develop methods that allow the use of logratio 
transformed compositional data in geostatistics that will not introduce bias. Comparison 
of the use of logratio data using conventional linear geostatistical approaches (kriging and 
cokriging) against non-linear methods (multiGaussian kriging and conditional simulation) 
will demonstrate that estimation/simulation of local conditional distributions using non-
linear techniques is the preferred option. In addition, there will be analysis of any 
advantages or disadvantages of the compositional data methods over conventional (i.e., 
not logratio transformed) methods. 
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Chapter 2 Compositional Data Theory 

2.1 Introduction 

The basic concepts of compositional data theory are presented in this chapter. For more 
details the interested reader can refer to Aitchison (1986), Pawlowsky-Glahn and Olea 
(2004), the Centre for Computational Geostatistics (CCG) Guidebook on Compositional 
Geostatistics (Manchuk, 2008), and the many other publications in Mathematical 
Geosciences as cited in Chapter 1. 

Standard multivariate analysis is applicable for unconstrained vector data from real 
Euclidean space (Pawlowsky-Glahn and Egozcue, 2006). The sample space of 
compositions, however, is constrained to the restricted space of the simplex, a 
generalization of a triangle and tetrahedron (Aitchison et al., 2002). The D-part simplex, 
࣭஽, is a subset of D dimensional real space, and for D = 2 it can be represented as a line, 
for D = 3 a triangle and for D = 4 a tetrahedron (Pawlowsky-Glahn and Egozcue, 2006). 
The simplex ࣭஽ is defined as: 

झࡰ = {[x1, x2,...,xD] : xj > 0; j = 1,2,...,D; x1 + x2 + ... + xD = κ},   2-1 

where κ can be 1, 100, 106 or any other constant (the ‘closed sum’). 

Absolute values of the components in a composition are of limited meaning unless they 
are compared, by ratios, with other components (Aitchison and Egozcue, 2005). By 
applying a logratio transformation to the data in the original sample space (the simplex), 
the compositions are projected to multivariate real space, and statistical methods designed 
for multivariate normal distributions can be used (Aitchison, 1986, p. 114, Pawlowsky-
Glahn and Olea, 2004, p. 26). 

Real Euclidean space nR  is a linear vector space where vectors can be added and vectors 
multiplied by a scalar. For n =1, 2 and 3, the space can be represented geometrically (1 is 
the real number line, 2 is a two-dimensional plane, and 3 is ordinary three-dimensional 
space). If two vectors are added in nR , the resulting vector is again a vector in nR , and if 
a vector in nR  is multiplied by a scalar, then the result again is in nR  (Schneider et al., 
1982, p. 66).  

2.2 Logratio Transforms 

There are four logratio transforms: the additive logratio (alr), centered logratio (clr), 
multiplicative logratio (mlr) (all Aitchison, 1982), and the isometric logratio (ilr), 
introduced by Egozcue et al. (2003). These logratio transforms are ‘lossless’, meaning 
that they do not lose any of the information from the whole composition. This is because 
‘…there is a one-to-one correspondence between any D-part composition (i.e., consisting 
of D components, x1,…,xD) and its logratio vector’ (Aitchison, 1999). 

The additive logratio (alr) transform is shown in Equation 2-2: 
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log , 1,..., 1i
i

D

xy i D
x

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
     2-2 

where the denominator (xD) can be any of the components, with the conditions that: 

1. The same component must be used as denominator for all data points; and  

2. Each component must be strictly >0.  

The choice of denominator does not affect the results of analyses (Aitchison, 1986, p. 
142). The alr transformation results in one less transformed variable than the number of 
components considered. The alr back-transform, also known as the additive logistic 
transform (agl) (Aitchison, 1986, p.136), for the numerator components is shown in 
Equation 2-3 – since there is one less term in the alr transform compared to the original 
composition, the back-transform for the denominator is simply the difference between the 
sum of the D-1 components from the constant sum constraint (Equation 2-4): 

( )
1

1

exp
, 1,..., 1

exp( ) 1

i
i D

i
i

y
x i D

y
−

=

= = −
+∑

      2-3 

1

1

1

exp( ) 1
D D

i
i

x
y

−

=

=
+∑

        2-4 

The centered logratio (clr) transform is shown in Equation 2-5: 

log , 1,...,
( )

i
i

xy i D
g

⎛ ⎞
= =⎜ ⎟

⎝ ⎠x       2-5 

where g(x) is the geometric mean of all components. The clr back-transform is shown in 
Equation 2-6: 

( )

1

exp
, 1,...,

exp( )

i
i D

i
i

y
x i D

y
=

= =

∑
      2-6 

The multiplicative logratio (mlr) transform is similar to the alr, but uses a ‘filler’ 
component (a component introduced to ensure the composition sums to unity, as 
discussed below in Section 2.3) as the denominator.  

The isometric logratio (ilr) transform (Egozcue et al., 2003), with the concept of the 
transform shown in Equation 2-7: 

( ) . ( )ilr x V clr x=         2-7 
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where V is a matrix of D rows and (D – 1) columns such that V . Vt = I D – 1 (identity 
matrix of D – 1 elements) and V . Vt = I D + a1, where a may be any value, and 1 is a 
matrix full of ones (Tolosana-Delgado, 2008). This can be written out as Equation 2-8, as 
expanded by Thio-Henestrosa and Martin-Fernandez, 2005: 

( )
1

1

1 log ( 1,..., 1)
( 1)

i
jj

i i
i

x
y i D

i i x
=

+

⎛ ⎞
⎜ ⎟= = −
⎜ ⎟+
⎝ ⎠

∏
     2-8 

with the ilr back-transform shown in Equation 2-9: 

1 1

0, 1 0,1
( ) ( )

( ) 1 ,..., 1
(0) ( 1)

D D

i i i i D
f i f i

x ilr y
f f D

− −

= ≠ = ≠−

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟= = + +⎢ ⎥⎜ ⎟ ⎜ ⎟−
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ,   2-9 

where    
1/

1( ) exp( ( 1) )
( 1)

i

if i i i y
f i

−
⎛ ⎞

= +⎜ ⎟−⎝ ⎠
 and f(0) = 1 

The ilr transform returns one less variable than the number of components in the original 
data. Note that these equations conventionally refer to natural logarithms, but the 
transforms can be used with logarithms of any base.  

2.2.1 Discussion 

The choice of denominator for the alr transform can potentially be a problem, because the 
post-transform data sets using different denominators will generally be substantially 
different from each other. However, as Aitchison (1986, p. 142) has shown, this does not 
make any difference when using standard linear statistical methods. Nevertheless, due to 
the non-isometric character of the transformation, Pawlowsky-Glahn (2004) warns that 
care needs to be exercised when performing experimental data analysis, such as 
interpreting scatterplots. 

In contrast, the clr transformation is symmetric, but the sum of the components after 
transformation is necessarily zero. This means that for random compositions the 
covariance matrix of the clr transformed vectors is singular; i.e., it has a determinant of 
zero (Pawlowsky-Glahn, 2004). For a geostatistical application, however, the covariance 
matrices required for kriging are drawn from a model of the covariances, not the actual 
experimental covariances, and as a result, none of the square matrices required are non-
invertible, and the kriging equations can be solved.  

The ilr transform has the advantage of conserving geometry (e.g., angles and distances) in 
both the simplex and real space. They are coordinates in an orthogonal system, and 
therefore classical multivariate techniques can be used (Pawlowsky-Glahn and Egozcue, 
2006). A disadvantage is that the theory behind and the calculation of the transform is 
very complex. The back-transform in particular is difficult to implement. For this reason, 
the ilr transform has not been used for the case study presented here. 
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In conclusion, both the alr and clr transforms have been used in the case study presented 
in this thesis – the mlr transform is not used because the oil sands data already forms a 
full composition, and no filler component is required. 

2.3 Subcompositions and Closure 

There are difficulties when dealing directly with ratios of subcompositions, which is 
another advantage for introducing the logratio transform. A subcomposition is a subset 
extracted from a full composition, and normalized. Even though the ratio of any two 
components of a subcomposition is the same as the ratios in the full composition 
(Aitchison, 1986, p. 35), the covariance relationships between the variables in the 
subcomposition are not the same as those that exist between the same variables in the full 
composition, and there may be no relationship between the two covariance structures 
(Aitchison, 1986, p. 55). 

For example, consider assay data for an iron ore deposit with Fe%, P%, SiO2%, Al2O3% 
and LOI% (Loss on Ignition), and usually CaO%, MgO%, TiO2%, S%, MnO% and 
K2O%.  Due to the presence of additional trace elements/compounds, the assays for these 
eleven components will rarely sum to 100%. Therefore, a residual (or ‘filler’) component 
can be used to complete the composition. However, if the residual part is of no interest, or 
indeed if only three of the variables (say Fe, Al2O3, SiO2) are of interest, then the 
subcomposition can be taken for the components of interest using the closure operation: 

1 2

1 1 1

( ) , ,..., D
D D D

i i ii i i

x x xx C x
x x x

κ κ κ

= = =

⎡ ⎤⋅ ⋅ ⋅⎢ ⎥= =
⎢ ⎥⎣ ⎦∑ ∑ ∑

     2-10 

where κ is the constant sum. In the above case, any analysis in logratio space for the 
eleven-part (or for that matter, the three-part) subcomposition will be consistent with the 
full twelve-part composition. The variance-covariance relationships between the ratios 
(and logratios) of the components will be the same for the subcomposition as they will be 
for the entire composition – this is not true for the raw components. 

Note also that, for certain samples in an iron ore deposit, the sum of the assays could be 
greater than 100% due to laboratory or other procedural errors. In this case, some form of 
normalization would be required – whether proportional for each component using the 
closure operation (Equation 2-10), or if there is confidence for the results of some 
variables, then maintaining these values, and adjusting the values that have lower 
confidence. 

2.4 Basic Operations 

Two data manipulation procedures that are used in the compositional data framework are 
worth discussing. These operations are applied in the simplex, and logratio 
transformation is not required. The first, perturbation (denoted by ⊕ ), involves 
multiplying the components of a composition with the corresponding components of 
another composition and then applying the closure operation: 
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1 1[ ;...; ]D Dz x y C x y x y= ⊕ = ⋅ ⋅       2-11 

The second, power transformation (denoted by ), involves raising each component in a 
composition by a constant and the applying the closure operation: 

1[ ;...; ]Dz x C x xλ λλ= =        2-12 

where λ  is a real number.  

In the earth sciences, perturbation can be used to analyse a system by using ‘before’ and 
‘after’ compositions. For example, consider a three-part clay composition in weathered 
ultramafic rocks (vermiculite, kaolin, smectite). If x = [35, 50, 15] at one location (or 
point in time) and another composition y = [5, 90, 5], then perturbing results in: 

[35 5, 50 90,15 5]
[3.7, 94.7,1.6]

z C= ⋅ ⋅ ⋅
=  

This shows the difference in the proportional composition of the clays between x and y. 
Of course, more information is needed to know whether this composition was added to or 
subtracted from x. Powering, which essentially is perturbing a composition by itself λ 
times, can be used where a compositional process is cyclic (for example in depositional 
systems), and is useful for describing regression relationships for compositions 
(Aitchison, 2003). Perturbation is analogous to addition in real space, and powering is 
analogous to multiplication by a scalar in real space (Pawlowsky-Glahn et al., 2011). 

One of the main uses of perturbation and powering is for graphical presentation, in cases 
where one or two components may dominate the composition. For example, Figure 2-1 
below shows a 30 observation three-part clay compositions. It can be seen that kaolin is 
very dominant for about half of the data points. 

Data centring can be used in this case to make visualization of any structure clear. 
Centring is a type of perturbation - the closure operation (Equation 2-10) is applied to the 
geometric mean of each of the components to create the centre of the dataset. The inverse 
of this centre is then taken and closed, and each observation can then be perturbed by this 
inverse vector, and closed. Figure 2-2 shows the three-part clay composition after 
centring. Trends in the data are more easily visualized, and the relationships between the 
clays and minerals of economic interest can be analysed. 
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Figure 2-1. Ternary diagram for a three-part clay composition. 

 

 

Figure 2-2. Ternary diagram for a centred three-part clay composition. 

2.5 Rounded or Trace Zeros 

It is possible in any given data set that some of the components have a zero value. Zeros 
are obviously problematic because the logarithm of zero is undefined and also cannot be 
used as a denominator which is required for some logratio transforms. 

In many instances the zero could be due to the component being below the detection limit 
of the instrument used, or some other sampling problem. These instances are known as 
‘rounded zeros’, and a number of replacement strategies for rounded zeros are discussed 
by Martin-Fernandez et al. (2003). These authors warn that the strategy chosen must not 
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distort the general structure of the data, in particular the covariance structure, as further 
analysis on the subpopulations will be misleading. 

Such replacement techniques for dealing with rounded zeros can be divided into two 
categories: parametric and nonparametric. The former approaches rely on fully 
parametric multivariate models, which are useful when there are many missing values 
(Martin-Fernandez et al., 2003). Where there are few missing values (say, <10%), then 
the nonparametric methods are applicable, easier to apply (Manchuk, 2008), and are the 
‘most viable’ methods (Aitchison and Egozcue, 2005) – the three main nonparametric 
methods are discussed below. 

2.5.1 Additive Replacement 

This method was proposed by Aitchison (1986, p. 269), where a composition x 
containing D components and t rounded zeros can be replaced by a new composition r by 
the following rule: 

2

2

( 1)( ) , 0

( 1) , 0

j

j

j j

t D t if x
Dr

t tx if x
D

δ

δ

+ −⎧ =⎪⎪= ⎨ +⎪ − >
⎪⎩

,       2-13 

where δ is a small value less than a specified threshold, such as the detection limit of the 
analytical method. Note that the compositions are not modified if there are no rounded 
zeros present in a given observation.  

There are a number of problems with the additive replacement method, specifically the 
dependence between r, δ and the number of zeros. In addition, the covariance structure of 
subcompositions for parts that do have zeros is not preserved. Therefore any analysis 
obtained by multivariate methods based on the covariance structure could be distorted 
(Martin-Fernandez et al., 2003). 

2.5.2 Simple Replacement 

This is a common approach which essentially consists of assigning a small value to the 
rounded zero. Setting the missing value to half the detection limit of the instrument or 
analysis method being used is common practice in the minerals industry.  Adding this 
small value causes the sum > 1.0 (assuming the composition was already closed), 
therefore the other components are restandardized to maintain the sum=1.0: 
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where ߜመ is the small imputed value, and c is the constant sum constraint.  
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2.5.3 Multiplicative Replacement 

This is very similar to the simple replacement, but leaves the small imputed value without 
modification to replace zeros, and then normalizes the other components. It is actually 
more straightforward than the simple replacement strategy: 
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=⎧
⎪⎪⎛ ⎞= ⎨⎜ ⎟− >⎪⎜ ⎟⎪⎝ ⎠⎩

∑ ,      2-15 

The multiplicative method has many advantages over the additive method, as described 
by Martin-Fernandez et al. (2003). It is also recommended by Aitchison and Egozcue 
(2005). The advantages include the ‘true’ composition results if the δ values are the ‘true’ 
censored values, and that the ratios are preserved in all instances where there are no 
zeros; i.e., fully constrained compositions are not altered. 

2.6 Essential Zeros 

It is possible that a zero value implies a total absence of a component, such as the 
complete absence of sand-sized particles in very fine-grained sediment. These instances 
are known as ‘essential zeros’, and the replacement of these zeros with another value is 
therefore theoretically incorrect. One solution in this case, if plausible, is to separate the 
essential zeros from the rest of the population by domaining and considering a separate 
domain with n-1 components. 

It could be difficult to separate a domain into zones where all the components are defined 
at every sample location and in this case amalgamation of similar variables (Martin-
Fernandez et al., 2000) can be considered. This involves amalgamating components such 
that the resulting compositions no longer contain zeros. This strategy can only be used if:  

1. There are more components measured than are needed for the study; and  

2. The amalgamated components do not contain one of the primary variables of 
interest (or if they could be logically grouped). 

It is also possible to combine the amalgamation and domaining approach, so that only 
selected zones or domains need to be subjected to amalgamation. 

There has been work on alternative ways to treat essential zeros, other than excluding 
them. Aitchison and Kay (2003) proposed building a two-stage model. The ‘first [stage] 
is to determine where the zeros will occur and the second [stage] on how the unit 
available is distributed among the non-zero parts’ (Aitchison and Kay, 2003, p. 1). The 
method is computationally complex (although based on existing statistical theory), and is 
yet to be fully tested. 

In summary, essential zeros cannot be dealt with by simple non-zero replacement, and 
despite Aitchison and Kay (2003) warning of the ad-hoc nature of amalgamation, it is 
clear that, at least for spatial data, that the judicious grouping of variables and robust 
domaining are the most workable solutions. 
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2.7 Compositional Data Framework Applications 

The logratio transforms and basic compositional data operations as described above have 
been successfully used for non-spatial applications. Thomas and Aitchison (2005) use a 
suite of geochemical compositional data to determine if two Scottish limestone 
formations are compositionally different, and if any differences can be attributed to 
sedimentary or other geochemical processes. Martin-Fernandez et al, (2005) present a 
study for Cenozoic volcanic rocks in Hungary, and use the relationships between the sub-
compositions to conclude that processes of magma differentiation in two different rock 
groups were similar. Buccianti and Pawlowsky-Glahn (2005) present a case study of 
water contamination over time around an active volcano in Sicily, and comment on the 
rapid alteration of water contamination due to degassing of the volcano compared to the 
slower processes of the intrusion of marine water and silicate weathering. 

These three examples of compositional data analysis use techniques such as perturbation 
and powering to create graphs (including ternary diagrams), and principal component 
analysis of logratio transformed data to support their arguments. All the inferences and 
conclusions drawn are from data still in logratio space – none of these studies involve any 
averaging of the data in logratio space and then back-transformation to original data units. 

However, in a geostatistical application, averaging of the composition at unsampled 
locations and subsequent back-transformation is required. There is a limited amount of 
published literature on the geostatistical application of compositional data - Pawlowsky-
Glahn and Olea (2004, p. 123 - 164) and Boezio et al. (2011) show case studies where the 
logratio values are kriged, and then back-transformed to original data units. 

Both these case studies conclude that the final results are unbiased – however, as shown 
in the next section (2.8), these conclusions cannot be correct. Comments on the bias, and 
reasons why the bias was not detected in these two case studies are shown at the end of 
the next section. 

2.8 Linear Averaging of Logratios 

Kriging is a linear estimator, where the estimated value is derived from the weighted sum 
of data values at neighbouring locations. However, the logratio transform is not a linear 
transformation of the original values: 

log log log . .j ji i

D D D D

x xx xa b a b
x x x x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ ≠ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠     2-16 

(after Lan, 2007), and the logratios are non-additive. Therefore, taking a linear average of 
the logratios will not result in a linear average in original units after back-transformation 
– there will be a bias, as briefly discussed in Section 1.1. This can be illustrated in a very 
simple two-point example, using four-component oil sands data. The components are 
bitumen (B), coarse (C) and fines (F) solid fraction, and water (W) - the values are 
expressed as proportions that sum to unity at each sample location. In the absence of any 
other information, a point exactly halfway between the two points will be estimated as the 
mean of the data values: 
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Table 2-1. Two-point estimate, original data units. 

If the alr transform (Equation 2-2) using the coarse fraction as the denominator is taken, 
then the mean of the logratios halfway between the data points is calculated as:  

 

Table 2-2. Two-point estimate, alr transform. 

If the mean alr values shown in Table 2-2 are back-transformed into original units (from 
Equations 2-3 and 2-4), the results are: 

 

Table 2-3. Two point estimate after alr back-transform. 

Clearly, this averaging does not agree with that shown in Table 2-1 – the coarse fraction 
is biased high, the bitumen, water and fines fraction biased low. The total of the 
components, by construction, sum to unity. In fact, these results for the alr back-
transform are exactly equivalent to standardizing of the geometric means of the 
components. Table 2-4 shows the geometric mean for the two data points, and the 
standardized geometric mean (standardizing is the same as the closure operation shown in 
Equation 2-10). 

 

Table 2-4. Two-point estimate, geometric mean and standardized geometric mean. 

From these results, directly applying kriging to the logratio values, and then back-
transforming, would expectedly result in a relatively high bias for the dominant 
component, and lower biases for the other components. Where a component is only a 
small proportion of the total, however, this bias could go unnoticed. 

For the previously mentioned case studies, in Pawlowsky-Glahn and Olea’s case, two 
components were of low magnitude, and there was one very dominant component 
(~90%), so the results only appear unbiased. The dominant components in Boezio et al.’s 
case study, however, show clear signs of bias, and the estimates of most of the minority 

Bitumen Coarse Fines Water Total
Point 1 0.0330 0.5800 0.3070 0.0800 1.0000
Point 2 0.0800 0.8000 0.1000 0.0200 1.0000
Mean 0.0565 0.6900 0.2035 0.0500 1.0000

alrB:C alrF:C alrW:C
Point 1 -2.8665 -0.6362 -1.9810
Point 2 -2.3026 -2.0794 -3.6889
Mean -2.5846 -1.3578 -2.8349

Bitumen Coarse Fines Water Total
Mean 0.0542 0.7187 0.1849 0.0422 1.0000

Bitumen Coarse Fines Water Total
Geo. Mean 0.0514 0.6812 0.1752 0.0400 0.9478
Standardised 0.0542 0.7187 0.1849 0.0422 1.0000
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components again only appear unbiased – the bias is present and identifiable, but has not 
been recognized by the authors. 

Linear kriging of logratios will therefore result in bias, and non-linear methods, such as 
multiGaussian kriging as discussed in the next Chapter are required. 
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Chapter 3 MultiGaussian Kriging 

3.1 Background and Theory 

The advantages of using non-linear estimation techniques were briefly discussed in 
Section 1.3.7 where MultiGaussian kriging (MGK) was specifically introduced. Such 
methods are required for application to logarithmic transformed variables, in order that 
linear averaging and the implicit resultant bias be avoided. For MGK and other non-linear 
techniques the full conditional distribution is modelled  

MGK was introduced by Verly (1983, 1984), as a non-linear kriging technique that 
utilized the multiGaussian model. The key to the method is to transform a RF Z(x) into a 
Gaussian RF Y(x) via the normal scores transform: 

1
( ) ( )( )x xY Zϕ−=         3-1 

The conditional expectation and variance at unsampled locations is then required – this is 
usually performed by SK. It is then assumed that the distribution of any value Yx is 
multivariate Gaussian, and is fully defined by a Gaussian conditional probability density 
function with the mean equal to the SK estimate yx

SK and the variance equal to the SK 
variance (σx

SK)2. 

This conditional probability density function is: 

x
x

x x

1( | data)
SK

SK SK

y yg y g
σ σ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠       3-2 

where g is the standard Gaussian pdf. The estimate of a point-support function is obtained 
by calculating the expected value of the conditional distribution (from the conditional 
expectation and conditional variance), by ‘multiGaussian kriging’: 

MGK
x x[ ( )] ( ) ( | data)Y y g y dyϕ ϕ= ∫       3-3 

MGK SK SK
x x x[ ( )] ( ) ( )Y y u g u duϕ ϕ σ= +∫       3-4

 

In practice, an analytical expression of this equation is difficult to find, and a numerical 
integration is needed to construct the cdf. For a univariate problem, Saito and Goovaerts 
(2000) suggest discretizing the inverse of the cdf with say 100 quantiles  yp(u)  (for 
example, with probabilities 0.005 to 0.995). For a multivariate problem, discretizing the 
inverse of the cdfs independently will not work, since the correlations between the 
variables will not be honoured. 

Monte Carlo simulation can therefore be used to generate random vectors (realizations) to 
generate the cdf (Verly, 1984). Where correlation exists in the multivariate case, random 
but correlated (not independent) vectors are required. Cholesky decomposition in the 
Monte Carlo method context (Rubinstein, 1981 p. 65-67) is one way to derive such 
correlated multinormal random vectors. 
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An advantage of MGK over other non-linear estimation techniques for the multivariate 
case (e.g., indicator kriging or disjunctive kriging) is that the correlations between the 
variables can be maintained. In addition, MGK does not produce order relation violations 
(Emery, 2006). 

3.2 Multivariate Gaussian Distribution Assumptions 

Verly (1984) discusses a number of apparently strong hypotheses that are used for the 
multiGaussian model; the existence of a normal score (Gaussian) transform, the 
multivariate Gaussian distribution of the RF Y(x) distribution, and strict stationarity of the 
RF Y(x). 

The normal scores transform φ (and back-transform φ-1) always exists in practice (Verly, 
1984), and is easily implemented manually or by geostatistical software. Problems can 
arise with tied data (repeats of the same Z(x) value in the original data), but this can be 
dealt with by randomly assigning different Gaussian transformed cumulative frequencies, 
or by ‘despiking’, where the tied data are ordered according to the local averages (Verly, 
1984). 

The normal scores transform guarantees a univariate Gaussian distribution, but the second 
strong hypothesis i.e., the multivariate Gaussian distribution is difficult to verify. 
Departures from the multivariate Gaussian distribution can be caused by non-linearity, 
constraints and heteroscedasticity, which are common in earth sciences data (see Figure 
3-1 ). 

 

Figure 3-1. Bivariate distribution problems; non-linearity (left), constraints 
(middle), heteroscedasticity (right) (after Leuangthong and Deutsch, 2003). 

Certain checks can be made to test that the bivariate distributions are Gaussian, which is a 
pre-requisite for a multivariate Gaussian distribution. Emery (2005a) recommends checks 
that include: 

• Scatterplots of (Y(u), Y(u+h)) for different lags and directions should have an 
elliptical shape; 

• The ratio of the square root of the variogram to the madogram should be 
constant at about √ߨ;  

• Checking the consistency of the theoretical indicator variograms that are 
derived from the Gaussian model to the actual experimental indicator 
variograms; and 
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• Verifying that no relationship exists for the mean and the variance of the 
transformed data at a local scale (i.e. data is homoscedastic). 

These checks cannot prove a multivariate Gaussian distribution, but providing they do not 
reject the assumption outright, then from a pragmatic viewpoint the model can be applied. 

The third hypothesis, that of strict stationarity, can be addressed by dividing the deposit 
into smaller, more homogenous domains, or as Emery (2005b) has suggested, substituting 
OK for SK to account for a locally varying mean. Emery (2005b) has obtained some 
encouraging results with the OK application to MGK, but OK is not a conditional 
expectation estimator, and the conditional estimation variance may not be minimized. 

3.3 Practical Steps 

The following is a step-by-step guide to the implementation of MGK for logratio-
transformed variables, using the alr transformation. It assumes that the prerequisites for 
adopting a compositional data approach (i.e., that the variables are non-negative and sum 
to unity; and that zeros and null values in the data are dealt with appropriately) have been 
met. The steps are: 

• Logratio transform of data using the additive logratio method (alr) with the 
form:  

log , 1,..., 1i
i

D

xy i D
x

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠  
is recommended initially, since the number of resulting transformed variables is 
D - 1 compared to the original data, which is easier to deal with when 
modelling the LMC covariance function; 

• Normal scores transform of the D - 1 data with random despiking, using 
suitable declustering weights: 

1( ), 1,..., 1p iy y i Dϕ−= = −  
• Assume that the D – 1 values form a multivariate Gaussian distribution – this 

can be checked as described in Section 3.1; 

• Generate experimental direct and cross covariances for the normal scores data 
in the usual way (honouring any anisotropy, with appropriate lags, tolerances 
and bandwidths given the data configuration), and model appropriately with a 
LMC; 

• Simple co-kriging of Gaussian transformed data into a point-scale grid. The 
conditional distribution is multivariate Gaussian at each estimated point, with 
the mean equal to the simple cokriging estimate (Y*SK), and variance equal to 
the simple cokriging variance (σ2SK); 

• Create a discretized cdf by generating X1,...,Xp as independent and identically 
distributed (iid) variables from N(0,1). Then derive the Cholesky 
decomposition of the correlation matrix of the normal score transformed 
variables (Σ), Σ = BBT, where B is the lower triangular matrix and BT is its 
transpose. Multiply each iid (X1,...,Xp) by the Cholesky decomposition J = BX, 
which will result in p multinormal random vectors (J); 
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• Multiply the standard deviation of the simple kriging (σSK) by the multinormal 
random vector (J) and add the simple kriged estimate (Y*SK) for each location 
(u) i.e.  yp(u) = J.σSK(u) + Y*SK (u); 

• Back-transform the resultant yp(u) quantiles from normal scores into the 
quantiles of the local probability distribution of the logratio transformed data  
z(alr) p(u) = F-1[G(yp(u))] ; 

• Apply the inverse of the alr logratio transform (Equations 2-3 and 2-4) to each 
z(alr) p(u)  quantile to get the conditional distribution in original data units  
zp (u); 

• The kriged estimate is the conditional expectation of the cdf; i.e., the mean of 
zp (u), and the probabilities above certain cut-offs at the point scale are now 
easily calculated; and 

• The MGK mean and the probabilities above cut-offs can then be calculated for 
larger blocks by taking the mean of these values from each point in the blocks. 

These steps have been used for the following simple worked example, and also applied to 
the much larger case study in Chapter 6.  

3.4 A Simple Worked Example 

The following worked example has been performed in Microsoft Excel, with checking of 
many of the steps using the GSLIB suite of programs. 

Consider the following two dimensional data layout, consisting of data at two locations (1 
and 2), with compositional data (P1, P2, P3) informing each point – using multiGaussian 
kriging, determine the values for the three components at location 0 (Figure 3-2). 

 Figure 3-2. Data configuration. 

A 1,000 point ‘training image’ (10 x 10 x 10) consisting of a valid three component data 
set was used to derive the normal scores transform and to calculate experimental 
covariances. The data was first logratio transformed (using alr), and then normal scores 
transformed, resulting in two variables (Y and Z). The normal scores transform table for 
the training image was used to transform the data at locations 1 and 2.  

The non-ergodic covariances (Srivastava, 1987), and cross-covariances were then 
calculated for the two-dimensional data configuration shown in Figure 3-2. Since selected 
data in the training images can have exactly the same spatial configuration as the two-
dimensional problem, the covariance values could be used directly in the kriging, and 
variogram or covariance modelling was not required. The covariances and cross 
covariances appear in Table 3-1: 

Location Easting Northing P1 P2 P3
1 1 100 104 0.15 0.45 0.4

2 102 100 0.01 0.84 0.15

0 100 100 ? ? ?
0 2
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Simple cokriging, using the covariances and the alr transformed data for locations 1 and 
2, was used to obtain the estimate and estimation variance for both variables at location 0. 
The unsolved kriging matrix is shown in Table 3-2: 

 Table 3-1. Covariances and cross-covariances.
 

 Table 3-2. Simple kriging matrix.
 The weights are calculated by inverting the left hand side matrix and multiplying by the 

right hand side separately for Y0 and Z0. For the estimate and estimation variance for Z0, 
the left hand side is unchanged, but the right hand side is altered. The resulting weights 
for Y0 and Z0 are given in Table 3-3: 

 Table 3-3. Simple kriging weights.
 The associated estimates and estimation variances are given in Table 3-4: 

 Table 3-4. Simple kriging estimates and estimation variances.
 

COV{Y1,Y1} = COV{Y2,Y2} 1.0000
COV{Z1,Z1} = COV{Z2,Z2} 1.0000
COV{Y1,Y2} 0.4232
COV{Y1,Z1} = COV{Y2,Z2} 0.7144
COV{Y1,Z2} = COV{Z1,Y2} 0.4170
COV{Z1,Z2} 0.4205
COV{Y1,Y0} 0.8516
COV{Y2,Y0} 0.4146
COV{Z1,Z0} 0.8007
COV{Z2,Z0} 0.4062
COV{Y1,Z0} = COV{Z1,Y0} 0.6531
COV{Y2,Z0} = COV{Z2,Y0} 0.4127

Weights RHS RHS
Y1 Y2 Z1 Z2 Y0 Z0

Y1 1.0000 0.4232 0.7144 0.4170 λ1 0.8516 0.6531
Y2 0.4232 1.0000 0.4170 0.7144 λ2 0.4146 0.4127
Z1 0.7144 0.4170 1.0000 0.4205 λ3 0.6531 0.8007
Z2 0.4170 0.7144 0.4205 1.0000 λ4 0.4127 0.4062

LHS

Y0 Z0
Y1 0.7694 0.1448
Y2 0.0301 0.0553
Z1 0.0744 0.6625
Z2 0.0390 0.0278

Y0 Z0
SK estimate 0.4884 1.1250
SK variance 0.2676 0.3409
SK std. dev. 0.5173 0.5839
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These values now characterize a Gaussian distribution with the mean equal to the SK 
estimate and variance equal to the SK estimation variance. Two sets of five hundred 
random standard Gaussian values were generated – one each for variables Y and Z. The 
Cholesky decomposition was calculated for the correlation matrix for Y and Z (from the 
training image), shown in Table 3-5: 

 
Table 3-5. Correlation and Cholesky matrices. 

The two sets of the 500 random standard Gaussian variables were multiplied by the lower 
triangle of the Cholesky decomposition matrix to create the random but correlated 
Gaussian values. Each of these was multiplied by the SK standard deviation, and the SK 
estimated added – this resulted in five hundred random but correlated quantiles for both 
the Y and Z conditional distributions. 

Each of the 500 quantiles was then back-transformed from Gaussian, and then through 
the alr back-transform, resulting in 500 quantiles in original data units. The mean of the 
quantiles is exactly the conditional expectation (and the MGK estimate), with the results 
at location 0 being: 

P1 = 0.1884, P2 = 0.5924, P3 = 0.2192 

The probabilities for each variable being above particular cut-offs (in 0.05 increments) 
are shown in Table 3-6: 

 
Table 3-6. Probability to be above cut-off. 

Y Z Y Z
Y 1.0000 0.7154 Y 1.0000 0.0000
Z 0.7154 1.0000 Z 0.7154 0.6987

Correlation Matrix Cholesky Lower

Cut-off P1 P2 P3
0.05 65.8% 97.0% 79.2%
0.10 55.0% 94.8% 70.2%
0.15 47.8% 91.6% 60.8%
0.20 37.6% 87.6% 49.0%
0.25 30.0% 82.4% 37.6%
0.30 23.4% 78.4% 26.0%
0.35 19.0% 74.8% 18.4%
0.40 14.6% 70.6% 14.0%
0.45 10.2% 67.0% 8.4%
0.50 8.2% 61.0% 6.8%
0.55 7.0% 56.2% 5.4%
0.60 5.6% 50.8% 4.8%
0.65 3.8% 46.8% 4.0%
0.70 2.4% 41.2% 2.8%
0.75 2.2% 36.8% 1.6%
0.80 1.6% 31.0% 0.8%
0.85 1.0% 25.8% 0.4%
0.90 0.8% 22.6% 0.2%
0.95 0.8% 16.6% 0.2%
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Given that there are only two points informing the multiGaussian kriging, validation is 
difficult – however, the results make sense given the informing data, and fall within the 
range of the input data. 

MGK is a technique that is more complicated than OK or SK, and in the multivariate case 
requires the application Monte Carlo simulation. In this sense, MGK is more akin to 
conditional simulation than to kriging estimation. This of course has the advantage of 
resulting in a probabilistic model of the values of interest at the unsampled locations as 
opposed to a single expected value. 

  



28 

 

Chapter 4 Oil Sands Data Review and Statistics 

4.1 Introduction 

The data used for this case study comes from the Athabasca Oil Sands area in northern 
Alberta, Canada (Figure 4-1). The Alberta Oil Sands have the second-largest proven oil 
reserves in the world (after Saudi Arabia), but differ from this and most other oil 
producing regions in that the hydrocarbons occurs as bitumen, which is a viscous form of 
crude oil that will not flow unless heated or diluted with lighter hydrocarbons. 

The geological setting of the Athabasca Oil Sands deposits is summarized in Mossop 
(1980). The bitumen is predominantly contained within the Lower Cretaceous McMurray 
Formation, which consists of medium to coarse grained sands mainly composed of quartz 
and feldspar in the lower part of the formation, through to variable sands and silts in the 
middle and upper part of the formation.  

 
Figure 4-1. Location of Alberta Oil Sands. 
(Source: http://en.wikipedia.org/wiki/Athabasca_Oil_Sands) 
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A generalized diagram of oil sand composition (such as would be viewed with a hand 
lens) is given in Figure 4-2. Some brief details of the differences between, high, medium 
and low grade material are in Table 4-1. 

 
Figure 4-2. Generalized close-up view of oil sands (after Hennessey, 1990). 

Quality Bitumen wt% Water wt% Solids wt% Fines Propn. 
(<44µm)* 

High 14.3 1.2 84.5 4.1 
Medium 11.8 1.3 86.9 5.2 
Low 8.6 5.3 86.1 35.4 

* Fraction of fines in total solids 
Table 4-1. Typical Oil Sands Composition (after Romanova et. al., 2003). 

It can be seen that the low grade material has a much higher proportion of fines in the 
solids. For this reason the high grade material is much preferred during the processing 
phase due to higher bitumen content, lower fines and water therefore better recovery - the 
proportion of fines is a key driver of the bitumen recovery during processing (Wik et al., 
2008). 

Since the bitumen is in a near-solid state, and because much of the oil sands are less than 
80 metres below surface, the deposits can often be extracted by ‘conventional’ mining 
techniques (i.e., truck and shovel) instead of the more usual well-based petroleum 
extraction methods. The other extraction methods used are referred to as ‘in-situ 
methods’, where steam (with or without other solvents or additives) is injected into the oil 
sands reservoir to reduce the viscosity of the bitumen, so it can then flow to other wells 
and be pumped to the surface. 
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In 2009, over half of the oil sands production from the Athabasca Oil Sands was from 
mining, but in-situ methods are expected to surpass production from mining by 2016 
(CAPP, 2010). It is estimated that by 2016, about 70% of Western Canada’s oil 
production will come from oil sands production (approximately 2,200 thousand barrels 
per day (CAPP, 2010)). 

Understanding the geological characteristics of the oil sands is therefore critical for the 
mining and processing strategy. 

4.2 Data Used 

The data set used has four components, bitumen (B), water (W), coarse solids (C) and 
fine solids (F). The coarse solids can be considered as the ‘sand’ component  
(i.e., >44 μm) as shown in Figure 4-2. These four components complete a whole 
composition (i.e., sum to unity). Note that the data itself is in terms of proportions of one, 
but some of the description of data analysis presented here is in terms of percentages. 

The data consists of vertical drill holes, with a maximum depth of 126 metres (m). A 
subset of the data was used for the case study within a 2,000m x 3,000m area that was 
drilled with a hole spacing of approximately 100m x 100m. Data is generally collected at 
1.5m intervals down the hole, although there are some shorter sampled intervals where 
there is very high bitumen content – forty data points (from a limited number of drill-
holes) had a bitumen value of one hundred percent, and zero for all the other components. 
It is likely that these small, very high bitumen grade samples have been given a ‘nominal 
total bitumen’ grade, as it is unlikely that there would be a true absence of solids or water. 

Local upscaling (i.e., compositing with adjacent samples to produce samples that were all 
1.5m in length) was therefore undertaken.  

In the resulting composited data set there are almost two hundred samples where bitumen 
is zero, and six samples where bitumen is one (and the other components are zero), but 
for all the other sample points the components are valid and sum to unity. Note that 
because this data is across multiple facies, it is likely that there are samples that are from 
zones or domains that are not of particular interest – data within a bitumen-bearing zone 
was therefore separately domained. It is unlikely that the samples of 100% bitumen are 
really total bitumen (they may also be possible database errors). These zero or 100% 
bitumen samples were not within the domain that was ultimately chosen for the case 
study – they were vertically above or below the study domain. The domain definition is 
discussed in the next section, and the location of the zero and 100% bitumen composites 
is shown in Figure 4-4. 

4.2.1 Domaining 

Drillhole data was initially selected from the main bitumen-bearing horizon, as defined 
by the ‘rock-type’ code in the drillhole file. This rock-type has by far the most bitumen, 
although not all composite samples are high in hydrocarbon. In addition, the rock-type 
vertically below this also has locally high bitumen grades. Whether this is due to 
incorrect geological logging (assuming the rock-types were defined on logging as 
opposed to some geophysical method) or not is unclear. It could be the case that the 
bitumen occurs locally over different strata/horizons. 
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The selected horizon therefore may be geologically valid, but it does not really constitute 
a ‘stationary domain’. Exploratory Data Analysis (EDA) showed that there were 
significant trends in the vertical direction within this rock-type domain. Figure 4-3 shows 
a swath plot for bitumen, with the bitumen grades averaged over 5m vertical intervals 
across the entire selected domain (the count of samples per vertical interval is also 
shown). It can be seen that the bitumen content averages 2% at the 240mRL, increasing 
to 13% at the 190mRL, before decreasing to 4% at the 160mRL. 

The other variables show similar trends in the vertical direction, although there are no 
significant trends apparent in the horizontal directions. A severe trend such as this 
violates the assumptions of stationarity required for the application of geostatistical 
methods (Leuangthong and Deutsch, 2004). OK with a restricted vertical search 
neighbourhood may perform satisfactorily in this situation, but MGK will probably 
perform poorly due to the stricter assumptions of stationarity required. Verly (1984) and 
Emery (2005a, 2005b) discuss the problems of a locally varying mean and trends for 
MGK. 

Trend modelling such as that discussed by Isaaks and Srivastava (1989, p. 531) and 
Leuangthong and Deutsch (2004) is an option to account for this trend. This would 
introduce another level of complexity to the process, and is not a core component of the 
research. A simpler solution is to change the decision of domain stationarity by adjusting 
the boundary geometry. 

 

Figure 4-3. Vertical swath plot for bitumen, rock-type domain. 

To attempt to manage the non-stationarity discussed above, a bitumen ‘grade-based 
domain’ was constructed, using a cut-off grade of approximately 7 to 8% bitumen, which 
is the cut-off grade used in many of the operations currently (e.g., see Devenny, 2010). 
There are numerous warnings in the literature about using approximate economic cut-off 
grades as the basis for domain boundaries (e.g., Emery and Ortiz, 2005). Indeed, for an 
industrial application for oil sands modelling, a much more thorough stratigraphic/facies 
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analysis would be required to assist in domaining decisions. However, the purpose of this 
thesis is to demonstrate geostatistical modelling of compositional data. Therefore, if it 
can be established that there is a pronounced break in the grade distribution at this point, 
then the use of a ‘hard boundary’ domain is arguably justified. A ‘hard boundary’ is when 
only samples from within a domain are used for geostatistical modelling – samples from 
other domains are not used to inform the model. 

A simple test for a hard boundary domain decision is to take the means of the grades for 
the first sample on either side of the grade boundary (often a three-dimensional wireframe 
in practice), and then the take means of the first two samples either side of the boundary 
etc. and chart these values. Figure 4-5 shows the grade change across the 7% bitumen 
domain boundary – Domain 0 overlies the domain considered, Domain 1 is the 7% 
bitumen domain and Domain 2 is below Domain 1 (see Figure 4-4). The mean grades 
above the 7% bitumen domain boundary are about 3.5%, but the mean grades within the 
7% bitumen domain jumps to almost 12%, and then drops to about 2.5% below the 7% 
bitumen domain boundary. The number of data at each location is annotated in the figure. 

It is concluded that the use of the 7% domain boundary for the purposes of this study is 
justified. Note also that the grade change across the boundaries of Domain 1 for the other 
variables is similarly abrupt – from outside to inside Domain 1 the coarse fraction goes 
from 45% to 70%, the fines fraction from 40% to 15% and water from 9% to 4.5%. 

 

Figure 4-4. Domain locations showing 0% bitumen (black) and 100% bitumen 
(orange), 3x vertical exaggeration. 
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Figure 4-5. Bitumen domain boundary analysis. 

The vertical swath plot for Domain 1 is shown in Figure 4-6 – there is an overall increase 
in bitumen grade with depth, but it is not as pronounced as was seen for the previous 
domain based solely on rock-type (cf. Figure 4-3). Note that the horizontal axes of 
bitumen units for Figure 4-3 and Figure 4-6 are the same. 
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Figure 4-6. Vertical swath plot for bitumen, grade-based domain. 

4.2.2 Basic Statistics 

The location of the Domain 1 data set is shown in Figure 4-7, with declustered basic 
statistics in Table 4-2 and histograms shown in Figure 4-9. 

 
Figure 4-7. Location of selected drill holes, 5x vertical exaggeration. 
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Cell declustering with a grid size of 450mE x 450mN x 1.5mRL was selected for 
weighting - Figure 4-8 below shows the declustered means for bitumen for a range of cell 
sizes. Cell sizes range from 100mE x 100mN x 1.5mRL (Cell Size 100) to 1000mE x 
1000mN x 1.5mRL (Cell size 1000) on the chart horizontal axis. 

 

Figure 4-8. Cell declustering - bitumen. 

 

 

Table 4-2. Declustered basic statistics, >7% bitumen domain. 
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Variable Count Minimum Maximum Mean Dev. Variance CV Mean
Bitumen 5124 0.0019 0.6901 0.1238 0.0436 0.0019 0.3522 0.1160
Coarse 5124 0.0092 0.8544 0.7029 0.1182 0.0140 0.1682 0.6883
Fines 5124 0.00080 0.9105 0.1283 0.1203 0.0145 0.9376 0.0864
Water 5124 0.0045 0.1730 0.0451 0.0238 0.00055 0.5276 0.0394
Total 5124 0.9999 1.0001 1.0000 0.0000 0.0000 0.0000 1.0000
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Figure 4-9. Declustered basic statistics and histograms, original data. 

Scatterplots between the variables are shown in Figure 4-10. There are moderate positive 
correlations for B & C and for F &W, and strong negative correlations for B & F, B & W, 
C & F and for C & W. 
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Figure 4-10. Scatterplots for original data units. 

4.2.3 Logratio Transforms 

The alr (Equation 2-2) and clr (Equation 2-5) transforms were calculated, with the coarse 
fraction selected as the denominator for alr because it is the major component of the 
composition. 

Statistical analysis of the three alr variables (alrB:C, alrF:C and alrW:C) and the four clr 
variables (clrB, clrC, clrF and clrW) was undertaken, with the basic statistics shown in 
Table 4-3 and histograms for the transformed data shown in Figure 4-11 and Figure 4-12. 
The transformed data in most cases approximates normal distributions, although there are 
a small number of extreme values that can cause a skewed distribution (for example, the 
high value of 2.06 for alrW:C). 

 

Table 4-3. Basic statistics, logratio transformed data. 
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Figure 4-11. Histograms, alr transformed data. 
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Figure 4-12. Histograms, clr transformed data. 

Correlation matrices for the alr and clr transformed data are in Table 4-4, and scatterplots 
for the alr transformed data are shown in Figure 4-13. 

 
Table 4-4. Correlation matrices, alr and clr transformed data. 
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Figure 4-13. Scatterplots, alr transformed data. 

There is a strong positive correlation between F:C & W:C, as there was for F & W in the 
original data, but only moderate negative correlations between B:C & F:C and between 
B:C & W:C, whereas B & F and B & W in the original data have stronger negative 
correlations. The clr transforms, however, show similar correlation patterns to those seen 
in the original data. 

Geostatistical applications for the oil sands data set are discussed in the next three 
chapters – comparisons are made for different geostatistical techniques using the data in 
original units and with the logratio transforms applied.  
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Chapter 5 Linear Estimation 

5.1 Linear Kriging and Cokriging 

The results from Section 2.8 show that directly kriging logratio transformed data and then 
back-transforming the mean will result in bias, although detection of the bias depends on 
the relative magnitudes of the components. For the oil sands data set, this bias can be 
demonstrated by comparing the performance of estimates with and without the logratio 
transformations. 

The original data unit components were estimated directly by independent OK, OCK and 
RCK, and then compared to OK, OCK and RCK using the logratio transformation 
methods. Where the constant sum constraint was not satisfied for the original data unit 
estimates, the estimated values were normalized to the constant sum. Of course, this is 
simply an approximation to get an acceptable result and has no theoretical basis. There is 
also a potential problem with negative estimates (from possible high negative kriging 
weights) – setting these estimates to a small positive value is arbitrary and subjective 
(Pawlowsky-Glahn and Olea, 2004). The logratio methodology will, by construction, 
result in the correct constant sum. 

Note that cokriging is not particularly widely used in mining industry practice, due to the 
extra covariance functions that must be defined, which means there is significantly more 
variogram/covariance modelling required (for n variables, n(n+1)/2 variogram models are 
needed). In addition, the demands of the LMC must be considered -for example, where 
the different variables within a domain are well correlated, but have different spatial 
ranges, fitting an adequate model to the experimental direct and cross-variograms can be 
very difficult, and often compromises must be made. The consequences of ‘forcing’ a 
model that does not reflect the underlying experimental variogram can result in the 
modelled covariances not matching the actual data configuration adequately. 

Unless the variable of interest (primary) has been significantly under sampled compared 
to the other variables (secondary), then the weights given to the secondary variables by 
cokriging tend to be negligible, meaning that any improvements in the estimation 
variance are also small. In cases where all the variables have been sampled equally 
(isotopic sampling), and the direct variograms/covariances are proportional to the cross 
variograms/covariances, Wackernagel (1995, p. 150) showed that OK and OCK perform 
almost identically, and cokriging for estimation is unnecessary; this is the condition of 
‘autokrigeability’ (see also Goovaerts, 1998).  

There is no general consensus that cokriging in the isotopic case is unnecessary, however. 
Rivoirard (1994, p. 9) argues that even “when the values for all variables are available at 
all sample points, cokriging will improve the coherence between the estimated values by 
taking account of the relationships between the variables”. For a case involving 
compositional data, then cokriging must be at least considered – the correlations between 
the variables for the oil sands data are relatively strong, and the preservation of these 
correlations is important to the problem at hand. 
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5.2 Variography 

Variographic analysis was performed for the direct and cross-variograms for the three 
separate data sets (for data in original units, alr-transformed and clr-transformed). All 
variables, both before and after logratio transformation, were essentially isotropic in the 
horizontal direction, but with much shorter ranges in the vertical (downhole) direction, 
reflecting the near-horizontal stratigraphy. Therefore, the experimental variograms were 
generated with no horizontal anisotropy (major range = semi-major range), with the 
minor direction in the vertical. 

The experimental variograms were calculated with a lag of 150m in the horizontal (i.e., 
isotropic) and 1.5m in the vertical direction, with a lag tolerance half of the lag spacing. 
An angular tolerance of 90° was used for the horizontal variograms, and 45° for the 
vertical. Testing of various horizontal bandwidths and angular tolerances made little 
difference to the appearance of the experimental variograms, but the use of a 10m vertical 
bandwidth for the horizontal direction resulted in more robust variograms. This is logical, 
because there is a drift in the vertical direction (emphasizing the stratigraphic nature of 
the deposit), so restricting the search for sample pairs vertically improved the 
experimental variogram structure. 

The experimental variograms were modelled with a nugget effect and two or three 
spherical structures, and for the cross-variograms, the rules of the LMC were followed. 
The behaviour of the variogram at the origin has the most influence on the outcome of a 
kriging (Chiles and Delfiner, 1999, p. 175), so particular care was taken to model the 
nugget effect from the variogram in the vertical direction and the short-range structures 
for the vertical and horizontal directions. 

The variogram models for the original unit variables are shown in Table 5-1 and the 
cross-variogram model parameters appear in Table 5-2 to Table 5-4. The direct 
experimental and model variogram for bitumen is shown in Figure 5-1. A significant 
number of variograms have been modelled for this study, but only key examples will be 
shown in the body of the thesis. 
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Table 5-1. Variogram model parameters, original data units. 

 

 
Figure 5-1. Variogram model for original unit bitumen. 

 

Variance
Variable Structure Type (sill) Major Semi Minor
Bitumen 1 Nugget 0.00050

2 Spherical 0.00037 200 200 5
3 Spherical 0.00047 3000 3000 20

Coarse 1 Nugget 0.0026
2 Spherical 0.0041 40 40 4
3 Spherical 0.0026 220 220 14
4 Spherical 0.0025 900 900 40

Fines 1 Nugget 0.0026
2 Spherical 0.0055 35 35 3.5
3 Spherical 0.0019 200 200 15
4 Spherical 0.0030 800 800 24

Water 1 Nugget 0.00012
2 Spherical 0.00016 40 40 5
3 Spherical 0.00013 150 150 20
4 Spherical 0.00010 2000 2000 50
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Table 5-2. Cross-variogram model parameters, original data units. 

 

Table 5-3. Cross-variogram model parameters, alr transformed data. 

Structure Type Major Semi Minor
1 Nugget Bitumen Coarse Fines Water

Bitumen 0.3815 0.1172 -0.0790 -0.0899
Coarse 0.1172 0.2269 -0.0849 -0.0434
Fines -0.0790 -0.0849 0.1386 0.0823
Water -0.0899 -0.0434 0.0823 0.1994

2 Spherical Bitumen Coarse Fines Water 110 110 10
Bitumen 0.4264 0.3509 -0.4085 -0.4294
Coarse 0.3509 0.6566 -0.6736 -0.4532
Fines -0.4085 -0.6736 0.7286 0.4355
Water -0.4294 -0.4532 0.4355 0.6240

3 Spherical Bitumen Coarse Fines Water 1050 1050 30
Bitumen 0.1921 0.1005 -0.1497 -0.1192
Coarse 0.1005 0.1165 -0.1104 -0.1434
Fines -0.1497 -0.1104 0.1328 0.1336
Water -0.1192 -0.1434 0.1336 0.1766

Range (metres)
Cross Variogram Models - original data units

Variance-Covariance matrix

Structure Type Major Semi Minor
1 Nugget alrB:C alrF:C alrW:C

alrB:C 0.0229 -0.0133 -0.0142
alrF:C -0.0133 0.1365 0.0651
alrW:C -0.0142 0.0651 0.0532

2 Spherical alrB:C alrF:C alrW:C 250 250 8
alrB:C 0.0226 -0.0300 -0.0200
alrF:C -0.0300 0.6412 0.3000
alrW:C -0.0200 0.3000 0.2514

3 Spherical alrB:C alrF:C alrW:C 950 950 21
alrB:C 0.0265 -0.0400 -0.0400
alrF:C -0.0400 0.3440 0.1400
alrW:C -0.0400 0.1400 0.1232

Cross Variogram Models - alr transformed
Range (metres)

Variance-Covariance matrix
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Table 5-4. Cross-variogram model parameters, clr transformed data. 

The ranges for bitumen and water in the original unit models were greater than those for 
coarse and fines (approximately 2,000m cf. 900m), with bitumen having a higher nugget 
than the other variables (~40% cf. ~20%).  

The cross-variograms for the original unit data have a low to moderate relative nugget 
(~15 to 35% of the total sill). For the horizontal directions there is a steep first structure 
with a range of 110m that reaches approximately 80% to 90% of the total variance. The 
variogram then flattens out, before reaching the total sill at 1050m. The range in the 
vertical direction has been modelled at 30m. The relative nugget effects for the alr 
transformed variables are similar to the original data units, but they are significantly 
higher for the clr transformed data (from 50% to 60%). 

5.3 Cross-Validation and Block Estimation  

Cross-validation is a technique that can be used to compare estimation methods and to 
check the validity of the variogram models. Clark (1986) provides an overview of the 
application of cross-validation, also known as the ‘leaving-one-out’ method (Davis, 
1987): 

• Remove one sample from the data set; 

• Use the remaining data set to estimate at the removed sample location; and 

• Calculate the error (estimated value (Z*) – true value (Z)). 

If the estimation is unbiased, then the mean error should be zero, and have a minimal 
standard deviation. Useful visual checks (Deutsch and Journel, 1998 p. 94, Clark, 1986) 
include: 

Structure Type Major Semi Minor
1 Nugget clrB clrC clrF clrW

clrB 0.1401 0.0836 -0.1602 -0.0636
clrC 0.0836 0.0704 -0.1241 -0.0300
clrF -0.1602 -0.1241 0.2603 0.0240
clrW -0.0636 -0.0300 0.0240 0.0695

2 Spherical clrB clrC clrF clrW 110 110 10
clrB 0.0326 0.0356 -0.0458 -0.0225
clrC 0.0356 0.0443 -0.0606 -0.0192
clrF -0.0458 -0.0606 0.1058 0.0006
clrW -0.0225 -0.0192 0.0006 0.0411

3 Spherical clrB clrC clrF clrW 1050 1050 30
clrB 0.0670 0.0398 -0.0820 -0.0248
clrC 0.0398 0.0312 -0.0505 -0.0204
clrF -0.0820 -0.0505 0.1082 0.0243
clrW -0.0248 -0.0204 0.0243 0.0209

Cross Variogram Models - clr transformed
Range (metres)

Variance-Covariance matrix
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• Scatterplots of true vs. estimated values should show high correlation and few 
outliers; 

• Histograms of the errors should be symmetric and centred at zero; and 

• Scatterplots of the errors vs. estimated value should be centred at zero error 
(conditional unbiasedness), and show no obvious pattern, as the error and 
estimated value should be independent. 

Note that cross-validation does not remove the subjective element from model fitting 
(Clark, 1986), and interpretation of the results is best done on a comparative basis. The 
absolute ‘best’ model cannot be defined by the technique, but poor models and methods 
can be identified. Cross-validation has only been undertaken in this instance for OK and 
OCK, as the software packages used for this study cannot perform cross validation for 
RCK. 

5.3.1 Original Unit Cross Validation 

Cross-validation was run for OK and OCK using the variogram models shown in Table 
5-1 and Table 5-2, and the search neighbourhoods shown in Table 5-7. Example cross-
validation plots for bitumen estimated by OK are shown in Figure 5-2. The upper left 
diagram shows the scatterplot for estimated value Z* vs. true value Z, the upper right 
diagram the histogram of the estimation error and the lower left diagram the scatterplot of 
the estimation errors vs. the estimated values Z*. 

The scatterplot of Z* vs. Z shows that the true high grade values have generally not been 
reproduced by OK, and the estimates are closer to the overall mean grade of the domain; 
this smoothing is typical of OK. The points highlighted in red are those where the 
estimation error is less than -0.1 and greater than 0.1. 

The histogram of the estimation errors (only the range between -0.15 and 0.15 is shown), 
although having a mean very close to zero (0.0002), is not quite symmetric, and has a 
negative skew which is also due to the poor reproduction of the true bitumen high grades. 

The scatterplot of Z* vs. the estimation error is centred at zero error, and shows that there 
is no strong relationship between the error and the estimated value (conditional 
unbiasedness), although the obvious outliers (highlighted in red) are the same data points 
as the mostly true high grades that have been smoothed during estimation shown in the 
scatterplot of Z* vs. Z. 

The points showing the high bias were from single samples from a number of holes 
spread across the deposit. For the 17 locations with low bias though, 11 of these samples 
were from contiguous high bitumen zones from two drillholes in the south-western part 
of the study area, with the other samples from three other holes. If these samples are 
removed for cross validation, then the correlation between the true and estimated values 
increases to 0.7, and the mean error, which is already negligible, increases by 0.00001. 
This is not unexpected due to the smoothing from OK. 
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Figure 5-2. Cross-validation for bitumen, OK. 

Table 5-5 shows the statistics for the estimation error, including the mean squared error 
(MSE) which uses the mean (bias) and variance of the errors: 

2 2{[ * ] } varMSE E z z error bias= − = +
     5-1 

and the percentage bias (% bias): 

( )( )% 100* * /bias z z z= −∑ ∑
      5-2

 

The performance of OK and OCK are very similar, and essentially unbiased. The cross-
validation shows that with the exception of the bitumen true high grades, the estimation 
methods and variogram models are suitable, and unbiased. 
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Table 5-5. Estimation error statistics from cross-validation OK and OCK. 

As an aside, the correlations between OK and OCK for bitumen is 0.94, and 0.99 for the 
other components, backing the argument of Wackernagel (1995) and Goovaerts (1998) 
that OK and OCK perform almost identically. 

The OK and OCK cross validation estimates for the components in original units do not 
sum to one – Figure 5-3 shows the histograms for the summed totals. 

 

Figure 5-3. Histograms of summed components for original data unit cross-
validation. 

To be consistent with the constant sum, the component estimates were normalized – the 
graphical analysis for the normalized values are very similar to the non-normalized 
values, but the errors (Table 5-6 ) are different to those for the non-normalized values 
shown in Table 5-5. In particular, the biases for the normalised values are always greater 
than the non-normalized values. 

This can be seen on a local basis in the scatterplot of the non-normalized and normalized 
data for bitumen shown below (Figure 5-4) – there is a clear divergence from the bisector 
line above 15% bitumen. The normalized values are biased high compared to the non-
normalized values. The issue of normalization introducing bias is explored more fully in 
Section 5.3.2. 

 

VARIABLE Minimum Maximum Mean Variance % Bias MSE
Z*_OK_Bitumen_error -0.5608 0.1827 1.93E-04 8.43E-04 0.156% 8.43E-04
Z*_OK_Coarse_error -0.3130 0.5970 4.76E-04 6.02E-03 0.068% 6.02E-03
Z*_OK_Fines_error -0.6635 0.3298 -6.36E-04 6.77E-03 -0.496% 6.77E-03
Z*_OK_Water_error -0.0986 0.0743 -9.50E-05 2.28E-04 -0.211% 2.28E-04
Z*_OCK_Bitumen_error -0.5575 0.2127 7.50E-05 8.17E-04 0.061% 8.17E-04
Z*_OCK_Coarse_error -0.3469 0.6019 4.55E-04 6.00E-03 0.065% 6.00E-03
Z*_OCK_Fines_error -0.6527 0.3839 -3.62E-04 6.86E-03 -0.282% 6.86E-03
Z*_OCK_Water_error -0.0958 0.0803 -6.80E-05 2.29E-04 -0.151% 2.29E-04
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Table 5-6. Estimation error statistics for normalized cross-validation OK and OCK. 

 

Figure 5-4. Scatterplot, normalized and non-normalized OK cross-validation for 
bitumen. 

5.3.2 Original Unit Block Estimation 

The previous discussion on all forms of kriging, including cross-validation has been to 
consider point kriging. However, in a mining application, larger volumes must be 
considered. For example, a selective mining unit (SMU) is the smallest volume on which 
selection of ore or waste (or some other destination such as a marginal product stockpile) 
can be made. Therefore, block kriging, where block averages are calculated from point-
scale data, is required. 

It is possible to discretize the blocks with many points, perform point kriging, and 
average the results over the whole block. However, this may require very intensive 
computation due to the number of kriging systems to solve. The computation can be 
reduced, however, by solving only one kriging system per block using volume averaged 
covariances. See Isaaks and Srivastava (1989, pp. 323 – 337) for further details. 

VARIABLE Minimum Maximum Mean Variance % Bias MSE
Z*_OK_Bitumen_normerr -0.5598 0.2134 2.61E-04 8.40E-04 0.211% 8.40E-04
Z*_OK_Coarse_normerr -0.3163 0.5943 5.94E-04 5.98E-03 0.085% 5.98E-03
Z*_OK_Fines_normerr -0.6646 0.3292 -7.31E-04 6.79E-03 -0.570% 6.79E-03
Z*_OK_Water_normerr -0.0995 0.0727 -1.24E-04 2.28E-04 -0.275% 2.28E-04
Z*_OCK_Bitumen_normerr -0.5585 0.2403 1.42E-04 8.16E-04 0.115% 8.16E-04
Z*_OCK_Coarse_normerr -0.3576 0.5903 5.81E-04 6.03E-03 0.083% 6.03E-03
Z*_OCK_Fines_normerr -0.6576 0.3714 -6.69E-04 6.84E-03 -0.521% 6.84E-03
Z*_OCK_Water_normerr -0.0958 0.0811 -5.60E-05 2.28E-04 -0.124% 2.28E-04
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A three-dimensional block model with a cell size of 50mE x 50mN x 1.5mRL (with 40 
cells in E, 60 in N and 44 vertically) over the same area as the selected drilling data and 
restricted spatially to the 7% bitumen domain was constructed. OK, OCK and RCK 
estimates were run for the original and transformed data, using the variogram models 
shown in Table 5-1 and Table 5-2. In addition, an estimate using inverse distance squared 
(ID2) was run as a check – the same search parameters as the OK were used. The 
estimates for the original data units are useful to benchmark the results for the logratio 
transformed estimation (Section 5.3.4).  

Quantitative Kriging Neighbourhood Analysis (QKNA, see Vann et al., 2003) was 
undertaken for a few variables to select a suitable kriging search neighbourhood. The use 
of a search neighbourhood that is too restrictive may result in serious conditional bias, 
conversely a neighbourhood that is too large may be computationally heavy, and can 
result in significant negative kriging weights for OK (depending on the covariance 
function employed). This can lead to estimates which are outside the ranges of the input 
data – this in itself may not be a problem, but can often result in negative estimates for 
variables that by definition must be positive. 

The QKNA showed that the use of more than 20 samples resulted in very high negative 
kriging weights. The search neighbourhood parameters used for the original data units 
and those used later for the logratio transforms are shown in Table 5-7. No octant search 
settings or restrictions on the maximum number of samples from a single drillhole were 
applied. 

 

Table 5-7. Kriging search neighbourhood parameters. 

The results for the estimation of the original data units by OK, OCK and RCK are shown 
in Table 5-8 – the individual components for each block were added together (‘Total’). 
The results for the individual components estimated by all three methods (if viewed in 
isolation) appear reasonable when compared to the input data, with similar means and 
less dispersed ranges than the drillhole data, and no negative estimates. 

 

Data Variables Horizontal Vertical Min. Max. Discretisation
Non-transformed Bitumen 2000 20 10 20 10 x 10 x 1
variables Coarse 900 30 10 20 10 x 10 x 1

Fines 800 20 10 20 10 x 10 x 1
Water 2000 20 10 20 10 x 10 x 1

Non-transformed Cokriged 1000 20 10 20 10 x 10 x 1
Logratio alr cokriged 900 20 10 20 10 x 10 x 1
transformed clr cokriged 1000 20 10 20 10 x 10 x 1

Search Ellipse (m) Number of samples
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Table 5-8. Results for OK, OCK and RCK estimates for the original data units. 

Figure 5-5 below shows a series of swath plots in three directions comparing the bitumen 
in the drilling with the estimates. Swath plots were used in Chapter 4 to show drifts or 
trends – here, in addition to showing any trends, the performance of the estimates can be 
assessed. In general, an unbiased estimate will be a linear smoothing of the more 
heterogeneous areas. 

The swath plots show that the all the estimators perform globally reasonable and across 
the domain-wide slices, with the estimated values showing smoothing as expected 
compared to the input drilling. Swath plots for the other components also show 
smoothing and lack of bias compared to the input data, which is consistent with the cross-
validation results. 

 

Component Minimum Maximum Mean Variance
OK Bitumen 0.0451 0.4099 0.1267 3.89E-04

Coarse 0.3931 0.8104 0.7104 2.92E-03
Fines 0.0212 0.4040 0.1197 3.23E-03
Water 0.0140 0.0933 0.0430 1.23E-04
Total 0.9175 1.0902 0.9998 1.50E-04

OCK Bitumen 0.0199 0.3819 0.1268 3.57E-04
Coarse 0.3692 0.8172 0.7115 2.59E-03
Fines 0.0174 0.4918 0.1187 3.12E-03
Water 0.0103 0.1159 0.0431 1.53E-04
Total 0.9750 1.1144 1.0000 1.20E-05

RCK Bitumen 0.0184 0.3276 0.1268 2.62E-04
Coarse 0.3886 0.8115 0.7112 1.20E-03
Fines 0.0219 0.4836 0.1192 1.50E-03
Water 0.0094 0.1168 0.0425 1.38E-04
Total 0.9248 1.0450 0.9997 2.50E-05
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Figure 5-5. Swath plots for bitumen estimates vs. drilling (easting– top left, northing 
– top right, RL – bottom left. Colour scheme: black = drilling, red = ID2, green = 
OK, blue = OCK, orange = RCK.).  

The OK and both cokriging methods do not result in the estimated components summing 
to the required constant of one (Figure 5-6). Normalization to the constant sum was 
performed, and Table 5-9 below shows the relative differences in percentages between 
the normalized and non-normalized estimates. 

While the global means appear relatively unbiased, this is not the case for the tails of the 
distributions. For example, from Table 5-9 for OK, the minimum value for the 
normalized bitumen value is 2.35% higher relative to the non-normalized value, but the 
maximum normalized bitumen value is 6.345% lower. Figure 5-7 shows scatterplots for 
the normalized and non-normalized estimates for OK for bitumen and coarse. The high-
grade tail (>21% bitumen non-normalised) has been highlighted in red, and the 
corresponding points for the coarse scatterplot are also highlighted. 

The normalization has introduced a bias – the high or low tails of a distribution are often 
critical (e.g., a variable of economic value, or a driver for metallurgical processing), so 
this distortion of the distribution of an estimate by normalization is incorrect, and not 
advised.  
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Figure 5-6. Histograms for total of added components in each block, OK, OCK, 
RCK. 

 

Figure 5-7. Scatterplots, non-normalized vs. normalized OK estimates for bitumen 
and coarse. 
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Table 5-9. Relative differences between normalized and non-normalized component 
estimates. 

The magnitude of the bias is also dependent on the choice of kriging algorithm – from 
Table 5-9, the normalization bias for RCK is lower compared to the other estimates. This 
is not unexpected, as the range and skewness of the distribution of the summed 
components (Figure 5-6) is lowest for RCK. 

5.3.3 Logratio Cross-Validation 

Cross-validation was undertaken for the variables in logratio space, using the variogram 
models shown in Table 5-3 and Table 5-4 and the search parameters shown in Table 5-7. 
Statistics for the mean estimation error are shown in Table 5-10. The mean for alrB:C is 
zero, but the mean of the errors for the other alr variables diverge from zero. However, 
the percentage bias is still low, given the values of the logratio variables. The means for 
the clr transformed variables are also farther from zero than those shown for the estimates 
in original data units, and the percentage bias for clrB appear significant. In this case 
however, the mean value for clrB is relatively close to zero, so the percentage bias 
measure is very sensitive in this case. It therefore appears that the kriged estimates in 
logratio space are relatively unbiased. The significance of these values can be assessed 
against the results once the logratio values are back-transformed into original data units, 
which is shown in Table 5-11. 

In Table 5-11, the mean error for bitumen is slightly positive, but there are significant 
biases for the other components, including a pronounced negative bias for the fines 
fraction. For both the alr and clr back-transforms, similar magnitudes of bias are seen for 
all the components. Note that the MSE is not particularly high, as the variance of the 
errors is quite low, but showing consistent biases. 

Component Minimum Maximum Mean Variance
OK Bitumen 2.350% -6.345% 0.0079% -2.564%

Coarse -6.344% -0.031% 0.0127% -5.822%
Fines 0.424% 1.015% 0.0919% 1.238%
Water -0.858% 1.929% 0.0698% 0.000%

OCK Bitumen 0.202% -9.876% -0.0079% -2.778%
Coarse -0.520% 0.625% 0.0014% 1.544%
Fines 0.860% 0.183% -0.0169% -0.321%
Water 0.487% -0.984% -0.0232% 0.000%

RCK Bitumen 0.163% 1.218% 0.0552% 3.846%
Coarse -0.126% 0.691% 0.0394% 5.000%
Fines -0.411% 0.182% -0.0252% -1.333%
Water 0.106% -1.858% -0.0235% 0.000%
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Table 5-10. Estimation error statistics from cross-validation for logratio units. 

 

Table 5-11. Estimation error statistics from cross-validation for back-transformed 
logratio variables to original data units. 

These results are consistent with those shown in the simple example in Section 2.8, and 
the relative biases are as expected given that the logratio methods have been 
demonstrated to result in means that approach the standardized geometric mean of the 
original data. Table 5-12 shows the naive i.e., not declustered arithmetic and geometric 
means of the original data, the standardized geometric mean (i.e., the global ‘Expected 
Result’), the global Z* estimates for the logratio methods and the global percentage 
biases. 

Note that the biases are based on the raw arithmetic mean for the components, and 
therefore they will not exactly match the biases shown in Table 5-11. The actual 
estimates show that the coarse fraction is not as positively biased high, or the fines 
fraction as negatively biased as the standardized geometric mean, but the other 
components are very similar to the expected results. Local variations in data 
configuration, and therefore in the kriging system, mean that it is unlikely that the 
expected and actual logratio Z* estimates will match exactly. The sum of the components, 
of course, is unbiased. 

VARIABLE Minimum Maximum Mean Variance % Bias MSE
Z*_alr_B:C_error -2.8086 2.2549 0.0000 0.0475 0.000% 0.0475
Z*_alr_F:C_error -5.9264 3.4350 -0.0034 0.5079 0.158% 0.5079
Z*_alr_W:C_error -5.0011 2.7086 -0.0022 0.1889 0.107% 0.1889
Z*_clr_B_error -2.4052 3.0928 0.0011 0.1470 -2.245% 0.1470
Z*_clr_C_error -1.2298 3.2126 0.0008 0.0752 0.047% 0.0752
Z*_clr_F_error -2.9666 2.5722 -0.0013 0.2664 0.299% 0.2664
Z*_clr_W_error -1.8264 1.0528 -0.0007 0.0717 0.057% 0.0717

VARIABLE Minimum Maximum Mean Variance % Bias MSE
Z*_alr_Bitumen_error -0.5732 0.1733 3.94E-04 8.11E-04 0.318% 8.11E-04
Z*_alr_Coarse_error -0.4620 0.6590 1.56E-02 6.22E-03 2.226% 6.47E-03
Z*_alr_Fines_error -0.7341 0.4367 -1.51E-02 7.02E-03 -11.776% 7.24E-03
Z*_alr_Water_error -0.0934 0.0912 -9.29E-04 2.38E-04 -2.060% 2.39E-04
Z*_clr_Bitumen_error -0.5802 0.1313 8.39E-04 9.28E-04 0.678% 9.29E-04
Z*_clr_Coarse_error -0.3418 0.6963 2.14E-02 6.98E-03 3.046% 7.44E-03
Z*_clr_Fines_error -0.7765 0.3232 -2.09E-02 8.17E-03 -16.321% 8.61E-03
Z*_clr_Water_error -0.1089 0.0776 -1.31E-03 2.65E-04 -2.900% 2.67E-04
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Table 5-12. 'Expected' results from direct kriging of logratios. 

5.3.4 Logratio Block Estimation 

Block estimates were made into the same three-dimensional model used for the estimates 
in original data space, with the variogram models shown in Table 5-3 and Table 5-4 and 
search parameters shown in Table 5-7. The basic statistics of the OCK and RCK 
estimates for the logratio data are similar to the declustered input data indicating no bias 
in the logratio transformed space (see Table 5-13 for RCK results). 

 
Table 5-13. Transformed drilling data v. rescaled cokriged estimate. 

Figure 5-8 below shows the swath plot for the alrB:C estimators vs. the drilling, which 
shows an acceptable smoothing and lack of bias for each of the logratio estimators. Swath 
plots for the estimates of the other logratio variables show similar lack of bias in logratio 
space, which is consistent with the cross-validation results. 

Bitumen Coarse Fines Water Total
Arith. Mean 0.1263 0.7115 0.1201 0.0421 1.0000
Geom. Mean 0.1201 0.6998 0.0816 0.0369 0.9384
Expected Result 0.1279 0.7458 0.0870 0.0393 1.0000
Expected % Bias 1.3% 4.8% -27.6% -6.8% 0.0%
Z*  alr Results 0.1266 0.7272 0.1050 0.0412 1.0000
Z* alr % Bias 0.3% 2.2% -12.6% -2.2% 0.0%
Z*  clr Results 0.1271 0.7329 0.0992 0.0408 1.0000
Z* clr % Bias 0.7% 3.0% -17.4% -3.1% 0.0%

Variable Minimum Maximum Mean Minimum Maximum Mean
alrB:C -4.9375 1.2266 -1.7628 -3.2141 0.3337 -1.7620
alrF:C -6.9411 4.5948 -2.1485 -4.9742 1.3495 -2.1645
alrW:C -5.1957 2.0616 -2.9438 -4.8359 -0.5495 -2.9133
clrB -3.6411 2.0187 -0.0490 -1.0176 0.7193 -0.0445
clrC -1.6292 3.2221 1.7138 0.6191 2.3827 1.7124
clrF -3.7189 2.9656 -0.4347 -1.5952 0.7432 -0.4510
clrW -2.6068 0.4325 -1.2300 -1.9563 -0.6536 -1.2178

Drilling RCK Estimates
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Figure 5-8. Swath plots for alrB:C estimates vs. drilling (easting– left, northing – 
middle, RL – right. Colour scheme: black = drilling, red = ID2, green = OCK, blue = 
RCK). 

The logratio estimates were then back-transformed into original data units. Initial 
validation of the results involved comparison with the input data (see Table 5-14 and  
Table 5-15). The maxima and minima for all components are within the range of the input 
data. Other observations include: 

• The means for bitumen in the estimates are slightly higher than the declustered 
mean of 0.124, but the maximum value for the clr method is significantly lower 
than that for the alr method; 

• The means for the coarse estimates are much higher than the declustered sample 
mean of 0.703, indicating a positive bias;  

• The means for the fines estimates are below the declustered sample mean of 0.128, 
indicating a negative bias, and the maximum value for the clr method is 
significantly lower than that for the alr method; and 

• The means for the water estimates are slightly lower than the declustered sample 
mean of 0.045. 
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Table 5-14. Comparison of input data and cokriged models, alr method. 

 

Table 5-15. Comparison of input data and cokriged models, clr method. 

The coarse and fines fractions are biased as expected, and this is confirmed by the swath 
plots of the back-transform for the alr method (Figure 5-9). It can be seen that the 
estimates for bitumen and water have no obvious bias visually, but the bias for the coarse 
(positive) and fines (negative) fractions are clear to see in all three directions. 

Plots for the clr method show a very similar pattern to the alr method. These results agree 
with those from the cross-validation – the positive bias occurs for the dominant 
component. The alr and clr methods result in similar biases. 

Aitchison (1986) asserts that the choice of denominator does not have an effect on the 
process, but it is worth testing whether using the coarse fraction as the denominator for 
the alr method has an effect on the bias. To test this, the estimates were re-run for the alr 
method using the fines as the denominator. 

The logratios were re-calculated and direct and cross-variograms modelled for the new 
data. The variogram models were similar to those for the initial alr transform, although 
slight editing of ranges and sills was required to get a better fit for the experimental 
variogram. The search neighbourhood used was the same as for the initial alr estimate. 
Rescaled cokriging was run for the three alr variables, and then back-transformed into 
original data units. 

The results were almost identical to those from the initial alr transform that used the 
coarse fraction as the denominator – the bitumen and water appear acceptable, but coarse 
was positively biased and the fines negatively biased. These results confirm that choice of 
denominator does not have an effect on the alr method, or for that matter any output 
statistics. 

 

  

Variable Min. Max. Mean Min. Max. Mean Mean % Min. Max. Mean Mean %
Bitumen 0.002 0.690 0.124 0.019 0.411 0.127 102.6% 0.018 0.411 0.127 102.7%
Coarse 0.009 0.854 0.703 0.176 0.834 0.730 103.9% 0.175 0.833 0.731 104.0%
Fines 0.001 0.911 0.128 0.006 0.675 0.101 78.4% 0.006 0.676 0.100 77.7%
Water 0.005 0.173 0.045 0.007 0.135 0.042 94.0% 0.006 0.134 0.042 93.3%
Total 1.000 1.000 1.000 1.000 1.000 1.000 100.0% 1.000 1.000 1.000 100.0%

Declustered Drilling Back-transformed OCK Back-transformed RCK

Variable Min. Max. Mean Min. Max. Mean Mean % Min. Max. Mean Mean %
Bitumen 0.002 0.690 0.124 0.056 0.263 0.128 103.5% 0.059 0.275 0.129 103.9%
Coarse 0.009 0.854 0.703 0.339 0.827 0.737 104.8% 0.417 0.826 0.739 105.1%
Fines 0.001 0.911 0.128 0.014 0.489 0.094 73.2% 0.017 0.401 0.092 71.8%
Water 0.005 0.173 0.045 0.010 0.109 0.041 91.6% 0.011 0.103 0.040 89.7%
Total 1.000 1.000 1.000 1.000 1.000 1.000 100.0% 1.000 1.000 1.000 100.0%

Declustered Drilling Back-transformed OCK Back-transformed RCK
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Figure 5-9. Swath plots, original data units back-transformed from alr estimate 
(Colour scheme: black = drilling, red = ID2, green = OCK, blue = RCK). 
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5.4 Concluding Comments for Chapter 5 

Linear estimation of compositional data has a number of problems – direct estimation of 
the original data does not result in closed compositions at the unsampled locations, and 
does not preclude the possibility of negative estimates. Normalization of the estimates to 
close to the constant sum will result in bias. 

Direct kriging and back-transformation of (smoothed) estimates of logratios is also 
problematic, since the linear averaging of log transformed variables when back-
transformed does not result in the linear averaging in the original units, and consequently 
the results are biased. This bias is not due choice of logratio transform (or choice of 
denominator for the alr transform) or to the estimation method – the approximate same 
results were seen regardless of whether ID2, OK, OCK or RCK was used. 

The bias as expected from the simple example was confirmed by application of the 
techniques to the oil sands data set. The estimated values tend towards the standardized 
geometric means of the original data – the extent of the bias depends upon the relative 
magnitudes of the original data. 

Therefore, it is concluded that a non-linear technique will be required to correctly model 
the conditional distribution of the logratios before back-transformation into original data 
units. In particular, quantiles used to discretize the conditional distribution are passed 
through the back-transforms – the whole distribution rather than just the expected value is 
available through each of the back-transformation steps. 
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Chapter 6 MultiGaussian Kriging 

6.1 Normal Scores Transform 

Cell declustering with a grid size of 450mE x 450mN x 1.5mRL was selected for 
weighting during the normal scores transform. Declustering analysis for the logratio 
variables showed very similar patterns to those of the original data unit components 
discussed in Section 4.2.2. All of the logratio transformed components were transformed 
to Gaussian distributions via the normal scores method with these declustering weights 
applied. 

6.2 Checks for Bivariate Gaussian Distributions 

Application of Gaussian-based algorithms for Z(x) relies heavily on an assumption of 
multivariate Gaussian distribution for Y(x). The normal scores transformation only 
ensures that the marginal distribution of Y(x) is Gaussian; it does not guarantee a 
multivariate Gaussian distribution. There are several checks (summarized in Chapter 3 
and in Emery, 2005a) that can be made for bivariate Gaussian distributions (i.e., 
binormality), which is a consequence of the multivariate Gaussian assumption. Checking 
for higher order distributions is possible (assuming enough data were available), but 
Verly (1984) points out that ‘it seems unlikely that a deposit could fail the check on 
trinormality after having passed the one on binormality’. These checks are not definitive 
(indeed, they can be quite subjective), and they are not formal statistical tests, but they are 
recommended to validate the use of the assumed multi-Gaussian model.  

6.2.1 H-Scatterplots and Bivariate Scatterplots 

H-scatterplots are a means of visualizing the information from a variogram or spatial 
covariance at a single lag; they are scatterplots between a variable and itself at some 
given vector separation – distances, directions and tolerances can be manipulated. The H-
scatterplot of a Gaussian transformed variable should be elliptical in shape if it has a 
bivariate Gaussian distribution. Figure 6-1 shows the H-scatterplot for Gaussian-
transformed alrB:C for a vertical direction, with a lag equal to the downhole sample 
interval. The red ellipse outlines on the plot are constant probability density contours for 
25%, 50% and 95% as described by Deutsch and Deutsch (2011). The density contours 
are visually elliptical, and it could be concluded that the distribution is approximately 
bivariate Gaussian. 

Deutsch and Deutsch (2011) however propose a quantitative check that compares the 
fraction of points falling within the contours with the theoretical fraction, and a second 
step then compares the fraction of points falling within the quadrants of the constant 
density ellipses with the theoretical value. The differences from the expected number in 
each quadrant for each probability contour are summed, averaged and standardized to 
give a single measure of deviation from the perfect bivariate Gaussian distribution. The 
likelihood of the distribution to not be bivariate Gaussian is then determined from this 
measure of deviation – in Figure 6-1, the value of >99.99% indicates that the distribution 
is not bivariate Gaussian. 
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Figure 6-1. H-scatterplot, Gaussian-transformed alrB:C values, vertical direction. 

Bivariate scatterplots between the three Gaussian transformed alr variables are shown in 
Figure 6-2. As with the H-scatterplot, the measure of deviation shows that the 
distributions are very likely not bivariate Gaussian, even though the scatters are 
approximate elliptical.  

 

Figure 6-2. Bivariate scatterplots for Gaussian alr values. 
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The scatterplot method is only one of the possible checks for a bivariate Gaussian 
distribution – other checks are described below. 

6.2.2 Square Root of Variogram vs. Madogram 

The ratio of the square root of the variogram to the madogram i.e. the first-order 
variogram: 

1
1( ) {| ( ) ( ) |}
2

E Y Yγ = + −u uh h        6-1 

should be constant (ൌ  i.e., approximately 1.7725) under the bivariate Gaussian  ߨ√
assumption (Emery, 2005a). Figure 6-3 below shows these plots for the omni-directional 
horizontal case, for the alr data. Plots for the clr method and for the downhole direction 
all show that the ratio is close to the theoretical value beyond the first lag, with the 
differences in percentage terms between the experimental and theoretical values for each 
lag distance shown in Table 6-1. 

 

Figure 6-3. Ratio of square root of variogram vs. madogram, normal scores of alr 
transformed data, horizontal direction. Left to right alrW:C, alrF:C, alrB:C. 

 

Table 6-1. Difference between experimental and theoretical values, ratio between 
square root of variogram and madogram. 

N0

 0  250  500  750  1000 
Distance (m)

 0.0 

 0.5 

 1.0 

 1.5 

 2.0 

S
q
r
t
 
o
f
 
V
 
/
 
M
 
:
 
g
a
l
r
B
:
C

N0

 0  250  500  750  1000 
Distance (m)

 0.0 

 0.5 

 1.0 

 1.5 

 2.0 

S
q
r
t
 
o
f
 
V
 
/
 
M
 
:
 
g
a
l
r
F
:
C

N0

 0  250  500  750  1000 
Distance (m)

 0.0 

 0.5 

 1.0 

 1.5 

 2.0 

S
q
r
t
 
o
f
 
V
/
 
M
 
:
 
g
a
l
r
W
:
C

Lag (m) 3.3 122.7 205.5 302.3 401.0 500.5 600.4
galrB:C 109.9% 103.8% 103.6% 102.9% 102.9% 102.6% 102.1%
galrF:C 108.9% 102.3% 102.3% 102.4% 101.9% 101.4% 101.4%
galrW:C 107.4% 101.4% 101.7% 101.3% 101.2% 100.7% 100.5%
Lag (m) 700.2 800.9 900.2 998.7 1099.5 1200.8 1299.2
galrB:C 102.1% 101.7% 101.8% 101.4% 101.1% 101.2% 101.0%
galrF:C 101.3% 100.7% 100.8% 100.9% 100.5% 100.5% 100.1%
galrW:C 100.3% 100.3% 100.4% 100.6% 100.7% 100.6% 100.8%
Lag (m) 1399.0 1498.7 1597.7 1700.6 1798.9 1895.8
galrB:C 100.6% 100.4% 100.7% 100.6% 100.7% 100.6%
galrF:C 99.7% 100.0% 99.8% 100.1% 99.9% 99.5%
galrW:C 100.5% 100.4% 100.4% 100.0% 100.2% 99.8%
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It is unclear, however, what differences are acceptable – Emery (2005a) only mentions 
that the ratio must be independent of the lag, and Verly (1984) only discusses the values 
as being ‘very close’. This check is therefore somewhat subjective, and is only a partial 
test for binormality – a more rigorous check is discussed in the next section. 

6.2.3 Variograms of order ω 

Another check is to compare the experimental variogram of some order ω to the 
theoretical variogram via the relationship for a fixed ω and varying h: 

2( ) ( )
( ) ( )

ω

ω

ω

γ γ
γ γ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦0 0

h h
h h

        6-2 

where h0 is a reference lag distance where the variogram is reliable (often near the sill). A 
scatterplot between these two functions at various lags should plot on the bisector line if 
the bivariate Gaussian assumption is not violated. 

The rodogram is the variogram of order ½: 

{ }0.5
1( ) | ( ) ( ) |
2

E Y Yγ = + −u uh h       6-3 

The relationship between the rodogram and theoretical variogram to the power of 0.25 
from Equation 6-2 was checked downhole, with an example scatterplot shown for the 
Gaussian alrB:C component in Figure 6-4. The lag chosen as ‘being reliable’ was 25.5m. 

 

Figure 6-4. Scatterplot, rodogram vs. variogram to power of 0.25, Gaussian 
transformed alrB:C. 
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The regression line (black) indeed looks linear, but it is biased, only converging with the 
theoretical vs. experimental bisector line (magenta) above a value of one. Plots for the 
other variables are very similar, and changing the ‘reliable lag’ distance does not 
significantly alter the appearance of the plots. 

It therefore seems that the bivariate Gaussian assumption is not met for this data set, most 
likely due to heteroscedasticity. It is possible that alternatives to the multivariate 
Gaussian framework could be used, for example Indicator kriging, but the assumptions 
associated with them (e.g., modelling of the tails of the distributions, order relation 
corrections) can also be strong. Further suggestions for alternative methods and 
transformations are discussed in Section 8.2. 

So, even though the data departs from the multivariate Gaussian assumption, the lack of 
suitable alternatives means that MGK is still the best option of estimating logratio 
transformed compositional data. 

6.3 Variography 

Experimental variograms and cross-variograms were generated for the seven Gaussian 
transformed logratio components - the directions are the same as those used for the 
untransformed data. These experimental variograms were fitted with a model that 
consisted of a nugget and two spherical structures (Table 6-2 and Table 6-3. Figure 6-5 
shows the direct and cross variogram in the horizontal direction for the Gaussian 
transformed alr variables). The parameters (lags, tolerances) used for the experimental 
variograms were essentially the same as for the non-Gaussian transformed components 
(see Chapter 5).  

 
Table 6-2. Gaussian variogram model parameters, alr transformed data. 

Structure Type Major Semi Minor
1 Nugget galrB:C galrF:C galrW:C

galrB:C 0.2712 -0.0275 -0.5350
galrF:C -0.0275 0.2009 0.0685
galrW:C -0.5350 0.0685 0.1858

2 Spherical galrB:C galrF:C galrW:C 150 150 8
galrB:C 0.4488 -0.0471 -0.1918
galrF:C -0.0471 0.5954 0.4537
galrW:C -0.1918 0.4537 0.5913

3 Spherical galrB:C galrF:C galrW:C 950 950 20
galrB:C 0.2800 -0.1784 -0.0977
galrF:C -0.1784 0.2037 0.1926
galrW:C -0.0977 0.1926 0.2229

Range (metres)
Variance-Covariance matrix

Cross Variogram Models - Gaussian alr transformed
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Table 6-3. Gaussian variogram model parameters, clr transformed data. 

 

Figure 6-5. Direct and cross-variograms for Gaussian-transformed alr data, 
horizontal direction. 

Structure Type Major Semi Minor
1 Nugget gclrB gclrC gclrF gclrW

gclrB 0.5239 0.4360 -0.4628 -0.2992
gclrC 0.4360 0.4552 -0.4631 -0.1914
gclrF -0.4628 -0.4631 0.5634 0.1001
gclrW -0.2992 -0.1914 0.1001 0.4610

2 Spherical gclrB gclrC gclrF gclrW 110 110 10
gclrB 0.2547 0.2795 -0.1913 -0.1969
gclrC 0.2795 0.3733 -0.2617 -0.1886
gclrF -0.1913 -0.2617 0.2489 0.0011
gclrW -0.1969 -0.1886 0.0011 0.4215

3 Spherical gclrB gclrC gclrF gclrW 1050 1050 30
gclrB 0.2214 0.1827 -0.2029 -0.1184
gclrC 0.1827 0.1715 -0.1640 -0.1311
gclrF -0.2029 -0.1640 0.1878 0.1034
gclrW -0.1184 -0.1311 0.1034 0.1175

Cross Variogram Models - Gaussian clr transformed
Range (metres)

Variance-Covariance matrix
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6.4 MGK Estimate (alr) 

A grid was set up to cover the same area as the kriging grid, but with smaller block sizes 
(10mE x10mN x1.5mRL, 200 blocks E, 300 blocks W, 44 blocks RL). 

Simple cokriging of the three normal scores transformed alr variables was performed 
using the variogram parameters shown in Table 6-2 and the same search parameters as 
used for OCK and RCK (Chapter 5). Three sets of fifty independent random standard 
normal values were generated at each grid node (one set for each variable), and then 
random but correlated Gaussian values were generated using the Cholesky lower triangle 
matrix shown in Table 6-4.  

 

Table 6-4. Correlation and Cholesky lower triangle matrices for Gaussian 
transformed alr variables. 

The standard deviation of the SCK estimate for each variable was multiplied by the 
correlated random Gaussian value for that variable, and the estimated value for the SCK 
was added, resulting in fifty quantiles of the conditional distribution for each variable. 
Each quantile was then back-transformed through the inverse normal scores and alr 
transforms, as described in Chapter 3.  

Fifty realizations for each of the four variables in original data units were thus available – 
the mean of the realizations represents the multiGaussian kriged value, and probabilities 
to be above or below selected cut-offs can be calculated. These quantile values were then 
averaged into the larger blocks used for the initial kriging estimates (50m x 50m x 1.5m), 
and the results are shown in Table 6-5. 

The advantage of MGK over OK or OCK is that the conditional distribution is modelled. 
For data transforms that are non-linear (both the logratio and normal scores transforms 
are non-linear), the critical feature is that the quantiles are modelled, rather than just the 
expected value, and these quantiles can be passed through non-linear transformations. 

galrB:C galrF:C galrW:C galrB:C galrF:C galrW:C
galrB:C 1 -0.2189 -0.3307 galrB:C 1 0 0
galrF:C -0.2189 1 0.6868 galrF:C -0.2189 0.9757 0
galrW:C -0.3307 0.6868 1 galrW:C -0.3307 0.6297 0.7030

Correlation Matrix Cholesky Lower Matrix
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Table 6-5. MGK estimate results. 

6.4.1 MGK validation 

The mean values for the MGK conditionally distributed estimate compare well with the 
declustered sample data, as shown in Table 6-6. The values of individual realizations at 
the point scale can fall outside the range of the input data, but they do not do so when 
averaged at the block scale. 

 

Table 6-6. MGK estimate compared to drilling data, original data units. 

Swath plots (Figure 6-6) show that the mean of the MGK has performed well globally 
and reasonably locally, although there appears to be a slightly high bias for water 
between 170 - 210mRL. Unlike the directly kriged estimates for the logratio transformed 
variables (Chapter 5), there is no significant bias across the entire domain for the coarse 
and fines fractions (compare Figure 6-6 with Figure 5-8). 

  

Bitumen Coarse Fines Water
Mean Value 0.1262 0.7082 0.1212 0.0444
Probability > 0.05 97.1% 100.0% 65.7% 27.9%
Probability > 0.1 79.2% 99.9% 39.8% 4.7%
Probability > 0.15 22.6% 99.9% 26.5% 1.0%
Probability > 0.2 0.8% 99.8% 18.2% 0.3%
Probability > 0.25 0.6% 99.6% 13.0% 0.1%
Probability > 0.3 0.4% 99.1% 9.3% 0.1%
Probability > 0.35 0.3% 98.4% 6.5% 0.0%
Probability > 0.4 0.3% 97.4% 4.4% 0.0%
Probability > 0.45 0.2% 95.7% 2.8% 0.0%
Probability > 0.5 0.2% 93.3% 1.8% 0.0%
Probability > 0.55 0.1% 90.0% 1.2% 0.0%
Probability > 0.6 0.1% 85.4% 0.7% 0.0%
Probability > 0.65 0.0% 78.7% 0.4% 0.0%
Probability > 0.7 0.0% 67.6% 0.1% 0.0%
Probability > 0.75 0.0% 48.5% 0.1% 0.0%
Probability > 0.8 0.0% 12.3% 0.1% 0.0%
Probability > 0.85 0.0% 0.5% 0.1% 0.0%
Probability > 0.9 0.0% 0.0% 0.0% 0.0%
Probability > 0.95 0.0% 0.0% 0.0% 0.0%

Min. Max. Mean Min. Max. Mean
Bitumen 0.0019 0.6901 0.1263 0.0305 0.3882 0.1262
Coarse 0.0092 0.8544 0.7115 0.3017 0.8281 0.7082
Fines 0.0008 0.9105 0.1201 0.0146 0.5222 0.1212
Water 0.0045 0.1730 0.0421 0.0084 0.1211 0.0444

Drilling MGK Estimate (mean)
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Figure 6-6. Swath plots for MGK alr estimates vs. drilling (easting– left, northing – 
middle, RL – right. Colour scheme: black = drilling, red = mean of realizations, 
green = realization 01, blue = realization 25). 
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Cross validation was also used to establish if there was any bias. MGK estimates were 
made at each sample data point using the procedure described above, and scatter plots 
comparing the mean of the distributions to the true values are shown below in Figure 6-7.  

 

 

Figure 6-7. Cross-validation scatterplots, bitumen, coarse, fines, water (black line = 
bisector, magenta line = linear regression). 

As for the OK and OCK of the original data units (Section 5.3), the results are reasonable 
with the exception with the higher-grade bitumen values. Statistics of the errors for the 
mean MGK values are shown in Table 6-7 and histograms shown in Figure 6-8. The 
distributions of the errors show that there is no significant global bias, although the 
relatively poor performance of the water estimate as previously noted for the block 
estimates is also seen here. 
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Table 6-7. Statistics of estimation errors, mean of MGK distribution. 

 

Figure 6-8. Histograms of estimation errors, mean of MGK distribution. 

  

VARIABLE Minimum Maximum Mean Variance % Bias MSE
Z*_MGK_Bitumen_error -0.5872 0.1847 -6.80E-05 8.58E-04 -0.055% 8.58E-04
Z*_MGK_Coarse_error -0.3414 0.6479 -1.64E-03 6.63E-03 -0.233% 6.63E-03
Z*_MGK_Fines_error -0.7152 0.3693 9.68E-04 7.62E-03 0.754% 7.62E-03
Z*_MGK_Water_error -0.0916 0.0782 7.39E-04 2.60E-04 1.639% 2.61E-04
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6.5 Concluding Comments for Chapter 6 

MultiGaussian kriging as implemented here appears to be able to adequately model the 
conditional distribution of the logratio transformed data. The performance of MGK is far 
superior to the direct estimate and back-transform for the logratio values, which produces 
a bias. MGK, by contrast, produces results that are not systematically biased. 

The quantiles of the logratio distributions are passed through the normal scores transform 
and back via the inverse of the normal score and logratio transformations into original 
data units. It is only when the distribution of the components has been finally back-
transformed into original data units that averaging can occur to produce non-biased 
results. 

MGK results in a much richer model than OCK or RCK, as the probabilities to be above 
(or below) any particular cut-off can be obtained from the final conditional distribution. 
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Chapter 7 Conditional Simulation 

7.1 Introduction 

The performance of conditional simulation for compositional data was compared with 
and without the logratio transform, as was done for cokriging in Chapter 5. Sequential 
Gaussian simulation (SGS) is the most widely used form of Gaussian conditional 
simulation for continuous variables, and has been applied for this study. 

7.2 Conditional Simulation without Logratio Transform 

To perform a conventional multivariate conditional simulation study without considering 
the compositional data paradigm, the data in original space was transformed to a 
Gaussian distribution, using the same grid declustering weights as described in Chapter 6. 

7.2.1 Checks for Bivariate Gaussian Distributions 

Some of the checks for the bivariate Gaussian distribution discussed in Chapters 3 and 6 
were applied - Figure 7-1 shows the vertical H-scatterplot for bitumen, which indicates 
that the distribution is not bivariate standard normal. The vertical H-scatterplots for the 
other values have similar results, with moderate correlation coefficients, but a poor 
measure of deviation value. The bivariate scatterplots between the different components 
at the same sample location also show that the distribution is very unlikely to be bivariate 
standard normal. 

 

Figure 7-1. H-scatterplot for Gaussian transformed bitumen, vertical direction. 
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The checks for the ratio between the square root of the variogram and the madogram as 
described in Section 6.2.2 have been conducted. These checks appear to be adequate 
(visually and numerically), but the lack of a quantitative definition of acceptability means 
that this check must be deemed as inconclusive. The variogram of order ω checks as 
described in Section 6.2.3 show that the distribution is not likely to be bivariate Gaussian 
- Figure 7-2 shows the scatterplot for Gaussian transformed bitumen, and it is clear that 
the scatter, although linear, is not on the bisector line. 

 

Figure 7-2. Scatterplot, rodogram vs. variogram to power of 0.25, Gaussian-
transformed bitumen. 

Therefore, the checks on the Gaussian-transformed data from the original data units do 
not appear to have a bivariate standard normal distribution, similar to the logratio 
transformed data described in Section 6.2. However, there is no real suitable alternative 
for a probabilistic method such as conditional simulation for continuous variables, so 
sequential Gaussian simulation (SGS) was performed for the original data and logratio 
values after the normal scores transformation. 

7.2.2 Conditional Simulation Parameters 

The grid used for the conditional simulations was the same as that used MGK (10mE 
x10mN x1.5mRL, 200 nodes E, 300 nodes W, 44 nodes RL). After testing various search 
neighbourhoods, twenty five realizations utilizing full cosimulation were run using SGS. 
The search neighbourhood used 100 nodes E, 100 nodes N, 15 nodes RL, using 20 real 
data points and 20 simulated points. 

The variogram model parameters for the Gaussian-transformed components are shown 
below in Table 7-1. SK with a constant mean of zero was used and independent random 
paths were used for each realization. 
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Table 7-1. Variogram model parameters for Gaussian transformed original data, 
without logratio transform. 

 

7.2.3 Validation Checks - Basic Statistics in Gaussian Space 

The variances for the realizations were slightly below one (overall about 0.95, although 
some variables had a mean variance of 0.92). Nowak and Verly (2004) suggest that to 
bring the variance of the normal scores realizations closer to one, the sill of the variogram 
model can be rescaled upwards. To test the rescaled variogram method, 25 realizations 
were re-run with the variance-covariance values rescaled by a factor of 1.1 (variogram 
model ranges unchanged). 

The statistics in Table 7-2 show that the resulting variances of the realizations are close to 
one. It was noted, however, that the means did not approximate zero – Nowak and Verly 
(2004) propose a number of reasons for this phenomenon, such as the influence of large 
portions of the models that are well away from conditioning data, or incorrect 
declustering parameters used during the normal scores transform. This is not the case 
here, as conditioning data extends throughout the domain being simulated, and the 
declustering has been thoroughly studied (although the weights chosen are, by nature, 
subjective). Nowak and Verly (2004) suggest that in this case the simulated values should 
be adjusted, using a ‘progressive correction that depends on the distance of the simulated 
node from the conditioning data’. 

This adjustment involves the calculation of a ‘maximum’ adjustment factor that is then 
scaled by the ratio of standard deviations for each node over the maximum standard 
deviation for all nodes (see Nowak and Verly, 2004 p.393 for full details). This 
adjustment was applied to the normal scores values for the simulated data set, with the 
results shown in Table 7-3. 

Structure Type Major Semi Minor
1 Nugget gBitumen gCoarse gFines gWater

gBitumen 0.2666 0.1482 -0.1400 -0.0882
gCoarse 0.1482 0.2079 -0.1208 -0.0827
gFines -0.1400 -0.1208 0.2179 0.1436
gWater -0.0882 -0.0827 0.1436 0.1746

2 Spherical gBitumen gCoarse gFines gWater 200 200 5
gBitumen 0.4415 0.2432 -0.2948 -0.4132
gCoarse 0.2432 0.6818 -0.6161 -0.4297
gFines -0.2948 -0.6161 0.6157 0.3465
gWater -0.4132 -0.4297 0.3465 0.6780

3 Spherical gBitumen gCoarse gFines gWater 1300 1300 18
gBitumen 0.2919 0.1257 -0.2128 -0.1382
gCoarse 0.1257 0.1104 -0.1168 -0.1274
gFines -0.2128 -0.1168 0.1664 0.1311
gWater -0.1382 -0.1274 0.1311 0.1474

Range (metres)
Variance-Covariance matrix

Cross Variogram Models - Gaussian original units
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Table 7-2. Statistics, drilling vs. realizations, Gaussian transformed original unit 
components. 

 

Table 7-3. Statistics, drilling vs. realizations, Gaussian transformed original unit 
components with adjustment. 

It can be seen that the adjusted means are closer to zero than the non-adjusted means, by 
about half the difference from zero, and the variances are also closer to one. 

There are numerous possible underlying reasons why the normal scores simulated data do 
not follow the expected distribution – the presence of trends, incorrect assumptions about 
the declustering and therefore the distribution of the sample data, spatial distribution of 
the data, modelling of variograms, choice of search neighbourhoods, and importantly, the 
violation of the multiGaussian assumptions. Ideally, the adjustments described above 
(including the re-scaling of the variogram sills) would not be needed; however, the 
practice of geostatistical simulation is often more complex than the simple random 
function models used by the technique. 

  

VARIABLE Min. Max. Mean Var. Min. Max. Mean Var.
gBitumen -3.3968 3.6148 6.70E-05 0.9997 -5.5516 5.5190 0.1056 1.0138
gCoarse -3.2140 3.7223 1.53E-04 0.9993 -5.4269 5.6719 0.0516 1.0052
gFines -3.5166 3.2064 -1.31E-04 0.9992 -5.5582 5.4848 -0.0758 1.0081
gWater -3.6614 3.4212 -4.70E-05 0.9996 -5.3834 5.4582 -0.0678 1.0032

SimulationsTransformed Drilling

VARIABLE Min. Max. Mean Var. Min. Max. Mean Var.
gBitumen -3.3968 3.6148 6.70E-05 0.9997 -5.6042 5.4131 0.0531 1.0071
gCoarse -3.2140 3.7223 1.53E-04 0.9993 -5.4439 5.6384 0.0271 1.0029
gFines -3.5166 3.2064 -1.31E-04 0.9992 -5.4893 5.5168 -0.0376 1.0055
gWater -3.6614 3.4212 -4.70E-05 0.9996 -5.3462 5.5058 -0.0347 1.0022

Transformed Drilling Simulations
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7.2.4 Validation Checks -Basic Statistics in Original Units 

The basic statistics of the final back-transformed original unit data were very well 
reproduced (see Table 7-4). The minima and maxima for the realizations are the same as 
the input data, and the histograms for the 25 realizations were similar to the input data. 
Figure 7-3 shows an example for bitumen – histograms for the other components show 
similar reproduction of declustered input data. 

 

Table 7-4. Drilling vs. realizations basic statistics, adjusted original units. 

 

 

Figure 7-3. Histogram reproduction, bitumen (original units). (Colour scheme: 
black = realizations, red = drilling data). 

Each component, when viewed in isolation, therefore appears to meet the basic criterion 
of statistical reproduction. However, when the variables for each realization are added 
together, the sum of the components is not one. Figure 7-4 shows the histogram of the 
summed components for a realization selected at random (#19) – clearly, the requirement 
for the constant sum of one has not been met for conditional cosimulation – even though 
the mean of the distribution is 1, the sums range from 0.5 to 1.5. All of the other 
realizations show a similar pattern 

VARIABLE Min. Max. Mean Var. Min. Max. Mean Var.
Bitumen 0.0019 0.6901 0.1238 0.0019 0.0019 0.6901 0.1254 0.0017
Coarse 0.0092 0.8544 0.7029 0.0140 0.0092 0.8544 0.7057 0.0133
Fines 0.0008 0.9105 0.1283 0.0145 0.0008 0.9105 0.1250 0.0140
Water 0.0045 0.1730 0.0451 0.0006 0.0045 0.1730 0.0439 0.0005

Declustered Drilling Original Unit Realizations
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Figure 7-4. Histogram of summed components, original data units, realization #19. 

A post-processing normalization of the components was performed – the proportions for 
each component were simply rescaled using the closure operation so that they summed to 
one. The basic statistics for these data are shown in Table 7-5 - it results in the ranges of 
the simulated data being greater than the input data, but the means and variances appear 
relatively non-biased comparable to the non-normalized data. 

Therefore, normalization of the conditional simulations will result in biases to the tails of 
the distributions, as was the case for the kriged estimates discussed in Section 5.3. 

 

 

Table 7-5. Drilling vs. realizations basic statistics, normalized original units. 
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VARIABLE Min. Max. Mean Var. Min. Max. Mean Std. Dev.
Bitumen 0.0019 0.6901 0.1238 0.0019 0.0012 0.7094 0.1273 0.0013
Coarse 0.0092 0.8544 0.7029 0.0140 0.0078 0.9185 0.7112 0.0111
Fines 0.0008 0.9105 0.1283 0.0145 0.0005 0.9158 0.1184 0.0119
Water 0.0045 0.1730 0.0451 0.0006 0.0029 0.2959 0.0431 0.0005

Declustered Drilling Raw - Normalised
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7.2.5 Validation Checks – Variograms in Gaussian Space 

Comparison of the normal scores cross-variogram models and the variograms for the 
realizations (still in Gaussian space) shows that the reproduction of the variogram is 
good. Figure 7-5 shows the checks in the horizontal direction - note that the model shown 
here does not have the variances and covariances adjusted by a factor of 1.1. The cross-
variograms for the vertical direction perform adequately, although the realizations have a 
slightly longer range and lower variance than the input model. 

 

Figure 7-5. Normal scores cross-variogram validation (green = model, orange = 
mean of realizations). 
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7.2.6 Validation Checks – Scatterplots in Original Units 

Comparison of bivariate scatterplots between the input data and back-transformed 
realization data is another useful validation step. Figure 7-6 shows scatterplots for 
bitumen and coarse – the grade ranges have been discretized into 100 bins, and coloured 
by the count of pairs per discretised bin. The legends have been scaled according to the 
number of data points in the drilling and for the realizations. 

The upper left chart shows the drilling with the constraint. The upper right chart shows 
the randomly selected SGS realization (#19), which is not constrained, and the sum of the 
bitumen and coarse alone often exceeds the constant sum. The normalized realization 
(lower right chart) appears a better approximation, showing the same constraint as the 
input data. 

However, normalization introduces a bias to the tails of the distribution, as previously 
discussed. To therefore produce a set of realizations that honour the spatial distributions 
of a compositional data set and meet the constant sum requirement, the logratio approach 
will next be demonstrated. 

 

Figure 7-6. Scatterplots for bitumen (x-axis) and coarse (y-axis). Upper left = 
drilling, upper right = realization 19, lower right = normalized realization #19. 

  



81 

 

7.3 Conditional Simulation with Logratio Transform 

A summary of the transformations and procedure for the conditional simulations using 
the logratio transform is shown below (Figure 7-7), similar to the methodology of 
Boisvert et al. (2009). The logratio transform, normal scores transform and 
experimental/model variograms are exactly the same as those used for MGK (see  
Chapter 6). 

Twenty-five realizations were generated for both the alr and clr components, using SGS 
and the same search parameters as described for non-logratio transformed components as 
described in Section 7.2.2. 

 

Figure 7-7. Generalized process flow (modified after Boisvert et al., 2009). 

 

7.3.1 Validation Checks -Basic Statistics in Gaussian Space 

The variances of the realizations were lower than those of the input data, therefore 
rescaling of the variogram model variances and covariances by a factor of 1.1 was again 
applied. The statistics of the realizations show that the rescaling of the input variogram 
results in a variance usually slightly greater than one for the logratio variables  
(Table 7-6), and the means are closer to zero than the previous run, although 
insignificantly. 

Original Units (%) Logratio transform Declustering

Normal score 
transform

Sequential 
Gaussian 

Simulation

Back 
transformations:
1 Normal Score
2 Logarithmic

Original Units (%)
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Table 7-6. Normal scores statistics, drilling vs. realizations, logratio variables. 

7.3.2 Validation Checks - Basic Statistics in Logratio Space 

The normal scores realizations were back-transformed into the logratio values - the basic 
statistics were very well reproduced (see Table 7-7 and Figure 7-8 for an example 
histogram). 

 

Table 7-7: Drilling vs. realizations basic statistics, logratio space. 

 

Figure 7-8. Histogram reproduction, alrB:C. (Colour scheme: black = realizations, 
red = drilling data). 

VARIABLE Min. Max. Mean Var. Min. Max. Mean Var.
galrB:C -3.2848 4.0861 0.0001 0.9992 -5.5971 5.4105 0.0116 1.0346
galrF:C -3.4524 3.5083 0.0000 0.9992 -5.4666 6.0496 0.0072 0.9825
galrW:C -3.8251 3.5083 0.0000 0.9996 -5.4512 5.2579 -0.0095 0.9920
gclrB -3.2871 3.4729 0.0001 0.9986 -5.6663 5.7632 -0.0033 1.0311
gclrC -3.5053 3.4282 0.0000 0.9990 -5.6324 5.5860 -0.0066 1.0239
gclrF -3.4297 3.4569 0.0000 0.9990 -5.7112 5.8119 0.0083 1.0372
gclrW -3.819 3.5161 0.0000 0.9996 -6.4002 5.5912 -0.0072 1.0339

Transformed Drilling Realizations

VARIABLE Min. Max. Mean Var. Min. Max. Mean Var.
alrB:C -4.9375 1.2266 -1.7628 0.0783 -4.9376 1.2266 -1.7605 0.0812
alrF:C -6.9411 4.5948 -2.1485 1.1080 -6.9412 4.5949 -2.1600 1.1522
alrW:C -5.1957 2.0616 -2.9438 0.4303 -5.1958 2.0617 -2.9175 0.4372
clrB -3.6411 2.0187 -0.0490 0.2495 -3.6412 2.0187 -0.0527 0.2772
clrC -1.6292 3.2221 1.7138 0.1495 -1.6292 3.2222 1.7094 0.1597
clrF -3.7189 2.9656 -0.4347 0.4811 -3.7190 2.9657 -0.4536 0.5297
clrW -2.6068 0.4325 -1.2300 0.1388 -2.6069 0.4325 -1.2063 0.1452

Transformed Drilling Realizations
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7.3.3 Validation Checks - Basic Statistics in Original Units 

The logratio variables were transformed back into the original data units. Comparison of 
these with the raw input data shows that, similar to the kriging (see Chapter 6), the means 
and variances of the individual components have been adequately reproduced, but the 
ranges of the simulations exceed those of the input data for all the variables, with the 
exception of bitumen for the clr method, which is significantly lower (see Table 7-8). 
Figure 7-9 shows the histogram of the realizations compared to the input data for bitumen 
via the alr method – these results show that the realizations do not exactly reproduce the 
original input data. The sum of the components at each node is correct, summing to unity. 

 

Table 7-8: Drilling and realizations basic statistics, final logratio back-transforms 
(alr top, clr bottom). 

 

Figure 7-9. Histogram reproduction, back-transformed bitumen via alr. (Colour 
scheme: black = realizations, red = drilling data). 

VARIABLE Min. Max. Mean Var. Min. Max. Mean Var.
Bitumen 0.0019 0.6901 0.1238 0.0019 0.0001 0.7720 0.1263 0.0016
Coarse 0.0092 0.8544 0.7029 0.0140 0.0093 0.9650 0.7086 0.0126
Fines 0.0008 0.9105 0.1283 0.0145 0.0002 0.9890 0.1209 0.0145
Water 0.0045 0.1730 0.0451 0.0006 0.0006 0.8675 0.0442 0.0009

VARIABLE Min. Max. Mean Var. Min. Max. Mean Var.
Bitumen 0.0019 0.6901 0.1238 0.0019 0.0012 0.5650 0.1260 0.0012
Coarse 0.0092 0.8544 0.7029 0.0140 0.0093 0.9241 0.7084 0.0124
Fines 0.0008 0.9105 0.1283 0.0145 0.0007 0.9771 0.1217 0.0149
Water 0.0045 0.1730 0.0451 0.0006 0.0022 0.4275 0.0439 0.0007

Declustered Drilling alr Realizations 

Declustered Drilling clr - Realizations
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7.3.4 Validation Checks – Variograms in Gaussian Space 

Figure 7-10 shows the normal scores cross-variogram checks for the alr transformed data 
in the horizontal direction, which indicates good to reasonable variogram reproduction of 
the original variogram models, but not of the rescaled variograms. The realization 
variograms in the vertical direction typically show a slightly longer range and lower 
variance compared to the input model. 

 

Figure 7-10. Normal scores cross-variogram validation for alr method, horizontal 
direction (green = model, orange = mean of realizations). 

The clr method variogram reproduction is not as convincing when compared to the non-
rescaled variogram, since the realizations have significantly shorter ranges than the 
model. However, if the realizations are compared to the rescaled variograms, the 
comparison is good up to about 80% of the range, but they do not reach the rescaled sill 
of 1.1. Figure 7-11 below shows the realizations compared to the original variogram 
model (left) and to the rescaled variogram model (right) for the clr values. In summary, 
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the rescaling results in the realizations not matching the input variogram, but results in 
the variances matching the normal score variance. 

 

Figure 7-11. Normal scores cross-variogram validation for clr method, horizontal 
direction, bitumen only. (green = model, orange = mean of realizations). Left = 
original variogram model, right = rescaled variogram model. 
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7.3.5 Validation Checks – Scatterplots in Original Units 

Figure 7-12 shows the scatterplot of bitumen vs. coarse for realization #19 for the alr and 
clr methods – the colour scales are the count of pairs, as described for Figure 7-6. Both 
show the same constraint as the input data, although the truncated maximum bitumen 
value for the clr method results in less dispersion and a higher correlation coefficient. The 
scatterplot comparison is subjective, but it is clear that the alr method results are more 
consistent with the input data than the clr method. 

 

Figure 7-12. Scatterplots for bitumen (x-axis) and coarse (y-axis). Upper left = 
drilling, upper right = alr realization 19, lower right = clr realization 19. 

7.3.6 Validation Checks - Trend Analysis in Original Units 

Swath plots comparing the drilling and the means of the realizations for both logratio 
methods are shown in Figure 7-13. Both methods show reasonable comparison in the 
horizontal directions, but the alr method is much closer to the drilling data than the clr 
method for the vertical direction. 
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Figure 7-13. Swath plots for mean of bitumen realizations (left = Easting, middle = 
Northing, right = RL. Colour scheme: black = drilling, red = alr, green = clr). 

7.3.7 Validation Checks - Comparison with multiGaussian kriging 

A comparison was made (in original data units for the alr transform method) between the 
mean of the MGK estimate with the mean of the conditional simulation realizations, and 
for the proportions of the model above certain cut-offs The results shown in Table 7-9 are 
remarkably similar, and confirm that MGK is a robust method for working with 
compositional data. 

 

 

Table 7-9. Comparison between MGK and conditional simulations, alr transform 
method. 
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Probability > 0.1 79.2% 99.9% 39.8% 4.7% 79.3% 99.9% 39.7% 4.7%
Probability > 0.15 22.6% 99.9% 26.5% 1.0% 22.4% 99.9% 26.3% 1.0%
Probability > 0.2 0.8% 99.8% 18.2% 0.3% 0.9% 99.8% 18.1% 0.3%
Probability > 0.25 0.6% 99.6% 13.0% 0.1% 0.6% 99.6% 12.9% 0.1%
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88 

 

7.4 Concluding Comments for Chapter 7 

Conditional cosimulation of the original data units (after the normal scores transform and 
back-transform) will result in a set of simulations that are valid for the components 
individually, but the constant sum constraint is not honoured. Normalization of the 
simulated data, as with the kriged estimates, will result in bias of the tails of the 
component distributions. 

Conditional cosimulation using logratio transforms of compositional data is a promising 
method. The use of the normal scores transform and back-transform of the quantiles 
overcomes the inherent bias in estimating logratios directly. The work required before 
running the simulations is no more onerous than is required for multiGaussian kriging, 
but the extensive checking and validation required (of which only a small portion is 
presented here) adds to the workload considerably. 

Both the alr and clr methods produce broadly comparable results - on a practical note, the 
alr method has an advantage, since one less variable than the number of components is 
produced, and therefore the cross-variogram modelling and statistical checks in normal 
scores space are less onerous. In addition, the validation checks for the alr method are 
more convincing than those for the clr method. 
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Chapter 8 Conclusions and Further Work 

8.1 Conclusions 

Compositional data is very common in the earth sciences, and in many cases for mineral 
resource estimation, full or sub-compositional data will be available. The data in a 
composition must be greater than zero, and sum to a constant. As one component 
increases, one or more of the other components must decrease – the components are not 
free to vary independently. Therefore, there must be at least one negative correlation 
between the components, and there generally is a bias towards negative correlations – it is 
possible for correlations between the components to thus be spurious. 

Any application of standard statistical (including geostatistical) techniques of the data in 
its raw form can be misleading due to these spurious correlations. Of course, in some 
instances the negative correlations could have some underlying paragenetic basis (such as 
mineral replacement), but it may not be possible to separate inferences and results from 
these genetic relationships and those due to spurious correlations. 

For compositional data, the relative magnitudes between the components are important, 
not the absolute values. The relative magnitudes can be described in terms of ratios, but 
ratios are difficult to deal with mathematically and statistically. Logarithms of ratios 
(logratios) have convenient statistical properties, and they also transform the data from 
the constrained space of the simplex to unconstrained real space. By using logratios, a 
range of multivariate statistical techniques can be used with compositional data. 

It has been shown that directly kriging this logratio-transformed data, with a direct back-
transform applied results in estimates that are biased, even though the results are non-
negative and meet the constant sum constraint. This is because a linear averaging of 
logratios, followed by application of the back-transform, will result in values that 
approach the global standardized geometric mean of the components in original data 
units, not the arithmetic mean. 

In cases where the components are of similar magnitude, or if there is one very dominant 
component, then these biases may not be noticed from cursory statistical checks. When 
the components are of different magnitudes, the biases are obvious and easily detected. In 
summary, to avoid bias, direct kriging of logratios must be rejected from the set of valid 
geostatistical techniques. 

The alternative to direct kriging of logratios is to apply a non-linear approach, in which 
the conditional distributions of the components are modelled instead of unique values 
from a linear kriging. It has been shown that both multiGaussian kriging and conditional 
simulation, where in both cases the logratio values are transformed into Gaussian values, 
are valid techniques for dealing with compositional data. Averaging of data values that 
have been subjected to non-linear transformation, and then back-transformed into original 
data units is incorrect. Only after the distributions have been modelled (via quantiles) 
through the transformation and back-transformation processes can averaging in original 
data units can occur. 

Spatial modelling of compositional data utilizing logratio transformations is yet to find 
widespread acceptance in geostatistics. This is mainly due to: 
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1. The complexity of the numerous transforms (normalizing, logratio, Gaussian); 
2.  The difficulty of dealing with zeros (which are very common); and  
3.  The biased results when directly kriging and back-transforming the logratio 

values. 

The approach advocated here results in the highly desirable result of the relative 
proportions of the components being maintained at unsampled spatial locations for 
estimation and simulation without bias. It is hoped that application of this approach will 
lead to an increase in the popularity of the use of logratios for geostatistical modelling of 
compositional data. 

8.2 Future Work 

Although the logratio transform is central to the compositional data methodology, it 
might be possible to eliminate this transformation step for MGK or Gaussian conditional 
simulation. This is because both these methods rely on a Gaussian transform of the input 
values, and consequently a direct Gaussian transform of the ratios could be considered 
instead of log transformations. It is recognized that the Gaussian transformation does not 
have many of the ‘desirable’ properties of logarithmic transforms, such as the relationship 
between the variances of the logratios shown in Equation 1-1. However, since the 
logarithmic transform of ratios was designed to release compositional data from the 
simplex, and into ‘unconstrained’ space, then the Gaussian transform is also capable of 
this. 

The MGK and conditional simulation procedures described rely on the assumptions of a 
multivariate Gaussian distribution. However, when it is difficult to show that the data 
even conforms to a bivariate Gaussian distribution, then this assumption may be flawed, 
and alternative techniques may be required. It is possible that other non-linear techniques 
such as indicator methods may be used in this case, although accounting for correlations 
between variables with these methods might be difficult. In addition, the implications of 
using multiGaussian methods when the data does not strictly conform to this model 
would be an area well worth investigating. 

The MGK as applied to the logratio transformed data in this study is performed on the 
‘point-scale’ data, and then ‘blocked-up’ to the block-scale. Implementation of MGK for 
compositional data at the block-scale selective mining unit is recommended. 

Several approaches were made in this work to considering how acceptable the assumption 
of the multivariate Gaussian distribution following a standard normal scores 
transformation is. It is noted that these approaches are likely to reject many practical 
mining data sets. There is probably a use for more flexible testing approaches that can 
exclude serious departures but give criteria where some (less departing) data sets can be 
accepted as ‘fit for purpose’. This could be a pragmatic avenue for further research. 

To avoid multivariate Gaussian distribution assumptions, the stepwise conditional 
transformation (SCT, Leuangthong and Deutsch, 2003) could be applied. This 
transformation ensures that the data are multivariate Gaussian with zero correlation, with 
the correlation between the variables captured in the transformation and back-
transformation. 
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Another technique that could be used to transform the data to a multivariate Gaussian 
distribution is the projection pursuit multivariate transform (PPMT, Barnett et al., 2012). 
“The idea is to identify linear projection vectors in the data that are the most complex 
(non-Gaussian) – once these projection vectors have been determined, the individual high 
dimension points are transformed to normalize the projection (‘Gaussianize’). By 
iterating this ‘identify and Gaussianize’ process, the high dimensional data is gradually 
transformed to a multivariate Gaussian distribution” (Barnett et al, 2012). 

The alr transformed data was passed through the PPMT algorithm – bivariate scatterplots 
are shown in Figure 8-1. These transformed variables are highly bivariate Gaussian, in 
contrast to the basic normal-scores transformed data shown in Figure 6-2. In addition the 
correlation between the variables has been removed – for MGK, this would eliminate the 
use of the Cholesky decomposition to create the random but correlated values required to 
discretize the cdf.  

After the MGK or conditional simulation approach described previously, the multivariate 
standard normal transformation (MSNT, Deutsch, 2011) back-transform can then be 
applied. This back-transformation uses an interpolation method to weight the estimates 
based on their proximity to the observed data – essentially a type of inverse distance 
weighting. 

 

Figure 8-1. Bivariate scatterplots for PPMT alr values. 

Therefore, there are techniques under development that address the non-Gaussian 
behavior of data when Gaussian-based geostatistical algorithms provide a convenient and 
tractable solution. 
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An interesting practical application for further compositional geostatistical investigation 
might be an iron ore deposit that has eight or more components. It is possible that there 
are only three of the components are of interest for a particular study (perhaps Fe, Al2O3 
and SiO2 for product characterization). If so, then the subcomposition of these three 
variables can be taken, and the multiGaussian kriging or conditional simulation procedure 
applied. 
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