Duration of labour and its impact on the infant gut microbial composition in the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort

by

Usha Rai

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Medical Sciences - Paediatrics

University of Alberta

© Usha Rai, 2018

Abstract

Background: Balanced development of infant gut microbiota is pivotal for immune maturation and energy homeostasis, and infant gut dysbiosis is associated with increased risk of childhood atopy, allergy and excess weight gain. Shifts in abundance of gut Bacteroidetes and Firmicutes during infancy, along with reduction of probiotic organisms such as *Bifidobacterium* and *Lactobacillus*, has been linked to higher risk of childhood allergy and excess adiposity. Evidence shows that mode of delivery profoundly affects infant gut microbiota development. Yet, information on effect of duration of labour, an inherent component of natural birth, on microbial colonization of infant gut is scarce.

Objectives: To examine the influence of duration of labour on the infant gut microbiota composition and diversity at 3 to 4 months of age.

Methods: A subset of 1028 infants from the Edmonton, Winnipeg and Vancouver sites of the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort were included in the study. Data on duration of labour, other birth characteristics and maternal pre-pregnancy body mass index (BMI) was obtained from hospital birth charts. Infant gut microbiota was characterized using Illumina MiSeq 16S rRNA gene sequencing of fecal samples collected at 3-4 months of age. Microbial relative abundance, Chao1 richness and Shannon diversity were determined.

Results: Longer duration of labour was associated with reduced gut colonization with genera *Bifidobacterium* and *Lactobacillus* in infants at 3-4 months of age. Odds of colonization with *Bifidobacterium* reduced significantly with active first stage longer than 13 hours [aOR = 0.56 (95%CI = 0.34-0.95); p =0.030] and second stage longer than 2 hours [aOR = 0.48 (95%CI = 0.32-0.73); p =0.001]. Likewise, odds of colonization with *Lactobacillus* also reduced with active first

stage longer than 13 hours [aOR = 0.53 (95%CI = 0.30-0.95); p=0.032] and second stage longer than 2 hours [aOR = 0.63 (95%CI = 0.41-0.98); p =0.041]. Infants born to obese mothers showed more severe reduction in *Bifidobacterium* and *Lactobacillus* colonization in association with longer labour durations. In addition, *Veillionellaceae* tended to increase with longer labour in infants of normal weight mothers where as an inverse trend was observed among infants of obese mothers.

Conclusion: The findings provide evidence of infant gut microbiota dysbiosis associated with longer durations of labour. Elevation of maternal pre-pregnancy BMI further accentuates the observed changes in infant gut microbial profile. The long-term consequences of these compositional changes on immune maturation and metabolic homeostasis and risk of childhood allergy and obesity requires further study.

Preface

This thesis is an original work by Usha Rai. The thesis was written in journal-article format according to the guidelines of the Faculty of Graduate Studies and Research at the University of Alberta.

This thesis consists of a literature review (Chapter 1), followed by two studies (Chapter 2 and Chapter 3) designed to address specific objectives, and a concluding chapter (Chapter 4).

Chapter 1 is the introduction that consists of literature review on contemporary patterns of duration of labour, discussion of how labour duration may influence the development of infant gut microbiota, study objectives, hypotheses, sample size calculation, and overview of study design and analyses.

In Chapter 2, the findings of first research question are presented. In this chapter, the associations between duration of active first stage and second stage of labour and changes in infant gut microbiota composition at 3-4 months were investigated in a subsample from the CHILD (Canadian Healthy Infant Longitudinal Development) longitudinal birth cohort.

In Chapter 3, the findings of second research question are presented. In this chapter, the associations between duration of labour and changes in infant gut microbiota composition at 3-4 months among infants born to women with different pre-pregnancy body mass index (BMI) were studied in the CHILD (Canadian Healthy Infant Longitudinal Development) birth cohort.

In Chapter 4, the final chapter, general discussion of results and conclusions are presented. This chapter highlights the main findings from the two studies, significance and clinical relevance of the findings, strength and limitations of the studies, discussion of bias and confounding, and implications for future research.

Dedication

Dedicated to my parents and my husband. For your support, faith and love, I am forever grateful.

Acknowledgments

I wish to express my sincerest gratitude to my mentor and supervisor, Dr. Anita Kozyrskyj, for her continuous support, guidance and motivation throughout my journey as a graduate student. I am deeply indebted to her for giving me the opportunity to learn from her immense bounty of knowledge, and for her advice and patience with me during the process of completion of my thesis.

I would also like to thank my supervisory committee members, Dr. Andrea M. Haqq and Dr. Radha Chari for extending to me the generosity of their knowledge, expertise and guidance.

My thanks are also owed to all the CHILD (Canadian Healthy Infant Longitudinal Development) personnel for giving me the opportunity to work with such reliable data, and to SyMBIOTA (Synergy in Microbiota Research) for providing financial support for this study. Special thanks to my teammates Liane, Mon and Hein for providing support and help for my research, and for extending me their wonderful friendship.

Finally, I would like to thank my parents for their faith in me, and for always encouraging me to pursue new avenues of knowledge. For your guidance, generosity, love and prayers, I am forever grateful.

And, for my husband, I reserve all my gratitude, respect and love for being my foundation, core and shield during this journey.

vi

Table of Contents

CHAPTER 1: Introduction

1.1 Infant gut microbiota and pediatric health: Influence of birth mode	1
1.2 Labour and its role in dictating birth mode	3
1.3 Conventional definition of normal labour	4
1.4 Contemporary labour patterns	5
1.5 Duration of labour and the gut microbial colonization: possible mechanisms	6
1.6 Studies on labour and long-term disease risks in children	9
1.7 Summary	10
1.8 Hypothesis and objectives	10
1.9 Sample size calculation	11
1.10 Overview of study design	11
1.11 Fecal sample collection, DNA extractions and PCR amplification	13
1.12 Sequencing and taxonomic nomenclature	14
1.13 Statistical analyses	14
References	16

CHAPTER 2: Duration of labour and changes in infant gut microbiota composition at 3-4		
months of life		
2.1 Introduction	21	
2.2 Materials and methods		
2.2.1 Study design	23	
2.2.2 Fecal sample collection, DNA extraction and PCR amplification	24	
2.2.3 Sequencing and taxonomic nomenclature	25	
2.2.4 Statistical analyses	25	
2.3 Results		
2.3.1 Study population	26	
2.3.2 Fecal microbiota composition, richness and diversity		
i) Effect of duration of active 1 st stage of labour	27	
ii) Effect of duration of 2 nd stage of labour	32	
2.4 Discussion	36	
2.5 Strengths and limitations	39	
2.6 Conclusion	40	
References	41	

CHAPTER 3: Labour Duration and Maternal Pre-Pregnancy Weight: Influence on Infant		
Gut Microbiota Composition at 3-4 months of age		
3.1 Background	115	
3.2 Materials and methods		
3.2.1 Study design	119	
3.2.2 Fecal sample collection, DNA extraction and PCR amplification	121	
3.2.3 Sequencing and taxonomic nomenclature	121	
3.2.4 Statistical analyses	122	
3.3 Results		
3.3.1 Study population	123	
3.3.2 Fecal microbiota composition, richness and diversity		
3.3.2A Infants born to women with normal pre-pregnancy weight (BMI <25)		
i) Effect of duration of active 1 st stage of labour	126	
ii) Effect of duration of 2 nd stage of labour	127	
3.3.2B Infants born to women with pre-pregnancy overweight (BMI \geq 25 to $<$ 30)		
i) Effect of duration of active 1 st stage of labour	128	
ii) Effect of duration of 2 nd stage of labour	128	
3.3.2C Infants born to women with pre-pregnancy obesity (BMI >30)		
i) Effect of duration of active 1 st stage of labour	129	

ii) Effect of duration of 2 nd stage of labour	130
3.4 Discussion	132
3.5 Strengths and limitations	135
3.6 Conclusion	136
References	137
CHAPTER 4: General Discussion and Conclusion	
4.1 Summary of results	197
4.2 Strengths of the study	199
4.3 Limitations of the study	200
4.4 Bias and confounding	201
4.5 Clinical relevance	203
4.6 Conclusion	204
BIBLIOGRAPHY	205

List of tables

Table 2.1	Population characteristics by duration of active 1st stage of labour
Table 2.2	Population characteristics by duration of 2nd stage of labour
Table 2.3	Summary table of significant changes in median relative abundance of the
	dominant bacterial taxa of infant gut microbiota at 3-4 months according to
	the duration of active first stage of labour
Table 2.4	Relative abundance of dominant bacterial taxa in infant gut microbiota
	at 3-4 months among <i>all modes</i> of delivery, according to the duration of active
	first stage of labour
Table 2.5	Relative abundance of dominant bacterial taxa in infant gut microbiota at
	3-4 months among vaginal births without intrapartum antibiotic prophylaxis
	(IAP), according to the duration of active first stage of labour (n=477)
Table 2.6a	Relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4
	months among vaginal births without intrapartum antibiotic prophylaxis (IAP)
	and without exclusive breastfeeding, according to the duration of active first
	stage of labour (n=216)
Table 2.6b	Relative abundance of dominant bacterial taxa in infant gut microbiota
	at 3-4 months among vaginal births without intrapartum antibiotic

prophylaxis (IAP) and with exclusive breastfeeding, according to the duration of active first stage of labour (n=257)

- Table 2.7Relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4months among vaginal births with intrapartum antibiotic prophylaxis (IAP),according to the duration of active first stage of labour (n=189)
- Table 2.8aRelative abundance of dominant bacterial taxa in infant gut microbiota at 3-4months among vaginal births with intrapartum antibiotic prophylaxis (IAP)and without exclusive breastfeeding, according to the duration of active firststage of labour (n=84)
- Table 2.8bRelative abundance of dominant bacterial taxa in infant gut microbiota at 3-4months among vaginal births with intrapartum antibiotic prophylaxis (IAP)and with exclusive breastfeeding, according to the duration of active firststage of labour (n=102)
- Table 2.9Relative abundance of dominant bacterial taxa in infant gut microbiota at3-4 months among C-section with labour, according to the duration of activefirst stage of labour (n=121)
- Table 2.10Relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4months between C-section with labour versus C-section without labour

- Table 2.11Crude and adjusted likelihood ratio of abundance of key gut microbiota(Actinobacteria) at 3-4 months according to duration of active 1st stage
- Table 2.12Crude and adjusted likelihood ratio of abundance of key gut microbiota(Bacteroidetes) at 3-4 months according to duration of active 1st stage
- Table 2.13aCrude and adjusted likelihood ratio of abundance of key gut microbiota(Firmicutes_families) at 3-4 months according to duration of active 1ststage of labour
- Table 2.13bCrude and adjusted likelihood ratio of abundance of key gut microbiota(Firmicutes_genera) at 3-4 months according to duration of active 1ststage of labour
- Table 2.14Crude and adjusted likelihood ratio of abundance of key gut microbiota(Proteobacteria) at 3-4 months according to duration of active 1st stage
- Table 2.15Crude and adjusted likelihood ratio of gut microbiota richness and diversity at3-4 months according to duration of active 1st stage
- Table 2.16Summary table of significant changes in median relative abundance of the
dominant bacterial taxa of infant gut microbiota at 3-4 months according to
the duration of second stage of labour
- Table 2.17Relative abundance of dominant bacterial taxa in infant gut microbiota at

3-4 months among *all modes* of delivery, according to the duration of second stage of labour

- Table 2.18Relative abundance of dominant bacterial taxa in infant gut microbiota at
3-4 months among vaginal births without intrapartum antibiotic prophylaxis
(IAP), according to the duration of second stage of labour (n=503)
- Table 2.19aRelative abundance of dominant bacterial taxa in infant gut microbiota at3-4 months among vaginal births without intrapartum antibiotic prophylaxisand without exclusive breastfeeding, according to the duration of secondstage of labour (n=230)
- Table 2.19bRelative abundance of dominant bacterial taxa in infant gut microbiota at 3-4months among vaginal births without intrapartum antibiotic prophylaxisand with exclusive breastfeeding, according to the duration of secondstage of labour (n=269)
- Table 2.20Relative abundance of dominant bacterial taxa in infant gut microbiota at
3-4 months among vaginal births with intrapartum antibiotic prophylaxis
(IAP), according to the duration of second stage of labour (n=198)
- Table 2.21aRelative abundance of dominant bacterial taxa in infant gut microbiota at 3-4months among vaginal births with intrapartum antibiotic prophylaxis (IAP)

xiv

and without exclusive breastfeeding, according to the duration of second stage of labour (n=89)

Table 2.21bRelative abundance of dominant bacterial taxa in infant gut microbiota at
3-4 months among vaginal births with intrapartum antibiotic prophylaxis
(IAP) and with exclusive breastfeeding, according to the duration of second
stage of labour (n=106)

Table 2.22Relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4months among C-section with labour, according to the duration of secondstage of labour (n=121)

- Table 2.23Crude and adjusted likelihood ratio of abundance of key gut microbiota(Actinobacteria) at 3-4 months according to duration of second stage
- Table 2.24Crude and adjusted likelihood ratio of abundance of key gut microbiota(Bacteroidetes) at 3-4 months according to duration of second stage
- Table 2.25aCrude and adjusted likelihood ratio of abundance of key gut microbiota(Firmicutes_families) measures at 3-4 months according to duration of
second stage of labour
- Table 2.25bCrude and adjusted likelihood ratio of abundance of key gut microbiota(Firmicutes_genus) at 3-4 months according to duration of second stage

- Table 2.26Crude and adjusted likelihood ratio of abundance of key gut microbiota(Proteobacteria) at 3-4 months according to duration of second stage
- Table 2.27Crude and adjusted likelihood ratio of gut microbiota richness and diversityat 3-4 months according to duration of second stage
- Table 2.28Significant associations (adjusted odds ratios) between active 1st and 2nd stagelabour durations and infant gut microbial composition among infants
- Table 3.1aPopulation characteristics by duration of active 1st stage of labour among
normal weight women (n=531)
- Table 3.1bPopulation characteristics by duration of second stage of labour among
normal weight women (n=556)
- Table 3.2aPopulation characteristics by duration of active 1st stage of labour among
overweight women (n=201)
- Table 3.2bPopulation characteristics by duration of second stage of labour among
overweight women (n=208)
- Table 3.3a
 Population characteristics by duration of active 1st stage of labour among obese women (n=152)
- Table 3.3bPopulation characteristics by duration of second stage of labour among
Obese women (n=157)

- Table 3.4Summary table of significant changes in median relative abundance of the
dominant bacterial taxa of infant gut microbiota at 3-4 months according to
duration of active first stage of labour in infants of normal weight mothers
- Table 3.5Relative abundance of dominant bacterial taxa in infant gut microbiotaat 3-4 months among *all modes* of delivery, according to the durationof active first stage of labour in normal weight mothers (n=531)
- Table 3.6Relative abundance of dominant bacterial taxa in infant gut microbiota

at 3-4 months among vaginal births without intrapartum antibiotic prophylaxis, according to duration of active first stage in normal weight mothers (n=293)

according to duration of active first stage in normal weight mothers (n=108)

- Table 3.7Relative abundance of dominant bacterial taxa in infant gut microbiotaat 3-4 months among vaginal births with intrapartum antibiotic prophylaxis,
- Table 3.8Relative abundance of dominant bacterial taxa in infant gut microbiotaat 3-4 months among births by C-section with labour, according to duration of
active first stage in normal weight mothers (n=69)
- Table 3.9Summary table of significant changes in median relative abundance of the
dominant bacterial taxa of infant gut microbiota at 3-4 months according to
duration of second stage of labour in infants of normal weight mothers

- Table 3.10Relative abundance of dominant bacterial taxa at different taxonomic levelsinfant gut microbiota at 3-4 months among *all modes* of delivery, according toduration of second stage of labour in normal weight mothers (n=556)
- Table 3.11Relative abundance of dominant bacterial taxa in infant gut microbiota at3-4 months among vaginal births without intrapartum antibiotic prophylaxis,according to duration of second stage in normal weight mothers (n=293)
- Table 3.12Relative abundance of dominant bacterial taxa in infant gut microbiota

at 3-4 months among vaginal births with intrapartum antibiotic prophylaxis,

according to duration of second stage in normal weight mothers (n=115)

- Table 3.13Relative abundance of dominant bacterial taxa in infant gut microbiotaat 3-4 months among births by C-section with labour, according to duration of
second stage in normal weight mothers (n=69)
- Table 3.14Crude and adjusted likelihood ratio of abundance of key gut microbiotameasures at 3-4 months according to duration of active first stage in normalweight mothers (n=531)
- Table 3.15Crude and adjusted likelihood ratio of abundance of key gut microbiotameasures at 3-4 months according to duration of second stage in normalweight mothers (n=556)

- Table 3.16Crude and adjusted likelihood ratio of key gut microbiota richness and
diversity at 3-4 months according to duration of active first and second stage
in normal weight mothers
- Table 3.17Summary table of significant changes in median relative abundance of the
dominant bacterial taxa of infant gut microbiota at 3-4 months according to
duration of active first stage of labour in infants of overweight mothers
- Table 3.18Relative abundance of dominant bacterial taxa in the infant gutmicrobiota at 3-4 months among *all modes* of delivery, according to the

duration of active first stage of labour in overweight mothers (n=201)

- Table 3.19Relative abundance of dominant bacterial taxa in infant gut microbiota at3-4 months among vaginal births without intrapartum antibiotic prophylaxis,according to duration of active first stage in overweight mothers (n=103)
- Table 3.20Relative abundance of dominant bacterial taxa in infant gut microbiotaat 3-4 months among vaginal births with intrapartum antibiotic prophylaxis,according to duration of active first stage in overweight mothers (n=43)
- Table 3.21Summary table of significant changes in median relative abundance of the
dominant bacterial taxa of infant gut microbiota at 3-4 months according to
duration of second stage of labour in infants of overweight mothers

xix

- Table 3.22Relative abundance of dominant phyla and family level in infant gutmicrobiota at 3-4 months among *all modes* of delivery, according to theduration of second stage of labour in overweight mothers (n=208)
- Table 3.23Relative abundance of dominant bacterial taxa in infant gut microbiota at3-4 months among vaginal births without intrapartum antibiotic prophylaxis,
according to duration of second stage in overweight mothers (n=109)
- Table 3.24Relative abundance of dominant bacterial taxa in infant gut microbiota

at 3-4 months among vaginal births with intrapartum antibiotic prophylaxis,

according to duration of second stage in overweight mothers (n=43)

- Table 3.25Relative abundance of dominant bacterial taxa in infant gut microbiotaat 3-4 months among births by C-section with labour, according to duration of
second stage in overweight mothers (n=19)
- Table 3.26aCrude and adjusted likelihood ratio of abundance of key gut microbiotameasures at phylum and family level at 3-4 months according to duration of
active first stage in overweight mothers (n=201)

Table 3.26bCrude and adjusted likelihood ratio of abundance of key gut microbiotameasures at genus level at 3-4 months according to duration ofactive first stage in overweight mothers (n=201)

- Table 3.27aCrude and adjusted likelihood ratio of abundance of key gut microbiotameasures at phylum and family level 3-4 months according to duration ofsecond stage in overweight mothers (n=208)
- Table 3.27bCrude and adjusted likelihood ratio of abundance of key gut microbiotameasures at genus level 3-4 months according to duration ofsecond stage in overweight mothers (n=208)
- Table 3.28Crude and adjusted likelihood ratio of key gut microbiota richness and
diversity at 3-4 months according to duration of active first and second stage
in overweight mothers
- Table 3.29Summary table of significant changes in median relative abundance of the
dominant bacterial taxa of infant gut microbiota at 3-4 months according to
duration of active first stage of labour in infants of obese mothers
- Table 3.30Relative abundance of dominant bacterial taxa in the infant gutmicrobiota at 3-4 months among *all modes* of delivery, according to theduration of active first stage of labour in obese mothers (n=152)
- Table 3.31Relative abundance of dominant bacterial taxa in infant gut microbiota at

3-4 months among vaginal births without intrapartum antibiotic prophylaxis, according to duration of active first stage in obese mothers (n=68)

- Table 3.32Relative abundance of dominant bacterial taxa in infant gut microbiotaat 3-4 months among vaginal births with intrapartum antibiotic prophylaxis,according to duration of active first stage in obese mothers (n=30)
- Table 3.33Summary table of significant changes in median relative abundance of the
dominant bacterial taxa of infant gut microbiota at 3-4 months according to
duration of second stage of labour in infants of obese mothers
- Table 3.34Relative abundance of dominant bacterial taxa in the infant gutmicrobiota at 3-4 months among *all modes* of delivery, according to theduration of second stage of labour in obese mothers (n=157)
- Table 3.35Relative abundance of dominant bacterial taxa in infant gut microbiota at
3-4 months among vaginal births without intrapartum antibiotic prophylaxis,
according to duration of second stage in obese mothers (n=71)
- Table 3.36Relative abundance of dominant bacterial taxa in infant gut microbiotaat 3-4 months among vaginal births with intrapartum antibiotic prophylaxis,according to duration of second stage in obese mothers (n=32)

Table 3.37Relative abundance of dominant bacterial taxa in infant gut microbiota

at 3-4 months among births by C-section with labour, according to duration of second stage in obese mothers (n=27)

Table 3.38Crude and adjusted likelihood ratio of abundance of key gut microbiotameasures at 3-4 months according to duration of active first stage inobese mothers (n=152)

Table 3.39Crude and adjusted likelihood ratio of abundance of key gut microbiotameasures at 3-4 months according to duration of second stage inobese mothers (n=157)

Table 3.40Crude and adjusted likelihood ratio of key gut microbiota richness and
diversity at 3-4 months according to duration of active first and second stage
in obese mothers

Table 3.41Summary of significant associations between labour durations and infant gut
microbial composition among infants born to different maternal BMI
categories

xxiii

List of figures

- Figure 2.1a Summary figure showing changes in microbiota abundance at family level according to duration of active first stage, stratified by mode of delivery by intrapartum antibiotic prophylaxis (IAP)
- Figure 2.1b Summary figure showing changes in microbiota abundance at family level according to duration of second stage, stratified by mode of delivery by intrapartum antibiotic prophylaxis (IAP)
- Figure 2.2 Relative abundance of dominant bacterial taxa at the phylum level in infant gut microbiota at 3-4 months among all birth modes, according to the duration of active first stage of labour (n=918)
- Figure 2.3 Relative abundance of dominant bacterial taxa at the family level in infant gut microbiota at 3-4 months among vaginal births without IAP, according to the duration of active first stage of labour (n=477)
- Figure 2.4 Relative abundance of dominant bacterial taxa at the family level in infant gut microbiota at 3-4 months among vaginal births with IAP, according to the duration of active first stage of labour (n=189)
- Figure 2.5 Relative abundance of dominant bacterial taxa at the family level in infant gut microbiota at 3-4 months among C-section with labour, according to the duration of active first stage of labour (n=121)
- Figure 2.6 Adjusted likelihood ratio of abundance of key gut microbiota measures at genus level at 3-4 months according to duration of active 1st stage of labour

- Figure 2.7 Relative abundance of dominant bacterial taxa at the phylum level in infant gut microbiota at 3-4 months among all birth modes, according to the duration of second stage of labour (n=955)
- Figure 2.8 Relative abundance of dominant bacterial taxa at the family level in infant gut microbiota at 3-4 months among vaginal births without IAP, according to the duration of second stage of labour (n=503)
- Figure 2.9 Relative abundance of dominant bacterial taxa at the family level in infant gut microbiota at 3-4 months among vaginal births with IAP, according to the duration of second stage of labour (n=198)
- Figure 2.10 Relative abundance of dominant bacterial taxa at the family level in infant gut microbiota at 3-4 months among C-section with labour, according to the duration of second stage of labour (n=121)
- Figure 2.11 Adjusted likelihood ratio of abundance of key gut microbiota measures at genus level at 3-4 months according to duration of second stage of labour

CHAPTER 1

Introduction

1.1 Infant gut microbiota development and pediatric health

The infant gut microbiome is integrally linked to long-term child health. The earliest microbial colonizers of the gut lay the foundation for immune programming and energy-homeostasis. Balanced development of infant gut microbiota facilitates immune programming and immune maturation by enhancing gut mucosal barrier function, inducing immune tolerance to the normal gut commensals, modulating gut-associated lymphoid tissue (GALT) associated immune responses, balancing T-helper cells subsets, inducing regulatory T cells that guide host Th1/Th2 balance, and aiding the regulation of anti-inflammatory stimuli (1) (2) (3). Additionally, the gut microbiota has metabolic activity which is not only renewable and compliant (4), but can also influence on both the harvest of energy from dietary components and regulation of energy storage in the host through fermentation of dietary fiber into short chain fatty acids (5) (6). Therefore, the development gut microbiota in infant has received much scientific scrutiny in the recent years.

The infant receives its first microbial inoculum from the mother. Evidence suggests that gut microbial seeding may begin *in utero*, even before birth. Isolation of viable bacteria such as *Propionibacterium* (of phylum Actinobacterium) and *Staphylococcus* (of phylum Firmicutes) from placenta and amniotic fluid (7), along with similarity between placental and maternal-oral microbiota (8), suggests a hematogenous transfer of maternal oral microbiota to the intrauterine environment and possible microbial exposure to fetus *in utero*. In addition, maternal fecal and vaginal microbiota are primary sources for 'microbial seeding' of newborn gut during birth.

The gut microbiota of expectant women changes throughout pregnancy. By third trimester, healthy pregnant women possess higher gut bacterial load, and a higher abundance of Actinobacteria and Proteobacteria phyla. Additionally, a reduction in *Faecalibacterium* (of phylum Firmicutes), a gut commensal with anti-inflammatory effects, and in microbial richness (alpha diversity) also accompanies the third trimester (9). The vaginal microbiota also undergoes

significant pregnancy-related changes, which includes higher abundance of *Lactobacillus* species (of phylum Firmicutes) and decreased overall diversity (8). During vaginal delivery, the newborn encounters maternal vaginal and fecal microbes that form the pioneering colonizers of its gut. C-section delivered infants, on the other hand, possess gut microbiota that bear resemblance to maternal cutaneous microbiota (10) (11).

Following birth, the newborn gut is an oxygen-rich environment that supports facultative anaerobes such as members of *Enterobacteriaceae*, *E.coli* (both of phylum Proteobacteria) and *Enterococci* (of phylum Firmicutes) (12). These first colonizers consume oxygen, converting the gut to an anaerobic environment within days after births, and giving way to proliferation of obligate anaerobes such as *Bifidobacterium* (of phylum Actinobacteria), *Bacteroides* (of phylum Bacteroidetes) and *Clostridium* (of phylum Firmicutes) (12). The neonate gut is dominated by Actinobacteria and Proteobacteria, and is characterized by low diversity. Breastfeeding further fuels the abundance of *Bifidobacterium* (of phylum Actinobacteria) by providing human milk oligosaccharides (HMOs) as their feeding substrate (8) (13). Human breastmilk also contains a unique milk microbiome (8) including *Bifidobacterium* and *Lactobacillus*, albeit in low abundances, and these may be transferred to the gut of breastfed infants (13). In contrast, formula-fed infants show more dominance of *Enterococci*, *Clostridium*, *Bacteroides fragilis* and *E.coli* along with higher bacterial diversity (8) (13).

As infancy progresses, Firmicutes and Bacteroidetes increase in abundance accompanied by increase in gut microbial diversity. Weaning and introduction of solid food leads to further increase in rise in microbial diversity with elevation of *Clostridium, Ruminococcus* (both of phylum Firmicutes) and *Bacteroides* (of phylum Bacteroidetes) while reducing the abundance of *Bifidobacterium* (of phylum Actinobacteria) and *Enterobacter* (of phylum Proteobacteria) (14). By end of the first year of life, the infant gut microbiota profile approximates that of an adult, and complete maturation takes place by age 3 years (8) (13).

The following table summarizes the relevant bacteria found in the infant gut, displayed by their taxonomic classification:

CHAPTER	1
---------	---

	Enterobacter	Bifidobacterium	Bacteroides	Clostridium	Lactobacillus
Phylum	Proteobacteria	Actinobacteria	Bacteroidetes	Firmicutes	Firmicutes
Class	Gammaproteobacteria	Actinobacteria	Bacteroidia	Clostridia	Bacilli
Order	Enterobacteriales	Bifidobacteriales	Bacteroidales	Clostridiales	Lactobacillales
Family	Enterobacteriaceae	Bifidobacteriaceae	Bacteroidaceae	Clostridiaceae	Lactobacillaceae
Genus	Enterobacter	Bifidobacterium	Bacteroides	Clostridium	Lactobacillus

Balanced development of the infant gut microbiota is crucial for child health. C-section (mode of delivery), perinatal antibiotic exposure, formula feeding (infant diet) and other early life environmental exposures perturbs the development of infant gut microbiota (8) (13). Mounting evidence demonstrates that infant gut dysbiosis, i.e. an imbalance in the gut microbial composition of infant, is associated with higher risk of childhood atopy, asthma and excessive weight gain (2) (15) (16) (17) (18). Therefore, the potential benefits of mitigating or possibly preventing these long-term pediatric health challenges by understanding the early-life factors that modulate the development of infant gut microbiota cannot be overstated. As such, many recent research efforts seeking to identify factors that influence the composition of infant gut microbiota have established that besides gestational age, antibiotic exposure and infant diet, the mode of delivery profoundly influences gut microbiota development (2) (18) (19). Compared to vaginally delivered counterparts, C-section born infants show reduced overall gut microbial diversity, and divergent microbial colonization (20). Despite the pivotal role of mode of delivery in the microbial seeding of newborn gut, a knowledge void exists on whether other elements of birth, such as duration of labour, influence the materno-fetal microbial transmission.

1.2 Labour and its role in dictating birth mode

"Whenever a woman is in labor she has pain, because her hour has come; but when she gives birth to the child, she no longer remembers the anguish because of the joy that a child has been born into the world."(21) Since the dawn of creation, labour and childbirth has been deemed both a curse and a boon for women - with the fear of excruciating labour pains often overshadowed by the anticipation of new life. And, although vaginal delivery was the only option for viable birth

in the biblical times, introduction of safe Cesarean delivery practices has led to major changes in the recent delivery trends.

The World Health Organization (WHO) recommends an ideal CS rate of 10-15%. However, the rate of C-section globally has escalated well beyond this mark. Latin America and the Caribbean region currently have the highest C-section rate (40.5%) while Northern America (32.3%), Oceania (31.1%), Europe (25%) and Asia (19.2%) follow at a steadily rising pace (22). The gravity of the situation is worsened by the fact that a woman's chance for a vaginal birth for subsequent deliveries after a primary C-section reduces to just about 11.5% (23). In a report published by ACOG in 2014 (and reaffirmed in 2016), the leading indication for primary CS is "failure to progress"; fetal distress is the second common indication (24) (25). Failure to progress, also known as 'labour dystocia', is diagnosed when progression of labour is unduly slow and abnormal. Since many repeat cesarean deliveries are performed after primary C-sections for labor dystocia, the overall burden of C-section attributable to the diagnosis of 'failure to progress' is substantial. Consequently, many researchers have endeavored to re-examine the *duration of normal labour* patterns in recent years.

1.3 Conventional definition of 'normal' labour

Birth is a dynamic process - an intricate interplay between fetal and maternal components confined by constraints of time and duration of labour. Labour is conventionally divided into three stages: The *latent phase* of first stage begins with maternal perception of labour pains and is accompanied by regular uterine contractions. During the latent phase, the cervix softens and effaces while cervical *os* dilates to 3 to 5 cm. The length of latent phase is variable and may last several hours. The *active phase* of first stage of labour begins with cervical dilatation of 3 to 5 cm in presence of more powerful uterine contractions and ends with full cervical dilation (26). The second stage of labour begins at full dilation of cervix (10 cm) and lasts until expulsion of the fetus. Expulsion of placenta and membrane completes the third stage of labour.

Thus far, the acceptable 'normal' duration of labour during childbirth has been guided by the Friedman's curve. Introduced in 1955, the Friedman's curve is a popular *obstetric gold*

standard used to evaluate the progress of labor. Friedman observed 500 Caucasian labouring primigravidas and documented the dilatation of cervix plotted against duration of elapsed time in a graphical representation. The resultant S-shaped curve of labour pattern is known as the 'Friedman's curve'. For the latent phase, the calculated mean was 8.6 hours (mean plus two standard deviations = 20.6 hours), and for the active phase, the calculated mean was **4.9 hours** (mean plus two standard deviations = **11.7 hours**) (27). A protracted active phase, per Friedman's curve, is diagnosed when the rate of cervical dilatation in the active phase is less than 1.2 cm/hour for nulliparous women and less than 1.5 cm/hour for multiparous women (27). However, new evidence indicates that pattern of labor progression in contemporary practice is significantly slower than depicted in the Friedman's curve.

1.4 Contemporary labour patterns

In 2002, Zhang et al undertook the examination labour patterns in contemporary obstetric practice. Using data from 1329 nulliparous parturients with a term, singleton fetus with vertex presentation, normal birth weight and spontaneous onset of labor, this study showed that the Friedman curve might not be accurate in depicting contemporary labour patterns. Zhang et al found that the dilation of cervix from 4 cm to 10 cm took approximately 5.5 hours (28). This is slower than the active phase duration under the Friedman curve. Over the recent years, other studies have also challenged Friedman's findings. A recent systematic review of 18 studies reporting on mean duration of *active labour* also affirmed that normal labour progression is slower than previously believed. Among low risk nulliparas with spontaneous onset of labour, the weighted mean duration of *active labour* was **6.0 hours** with statistical limit of **13. 4 hours** (mean plus two standard deviation) (29).

The second stage of labor is thought to last approximately 50 minutes in nulliparas and 20 minutes in multiparas. Kilpatrick found the mean second stage of labour was 54 minutes (mean plus two standard deviation = 132 minutes) in nulliparas with spontaneous onset of labour and no regional anesthesia (30). Use of regional anesthesia prolongs duration of second stage of labour. Zhang et al found that the statistical limit for duration of second stage for nulliparas could last up to 2.8 hours without epidural and up to 3.6 hours with epidural analgesia (31).

The findings of these new studies indicate that normal labour progresses much slower than conventionally accepted. This would in turn suggest that that majority of C-section that were done for 'failure to progress' in the past half a century were in fact done prematurely. Thus, duration of labour played a major role in misguided decision-making with regards to mode of delivery worldwide. Based on the new evidence, the new 2014 ACOG guidelines now recommend longer duration of labour for parturients provided that labour progression is monitored, and perinatal outcomes for both mother and the newborn are protected (24). However, it is yet to be determined how the labour, longer or otherwise, may affect the long-term health outcomes of the baby.

1.5 Duration of labour and the infant gut microbial colonization: possible mechanisms

After some degree of initial microbial exposure *in utero* (7) (8), the fetus experiences its first major microbial exposure upon encountering the maternal vaginal and fecal microbiota during its passage through the birth canal. Vaginally delivered infants acquire their gut microbial seeding from the maternal vaginal and colonic commensals, whereas C-section born infants are deprived of this opportunity and are more likely to be colonized by maternal cutaneous commensals and bacteria in the hospital environment (10). C-section born infants have delayed gut microbial colonization and lower abundance of phylum Bacteroidetes as compared to vaginally delivered infants, with the dysbiotic change persisting up to 1 year of age (32) (20). C-section born infants are also found to possess lower abundance of *Bifidobacterium* (of phylum Actinobacteria) and higher abundance of *Clostridium* (of phylum Firmicutes) (33) (34). These findings indicate that vaginal delivery provides unique gut microbial seeding opportunities, which are absent in C-section deliveries.

Since labour is an innate component of vaginal delivery, it is likely that duration of labour may influence the in the microbial colonization of the newborn gut, and consequently the development infant gut microbiota, through number of possible mechanisms as illustrated in the conceptual framework below. First, protracted labour frequently leads to exhaustion of uterine myometrial glycogen stores and ATP resulting accumulation of lactate. Longer labour duration is not only associated with upsurge in maternal lactate (35) but also with increased fetal lactate

concentrations (36). Since certain gut microbes such as *Veillonella and Megasphaera* (of family Veillionellaceae, and phylum Firmicutes) are lactate-utilizers (37), it is conceivable elevated availability of lactate may favor overgrowth of these bacterial communities among the maternal fecal commensals, and alter the composition of microbial inoculum for infant gut. Second, longer labour is often accompanied by amniorrhexis (either spontaneous or artificial). With a gaping conduit open between the *in utero* environment and the cervico-vaginal canal, continuous leakage of alkaline amniotic fluid could discourage the abundance of the habitual vaginal microbiota that normally thrive in slightly acidic vaginal pH. As illustrated in the conceptual framework, a newborn born after prolonged duration of labour could therefore receive 'sub-optimal' microbial seeding of maternal vaginal commensals as it passes through birth canal. Indeed, decreased vertical transmission of *Lactobacillus* (of phylum Firmicutes) from mother to newborn has been documented in vaginal deliveries after prolonged duration of membrane rupture (28). Besides, prolonged duration of labour significantly increases risk of chorioamnionitis (38) . Ascension of pathogenic bacteria into the uterine environment could result *in utero dysbiosis* that could subsequently lead to dysbiotic microbial seeding of fetal gut.

Another possible mechanism through which duration of labour may influence infant gut microbiota is via generation of tremendous oxidative stress during protracted labour states (i.e. 'failure to progress'). Enduring repetitive bouts of powerful myometrial contractions for prolonged periods of time is physically demanding for parturients, and necessitates massive consumption of oxygen (39). The subsequent increased production of reactive oxygen species (ROS) could be potentially toxic to some anaerobic members of gut microbial community because not all gut anaerobes are well-equipped to tolerate prolonged oxygen exposure and oxidative stress (40)(41)(42). Therefore, the maternal 'microbial seeding' received by infants delivered after prolonged labour durations could have subpar representation of these essential fecal anaerobes.

Labour duration can also influence the infant gut microbiota by dictating the mode of delivery. With evidence to indicate that more than two-thirds (68%) of *unplanned*, vertex C-sections are performed due to 'failure to progress' (25), prolonged duration of labour demonstrates a strong association with increased rate of emergency C-section. Interestingly, evidence shows more persistently divergent infant gut microbial colonization after emergency C-section as

compared elective C-section. In a recent Canadian longitudinal cohort study, Azad et al sampled fecal microbial composition of 198 healthy infants at 4 months and 12 months of age. Among infants delivered via emergency C-section, this study documented under-representation of the beneficial Bacteroidetes and over-representation of Firmicutes and Proteobacteria at 3 months of age, and persisting to 1 year. In contrast, there were no persisting microbiota differences at one year of age among infants delivered by elective C-section (19).

Figure 1.1 CONCEPTUAL FRAMEWORK

Possible mechanisms of influence of duration of labour on infant gut microbiota

ROM = Rupture of membranes

IAP = Intrapartum antibiotic prophylaxis

Finally, slow and abnormal progression of labour with protracted first stage, often culminating into unplanned C-section, is common obstetric course for many overweight and obese nulliparas (43). To add, pregnant women with elevated BMI (body mass index) possess distinctly atypical gut microbiota with significantly altered abundance of *Bacteroides* (of phylum

Bacteroidetes) (44) (45), higher *Clostridium*, *Staphylococcus* (both of Phylum Firmicutes) (44) and *Enterobacteriaceae* (of phylum Proteobacteria), and lower *Bifidobacterium* (of phylum Actinobacteria) (45). To what extent the prolonged duration of labour experienced by overweight pregnant women affect vertical transmission of atypical gut microbiota to their newborns remains to be investigated.

1.6 Studies on labour and long-term disease risks in children

Literature on the direct influence of duration of labour on long-term health outcomes for children is scarce and conflicting. Among older studies, Vonk et al found that delivery duration of longer than 12 hours was associated with the development of atopy in adult life [OR 2.24; 95% CI: 1.30-3.86] (46). Dik et al also observed a slight increase in risk of childhood asthma in children born after prolonged labour [HR=1.10, 95% CI=1.08-1.15] (47). In another study, Keski -Nisula et al documented that the risk of allergic sensitization, but not doctor-diagnosed childhood wheezing, tended to increase with the longer duration of labour (48).

In a more recent study, Black et al examined 3,21,287 term singletons and found that children born by scheduled Caesarean section are at higher risk of asthma as compared to children born vaginally [adjusted HR, 1.22 (95% CI, 1.11-1.34)] (49), which may suggest a possible role of labour in decreasing asthma risk in vaginally delivered infants. In contrast, a Swedish study involving 87,500 sibling pairs investigated the effect of labour in different types of C-section with regards to childhood asthma risk, and defined C-section before onset of labour as elective C-section (n= 4.2% of total) and C-section after onset of labour as emergency C-section (n= 5.4% of total). They found that emergency C-section [aOR = 1.14 (1.04–1.25)], but not elective C-section [aOR=1.06 (0.95–1.18)], was associated with increased risk of asthma medication use (50). Further, they also did not find any difference in the association between birth by elective (non-laboured) Caesarean section and asthma medication in children aged 10-12 years when compared to children.

1.7 Summary

With the growing appreciation of the infant gut microbiome and its role in maintaining health or predisposing to disease(s), scientists and health-professionals seek better understanding of factors that influence development of infant gut microbiome. Since the gut microbiota is more variable and vulnerable to alterations in early life, better insight of factors that influence the microbial seeding and development of infant gut microbiome may allow for innovative ways to reduce disease risks. Although mode of delivery is a key factor to determine infant gut microbiota, a knowledge gap exists about the influence of duration of labour, an inherent element of mode of delivery, on the vertical transmission of gut microbiota.

In light of conflicting available evidence on the association between labour and long-term disease risk in children, and more recent evidence linking the infant gut microbiota to long-term disease outcomes in children, a deeper examination of whether duration of labour influences the infant gut microbiota is not only relevant in filling the knowledge gap but could also provide new insight regarding early life exposures that impact the development of infant gut microbiota. Hence, this study aimed to find out the effects of duration of labour on infant gut microbiota composition and diversity.

1.8 Hypothesis and objectives

This thesis aimed to test two hypotheses that duration of labour may influence the gut microbial composition and diversity of infants at three months of age, and that maternal pre-pregnancy overweight may affect this association. The primary objective of this study was to investigate the effect of duration of labour on infant gut microbial composition and diversity in the Canadian Healthy Infant Longitudinal Development (CHILD) national birth cohort. The specific objectives of this study were:

- a) Is duration of labour associated with changes in gut microbial composition of infants at 3-4 months of age?
- b) Does maternal overweight during pregnancy affect the above association?

1.9 Sample size calculation

The sample size was calculated based on Shannon diversity index mean and standard deviation (at genus level) for infant gut microbiota at three months of age from a previous CHILD study conducted by Azad et al (11). An α level of 0.05 and power of 80% is aimed.

Sample size (n) = 2 (Power Index * Standard deviation/ Difference in Means)²

$$= 2 [(1.96+0.84) * 0.63/2.16-2.00]^{2}$$

 $= 2 (2.8 * 0.63 / 0.16]^2$

Sample size (n) = 243.23 (approximately 244)

Allowing for 10% attrition rate:

Desired sample size = N (number to enroll) * (% retained) Therefore, N (number to enroll) = Desired sample size / (% retained) Final sample size (N) = 244/0.90 = 271.11

Thus, samples with **271** subjects in each group is required to ensure that the test hypothesis will have power of 80% to detect significant change in difference of means of the study groups.

1.10 Overview of study design

This is a secondary study based on data from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. The CHILD is a longitudinal, population-representative birth cohort study of 3624 pregnant mothers recruited from four provinces of Canada: British Columbia (Vancouver, urban), Alberta (Edmonton, urban), Manitoba (Winnipeg, urban; Mordern and Winker, rural), and Ontario (Toronto, urban) between 2008 and 2012 (Moraes et al., 2014). Approximately 85% of pregnant mothers were enrolled during their second trimester at health care locations with the following inclusion criteria: pregnant women 18 years or older, lives in residence in reasonable proximity to the delivery hospital, able to read, write and speak English, provides informed consent, consents to cord blood collection, plans to give birth at a designated recruitment center participating hospital, infants born at or after 35 weeks, and families able to provide name, address and telephone numbers of two alternate contact individuals. Children are
clinically assessed at birth, at three months, and at 1-, 3- and 5 -year visits. The exclusion criteria are children born with major congenital abnormalities or respiratory distress syndrome, expectation of moving away within one year, children of multiple births, children resulting from in vitro fertilization, children who will not spend at least 80% of nights in the home, and children born before 35 weeks.

For this particular study, data from subset of infants (N=1028) recruited in the three sites of the CHILD birth cohort (Edmonton, Winnipeg and Vancouver) was utilized. CHILD recruited the mothers of these infants as consecutive enrollments during their pre-natal visit in the second trimester as per the inclusion and exclusion criteria listed above. To avoid selection bias, all infants from the three CHILD sites with complete fecal microbial sequencing and taxonomic assignment were included in this study, and no other additional criteria or deliberate selection of infants was implemented to define our study sample. After exclusion of home births, a total of 999 infants remained in the study. Hospital birth charts have provided information on duration of labour, labour characteristics, mode of delivery and some covariates of interest. Complete information on *active* first stage of labour (n = 918) and second stage of labour (n = 955) was documented. In the CHILD study cohort, the onset of active first stage of labour is defined as cervical dilation of 4 cm in presence of regular uterine contractions and ends at cervical dilatation of 10 cm. The second stage of labour begins from full dilatation of cervix (10 cm) and ends with complete expulsion of the fetus. The 3rd stage of labour, i.e. duration after delivery of newborn to the expulsion of placenta, was not included in this study since the third stage of labour has limited relevance with regards to microbial transmission opportunity from mother to newborn. Likewise, *latent* phase of first stage was also not studied due to the very 'subjective' nature of the perception of its onset.

For vaginally delivered infants with the active 1^{st} stage of labour, a labour length variable denoting three mutually exclusive categories was created as follows: (a) Duration of active 1^{st} stage of labour ≤ 6 hours [Reference category: Group 1] (b) Duration of active 1^{st} stage of labour > 6 to ≤ 13 hours [Group 2] (c) Duration of active 1^{st} stage of labour > 13 hours [Group 3]. These cut-offs were based on a recent systematic review of eighteen studies by Neal et al that found that weighted mean duration of active labour in nulliparas was 6.0 hours with mean plus two standard

deviation of 13.4 hours (21). For second stage of labour, a labour length variable denoting three mutually exclusive categories was created based on cutoffs described by Kilpatrick et al (30) and are as follows: (a) Duration of 2nd stage of labour ≤ 1 hours [Reference category: Group 1] (b) Duration of 2nd stage of labour > 1 to ≤ 2 hours [Group 2] (c) Duration of 2nd stage of labour > 2 hours [Group 3].

For infants delivered by C-section after onset of labour, a labour length variable for active 1^{st} stage of labour denoting two mutually exclusive categories was created as follows: (a) C-section with duration of active 1^{st} stage of labour ≤ 6 hours [Reference category: Group 1] and (b) C-section with duration of active 1^{st} stage of labour > 6 hours [Group 2]. For 2nd stage of labour, a labour length variable denoting two mutually exclusive categories was created as follows: (a) C-section with duration of 2^{nd} stage of labour ≤ 1 hour [Reference category: Group 1] and (b) C-section with duration of 2^{nd} stage of labour ≤ 1 hour [Reference category: Group 1] and (b) C-section with duration of 2^{nd} stage of labour ≤ 1 hour [Reference category: Group 1] and (b) C-section with duration of 2^{nd} stage of labour ≥ 1 hour [Group 2].

Fecal samples for microbiota analysis were collected from infants at 3–4 months of age. Data on covariates that had capacity to affect the either the exposure variable or outcome variable, or both, were obtained from hospital records (mode of delivery, intrapartum antibiotic prophylaxis (IAP), parity, duration after rupture of membranes, epidural administration, medical induction of labour, length of infant's hospital stay, maternal pre-pregnancy body mass index (BMI), maternal age etc.) or from standardized questionnaires completed by mothers (breastfeeding status, maternal ethnicity, maternal smoking, maternal asthma), and were included in the study. Written informed consent was obtained from parents at enrollment. This study was approved by the ethics board at the University of Alberta.

1.11 Fecal sample collection, DNA extraction and PCR amplification

Faecal samples of infants were collected at 3-4 months of age using a standard protocol during a scheduled home visit. Samples were refrigerated immediately after collection and during transport, and stored at -80 °C until analysis. Genomic DNA was isolated with QIAamp DNA stool Mini Kit (Qiagen, Venlo, the Netherlands), and the hypervariable V4 region of the bacterial 16S

rRNA gene was amplified by polymerase chain reaction (PCR) using universal bacterial primers. For sample multiplexing, reverse primers were barcoded uniquely for each sample (barcoded sequence was denoted in the primer sequence by Xs). PCR amplification consisted of an initial denaturation step for 3 min at 94 °C, followed by 20 cycles of denaturation for 30 s at 94 °C, annealing for 30 s at 50 °C and an extension step for 30 s at 72 °C. PCR reactions for each sample were performed in triplicate with a negative control in each run. One hundred nanograms of pooled PCR product from each sample was concentrated using an Amicon Ultra-4 30K centrifugal filter.

1.12 Sequencing and taxonomic nomenclature

Pooled PCR amplicons were sequenced using the MiSeq Illumina Sequencing at the University of Toronto Centre for the Analysis of Genome Evolution & Function (CAGEF). Using a QIIME pipeline, forward and reverse reads were assembled for a final length of 144 bp demultiplexed and filtered against the GREENGENES reference database (v13.8) to discard all sequences with <60% similarity. Remaining sequences were clustered at 97% sequence similarity against the GREENGENES database (using closed picking algorithm in QIIME), and taxonomic assignment was achieved using the RDP classifier. After taxonomic assignment, operational taxonomic units (OTUs) representing bacterial origin were selected, and bacterial OTUs with overall relative abundance below 0.0001 were excluded from subsequence for downstream analyses. Microbiota diversity within samples (α diversity) was calculated using two standard metrics: the Chao1 estimator of OTU richness (which evaluates both the number of different OTUs present) and the Shannon diversity index (which evaluates both the number of OTUs and the evenness of their distribution). Those metrics were calculated at OTU and family levels.

1.13 Statistical analyses

Statistical analyses were performed in SPPS version 22.0 (SPSS, Inc., Chicago, IL, USA). Chi-square test was used to examine the distribution of potential confounders according to exposure to differential duration of labour. The gut microbial composition (median relative

abundance) of infants with duration of active first stage of labour ≤ 6 hours (reference group) was compared to the gut microbiota composition of infants with first stage of labour > 6 to ≤ 13 hours and > 13 hours. Similarly, the gut microbial composition of infants with duration of second stage of labour ≤ 1 hours (reference group) was compared to that of infants with first stage of labour >1 to ≤ 2 hours and > 2 hours. Median richness, diversity and relative abundance of dominant taxa were compared by non-parametric Mann-Whitney U-test. A p-value of <0.05 was defined as statistically significant, and 95% confidence intervals (CIs) were calculated.

Regression analysis was used to determine the relationships between the measured between exposure parameters and gut microbiota outcome Univariate analysis and multivariate logistic regression were used to identify variables independently associated with the outcome variables. Variables with a p-value of <0.25 in univariate analyses and clinically significant covariates were included in multivariable analyses. Microbiota measures were classified in two groups (below vs. above median). The following variables were tested in the multivariable models as potential confounders: mode of delivery, maternal intrapartum antibiotic exposure, infant diet, parity, duration after rupture of membrane, epidural use, medical induction of labour, length of hospital stay and age of stool collection.

REFERENCES

- Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants' and children's health? J Pediatr Gastroenterol Nutr. 2015 Mar;60(3):294–307.
- Francino M. Early Development of the Gut Microbiota and Immune Health. Pathogens. 2014;3(3):769–90.
- Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013 Jun;4(3):203–14.
- O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006 Jul;7(7):688–93.
- DiBaise JK, Frank DN, Mathur R. Impact of the Gut Microbiota on the Development of Obesity: Current Concepts. Am J Gastroenterol Suppl [Internet]. 2012;1(1):22–7.
- 6. Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015 Sep;26(9):493–501.
- Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6(1):23129.
- Nuriel-Ohayon M, Neuman H, Koren O. Microbial Changes during Pregnancy, Birth, and Infancy. Front Microbiol. 2016;7:1031.
- Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012 Aug;150(3):470–80.
- Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010 Jun;107(26):11971– 5.
- Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Vol. 17, Cell host & microbe. United States; 2015. p. 852.
- 12. Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta

Paediatr. 2009 Feb;98(2):229-38.

- Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015 Feb;21(2):109–17.
- Messer JS, Liechty ER, Vogel OA, Chang EB. Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunol. 2017 May;10(3):567–79.
- Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016 Oct;22(10):1187–91.
- Koleva PT, Bridgman SL, Kozyrskyj AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients. 2015 Mar;7(4):2237–60.
- Kalliomaki M, Antoine JM, Herz U, Rijkers GT, Wells JM, Mercenier A. Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of allergic diseases by probiotics. J Nutr. 2010;140.
- Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050.
- Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016 May;123(6):983–93.
- Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014 Feb 27;63(4):559 LP-566.
- 21. Jhon. Bible. 16:20.
- 22. Betrán AP, Ye J, Moller A, Zhang J, Gülmezoglu AM. The Increasing Trend in Caesarean Section Rates : Global , Regional and National Estimates : 1990-2014. 2016;1–12.
- 23. Hyattsville. Data from the 2012 final natality file; National Center for Health Statistics [Internet]. 2014. Available from: http://www.cdc.gov/nchs/data_access/vitalstatsonline.htm
- ACOG, SMFM, Caughey A, Cahill A, Rouse D. Safe Prevention of the Primary Cesarean Delivery. Am Congr Obstet abd Gynecol [Internet]. 2014; Available from:

https://www.acog.org/Resources-And-Publications/Obstetric-Care-Consensus-Series/Safe-Prevention-of-the-Primary-Cesarean-Delivery

- 25. Gifford DS, Morton SC, Fiske M, Keesey J, Keeler E, Kahn KL. Lack of progress in labor as a reason for cesarean. Obstet Gynecol. 2000 Apr;95(4):589–95.
- 26. Cunningham F, Leveno K, Bloom S, Spong C, Dashe J, Hoffman B, et al. Characteristics of Normal Labor. In: Williams Obstetrics. 24th ed. 2014.
- FRIEDMAN E. The graphic analysis of labor. Am J Obstet Gynecol. 1954 Dec;68(6):1568–75.
- Zhang J, Troendle JF, Yancey MK. Reassessing the labor curve in nulliparous women. Am J Obstet Gynecol. 2002 Oct;187(4):824–8.
- Neal JL, Lowe NK, Ahijevych KL, Patrick TE, Cabbage LA, Corwin EJ. "Active labor" duration and dilation rates among low-risk, nulliparous women with spontaneous labor onset: a systematic review. J Midwifery Womens Health. 2010;55(4):308–18.
- Kilpatrick SJ, Laros RKJ. Characteristics of normal labor. Obstet Gynecol. 1989 Jul;74(1):85–7.
- Zhang J, Landy HJ, Branch DW, Burkman R, Haberman S, Gregory KD, et al. Contemporary patterns of spontaneous labor with normal neonatal outcomes. Obstet Gynecol. 2010 Dec;116(6):1281–7.
- Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013 Mar;185(5):385–94.
- Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006 Aug;118(2):511–21.
- Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol. 2016 Jul;16(1):86.
- Quenby S, Pierce SJ, Brigham S, Wray S. Dysfunctional labor and myometrial lactic acidosis. Obstet Gynecol. 2004 Apr;103(4):718–23.
- Nordstrom L, Achanna S, Naka K, Arulkumaran S. Fetal and maternal lactate increase during active second stage of labour. BJOG. 2001 Mar;108(3):263–8.

- Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol. 2004 Oct;70(10):5810–7.
- 38. Lee SM, Romero R, Lee KA, Yang HJ, Oh KJ, Park CW, et al. The frequency and risk factors of funisitis and histologic chorioamnionitis in pregnant women at term who delivered after the spontaneous onset of labor. J Matern Fetal Neonatal Med. 2011;24(1):37–42.
- Eliasson AH, Phillips YY, Stajduhar KC, Carome MA, Cowsar JDJ. Oxygen consumption and ventilation during normal labor. Chest. 1992 Aug;102(2):467–71.
- Brusa T, Canzi E, Pancini N. Oxygen tolerance of anaerobic bacteria isolated from human feces. Curr Microbiol [Internet]. 1989;19:39. Available from: https://doi.org/10.1007/BF01568901
- Rocha ER, Selby T, Coleman JP, Smith CJ. Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol. 1996 Dec;178(23):6895–903.
- Kawasaki S, Mimura T, Satoh T, Takeda K, Niimura Y. Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol. 2006 Oct;72(10):6854–8.
- Carlhall S, Kallen K, Blomberg M. Maternal body mass index and duration of labor. Eur J Obstet Gynecol Reprod Biol. 2013 Nov;171(1):49–53.
- Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008 Oct;88(4):894–9.
- 45. Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010 Jul;104(1):83–92.
- Vonk JM, Boezen HM, Postma DS, Schouten JP, Van Aalderen WMC, Boersma ER. Perinatal risk factors for bronchial hyperresponsiveness and atopy after a follow-up of 20 years. J Allergy Clin Immunol. 2004;114(2):270–6.
- 47. Dik N, Tate RB, Manfreda J, Anthonisen NR. Risk of physician-diagnosed asthma in the first 6 years of life. Chest. 2004;126(4):1147–53.

- Keski-Nisula L, Karvonen A, Pfefferle PI, Renz H, Büchele G, Pekkanen J. Birth-related factors and doctor-diagnosed wheezing and allergic sensitization in early childhood. Allergy. 2010 Jan 1;65(9):1116–25.
- 49. Black M, Bhattacharya S, Philip S, Norman JE, McLernon DJ. Planned Cesarean Delivery at Term and Adverse Outcomes in Childhood Health. Jama. 2015;314(21):2271.
- Almqvist C, Cnattingius S, Lichtenstein P, Lundholm C. The impact of birth mode of delivery on childhood asthma and allergic diseases-a sibling study. Clin Exp Allergy. 2012;42(9):1369–76.

CHAPTER 2

Duration of labour and changes in infant gut microbiota composition at 3-4 months of life

2.1 Introduction

Balanced development of the infant gut microbiota is crucial for health. The immunemodulatory properties of the early gut colonizers in infant can govern long-term disease risks in children (1) (2) (3) (4). The mode of delivery (vaginal versus Caesarean) is a major determinant of infant gut microbiota development. Compared to vaginally delivered infants, those born by Csection have divergent gut microbial colonization (5) (6). Since labour is intrinsic component of natural birth, investigating the influence of labour and its duration on gut microbial seeding may shed new light on development of infant gut microbiota.

The process of labor is deemed beneficial in aiding the transition of newborn from intrauterine environment to postnatal life. Changes in feto-maternal hormonal milieu near term and during labour helps in clearing fetal lung fluid (7) (8), offers neuroprotection to the newborn from anoxic-aglycaemic episodes during delivery(9), proffers newborn analgesia (10), and contributes to immune maturation (11) (12). However, evidence on the longer-term benefits of labour is limited and conflicting. Compared to vaginal deliveries, children born by scheduled Csection (no labour) were found to be at higher risk of asthma by Black et al [adjusted HR= 1.22; (95% CI, 1.11-1.34)] (13) and Rusconi et al [aRR=1.33 (95% CI: 1.02,1.75)] (14). While these findings may suggest a protective role of labour for childhood asthma risk, no significant difference in asthma risk was found while comparing elective C-section (no labour) to emergency C-section (likely some labour) in both studies. Besides, a study of 87,500 sibling pairs found no significant difference between scheduled C-section (non-laboured) and vaginal delivery for asthma medication in children aged 10-12 years(15), suggesting no protective role of labour. Duration of labour is another consideration for risk modification. Earlier studies observed that longer duration of labour was associated with the higher risk of pediatric atopy [OR 2.24; 95% CI: 1.30-3.86] (16) and physician diagnosed asthma [HR=1.10, 95%CI 1.08-1.15] (17). In contrast, a newer study found no evidence of longer labour and increased risk of doctor diagnosed wheezing (18). With such conflicting evidence at hand, a closer examination of whether labour duration affects infant

gut microbial colonization, and thereby the long-term disease risk in children, may guide accurate conclusions.

Labour is inherent component of natural birth. After some degree of microbial exposure in utero (2)(19), the first major microbial exposure of fetus occurs upon encountering the maternal vaginal and fecal microbiota during the time-span of its egress from birth canal. Thus, it stands to reason that duration of labour, especially if prolonged, could affect the magnitude of microbial exposure to infants born vaginally. Protracted labour is also associated with longer duration after rupture of membrane and higher risk of chorioamnionitis (20), and delivery by unplanned Csection (21) (22) (23), all of which could alter the microbial inoculum to the fetus. On the other hand, infants born by elective C-section or emergency C-section with no labour and intact membranes are likely to be deprived of any significant exposure to maternal vaginal and fecal microbes, whereas those born by emergency (unplanned) C-section performed after some length of labour (and rupture of membranes) may experience some degree of interaction with maternal vaginal/fecal microbes. In a study of 198 healthy term infants, under-representation of Bacteroidetes and over-representation of Firmicutes and Proteobacteria phyla observed in fecal samples at 3-4 months persisted to samples obtained at 1 year of age in infants born by emergency C-section (majority of cases with labour), but not in infants born by elective C-section (no labour) (5). Another recent study also observed that the meconium microbiota of neonates born by laboured C-section were similar to maternal fecal microbiota whereas the meconium microbiota of infants born by unlaboured C-section were more similar to maternal cutaneous microbiota (24).

Unfortunately, the literature on the direct influence of duration of labour on the microbial colonization of newborn gut is scarce. Among older studies, Cornelison et al found that the percentage of *E. coli* (of phylum Proteobacteria) in the oronasal cavity of newborns is increased during longer deliveries, suggesting role of duration of labour in microbial transfer to newborns (25). Likewise, Brook et al documented a significant positive correlation between prolonged duration of labour and isolation of anaerobes from newborns' gastric aspirates (26). However, these findings are inconsistent with a more recent study that examined the transmission of *Lactobacillus* (of phylum Firmicutes) dominant mixed vaginal flora to newborns' oral cavity and found that it was not significantly associated with duration of labour (p=0.216) (27).

The influence of duration of labour to infant gut microbiota composition is unknown. The duration of labour, its absence or prolongation has real potential to impact microbial seeding of newborn gut thereby affecting the development of infant gut microbiota and future disease risks. Therefore, the aim of this study to examine whether duration of labour influences the composition of infant gut microbiota at 3 to 4 months of life.

2.2 Materials and Methods

2.2.1 Study design

This study involved a subsample of 999 infants from three study sites (Edmonton, Vancouver and Winnipeg) of the CHILD cohort (<u>www.childstudy.ca</u>). Mothers of the studied infants were recruited during pregnancy between 2009 and 2012. Information on duration of *active* first stage of labour and second stage of labour, accompanying labour characteristics, mode of delivery and some covariates were obtained for hospital charts. In the CHILD cohort, the onset of active first stage of labour is defined as cervical dilation of 4 cm in presence of regular uterine contractions and ends at cervical dilatation of 10 cm. The second stage of labour begins from full dilatation of cervix (10 cm) and ends with expulsion of the fetus. The 3rd stage of labour, i.e. duration after delivery of newborn to the expulsion of placenta, was not included in this study since the third stage of labour has limited relevance with regards to microbial transmission opportunity from mother to newborn.

For vaginally delivered infants, a labour length variable for active first stage of labour denoting three mutually exclusive categories was created as follows: (1) Duration of active 1st stage of labour \leq 6 hours [Reference category: Group 1] (2) Duration of active 1st stage of labour > 6 to \leq 13 hours [Group 2] (3) Duration of active 1st stage of labour > 13 hours [Group 3]. These cut-offs were based on a recent systematic review of eighteen studies that found that weighted mean duration of active labour was 6.0 hours with mean plus two standard deviation of 13.4 hours (28). For second stage of labour, a labour length variable denoting three mutually exclusive

categories was created (29) as follows: (1) Duration of 2nd stage of labour ≤ 1 hours (Reference category: Group 1] (2) Duration of 2nd stage of labour > 1 to ≤ 2 hours [Group 2] (3) Duration of 2nd stage of labour > 2 hours [Group3].

For infants delivered by C-section after onset of labour, a labour length variable for active 1st stage of labour denoting two mutually exclusive categories was created as follows: (1) C-section with duration of active 1st stage of labour \leq 6 hours [Reference category: Group 1] and (2) C-section with duration of active 1st stage of labour > 6 hours [Group 2]. For 2nd stage of labour, a labour length variable denoting two mutually exclusive categories was created as follows: (1) C-section with duration of 2nd stage of labour \leq 1 hour [Reference category: Group 1] and (2) C-section with duration of 2nd stage of labour \leq 1 hour [Reference category: Group 1] and (2) C-section with duration of 2nd stage of labour \geq 1 hour [Group 2]. 'Elective C-section births' and 'Emergency C-section without labour' were excluded from the non-parametric analyses for microbial median relative abundance on account of absence of labour.

Data on covariates that could potentially affect the exposure variable or outcome variable, or both, were obtained from hospital charts (mode of delivery, intrapartum antibiotic prophylaxis (IAP), parity, duration after rupture of membranes, infant sex, gestational age ,epidural use, medical induction of labour, length of infant's hospital stay, maternal pre-pregnancy body mass index (BMI), maternal age etc.) or from standardized questionnaires completed by mothers (breastfeeding status, maternal ethnicity, maternal smoking, maternal asthma, furry pet ownership etc.), and were considered in the study. Written informed consent was obtained from parents at enrollment. This study was approved by the ethics board at the University of Alberta.

2.2.2 Fecal sample collection, DNA extraction and PCR amplification

Faecal samples of infants were collected at 3-4 months of age using a standard protocol during a scheduled home visit. Samples were refrigerated immediately after collection and during transport, and stored at -80 °C until analysis. Genomic DNA was isolated with QIAamp DNA stool Mini Kit (Qiagen, Venlo, the Netherlands), and the hypervariable V4 region of the bacterial 16S rRNA gene was amplified by polymerase chain reaction (PCR) using universal bacterial primers.

For sample multiplexing, reverse primers were barcoded uniquely for each sample (barcoded sequence was denoted in the primer sequence by Xs). PCR amplification consisted of an initial denaturation step for 3 min at 94 °C, followed by 20 cycles of denaturation for 30 s at 94 °C, annealing for 30 s at 50 °C and an extension step for 30 s at 72 °C. PCR reactions for each sample were performed in triplicate with a negative control in each run. One hundred nanograms of pooled PCR product from each sample was concentrated using an Amicon Ultra-4 30K centrifugal filter.

2.2.3 Sequencing and taxonomic nomenclature

The MiSeq Illumina Sequencing was employed to sequence the pooled PCR amplicons at the University of Toronto Centre for the Analysis of Genome Evolution & Function (CAGEF). Using a QIIME pipeline, forward and reverse reads were assembled for a final length of 144 bp demultiplexed and filtered against the GREENGENES reference database (v13.8) to discard all sequences with <60% similarity. Remaining sequences were clustered at 97% sequence similarity against the GREENGENES database (using closed picking algorithm in QIIME), and taxonomic assignment was achieved using the RDP classifier. After taxonomic assignment, operational taxonomic units (OTUs) representing bacterial origin were selected, and bacterial OTUs with overall relative abundance below 0.0001 were excluded from subsequence for downstream analyses. Microbiota diversity within samples (α diversity) was calculated using two standard metrics: the Chao1 estimator of OTU richness (which evaluates both the number of different OTUs present) and the Shannon diversity index (which evaluates both the number of OTUs and the evenness of their distribution). Those metrics were calculated at OTU and family levels.

2.2.4 Statistical analyses

Statistical analyses were performed in SPPS version 22.0 (SPSS, Inc., Chicago, IL, USA). The distribution of potential confounders according to exposure to differential duration of labour was investigated using Chi-square test. The gut microbial profile of infants with duration

of active first stage of labour ≤ 6 hours (reference group) was compared to the gut microbiota profile of infants with first stage of labour > 6 to \leq 13 hours and > 13 hours. Similarly, the gut microbial profile of infants with second stage of labour ≤ 1 hours (reference group) was compared to the gut microbiota profile of infants with second stage > 1 to \leq 2 hours and > 2 hours. Median relative abundance, Chao1 richness and Shannon diversity of dominant taxa were compared using non-parametric Mann-Whitney U-test. 'Elective C-section births' and 'Emergency C-section without labour' were excluded from the non-parametric analyses for microbial median relative abundance. A p-value of <0.05 was defined as statistically significant, and 95% confidence intervals (CIs) were calculated. Univariate analysis and multivariate logistic regression were performed to identify variables independently associated with the outcome. Variables with a pvalue of <0.25 in univariate analyses and clinically significant covariates were included in multivariable analyses. Microbiota measures were classified in two groups (below vs. above median). The following variables were included in the multivariable models as potential confounders: mode of delivery, maternal intrapartum antibiotic exposure, infant diet (exclusive breastfeeding status), gestational age, parity, duration after rupture of membrane, maternal prepregnancy BMI, infant's length of hospital stay and age of stool collection.

2.3 Results

2.3.1 Study population

Of the 999 infants in this general population, 918 (91.9%) infants had complete information on duration of active 1^{st} stage of labour and 955 (95.6%) infants had complete information on duration of 2^{nd} stage of labour.

Of the 918 infants with information on duration of active 1st stage of labour, 564 (61.4%) were born after active 1st Stage duration \leq 6 hours [Group 1 = Reference group], 267 (29.1%) were born after active 1st stage duration greater than 6 hours and \leq 13 hours [Group 2 infants], and 87 (9.5%) of infants were born after active 1st stage duration greater than 13 hours [Group 3 infants]. Table 2.1 describes the characteristics of mother-infant pairs according to the three categories of duration of active 1st stage. There were significant differences between the three groups with

respect to mode of delivery by intrapartum antibiotic prophylaxis (p<0.001), parity (p<0.001), duration after rupture of membranes (p= 0.003) and length of baby's hospital stay (p= 0.001). No significant differences were detected in the direct antibiotic exposure (p= 0.790), infant diet at three months of age (p=0.979), maternal age (p=0.450), maternal ethnicity (0.992), maternal prepregnancy overweight (p=0.874), pre-natal smoke exposure (p=0.083), maternal asthma (p=0.260) and exposure to furry pets at home (p=0.551) according to duration of active 1st stage of labour categories.

Of the 955 infants with complete information on duration of 2^{nd} stage of labour, 667 (69.8%) were born after 2^{nd} stage duration ≤ 1 hour [Group 1 infants = Reference group], 125 (13.1%) were born after 2^{nd} stage duration >1 hour and ≤ 2 hours [Group 2 infants], and 163 (17.1%) of infants were born after 2^{nd} stage duration > 2 hours [Group 3 infants]. Table 2.2 describes the characteristics of mother-infant pairs according to the three categories of duration of 2^{nd} stage. There were significant differences between the three groups with respect to mode of delivery by intrapartum antibiotic prophylaxis status (p<0.001), parity (p<0.001) and duration after rupture of membranes (p<0.001). No significant differences were detected in the direct antibiotic exposure (p= 0.573), infant diet at three months of age (p=0.440), length of baby's hospital stay (p= 0.609), maternal age (p=0.291), maternal ethnicity (0.883), maternal pre-pregnancy overweight (p=0.209), pre-natal smoke exposure (p=0.249) and maternal asthma (p=0.533) according to duration of 2^{nd} stage of labour categories.

2.3.2 Fecal microbiota composition, richness and diversity

i) Effect of duration of active 1st stage of labour

Table 2.3 outlines the summary of the significant (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the **duration of active first stage of labour**, and following different levels of stratifications.

Among all delivery modes (vaginal and C-section), we observed underrepresentation of Actinobacteria (p<0.05) and over-representation of Bacteroidetes (p<0.05) with increasing

duration of active 1st stage of labour at the phyla level [Table 2.4] [Fig.2.2]. Firmicutes appeared to decrease with longer active 1st stage, but this change was not statistically significant. At family level, longer active 1st stage (>13 hours) was associated with significantly lower abundance of *Bifidobacteriaceae* (p=0.042), *Coriobacteriaceae* (p=0.022) and *Lactobacillaceae* (p=0.004) but higher abundance of *Bacteroidaceae* (p=0.009) [Table 2.4]. *Ruminococcaceae* significantly reduced with active 1st stage \geq 6 to < 13 hours (p=0.018), but not when active 1st stage was > 13 hours [Table 2.4]. At genus level, abundance of *Bifidobacterium* decreased with active 1st stage \geq 6 to < 13 hours (p=0.001), and reduced further with active 1st stage > 13 hours (p=0.039) [Table 2.4]. In contrast, abundance of *Bacteroides* showed directly proportional increase with increasing durations of active first stage (p <0.05) [Table 2.4]. Additionally, *Lactobacillus* (p=0.004) and *Citrobacter* (p=0.050) reduced in abundance when active first stage was longer than 13 hours [Table 2.4].

<u>Stratified analyses results: Microbial abundance adjusted for delivery mode, intrapartum</u> <u>antibiotic prophylaxis and exclusive breastfeeding</u>

When stratified by delivery mode, vaginally delivered infants who were not exposed to intrapartum antibiotic prophylaxis (IAP) showed significantly decremental abundance of phylum Actinobacteria whereas changes in other phyla were not statistically significant [Table 2.5]. At family level, abundance of *Bifidobacteriaceae* reduced with 1st stage of labour \geq 6 to < 13 hours (p=0.010) and decreased further with active 1st stage > 13 hours (p=0.015) [Table 2.5] [Fig 2.3]. Further, active 1st stage longer than 13 hours was associated with decreased abundance of *Coriobacteriaceae* (p=0.017), *Enterococcaceae* (p=0.021), *Lactobacillaceae* (p=0.049) and a increased abundance of *Clostridiaceae* (p=0.006) [Table 2.5]. At genus level, *Bifidobacterium* showed reduction with 1st stage of labour \geq 6 to < 13 hours (p=0.010) and a further decrease with active 1st stage > 13 hours (p=0.016) [Table 2.5]. Upon further stratification by exclusive breastfeeding status, vaginally born IAP-free infants who were deprived of exclusive breastfeeding showed significant reduction in abundance of *Bifidobacterium* (at genus level) in association with active 1st stage of labour > 13 hours (p=0.038) [Table 2.6a]. Additionally, reduction in genera *Streptococcus* (p=0.010) and *Ruminococcus* (p=0.029) were also observed with active 1st stage > 13 hours among these infants. In contrast, vaginally born IAP-free infants who were exclusively

breastfed showed no significant reduction in *Bifidobacterium*, *Streptococcus* or *Ruminococcus* with 1^{st} stage of labour > 13 hours [Table 2.6b].

Among infants delivered vaginally with positive IAP exposure, at phylum level, abundance of Actinobacteria was reduced with 1st stage of labour ≥ 6 to < 13 hours (p=0.003) but not when active 1st stage was longer than 13 hours [Table 2.7]. At family level, *Bifidobacteriaceae* (p=0.003) and *Ruminococcaceae* (p=0.016) were decreased whereas *Streptococcaceae* (p=0.032) was increased in infants born with 1st stage of labour ≥ 6 to < 13 hours. Among infants born after active 1st stage > 13 hours, changes in these microbial families were not significant [Table 2.7]. At genus level, *Bifidobacterium* was significantly reduced with 1st stage of labour ≥ 6 to < 13 hours (p=0.008) but not when active 1st stage was longer than 13 hours [Table 2.7]. Upon further stratification by exclusive breastfeeding status, vaginally born IAP-exposed infants who were not exclusive breastfeed showed significant reduction in abundance of genera *Bifidobacterium* (p=0.016) and *Streptococcus* (p=0.035) in association with active 1st stage of labour ≥ 6 to < 13 hours, but not when active 1st stage was > 13 hours [Table 2.8a]. Likewise, for exclusively breastfeed infants (vaginally born and IAP-exposed), a reduction in *Bifidobacterium* (p=0.027) was observed with active 1st stage of labour ≥ 6 to < 13 hours [Table 2.8b]. Changes in other genera were not statistically significant [Table 2.8b].

Among infants delivered by C-section with labour, as compared to infants born by C-section with active 1^{st} stage duration \leq 6hours, those with active 1^{st} stage > 6 hours appeared to show an increased abundance of *Bifidobacterium* (of phylum Actinobacteria), and decreased abundance *Bacteroides* (of phylum Bacteroidetes) along with decreased abundance *Clostridium* (of phylum Firmicutes) [Fig. 2.5] [Table 2.9]. However, none of these changes were statistically significant. We also performed a sensitivity analysis of the infant gut microbiota comparing infants born by C-section without labour versus C-section with labour and did not find significant associated changes [Table 2.10].

The following figure summarizes the results discussed thus far for active 1st stage:

Fig. 2.1a Summary figure showing changes in microbiota abundance at family level according to duration of active first stage, stratified by mode of delivery

<u>Regression analyses results: Microbial abundance adjusted for all potential confounders</u>

We conducted multivariate logistic regression to further explore the association of duration of active 1st stage of labour and gut microbiota composition and diversity. At phyla level, likelihood of gut colonization with Actinobacteria decreased significantly in infants born after active first stage > 6 to \leq 13 hours [Group 2 infants versus Group 1: aOR = 0.53 (95%CI = 0.38-(0.44); p = 0.001], but not among infants after active first stage > 13 hours [Group 3 infants versus Group 1: aOR = 0.63 (95%CI = 0.38-1.06); p=0.080] [Table 2.11]. At family level, longer active 1st stage durations were associated with progressive reduction in likelihood of colonization with Bifidobacteriaceae {[Group 2 infants versus Group 1: aOR = 0.57 (95% CI = 0.41-0.81), p = 0.001]; Group 3 infants versus Group 1: [aOR = 0.56 (95%CI = 0.34-0.95), p = 0.030]} [Table 2.11]. In addition, likelihood of colonization with *Ruminococcaceae* reduced with active 1st stage > 6 to < 13 hours but not when 1st stage was > 13 hours {[Group 2 infants versus Group 1: aOR = 0.66 (95% CI = 0.45-095), p = 0.027; Group 3 infants versus Group 1: [aOR = 0.90 (95%CI = (0.51-1.59), p = (0.711). Likewise, likelihood of colonization with *Lactobacillaceae* reduced with active 1st stage > 13 hours {[Group 2 infants versus Group 1: aOR = 0.78 (95% CI = 0.55-1.10), p = 0.155]; Group 3 infants versus Group 1: [aOR = 0.53 (95%CI = 0.30-0.95), p = 0.032]} [Table 2.13a].

At genus level, longer active 1st stage of labour was associated with higher risk of reduced *Bifidobacterium* and *Lactobacillus* colonization. Likelihood of gut colonization with *Bifidobacterium* decreased by 43% in infants born after active first stage > 6 to \leq 13 hours [aOR = 0.57 (95%CI = 0.41-0.81), p = 0.001], and decreased by 44% after active first stage > 13 hours [aOR = 0.56 (95%CI = 0.34-0.95), p = 0.030] [Table 2.11] [Fig. 2.6]. In addition, infants born after active first stage longer than 13 hours also showed a 47% reduced likelihood of colonization with *Lactobacillus* [aOR = 0.53 (95%CI = 0.30-0.95), p = 0.032] [Table 2.13b] [Fig. 2.6]. These associations were independent of mode of delivery, intrapartum antibiotic prophylaxis (IAP) use, breastfeeding status, gestational age, parity, membrane rupture duration greater than 18 hours, length of infant's hospital stay, age of fecal sample collection and maternal pre-pregnancy overweight. As for the other genera that showed significant changes in stratified analyses, statistical significance was not retained after adjusting for all potential cofounders in the regression analyses. Finally, we noted a reduced trend for microbial diversity with longer active 1st stage

although it was only significant for infants born with active 1^{st} stage > 6 to ≤ 13 hours {[Group 2 infants versus Group 1: aOR = 0.64 (95% CI = 0.45-0.90), p = 0.011]; Group 3 infants versus Group 1: [aOR = 0.74 (95%CI = 0.44-1.126, p = 0.274]} [Table 2.15].

ii) Effect of duration of 2nd stage of labour

Table 2.16 outlines the summary of the significant (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the **duration of second stage of labour**, and following different levels of stratifications.

Among all delivery modes (vaginal and C-section), at phyla level, we observed underrepresentation of phylum Actinobacteria (p<0.010) with 2^{nd} stage longer than 2 hours [Table 2.17] [Fig.2.7]. At family level, *Bifidobacteriaceae* (p=0.006), *Coriobacteriaceae* (p=0.005), *Lactobacillaceae* (p=0.008) and *Ruminococcaceae* (p=0.051) decreased in abundance where as *Clostridiaceae* (p=0.003) increased in abundance when 2^{nd} stage of labour was longer than 2 hours [Table 2.17]. At the genus level, abundance of *Bifidobacterium* (p=0.005) and *Lactobacillus* (p=0.008) decreased when 2^{nd} stage was longer than 2 hours [Table 2.17].

<u>Stratified analyses results: Microbial abundance adjusted for delivery mode, intrapartum</u> antibiotic prophylaxis and exclusive breastfeeding

When stratified by delivery mode, vaginally born IAP-free infants showed underrepresentation (at phyla level) of Actinobacteria when 2^{nd} stage was longer than 2 hours (p=0.012) [Table 2.18]. At family level, these infants showed underrepresentation of *Bifidobacteriaceae* (p=0.005) and *Coriobacteriaceae* (p=0.050), and overrepresentation of *Clostridiaceae* (p=0.000) associated with 2^{nd} stage longer than 2 hours [Table 2.18] [Fig. 2.8]. At genus level, abundance of *Bifidobacterium* (p=0.005) and *Actinomyces* (p=0.032) was reduced when 2^{nd} stage was longer than 2 hours [Table 2.18]. In contrast, an increase in abundance of *Clostridium* (p=0.006,) *Veillionella* (p=0.053) and *Citrobacter* (p=0.016) was seen with 2^{nd} stage longer than 2 hours [Table 2.18]. Upon further stratification by infant diet, vaginally born IAP-

free infants who were not exclusively breastfed showed a reduction in *Bifidobacteriaceae* (p=0.025) and *Actinomycetaceae* (p=0.040) (both of phylum Actinobacteria), and *Lactobacillaceae* (p=0.018) (of phylum Firmicutes), when 2^{nd} stage was longer than 2 hours [Table 2.19a]. In addition, these infants also showed a reduction in *Bacteroidaceae* when 2^{nd} stage was > 1 to ≤ 2 hours (p=0.048) but not when 2^{nd} stage was longer than 2 hours(p=0.383) [Table 2.19a]. At genus level, vaginally born IAP-free infants without exclusive breastfeeding were observed to possess reduced abundance of *Bifidobacterium* (p=0.025), *Actinomyces* (p=0.031) and *Lactobacillus* (p=0.018) with 2^{nd} stage longer than 2 hours [Table 2.19a]. On the other hand, when exclusively breastfed, vaginally born IAP-free infants showed lowered abundance of *Bifidobacterium* (of family Bifidobacteriaceae, and phylum Actinobacteria) (p=0.046) and higher abundance of *Clostridium* (p=0.003) when 2^{nd} stage was longer than 2 hours [Table 2.19b].

Among vaginally delivered infants with positive IAP exposure, at phyla level, significant over-representation of Firmicutes with 2^{nd} stage > 1 to \leq 2 hours (p=0.009) but not with 2^{nd} stage > 2 hours, along with increase in Proteobacteria with 2^{nd} stage > 2 hours (p=0.039) was observed [Table 2.20]. At family level, *Enterobacteriaceae* was increased after 2^{nd} stage longer than 2 hours (p=0.014) where as *Clostridiaceae* was increased significantly (p=0.0.45) only with 2^{nd} stage > 1 to \leq 2 hours [Table 2.20] [Fig. 2.9]. At genus level, *Enterobacter_unclassified* (of phylum Proteobacteria) showed higher abundance (p=0.016) when 2^{nd} stage was longer than 2 hours [Table 2.20]. When further stratified by infant diet, 2^{nd} stage longer than 2 hours was associated with higher abundance of genus *Clostridium* (p=0.047) (of phylum Firmicutes) among infants who were **not** exclusively breastfed [Table 2.21a] whereas vaginally-delivered IAP-exposed and exclusively breastfed infants showed higher abundance of genus *Enterobacter_unclassified* (p=0021) (of phylum Proteobacteria) [Table 2.21b].

Among infants born by C-section after labour, we observed infants born by C-section after second stage > 1 hour had higher abundance of genus *Enterococcus* (p=0.008) (of Phylum Firmicutes) [Table 2.22]. Infants born by C-section after 2^{nd} stage > 1 hour also appeared to possess increased abundance of *Bifidobacterium*, *Bacteroides* and *Clostridium*, but these changes did not reach statistical significance [Table 2.22].

The following figure summarizes the results discussed thus far for duration of 2nd stage:

* indicates p < 0.05

Regression analyses results: Microbial abundance adjusted for all potential confounders

Multivariate logistic regression was conducted to further explore the association of duration of 2^{nd} stage of labour and infant gut microbiota profile. At phyla level, infants born after 2^{nd} stage of labour > 2 hours had reduced likelihood of colonization with Actinobacteria [aOR = 0.51, (95 %C1: 0.34-0.77), p = 0.001] [Table 2.23]. At family level, the likelihood of colonization with *Bifidobacteriaceae* [aOR = 0.48, (95 %C1: 0.32-0.73), p = 0.001] and *Lactobacillaceae* [aOR = 0.63, (95 %C1: 0.41-0.98), p = 0.041] when 2^{nd} stage was longer than 2 hours [Table 2.23] and Table 2.25a].

At genus level, compared to infants born after 2^{nd} stage ≤ 1 hours, infants born after 2^{nd} stage > 2 hours showed a 52% decreased likelihood of colonization with *Bifidobacterium* [aOR = 0.48 (95%CI = 0.32- 0.73), p = 0.001] [Table 2.23] [Fig. 2.30]. In addition, infants born after 2^{nd} stage > 2 hours also showed a 37% reduced likelihood of colonization with genus *Lactobacillus* [aOR = 0.63 (95%CI = 0.41-0.98), p =0.041] [Table 2.25b] [Fig. 2.11]. These associations were independent of mode of delivery, IAP use, breastfeeding, gestational age, parity, membrane rupture duration greater than 18 hours, length of baby's hospital stay, age of fecal sample collection and maternal pre-pregnancy overweight.

As for the other genera that showed significant changes in stratified analyses, statistical significance was not retained after adjusting for all potential cofounders in the regression analyses. Finally, infants born after 2^{nd} stage duration >2 hours had a 40% reduced likelihood of higher Shannon diversity [aOR 0.60, (95%CI = 0.39-0.91; p =0.016] [Table 2.27].

Table 2.28 Summary of significant associations between active 1st and 2nd stage labour durations and infant gut microbial composition among infants:

	Active 1 st stage (Hours)		2 nd stage (Hours)		
	Ref: ≤ 6		Ref: ≤ 1		
	>6 to≤13	> 13	>1 to≤2	> 2	
Microbiota	aOR* (95% CI);	aOR* (95% CI);	aOR* (95% CI);	aOR* (95% CI);	
measure	p-value	p-value	p-value	p-value	
Phylum	0.53 (0.38-0.74);	0.63 (0.38-1.06);	0.74 (0.48-1.15);	0.51 (0.34-0.77);	
Actinobacteria	p=0.000	p=0.080	p=0.178	p=0.001	
g_Bifido-	0.57 (0.41-0.81);	0.56 (0.34-0.95);	0.78 (0.51-1.21);	0.48 (0.32-0.73);	
bacterium	p=0.001	p=0.030	p=0.270	p=0.001	
g_Lactobacillus	0.78 (0.55-1.10);	0.53 (0.30-0.95);	0.75 (0.48-1.19);	0.63 (0.41-0.98);	
	p=0.155	p=0.032	p=0.227	p=0.041	
Chao 1	0.86 (0.61-1.22);	0.74 (0.43-1.26);	0.64 (0.41-1.00);	0.76 (0.050-	
Richness	p=0.863	p=0.738	p=0.050	1.16);	
				p=0.211	
Shannon	0.64 (0.45-0.90);	0.74 (0.44-1.26);	0.80 (0.51-1.24);	0.60 (0.39-0.91);	
diversity	p=0.011	p=0.274	p=0.314	p=0.016	

aOR = adjusted odds ratio; CI =Confidence Interval

* Odd ratios adjusted for mode of delivery by intrapartum antibiotic prophylaxis, exclusive breastfeeding, parity, duration after membrane rupture > 18 hours, infant's hospital stay length and infant's age at stool collection. Significant associations are **bold-faced.**

2.4 Discussion

In this study cohort of 999 Canadian infants, longer duration of labour was associated with reduced colonization with Actinobacteria, *Bifidobacteriaceae, Bifidobacterium* and decreased diversity of gut microbiota at 3-4 months. After its first discovery in feces of breast-fed infants by Tissier in 1899 (30), *Bifidobacterium* colonization in human gut has been widely studied

due to its immune-modulatory properties affecting both innate and adaptive immune processes (31) (32). As a probiotic, gut *Bifidobacteria* offer protection against risks of childhood allergic diseases (33). Lower abundance of gut *Bifidobacteria* at 3 weeks and 3 months of age was found to be associated with higher risk of atopic diseases at 1 year of age (34), and its underrepresentation in infant gut at 3 months of age is associated with higher incidence of atopy (at age 2 years) and doctor-diagnosed asthma (at age 4 years) (35). Vertical transmission of maternal fecal and vaginal *Bifidobacterium* provides microbial seeding of *Bifidobacterium* for the infant gut (30) (36) (37). C-section delivered infants have significantly pronounced reduction of *Bifidobacterium* colonization as compared to vaginally delivered infants (37) (38) (39). The importance of laboured birth in vertical transmission of *Bifidobacterium* is also highlighted by recent evidence that showed significantly lower *Bifidobacterium* counts in infants born by *elective* C-section when compared to vaginal births (40).

Till date, this is the first study to examine the association between duration of labour and infant gut microbiota at 3-4 months of age. We found that the odds of infant gut colonization by *Bifidobacterium* was reduced with longer durations of the active 1st stage of labour [Group 2 vs Group 1 infants: aOR = 0.57 (95%CI = 0.41-0.81); Group 3 vs Group 1 infants: aOR = 0.56 (95%CI = 0.34-0.95)] and 2nd stage longer than 2 hours [Group 3 vs Group 1 infants: aOR = 0.48 (95%CI = 0.32- 0.73)]. These associations were independent of mode of delivery, IAP use, breastfeeding, gestational age, parity, membrane rupture duration greater than 18 hours, length of baby's hospital stay, age of fecal sample collection and maternal pre-pregnancy overweight. Our results suggest that the time duration of fetal passage through the birth canal is an important influential aspect of birth that determines the *Bifidobacterium* seeding and development of infant gut microbiota.

Bifidobacterium are obligate anaerobes whose optimum survival is regulated by narrow range of pH, temperature and oxygen. Barring few strains, most *Bifidobacterium* species thrive best in an anaerobic, pH neutral environment (pH 6.5 to 7.0) at temperature ranges of 36-38°C (41). We believe that longer labour duration may affect the abundance and viability of maternal Bifidobacteria communities by altering these conditions. Labour and parturition requires tremendous amounts of maternal oxygen utilization with increased minute ventilation and oxygen consumption (42) (43), that leads to increased production of reactive oxygen species (ROS). This

oxidative stress during labour is further intensified with cycles of myometrial ischemia and reperfusion caused by periodic suppression of utero-placental blood flow during powerful myometrial contractions (44), and increased concentrations of labour-associated pro-inflammatory mediators (44) that stimulate increased ROS production (45). To add, longer durations of labour has been previously shown to aggravate the oxidative stress (44) not only in the mother but also in the fetus (46). Although some species and strains of *Bifidobacteria* are thought to possess some level of oxygen tolerance, its anaerobic nature renders most *Bifidobacteria* poorly equipped to handle reactive oxygen species (ROS) produced during oxidative stress. Prolonged exposure to ROS results *Bifidobacterial* cell death (47) (48). Thus, we theorize that higher oxidative stress experienced by mothers undergoing longer duration of labour could lead to attenuated viability of maternal colonic *Bifidobacteria* abundance. Consequently, the microbial inoculum ingested by the fetus during birth after prolonged labour durations could be wanting in *Bifidobacteria* representation and this may influence the gut microbiota colonization at 3-4 months of age.

In addition, we also observed reduced odds of infant gut colonization with Lactobacillus when active 1^{st} stage of labor was longer than 13 hours [aOR = 0.53 (95%CI = 0.30-0.95)] and when the 2^{nd} stage longer than 2 hours [aOR = 0.63 (95%CI = 0.41-0.98)]. Lactobacilli are anaerobic or microaerobic Gram-positive rods that dominantly colonize the healthy human vagina (49), and are also important constituents of the human gastrointestinal microbiota (50). As members of lactic acid bacteria (LAB), they contribute to generation of ATP (Adenosine triphosphate) through fermentation of carbohydrate to lactic acid (51). In recent years, their role as probiotics and their immune-modulatory effects on gut epithelium (52) (53) has renewed scientific interest in their potential as disease-modifying organisms. Within the gastrointestinal lumen, Lactobacilli serve to enhance both innate and adaptive cellular immune responses through induction of mucosal immunity, aiding maturation of epithelial dendritic cells which in turn stimulate the T cells, and modulating T-helper cells responsiveness (50) (54). Evidence shows that gut co-colonization of Bifidobacterium and Lactobacilli during neonatal period is critical for immune maturation and immune homeostasis (53), and maternal probiotic supplementation with Bifidobacterium and Lactobacillus during pregnancy and breastfeeding has been shown to reduce the risk of atopic dermatitis in infants (55). Our results show that prolonged labour is associated with reduced odds infant gut colonization with both Bifidobacterium and Lactobacillus. However,

further research needed on whether this association influences the risk of pediatric allergic diseases.

Among other phyla, increasing duration of active 1st stage of labour was associated with relatively preserved abundance of phylum Bacteroidetes among infants who were born vaginally and *without* intrapartum antibiotic prophylaxis [Table 2.4] whereas it was under-represented in infants born vaginally who received intrapartum antibiotic prophylaxis [Table 2.9], and was lowest in infants born by C-section [Table 2.12]. Although none of the changes were significant for increasing length of labour, these results demonstrate the vulnerability of Bacteroidetes with respect to delivery mode and antibiotic exposure. Further, the crude odds for infant gut colonization with Bacteroidetes showed an increasing trend with increasing length of active first stage [Group 2 vs Group 1 infants: aOR = 1.50 (95%CI = 1.12-2.01); Group 3 vs Group 1 infants: aOR = 1.60 (95%CI = 1.02-2.53)] [Table 2.16], but not with duration of 2nd stage of labour [Table 2.31]. However, the significance of observed change with active 1st stage was lost when mode of delivery by intrapartum antibiotic prophylaxis was introduced in the model [Table 2.16]. This indicates that delivery mode (vaginal versus C-section) and antibiotic exposure profoundly influence the gut colonization with Bacteroidetes infants, and this finding is in agreement with previous studies reaching the same conclusions (5) (6).

2.5 Strengths and limitations

Our study was conducted in a large population based longitudinal cohort that recruited mothers in their third trimester and followed the children up to early life years. Therefore, the results are generalized to the population and temporality of results in ascertainable. The use of high throughput gene sequencing technique imparts high degree of accuracy and reliability to our gut microbiota measures.

Home births were excluded from our study. Therefore, our study is unable to characterize the association between duration of labour and infant gut microbiota in the infants delivered at home, which is likely to be different from hospital delivered infants. Another major limitation is that our study did not study the influence of duration of labour on infant gut microbiota at an older

age. It would be interesting to see whether the changes seen in infant gut microbiota at 3-4 months of age in association with labour duration would persist at 6 months or one year of age. Thus, future studies could be directed towards these efforts.

2.6 Conclusion

This study highlights the association between exposure to longer durations of labour at birth and changes to infant gut microbial composition at the first 3-4 months of life. The role of these changes in relation to the development of gut immunity and long-term disease risks in later life requires further investigation.

The beneficial influence of probiotics such as *Bifidobacterium* and *Lactobacillus* in promoting immune maturity emphasize their role in the early gut microbiota in reducing risks for atopy, allergy and asthma in children. Recognizing the early life factors, such as prolongation of labour that can influence infant gut microbial composition is crucial for deeper understanding of balanced development of infant gut microbiota and possibly widening the opportunity for early life counteractive measures. Further, finding of this study can be implied in favor of healthy pregnancy, informed decision making during difficult birth or labour dystocia, and to target increment of probiotics to reduce pediatric disease risks.

REFERENCES

- O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688– 93.
- Francino M. Early Development of the Gut Microbiota and Immune Health. Pathogens. 2014;3(3):769–90.
- 3. Johnson CC, Ownby DR. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res. 2017;179:60–70.
- Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int [Internet]. 2017;66(4):515–22. Available from: https://doi.org/10.1016/j.alit.2017.07.010
- Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: A prospective cohort study. BJOG An Int J Obstet Gynaecol. 2016;123(6):983–93.
- Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014 Feb 27;63(4):559 LP-566.
- Barker PM, Olver RE. Invited Review: Clearance of lung liquid during the perinatal period. J Appl Physiol. 2002 Oct 1;93(4):1542 LP-1548.
- Jain L, Eaton DC. Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol. 2006 Feb 1;30(1):34–43.
- Ceanga M, Spataru A, Zagrean AM. Oxytocin is neuroprotective against oxygen-glucose deprivation and reoxygenation in immature hippocampal cultures. Neurosci Lett. 2010;477(1):15–8.
- Mazzuca M, Minlebaev M, Shakirzyanova A, Tyzio R, Taccola G, Janackova S, et al. Newborn Analgesia Mediated by Oxytocin during Delivery. Front Cell Neurosci. 2011;5(April):1–9.

- Thilaganathan B, Meher-Homji N, Nicolaides KH. Labor: An immunologically beneficial process for the neonate. Am J Obstet Gynecol. 2017 Oct 24;171(5):1271–2.
- Thysen AH, Larsen JM, Rasmussen MA, Stokholm J, Bønnelykke K, Bisgaard H, et al. Prelabor cesarean section bypasses natural immune cell maturation. J Allergy Clin Immunol. 2015;136(4):1123–1125e6.
- 13. Black M, Bhattacharya S, Philip S, Norman JE, McLernon DJ. Planned Cesarean Delivery at Term and Adverse Outcomes in Childhood Health. Jama. 2015;314(21):2271.
- Rusconi F, Zugna D, Annesi-Maesano I, Baïz N, Barros H, Correia S, et al. Mode of delivery and asthma at school age in 9 European Birth Cohorts. Am J Epidemiol. 2017;185(6):465–73.
- Almqvist C, Cnattingius S, Lichtenstein P, Lundholm C. The impact of birth mode of delivery on childhood asthma and allergic diseases-a sibling study. Clin Exp Allergy. 2012;42(9):1369–76.
- Vonk JM, Boezen HM, Postma DS, Schouten JP, Van Aalderen WMC, Boersma ER. Perinatal risk factors for bronchial hyperresponsiveness and atopy after a follow-up of 20 years. J Allergy Clin Immunol. 2004;114(2):270–6.
- Dik N, Tate RB, Manfreda J, Anthonisen NR. Risk of physician-diagnosed asthma in the first 6 years of life. Chest. 2004;126(4):1147–53.
- Keski-Nisula L, Karvonen A, Pfefferle PI, Renz H, Büchele G, Pekkanen J. Birth-related factors and doctor-diagnosed wheezing and allergic sensitization in early childhood. Allergy. 2010 Jan 1;65(9):1116–25.
- Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6(1):23129.
- Lee SM, Romero R, Lee KA, Yang HJ, Oh KJ, Park CW, et al. The frequency and risk factors of funisitis and histologic chorioamnionitis in pregnant women at term who delivered after the spontaneous onset of labor. J Matern Fetal Neonatal Med. 2011;24(1):37–42.

- 21. Gifford DS, Morton SC, Fiske M, Keesey J, Keeler E, Kahn KL. Lack of progress in labor as a reason for cesarean. Obstet Gynecol. 2000 Apr;95(4):589–95.
- Kjaergaard H, Olsen J, Ottesen B, Dykes A-K. Incidence and outcomes of dystocia in the active phase of labor in term nulliparous women with spontaneous labor onset. Acta Obstet Gynecol Scand. 2009;88(4):402–7.
- 23. Boyle A, Reddy UM, Landy HJ, Huang C-C, Driggers RW, Laughon SK. Primary cesarean delivery in the United States. Obstet Gynecol. 2013 Jul;122(1):33–40.
- 24. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med [Internet]. 2017 Mar;23(3):314–26. Available from: http://dx.doi.org/10.1038/nm.4272
- Cornelison JL, Johnson EA, Fisher WM. Bacteriology of the oronasal cavity of the newborn. Am J Obs Gynec. 1946;52(797–802).
- Brook I, Barrett CT, Brinkman CR, Martin WJ, Finegold SM. Aerobic and Anaerobic Bacterial Flora if the Maternal Cervix and Newborn Gastric Fluid and Conjunctiva. Obstet Gynaecol Surv. 1979;34(10):743–4.
- Keski-Nisula L, Kyynarainen H-R, Karkkainen U, Karhukorpi J, Heinonen S, Pekkanen J. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth. Acta Paediatr. 2013 May;102(5):480–5.
- Neal JL, Lowe NK, Ahijevych KL, Patrick TE, Cabbage LA, Corwin EJ. "Active labor" duration and dilation rates among low-risk, nulliparous women with spontaneous labor onset: a systematic review. J Midwifery Womens Health. 2010;55(4):308–18.
- Kilpatrick SJ, Laros RKJ. Characteristics of normal labor. Obstet Gynecol. 1989 Jul;74(1):85–7.
- Tissier H. Recherchers sur la flora intestinale normale et pathologique du nourisson. University of Paris, France; 1900.
- 31. Turroni F, Taverniti V, Ruas-Madiedo P, Duranti S, Guglielmetti S, Lugli GA, et al.

Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl Environ Microbiol. 2014 Jan;80(2):730–40.

- Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol [Internet].
 2017;8(December):1–9. Available from: http://journal.frontiersin.org/article/10.3389/fmicb.2017.02345/full
- Enomoto T, Sowa M, Nishimori K, Shimazu S, Yoshida A, Yamada K, et al. Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergol Int. 2014 Dec;63(4):575– 85.
- Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001 Jan;107(1):129–34.
- Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016 Oct;22(10):1187–91.
- Mikami K, Takahashi H, Kimura M, Isozaki M, Izuchi K, Shibata R, et al. Influence of maternal bifidobacteria on the establishment of bifidobacteria colonizing the gut in infants. Pediatr Res. 2009 Jun;65(6):669–74.
- 37. Makino H, Kushiro A, Ishikawa E, Kubota H, Gawad A, Sakai T, et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota. PLoS One. 2013;8(11).
- Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006 Aug;118(2):511–21.
- Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol. 2016 Jul;16(1):86.

- 40. Nagpal R, Kurakawa T, Tsuji H, Takahashi T, Kawashima K, Nagata S, et al. Evolution of gut Bifidobacterium population in healthy Japanese infants over the first three years of life: a quantitative assessment. Sci Rep. 2017 Aug;7(1):10097.
- Ruiz L, Ruas-Madiedo P, Gueimonde M, de Los Reyes-Gavilan CG, Margolles A, Sanchez B. How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr. 2011 Aug;6(3):307–18.
- 42. Hagerdal M, Morgan CW, Sumner AE, Gutsche BB. Minute ventilation and oxygen consumption during labor with epidural analgesia. Anesthesiology. 1983 Nov;59(5):425–7.
- 43. Eliasson AH, Phillips YY, Stajduhar KC, Carome MA, Cowsar JDJ. Oxygen consumption and ventilation during normal labor. Chest. 1992 Aug;102(2):467–71.
- 44. Cindrova-Davies T, Yung H-W, Johns J, Spasic-Boskovic O, Korolchuk S, Jauniaux E, et al. Oxidative stress, gene expression, and protein changes induced in the human placenta during labor. Am J Pathol. 2007 Oct;171(4):1168–79.
- 45. Diaz-Castro J, Florido J, Kajarabille N, Prados S, de Paco C, Ocon O, et al. A new approach to oxidative stress and inflammatory signaling during labour in healthy mothers and neonates. Oxid Med Cell Longev. 2015;2015:178536.
- Rao G, Kamath U, Raghothama C, Pradeep KS, Rao P. Maternal and fetal indicators of oxidative stress in various obstetric complications. Indian J Clin Biochem [Internet].
 2003;18(2):80–6. Available from: http://link.springer.com/10.1007/BF02867371
- Kawasaki S, Mimura T, Satoh T, Takeda K, Niimura Y. Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol. 2006 Oct;72(10):6854–8.
- Talwalkar A, Kailasapathy K. The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol. 2004 Mar;5(1):1–8.
- Vásquez A, Jakobsson T, Ahrné S, Forsum U, Molin G. Vaginal *Lactobacillus* Flora of Healthy Swedish Women. J Clin Microbiol. 2002;40(8):2746–9.

- 50. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl Environ Microbiol. 2008;74(16):4985–96.
- 51. Papagianni M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds Abstract : Lactic acid bacteria (LAB) are receiving increased attention for use as cell factories for the production of metabolites with wide use by the. 2012;(October):1–8.
- Wells JM. Immunomodulatory mechanisms of lactobacilli. Microb Cell Fact [Internet].
 2011 Aug;10(1):S17. Available from: https://doi.org/10.1186/1475-2859-10-S1-S17
- 53. van Baarlen P, Wells JM, Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol. 2013 May;34(5):208–15.
- Kalina W V, Mohamadzadeh M. Lactobacilli as natural enhancer of cellular immune response. Discov Med. 2005 Apr;5(26):199–203.
- Rautava S, Kainonen E, Salminen S, Isolauri E. Maternal probiotic supplementation during pregnancy and breast-feeding reduces the risk of eczema in the infant. J Allergy Clin Immunol. 2012 Dec;130(6):1355–60.

Table 2.1

	1 st stage <= 6 hours	1 st stage	1 st stage > 13	p-			
	[Reference: Group 1]	> 6 to <= 13 hours	hours	value			
		[Group 2]	[Group 3]	(x^2)			
	N (%)	N (%)	N (%)				
Row percentages	564 (61.4%overall)	267(29.1 % overall)	87 (9.5% overall)				
Baby's gender (n =918)							
Male	297 (61.1%)	146 (30.0%)	43 (8.8%)				
Female	267 (61.8%)	121 (28.0%)	44 (10.2%)				
Delivery mode (n =903)							
Vaginal without IAP	261 (54.7%)	166 (34.8%)	50 (10.5%)				
Vaginal with IAP	79 (41.8%)	80 (42.3%)	30 (15.9%)				
Elective C-section	104 (100.0%)	0.00%	0.00%				
C-section with labour	102 (84.3%)	15 (12.4%)	4 (3.3%)	0.080			
Term gestation (n= 918)							
No	21 (80.8%)	5 (19.2%)	0 (0.0%)				
Yes	543 (60.9%)	262 (29.4%)	87 (9.5%)				
Infant diet 3 months (n= 911)							
EBF = Yes	292 (60.7%)	144 (29.9%)	45 (9.4%)				
EBF= Partial	171 (62.4%)	77 (28.1%)	26 (9.5%)				
EBF= Zero	96 (61.5%)	44 (28.2%)	16 (10.3%)				
Parity (n=918)							
Primipara	396 (67.7%)	149 (25.5%)	40 (6.8%)				
Multipara	168 (50.5%)	118 (35.4%)	47 (14.1%)				
Membrane rupture >18 H				<mark>0.003</mark>			
No	488 (62.8%)	225 (29.0%)	64 (8.2%)				
Yes	60 (50.0%)	40 (33.3%)	20 (16.7%)				
Length of hospital stay (n=883)							
24 hours of less	120 (56.6%)	69 (32.5%)	23 (10.8%)				
2-3 days	334 (60.1%)	168 (30.2%)	54 (9.7%)				
4 days or more	91 (79.1%)	18 (15.7%)	6 (5.2%)				
Maternal ethnicity (n=910)							
Caucasian	428 (61.8%)	199 (28.7%)	66 (9.5%)				
Other	67 (59.8%)	34 (30.4%)	11 (9.8%)				
Asian	65 (61.9%)	31 (29.5%)	9 (8.6%)				
Maternal pre-pregnancy overweight(n=884)							
No	322 (60.6%)	156 (29.4%)	53 (10.0%)				
Yes	219 (62.0%)	102 (289%)	32 (9.1%)				
Prenatal smoke exposure (n=896)							
No	518 (60.6%)	257 (30.1%)	80 (9.4%)				
Yes	29 (70.7%)	6 (14.6%)	6 (14.6%)				
Maternal asthma (n= 918)							
No	428 (62.1%)	202 (29.3%)	59 (8.6%)				
Yes	136 (59.4%)	65 (28.4%)	28 (12.2%)]			

IAP = Intrapartum Antibiotic Prophylaxis; EBF = Exclusive breastfeeding Comparison made by Chi square test. p-value <0.05 are in boldface type.
Population characteristic	cs by duration of 2nd	d stage of labour (n	= 955)	
•	Duration of 2nd	Duration of 2nd	Duration of 2nd	p-
	stage <= 1 hour	stage > 1 to ≤ 2	stage > 2 hours	value
	[Reference: Group	hours	[Group 3]	(x^2)
Row percentages	1]	[Group 2]		
	N (%)	N (%)	N (%)	
	667 (69.8%)	125 (13.1%)	163 (17.1%)	
Baby's gender (n =955)				0.119
Male	344 (67.7%)	77 (15.2%)	87 (17.1%)	
Female	323 (67.7%)	48 (10.7%)	76 (17.0%)	
Delivery mode (n = 955)				<mark><0.001</mark>
Vaginal without IAP	338 (67.2%)	83 (16.5%)	82 (16.3%)	
Vaginal with IAP	105 (53.0%)	38 (19.2%)	55 (27.8%)	
Elective C-section	104 (100.0%)	0 (0.00%)	0 (0.00%)	
C-section with labour	95 (78.5%)	1 (0.8%)	25 (20.7%)	
Term gestation (n= 955)				0.246
No	22 (84.6%)	2 (7.7%)	2 (7.7%)	
Yes	645 (69.4%)	123 (13.2%)	161 (17.1%)	
Infant diet 3 months (n= 94	18)	. ,	· · · · ·	0.440
EBF = Yes	338 (68.0%)	74 (14.9%)	85 (17.1%)	
EBF= Partial	206 (71.5%)	33 (11.5%)	49 (17.0%)	
EBF= Zero	119 (73.0%)	16 (9.8%)	28 (17.2%)	
Parity (n=955)				<mark><0.001</mark>
Primipara	171 (49.0%)	71 (20.3%)	107 (30.7%)	
Multipara	496 (81.8%)	54 (8.9%)	56 (9.2%)	
Membrane rupture >18 Ho	ours (n= 931)			<0.001
No	588 (73.2%)	106 (13.2%)	109 (13.6%)	
Yes	61 (47.7%)	17 (13.3%)	50 (39.1%)	
Length of hospital stay (n=	`````			0.609
24 hours of less	152 (69.7%)	33 (15.1%)	33 (15.1%)	
2-3 days	402 (69.1%)	79 (13.6%)	101 (17.4%)	
4 days or more	86 (72.9%)	11 (9.3%)	21 (17.8%)	
Maternal ethnicity (n=944)				0.833
Caucasian	504 (70.4%)	90 (12.6%)	122 (17.0%)	
Other	86 (70.5%)	16 (13.1%)	20 (16.4%)	
Asian	69 (65.1%)	17 (16.0%)	20 (18.9%)	
Maternal pre-pregnancy or				0.209
No	379 (68.2%)	75 (13.5%)	102 (18.3%)	
Yes	268 (73.4%)	44 (12.1%)	53 (14.5%)	1
Pre-natal smoke exposure		(/ -)	(0.249
No	612 (69.1%)	117 (13.2%)	157 (17.7%)	1
Yes	34 (81.0%)	4 (9.5%)	4 (9.5%)	1
Maternal asthma (n= 955)	2. (01.070)	. (>, v)	. (>, >)	0.533
No	507 (70.6%)	94 (13.1%)	117 (16.3%)	
Yes	160 (67.5%)	31 (13.1%)	46 (19.4%)	1
1 VU	100 (07.570)	51 (15.170)	10 (17.170)	

IAP = Intrapartum Antibiotic Prophylaxis; EBF = Exclusive breastfeeding Comparison made by Chi square test. p-value <0.05 are in boldface type.

Table 2.3 Summary table showing **significant** (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the **duration of active first stage of labour**, and following different levels of stratifications:

ALL MOD	ES OF BIRTHS (n=918)	
Ref. group: 1st Stage ≤ 6 hours	1st Stage > 6 to \leq 13 hours	1st Stage > 13 hours
Phylum Actinobacteria	\rightarrow	\downarrow
Bifidobacteriaceae	\rightarrow	\downarrow
Coriobacteriaceae		\downarrow
g_Bifidobacterium	\downarrow	\downarrow
Phylum Bacteroidetes	1	↑
Bacteroidaceae	↑ (1
g_Bacteroides	1	↑
Phylum Firmicutes		
Lactobacillaceae		\downarrow
Ruminococcaceae	\rightarrow	
g_Lactobacillus		↓
Phylum Proteobacteria		
g_Citrobacter		\downarrow

	*	
VAGINAL BIRTHS WITH	<mark>IOUT</mark> IAP (n=4	77)
Reference group: 1st Stage of	1st Stage	1st Stage
labour <= 6 hours	> 6 to ≤13hrs	>13 hrs
Phylum Actinobacteria	\downarrow	\downarrow
Coriobacteriaceae	\downarrow	\downarrow
Bifidobacteriaceae	\downarrow	\downarrow
genus_Bifidobacterium	\downarrow	\rightarrow
Phylum Bacteroidetes		
Phylum Firmicutes		
Enterococcaceae		\rightarrow
Clostridiaceae		1
Lactobacillaceae		\rightarrow
genus_Lactobacillus		\rightarrow
Phylum Proteobacteria		
genus_Citrobacter	1	

VAGINAL BIRTHS WITHOUT IAP									
WITHOUT EXCLUSIVELY BREASTFEEDING (n=216)									
Reference group: 1st Stage	1st Stage	1st Stage							
of labour <= 6 hours	>6 to ≤13 hrs	> 13 hrs							
Phylum Actinobecteria	-	-							
Bifidobacteriaceae	_	→							
genus_Bifidobacterium	_	Ý							

VAGINAL BIRTHS WITHOUT IAP						
WITH EXCLUSIVEL B	WITH EXCLUSIVEL BREASTFEEDING (n=257)					
Reference group: 1st Stage of	1st Stage	1st Stage				
labour <= 6 hours	>6 to ≤13 hrs	>13 hrs				
Phylum Actinobacteria	-	-				
Bifidobacteriaceae	\rightarrow	-				
genus_Bifidobacterium	\rightarrow	-				

X

VAGINAL BIRTHS WITH IAP (n=189)				
Reference group: 1st Stage	1st Stage	1st Stage		
		-		
of labour <= 6 hours	>6 to ≤13 hrs	>13 hrs		
Phylum Actinobacteria	\checkmark			
Coriobacteriaceae	-			
Bifidobacteriaceae	\leftarrow			
genus_Bifidobacterium	\leftarrow	\leftarrow		
Phylum Bacteroidetes	-			
Phylum Firmicutes	-			
Enterococcaceae	-			
Ruminococcaceae	\leftarrow			
Lactobacillaceae	-			
genus_Lactobacillus	-			
Phylum Proteobacteria	_			
genus_Citrobacter	-			

VAGINAL BIRTHS WITH IAP WITHOUT EXCLUSIVELY BREASTFEEDING (n=84)				
Reference group: 1st Stage of labour <= 6 hours	1st Stage >6 to ≤13 hrs	1st Stage >13 hrs		
Phylum Actinobacteria		-		
Bifidobacteriaceae	\rightarrow	-		
genus_Bifidobacterium	\downarrow	_		

VAGINAL BIRTHS WITH IAP						
WITH EXCLUSIVEL B	REASTFEEDING	(n=102)				
Reference group: 1st Stage of 1st Stage 1st Stage						
labour <= 6 hours >6 to ≤13 hrs >13 hrs						
Phylum Actinobacteria						
Bifidobacteriaceae	→					
genus_Bifidobacterium	÷					

Table 2.4

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among *all modes of delivery*, according to the duration of active first stage of labour (n=918)

Bacterial Taxa	1 st Stage of labour ≤ 6 hours [Reference: Group 1] (n=564; 61.4%0	1 st Stage of labour > 6 to ≤ 13 hours [Group 2] (n=267; 29.1%)	p- value	1 st Stage of labour > 13 hours [Group 3] (n=87; 9.5%)	p- value
	Median (IQR)	(II-207, 29.1%) Median (IQR)		(II-87, 9.5%) Median (IQR)	
Phylum	Mediaii (IQK)	Median (IQK)		Wiedlah (IQK)	
Actinobacteria	6.775 (2.051-17.361)	3.599 (0.750-13.093)	0.000	3.797 (0.719-13.693)	<mark>0.039</mark>
Family					
, Actinomycetaceae	0.024 (0.000-0.111)	0.023 (0.000-0.085)	0.471	0.016 (0.000-0.078)	0.394
Bifidobacteriaceae	5.989 (1.674-16.329)	3.427 (0.458-12.853)	0.001	3.164 (0.411-13.424)	0.042
Coriobacteriaceae	0.047 (0.008-0.187)	0.031 (0.008-0.139)	0.091	0.016 (0.000-0.095)	0.022
Genus					
Bifidobacterium	5.989 (1.674-16.315)	3.376 (0.458-12.807	<mark>0.001</mark>	3.164 (0.411-13.424)	<mark>0.039</mark>
Phylum					
Bacteroidetes	7.009 (0.093-58.176)	26.144 (0.148-66.773)	<mark>0.010</mark>	35.395 (0.287-68.287)	<mark>0.012</mark>
Family					
Bacteroidaceae	2.346 (0.062-52.331)	21.745 (0.086-60.701)	<mark>0.013</mark>	34.334 (0.124-62.712)	<mark>0.009</mark>
Genus					
Bacteroides	2.346 (0.062-52.331)	21.745 (0.086-60.701)	<mark>0.013</mark>	34.334 (0.124-62.712)	<mark>0.009</mark>
Phylum					
Firmicutes	23.201 (10.075-46.661)	21.250 (8.103-43.814)	0.234	18.718 (7.205-44.531)	0.145
Family					
Enterococcaceae	0.023 (0.000-0.117)	0.016 (0.000-0.093)	0.127	0.015 (0.000-0.085)	0.067
Lactobacillaceae	0.000 (0.000-0.045)	0.000 (0.000-0.015)	0.066	0.000 (0.000-0.008)	<mark>0.004</mark>
Streptoccocaceae	0.690 (0.217-1.940)	0.534 (0.208-1.584)	0.286	0.448 (0.170-1.169)	0.102
Clostridiaceae	0.411 (0.031-2.682)	0.358 (0.031-1.972)	0.450	0.541 (0.101-2.411)	0.418
Lachnospiraceae	2.900 (0.039-10.090)	2.282 (0.070-9.405)	0.933	2.302 (0.054-8.256)	0.445
Ruminococcaceae	0.140 (0.000-2.182)	0.047 (0.000-0.924)	<mark>0.018</mark>	0.116 (0.000-2.326)	0.901
Veillionellaceae	4.803 (0.819-16.114)	4.494 (0.650-15.064)	0.401	3.177 (0.820-17.793)	0.563

Genus					
Enterococcus	0.023 (0.000-0.116)	0.016 (0.000-0.085)	0.210	0.015 (0.000-0.085)	0.126
Lactobacillus	0.000 (0.000-0.045)	0.000 (0.000-0.015)	0.066	0.000 (0.000-0.008)	<mark>0.004</mark>
Streptococcus	0.665 (0.217-1.940)	0.534 (0.208-1.584)	0.292	0.448 (0.170-1.169)	0.106
Clostridium	0.023 (0.000-0.782)	0.023 (0.000-0.380)	0.180	0.085 (0.000-0.858)	0.728
Ruminococcus	0.023 (0.000-1.951)	0.031 (0.000-2.042)	0.479	0.031 (0.000-1.049)	0.385
Veillionella	3.333 (0.470-14.629)	2.614 (0.317-13.009)	0.187	2.214 (0.335-13.114)	0.405
Phylum					
Proteobacteria	17.980 (7.703-39.925)	18.923 (8.217-40.127)	0.940	17.024 (6.588-35.676)	0.369
Family					
Enterobacteriaceae	16.352 (5.199-38.648)	16.364 (6.982-37.483)	0.769	14.281 (4.677-34.265)	0.382
Genus					
Citrobacter	0.031 (0.000-0.257)	0.039 (0.000-0.234)	0.610	0.015 (0.000-0.147)	<mark>0.050</mark>
Enterobacter_	15.884 (5.005-36.850)	16.258 (6.786-37.258)	0.709	13.926 (4.607-34.181)	0.427
unclassified	. ,			. ,	

Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values ≤ 0.05 are indicated in boldface type.

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births without intrapartum antibiotic prophylaxis (IAP), according to the duration of active first stage of labour (n=477)

Bacterial Taxa	1 st Stage of labour ≤ 6 hours [Reference: Group 1]	1 st Stage of labour > 6 to ≤ 13 hours [Group 2]	p- value	1 st Stage of labour > 13 hours [Group 3]	p- value
	(n=261; 54.7%)	(n=166; 34.8%)		(n=50; 10.5%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum					
Actinobacteria	7.648 (2.932-19.450)	5.114 (1.255-14.420)	<mark>0.005</mark>	4.538 (0.684-12.506)	<mark>0.018</mark>
Family					
Actinomycetaceae	0.016 (0.000-0.090)	0.027 (0.000-0.087)	0.520	0.016 (0.000-0.078)	0.953
Bifidobacteriaceae	6.718 (2.432-18.274)	4.649 (0.773-13.915)	<mark>0.010</mark>	3.105 (0.323-12.491)	<mark>0.015</mark>
Coriobacteriaceae	0.054 (0.008-0.195)	0.035 (0.000-0.134)	0.042	0.015 (0.000-0.093)	<mark>0.017</mark>
Genus					
Bifidobacterium	6.718 (2.432-18.224)	4.649 (0.773-13.915)	<mark>0.010</mark>	3.105 (0.323-12.491)	<mark>0.016</mark>
Actinomyces	0.016 (0.000-0.070)	0.023 (0.000-0.072)	0.574	0.016 (0.000-0.066)	0.979
Phylum Bacteroidetes	41.701 (2.096-65.490)	29.946 (0.985-67.063)	0.553	45.964(1.657-69.808)	0.773
Family					0.590
Bacteroidaceae	37.628 (0.622-61.854)	25.666 (0.292-59.070)	0.338	41.486(1.620-64.403)	
Genus Bacteroides	37.628 (0.622-61.854)	25.666 (0.292-59.070)	0.338	41.486(1.620-64.403)	0.590
Parabacteroides	0.008 (0.000-0.887)	0.008 (0.000-0.447)	0.934	0.008 (0.000-0.085)	0.370
Phylum					
-					
Firmicutes	15.625 (7.380-31.026)	19.902 (7.780-39.158)	0.232	15.514(5.560-38.374)	0.727
Family					
Enterococcaceae	0.016 (0.000-0.078) 0.008(0.000-0.033)	0.016 (0.000-0.063) 0.000 (0.000-0.039)	0.670	0.008 (0.000-0.033) 0.000 (0.000-0.016)	0.021 0.049
Lactobacillaceae	0.717 (0.194-1.885)	0.462 (0.155-1.211)	0.441	0.360 (0.099-1.061)	0.049
Streptoccocaceae	· · · ·	× , ,		× /	
Clostridiaceae	0.163 (0.016-1.427)	0.195 (0.023-1.347)	0.410	0.672 (0.146-5.115)	0.006
Lachnospiraceae	2.103 (0.039-8.497)	2.333 (0.128-8.772)	0.286	2.403 (0.037-7.600)	0.720
Ruminococcaceae	0.117 (0.000-2.115)	0.062 (0.000-0.974)	0.300	0.101 (0.000-1.749)	0.771
Veillionellaceae	2.940 (0.619-12.154)	4.056 (0.500-13.574)	0.477	3.097 (0.830-13.459)	0.749

Genus						
Enterococcus	0.015 (0.000-0.062)	0.015(0.000-0.062)	0.831	0.008 (0.000-0.031)	<mark>0.038</mark>	
Lactobacillus	0.000 (0.000-0.039)	0.000 (0.000-0.016)	0.441	0.000 (0.000-0.008)	<mark>0.049</mark>	
Streptococcus	0.714 (0.194-1.885)	0.462 (0.155-1.211)	0.094	0.360 (0.099-1.061)	0.076	
Clostridium	0.008 (0.000-0.236)	0.008 (0.000-0.308)	0.833	0.082 (0.000-3.320)	0.137	
Ruminococcus	0.117 (0.000-2.397)	0.062 (0.000-2.431)	0.994	0.035 (0.000-0.480)	0.195	
Veillionella	1.808 (0.264-10.351)	1.984 (0.233-9.588	0.751	2.053 (0.289-9.811)	0.715	
Phylum						
Proteobacteria	14.569 (6.458-33.333)	16.931 (8.089-35.888)	0.107	16.692(7.128-35.209)	0.621	
Family						
Enterobacteriaceae	12.196 (3.961-32.543)	15.166 (6.569-33.751)	0.054	15.63 (6.056-34.219)	0.480	
Genus	, , , , , , , , , , , , , , , , , , ,			``````````````````````````````````````		
Citrobacter	0.015 (0.000-0.101)	0.039 (0.000-0.212)	<mark>0.004</mark>	0.008 (0.000-0.093)	0.627	
Enterobacter_	12.048 (3.694-31.535)	14.833 (6.556-32.390)	0.057	15.403(5.898-34.194)	0.447	
unclassified		(/)				
	Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values <0.05 are indicated in boldface type.					

Table 2.6a

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births without intrapartum antibiotics prophylaxis (IAP) without exclusive breastfeeding, according to the duration of active first stage of labour (n=216)

Bacterial Taxa	1 st Stage of labour ≤ 6 hours [Reference: Group 1]	of active first stage of 1 st Stage of labour > 6 to ≤ 13 hours [Group 2]	p- value	1 st Stage of labour > 13 hours [Group 3]	p- value
	(n=115; 53.2%)	(n= 77; 35.6%)		(n=24; 11.1%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum					
Actinobacteria	6.796 (2.636-14.780)	3.514 (1.103-14.668)	<mark>0.042</mark>	3.655 (1.119-7.717)	<mark>0.047</mark>
Family					
Actinomycetaceae	0.031 (0.000-0.123)	0.039 (0.000-0.125)	0.948	0.023 (0.008-0.084)	0.623
Bifidobacteriaceae	5.532 (2.345-13.936)	3.016 (0.666-14.241)	0.076	3.020 (0.389-7.327)	<mark>0.038</mark>
Coriobacteriaceae	0.085 (0.016-0.404)	0.077 (0.008-0.466)	0.660	0.027 (0.008-0.189)	0.156
Genus					
Bifidobacterium	5.532 (2.345-13.936)	3.016 (0.666-14.241)	0.077	3.020 (0.389-7.327)	<mark>0.038</mark>
Actinomyces	0.031 (0.000-0.123)	0.039 (0.000-0.125)	0.948	0.023 (0.008-0.084)	0.623
Phylum Bacteroidetes	46.125 (9.206-70.690)	41.220 (15.540-71.373)	0.726	51.387(8.278- 77.392)	0.597
Family Bacteroidaceae Genus	38.575 (6.701-62.820)	32.004(8.558-64.655)	0.749	45.340(8.113- 77.257)	0.533
Bacteroides	38.575 (6.701-62.820)	32.004 (8.558-64.655)	0.749	45.340(8.113- 77.257)	0.533
Phylum					
Firmicutes Family	17.267 (8.130-32.331)	17.720 (7.977-38.599)	0.969	15.159(5.655- 37.285)	0.452
Enterococcaceae	0.023 (0.000-0.070)	0.023 (0.000-0.077)	0.849	0.008 (0.000-0.031)	0.128
Lactobacillaceae	0.000 (0.000-0.008)	0.000 (0.000-0.004)	0.258	0.000 (0.000-0.000)	0.225
Streptoccocaceae	0.808 (0.201-1.841)	0.488 (0.161-1.259)	0.139	0.164 (0.072-0.787)	<mark>0.010</mark>
Clostridiaceae	0.333 (0.054-1.262)	0.180 (0.035-1.198)	0.592	0.263 (0.150-2.309)	0.290
Lachnospiraceae	3.336 (0.985-9.977)	3.936 (1.070-9.751)	0.792	3.974 (0.429-8.493)	0.585
Ruminococcaceae	1.621 (0.046-3.334)	0.449 (0.015-1.691)	0.029	0.221 (0.002-2.272)	0.059
Veillionellaceae	3.866 (1.048-14.614)	4.585 (1.393-11.636)	0.993	3.587 (1.023- 14.358)	0.824

Genus						
Enterococcus	0.023 (0.000-0.070)	0.023 (0.000-0.077)	0.849	0.008 (0.000-0.031)	0.128	
Lactobacillus	0.000 (0.000-0.008)	0.000 (0.000-0.004)	0.258	0.000 (0.000-0.000)	0.225	
Streptococcus	0.806 (0.201-1.841)	0.488 (0.161-1.259)	0.139	0.164 (0.072-0.787)	<mark>0.010</mark>	
Clostridium	0.008 (0.000-0.147)	0.008 (0.000-0.125)	0.244	0.008 (0.000-1.777)	0.838	
Ruminococcus	0.434 (0.008-2.554)	0.596 (0.008-2.818)	0.637	0.031 (0.000-0.760)	0.029	
Veillionella	2.447 (0.425-12.770)	2.130 (0.345-8.154)	0.483	1.471 (0.381-8.390)	0.585	
Phylum						
Proteobacteria Family	11.116 (4.455-27.167)	12.011 (5.399-24.770)	0.531	9.881 (6.384- 28.543)	0.742	
Enterobacteriaceae						
Genus Citrobacter	9.327 (2.619-21.985)	9.894(4.501-22.871)	0.316	8.284 (2.348- 27.252)	0.705	
Enterobacter_	0.023 (0.000-0.086)	0.023 (0.000-0.128)	0.847	0.008 (0.000-0.099)	0.221	
unclassified	0.211 (2.211.01.079)	0.070 (4.252, 22, 520)		8.062 (2.297-		
	9.311 (2.311-21.978)	9.870 (4.353-22.530)	0.305	27.050)	0.632	
Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values < 0.05 are indicated in boldface type.						

Table 2.6b

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births without intrapartum antibiotics prophylaxis (IAP) with exclusive breastfeeding, according to the duration of active first stage of labour (n=257)

Bacterial Taxa	1 st Stage of labour ≤ 6 hours Reference:	1 st Stage of labour > 6 to ≤ 13 hours	p- value	1 st Stage of labour > 13 hours	p- value
	Group 1]	[Group 2]		[Group 3]	
	(n=143; 55.6%)	(n= 88; 34.2%)		(n=26; 10.1%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum					
Actinobacteria	10.042 (3.130-22.446)	5.732 (1.316-14.948)	<mark>0.035</mark>	8.364 (0.223-20.283)	0.180
Family	10:0:12 (0:10:0:22:1:0)		01000		0.100
Actinomycetaceae	0.015 (0.000-0.054)	0.016 (0.000-0.078)	0.471	0.008 (0.000-0.062)	0.922
Bifidobacteriaceae	9.871 (2.575-21.615)	5.613 (1.281-14.520)	0.048	5.516 (0.123-19.703)	0.171
Coriobacteriaceae	0.039 (0.008-0.141)	0.015 (0.000-0.062)	0.008	0.008 (0.000-0.054)	0.029
Genus					
Bifidobacterium	9.871 (2.542-21.615)	5.613 (1.281-14.520)	0.047	5.516 (0.123-19.703)	0.173
Actinomyces	0.008 (0.000-0.046)	0.008 (0.000-0.053)	0.479	0.008 (0.000-0.062)	0.848
			0.479		0.040
Phylum					
Bacteroidetes	36.607 (0.396-63.376)	20.267 (0.180-58.939)	0.245	37.323(0.426-64.504)	0.937
Family					
Bacteroidaceae	31.846 (0.186-61.559)	19.703 (0.142-54.563)	0.284	37.323(0.159-61.827)	0.927
Genus	21.046 (0.106.61.550)	10 702 (0 142 54 5(2)			
Bacteroides	31.846 (0.186-61.559)	19.703 (0.142-54.563)	0.284	37.323(0.159-61.827)	0.927
Phylum					
·					
Firmicutes	13.521 (6.746-28.984)	22.674 (6.172-44.995)	0.161	15.514 4.073-45.007)	0.841
Family					
Enterococcaceae	0.015 (0.000-0.062)	0.008 (0.000-0.060)	0.546	0.008 (0.000-0.025)	0.117
Lactobacillaceae	0.000 (0.000-0.070)	0.008 (0.000-0.052)	0.982	0.000 (0.000-0.010)	0.127
Streptoccocaceae	0.571 (0.194 -2.067)	0.441 (0.147-1.373)	0.264	0.531 (0.219-2.107)	0.939
Clostridiaceae	0.085 (0.008-1.899)	0.199 (0.017-2.389)	0.115	1.253 (0.084-6.247)	0.014
Lachnospiraceae	0.982 (0.023-4.803)	0.803 (0.039-6.638)	0.287	0.492 (0.021-6.470)	0.886
Ruminococcaceae	0.015 (0.000-0.357)	0.015 (0.000-0.178)	0.717	0.035 (0.000-1.164)	0.227
Veillionellaceae	2.308 (0.463-9.139)	3.381 (0.232-16.950)	0.409	2.543 (0.592-13.788)	0.879

Genus						
Enterococcus	0.015 (0.000-0.062)	0.008 (0.000-0.060)	0.695	0.008 (0.000-0.025)	0.162	
Lactobacillus	0.000 (0.000-0.070)	0.008 (0.000-0.052)	0.982	0.000 (0.000-0.010)	0.127	
Streptococcus	0.541 (0.194-2.067)	0.441 (0.147-1.373)	0.278	0.529 (0.219-2.107)	0.960	
Clostridium	0.008 (0.000-0.660)	0.016 (0.000-1.120)	0.423	0.236 (0.000-5.854)	0.094	
Ruminococcus	0.016 (0.000-1.819)	0.023 (0.000-1.987)	0.629	0.035 (0.000-0.359)	0.817	
Veillionella	1.199 (0.147-7.517)	1.677 (0.157-14.553)	0.294	2.543 (0.176-12.573)	0.353	
Phylum						
Proteobacteria	17.283 (8.110-39.129)	21.763 (11.961-43.020)	0.051	25.810(8.503-39.986)	0.701	
Family	· · · · · · · · · · · · · · · · · · ·					
Enterobacteriaceae	15.003 (6.114-36.604)	20.373 (9.980-42.871)	<mark>0.040</mark>	24.758(7.585-36.185)	0.568	
Genus		()				
Citrobacter	0.008 (0.000-0.140)	0.062 (0.000-0.495)	<mark>0.001</mark>	0.016 (0.000-0.107)	0.814	
Enterobacter_ unclassified	14.994 (6.106-36.596)	20.132 (9.599-42.648)	<mark>0.044</mark>	24.630(7.487-35.941)	0.562	
Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values <0.05 are indicated in boldface type.						

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births with intrapartum antibiotics prophylaxis (IAP), according to the duration of active first stage of labour (n=189)

Bacterial Taxa	1 st Stage of labour ≤ 6 hours [Reference: Group1]	1 st Stage of labour > 6 to ≤ 13 hours [Group 2]	p- value	1 st Stage of labour > 13 hours [Group 3]	p- value
	(n=79; 41.8%)	(n=80; 42.3%)		(n=30; 15.9%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum					
Actinobacteria	5.107 (1.528-15.118)	2.352 (0.352-7.313)	<mark>0.003</mark>	3.879 (0.937-19.328)	0.797
Family	5.107 (1.520 15.110)	2.552 (0.552 7.515)	0.005	5.077 (0.557 15.520)	0.171
Actinomycetaceae	0.015 (0.000-0.117)	0.016 (0.000-0.077)	0.763	0.031 (0.000-0.105)	0.786
Bifidobacteriaceae	4.604 (1.450-14.629)	2.267 (0.058-6.657)	<mark>0.003</mark>	3.670 (0.717-19.039)	0.717
Coriobacteriaceae	0.024 (0.000-0.124)	0.023 (0.008-0.134)	0.469	0.039 (0.008-0.227)	0.442
Genus					
Bifidobacterium	4.604 (1.450-14.629)	2.267 (0.058-6.640)	<mark>0.008</mark>	3.670 (0.717-19.039)	0.717
Actinomyces	0.015 (0.000-0.117)	0.016 (0.000-0.077)	0.825	0.031 (0.000-0.105)	0.860
Phylum					
Bacteroidetes	21.330 0.062-69.675)	18.478 (0.046-68.225)	0.532	22.487 (0.095-58.094)	0.957
Family	21.330 0.002-09.073)	18.478 (0.040-08.223)	0.332	22.487 (0.093-38.094)	0.937
Bacteroidaceae	13.850(0.047-65.477)	11.017 (0.041-66.723)	0.989	15.197 (0.046-58.079)	0.973
Genus	15.850(0.047-05.477)	11.017 (0.041-00.723)	0.969	15.197 (0.040-58.079)	0.975
Bacteroides	13.854(0.047-65.477)	11.017 (0.041-66.723)	0.989	15.197 (0.046-58.079)	0.973
Parabacteroides	0.000 (0.000-0.023)	0.008 (0.000-0.037)	0.490	0.000 (0.000-0.095)	0.939
Phylum					
Firmicutes	20.715(8.564-43.791)	24.005 (8.122-55.611)	0.487	23.951 (8.751-50.744)	0.724
Family					
Enterococcaceae	0.023 (0.000-0.147)	0.023 (0.000-0.118)	0.598	0.035 (0.000-0.254)	0.607
Lactobacillaceae	0.008(0.000-0.016)	0.000 (0.000-0.015)	0.643	0.000 (0.000-0.008)	0.553
Streptoccocaceae	0.402 (0.109-1.565)	0.794 (0.272-2.394)	<mark>0.032</mark>	0.574 (0.335-1.381)	0.122
Clostridiaceae	0.201 (0.015-2.539)	0.519 (0.054-4.199)	0.144	0.267 (0.023-1.398)	0.892
Lachnospiraceae	2.905 (0.039-10.227)	1.441 (0.047-8.520)	0.808	1.622 (0.049-9.621)	0.847
Ruminococcaceae	0.287 (0.000-2.935)	0.023 (0.000-0.642)	<mark>0.016</mark>	0.299 (0.000-2.731)	0.739
Veillionellaceae	3.960 (0.464-11.792)	6.961 (0.862-17.075)	0.133	3.127 (0.813-24.455)	0.455

Genus						
	0.016 (0.000-0.147)	0.023 (0.000-0.093)	0.594	0.035 (0.000-0.254)	0.583	
Enterococcus	0.000 (0.000-0.016)	0.000 (0.000-0.015)	0.643	0.000 (0.000-0.008)	0.553	
Lactobacillus	0.402 (0.100.1.5(5)	0.704 (0.272.2.204)	0.022	0.574 (0.225, 1.201)	0.117	
Streptococcus	0.402 (0.109-1.565)	0.794 (0.272-2.394)	0.033	0.574 (0.335-1.381)	0.117	
-	0.016 (0.000-0.366)	0.051 (0.000-0.536)	0.266	0.035 (0.000-0.571)	0.815	
Clostridium						
Ruminococcus	0.008 (0.000-1.268)	0.016 (0.000-1.174)	0.917	0.023 (0.000-1.638)	0.664	
Veillionella	3.300 (0.383-11.163)	6.766 (0.578-16.743)	0.205	2.276 (0.325-21.268)	0.786	
Phylum					0.849	
Proteobacteria	14.424 (7.665- 37.562)	22.811 (9.399-40.682)	0.115	19.123 (4.626-40.580)		
Family						
Enterobacteriaceae	12.791	20.107	0.170	14.661	0.941	
	(4.196-36.208)	(7.902-39.165)		(4.166-34.912)		
Genus						
Citrobacter	0.031 (0.000-0.201)	0.031 (0.000-0.391)	0.308	0.019 (0.000-0.165)	0.652	
Enterobacter	0.051 (0.000-0.201)	0.031 (0.000-0.371)	0.500	0.017 (0.000-0.103)	0.032	
unclassified	12.781(4.141-35.743)	18.817 (7.854-38.702)	0.209	12.683 (3.778-34.840)	0.849	
Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values < 0.05 are indicated in boldface type.						

Table 2.8a

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births with intrapartum antibiotic prophylaxis (IAP) without exclusive breastfeeding, according to the duration of active first stage of labour (n= 84)

Bacterial Taxa	1 st Stage of labour ≤ 6 hours [Reference: Group 1]	1 st Stage of labour > 6 to ≤ 13 hours [Group 2]	p- value	1 st Stage of labour > 13 hours [Group 3]	p- value
	(n=35; 41.7%)	(n=34; 40.5%)		(n=15; 17.9%)	
Phylum	Median (IQR)	Median (IQR)		Median (IQR)	
Actinobacteria					
	3.328 (1.277-10.535)	1.293 (0.381-3.472)	0.017	3.962 (0.719-18.759)	0.857
Family Actinomycetaceae	0.016 (0.000-0.100)	0.024 (0.006-0.075)	0.823	0.031 (0.008-0.132)	0.495
Bifidobacteriaceae	2.933 (1.270-10.223)	1.286 (0.072-3.443)	0.016	3.619 (0.696-18.417)	0.907
Coriobacteriaceae	0.031 (0.008-0.141)	0.031 (0.008-0.155)	0.847	0.062 (0.015-0.233)	0.355
Genus					
Bifidobacterium	2.933 (1.270-10.223)	1.286 (0.072-3.443)	<mark>0.016</mark>	3.619 (0.696-18.417)	0.907
Actinomyces	0.016 (0.000-0.100)	0.024 (0.006-0.072)	0.795	0.031 (0.000-0.132)	0.631
Phylum					
Bacteroidetes	65.477(0.155-76.495)	26.139(0.053-68.935)	0.140	13.817(0.047-78.530)	0.478
Family					
Bacteroidaceae	45.972(0.078-68.381)	12.171(0.045-67.062)	0.428	13.717(0.039-78.390)	0.634
Genus					
Bacteroides	45.972(0.078-68.381)	12.171(0.045-67.062)	0.428	13.717(0.039-78.390)	0.634
DL L					
Phylum Firmicutes	22.022 (10.848-37.609)	26.305 8.018-72.220)	0.450	25.62 (7.379-51.024)	0.695
Family					
Enterococcaceae	0.016 (0.000-0.078)	0.019 (0.008-0.064)	0.923	0.023 (0.000-0.187)	0.855
Lactobacillaceae	0.000 (0.000-0.016)	0.000 (0.000-0.000)	0.230	0.000 (0.000-0.031)	0.784
Streptoccocaceae	0.218 (0.101-1.145)	0.643 (0.275-1.877)	0.034	1.005 (0.248-5.060)	0.053
Clostridiaceae	0.226 (0.062-2.295)	0.855 (0.227-6.640)	0.034	0.814 (0.070-1.309)	0.672
Lachnospiraceae	4.699 (0.868-10.227)	3.850 (0.507-19.614)	0.881	4.003 (0.25733.561)	0.992
Ruminococcaceae	1.353 (0.278-4.083)	0.422 (0.006-1.266)	0.027	1.691 (0.023-5.862)	0.824
Veillionellaceae	5.644 (1.683-14.343)	6.794 (1.604-18.808)	0.556	2.707 (0.820-11.484)	0.346

Genus						
Enterococcus	0.015 (0.000-0.078)	0.016 (0.008-0.062)	0.942	0.023 (0.000-0.187)	0.821	
Lactobacillus	0.000 (0.000-0.016)	0.000 (0.000-0.000)	0.230	0.000 (0.000-0.031)	0.784	
Streptococcus	0.218 (0.101-1.145)	0.643 (0.275-1.877)	<mark>0.035</mark>	1.005 (0.248-5.060)	0.053	
Clostridium	0.023 (0.000-0.329)	0.148 (0.008-0.785)	0.157	0.156 (0.000-0.814)	0.771	
Ruminococcus	0.320 (0.000-1.986)	0.410 (0.000-1.343)	0.654	0.101 (0.000-1.884)	0.781	
Veillionella	4.860 (0.571-12.918)	6.718 (0.651-17.499)	0.320	2.338 (0.791-11.484)	0.575	
DI I						
Phylum						
Proteobacteria	8.679 (3.128-16.668)	17.450(7.289-25.253)	0.053	15.633 (4.475-35.676)	0.325	
Family	· · · · · · · · · · · · · · · · · · ·					
Enterobacteriaceae	8.419 (2.271-16.591)	15.576(5.275-23.820)	0.084	13.750 (4.460-22.815)	0.403	
Genus						
Citrobacter	0.047 (0.008-0.179)	0.059 (0.008-0.368)	0.477	0.039 (0.008-0.170)	0.678	
Enterobacter_						
unclassified	8.302 (2.255-14.864)	15.541(5.105-23.443)	0.078	11.678(2.164-21.201)	0.546	
Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values < 0.05 are indicated in boldface type						

Table 2.8b

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births with intrapartum antibiotic prophylaxis (IAP) with exclusive breastfeeding, according to the duration of active first stage of labour (n= 102)

Bacteria	al Taxa	1 st Stage of labour ≤ 6 hours [Reference: Group 1]	1 st Stage of labour > 6 to ≤ 13 hours [Group 2]	p- value	1 st Stage of labour > 13 hours [Group 3]	p- value
		(n=42; 41.2%)	(n=45; 44.1%)		(n=15; 14.9%)	
Phylum		Median (IQR)	Median (IQR)		Median (IQR)	
rnyium						
	Actinobacteria	6.474 (1.973-24.042)	2.854 (0.214-8.123)	<mark>0.030</mark>	3.797 (1.733-21.037)	0.638
Family						
	Actinomycetaceae	0.015 (0.000-0.209)	0.008 (0.000-0.081)	0.488	0.031 (0.000-0.069)	0.684
	Bifidobacteriaceae	6.392 (1.616-23.541)	2.800 (0.051-7.540)	<mark>0.030</mark>	3.720 (1.308-20.905)	0.704
	Coriobacteriaceae	0.019 (0.000-0.089)	0.023 (0.008-0.128)	0.500	0.008 (0.008-0.047)	0.956
Genus			(0.300	(0.750
	Bifidobacterium					
	Actinomyces	6.392 (1.616-23.539)	2.671 (0.051-7.540)	<mark>0.027</mark>	3.720 (1.308-20.905)	0.704
	, ,	0.012 (0.000-0.207)	0.008 (0.000-0.081)	0.550	0.031 (0.000-0.069)	0.738
Phylum						
	Bacteroidetes	2.298 (0.050-53.067)	9.573 (0.046-67.231)	0.668	31.157 (0.101-50.280)	0.587
Family	Bacteroidaceae	0.648 (0.031-51.510)	9.542 (0.039-65.964)	0.541	16.678 0.054-48.508)	0.618
Genus	Bacteroides	0.648 (0.031-51.510)	9.542 (0.039-65.964)	0.541	16.678 (0.054-48.508)	0.618
Phylum						
Family	Firmicutes	19.716 (7.665-44.149)	23.908 (7.523-46.184)	0.709	21.095 (9.208-45.998)	0.786
, i	Enterococcaceae	0.023 (0.000-0.205)	0.031 (0.000-0.249)	0.428	0.109 (0.000-0.349)	0.356
	Lactobacillaceae	0.000 (0.000-0.017)	0.000 (0.000-0.020)	0.678	0.000 (0.000-0.008)	0.394
	Streptoccocaceae	0.558 (0.180-2.026)	0.797 (0.256-3.033)	0.304	0.538 (0.395-0.907)	0.574
	Clostridiaceae	0.155 (0.008-3.644)	0.248 (0.019-2.682)	0.676	0.047 (0.023-1.664)	0.957
	Lachnospiraceae	0.170 (0.016-11.293)	0.426 (0.019-5.571)	0.829	1.006 (0.031-4.300)	0.793
	Ruminococcaceae	0.031 (0.000-0.727)	0.008 (0.000-0.051)	0.252	0.000 (0.000-0.482)	0.435
	Veillionellaceae	1.463 (0.206-9.585)	7.086 (0.484-16.583)	0.126	8.481 (0.343-27.929)	0.147

Genus					
Enterococcus	0.019 (0.000-0.205)	0.031 (0.000-0.249)	0.428	0.109 (0.000-0.349)	0.346
Lactobacillus	0.000 (0.000-0.017)	0.000 (0.000-0.020)	0.678	0.000 (0.000-0.008)	0.394
Streptococcus	0.554 (0.180-2.026)	0.797 (0.256-3.033)	0.300	0.538 (0.395-0.907)	0.574
Clostridium	0.016 (0.000-1.093)	0.039 (0.000-0.295)	0.614	0.031 (0.000-0.490)	0.869
Ruminococcus	0.008 (0.000-0.253)	0.008 (0.000-0.105)	0.694	0.008 (0.000-1.049)	0.564
Veillionella	1.460 (0.200-9.583)	6.794 (0.279-16.575)	0.221	1.822 (0.254-25.262)	0.538
Phylum Proteobacteria	22.064 (12.024-44.544)	34.908 (14.178-43.438)	0.391	29.832 (6.191-42.467)	0.856
Family Enterobacteriaceae	18.110 (9.327-40.705)	24.640 (8.930-43.152)	0.508	29.660 (3.946-39.935)	
Genus					
Citrobacter	0.008 (0.000-0.232)	0.031 (0.000-0.500)	0.300	0.000 (0.000-0.163)	0.701
Enterobacter_ unclassified	18.106 (9.132-40.534)	23.985 (8.802-41.707)	0.616	28.925 (3.792-39.912)	0.664
Results are presented as m using Mann-Whitney U-te				Comparisons were per	formed

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among C-section with labour, according to the duration of active first stage of labour (n=121)

	1 st Stage of labour ≤ 6 hours	1 st Stage of labour > 6 hours	p-value
Bacterial Taxa	[Reference: Group 1]	[Group 2]	
	(n= 102; 84.3%)	(n=19; 15.7%)	
	Median (IQR)	Median (IQR)	
	N (%); IQR	N (%); IQR	
Phylum		10.464 (0.200.02.755)	0 707
Actinobacteria	6.532 (0.653-15.717)	10.464 (0.309-23.755)	0.787
Family			
Actinomycetaceae	0.039 (0.008-0.178)	0.031 (0.000-0.055)	0.310
Bifidobacteriaceae	6.066 (0.457-14.212)	10.441 (0.054-23.632)	0.643
	0.047 (0.000-0.203)	0.023 (0.000-0.109)	0.552
Coriobacteriaceae	0.047 (0.000-0.203)	0.023 (0.000-0.109)	0.332
Genus			
Bifidobacterium	0.035 (0.000-0.178)	0.031 (0.000-0.047) 10.441 (0.047-23.632)	0.332
Actinomyces	6.066 (0.457-14.212)	10.441 (0.047-23.632)	0.776
Phylum	0.118 (0.045-1.326)	0.124 (0.039-0.255)	0.538
Bacteroidetes	0.110 (0.045-1.520)	0.124 (0.037-0.233)	0.550
Family			
Bacteroidaceae	0.100 (0.037-0.646)	0.070 (0.031-0.255)	0.415
Genus			
Bacteroides	0.100 (0.037-0.646)	0.070 (0.031-0.255)	0.415
	0.100 (0.037-0.040)	0.070 (0.031-0.233)	0.413
Phylum			
Firmicutes	36.248 (20.155-61.111)	33.393 (14.577-57.941)	0.559
Family	0.047 (0.015-0.155)	0.101 (0.015-0.325)	0.246
Enterococcaceae —	0.000 (0.000-0.018)	0.101 (0.013-0.323)	0.240
Lactobacillaceae	,	· · · · · · · · · · · · · · · · · · ·	
Streptoccocaceae	1.018 (0.373-2.858)	0.765 (0.277-1.825)	0.598
Clostridiaceae	1.384 (0.166-7.013)	1.043 (0.541-1.972)	0.613
Lachnospiraceae	4.533 (0.039-14.365)	7.658 (0.062-13.761)	0.554
Ruminococcaceae	0.085 (0.008-2.401)	0.326 (0.008-6.305)	0.920
Veillionellaceae —	10.590 (3.024-27.844)	9.393 (0.835-22.164)	0.512

Genus					
Enterococcus	0.043 (0.008-0.149)	0.094 (0.015-0.317)	0.256		
Lactobacillus	0.000 (0.000-0.018)	0.000 (0.000-0.000)	0.130		
Streptococcus	1.016 90.373-2.852)	0.765 (0.277-1.825)	0.603		
Clostridium	0.256 (0.016-2.378)	0.195 (0.093-0.920)	0.721		
Ruminococcus	0.008 (0.000-1.542)	0.023 (0.000-5.357)	0.461		
Veillionella	8.916 (1.447-25.974)	9.370 (0.820-22.156)	0.732		
Phylum Proteobacteria	27.509 (12.997-50.867)	17.026 (6.996-42.365)	0.312		
Family					
Enterobacteriaceae	24.568 (11.027-49.294)	17.018 (6.996-42.202)	0.401		
Genus					
Citrobacter	0.147 (0.014-0.904)	0.047 (0.008-0.287)	0.098		
Enterobacter_					
unclassified	22.463 (9.091-48.012)	16.431 (6.942-42.187)	0.508		
Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values ≤ 0.05 are indicated in boldface type.					

Table 2.10Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4months among C-section without labour versus C-section with labour

	C-section without labour	C-section with labour	p-value
Bacterial Taxa			
	(n= 116; 48.9%)	(n=121; 51.1%)	
	Median (IQR)	Median (IQR)	
	N (%); IQR	N (%); IQR	
Phylum Actinobacteria	5.666 (1.403-15.205)	6.753 (0.589-17.179)	0.931
g_Actinomyces	0.031 (0.000-0.127)	0.031 (0.000-0.113)	0.903
g_Bifidobacterium	5.260 (1.023-15.139)	6.184 (0.352-15.937)	0.933
Phylum Bacteroidetes	0.120 (0.046-2.279)	0.119 (0.043-1.080)	0.908
g_Bacteroides	0.082 (0.039-1.122)	0.100 (0.031-0.636)	0.937
Phylum Firmicutes	37.151 (13.559-54.210)	35.457 (19.434-60.879)	0.258
g_Enterococcus	0.039 (0.000-0.191)	0.048 (0.012-0.182)	0.471
g_Lactobacillus	0.000 (0.000-0.086)	0.000 (0.000-0.016)	0.010
g_Streptococcus g_Clostridia	0.577 (0.271-1.918)	0.964 (0.368-2.693)	0.070
g Ruminococcus L	0.161 (0.008-1.797)	0.255 (0.019-2.116)	0.198
g_Numinococcus_E g Veilloinella	0.012 (0.000-1.747)	0.008 (0.000-2.134)	0.719
g_, entomena	7.441 (1.297-22.603)	9.096 (1.208-25.511)	0.706
Phylum Proteobacteria	29.925 (11.524-51.000)	25.946 (11.769-49.901)	0.968
g_Citrobacter	0.093 (0.008-0.824)	0.124 (0.008-0.818)	0.553
	ian and interquartile range (IQR) ney U-test. P values < 0.05 are in	in parentheses. Comparisons were	·

Table 2.11

ACTINOBACTERIA

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of active 1st stage of labour

Microbiota M	Microbiota Measure							
Def Crewr 1 -		Infant's	gut microbiota at 3 1	to 4 months of age				
Ref. Group $1 =$ 1st Stage ≤ 6 Hours	Ac	Phylum tinobacteria	Family Bifidobacteriaceae	Family Coriobacteriaceae	Genus Bifidobacterium			
Group $2 = 1$ st Stage > 6 to ≤ 13 Hrs	(below	vs above median)	(below vs above median)	(below vs above median)	(below vs above median)			
Group 3 = 1st Stage > 13 Hrs	0	R (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)			
Crude OR for 1st stage of	Group2	0.59 (0.44-0.80)*	0.63 (0.47-0.85)*	0.73 (0.54-0.98)*	0.63 (0.47-0.85)*			
labour	Group3	0.66 (0.42-1.03)	0.57 (0.36-0.90)*	0.57 (0.36-0.90)*	0.57 (0.36-0.90)*			
Adjusted for delivery	Group2	0.55 (0.41-0.75)**	0.59 (0.44-0.81)**	0.68 (0.50-0.93)*	0.59 (0.44- 0.81)**			
MODE by IAP	Group3	0.66 (0.41-1.05)	0.58 (0.36-0.92)*	0.56 (0.35-0.90)*	0.58 (0.36-0.92)*			
Adjusted for gestational	Group2	0.57 (0.42-0.77)**	0.61 (0.45-0.82)**	0.71 (0.53-0.95)*	0.61 (0.45- 0.82)**			
age	Group3	0.63 (0.40-0.99)*	0.55 (0.35-0.87)*	0.55 (0.35-0.87)*	0.55 (0.35-0.87)*			
Adjusted for infant diet at	Group2	0.58 (0.43-0.78)**	0.61 (0.46-0.83)**	0.72 (0.53-0.96)*	0.61 (0.46- 0.83)**			
3 months	Group3	0.66 (0.42-1.05)	0.57 (0.36-0.91)*	0.55 (0.35-0.88)*	0.57 (0.36-0.91)*			
Adjusted for	Group2	0.61 (0.45-0.82)	0.64 (0.48-0.86)*	0.77 (0.58-1.04)	0.64 (0.48-0.86)*			
parity	Group3	0.69 (0.44-1.09)	0.59 (0.37-0.93)*	0.62 (0.39-0.99)*	0.59 (0.37-0.93)*			
Adjusted for ROM >18	Group2	0.60 (0.44-0.80)**	0.64 (0.48-0.86)*	0.74 (0.55-0.99)*	0.64 (0.48-0.86)*			
hours	Group3	0.62 (0.39-0.99)*	0.55 (0.34-0.88)*	0.62 (0.39-0.99)*	0.55 (0.34-0.88)*			
Adjusted for baby's length	Group2	0.57 (0.42-0.78)**	0.61 (0.45-0.82)**	0.71 (0.53-0.96)*	0.61 (0.45- 0.82)**			
of hospital stay	Group3	0.67 (0.42-1.07)	0.58 (0.36-0.92)*	0.59 (0.37-0.94)*	0.58 (0.36-0.92)*			
Adjusted for infant's age at	Group2	0.58 (0.39-0.86)*	0.61 (0.41-0.91)*	0.82 (0.55-1.22)	0.61 (0.41-0.91)*			
the time of	Group3	0.58 (0.31-1.10)	0.48 (0.25-0.91)*	0.54 (0.28-1.03)	0.48 (0.25-0.91)*			

stool collection					
Adjusted for maternal pre-	Group2	0.58 (0.43-0.79)*	0.62 (0.46-0.84)*	0.73 (0.54-0.98)*	0.62 (0.46-0.84)*
pregnancy weight	Group3	0.62 (0.39-0.79)*	0.56 (0.35-0.89)*	0.52 (0.33-0.83)*	0.56 (0.35-0.89)*
	Group2	0.53	0.57	0.68	0.57
MODEL 1		<mark>(0.38-0.74)**</mark>	<mark>(0.41-0.81)**</mark>	<mark>(0.48-0.95)*</mark>	<mark>(0.41-0.81)**</mark>

MODEL1: Adjusted for delivery mode by IAP, gestational age, infant diet at 3 months, parity, ROM > 18 hours, length of hospital stay, age of stool collection, maternal pre-pregnancy weight

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval

IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and Csection with labour

BACTEROIDETES

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of active 1st stage of labour

Microbiota Measure				
Ref. Group 1 = 1st		Infant's gut mi	icrobiota at 3 to 4 m	onths of age
Stage ≤ 6 Hours	Phylum Bacteroidetes		Family Bacteroidaceae	Genus Bacteroides
Group 2 = 1st Stage > 6 to \leq 13 Hrs	(below	vs above median)	(below vs above median)	(below vs above median)
Group 3 = 1st Stage > 13 Hrs	(DR (95% CI)	OR (95% CI)	OR (95% CI)
Crude OR for 1st	Group2	1.50 (1.12-2.01)*	1.49 (1.11-1.99)*	1.49 (1.11-1.99)*
stage of labour	Group3	1.60 (1.02-2.53)*	1.86 (1.17-2.95)*	1.86 (1.17-2.95)*
Adjusted for delivery MODE	Group2	0.99 (0.72-1.37)	0.95 (0.69-1.31)	0.95 (0.69-1.31)
by IAP	Group3	1.08 (0.67-1.76)	1.24 (0.76-2.03)	1.24 (0.76-2.03)
Adjusted for	Group2	1.47 (1.09-1.98)*	1.46 (1.09-1.96)*	1.46 (1.09-1.96)*
gestational age	Group3	1.57 (0.99-2.49)	1.83 (1.15-2.90)*	1.83 (1.15-2.90)*
Adjusted for infant	Group2	1.50 (1.12-2.03)*	1.48 (1.10-1.98)*	1.48 (1.10-1.98)*
diet at 3 months	Group3	1.61 (1.02-2.55)*	1.86 (1.17-2.96)*	1.86 (1.17-2.96)*
Adjusted for parity	Group2	1.55 (1.15-2.09)*	1.57 (1.16-2.11)*	1.57 (1.16-2.11)*
	Group3	1.70 (1.07-2.70)*	2.04 (1.27-3.26)*	2.04 (1.27-3.26)*
Adjusted for ROM >	Group2	1.46 (1.09-1.97)*	1.45 (1.08-1.94)*	1.45 (1.08-1.94)*
18 hours	Group3	1.59 (1.00-2.54)	1.86 (1.16-2.98)*	1.86 (1.16-2.98)*
Adjusted for baby's	Group2	1.37 (1.01-1.85)*	1.38 (1.02-1.86)*	1.38 (1.02-1.86)*
length of hospital stay	Group3	1.43 (0.89-2.29)	1.67 (1.04-2.68)*	1.67 (1.04-2.68)*
Adjusted for infant's	Group2	1.81 (0.21-2.70)*	1.93 (1.30-2.88)*	1.93 (1.30-2.88)*
age at the time of stool collection	Group3	1.47 (0.78-2.77)	2.16 (1.13-2.88)*	2.16 (1.13-2.14)*
Adjusted for maternal pre-pregnancy weight	Group2	1.52 (1.13-2.05)*	1.50 (1.11-2.02)*	1.50 (1.11-2.02)*
	Group3	1.65 (1.04-2.62)*	1.91 (1.19-3.05)*	1.91 (1.19-3.05)*

	Group2	0.93 (0.66-1.33)	0.92 (0.65-1.31)	0.92 (0.65-1.31)			
MODEL 1							
	Group3	1.06 (0.62-1.80)	1.26 (0.73-2.17)	1.26 (0.73-2.17)			
MODEL1: Adjusted for delivery mode by IAP, gestational age, infant diet at 3 months, parity, ROM > 18 hours, length of hospital stay, age of stool collection, maternal pre-pregnancy weight							

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval

IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and Csection with labour

Table 2.13a

FIRMICUTES

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of active 1st stage of labour

Microbiota Measure			Infant's gut microbiota at 3 to 4 months of age						
Ref. Group 1: 1st Stag	$ge \le 6$	PHYLUM			FAMILY				
Hours		FIRMICUTES	Streptococcaceae	Clostridiaceae	Lactobacillaceae	Ruminococcaceae	Veillonellaceae		
Group 2 :1st Stage >6 Hrs	to ≤13	(below vs above median)	(below vs above median)	(below vs above median)	(below vs above median)	(below vs above median)	(below vs above median)		
1115		OR	OR	OR	OR	OR	OR		
Group 3: 1st Stage > 1	13 Hrs	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)		
Crude OR for 1st	Group2	0.92	0.84	0.90	0.83	0.73	0.98		
stage of labour	~ •	(0.68-1.23)	(0.63-1.13)	(0.67-1.21)	(0.61-1.12)	(0.55-0.98)*	(0.73-1.31)		
	Group3	0.80	0.57	1.18	0.54	1.04	0.68		
A 1:	Crown	(0.51 -1.25) 1.24	(0.36-0.90)* 0.88	(0.75-1.86) 1.14	(0.32-0.89)* 0.80	(0.66-1.63) 0.73	(0.43-1.07) 1.29		
Adjusted for	Group2	(0.91-1.70)	(0.65-1.19)	(0.83-1.55)	(0.59-1.10)	(0.53-0.99)*	(0.94-1.75)		
delivery MODE	Group3	1.05	0.64	1.47	0.56	1.01	0.85		
by IAP	Groups	(0.66-1.69)	(0.40-1.02)	(0.92-2.35)	(0.33-0.93)*	(0.64-1.62)	(0.53-1.36)		
Adjusted for	Group2	0.93	0.81	0.92	0.84	0.73	0.98		
gestational age	F	(0.69-1.25)	(0.61-1.09)	(0.69-1.24)	(0.62 - 1.14)	(0.55-0.98)*	(0.73-1.31)		
Bestanional aBe	Group3	0.81	0.55	1.21	0.55	1.04	0.67		
		(0.51-1.28)	(0.34-0.87)*	(0.77-1.91)	(0.33-0.91)*	(0.66-1.63)	(0.43-1.07)		
Adjusted for	Group2	0.92	0.83	0.91	0.82	0.72	0.98		
infant diet at 3		(0.68-1.23)	(0.62-1.11)	(0.68-1.22)	(0.60-1.12)	(0.52-0.99)*	(0.73-1.32)		
months	Group3	0.79	0.57	1.19	0.53	1.03	0.67		
		(0.50-1.24)	(0.36-0.90)*	(0.75-1.87)	(0.32-0.89)*	(0.63-1.68)	(0.42-1.06)		
	Group2	0.89	0.82	0.82	0.83	0.75	0.95		
Adjusted for	Carry 2	(0.66-1.19) 0.75	(0.61-1.10)	(0.61-1.11)	(0.61-1.12)	(0.56-1.01)	(0.71-1.28)		
parity	Group3	0.75 (0.48-1.19)	0.54 (0.34-0.87)*	1.03 (0.65-1.63)	0.54 (0.32-0.90)*	1.09 (0.69-1.72)	0.64 (0.41-1.02)		
Adjusted for	Group2	0.92	0.87	0.89	0.83	0.74	0.96		
ROM >18 hours	Gloup2	(0.68-1.23)	(0.65-1.17)	(0.66-1.19)	(0.61-1.12)	(0.55-0.99)*	(0.71-1.28)		
ROW > 10 HOURS	Group3	0.76	0.64	1.08	0.54	0.99	0.63		
		(0.48-1.21)	(0.40 - 1.02)	(0.68-1.71)	(0.32-0.91)*	(0.63-1.58)	(0.39-1.00)		
Adjusted for	Group2	1.02	0.78	0.95	0.75	0.68	1.06		
baby's length of	•	(0.76-1.38)	(0.58-1.06)	(0.70-1.28)	(0.55-1.03)	(0.51-0.92)*	(0.78-1.42)		
hospital stay	Group3	0.89	0.53	1.34	0.52	0.95	0.69		
		(0.56-1.42)	(0.33-0.86)*	(0.84-2.13)	(0.31-0.87)*	(0.60-1.52)	(0.43-1.10)		
Adjusted for	Group2	1.06	0.97	0.92	1.17	0.88	1.08		
infant's age at the		(0.71-1.57)	(0.65-1.44)	(0.62-1.37)	(0.78-1.74)	(0.58-1.32)	(0.73-1.61)		
time of stool	Group3	0.88 (0.46-1.65)	0.59 (0.31-1.14)	1.23 (0.65-2.33)	0.38 (0.18-0.82)*	0.89 (0.46-1.71)	0.59 (0.31-1.14)		
collection		. ,			```´´				
Adjusted for	Group2	0.94	0.84	0.90	0.82	0.74	0.96		
maternal pre-		(0.70-1.27)	(0.63-1.14)	(0.67-1.21)	(0.60-1.12)	(0.55-1.01)	(0.71-1.29)		
pregnancy weight	Group3	0.83	0.57	1.16	0.51	1.02	0.69		
	Group	(0.53-1.32)	(0.36-0.91)*	(0.74-1.84)	(0.30-0.85)*	(0.64-1.62)	(0.44-1.10)		
	Group2	1.35	0.78	1.00	0.78	0.66	1.31		
MODEL 1		(0.96-1.90)	(0.56-1.10)	(0.72-1.42)	(0.55-1.10)	<mark>(0.45-0.95)*</mark>	(0.93-1.84)		
	Group3	1 10	0.60	1.23	0.52	0.00	0.79		
	Groups	1.10	0.60		0.53	0.90			
		(0.66-1.85)	(0.36-1.00)	(0.73-2.06)	<mark>(0.30-0.95)*</mark>	(0.51-1.59)	(0.47-1.33)		
MODEL1: Adjusted f									

stool collection, maternal pre-pregnancy weight * p < 0.05; ** p < 0.005; OR = odds ratio; CI = confidence interval; IAP = Intrapartum antibiotic prophylaxis; GA = gestational age; ROM = rupture of membranes

Table 2.13b

FIRMICUTES

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of active 1st stage of labour

Ref. Group 1 = 1st Sta Hours	$ge \le 6$	Infant's gut microbiota at 3 to 4 months of age						
riouis		GENUS						
Group 2 = 1st Stage > Hrs	6 to \leq 13	Lactobacillus	Streptococcus	Clostridium	Ruminococcus	Veillionella		
		(below vs above	(below vs above	(below vs	(below vs	(below vs		
Group 3 = 1st Stage >	13 Hrs	median)	median)	above median)	above median)	above median)		
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)		
Crude OR for 1st stage of labour	Group2	0.83 (0.61-1.12)	0.82 (0.62-1.10)	0.91 (0.68-1.22)	1.13 (0.84-1.51)	0.83 (0.62-1.12)		
	Group3	0.54 (0.32-0.89)*	0.57 (0.36-0.90)*	1.24 (0.78-1.95)	1.06 (0.68-1.67)	0.75 (0.47-1.18)		
Adjusted for delivery MODE by	Group2	0.80 (0.59-1.10)	0.87 (0.64-1.18)	1.27 (0.93-1.74)	0.98 (0.72-1.33)	1.11 (0.82-1.52)		
IAP	Group3	0.56 (0.33-0.93)*	0.64 (0.40-1.03)	1.64 (1.02- 2.65)*	0.90 (0.57-1.44)	0.97 (0.61-1.56)		
Adjusted for	Group2	0.84 (0.62-1.14)	0.79 (0.59-1.07)	0.93 (0.70-1.25)	1.12 (0.84-1.51)	0.83 (0.62-1.11)		
gestational age	Group3	0.55 (0.33-0.91)*	0.54 (0.34-0.86)*	1.27 (0.80-2.01)	1.06 (0.67-1.66)	0.74 (0.47-1.17)		
Adjusted for infant	Group2	0.82 (0.60-1.12)	0.81 (0.61-1.09)	0.92 (0.69-1.23)	1.17 (0.87-1.58)	0.84 (0.63-1.13)		
diet at 3 months	Group3	0.53 (0.32-0.89)*	0.57 (0.36-0.90)*	1.23 (0.78-1.94)	1.06 (0.67-1.70)	0.74 (0.47-1.17)		
	Group2	0.83 (0.61-1.12)	0.80 (0.59-1.07)	0.84 (0.63-1.13)	1.18 (0.88-1.59)	0.81 (0.60-1.09)		
Adjusted for parity	Group3	0.54 (0.32-0.90)*	0.53 (0.34-0.85)*	1.09 (0.69-1.74)	1.15 (0.73-1.82)	0.71 (0.45-1.12)		
Adjusted for ROM >18 hours	Group2	0.83 (0.61-1.12)	0.86 (0.64-1.15)	0.89 (0.66-1.20)	1.18 (0.88-1.58)	0.81 (0.61-1.09)		
10 10013	Group3	0.54 (0.32-0.91)*	0.63 (0.39-1.01)	1.15 (0.74-1.84)	1.15 (0.73-1.83)	0.70 (0.44-1.11)		
Adjusted for baby's length of hospital	Group2	0.75 (0.55-1.03)	0.77 (0.57-1.04)	0.95 (0.70-1.29)	1.09 (0.81-1.47)	0.89 (0.66-1.20)		
stay	Group3	0.52 (0.31-0.87)*	0.53 (0.3-0.85)*	1.45 (0.90-2.32)	1.03 (0.65-1.64)	0.78 (0.49-1.24)		
Adjusted for infant's age at the time of	Group2	1.17 (0.78-1.74)	0.91 (0.61-1.35)	1.03 (0.70-1.53)	1.33 (0.89-2.00)	0.91 (0.61-1.35)		
stool collection	Group3	0.38 (0.18-0.82)*	0.57 (0.30-1.10)	1.19 (0.63-2.25)	1.10 (0.58-2.10)	0.69 (0.36-1.32)		
Adjusted for maternal pre-	Group2	0.82 (0.60-1.12)	0.82 (0.61-1.11)	0.93 (0.69-1.25)	1.16 (0.86-1.56)	0.83 (0.62-1.12)		
pregnancy weight	Group3	0.51 (0.30-0.85)*	0.56 (0.35-0.90)	1.26 (0.79-2.00)	1.07 (0.68-1.69)	0.75 (0.47-1.19)		
	Group2	0.78 (0.55-1.10)	0.78 (0.55-1.07)	1.14 (0.81-1.61)	1.12 (0.79-1.60)	1.12 (0.80-1.58)		
MODEL 1	Group3	<mark>0.53</mark> (0.30-0.95)*	0.59 (0.36-1.00)	1.50 (0.89-2.53)	1.10 (0.64-1.88)	0.91 (0.54-1.54)		

MODEL1: Adjusted for delivery mode by IAP, gestational age, infant diet at 3 months, parity, ROM > 18 hours, length of hospital stay, age of stool collection, maternal pre-pregnancy weight

* p < 0.05; ** p < 0.005; OR = odds ratio; CI = confidence interval; IAP = Intrapartum antibiotic prophylaxis; GA = gestational age; ROM = rupture of membranes Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and C-section with labour

PROTEOBACTERIA

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of active 1st stage of labour

Microbiota Measure					
		Infant	's gut microbiota at 3 to	o 4 months of age	
Ref. Group $1 = 1$ st Stage ≤ 6 Hours	Phylum Proteobacteria		Family Enterobacteriaceae	Genus Citrobacter	Genus Enterobacter
Group 2 = 1st Stage > 6 to \leq 13 Hrs	(below v	vs above median)	(below vs above median)	(below vs above median)	(unclassified) (below vs above median)
Group 3 = 1st Stage > 13 Hrs	OI	R (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Crude OR for 1st	Group2	1.10 (0.82-1.47)	1.02 (0.76-1.36)	1.06 (0.79-1.42)	1.03 (0.77-1.38)
stage of labour	Group3	0.90 (0.58-1.42)	093 (0.59-1.46)	0.76 (0.48-1.20)	0.93 (0.59-1.46)
Adjusted for	Group2	1.34 (0.98-1.82)	1.22 (0.90-1.66)	1.30 (0.96-1.77)	1.21 (0.90-1.65)
delivery MODE by IAP	Group3	1.11 (0.69-1.77)	1.13 (0.71-1.81)	0.86 (0.53-1.38)	1.11 (0.69-1.77)
Adjusted for	Group2	1.10 (0.82-1.48)	1.01 (0.76-1.36)	1.08 (0.81-1.46)	1.03 (0.77-1.38)
gestational age	Group3	0.90 (0.57-1.42)	0.93 (0.59-1.46)	0.78 (0.49-1.22)	0.93 (0.59-1.46)
Adjusted for infant	Group2	1.10 (0.82-1.49)	1.01 (0.75-1.37)	1.07 (0.80-1.44)	1.03 (0.76-1.39)
diet at 3 months	Group3	0.91 (0.57-1.44)	0.93 (0.58-1.48)	0.76 (0.48-1.20)	0.93 (0.58-1.48)
	Group2	1.08 (0.81-1.45)	0.99 (0.74-1.32)	1.02 (0.76-1.37)	1.01 (0.75-1.36)
Adjusted for parity	Group3	0.88 (0.56-1.39)	0.88 (0.56-1.39)	0.71 (0.45-1.12)	0.90 (0.57-1.42)
Adjusted for ROM	Group2	1.12 (0.84-1.51)	1.02 (0.76-1.37)	1.04 (0.77-1.39)	1.04 (0.77-1.39)
>18 hours	Group3	0.92 (0.58-1.46)	0.92 (0.58-1.47)	0.75 (0.47-1.20)	0.93 (0.58-1.47)
Adjusted for baby's	Group2	1.12 (0.3-1.52)	1.04 (0.77-1.40)	1.04 (0.77-1.40)	1.05 (0.78-1.42)
length of hospital stay	Group3	0.89 (0.56-1.42)	0.92 (0.58-1.46)	0.74 (0.47-1.19)	0.92 (0.58-1.46)
Adjusted for infant's	Group2	0.90 (0.60-1.33)	0.84 (0.57-1.25)	0.88 (0.59-1.31)	0.89 (0.60-1.32)
age at the time of stool collection	Group3	1.42 (0.74-2.71)	1.47 (0.76-2.83)	0.41 (0.21-0.80)*	1.50 (0.78-2.89)
Adjusted for	Group2	1.07 (0.80-1.45)	0.99 (0.74-1.34)	1.06 (0.79-1.43)	1.01 (0.75-1.35)
maternal pre- pregnancy weight	Group3	0.88 (0.56- 1.39)	0.91 (0.57-1.43)	0.77 (0.48-1.22)	0.91 (0.57- 1.43)
MODEL 1	Group2	1.41 (1.00-1.99)	1.24 (0.88-1.76)	1.29 (0.92-1.81)	1.26 (0.89-1.77)
	Group3	1.05 (0.62-1.79)	1.04 (0.62-1.77)	0.82 (0.49-1.38)	1.04 (0.62 -1.77)

MODEL1: Adjusted for delivery mode by IAP, gestational age, infant diet at 3 months, parity, ROM > 18 hours, length of hospital stay, age of stool collection, maternal pre-pregnancy weight

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and C-section with labour

Crude and adjusted likelihood ratio of gut microbiota richness and diversity measures at 3-4 months according to duration of active 1st stage of labour

Ref. Group 1 = 1st Stage \leq		Chao1 richness	Shannon diversity
6 Hours		Unaul i funitess	Shannon urversity
			(below vs above median)
Group $2 = 1$ st Stage > 6 to	(be	elow vs above median)	
\leq 13 Hrs		OR (95% CI)	OR (95% CI)
Group 3 = 1st Stage > 13 Hrs			
Crude OR for 1st stage of	Group2	1.05 (0.79-1.41)	0.69 (0.51-0.93)*
labour	Group3	0.99 (0.63-1.56)	0.74 (0.47-1.17)
Adjusted for	Group2	0.99 (0.73-1.34)	0.68 (0.50-0.92)*
delivery MODE by IAP	Group3	0.86 (0.54-1.36)	0.73 (0.46-1.17)
Adjusted for gestational age	Group2	1.03 (0.77-1.38)	0.66 (0.49-0.89)*
	Group3	0.97 (0.62-1.52)	0.71 (0.45-1.11)
Adjusted for infant diet at 3	Group2	1.06 (0.78-1.43)	0.69 (0.51-0.93)
months	Group3	0.98 (0.61-1.56)	0.74 (0.46-1.17)
	Group2	1.04 (0.78-1.40)	0.70 (0.52-0.94)*
Adjusted for parity	Group3	0.97 (0.62-1.53)	0.75 (0.48-1.19)
Adjusted for ROM >18	Group2	1.05 (0.78-1.41)	0.70 (0.52-0.94)
hours	Group3	1.00 (0.63-1.59)	0.76 (0.48-1.21)
Adjusted for baby's length	Group2	1.02 (0.76-1.37)	0.66 (0.48-0.89)*
of hospital stay	Group3	0.92 (0.58-1.47)	0.68 (0.42-1.08)
Adjusted for infant's age at	Group2	1.07 (0.80-1.43)	0.70 (0.52-0.94)*
the time of stool collection	Group3	1.04 (0.66-1.65)	0.79 (0.50-1.24)
Adjusted for maternal pre-	Group2	1.05 (0.78-1.41)	0.70 (0.52-0.94)*
pregnancy weight	Group3	0.99 (0.63-1.58)	0.79 (0.50-1.24)
	Group2	0.86 (0.61-1.22)	<mark>0.64 (0.45-0.90)*</mark>
MODEL 1	Group3	0.74 (0.43-1.26)	0.74 (0.44-1.26)

MODEL1: Adjusted for delivery mode by IAP, gestational age, infant diet at 3 months, parity, ROM > 18 hours, length of hospital stay, age of stool collection, maternal pre-pregnancy weight

* p < 0.05; ** p < 0.005; OR = odds ratio; CI = confidence interval

IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and C-section with labour

Table 2.16 Summary table showing **significant** (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the **duration of second stage of labour**, and following different levels of stratifications:

ALL MODES	ALL MODES OF BIRTHS (n=955)						
Reference group: 2nd Stage of labour	2nd Stage of labour	2nd Stage of labour					
<= 1 hour	> 1 to ≤ 2 hours	> 2 hours					
Phylum Actinobacteria		\rightarrow					
Bifidobacteriaceae		\rightarrow					
Coriobacteriaceae		\rightarrow					
g_Bifidobacterium		\rightarrow					
Phylum Bacteroidetes							
Phylum Firmicutes							
Lactobacillaceae		\downarrow					
Ruminococcaceae		\downarrow					
Clostridiaceae		<u>↑</u>					
g_Lactobacillus		\downarrow					
Phylum Proteobacteria							

1

VAGINAL BIRTHS WITHOUT IAP (n=503)					
Reference group: 2nd Stage of	2nd Stage	2d Stage			
labour <= 1 hour	>1 to≤2hrs	>2 hrs			
Phylum Actinobacteria		→			
Coriobacteriaceae	→	→			
Bifidobacteriaceae		→			
genus_Bifidobacterium		→			
Phylum Bacteroidetes					
Phylum Firmicutes					
Clostridiaceae		1			
genus_Clostridium	^	1			
genus_Veillionella		1			
Phylum Proteobacteria					
genus_Citrobacter		1			

VAGINAL BIRTHS WITHOUT IAP								
WITH EXCLUSIVEL BREASTFEEDING (n=269)								
Reference group: 2nd Stage	2nd Stage	2nd Stage						
of labour <= 1 hour	>1 to ≤2 hrs	>2 hrs						
Phylum Actinobacteria	_	\rightarrow						
Bifidobacteriaceae	-	\rightarrow						
genus_Bifidobacterium	-	\rightarrow						
Clostridiaceae		\uparrow						

1	VAGINAL BIRTHS WITHOUT IAP					
	WITHOUT EXCLUSIVELY BREASTFEEDING (n=230)					
	Reference group: 2nd Stage	2nd Stage	2nd Stage			
	of labour <= 1 hour	>2 to ≤2 hrs	> 2 hrs			
	Phylum Actinobacteria	-				
	Bifidobacteriaceae	-	\rightarrow			
	genus_Bifidobacterium	-	\rightarrow			
	Bacteroidaceae	\rightarrow				

1

VAGINAL BIRTHS WITH IAP (n=198)						
Reference group: 2 nd Stage	2 nd Stage	2 nd Stage				
of labour <= 1 hour	> 1 to ≤2 hrs	>2 hrs				
Phylum Actinobacteria	-					
Bifidobacteriaceae	-					
genus_Bifidobacterium	-					
Phylum Bacteroidetes	-					
Phylum Firmicutes	↑					
Clostridiaceae	↑					
genus_Lactobacillus	-					
Phylum Proteobacteria	_	1				
Enterobacteriaceae	_	↑				
genus_Enterobacter	_	↑				

	VAGINAL BIRTHS WITH IAP								
	WITH EXCLUSIVEL BREASTFEEDING (n=106)								
	Reference group: 2nd Stage	2nd Stage							
-	of labour <= 1 hour	>1 to ≤2 hrs	>2 hrs						
	Phylum Actinobacteria	-	-						
	Bifidobacteriaceae	-	-						
	genus_Bifidobacterium	-	-						
	Phylum Proteobacteria	-	\uparrow						

	VAGINAL BIRTHS WITH IAP WITHOUT EXCLUSIVELY BREASTFEEDING (n=89)					
	Reference group: 2nd Stage	2nd Stage	2nd Stage			
	of labour <= 1 hour	>2 to ≤2 hrs	> 2 hrs			
•	Phylum Actinobacteria	_				
	Bifidobacteriaceae	-	-			
	genus_Bifidobacterium	-	-			
	Clostridiaceae	←	\uparrow			

Table 2.17 Median relative abundance of dominant bacterial taxa at the phylum and family level in infant gut microbiota at 3-4 months among *all modes* of delivery, according to the duration of second stage of labour (n=955)

Bacterial Taxa	2 nd Stage of labour ≤ 1 hour [Reference:	2 nd Stage of labour > 1 to ≤ 2 hours	p- value	2 nd Stage of labour > 2 hours	p- value
Dacterial Taxa	Group 1]	[Group 2]		[Group 3]	
	(n=667; 69.8%)	(n=125; 13.1%)		(n=163; 17.1%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum					
Actinobacteria	(1(2)(1)(2)(1)(2)(1)	5 104 (0 754 12 002)	0.097	2,550 (0,00, 12 (02)	0.010
Family	6.163 (1.821-16.291)	5.104 (0.754-13.993)	0.087	3.559 (0.00-13.693)	<mark>0.010</mark>
Actinomycetaceae	0.023 (0.000-0.108)	0.016 (0.000-0.077)	0.526	0.031 (0.000-0.100)	0.919
Bifidobacteriaceae	5.402 (1.450-15.374)	4.524 (0.512-12.978)	0.103	3.164 (0.263-13.024)	<mark>0.006</mark>
Coriobacteriaceae	0.046 (0.008-0.187)	0.047 (0.000-0.147)	0.332	0.023 (0.000-0.117)	0.000
Genus					
Bifidobacterium	5.402 (1.450-15.374)	4.524 (0.492-12.978)	0.096	3.164(0.263-13.024)	<mark>0.005</mark>
Actinomyces	0.023 (0.000-0.093)	0.016 (0.000-0.074)	0.644	0.023 (0.000-0.086)	
Phylum	()	, , , , , , , , , , , , , , , , , , , ,	0.644		0.547
Bacteroidetes	18.252 (0.109-60.674)	26.577 (0.081-61.234)	0.872	14.775 (0.085-66.620)	0.852
Family					
Bacteroidaceae	12.658 (0.077-54.501)	21.228 (0.066-58.826)	0.855	9.542 (0.062-62.317)	0.920
Genus	()	(
Bacteroides	12.658 (0.077-54.501)	21.228 (0.066-58.826)	0.855	9.542 (0.062-62.317)	0.920
Phylum	22.709	21.624		22.681	
Firmicutes	(8.529-44.531)	(9.348-46.198)	0.916	(8.564-45.256)	0.998
Family					
Enterococcaceae	0.023 (0.000-0.108)	0.016 (0.000-0.097)	0.264	0.031 (0.000-0.101)	0.664
Lactobacillaceae	0.000 (0.000-0.024)	0.000 (0.000-0.023)	0.474	0.000 (0.000-0.008)	<mark>0.008</mark>
Streptoccocaceae	0.591 (0.217-1.914)	0.642(0.205-1.894)	0.936	0.564 (0.201-1.568)	0.392
Clostridiaceae	0.322 (0.031-1.994)	0.542 (0.023-4.051)	0.464	0.805 (0.063-4.040)	<mark>0.003</mark>
Lachnospiraceae	2.800 (0.054-9.853)	1.773 (0.043-9.554)	0.455	1.999 (0.046-8.393)	0.471
Ruminococcaceae	0.132 (0.000-2.012)	0.031 (0.000-1.433)	0.151	0.046 (0.000-1.028)	0.051
Veillionellaceae	4.459 (0.819-16.416)	3.847 (0.951-13.797)	0.415	5.284 (0.658-17.214)	0.929

Genus					
Enterococcus	0.016 (0.000-0.101)	0.015 (0.000-0.093)	0.352	0.031 (0.000-0.094)	0.696
Lactobacillus	0.000 (0.000-0.024)	0.000 (0.000-0.023)	0.474	0.000 (0.000-0.008)	<mark>0.008</mark>
Streptococcus	0.591 (0.217-1.914)	0.642(0.203-1.894)	0.926	0.557 (0.201-1.568)	0.370
Clostridium	0.016 (0.000-0.450)	0.031 (0.000-0.977)	0.431	0.085 (0.008-1.262)	0.009
Ruminococcus	0.031 (0.000-1.827)	0.023 (0.000-2.307)	0.300	0.016 (0.000-1.575)	0.016
Veillionella	3.079 (0.403-14.374)	2.540 (0.533-11.941)	0.526	4.314 (0.364-16.856)	0.526
Phylum	17.937	22.224		18.982	
Proteobacteria	(7.563-39.072)	(7.835-41.245)	0.430	(9.131-42.053)	0.361
Family					
Enterobacteriaceae	15.995 (5.468-36.360)	21.181 (4.795-40.816)	0.299	18.051(7.845-40.974)	0.172
Genus					
Citrobacter	0.031 (0.000-0.232)	0.039 (0.000-0.464)	0.546	0.047(0.000-0.248)	0.450
Enterobacter_unclss	15.275 (5.106-35.681)	16.926 (4.730-39.522)	0.312	17.812 (7.798-39.751)	0.145
		le range (IQR) in parent re indicated in boldface		Comparisons were perfo	ormed

Table 2.18

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among VAGINAL births without intrapartum antibiotic prophylaxis (IAP), according to duration of second stage of labour (n= 503)

	duration of second st 2 nd Stage of labour	2 nd Stage of labour	p-	2 nd Stage of labour	p-
	≤ 1 hour	> 1 to ≤ 2 hours	value	> 2 hours	value
Bacterial Taxa	[Reference: Group	[Group 2]		[Group 3]	
	(n=338; 67.2%)	(n=83; 16.5%)		(n=82; 16.3%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum					
Actinobacteria	6.938 (2.492-17.318)	6.194 (1.192-14.554)	0.179	3.511 (0.883-13.465)	0.012
Family	``````````````````````````````````````	, , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·	
Actinomycetaceae	0.023 (0.000-0.080)	0.015 (0.000-0.070)	0.532	0.039 (0.008-0.127)	0.096
Bifidobacteriaceae	6.478 (2.085-16.298)	6.033 (1.036-14.204)	0.253	3.193 (0.515-13.108)	<mark>0.005</mark>
Coriobacteriaceae	0.050 (0.008-0.221)	0.046 (0.000-0.101)	<mark>0.020</mark>	0.023 (0.000-0.117)	<mark>0.050</mark>
Genus					
Bifidobacterium	6.478 (2.034-16.257)	6.033 (1.036-14.204)	0.249	3.193 (0.515-13.108)	<mark>0.005</mark>
Actinomyces	0.016 (0.000-0.064)	0.008 (0.000-0.062)	0.568	0.031 (0.008-0.117)	<mark>0.032</mark>
Phylum					
Bacteroidetes	42.140 (5.581-66.116)	29.644(0.140-61.839)	0.072	27.599(0.393-68.904)	0.353
Family					
Bacteroidaceae	34.402 (2.394-59.950)	26.424(0.085-60.701)	0.067	23.310(0.122-66.685)	0.346
Genus	34.402	26.424		23.310	
Bacteroides	(2.394-59.950)	(0.085-60.701)	0.067	(0.122-66.685)	0.346
Phylum					
Firmicutes	15.850 (6.963-33.700)	18.637(8.130-36.415)	0.418	19.276(7.090-41.920)	0.311
Family					
Enterococcaceae	0.016 (0.000-0.057)	0.016 (0.000-0.079)	0.814	0.012 (0.000-0.063)	0.916
Lactobacillaceae	0.000 (0.000-0.023)	0.000 (0.000-0.015)	0.713	0.000 (0.000-0.008)	0.072
Streptoccocaceae	0.564 (0.155-1.808)	0.642 (0.170-1.784)	0.816	0.400 (0.174-1.225)	0.417
Clostridiaceae	0.151 (0.016-0.956)	0.396 (0.016-3.981)	0.103	0.636 (0.068-5.046)	<mark>0.000</mark>
Lachnospiraceae	2.131 (0.066-8.420)	1.389 (0.039-9.463)	0.760	2.188 (0.052-6.703)	0.872
Ruminococcaceae	0.120 (0.008-1.784)	0.023 (0.000-1.545)	0.143	0.082 (0.000-1.103)	0.289
Veillionellaceae	2.940 (0.493-13.574)	3.261 (0.952-10.972)	0.912	6.704 (0.556-15.422)	0.219

Genus					
Enterococcus	0.015 (0.000-0.055)	0.015 (0.000-0.070)	0.817	0.008 (0.000-0.057)	0.719
Lactobacillus	0.000 (0.000-0.023)	0.000 (0.000-0.015)	0.713	0.000 (0.000-0.008)	0.072
Streptococcus	0.562 (0.155-1.808)	0.642 (0.170-1.784)	0.809	0.400 (0.174-1.176)	0.378
Clostridium	0.008 (0.000-0.140)	0.016 (0.000-1.200)	<mark>0.040</mark>	0.031 (0.000-0.810)	<mark>0.006</mark>
Ruminococcus	0.120 (0.000-2.086)	0.023 (0.000-2.310)	0.417	0.031 (0.006-1.830)	0.470
Veillionella	1.698 (0.202-10.212)	2.465 (0.599-8.001)	0.309	4.540 (0.283-15.416)	0.053
Phylum					
Proteobacteria	14.767 (6.411-32.198)	16.434 (7.665-41.473)	0.069	16.685 (9.292-35.209)	0.147
Family	12.077	15.824		14.278	
Enterobacteriaceae	12.067 (4.144-29.471)	(4.914-41.372)	0.041	(7.613-33.707)	0.093
Genus					
Citrobacter	0.016 (0.000-0.101)	0.031 (0.000-0.435)	0.117	0.062 (0.000-0.320)	<mark>0.016</mark>
	11.938	14.741		14.068	
Enterobacter_unclss	(4.037-29.087)	(4.852-40.859)	<mark>0.040</mark>	(7.578-33.660)	0.103
Results are presented as	s median and interquarti	le range (IQR) in pare	ntheses.	Comparisons were	
performed using Mann-	-Whitney U-test. P valu	es <pre>< 0.05</pre> are indicated	l in bold	face type.	

Table 2.19a

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births without intrapartum antibiotics prophylaxis (IAP) without exclusive breastfeeding, according to the duration of second stage of labour (n=230)

Bacterial Taxa	2 nd Stage of labour ≤ 1 hour [Reference: Group 1]	2 nd Stage of labour > 1 to ≤ 2 hours [Group 2]	p-value	2 nd Stage of labour > 2 hours [Group 3]	p-value
	(n=157; 68.3%)	(n= 34; 14.8%)		(n=39; 17.0%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	5.773 (2.158-14.534)	3.451 (1.466-14.268)	0.331	3.388 (1.094-8.715)	0.072
Family Actinomycetaceae	0.031 (0.000-0.105)	0.039 (0.008-0.209)	0.274	0.047 (0.016-0.132)	<mark>0.040</mark>
Bifidobacteriaceae	5.043 (1.749-13.877)	2.880 (1.426-12.838)	0.513	2.620 (0.630-5.833)	<mark>0.025</mark>
Coriobacteriaceae	0.086 (0.015-0.509)	0.047 (0.000-0.107)	0.075	0.070 (0.008-0.291)	0.756
Genus					
Bifidobacterium	5.043 (1.749-13.877)	2.880 (1.426-12.838)	0.498	2.620 (0.630-5.833)	<mark>0.025</mark>
Actinomyces	0.023 (0.000-0.101)	0.023 (0.000-0.185)	0.493	0.046 (0.016-0.118)	<mark>0.031</mark>
Phylum Bacteroidetes	49.751 (16.782-72.109)	29.788 (0.307-61.651)	0.096	35.400 (9.936-71.631)	0.548
Family Bacteroidaceae	40.016 (12.301-62.046)	26.501 (0.084-52.984)	<mark>0.048</mark>	25.601 (7.159-68.632)	0.383
Genus Bacteroides	40.016 (12.301-62.046)	26.501 (0.084-52.984)	0.048	25.601 (7.159-68.632)	0.383
Phylum Firmicutes	10.203 (4.704-24.216)	11.663 (5.359-33.612)	0.415	12.367 (7.308-26.301)	0.529
Family					
Enterococcaceae	0.023 (0.000-0.058)	0.035 (0.008-0.118)	0.193	0.023 (0.008-0.062)	0.621
Lactobacillaceae	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.553	0.000 (0.000-0.000)	<mark>0.018</mark>
Streptoccocaceae	0.644 (0.179-1.698)	0.703 (0.201-1.816)	0.632	0.307 (0.108-1.164)	0.139
Clostridiaceae	0.202 (0.047-0.950)	0.600 (0.070-3.263)	0.070	0.342 (0.071-2.209)	0.112
Lachnospiraceae	2.929 (0.572-8.834)	5.407 (1.169-16.699)	0.066	5.522 (1.793-9.684)	0.217
Ruminococcaceae	0.922 (0.023-3.017)	0.794 (0.035-6.816)	0.506	0.624 (0.016-2.326)	0.371
Veillionellaceae	3.258 (0.934-14.133)	5.765 (1.399-14.611)	0.443	7.329 (1.984-15.060)	0.122

Genus					
Enterococcus	0.016 (0.000-0.055)	0.035 (0.008-0.118)	0.152	0.023 (0.000-0.055)	0.788
Lactobacillus	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.553	0.000 (0.000-0.000)	<mark>0.018</mark>
Streptococcus	0.644 (0.175-1.698)	0.703 (0.195-1.816)	0.637	0.307 (0.108-1.164)	0.141
Clostridium	0.008 (0.000-0.074)	0.085 (0.000-0.710)	0.079	0.016 (0.000-0.189)	0.607
Ruminococcus	0.313 (0.000-2.296)	0.627 (0.008-3.186)	0.440	0.209 (0.008-3.486)	0.996
Veillionella	1.974 (0.326-9.851)	3.189 (1.273-11.476)	0.113	5.999 (0.825-14.722)	0.079
Phylum					
Proteobacteria	10.203 (4.704-24.216)	11.663 (5.359-33.612)	0.415	12.367 (7.308-26.301)	0.529
Family					
Enterobacteriaceae	7.455 (2.869-20.620)	11.543 (3.926-32.217)	0.290	11.116 (4.161-24.350)	0.456
Genus					
Citrobacter	0.016 (0.000-0.078)	0.019 (0.000-0.113)	0.903	0.063 (0.008-0.201)	<mark>0.027</mark>
Enterobacter_unclss	7.366 (2.752-20.320)	11.531 (3.876-30.455)	0.277	11.109 (3.983-23.613)	0.473
Results are presented as Mann-Whitney U-test. I			eses. Comp	parisons were performed	using

Table 2.19b

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births without intrapartum antibiotics prophylaxis (IAP) with exclusive breastfeeding, according to the duration of second stage of labour (n= 269)

0,	2 nd Stage of labour	2 nd Stage of labour	p-	2 nd Stage of labour	p-
	≤ 1 hour	> 1 to ≤ 2 hours	value	> 2 hours	value
Bacterial Taxa	[Reference:				
	Group 1]	[Group 2]		[Group 3]	
	(n=178; 66.2%)	(n= 49; 18.2%)		(n= 42; 15.6%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum	8.932	6.632		3.736	
Actinobacteria	(2.903-20.355)	(0.579-20.869)	0.279	(0.310-16.986)	<mark>0.050</mark>
Family					
Actinomycetaceae	0.015 (0.000-0.077)	0.008 (0.000-0.039)	0.15	0.012 (0.000-0.093)	0.957
Bifidobacteriaceae	8.622 (2.567-19.370)	6.282 (0.524-18.795)	0.31	3.376 (0.074-16.589)	0.047
Coriobacteriaceae	0.031 (0.006-0.139)	0.023 (0.000-0.078)	0.17	0.008 (0.000-0.043)	0.015
Genus			,	. ,	
Bifidobacterium	8.622 (2.539-19.353)	6.282 (0.505-18.783)	0.310	3.345 (0.068-16.589)	<mark>0.046</mark>
Actinomyces	0.008 (0.000-0.047)	0.008 (0.000-0.039)	0.31	0.012 (0.000-0.068)	0.574
			0.51		0.374
Phylum					
Bacteroidetes	33.105	29.644	0.420	21.152	0.420
Family	(0.654-62.249)	(0.097-62.674)	0.429	(0.130-63.566)	0.428
Bacteroidaceae	27.034(0.269-57.930)	23.154 (0.081-61.116)	0.586	21.148 (0.112-63.465)	0.694
Genus					
Bacteroides	27.034(0.269-57.930)	23.154 (0.081-61.116)	0.586	21.148 (0.112-63.465)	0.694
			0.500		0.074
Phylum					
Firmicutes	15.440 (6.733-35.125)	14.460 (5.060-28.531)	0.482	23.460 (5.098-44.775)	0.559
Family	(0.755-55.125)	(3.000-20.331)	0.402	(5.076-44.775)	0.339
•		0.015 (0.000.0.04()	0.51		0.205
Enterococcaceae	0.015 (0.000-0.056) 0.000 (0.000-0.062)	0.015 (0.000-0.046) 0.000 (0.000-0.031)	0.51 0.29	0.008 (0.000-0.060) 0.000 (0.000-0.041)	0.385 0.784
Lactobacillaceae	0.519 (0.149-1.993)	0.456 (0.139-1.796)		0.427 (0.292-1.580)	
Streptoccocaceae	0.086 (0.008-1.110)	0.170 (0.008-4.841)	0.90	1.499 (0.031-15.102)	0.827
Clostridiaceae Lachnospiraceae			0.36		0.001
1	1.478(0.029-7.265)	0.201 (0.023-3.802)	0.14	0.151(0.029-3.771)	0.161
Ruminococcaceae	0.027 (0.000-0.385)	0.008 (0.000-0.070)	0.03	0.008 (0.000-0.238)	0.390
Veillionellaceae	2.550 (0.370-13.039)	2.548 (0.807-6.473)	0.73	4.248 (0.184-17.577)	0.829

Genus					
Enterococcus	0.012 (0.000-0.056)	0.008 (0.000-0.043)	0.453	0.008 (0.000-0.056)	0.337
Lactobacillus	0.000 (0.000-0.0626)	0.000 (0.000-0.031)	0.289	0.000 (0.000-0.041)	0.784
Streptococcus	0.519 (0.149-1.993)	0.456 (0.139-1.796)	0.896	0.427 (0.292-1.580)	0.897
Clostridium	0.008 (0.000-0.367)	0.008 (0.000-1.721)	0.233	0.078 (0.008-5.850)	<mark>0.003</mark>
Ruminococcus	0.039 (0.000-1.980)	0.008 (0.000-0.639)	0.124	0.012 (0.000-0.151)	0.355
Veillionella	1.437 (0.151-10.346)	1.562 (0.198-6.406)	0.929	3.271 (0.166-17.573)	0.364
Phylum	15.075	2.0. 100			
Proteobacteria	17.865 (8.664-38.800)	30.422 (10.316-52.459)	0.133	21.763 (12.763-42.349)	0.122
Family					
Enterobacteriaceae	16.498(6.933-35.552)	30.083 (7.864-50.593)	0.11	20.744 (11.125-42.148)	0.088
Genus					
Citrobacter	0015 (0.000-0.187)	0.055 (0.000-0.477)	<mark>0.049</mark>	0.054 (0.000-0.673)	0.164
	16.294 (6.768-35.521)	28.782 (7.667-50.555)		20.132 (9.989-41.500)	

using Mann-Whitney U-test. P values < 0.05 are indicated in boldface type.
Table 2.20

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births with intrapartum antibiotics prophylaxis (IAP), according to the duration of second stage of labour (n= 198)

Bacterial Taxa	2 nd Stage of labour ≤ 1 hour [Reference: Group 1]	2 nd Stage of labour > 1 to ≤ 2 hours [Group 2]	p-value	2 nd Stage of labour > 2 hours [Group 3]	p-value
	(n= 105; 53.0%)	(n= 38; 19.2%)		(n= 55; 27.8%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum					
Actinobacteria	3.389	3.261	0.208	2.173	0 122
Family	(1.128-16.016)	(0.353-12.096)	0.398	(0.326-10.133)	0.123
• Actinomycetaceae	0.015 (0.000-0.124)	0.035 (0.006-0.111)	0.260	0.016 (0.000-0.069)	0.742
Bifidobacteriaceae	3.328 (1.004-15.596)	2.825 (0.078-9.084)	0.253	2.142 (0.085-9.231)	0.120
Coriobacteriaceae	0.031 (0.008-0.104)	0.077 (0.008-0.353)	0.072	0.015 (0.008-0.118)	0.379
Genus					
Bifidobacterium	3.328 (1.004-15.596)	2.825 (0.078-9.073)	0.248	2.142 (0.085-9.231)	0.114
Actinomyces	0.015 (0.000-0.117)	0.035 (0.006-0.111)	0.216	0.016 (0.000-0.069)	0.749
Phylum Bacteroidetes	28.692 (0.086-69.635)	1.118 (0.047-55.877)	0.086	4.061 (0.046 -66.620)	0.333
Family Bacteroidaceae	23.083 (0058-66.432)	1.107 (0.039-48.172)	0.115	0.667 (0.039-65.791)	0.420
Genus Bacteroides	23.083 (0058-66.432)		0.115	0.667 (0.039-65.791)	0.420
Phylum Firmicutes	19.488 (6.593-39.532)	28.594 (15.495-54.824)	<mark>0.009</mark>	24.486 (8.103-49.189)	0.480
Family					
Enterococcaceae	0.023 (0.000-0.203)	0.015 (0.000-0.157)	0.475	0.024 (0.000-0.119)	0.867
Lactobacillaceae	0.000 (0.000-0.016)	0.000 (0.000-0.023)	0.904	0.000 (0.000-0.008)	0.502
Streptoccocaceae	0.503 (0.200-1.892)	0.628 (0.333-2.845)	0.235	0.710 (0.193-1.608)	0.873
Clostridiaceae	0.201 (0.024-1.491)	0.832 (0.047-5.271)	<mark>0.045</mark>	0.725 (0.039-5.712)	0.132
Lachnospiraceae	1.813 (0.051-8.744)	2.073 (0.060-7.899)	0.873	1.408 (0.031-9.646)	0.734
Ruminococcaceae	0.239 (0.000-1.845)	0.085 (0.000-1.044)	0.811	0.008 (0.000-0.685)	0.120
Veillionellaceae	4.041 (0.476-11.689)	8.887 (0.929-24.915)	0.098	4.212 (0.785-20.373)	0.430

Genus						
Enterococcus	0.023 (0.000-0.203)	0.015 (0.000-0.157)	0.537	0.023 (0.000-0.119)	0.919	
Lactobacillus	0.000 (0.000-0.016)	0.000 (0.000-0.023)	0.904	0.000 (0.000-0.008)	0.502	
Streptococcus	0.503 (0.200-1.892)	0.628 (0.333-2.845)	0.229	0.710 (0.193-1.608)	0.859	
Clostridium	0.016 (0.000-0.339)	0.077 (0.000-0.464)	0.335	0.062 (0.000-1.215)	0.177	
Ruminococcus	0.016 (0.000-1.140)	0.023 (0.008-1.861)	0.424	0.008 (0.000-1.222)	0.238	
Veillionella	3 312 (0 312-11 525) 7 231 (0 401-21 840)		0.291	2.214 (0.544- 19.495)	0.420	
Phylum						
Proteobacteria	15.664 (7.547-39.341)	22.993 (11.131-40.951)	0.210	22.815 (9.420-46.768)	<mark>0.039</mark>	
Family	12.791	22.529		21.832		
Enterobacteriaceae	(5.501-34.823)	(4.623-39.988)	0.168	(8.714-45.482)	<mark>0.014</mark>	
Genus						
Citrobacter	0.023 (0.000-0.178)	0.070 (0.000-0.517)	0.075	0.047 (0.000-0.364)	0.098	
Enterobacter_unclss	12.737 (5.226-34.815)	21.188 (4.474-37.516)	0.240	21.514 (8.632-43.868)	<mark>0.016</mark>	
Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values ≤ 0.05 are indicated in boldface type.						

Table 2.21a

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births with intrapartum antibiotics prophylaxis (IAP) without exclusive breastfeeding, according to the duration of second stage of labour (n= 89)

Bacterial Taxa	2 nd Stage of labour ≤ 1 hour [Reference:	2 nd Stage of labour > 1 to ≤ 2 hours	p-value	2 nd Stage of labour > 2 hours	p- value
	Group 1]	[Group 2]		[Group 3]	
	(n=47; 52.8%)	(n=14; 15.7%)		(n= 28; 31.5%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum	2.626	2.594		1.955	
Actinobacteria	(0.806-8.691)	(0.353-5.494)	0.372	(0.308-6.931)	0.128
Family					
Actinomycetaceae	0.015 (0.000-0.132)	0.035 (0.014-0.128)	0.347	0.023 (0.002-0.079)	0.686
Bifidobacteriaceae	2.306 (0.555-7.811)	2.370 (0.112-4.407)	0.295	1.881 (0.37-5.651)	0.154
Coriobacteriaceae	0.023 (0.008-0.124)	0.097 (0.026-0.284)	0.050	0.031 (0.008-0.145)	0.575
Genus					
Bifidobacterium	0.015 (0.000-0.132)	0.035 (0.014-0.128)	0.330	0.019 (0.000-0.074)	0.587
Actinomyces	2.306 (0.555-7.811)	2.370 (0.112-4.407)	0.295	1.881 (0.037-4.407)	0.154
Phylum					
Bacteroidetes	52.750 (0.155-70.349)	23.732 (0.045-60.780)	0.251	17.570 (0.054-71.266)	0.470
Family	43.965	23.447	0.231	0.656	0.470
Bacteroidaceae	(0.078-66.757)	(0.029-59.138)	0.337	(0.042-70.072)	0.518
Genus	42.0(5	22.447		0.656	
Bacteroides	43.965 (0.078-66.757)	23.447 (0.029-59.138)	0.337	(0.042-70.072)	0.518
Phylum			0.557	, , ,	0.010
Einniautaa	15.278	33.358	0.0(0	26.173	0.262
Firmicutes	(6.676-46.683)	(13.198-72.866)	0.069	(11.607-64.813)	0.363
Family			0.107		0.047
Enterococcaceae	0.016 (0.008-0.077)	0.008 (0.000-0.056)	0.186	0.023 (0.000-0.074)	0.847
Lactobacillaceae	0.000 (0.000-0.000)	0.000 (0.000-0.014)	0.785	0.000 (0.000-0.006)	0.804
Streptoccocaceae	0.402 (0.109-1.565)	0.628 (0.238-2.219)	0.515	0.575 (0.152-1.707)	0.827
Clostridiaceae	0.244 (0.062-1.347)	2.493 (0.275-5.674)	0.029	1.206 (0.517-6.021)	0.033
Lachnospiraceae	4.512 (0.536-14.395)	3.902 (1.937-15.280)	0.745	3.824 (0.461-19.859)	0.921
Ruminococcaceae	0.886 (0.047-3.833)	0.740 (0.068-7.980)	0.770	0.625 (0.000-2.944)	0.368
Veillionellaceae	4.419 (0.921-11.272)	11.152 (0.540-26.754)	0.223	4.803 (0.883-22.030)	0.540
	(0.721-11.272)	(0.570-20.757)	0.223	(0.005-22.050)	0.340

		1			T 1	
Genus						
Enterococcus	0.015 (0.008-0.077)	0.008 (0.000-0.056)	0.216	0.023 (0.000-0.062)	0.847	
Lactobacillus	0.000 (0.000-0.000)	0.000 (0.000-0.014)	0.785	0.000(0.000-0.006)	0.804	
Streptococcus	0.402 (0.109-1.565)	0.628 (0.238-2.219)	0.504	0.575 (0.152-1.707)	0.801	
Clostridium	0.016 (0.000-0.319)	0.082 (0.006-1.182)	0.377	0.277 (0.000-0.285)	<mark>0.047</mark>	
Ruminococcus	0.124 (0.000-1.565)	1.007 (0.014-2.621)	0.333	0.043 (0.000-1.512)	0.491	
Veillionella	3.926 (0.797-10.268)	8.062 (0.206-26.754)	0.548	3.499 (0.691-18.722)	0.638	
Phylum						
Proteobacteria	12.401 (3.833-24.835)	15.836 (6.320-27.117)	0.482	17.280 (3.406-33.552)	0.393	
Family						
Enterobacteriaceae	9.595 (3.613-19.858)	12.777 (4.245-27.030)	0.758	17.208 (3.366-32.261)	0.212	
Genus						
Citrobacter	0.031 (0.008-	0.074 (0.012-		0.067 (0.008-		
Enterobacter_unclss	0.178)	0.622)	0.199	0.207)	0.267	
_	9.186	12.412		17.065		
	(3.598-19.347)	(3.257-26.086)	0.797	(3.282-32.103)	0.224	
Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values < 0.05 are indicated in boldface type.						

Table 2.21b

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among vaginal births with intrapartum antibiotics prophylaxis (IAP) with exclusive breastfeeding, according to the duration of second stage of labour (n= 106)

	2 nd Stage of labour ≤ 1 hour	2 nd Stage of labour	p- value	2 nd Stage of labour > 2 hours	p- value
Bacterial Taxa	[Reference:	> 1 to ≤ 2 hours	value	Z nours	value
Bueteriur Tuxu	Group 1]	[Group 2]		[Group 3]	
	(n= 57; 53.8%)	(n= 22; 20.8%)		(n= 27; 25.5%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum					
Actinobacteria	4.807 (1.444-21.717)	4.194 (0.126-15.447)	0.431	4.492 0.811-13.703)	0.506
Family	(1.444-21.717)	(0.120-13.447)	0.431	0.011-13.705)	0.500
Actinomycetaceae	0.015 (0.000-0.093)	0.039 (0.000-0.225)	0.392	0.008(0.000-0.069)	0.844
Bifidobacteriaceae	4.366 (1.406-20.986)	3.734 (0.041- 11.498)	0.274	4.476 (0.788-10.543)	0.487
Coriobacteriaceae	0.039 (0.004-0.081)	0.054 (0.008-0.548)	0.248	0.008 (0.008-0.023)	0.077
Genus Bifidobacterium	4.366 (1.406-20.963)	3.734 (0.041-11.498)	0.260	4.476 (0.551-10.543)	0.464
Actinomyces	0.008 (0.000-0.093)	0.039 (0.000-0.225)	0.340	0.008 (0.000-0.069)	0.988
Phylum			0.540	· · · ·	0.988
Bacteroidetes	12.515 (0.062-69.415)	1.078 (0.044- 56.256)	0.353	2.686 (0.046-50.280)	0.524
Family		,			
Bacteroidaceae	9.529 (0.047-65.720)	1.047 (0.039-49.073)	0.320	2.686 (0.039-48.967)	0.635
Genus Bacteroides	9.529 (0.047-65.720)	1.047 (0.039-49.073)	0.320	2.686 (0.039-48.967)	0.635
Phylum					
Firmicutes	21.619 (5.931-38.200)	24.135 (15.495-53.194)	0.101	18.919 (4.960-45.998)	0.989
Family					
Enterococcaceae	0.031 (0.000-0.286)	0.027 (0.000-0.212)	0.598	0.062 (0.000-0.241)	0.803
Lactobacillaceae	0.000 (0.000-0.063)	0.000 (0.000-0.023)	0.589	0.000 (0.000-0.008)	0.325
Streptoccocaceae	0.518 (0.241-2.495)	0.541 (0.352-4.068)	0.562	0.710 (0.201-1.608)	0.844
Clostridiaceae	0.132 (0.008-1.621)	0.414 (0.021-8.092)	0.259	0.194 (0.008-3.602)	0.992
Lachnospiraceae	0.467 (0.023-7.465)	0.444 (0.021-6.496)	0.870	0.108 (0.015-4.887)	0.470
Ruminococcaceae	0.008 (0.000-0.825)	0.016 (0.000-0.462)	0.837	0.008 (0.000-0.031)	0.196
Veillionellaceae	3.399 (0.241-14.391)	8.075 (1.405- 21.972)	0.238	1.501 (0.317-20.373)	0.595

			1				
Genus							
Enterococcus	0.023 (0.000-0.286)	0.027 (0.000-0.212)	0.638	0.062 (0.000-0.241)	0.744		
Lactobacillus	0.000 (0.000-0.063)	0.000 (0.000-0.023)	0.589	0.000 (0.000-0.008)	0.325		
Streptococcus	0.518 (0.241-2.495)	0.541 (0.352-4.068)	0.562	0.710 (0.201-1.608)	0.844		
Clostridium	0.016 (0.000-0.700)	0.101 (0.000-2.704)	0.601	0.031 (0.000-0.575)	0.973		
Ruminococcus	0.008 (0.000-0.174)	0.008 (0.000-1.861)	0.773	0.000 (0.000-0.062)	0.167		
Veillionella	3.208	7.231		1.149			
	(0.190-14.391)	(0.824-17.013)	0.394	(0.295-20.373)	0.518		
Phylum							
·	18.951	29.370		40.721			
Proteobacteria	(9.584-40.815)	(11.267-43.596)	0.526	(18.982-63.415)	<mark>0.023</mark>		
Family							
Enterobacteriaceae	16.070	29.308		36.933			
EnteroDucternaceae	16.970 (8.930-38.258)	(7.116-43.489)	0.325	(18.799-53.122)	<mark>0.019</mark>		
Genus	(8.930-38.238)		0.323		0.019		
Citrobacter	0.008 (0.000-0.178)	0.051 (0.000-0.446)	0.325	0.046 (0.000-1.307)	0.281		
Enterobacter_unclss	16.628 (8.802-38.196)	26.334 (7.034- 40.035)	0.457	36.825 (18.799-51.103)	<mark>0.021</mark>		
Results are presented as	Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were						
performed using Mann-Whitney U-test. P values < 0.05 are indicated in boldface type.							

Table 2.22

Median relative abundance of dominant bacterial taxa at the genus level in infant gut microbiota at 3-4 months among C-section with labour, according to the duration of second stage of labour (n = 121)

Destarial Trees	2 nd Stage of labour ≤ 1 hour	2 nd Stage of labour > 1 hour	p- value
Bacterial Taxa	[Reference: Group 1] (n=95; 78.5%)	[Group 2] (n=26; 21.5%)	
-	Median (IQR)	Median (IQR)	
	,		
Phylum	N (%); IQR	N (%); IQR	
Actinobacteria	6.300	12.843	
Family	(0.699-14.836)	(0.344-26.763)	0.316
Actinomycetaceae	0.039 (0.008-0.177)	0.031 (0.006-0.089)	0.603
Bifidobacteriaceae	5.539 (0.478-13.926)	12.576 (0.052-26.612)	0.286
Coriobacteriaceae	0.047 (0.000-0.201)	0.031 (0.006-0.128)	0.803
Genus			
Bifidobacterium	0.031 (0.000-0.177)	0.031 (0.006-0.065)	0.665
Actinomyces	5.539 (0.478-13.773)	12.553 (0.043-26.591)	0.357
Phylum Bacteroidetes	0.116 (0.046-1.225)	0.139 (0.037-0.892)	0.736
Family			
• Bacteroidaceae	0.095 (0.039-0.644)	0.116 (0.029-0.861)	0.684
Genus			
Bacteroides	0.095 (0.039-0.644)	0.116 (0.029-0.861)	0.684
			0.004
Phylum			
Firmicutes	36.620 (22.709-61.669)	29.880 (16.229-48.427)	0.298
Family			
Enterococcaceae	0.046 (0.015-0.143)	0.183 (0.037-0.424)	0.009
Lactobacillaceae	0.000 (0.000-0.016)	0.000 (0.000-0.015)	0.420
Streptoccocaceae	1.052 (0.379-2.826)	0.826 (0.275-2.775)	0.840
Clostridiaceae	1.223 (0.170-7.011)	1.253 (0.460-3.532)	0.955
Lachnospiraceae	4.812 (0.039-14.438)	6.361 (0.056-13.827)	0.820
Ruminococcaceae	0.077 (0.008-2.616)	0.210 (0.008-1.471)	0.919
Veillionellaceae	11.666 (3.246-29.785)	4.997 (0.553-19.722)	0.068

Genus					
Enterococcus	0.031 (0.008-0.143)	0.151 (0.037-0.424)	<mark>0.008</mark>		
Lactobacillus	0.000 (0.000-0.016)	0.000 (0.000-0.015)	0.420		
Streptococcus	1.048 (0.378-2.810)	0.826 (0.275-2.775)	0.845		
Clostridium	0.209 (0.016-2.207)	0.321 (0.091-2.131)	0.429		
Ruminococcus	0.015 (0.000-1.608)	0.008 (0.000-4.509)	0.765		
Veillionella	9.652 (2.189-27.317)	4.923 (0.553-19.685)	0.148		
Phylum Proteobacteria	27.777 (13.426-51.000)	18.473 (6.916-42.204)	0.187		
Family					
Enterobacteriaceae	25.264 (11.272-50.253)	18.312 (6.881-38.661)	0.286		
Genus					
Citrobacter	0.151 (0.016-0.953)	0.023 (0.000-0.160)	<mark>0.007</mark>		
Enterobacter_unclss	22.900 (10.167-48.247)	17.726 (6.839-38.634)	0.427		
Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values < 0.05 are indicated in boldface type.					

Table 2.23

ACTINOBACTERIA

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of 2nd stage of labour

Microbiota Me	asure						
Ref. Group 1: 2nd Stage ≤ 1	Infant's gut microbiota at 3 to 4 months of age						
Hour	Phylum Actinobacteria		Family Bifidobacteriaceae	Family Coriobacteriaceae	Genus Bifidobacterium		
Group 2: 2nd Stage > 1 to ≤2 Hrs	(below	vs above median)	(below vs above median)	(below vs above median)	(below vs above median)		
Group 3: 2nd Stage > 2 Hrs	0	R (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)		
Crude OR for 2nd stage of	Group2	0.82 (0.56-1.20)	0.87 (0.59-1.28)	1.04 (0.71-1.52)	0.87 (0.59-1.28)		
labour	Group3	0.61 (0.43-0.86)*	0.57 (0.40-0.81)**	0.56 (0.39-0.79)**	0.57 (0.40-0.81)**		
Adjusted for delivery	Group2	0.81 (0.55-1.20)	0.86 (0.58-1.28)	1.02 (0.69-1.51)	0.86 (0.58-1.28)		
MODE by IAP	Group3	0.61 (0.43-0.86)*	0.57 (0.40-0.82)**	0.57 (0.40-0.81)**	0.57 (0.40-0.82)**		
Adjusted for gestational age	Group2	0.78 (0.53-1.15)	0.83 (0.57-1.22)	1.01 (0.69-1.48)	0.83 (0.57-1.22)		
	Group3	0.58 (0.41-0.82)*	0.55 (0.39-0.78)*	0.54 (0.38-0.77)**	0.55 (0.39-0.78)**		
Adjusted for infant diet at 3	Group2	0.76 (0.51-1.12)	0.80 (0.54-1.18)	1.15 (0.78-1.70)	0.80 (0.54-1.18)		
months	Group3	0.59 (0.42-0.84)*	0.56 (0.39-0.79)**	0.57 (0.40-0.81)**	0.56 (0.39-0.79)**		
Adjusted for	Group2	0.87 (0.59-1.29)	0.89 (0.60-1.32)	1.19 (0.80-1.76)	0.89 (0.60-1.32)		
parity	Group3	0.65 (0.45-0.94)*	0.59 (0.41-0.85)**	0.65 (0.45-0.95)*	0.59 (0.41-0.85)**		
Adjusted for ROM >18	Group2	0.80 (0.54-1.18)	0.85 (0.58-1.26)	1.05 (0.72-1.55)	0.85 (0.58-1.26)		
hours	Group3	0.54 (0.38- 0.78)**	0.52 (0.36-0.75)**	0.59 (0.41-0.85)**	0.52 (0.36-0.75)**		
Adjusted for baby's length	Group2	0.79 (0.54-1.17)	0.84 (0.57-1.24)	1.05 (0.71-1.54)	0.84 (0.57-1.24)		
of hospital stay	Group3	0.60 (0.42-086)*	0.57 (0.40-0.81)**	0.56 (0.39-0.80)**	0.57 (0.40-0.81)**		
Adjusted for infant's age at	Group2	0.82 (0.56-1.20)	0.86 (0.59-1.27)	1.05 (0.72-1.54)	0.86 (0.59-1.27)		
time of stool collection	Group3	0.60 (0.42- 0.85)**	0.57 (0.40-0.80)**	0.57 (0.40-0.80)**	0.57 (0.40-0.80)**		

Adjusted for maternal pre- pregnancy	Group2	0.80 (0.54-1.19)	0.85 (0.57-1.26)	1.13 (0.76-1.67)	0.85 (0.57-1.26)
weight	Group3	0.55 (0.38- 0.79)**	0.53 (0.37-0.76)**	0.56 (0.39-0.81)**	0.53 (0.37-0.76)**
MODEL 1	Group2	0.74 (0.48-1.15)	0.78 (0.51-1.21)	1.36 (0.88-2.11)	0.78 (0.51- 1.21)
	Group3	<mark>0.51</mark> (0.34-0.77)**	<mark>0.48</mark> (0.32-0.73)**	0.70 (0.46-1.06)	0.48 (0.32-0.73)**

MODEL 1: Adjusted for delivery mode by IAP, gestational age, infant diet, parity, ROM > 18 hours, length of hospital stay, stool collection age, maternal pre-pregnancy weight

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval

IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and Csection with labour

Table 2.24

BACTEROIDETES

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of 2nd stage of labour

Microbiota Measure							
Ref. Group 1: 2nd Stage < 1 Hour	Infant's gut microbiota at 3 to 4 months of age						
\leq 1 Hour Group 2: 2nd Stage > 1	Phylum Bacteroidetes		Family Bacteroidaceae	Genus Bacteroides			
to ≤ 2 Hrs							
Group 3: 2nd Stage > 2	(below	vs above median)	(below vs above median)	(below vs above median)			
Hrs	C	OR (95% CI)	OR (95% CI)	OR (95% CI)			
Crude OR for 2 nd stage of labour	Group2	1.12 (0.77-1.65)	1.06 (0.72-1.56)	1.06 (0.72-1.56)			
	Group3	0.97 (0.69-1.36)	0.88 (0.62-1.24)	0.88 (0.62-1.24)			
Adjusted for delivery MODE	Group2	0.70 (0.46-1.04)	0.63 (0.42-0.95)*	0.63 (0.42-0.95)*			
by IAP	Group3	0.84 (0.58-1.21)	0.74 (0.51-1.06)	0.74 (0.51-1.06)			
Adjusted for gestational age	Group2	1.09 (0.74-1.60)	1.02 (0.70-1.51)	1.02 (0.70-1.51)			
gestational age	Group3	0.94 (0.67-1.33)	0.85 (0.60-1.20)	0.85 (0.60-1.20)			
Adjusted for infant diet at 3 months	Group2	1.22 (0.83-1.80)	1.15 (0.78-1.69)	1.15 (0.78-1.69)			
at 5 months	Group3	0.97 (0.69-1.37)	0.90 (0.64-1.27)	0.90 (0.64-1.27)			
Adjusted for parity	Group2	1.19 (0.81-1.77)	1.15 (0.78-1.71)	1.15 (0.78-1.71)			
	Group3	1.04 (0.73-1.50)	0.98 (0.68-1.40)	0.98 (0.68-1.40)			
Adjusted for ROM > 18 hours	Group2	1.08 (0.73-1.59)	1.02 (0.69-1.49)	1.02 (0.69-1.49)			
10 110013	Group3	0.98 (0.69-1.40)	0.88 (0.62-1.26)	0.88 (0.62-1.26)			
Adjusted for baby's length of hospital stay	Group2	1.10 (0.74-1.62)	1.04 (0.70-1.53)	1.04 (0.70-1.53)			
length of hospital stay	Group3	0.94 (0.66-1.33)	0.87 (0.61-1.24)	0.87 (0.61-1.24)			
Adjusted for infant's age at the time of stool	Group2	1.13 (0.77-1.66)	1.07 (0.73-1.57)	1.07 (0.73-1.57)			
collection	Group3	0.98 (0.69-1.38)	0.89 (0.63-1.25)	0.89 (0.63-1.25)			
Adjusted for maternal pre-pregnancy weight	Group2	1.10 (0.74-1.62)	1.03 (0.70-1.53)	1.03 (0.70-1.53)			
	Group3	0.95 (0.67-1.35)	0.88 (0.62-1.25)	0.88 (0.62-1.25)			

MODEL 1	Group2	0.68 (0.44-1.07)	0.63 (0.40-0.98)	0.63 (0.40-0.98)
	Group3	0.78 (0.51-1.19)	0.73 (0.47-1.12)	0.73 (0.47-1.12)

MODEL 1: Adjusted for delivery mode by IAP, gestational age, infant diet, parity, ROM > 18 hours, length of hospital stay, stool collection age, maternal pre-pregnancy weight

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval

IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and Csection with labour

FIRMICUTES

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of 2nd stage of labour

Ref. Group 1: 2nd Stage \leq		Infant's gut microbiota at 3 to 4 months of age							
1 Hour		PHYLUM FAMILY							
Group 2: 2nd Stage > 1 to ≤2 Hrs		FIRMICUTES	Streptococcaceae	Clostridiaceae	Lactobacillaceae	Ruminococcaceae	Veillonellaceae		
		(below vs above median)	(below vs above median)	(below vs above median)	(below vs above median)	(below vs above median)	(below vs above median)		
Group 3: 2nd Stag Hrs	ge > 2	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)		
Crude OR for 2nd stage of labour	Group2	0.94 (0.64-1.37)	1.03 (0.70-1.51)	1.23 (0.84-1.81)	0.85 (0.57-1.27)	0.75 (0.51-1.11)	0.87 (0.59-1.27)		
laboul	Group3	1.00 (0.71-1.41)	0.97 (0.69-1.36)	1.67 (1.18- 2.37)**	0.62 (0.42-0.89)*	0.75 (0.53-1.06)	1.18 (0.84-1.66)		
Adjusted for delivery MODE by IAP	Group2	1.28 (0.86-1.90)	1.14 (0.77-1.69)	1.61 (1.08-2.40)*	0.82 (0.54-1.23)	0.77 (0.52-1.15)	1.11 (0.75-1.65)		
-	Group3	1.09 (0.77-1.55)	1.00 (0.71-1.42)	1.80 (1.26- 2.58)**	0.61 (0.42-0.89)*	0.76 (0.55-1.10)	1.26 (0.89-1.79)		
Adjusted for gestational age	Group2	0.96 (0.65-1.41)	0.99 (0.67-1.46)	1.28 (0.87-1.89)	0.86 (0.58-1.28)	0.75 (0.51-1.11)	0.86 (0.59-1.27)		
	Group3	1.02 (0.72-1.44)	0.94 (0.67-1.33)	1.73 (1.22- 2.46)**	0.62 (0.43-0.90)*	0.75 (0.53-1.06)	1.17 (0.83-1.65)		
Adjusted for infant diet at 3 months	Group2	0.96 (0.65-1.42)	1.00 (0.68-1.47)	1.29 (0.87-1.89)	0.77 (0.51-1.16)	0.85 (0.56-1.29)	0.90 (0.61-1.33)		
montins	Group3	0.99 (0.70-1.40)	0.96 (0.68-1.35)	1.67 (1.18- 2.38)**	0.60 (0.41-0.88)**	0.72 (0.50-1.05)	1.20 (0.85-1.70)		
Adjusted for parity	Group2	0.88 (0.59-1.30)	0.98 (0.66-1.45)	1.03 (0.70-1.54)	0.85 (0.5701.28)	0.80 (0.54-1.18)	0.84 (0.57-1.25)		
parity	Group3	0.92 (0.64-1.33)	0.91 (0.64-1.31)	1.34 (0.93-1.94)	0.61 (0.41-0.90)	0.81 (0.56- 1.16)	1.13 (0.79-1.62)		
Adjusted for ROM >18 hours	Group2	0.96 (0.65-1.41)	1.07 (0.72-1.57)	1.23 (0.84-1.81)	0.85 (0.57-1.27)	0.75 (0.5111)	0.88 (0.60-1.29)		
	Group3	1.00 (0.65- 1.42)	1.05 (0.74-1.50)	1.46 (1.02-2.10)*	0.66 (0.45-0.97)*	0.77 (0.54-1.11)	1.14 (0.79-1.62)		
Adjusted for baby's length of hospital stay	Group2	0.98 (0.66-1.45)	1.10 (0.69-1.49)	1.30 (0.88-1.92)	0.84 (0.56-1.25)	0.77 (0.52-1.14)	0.88 (0.60-1.29)		
	Group3	1.00 (0.70-1.43)	0.91 (0.64- 1.29)	1.59 (1.12-2.28)*	0.58 (0.40-0.86)*	0.76 (0.53-1.08)	1.22 (0.86-1.74)		
Adjusted for infant's age at	Group2	0.96 (0.65-1.40)	1.01 (0.69-1.48)	1.24 (0.85-1.82)	0.85 (0.57-1.26)	0.77 (0.52-1.14)	0.89 (0.60-1.31)		

the time of stool collection	Group3	1.03 (0.73-1.45)	0.95 (0.67-1.33)	1.69 (1.19-2.39)*	0.61 (0.42-0.88)*	0.78 (0.55-1.11)	1.22 (0.86-1.73)
Adjusted for maternal pre- pregnancy	Group2	1.00 (0.68-1.48)	1.07 (0.73-1.59)	1.17 (0.79-1.73)	0.84 (0.56-1.26)	0.77 (0.52-1.14)	0.85 (0.57-1.26)
weight	Group3	1.00 (0.70-1.42)	0.92 (0.65-1.31)	1.60 (1.12-2.27)*	0.60 (0.41-0.88)*	0.75 (0.53-1.08)	1.17 (0.82-1.66)
MODEL 1	Group2	1.41 (0.91-2.18)	1.14 (0.74-1.76)	1.36 (0.88-2.11)	0.75 (0.48-1.19)	0.92 (0.57-1.47)	1.16 (0.75-1.79)
	Group3	1.05 (0.70-1.59)	0.88 (0.59-1.32)	1.16 (0.77-1.75)	<mark>0.63</mark> (0.41-0.98)*	0.86 (0.55-1.36)	1.31 (0.87-1.99)

MODEL 1: Adjusted for delivery mode by IAP, gestational age, infant diet, parity, ROM > 18 hours, length of hospital stay, stool collection age, maternal pre-pregnancy weight

<mark>* p <0.05; ** p<0.005</mark>;

OR = odds ratio; CI = confidence interval

IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and C-section with labour

Table 2.25b

FIRMICUTES

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of 2nd stage of labour

Infant's gut microbiota at 3 to 4 months of age								
Daf Crown 1. and Star	Ref. Group 1: 2nd Stage ≤ 1 GENUS							
Hour $12 \text{ and Stage} \leq 1$		Lactobacillus Streptococcus Clostridium Ruminococcus Veillionella						
11001		Luciobucinus	Suepiococcus	Closinaliam	Kuminococcus	r ennonena		
Group 2: 2nd Stage > 1 to ≤2 Hrs		(below vs above median)	(below vs above median)	(below vs above median)	(below vs above median)	(below vs above median)		
Group 3: 2nd Stage > 2	2 Hrs	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)		
Crude OR for 2 nd stage of labour	Group2	0.85 (0.57-1.27)	1.02 (0.70-1.50)	1.10 (0.75-1.62)	0.89 (0.61-1.31)	0.83 (0.56-1.21)		
	Group3	0.62 (0.42-0.89)*	0.94 (0.67-1.32)	1.68 (1.18-2.38)**	0.83 (0.59-1.16)	1.10 (0.78-1.55)		
Adjusted for delivery MODE by IAP	Group2	0.82 (0.54-1.23)	1.14 (0.77-1.70)	1.56 (1.05-2.33)*	0.76 (0.51-1.12)	1.11 (0.75-1.66)		
	Group3	0.61 (0.42-0.89)*	0.98 (0.69-1.38)	1.84 (1.28-2.65)**	0.78 (0.55-1.10)	1.20 (0.84-1.71)		
Adjusted for gestational age	Group2	0.86 (0.58-1.28)	0.98 (0.67-1.45)	1.15 (0.78-1.70)	0.88 (0.60-1.30)	0.82 (0.56-1.20)		
	Group3	0.62 (0.43-0.90)*	0.91 (0.64-1.29)	1.74 (1.23-2.48)**	0.82 (0.58-1.15)	1.09 (0.77-1.54)		
Adjusted for infant diet at 3 months	Group2	0.77 (0.51-1.16)	0.99 (0.68-1.46)	1.10 (0.74-1.61)	0.98 (0.66-1.46)	0.85 (0.58-1.26)		
	Group3	0.60 (0.41-0.88)*	0.93 (0.66-1.31)	1.64 (1.16- 2.33)**	0.82 (0.58-1.17)	1.13 (0.80-1.59)		
Adjusted for parity	Group2	0.85 (0.57-1.28)	0.96 (0.65-1.42)	0.95 (0.64-1.42)	1.00 (0.67-1.48)	0.79 (0.54-1.18)		
	Group3	0.61 (0.41-0.90)*	0.87 (0.61-1.25)	1.40 (0.97-2.02)	0.95 (0.66-1.37)	1.05 (0.73-1.50)		
Adjusted for ROM >18 hours	Group2	0.85 (0.57-1.27)	1.06 (0.72-1.56)	1.12 (0.76-1.65)	0.93 (0.63-1.37)	0.84 (0.57-1.23)		
	Group3	0.66 (0.45-0.97)*	1.02 (0.71-1.45)	1.56 (1.08-2.24)*	0.84 (0.59-1.20)	1.06 (0.74-1.52)		
Adjusted for baby's length of hospital stay	Group2	0.84 (0.56-1.25)	1.00 (0.68-1.48)	1.14 (0.77-1.69)	0.89 (0.60-1.31)	0.84 (0.57-1.24)		

	Group3	0.58 (0.40-0.86)*	0.88 (0.62-1.25)	1.66 (1.16-2.39)*	0.85 (0.60-1.21)	1.11 (0.78-1.59)
Adjusted for infant's age at the time of stool collection	Group2	0.85 (0.57-1.26)	1.00 (0.68-1.47)	1.10 (0.75-1.61)	0.92 (0.62-1.36)	0.84 (0.57-1.24)
	Group3	0.61 (0.42-0.88)*	0.92 (0.65-1.29)	1.67 (1.18-2.37)	0.86 (0.60-1.21)	1.13 (0.80-1.60)
Adjusted for maternal pre-pregnancy weight	Group2	0.84 (0.56-1.26)	1.07 (0.72-1.58)	1.06 (0.72-1.57)	1.00 (0.68-1.48)	0.82 (0.55-1.22)
	Group3	0.60 (0.41-0.88)*	0.89 (0.63-1.27)	1.66 (1.16-2.38)*	0.84 (0.59-1.20)	1.08 (0.76-1.53)
MODEL 1	Group2	0.75 (0.48-1.19)	1.14 (0.74-1.75)	1.35 (0.88-2.09)	0.99 (0.63-1.55)	1.16 (0.75-1.79)
	Group3	<mark>0.63</mark> (0.41-0.98)*	0.84 (0.56-1.25)	1.44 (0.58-1.37)	0.90 (0.58-1.37)	1.20 (0.79-1.81)

MODEL 1: Adjusted for delivery mode by IAP, gestational age, infant diet, parity, ROM > 18 hours, length of hospital stay, stool collection age, maternal pre-pregnancy weight

<mark>* p <0.05; ** p<0.005</mark>;

OR = odds ratio; CI = confidence interval

IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and C-section with labour

Table 2.26

PROTEOBACTERIA

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of 2nd stage of labour

Microbiota Measure									
Ref. Group 1: 2nd	Infant's gut microbiota at 3 to 4 months of age								
Stage ≤ 1 Hr Group 2: 2nd Stage > 1 to ≤ 2 Hrs Group 3: 2nd Stage > 2	Pro	Phylum oteobacteria //s above median)	Family Enterobacteriaceae (below vs above median)	Genus Citrobacter (below vs above median)	Genus Enterobacter (unclassified) (below vs above median)				
Hrs	OR (95% CI)		OR (95% CI)	OR (95% CI)	OR (95% CI)				
Crude OR for 2 nd stage of labour	Group2	1.11 (0.76-1.63)	1.12 (0.76-1.64)	1.23 (0.84-1.81)	1.26 (0.86- 1.85)				
	Group3	1.12 (0.80-1.58)	1.13(0.80-1.59)	1.24 (0.88-1.75)	1.07 (0.76- 1.51)				
Adjusted for delivery MODE	Group2	1.37 (0.92-2.03)	1.38 (0.93-2.05)	1.53 (1.03-2.27)	1.63 (1.09- 2.43)				
by IAP	Group3	1.19 (0.84-1.69)	1.120 (0.84-1.70)	1.33 (0.94-1.89)	1.17 (0.82- 1.66)				
Adjusted for gestational age	Group2	1.12 (0.76-1.65)	1.12 (0.77-1.65)	1.27 (0.86-1.87)	1.30 (0.88- 1.91)				
	Group3	1.13 (0.80-1.59)	1.13 (0.80-1.60)	1.27 (0.90-1.80)	1.10 (0.78- 1.55)				
Adjusted for infant diet at 3 months	Group2	0.98 (0.66-1.46)	0.99 (0.67-1.46)	1.21 (0.82-1.78)	1.19 (0.81- 1.75)				
	Group3	1.11 (0.78-1.58)	.12 (0.79-1.59)	1.23 (0.87-1.73)	1.08 (0.76- 0.52)				
Adjusted for parity	Group2	1.06 (0.72-1.58)	1.05 (0.70-1.54)	1.15 (0.78-1.71)	1.12 (0.76- 1.67)				
	Group3	1.06 (0.74-1.52)	1.03 (0.72-1.47)	1.14 (0.79-1.63)	0.92 (0.64- 1.32)				
Adjusted for ROM >18 hours	Group2	1.14 (0.78-1.68)	1.14 (0.78-1.67)	1.19 (0.81-1.75)	1.26 (0.85- 1.85)				
	Group3	1.07 (0.75-1.53)	1.05 (0.74-1.50)	1.29 (0.90-1.84)	1.03 (0.72- 1.47)				
Adjusted for length of hospital stay	Group2	1.10 (0.75-1.62)	1.11 (0.76-1.64)	1.18 (0.80-1.73)	1.22 (0.83- 1.80)				
~ ~	Group3	1.13 (0.80-1.61)	1.14 (0.81-1.63)	1.14 (0.80-1.62)	0.93 (0.66- 1.33)				
Adjusted for infant's age at the time of	Group2	1.09 (0.74-1.60)	1.10 (0.75-1.61)	1.22 (0.83-1.79)	1.06 (0.72- 1.57)				
stool collection	Group3	1.09 (0.77-1.54)	1.10 (0.78-1.55)	1.22 (0.87-1.73)	1.12 (0.80- 1.59)				
Adjusted for maternal pre-	Group2	1.10 (0.74-1.63)	1.11 (0.75-1.64)	1.22 (0.82-1.80)	1.24 (0.83- 1.83)				
pregnancy weight	Group3	1.13 (0.79-1.61)	1.14 (0.80-1.62)	1.23 (0.87-1.75)	1.12 (0.79- 1.60)				

	Group2	1.28	1.27	1.43	1.21		
		(0.82 - 2.00)	(0.82-1.97)	(0.92 - 2.20)	(0.78-1.89)		
MODEL 1	Group3	1.14	1.10	1.26	1.16		
		(0.75 - 1.73)	(0.72 - 1.67)	(0.83-1.89)	(0.76-1.76)		
MODEL 1: Adjusted for delivery mode by IAP, gestational age, infant diet, parity, ROM > 18 hours,							
length of hospital stay, stool collection age, maternal pre-pregnancy weight							
* $p < 0.05$; ** $p < 0.005$; OR = odds ratio; CI = confidence interval							

IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and C-section with labour

Table 2.27

Crude and adjusted likelihood ratio of gut microbiota richness and diversity measures at 3-4 months according to duration of 2nd stage of labour

Ref. Group 1: 2nd Stage ≤1Hr		Chao1 richness	Shannon diversity
Group 2: 2nd Stage > 1 to ≤2 Hrs	(be	elow vs above median)	(below vs above median)
Group 3: 2nd Stage > 2 Hrs		OR (95% CI)	OR (95% CI)
Crude OR for 2 nd stage of	Group2	0.75 (0.51-1.10)	0.78 (0.54-1.15)
labour	Group3	0.94 (0.67-1.32)	0.68 (0.48-0.96)*
Adjusted for	Group2	0.73 (0.49-1.08)	0.81 (0.55-1.20)
delivery MODE by IAP	Group3	0.92 (0.65-1.29)	0.69 (0.49-0.97)*
Adjusted for gestational	Group2	0.72 (0.49-1.06)	0.75 (0.51-1.10)
age	Group3	0.91 (0.65-1.29)	0.65 (0.46-0.93)*
Adjusted for infant diet at 3	Group2	0.81 (0.54-1.21)	0.83 (0.56-1.23)
months	Group3	0.97 (0.68-1.38)	0.67 (0.47-0.96)*
	Group2	0.71 (0.48-1.05)	0.79 (0.53-1.17)
Adjusted for parity	Group3	0.88 (0.61-1.26)	0.69 (0.48-0.99)*
Adjusted for ROM >18	Group2	0.74 (0.50-1.09)	0.80 (0.54-1.18)
hours	Group3	0.90 (0.63-1.28)	0.66 (0.46-0.95)*
Adjusted for baby's length	Group2	0.71 (0.48-1.05)	0.73 (0.49-1.07)
of hospital stay	Group3	0.93 (0.65-1.32)	0.63 (0.45-0.91)*
Adjusted for infant's age at	Group2	0.76 (0.52-1.12)	080 (0.54-1.18)
the time of stool collection	Group3	0.96 (0.68-1.36)	0.70 (0.49-0.99)*
Adjusted for maternal pre-	Group2	0.74 (0.50-1.10)	0.78 (0.53-1.15)
pregnancy weight	Group3	0.93 (0.66-1.33)	0.66 (0.46-0.94)*
	Group2	0.64 (0.41-1.00)	
MODEL 1			0.80 (0.51-1.24)
	Group3	0.076 (0.50-1.16)	<mark>0.60 (0.39-0.91)* ;</mark> p=0.016

MODEL 1: Adjusted for delivery mode by IAP, gestational age, infant diet, parity, ROM > 18 hours, length of hospital stay, stool collection age, maternal pre-pregnancy weight

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

Delivery mode by IAP categories: Vaginal and no IAP, Vaginal with IAP, Elective C-section and C-section with labour

Figure 2.2

Median relative abundance of dominant bacterial taxa at the **phylum level** in infant gut microbiota at 3-4 months *among all birth modes* (vaginal plus C-section), according to the <u>duration of active</u> <u>first stage of labour</u> (n=918)

Active 1st Stage of Labour (Hours)

- Group 1: Active 1^{st} Stage duration ≤ 6 hour (Reference group)
- Group 2: Active 1^{st} Stage duration > 6 to ≤ 13 hours
- Group 3: Active 1st Stage duration > 13 hours

```
* indicates p <0.05; ** indicates p<0.005
```

Graph generated based on comparisons made by Mann-Whitney U test

Figure 2.3

Median relative abundance of dominant bacterial taxa at the **family level** in infant gut microbiota at 3-4 months among **VAGINAL births without intrapartum antibiotic prophylaxis (IAP)**, according to the <u>duration of active first stage of labour</u> (n=477)

^{*} indicates p <0.05; ** indicates p<0.005; IAP = Intrapartum Antibiotic Prophylaxis

Figure 2.4

Median relative abundance of dominant bacterial taxa at the **family level** in infant gut microbiota at 3-4 months among **VAGINAL births with intrapartum antibiotics prophylaxis (IAP)**, according to the <u>duration of active first stage of labour</u> (n=189)

* indicates p <0.05; ** indicates p<0.005; IAP = Intrapartum Antibiotic Prophylaxis

Figure 2.5

Median relative abundance of dominant bacterial taxa at the **family level** in infant gut microbiota at 3-4 months among infants born by **C-section with active 1st stage of labour**, according to the duration of active first stage of labour

Figure 2.6 *Adjusted likelihood ratio of abundance of key gut microbiota measures at **genus level** (below and above median) at 3-4 months according to <u>duration of 1st stage of labour</u>

*Odds ratio adjusted for delivery mode by IAP, gestational age, infant diet, parity, membrane rupture >18 hours, length of baby's hospital stay, age at stool collection and maternal prepregnancy weight

Figure 2.7

Median relative abundance of dominant bacterial taxa at the **phylum level** in infant gut microbiota at 3-4 months among *all birth modes* (vaginal plus C-section), according to the duration of **second stage of labour**

Group 1: 2^{nd} Stage duration ≤ 1 hour (Reference group)

- Group 2: 2^{nd} Stage duration >1 to ≤ 2 hours
- Group 3: 2nd Stage duration >2 hours

** indicates p<0.005; * indicates p<0.05

Graphs based on comparisons made by Mann-Whitney U test

Figure 2.8 Median relative abundance of dominant bacterial taxa at the **family level** in infant gut microbiota at 3-4 months among **VAGINAL births without intrapartum antibiotic prophylaxis (IAP),** according to <u>duration of second stage of labour</u> (n= 503)

** indicates p<0.005; * indicates p<0.05

IAP = Intrapartum Antibiotic Prophylaxis

Figure 2.9

Median relative abundance of dominant bacterial taxa at the **family level** in infant gut microbiota at 3-4 months among **VAGINAL births with intrapartum antibiotics prophylaxis (IAP)**, according to the <u>duration of second stage of labour</u> (n= 198)

^{**} indicates p<0.005; * indicates p<0.05

IAP = Intrapartum Antibiotic Prophylaxis

Figure 2.10

Median relative abundance of dominant bacterial taxa at the **family level** in infant gut microbiota at 3-4 months among infants born by **C-section with labour**, according to <u>the duration of second</u> stage of labour (n = 121)

** indicates p<0.005; * indicates p<0.05; IAP = Intrapartum Antibiotic Prophylaxis

Figure 2.11

*Adjusted likelihood ratio of abundance of key gut microbiota measures at **genus level** (below and above median) at 3-4 months according to <u>duration of 2^{nd} stage of labour</u>

*Odds ratios adjusted for delivery mode by IAP, gestational age, infant diet, parity, membrane rupture >18 hours, length of baby's hospital stay, age at stool collection and maternal prepregnancy weight

CHAPTER 3

Labour Duration and Maternal Pre-Pregnancy Weight: Influence on Infant Gut Microbiota Composition at 3-4 months of age

3.1 Background

Pediatric obesity is a global epidemic, and Canadian children are among the most affected. Despite its decrease in prevalence from 30.7% to 27.0% between 2004 and 2013 (1), childhood obesity remains a serious public health challenge in Canada. To add to the alarming burden, increasing number of children are at risk of overweight at an earlier age. Biro et al found that 6.7% of Canadian toddlers aged less than 2 years are already overweight or obese, and one in four (18.0%) of toddlers are at risk of overweight (2). Obese children are not only at risk of growing up into obese adolescents and obese adults, but also have higher risk of metabolic syndrome and Type 2 Diabetes Mellitus, and higher morbidity and mortality (3). Thus, many research efforts have focused on delineating the roots of childhood obesity.

Childhood obesity has multi-factorial etiology. While increased caloric intake and sedentary life-style are obvious causes, genetics and perinatal influences also play important roles in development of childhood obesity (4). Interestingly, increased maternal weight gain prior to conception and increased gestational weight gain can also influence the progeny's weight gain. Both maternal pre-pregnancy overweight (5) (6), and excessive gestational weight gain (7) (8) are potent predictors of weight gain in the offspring, and recent evidence suggests that study of gut microbiome might elucidate the unique connection between maternal overweight and offspring adiposity.

The gut microbiota help maintain energy balance by breaking down the short-chain fatty acids of dietary fiber and facilitating host energy extraction. The role of gut microbiota in energy homeostasis has been demonstrated by several studies (9) (10) (11) (12). Imbalances in the gut microbial composition i.e. gut dysbiosis, has been linked to aberrant energy storage and adiposity in murine and adult human studies. Turnbaugh et al compared the gut microbiota of lean mice and

mice with diet-induced obesity, and observed higher abundance of Firmicutes in the latter group (10). Upon investigation of obese human subjects, perturbations of two dominant gastrointestinal phyla, Bacteroidetes and Firmicutes, has been found to be obesogenic. Some studies have observed a dysbiotic adult gut microbial profile comprising of higher abundance of Firmicutes and lower abundance of Bacteroidetes is associated with increased adiposity (13) (14) (15) whereas other studies have documented lower abundance of gut Firmicutes and higher abundance of Bacteroidetes (16) (17). Recent evidence suggest that pediatric obesity is also associated with imbalances in gut microbiota. Riva et al observed alterations in the gut microbiota in obese children characterized by divergent colonization of Firmicutes and Bacteroidetes compared to normal weight counterparts (18). Besides, based on limited evidence available for infant studies, obesehost phenotype in children may be influenced by more complex disruption in the gut microbial composition than simple alterations of just the Bacteroidetes and Firmicutes phyla. In a study of age-matched children from a prospective follow-up cohort, Kalliomäki et al found lower abundance of Bifidobacteria (of phylum Actinobacteria) and higher abundance of Staphylococcus (of phylum Firmicutes) in fecal samples during infancy was associated with higher body mass index (BMI) at a later age (19). Another study also observed that infants with reduced gut Bifidobacteria counts at age of 3 months went on to develop higher BMI at age 10 years (20). Compiling evidence from available studies, Kozyrskyj et al observed that a higher Lactobacillus yet a lower *Bacteroides* spp. colonization in infants aged less than 3 months may predict risk for childhood overweight, with male infants being disproportionately affected (21). In addition, concentrations of the main metabolites produced by gut bacteria, i.e. short chain fatty acids (SCFAs) such as acetate, propionate and butyrate were found to be significantly increased in fecal samples of obese children compared to normal-weight controls (18), suggesting that elevated substrate utilization and energy harvesting capacity facilitated by the dysbiotic gut microbiota may be the mechanism for increased adiposity in obese children. Interestingly, overweight or obesity associated compositional changes in the gut microbiota are also evident in expectant women with elevated BMI.

There is inter-individual variation in the composition of gut microbes in humans, and pregnancy promotes changes in the maternal gut microbiota. While the composition of gut microbiota in the first trimester are comparable to the healthy non-pregnant counterparts, expectant women in third trimester show substantial inter-individual variation in gut microbial diversity,

along with an increased abundance of phyla Proteobacteria and Actinobacteria, and reduced microbial richness (22). To add, the changes in maternal gut microbiota are also influenced by prepregnancy maternal body weight and weight gain during pregnancy. Compared to women with normal BMI, Collado et al found distinct composition of gut microbiota in overweight pregnant women characterized by significantly higher presence of *Clostridium* and *Staphylococcus* (both of phylum Firmicutes) and *Bacteroides* (of phylum Bacteroidetes) (23). In another study, Santacruz et al found increased numbers of *Staphylococcus* (of phylum Firmicutes), *Enterobacteriaceae* and *E. coli* (both of phylum Proteobacteria) but reduced numbers of *Bacteroides* and *Bifidobacterium* in overweight pregnant women as compared to the normal weight controls (24). In a more recent study, Stanislawski et al observed that maternal overweight or obesity is associated with lower maternal alpha diversity (gut microbial diversity), and distinct differences in the family *Christensenellaceae*, the genera *Lachnospira, Parabacteroides*, *Bifidobacterium*, and *Blautia* as compared to normal weight women (25). These studies suggest the presence of distinctly atypical gut microbiota in pregnant women with increased BMI.

Interestingly, maternal overweight during pregnancy can influence the composition of gut microbes in the offspring. Mueller et al compared the fecal microbiota of neonates based on maternal pre-pregnancy body mass index. Compared to neonates delivered vaginally to normal weight mothers, neonates born to overweight or obese mothers had a distinct gut microbial composition, enriched in *Bacteroides* and depleted in *Enterococcus, Acinetobacter*, Pseudomonas, and Hydrogenophilus (26). Since maternal microbiome is the first source of gut microbiota in the neonates, atypical maternal fecal microbiota could be implicated divergent microbial seeding for the newborn gut. In a prospective follow-up study, Collado et al examined the infant gut microbiota at 1 and 6 months of age based on maternal pre-pregnancy BMI and gestational weight gain. Compared to infants of normal weight mothers, infants of overweight mothers showed higher abundance of fecal Bacteroides, Clostridium and Staphylococcus, and lower concentrations of the Bifidobacterium group (27). In contrast, Stanislawski et al observed that although the specific gut microbial profile observed in overweight and obese parturients significantly increased the presence of those specific OTUs in their neonates at age of 4-10 days, these changes did not impact the overall differences in the infant gut microbiota over the first 2 years of life (25). These findings suggest that changes in early infant gut microbial composition may be influenced by increased maternal pre-pregnancy weight.

Overweight and obese parturients are at higher risk of labour complications such as dysfunctional labour, abnormally slow progression of labour (28) (29) (30) (31). Based on currently available evidence, altered labour progression associated with maternal obesity is hypothesized to occur due to altered metabolic regulation of uterine contractility associated with hyperlipidemia and leptin resistance. Hypercholesterolemia in obese women, secondary to increased insulin resistance and increased lipolysis, has been proposed to alter the effectiveness of myometrial contractions by affecting intracellular $[Ca^{2+}]$ flux (32). In addition, obesity-associated leptin resistance and increased levels of circulating leptin may also contribute to protracted labour in obese women since leptin inhibits the onset of spontaneous and oxytocin induced myometrial activity (33). The *active* phase of first stage of labour, i.e. cervical dilation from 4 to 10 cm, is prolonged in parturients with elevated BMI. Kominiarek et al investigated 118,978 gravidas with a singleton term pregnancy and found that increasing maternal BMI was associated with increasing duration of active first stage of labour in both nulliparas and multiparas (28). Similarly, Carlhäll et al studied 63,829 nulliparous women with a singleton pregnancy and spontaneous onset of labour comparing overweight and obese women, and found that the risk of labour lasting more than 12 hours increased with increasing BMI (31). Once the second stage was reached, duration of labour shortened in obese women as compared to normal weight women (31). Since the fetus's first major contact to maternal vaginal and fecal microbes is during its passage through vaginal canal, it is arguable that the prolonged labour duration may affect the degree of gut microbial seeding in the offspring of overweight or obese mothers. Further, slow abnormal progression of labour with protracted first stage, often culminating into unplanned C-section is common obstetric course for many overweight nulliparas. Hillard et al compared pregnant women with based on their BMI [normal (≤ 24), overweight (25 to 29.9), or obese ($\geq 30 \text{ kg/m}^2$)], and found different Cesarean delivery rates among the three groups (p=0.0001), with highest CS rate in the obese category (29). In a systematic review and meta-analysis of 11 papers, Poobalan et al found that the risk of unplanned CS delivery is increased by 50% in overweight women [pooled OR =1.64, 95%] CI = 1.55 - 1.73], and is more than double for obese women [pooled OR = 2.23, 95%CI=2.07-2.42], as compared to women with normal BMI (34). C-section born infants possess gut dysbiosis (35) (36), and this may add additional concern for infants of overweight and obese mothers born after prolonged labour.

Balanced development of the gut microbiota in infant is essential for its future health. Evidence links infant gut dysbiosis to higher risk of childhood obesity (19). Increased prepregnancy overweight or obesity, which have been associated separately with maternal gut dysbiosis (22) (23) (25), infant gut dysbiosis (26) (27), and increased weight gain in their offspring (5) (6) (8), are also risk factors for slow, dysfunctional labour (28) (29) (31) and other labour complications. Since mode of birth is a strong determinant for microbial seeding of the newborn gut and balanced development of the infant gut microbiota, the prolonged labour duration and higher propensity for emergency CS in overweight/obese mothers (who have atypical gut microbiota) might alter the gut microbial seeding and gut microbiota development in their infants. At present, no study has investigated the role of labour duration in overweight/ obese parturients on infant gut microbial composition of their infants.

Our study aims to investigate how labour duration is associated with infant gut microbiota composition at 3-4 months of age in infants born to mothers of different pre-pregnancy BMI categories.

3.2 Materials and Methods

3.2.1 Study design

This study involved a subsample of 999 infants from three study sites (Edmonton, Vancouver and Winnipeg) of the CHILD cohort (<u>www.childstudy.ca</u>) whose mothers were enrolled during pregnancy between 2009 and 2012. Information on labour duration and birth characteristics, mode of delivery and some covariates were obtained for hospital charts. Complete information on a*ctive* first stage of labour (cervical dilation from 4 cm to 10 cm) was obtained for 884 mothers. Complete information on second stage of labour (fully dilated cervix to expulsion of the fetus) was obtained for 921 mothers.
For vaginally delivered infants, a labour length variable denoting three mutually exclusive categories was created for active first stage with following cut-offs. These cut-offs were based on a recent metanalysis on duration of active first stage of labour conducted by Neal et al (37):

(1) Duration of active 1^{st} stage of labour ≤ 6 hours [Reference category: Group 1]

(2) Duration of active 1^{st} stage of labour > 6 to ≤ 13 hours [Group 2]

(3) Duration of active 1^{st} stage of labour > 13 hours [Group 3].

For second stage of labour, a labour length variable denoting three mutually exclusive categories was created (38) as follows:

(1) Duration of 2nd stage of labour ≤ 1 hours (Reference category: Group 1]

(2) Duration of 2^{nd} stage of labour > 1 to ≤ 2 hours [Group 2]

(3) Duration of 2nd stage of labour > 2 hours [Group3].

For infants delivered by C-section after onset of labour, a labour length variable for active 1st stage of labour denoting two mutually exclusive categories was created as follows:

- (1) C-section with duration of active 1^{st} stage of labour ≤ 6 hours [Reference category: Group 1]
- (2) C-section with duration of active 1^{st} stage of labour > 6 hours [Group 2].

For 2nd stage of labour for C-section births, the categories were:

(1) C-section with duration of 2^{nd} stage of labour ≤ 1 hour [Reference category: Group 1] and

(2) C-section with duration of 2^{nd} stage of labour > 1 hour [Group 2].

'Elective C-section births' and 'Emergency C-section without labour' were excluded from the analyses.

Information on maternal pre-pregnancy weight was derived from maternal body mass index (BMI) obtained from hospital records, and three maternal pre-pregnancy weight categories were identified:

1) Pre-pregnancy BMI < 25 = Normal weight pregnant women

2) Pre-pregnancy BMI \ge 25 to < 30 = Overweight pregnant women

3) Pre-pregnancy BMI \ge 30 = Obese pregnant women

Data on covariates that could potentially impact either the exposure or outcome, or both, were obtained from hospital records (mode of delivery, intrapartum antibiotic prophylaxis (IAP), parity, duration after rupture of membranes, infant gender, length of infant's hospital stay etc.) or from standardized questionnaires completed by mothers (breastfeeding, maternal ethnicity, maternal smoking, maternal asthma), and were considered in the study. Written informed consent was obtained from parents at enrollment. This study was approved by the ethics board at the University of Alberta.

3.2.2 Fecal sample collection, DNA extraction and PCR amplification

Faecal samples of infants were collected at 3-4 months of age using a standard protocol during a scheduled home visit. Samples were refrigerated immediately after collection and during transport, and stored at -80 °C until analysis. Genomic DNA was isolated with QIAamp DNA stool Mini Kit (Qiagen, Venlo, the Netherlands), and the hypervariable V4 region of the bacterial 16S rRNA gene was amplified by polymerase chain reaction (PCR) using universal bacterial primers. For sample multiplexing, reverse primers were barcoded uniquely for each sample (barcoded sequence was denoted in the primer sequence by Xs). PCR amplification consisted of an initial denaturation step for 3 min at 94 °C, followed by 20 cycles of denaturation for 30 s at 94 °C, annealing for 30 s at 50 °C and an extension step for 30 s at 72 °C. PCR reactions for each sample were performed in triplicate with a negative control in each run. One hundred nanograms of pooled PCR product from each sample was concentrated using an Amicon Ultra-4 30K centrifugal filter.

3.2.3 Sequencing and taxonomic nomenclature

Pooled PCR amplicons were sequenced using the MiSeq Illumina Sequencing at the University of Toronto Centre for the Analysis of Genome Evolution & Function (CAGEF). Using a QIIME pipeline, forward and reverse reads were assembled for a final length of 144 bp demultiplexed and filtered against the GREENGENES reference database (v13.8) to discard all

sequences with <60% similarity. Remaining sequences were clustered at 97% sequence similarity against the GREENGENES database (using closed picking algorithm in QIIME), and taxonomic assignment was achieved using the RDP classifier. After taxonomic assignment, operational taxonomic units (OTUs) representing bacterial origin were selected, and bacterial OTUs with overall relative abundance below 0.0001 were excluded from subsequence for downstream analyses. Microbiota diversity within samples (α diversity) was calculated using two standard metrics: the Chao1 estimator of OTU richness (which estimates the number of different OTUs present) and the Shannon diversity index (which evaluates both the number of OTUs and the evenness of their distribution). Those metrics were calculated at OTU and family levels.

3.2.4 Statistical analyses

Statistical analyses were performed in SPPS version 22.0 (SPSS, Inc., Chicago, IL, USA). Chi-square test was used to examine the distribution of potential confounders according to exposure to differential duration of labour. Within the three maternal pre-pregnancy categories, i.e. normal weight mothers, overweight mothers and obese mothers, gut microbial profile of infants with duration of active first stage of labour ≤ 6 hours (reference group) was compared to the gut microbiota profile of infants with first stage of labour > 6 to ≤ 13 hours and > 13 hours. Similarly, the gut microbial profile of infants with duration of second stage of labour > 1 hours (reference group) was compared to the gut microbiota profile of infants with duration of second stage of labour > 1 to <= 2 hours and > 2 hours. Median relative abundance, richness and diversity of dominant taxa were compared based on duration of active 1st stage and 2nd stage in each maternal BMI group. Non-parametric Mann-Whitney U-test was used for comparing the microbial abundance. A p-value of <0.05 was defined as statistically significant, and 95% confidence intervals (CIs) were calculated.

Univariate analysis and multivariate logistic regression were used to identify variables independently associated with the outcome variables. Variables with a p-value of <0.25 in univariate analyses and clinically significant covariates were included in multivariable analyses. Microbiota measures were classified in two groups (below vs. above median). The following variables were included in the multivariable models as potential confounders: mode of delivery,

maternal intrapartum antibiotic exposure, infant diet, parity and duration after rupture of membrane.

3.3 Results

3.3.1 Study population

In this study population, 921 infants had complete information on maternal prepregnancy body mass index (BMI). Of these, 556 infants (60.4%) were born to mothers with normal pre-pregnancy weight (BMI <25), 208 (22.6%) were born to mothers with pre-pregnancy overweight (BMI \geq 25 to <30), and 157 (17.0%) infants were born to obese mothers (BMI \geq 30).

In all three maternal BMI categories, majority of the women were Caucasians (73.4% in normal weight, 77.1% in overweight and 83.6% in obese category respectively), followed by those of Asian ethnicity (14.5% in normal weight, 10.4% in overweight and 2.0% in obese category respectively) and the rest belonged to other racial profiles.

Among the infants born to **normal weight mothers**, the mean duration of active 1st stage was 353.9 minutes (SD=364.4 minutes). 531 infants had complete information on active first stage of labour, were found to be distributed as follows [Fig. 3.1]:

322 (60.6%) were born after active 1st stage duration \leq 6 hours [Reference group = Group 1 infants], 156 (29.4%) were born after active 1st stage duration > 6 to \leq 13 hours [Group 2 infants], and 53 (10.0%) of infants were born after active 1st stage duration >13 hours [Group 3 infants].

Table 3.1a shows the demographic characteristics of the studied infants with differential duration of active 1^{st} stage of labour (n=531) exposure status. There were significant differences between the three groups with respect to mode of delivery by intrapartum antibiotic prophylaxis (p<0.001), term gestation (p=0.031) and parity (p<0.001). No significant differences were detected

in other co-variates of interest such as infant gender (p=0.999), infant diet (p=0.972), maternal ethnicity (p=0.891) etc.

For the second stage, infants (n=556) of normal weight mothers were distributed as follows:

379 (68.2%) were born after 2^{nd} stage duration ≤ 1 hour [Group 1 infants = Reference group], 75 (13.5%) were born after 2^{nd} stage duration greater than 1 hour and ≤ 2 hours [Group 2 infants], 102 (18.3%) of infants were born after 2^{nd} stage duration greater than 2 hours [Group 3 infants].

Table 3.1b shows demographic characteristics of the studied infants with differential duration of second stage of labour (n=556) exposure status. There were significant differences between the three groups with respect to mode of delivery by intrapartum antibiotic prophylaxis status (p<0.001), parity (p<0.001) and duration after rupture of membranes (p< 0.001). No significant differences were detected in other co-variates of interest such as infant gender (p=0.685), infant diet (p=0.983), maternal ethnicity (p=0.955) etc.

Among the infants born to <u>overweight mothers</u>, the mean duration of active 1st stage was 338.4 minutes (SD=343.6 minutes). 201 infants had complete information on active first stage of labour, were distributed as follows [Fig. 3.2]:

120 (59.7%) were born after active 1st stage duration ≤ 6 hours [Group 1 infants = Reference group], 62 (30.8%) were born after active 1st stage duration > 6 to \leq 13 hours [Group 2 infants], and 19 (9.5%) of infants were born after active 1st stage duration >13 hours [Group 3 infants].

Table 3.2a shows the demographic characteristics of the studied infants with differential duration of active 1st stage of labour (n=201) exposure status. There were significant differences between the three groups with respect to mode of delivery by intrapartum antibiotic prophylaxis (p<0.001), term gestation (p=0.031) and infant gender (p=0.019). No significant differences were detected in other co-variates of interest such as parity (p=0.114, infant diet (p=0.853), maternal ethnicity (p=0.900) etc.

For the second stage, infants (n=208) of overweight mothers were distributed as follows:

150 (72.1%) were born after 2^{nd} stage duration ≤ 1 hour [Group 1 infants = Reference group], 26 (12.5%) were born after 2^{nd} stage duration greater than 1 hour and ≤ 2 hours [Group 2 infants], 32 (15.4%) of infants were born after 2^{nd} stage duration greater than 2 hours [Group 3 infants].

Table 3.2b shows demographic characteristics of the studied infants with differential duration of second stage of labour (n=208) exposure status. There were significant differences between the three groups with respect to mode of delivery by intrapartum antibiotic prophylaxis (p<0.004), parity (p=0.001) and infant gender (p=0.018) whereas other covariates of interest did not show significant differences based on duration of second stage categories.

Among the infants born to **obese mothers**, the mean duration of active 1st stage was 317.6 minutes (SD=355.0 minutes). 152 infants had complete information on active first stage of labour and were distributed as follows [Fig. 3.3]:

99 (65.1%) were born after active 1st stage duration \leq 6 hours [Group 1 infants = Reference group], 40 (26.3%) were born after active 1st stage duration > 6 to \leq 13 hours [Group 2 infants], and 13 (8.6%) of infants were born after active 1st stage duration >13 hours [Group 3 infants].

Table 3.3a shows the demographic characteristics of the studied infants with differential duration of active 1^{st} stage of labour (n=152) exposure status. There were significant differences between the three groups with respect to mode of delivery by intrapartum antibiotic prophylaxis (p=0.001) and parity (p=0.049). No significant differences were detected in other co-variates of interest such as infant gender (p=0.481), infant diet (p=0.794), maternal ethnicity (p=0.165) etc.

For the second stage, infants (n=157) of obese mothers were distributed as follows:

118 (75.2%) were born after 2^{nd} stage duration ≤ 1 hour [Group 1 infants = Reference group], 18 (11.5%) were born after 2^{nd} stage duration greater than 1 hour and ≤ 2 hours [Group 2 infants], 21 (13.4%) of infants were born after 2^{nd} stage duration greater than 2 hours [Group 3 infants].

Table 3.3b shows demographic characteristics of the studied infants with differential duration of second stage of labour (n=157) exposure status. There were significant differences between the three groups with respect to mode of delivery by intrapartum antibiotic prophylaxis status (p=0.007), parity (p<0.001), duration after membrane rupture (p=0.013) and infant's length of hospital stay (p=0.028). No significant differences were detected in other co-variates of interest such as infant gender (p=0.695), infant diet (p=0.226), maternal ethnicity (p=0.313) etc.

3.3.2 Fecal microbiota composition, richness and diversity

3.3.2A Infants born to women with normal pre-pregnancy weight (BMI <25)

I) Effect of duration of active 1st stage of labour

Table 3.4 summarizes the significant (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to duration of active first stage of labour among infants born to **women with normal pre-pregnancy weight (BMI <25)**.

Among all delivery modes (vaginal and C-section), we observed underrepresentation of phylum Actinobacteria and family *Bifidobacteriaceae* (p<0.05) among infants born after active 1st stage >6 to \leq 13 hours, but not after active 1st stage > 13 hours [Table 3.5]. Upon stratification of vaginally delivered infants by intrapartum antibiotic prophylaxis (IAP), we saw this change persisted only in infants who received IAP [Table 3.7]. Among C-section births, no significant change was observed in infant gut bacterial composition based on duration of active 1st stage.

We conducted multivariate logistic regression to further explore the association of duration of active 1st stage of labour and gut microbiota profile. Colonization with genus *Bifidobacterium* tended to decrease with longer active 1st stage [active 1st stage >6 to \leq 13 hours: aOR = 0.59 (95%CI = 0.39-0.89), p = 0.012; active 1st stage >13 hours: aOR = 0.64 (95%CI = 0.34-1.19), p = 0.155]. Likewise, a 53% decrease in likelihood of colonization with genus

Lactobacillus was observed in infants born after active first stage > 13 hours [aOR = 0.47 (95%CI = 0.23-0.97), p = 0.041]. Additionally, family *Veillionellaceae* showed 1.6 times higher likelihood of colonization when active 1st stage was between > 6 to \leq 13 hours [[active 1st stage >6 to \leq 13 hours: aOR = 1.60 (95%CI = 1.05-2.44), p = 0.028; active 1st stage > 13 hours: aOR = 1.10 (95%CI = 0.59-2.06), p = 0.770]. These associations were independent of mode of delivery and intrapartum antibiotic prophylaxis (IAP), breastfeeding, parity and membrane rupture duration greater than 18 hours [Table 3.14].

II) Effect of duration of 2nd stage of labour

Table 3.9 summarizes the significant (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to duration of second stage of labour among infants born to **women with normal weight (BMI <25)**.

Among all delivery modes (vaginal and C-section), we observed underrepresentation of phylum Actinobacteria and family *Bifidobacteriaceae* (p<0.05) among infants born after second stage > 2 hours [Table 3.10]. Upon stratification of vaginally delivered infants by intrapartum antibiotic prophylaxis (IAP), we saw that only IAP-free infants retained this change, in addition to overrepresentation of *Clostridiaceae* [Table 3.11].

Multivariate logistic regression revealed that infant gut colonization with genus *Bifidobacterium* tended to decrease with longer second stage $[2^{nd} \text{ stage} > 1 \text{ to } \le 2 \text{ hours: aOR} = 0.76 (95\%\text{CI} = 0.44-1.29), p = 0.304; 2nd stage > 2 \text{ hours: aOR} = 0.57 (95\%\text{CI} = 0.35-0.93), p = 0.024].$ Similarly, infants born after 2^{nd} stage > 2 hours had 49% decreased likelihood of colonization with genus *Lactobacillus* [aOR = 0.51 (95%CI = 0.30-0.87), p = 0.014]. Besides, family *Veillionellaceae* showed 1.7 times higher likelihood of increased colonization when 2^{nd} stage was longer than 2 hours [2^{nd} stage >1 to ≤ 2 hours: aOR = 1.45 (95%CI = 0.85-2.48), p = 0.175; 2^{nd} stage > 2 hours: aOR = 1.70 (95%CI = 1.03-2.76), p = 0.037] [Table 3.15].

Microbial richness and diversity did not show significant change in adjusted models according to active 1st or 2nd stage labour durations in infants born to normal weight mothers [Table 3.16].

3.3.2B Infants born to women with pre-pregnancy overweight (BMI ≥25 to <30)

I) Effect of duration of active 1st stage of labour

Table 3.17 outlines the summary of the significant (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the duration of active first stage of labour among infants born to **women with pre-pregnancy overweight (BMI ≥25 to <30).** Among these infants, we saw decreased abundance of family *Bifidobacteriaceae* with after active 1st stage >6 to ≤13 hours (but not after active 1st stage > 13 hours) regardless of IAP exposure [Table 3.17, 3.19, 3.20].

Multivariate logistic regression showed that in infants born with active 1^{st} stage > 6 to \leq 13 hours, likelihood of gut colonization with phylum Actinobacteria decreased significantly [active 1^{st} stage >6 to \leq 13 hours: aOR = 0.40 (95%CI = 0.19-0.87), p = 0.030; active 1^{st} stage > 13 hours: aOR = 0.75 (95%CI = 0.23-2.48)], independent of mode of delivery, intrapartum antibiotic prophylaxis (IAP), breastfeeding, parity, membrane rupture duration greater than 18 hours and infant sex [Table 3.26a]. Changes in microbial richness and diversity were not significant.

II) Effect of duration of 2nd stage of labour

Table 3.21 outlines the summary of the significant (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the duration of second stage of labour among infants born to **women with pre-pregnancy overweight** (**BMI** \geq 25 to <30). Among these infants, we saw decreased abundance of family *Bifidobacteriaceae* when 2nd stage was longer than 2 hours in vaginally delivered, IAP-free infants [Table 3.23].

Multivariate logistic regression revealed that genus *Bacteroides* (of phylum Bacteroidetes) decreased with 2^{nd} stage >1 to ≤ 2 hours but not after > 2 hours [2^{nd} stage >1 to ≤ 2 hours: aOR = 0.29 (95%CI = 0.10-0.84), p = 0.023; 2^{nd} stage > 2 hours: aOR = 0.62 (95%CI = 0.22-1.71)], after adjustment for mode of delivery and intrapartum antibiotic prophylaxis (IAP),

breastfeeding, parity, membrane rupture duration greater than 18 hours and infant sex [Table 3.27b]. In addition, microbial richness (Chao 1) decreased with 2^{nd} stage >1 to \leq 2 hours [aOR: 0.28 (95%CI:0.10-0.80), p=0.018)] but not with 2^{nd} stage > 2 hours, whereas Shannon diversity decreased with 2^{nd} stage > 2 hours [aOR: 0.30 (95%CI:0.11-0.801, p=0.017) [Table 3.28].

3.3.2C Infants born to women with pre-pregnancy obesity (BMI \ge 30)

I) Effect of duration of active 1st stage of labour

Table 3.29 summarizes the significant (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the duration of active first stage of labour among infants born to **women with pre-pregnancy obesity (BMI ≥ 30).** Among all delivery modes (vaginal and C-section), we observed underrepresentation of phylum Actinobacteria and family *Bifidobacteriaceae* (p<0.05) among infants born after active 1st stage longer than 6 hours. Firmicutes also showed decreased abundance with active 1st stage longer than 13 hours. In contrast, there was an overrepresentation of phylum Bacteroidetes after longer durations of active 1st stage [Table 3.30]. Upon stratification of vaginally delivered infants by intrapartum antibiotic prophylaxis (IAP), we saw decreased abundance of family *Bifidobacteriaceae* with after active 1st stage > 13 hours was retained only in infants who did not receive IAP [Table 3.31]. Among C-section births, we did not observe statistically significant changes in infant gut bacterial composition based on active 1st stage duration in infants of obese mothers.

Multivariate logistic regression revealed a decreasing trend for colonization with phyla Actinobacteria and Firmicutes, and an increasing trend for colonization with phyla Bacteroidetes and Proteobacteria, according to increasing durations of active 1st stage in infants born to obese mothers [Table 3.38]. Colonization with genus *Bifidobacterium* tended to decrease with longer active 1st stage [active 1st stage >6 to \leq 13 hours: aOR = 0.52 (95%CI = 0.22-1.22), p = 0.001; active 1st stage > 13 hours: aOR = 0.20 (95%CI = 0.04-0.97), p = 0.001] [Table 3.26]. Also, 76%

reduced likelihood of colonization with family *Veillionellaceae* was seen with active 1st stage > 13 hours [aOR: 0.24; 95% CI: 0.06-0.97] [Table 3.38]. These changes were independent of mode of delivery, intrapartum antibiotic prophylaxis (IAP), breastfeeding, parity and membrane rupture duration greater than 18 hours.

II) Effect of duration of 2nd stage of labour

Table 3.33 summarizes the significant (p<0.05) changes in median relative abundance of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the **duration of second stage of labour** among infants born to **women with pre-pregnancy obesity (BMI \ge 30).** Among these infants, decreased abundance of *Bifidobacteriaceae* with 2nd stage > 2 hours was seen among IAP-free, vaginal births [Table 3.35]. Multivariate logistic regression showed infants delivered after 2nd stage longer than 2 hours showed 80% reduced likelihood of colonization with phylum Actinobacteria [2nd stage > 2 hours: aOR = 0.20 (95%CI = 0.05-0.76), p = 0.001] and 88% reduced likelihood of colonization with *Bifidobacterium* [2nd stage > 2 hours: aOR = 0.12 (95%CI = 0.03-0.58), p = 0.001] [Table 3.39], after accounting for mode of delivery, intrapartum antibiotic prophylaxis (IAP), breastfeeding, parity and membrane rupture duration greater than 18 hours.

Lastly, a trend in reduction of Shannon diversity was seen in the adjusted model with active 1^{st} stage > 6 to \leq 13 hours [aOR: 0.37 (95%CI=0.16-0.88)] but not when active 1^{st} stage was > 13 hours, and also with 2^{nd} stage > 1 to \leq 2 hours [aOR: 0.37 (95%CI=0.16-0.88)] but not when 2^{nd} stage was > 2 hours [Table 3.40].

The following table summarizes significant associations between labour durations and infant gut microbial composition among infants born to different maternal BMI categories [Table 3.41].

Table 3.41		tage (Hours)		e (Hours)
Infants born to		f: ≤6	Ref	
women with:	>6 to≤13	> 13	>1 to≤2	> 2
	aOR (95% CI);		aOR (95% CI);	
	p-value	p-value	p-value	p-value
*BMI <25				
Actinobacteria	0.57	0.62	0.72	0.57
	(0.37-0.86);	(0.33-1.16);	(0.42-1.23);	(0.35-0.93);
	p=0.007	p=0.137	p=0.231	p=0.024
f Veillionellaceae	1.60	1.10	1.45	1.70
<i>y</i>	(1.05-2.44);	(0.59-2.06);	(0.85-2.48);	(1.03-2.76);
	p=0.028	p=0.770	p=0.175	p=0.037
	-	1	1	•
g_Bifidobacterium	0.59	0.64	0.76	0.57
	(0.39-0.89);	(0.34-1.19);	(0.44-1.29);	(0.35-0.93);
	p=0.012	p=0.155	p=0.304	p=0.024
g Lactobacillus	1.12	0.47	0.92	0.51
0_	(0.73 - 1.70);	(0.23-0.97);	(0.53-1.59);	(0.30-0.87);
	p=0.613	p=0.041	p=0.758	p=0.014
†BMI ≥25 to <30			-	-
Actinobacteria	0.40	0.75	0.78	0.56
	(0.19-0.87);	(0.23-2.48);	(0.27-2.21);	(0.22-1.45);
	p=0.020	p=0.637	p=0.639	p=0.235
g Bacteroides	1.104	1.39	0.29	0.62
<u>s_</u> bucier offices	(0.49-2.22)	(0.40-4.76)	(0.10-0.84)	(0.22-1.71)
	p=0.911	p=0.603	p=0.022	p=0.369
*BMI ≥30	P 0.711	P 0.005	P 0.022	p 0.509
Actinobacteria	0.49	0.48	0.78	0.20
1 iounoouotoriu	(0.21-1.14);	(0.13-1.80);	(0.26-2.31);	(0.05-0.76);
	p=0.097	p=0.278	p=0.781	p=0.018
	p 0.077	p 0.270	p 0.701	p 0.010
f Veillionellaceae	0.63	0.24	0.84	0.67
* <u> </u>	(0.27-1.47);	(0.06-0.97);	(0.29-2.44);	(0.23-1.95);
	p=0.286	p=0.045	p=0.744	p=0.672
a Difidahaatania	0.52	0.20	0.67	0.12
g_Bifidobacterium	0.52	0.20 (0.04-0.97);	0.67	0.12
	(0.22-1.22); p= 0.133	(0.04-0.97); p=0.046	(0.23-1.95); p=0.498	(0.03-0.58); p=0.008
	p= 0.155	p=0.040	p=0.498	h-0.000

* Odd ratios adjusted for mode of delivery by intrapartum antibiotic prophylaxis, exclusive breastfeeding, parity and duration after membrane rupture > 18 hours.

[†]Odd ratios adjusted for mode of delivery by intrapartum antibiotic prophylaxis, exclusive breastfeeding, parity, duration after membrane rupture > 18 hours and infant sex.

Significant associations are **bold-faced.** (aOR =adjusted odds ratio)

3.4 Discussion

The gut microbiota can influence host energy harvest and host metabolic phenotype and through fermentation of short chain fatty acids (SCFAs) (39) (40), and altered composition of gut microbiota is associated with higher risk of childhood obesity (14) (15). Meanwhile, elevated maternal BMI is a powerful predictor of weight gain in the progeny (5) (6) (7) (8). Since overweight/obese pregnant women not only possess atypical changes in their gut microbiota (17) (18) (19) but also suffer protracted course of labour (22) (23) (24) 25), we probed the infant gut microbial composition differences at 3-4 months of age according to increasing lengths of labour in infants born to normal weight, overweight and obese women. To our knowledge, this is the first study to investigate the association between labour duration and infant gut microbiota according to differential maternal BMI categories.

In the present study cohort of 921 healthy infants, we found alterations in gut microbiota composition in relation to increasing duration of labour and born to 556 normal weight, 208 overweight and 157 obese mothers. Among infants born to normal weight women, we observed that longer durations of active first stage and second stage of labour was associated with reduced tendency of infant gut colonization with Bifidobacterium (of phylum Actinobacteria). This change persisted in infants of women with higher BMI born after longer labour durations, and was more severe among the infants of obese mothers. We theorize that higher oxidative stress associated with longer labour durations (41) (42), and the inefficiency some strains of anaerobic Bifidobacterium spp. to cope with increased production reactive oxygen species (ROS) (43) (44), probably accounts for reduced vertical transfer of Bifidobacterium and lower gut colonization seen in the infants. For infants of obese mothers, presence of atypical maternal gut microbial composition with lower abundance of maternal gut Bifidobacterium could have intensified the effect. Studies show that abundance of gut Bifidobacterium negatively correlates with obesity (45) (17), and this also true for pregnant women with higher BMI (17) (18) (19). As compared to infants of normal weight mothers, we observed more drastic reduction in fecal Bifidobacterium associated with longer labour durations in the infants of obese mothers, and this finding is concerning as reductions in gut Bifidobacterium during infancy is correlated with higher risk of increased weight gain in later childhood (14).

In addition, fecal Lactobacillus (of phylum Firmicutes) was also observed to be significantly reduced in association with longer labour durations in infants of normal weight mothers. Similar trend for decreased colonization with Lactobacillus was observed after longer active first stage in infants of overweight mothers, and after longer active 1st stage and 2nd stage in infants of obese mothers, although statistical significance was not achieved. Gut Lactobacilli appear to have influential role in weight alterations, and murine models show that reduced abundance of Lactobacillus is associated with obese host phenotype (46). Dietary supplementation with Lactobacillus spp. has been shown to reduce adiposity in adult humans (47) (48) suggesting that reduction of Lactobacillus spp. may aggravate metabolic disorders. In addition, Lactobacilli promote integrity of epithelial tight-junctions in the gut (49), and their reduced abundance could facilitate metabolic endotoxemia ("leaky gut") that in turn initiates inflammation and adiposity (50). On the other hand, a metanalysis of 17 human RCTs concluded that Lactobacillus associated weight gain in adult humans is strain and species specific (51). To add, evidence on influence of gut Lactobacillus on childhood obesity is limited. In a double-blind randomized trial, infants fed with Lactobacillus rhamnosus GG enriched formula showed significant weight gain compared to controls fed regular formula (52). Another study comparing overweight/obese children to normal weight controls found higher abundance of Lactobacillus spp. in obese children (49). In the same study, Lactobacillus spp. showed a positive association with plasma C-reactive protein (53), possibly indicating a role of Lactobacillus in "low-grade" inflammation, a recognized pathophysiological feature of obesity.

Another finding of interest in our study was the alteration in abundance of family *Veillionellaceae* (of phylum Firmicutes) associated with longer durations of labour in infants born to mothers of different pre-pregnancy weight categories. Among infants born to normal weight mothers, we observed an increased tendency of colonization with *Veillionellaceae* associated longer durations of active first stage and second stage of labour. The *Veillionellaceae* family, as lactate-utilizing bacteria, has a unique metabolic role in the gut (54). Prolonged labour often leads to depletion of the uterine myometrial glycogen stores and ATP, accompanied with decreased cellular ability to handle protons (H⁺) and accumulation of lactate (55) (56). We suggest that higher availability of lactate during protracted labour states may favor overgrowth of maternal gut *Veillionellaceae*, thereby setting the foundation for higher prevalence in infants later. In addition, upregulation of Veillionellaceae abundance during prolonged labour may proffer metabolic

advantage during periods of prolonged labour. Gut bacteria aid host energy harvest by fermenting dietary fiber to generate short chain fatty acids (SCFAs). The major SCFAs are acetate, propionate and butyrate, and their production depends upon diet and the abundance and species of cecal and colonic microbiota. *Veillionellaceae* are unique in their ability to convert lactate to propionate through the acrylate pathway (54), and propionate acts as a substrate for hepatic gluconeogenesis. Intense exercise states demand increased hepatic glucose production to maintain optimum glycemia. When hepatic glycogen stores are depleted during prolonged period of exercise, the liver switches to increased gluconeogenesis to meet the energy demand (57). Since protracted labour mimics a period of prolonged exercise, *Veillionellaceae* may have a role in providing the liver with adequate energy substrate for gluconeogenesis by converting lactate to propionate during prolonged labour.

In contrast to infants of normal weight mothers, infants born to obese mothers showed reduced likelihood of gut colonization with *Veillionellaceae* associated longer active first stage. Based on limited available literature, abundance of *Veillionellaceae* appears to have positive association with adiposity and high-fat diet intake (46) (58). Whether reduction in gut *Veillonellaceae* influences the regulation of overall metabolic balance in infants and their risk of weight gain at a later age remains to be investigated. Therefore, further research is needed to elucidate the role and significance of decreased abundance of *Veillionellaceae* associated with longer labour in infants born of obese mothers.

Further, among infants born to overweight mothers, we observed that longer labour duration was associated with decreased trend of colonization with phylum Actinobacteria and genus *Bacteroides* at 3-4 months of age. This association was independent of mode of delivery and intrapartum antibiotic prophylaxis (IAP), breastfeeding, parity, membrane rupture duration greater than 18 hours and infant sex. From available evidence on infants of this age category, reduced gut *Bacteroides* spp. could indicate higher risk of childhood overweight (21). Finally, a reduced trend for microbial diversity (Shannon diversity) was observed with longer labour durations in infants born to overweight and obese mothers, but not among infants of normal weight mothers. Low gut microbial diversity is linked to weight gain (10) (46). Additionally, pregnant women with elevated BMI show low gut microbial diversity (25), and breastmilk of obese mothers

has been shown to possess less diverse bacterial community than normal weight mothers (59). Since our results were independent of breastfeeding, the implication for longer labour and reduced gut microbial diversity with regards to risk of weight gain is emphasized.

3.5 Strengths and limitations

Our study was conducted in a population based longitudinal cohort that recruited pregnant women their third trimester and followed the children up to early life years. Therefore, the results are generalized to the population, and the precedence of exposure (duration of labour) the development of the outcome (changes in infant gut microbiota) is ascertained which allows us to suggest a causal relation. In addition, study of infant belonging to mothers of different BMI categories allowed us to unmask the changes in infant gut microbiota in relation to labour that is devoid of influence of maternal weight, thus providing novel insights to early life factors that influence development of infant gut microbiota. Finally, the use of high throughput gene sequencing technique presents the benefit of high accuracy and reliability to our gut microbiota measures.

One major limitation of our study is the smaller sample size of women in overweight and obese category. This may have limited our study's ability to detect statistical significance of some of the changes in microbiota measures. Home births were excluded from our study. Therefore, our study is unable to characterize the association between duration of labour and infant gut microbiota in the infants delivered at home, which is likely to be different from hospital delivered infants. Finally, our study is limited to gut microbiota changes at 3-4 months of age and we did not study the influence of duration of labour on infant gut microbiota at an older age. Thus, future studies could be directed towards these efforts.

3.6 Conclusion

This study provides further insight into the association between exposure to longer durations of labour at birth among infants born to mothers with different pre-pregnancy weight categories and the changes to infant gut microbial composition at the first 3-4 months of life.

Infant gut dysbiosis is associated with higher risk of childhood obesity. Higher gut Bifidobacteria abundance is shown to be protective of adiposity whereas Lactobacillus-associated weight gain is species-specific. Therefore, longer labour associated under-representation of gut Bifidobacteria and alterations in Lactobacilli observed in infants born to mothers of all BMI categories in this study, but more pronounced in infants of obese mothers, may suggest longer labour duration as a possible indicator for pediatric weight gain. Further, differential alterations of Veillionellaceae associated with longer labour in infants born mothers of different BMI categories provides new insight into possible metabolic role of this bacteria in protracted labour while inviting more investigation to fully comprehend the influence of birth and labour-related events on development of infant gut microbiota.

REFERENCES:

- Rodd C, Sharma AK. Recent trends in the prevalence of overweight and obesity among Canadian children. CMAJ. 2016 Sep;188(13):E313-20.
- Biro S, Barber D, Williamson T, Morkem R, Khan S, Janssen I. Prevalence of toddler, child and adolescent overweight and obesity derived from primary care electronic medical records: an observational study. C open. 2016;4(3):E538–44.
- Biro FM, Wien M. Childhood obesity and adult morbidities. Am J Clin Nutr. 2010 May;91(5):14998–1505S.
- 4. Vos MB, Welsh J, Drive U. Childhood obesity: update on predisposing factors and prevention strategies. Curr Gastroenterol Rep. 2011;12(4):280–7.
- Weng SF, Redsell SA, Swift JA, Yang M, Glazebrook CP. Systematic review and metaanalyses of risk factors for childhood overweight identifiable during infancy. Arch Dis Child. 2012 Dec;97(12):1019–26.
- Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and metaanalysis. PLoS One. 2013;8(4):e61627.
- Mamun AA, Mannan M, Doi SAR. Gestational weight gain in relation to offspring obesity over the life course: a systematic review and bias-adjusted meta-analysis. Obes Rev. 2014 Apr;15(4):338–47.
- 8. Lau EY, Liu J, Archer E, McDonald SM, Liu J. Maternal weight gain in pregnancy and risk of obesity among offspring: A systematic review. J Obes. 2014;2014.
- Backhed F, Ding H, Wang T, Hooper L V, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004 Nov;101(44):15718–23.
- 10. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesityassociated gut microbiome with increased capacity for energy harvest. Nature [Internet].

2006 Dec 21;444:1027. Available from: http://dx.doi.org/10.1038/nature05414

- Dumas M-E, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulinresistant mice. Proc Natl Acad Sci U S A. 2006 Aug;103(33):12511–6.
- Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007 Jan;104(3):979–84.
- Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006 Dec;444(7122):1022–3.
- Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW, et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring). 2013 Dec;21(12):E607-15.
- Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017 May;17(1):120.
- Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008 Nov;32(11):1720–4.
- Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010 Jan;18(1):190–5.
- Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol. 2017 Jan;19(1):95–105.
- Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008 Mar;87(3):534–8.
- 20. Luoto R, Kalliomaki M, Laitinen K, Delzenne NM, Cani PD, Salminen S, et al. Initial dietary and microbiological environments deviate in normal-weight compared to

overweight children at 10 years of age. J Pediatr Gastroenterol Nutr. 2011 Jan;52(1):90-5.

- Kozyrskyj AL, Kalu R, Koleva PT, Bridgman SL. Fetal programming of overweight through the microbiome: boys are disproportionately affected. J Dev Orig Health Dis. 2016 Feb;7(1):25–34.
- Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012 Aug;150(3):470–80.
- Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008 Oct;88(4):894–9.
- Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010 Jul;104(1):83–92.
- Stanislawski MA, Dabelea D, Wagner BD, Sontag MK, Lozupone CA, Eggesbo M. Prepregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants. Microbiome. 2017 Sep;5(1):113.
- Mueller NT, Shin H, Pizoni A, Werlang IC, Matte U, Goldani MZ, et al. Birth modedependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Sci Rep. 2016 Apr;6:23133.
- Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010 Nov;92(5):1023–30.
- Kominiarek MA, Zhang J, Vanveldhuisen P, Troendle J, Beaver J, Hibbard JU. Contemporary labor patterns: the impact of maternal body mass index. Am J Obstet Gynecol. 2011 Sep;205(3):244.e1-8.
- Hilliard AM, Chauhan SP, Zhao Y, Rankins NC. Effect of obesity on length of labor in nulliparous women. Am J Perinatol. 2012 Feb;29(2):127–32.

- Norman SM, Tuuli MG, Odibo AO, Caughey AB, Roehl KA, Cahill AG. The effects of obesity on the first stage of labor. Obstet Gynecol. 2012 Jul;120(1):130–5.
- Carlhall S, Kallen K, Blomberg M. Maternal body mass index and duration of labor. Eur J Obstet Gynecol Reprod Biol. 2013 Nov;171(1):49–53.
- Zhang J, Bricker L, Wray S, Quenby S. Poor uterine contractility in obese women. BJOG.
 2007 Mar;114(3):343–8.
- 33. Moynihan AT, Hehir MP, Glavey S V, Smith TJ, Morrison JJ. Inhibitory effect of leptin on human uterine contractility in vitro. Am J Obstet Gynecol. 2006 Aug;195(2):504–9.
- Poobalan AS, Aucott LS, Gurung T, Smith WCS, Bhattacharya S. Obesity as an independent risk factor for elective and emergency caesarean delivery in nulliparous women--systematic review and meta-analysis of cohort studies. Obes Rev. 2009 Jan;10(1):28–35.
- Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013 Mar;185(5):385–94.
- 36. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014 Feb 27;63(4):559 LP-566.
- Neal JL, Lowe NK, Ahijevych KL, Patrick TE, Cabbage LA, Corwin EJ. "Active labor" duration and dilation rates among low-risk, nulliparous women with spontaneous labor onset: a systematic review. J Midwifery Womens Health. 2010;55(4):308–18.
- Kilpatrick SJ, Laros RKJ. Characteristics of normal labor. Obstet Gynecol. 1989 Jul;74(1):85–7.
- Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015 Sep;26(9):493–501.
- 40. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016 May;7(3):189–200.

- Diaz-Castro J, Florido J, Kajarabille N, Prados S, de Paco C, Ocon O, et al. A new approach to oxidative stress and inflammatory signaling during labour in healthy mothers and neonates. Oxid Med Cell Longev. 2015;2015:178536.
- Rao G, Kamath U, Raghothama C, Pradeep KS, Rao P. Maternal and fetal indicators of oxidative stress in various obstetric complications. Indian J Clin Biochem [Internet].
 2003;18(2):80–6. Available from: http://link.springer.com/10.1007/BF02867371
- Kawasaki S, Mimura T, Satoh T, Takeda K, Niimura Y. Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol. 2006 Oct;72(10):6854–8.
- Talwalkar A, Kailasapathy K. The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol. 2004 Mar;5(1):1–8.
- 45. Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, et al. Obesityassociated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes (Lond). 2012 Jun;36(6):817–25.
- 46. Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One. 2015;10(5):e0126931.
- 47. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr. 2010 Jun;64(6):636–43.
- 48. Omar Jaclyn M. A4 Chan, Yen-Ming A4 Jones, Mitchell L. A4 Prakash, Satya A4 Jones, Peter J.H. JMA-O. Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. J Funct Foods. 2013;v. 5:116-123–2013 v.5.
- 49. Yu Q, Yuan L, Deng J, Yang Q. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol. 2015;5:26.

- 50. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007 Jul;56(7):1761–72.
- Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog. 2012 Aug;53(2):100–8.
- 52. Vendt N, Grunberg H, Tuure T, Malminiemi O, Wuolijoki E, Tillmann V, et al. Growth during the first 6 months of life in infants using formula enriched with Lactobacillus rhamnosus GG: double-blind, randomized trial. J Hum Nutr Diet. 2006 Feb;19(1):51–8.
- 53. Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C, et al. Differences in gut microbiota composition between obese and lean children: a crosssectional study. Gut Pathog. 2013 Apr;5(1):10.
- Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Vol. 74, The Proceedings of the Nutrition Society. England; 2015. p. 13–22.
- 55. Quenby S, Pierce SJ, Brigham S, Wray S. Dysfunctional labor and myometrial lactic acidosis. Obstet Gynecol. 2004 Apr;103(4):718–23.
- 56. Nordstrom L, Achanna S, Naka K, Arulkumaran S. Fetal and maternal lactate increase during active second stage of labour. BJOG. 2001 Mar;108(3):263–8.
- 57. Kjaer M. Hepatic glucose production during exercise. Adv Exp Med Biol. 1998;441:117– 27.
- Yun Y, Kim H-N, Kim SE, Heo SG, Chang Y, Ryu S, et al. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017 Jul;17(1):151.
- Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012 Sep;96(3):544–51.

	Duration of 1 st stage ≤ 6 hours	Duration of 1^{st} stage > 6 to ≤ 13 hours	Duration of 1 st stage > 13 hours	p- value
	\leq 6 nours [Group 1]	[Group 2]	[Group 3]	(x^2)
	N (%)	N (%)	N (%)	(X)
Row percentages	n=322 (60.6%)	n=156 (29.4%)	n=53(10.0%)	
Baby's gender $(n = 531)$	n=522 (00.070)	n=130 (29.470)	II-35(10.070)	0.999
Male	170 (60.7%)	82 (29.3%)	28 (10.0%)	0.777
Female	152 (60.6%)	74 (29.5%)	25 (10.0%)	
Delivery mode (n = 525)	102 (00.070)	/ ((2) . 5 / 6)	20 (10.070)	<mark><0.00</mark>
Vaginal without IAP (n=293)	170 (58.0%)	94 (32.1%)	29 (9.9%)	
Vaginal with IAP (n=108)	40 (37.0%)	48 (44.4%)	20 (18.5%)	
Elective C-section(n=52)	52 (100.0%)	0	0	
C-section with labour $(n=72)$	60 (83.3%)	10 (13.9%)	2 (2.8%)	
Term gestation ($n=531$)		(- (, .)	0.03
No	14 (93.3%)	1 (6.7%)	0	
Yes	308 (59.7%)	156 (29.4%)	53 (10.0%)	
Infant diet 3 months (n= 526)				0.97
EBF = Yes	189 (59.8%)	96 (30.4%)	31 (9.8%)	
EBF= Partial	91 (62.3%)	40 (27.4%)	15 (10.3%)	
EBF= No	39 (60.9%)	18 (28.1%)	7 (10.9%)	
Parity (n=531)				<mark><0.00</mark>
Primipara	95 (48.5%)	69 (35.2%)	32 (16.3%)	
Multipara	227 (67.8%)	87(26.0%)	21(6.3%)	
Membrane rupture >18 Hour	rs (n=522)		· · · · ·	0.05
No	286(62.3%)	131(28.5%)	42(9.2%)	
Yes	30(47.6%)	23(36.5%)	10(15.9%)	
Length of hospital stay (n=51	2)		•	0.06
24 hours of less	81(56.3%)	48(33.3%)	15(10.4%)	
2-3 days	185(59.9%)	92 (29.8%)	32(10.4%)	
4 days or more	46(78.0%)	9(15.3%)	4(6.8%)	
Maternal ethnicity (n=527)				0.89
Caucasian	238(61.0%)	113(29.0%)	39(10.0%)	
Other	33 (55.0%)	20(33.3%)	7(11.7%)	
Asian	49 (63.6%)	21(27.3%)	7(9.1%)	
Prenatal smoke exposure (n=				0.20
No	297(59.4%)	152(30.4%)	51(10.2%)	
Yes	14(77.8%)	2(11.1%)	2(11.1%)	
Maternal asthma (n= 531)	<u>.</u>			0.29
No	258(61.0%)	127(30.0%)	38(9.0%)	
Yes	64(59.3%)	29(26.9%)	15(13.9%)	

IAP = Intrapartum Antibiotic Prophylaxis; EBF = Exclusive breastfeeding Comparison made by Chi square test. p-value <0.05 are in boldface type.

Table 3.1b

	Duration of 2nd	Duration of 2nd stage	Duration of 2nd	p-
	stage ≤ 1 hour	> 1 to ≤ 2 hours	stage > 2 hours	value
	[Group 1]	[Group 2]	[Group 3]	(x^2)
Row percentages	N (%)	N (%)	N (%)	
	379 (68.2%)	75 (13.55%)	102 (18.3%)	
Baby's gender (n = 556)				0.684
Male	197 (66.8%)	43 (14.6%)	55 (18.6%)	
Female	182 (69.7%)	32 (12.3%)	47 (18.0%)	
Delivery mode (n = 549)				<mark><0.00</mark>
Vaginal without IAP (n=310)	212 (68.4%)	48 (15.5%)	50 (16.1%)	
Vaginal with IAP (n=115)	54 (47.0%)	24 (20.9%)	37 (32.2%)	
Elective C-section (n=52)	52 (100.0%)	0	0	
C-section with labour (n=72)	56 (77.8%)	1 (1.4%)	15 (20.8%)	
Term gestation (n= 556)				0.589
No	12 (80.0%)	1 (6.7%)	2 (13.3%)	7
Yes	367 (67.8%)	74 (13.7%)	100 (18.5%)	
Infant diet 3 months (n= 551)				0.983
EBF = Yes	223 (67.8%)	43 (13.1%)	63 (19.1%)	
EBF= Partial	105 (67.7%)	22 (14.2%)	28 (18.1%)	
EBF= No	47 (70.1%)	74 (13.4%)	102 (16.4%)	
Parity (n=556)				<mark><0.00</mark>
Primipara	100 (48.1%)	41 (19.7%)	67 (32.2%)	
Multipara	279 (80.2%)	41 (19.7%)	67 (32.2%)	
Membrane rupture >18 Hours				<mark><0.00</mark>
No	343 (72.2%)	62 (13.1%)	70 (14.7%)	
Yes	27 (38.6%)	12 (17.1%)	31 (44.3%)	
Length of hospital stay (n=536)			0.805
24 hours of less	108 (72.0%)	19 (12.7%)	23 (15.3%)	
2-3 days	216 (66.5%)	47 (14.5%)	62 (19.1%)	
4 days or more	41 (67.2%)	8 (13.1%)	12 (19.7%)	
Maternal ethnicity (n=550)				0.955
Caucasian	278 (68.6%)	52 (12.8%)	75 (18.5%)	
Other	44 (65.7%)	11 (16.4%)	12 (17.9%)	
Asian	53 (67.9%)	11 (14.1%)	14 (17.9%)	
Pre-natal smoke exposure (n=				0.350
No	352 (67.6%)	70 (13.4%)	99 (19.0%)	
Yes	14 (77.8%)	3 (16.7%)	1 (5.6%)	
Maternal asthma (n= 556)				0.474
No	308 (69.4%)	58 (13.1%)	78(17.6%)	
Yes	71 (63.4%)	17(15.2%)	24(21.4%)	

IAP = Intrapartum Antibiotic Prophylaxis; EBF = Exclusive breastfeeding Comparison made by Chi square test. p-value <0.05 are in boldface type.

Table 3.2a

	Duration of 1 st stage ≤ 6 hours	Duration of 1^{st} stage > 6 to ≤ 13 hours	Duration of 1 st stage > 13 hours	p- value
	\leq 6 hours [Group 1]	> 6 to ≤ 13 hours [Group 2]	> 13 hours [Group 3]	(x^2)
	N (%)	N (%)	N (%)	
Row percentages	n=120 (59.7%)	n=62 (30.8%)	n=19 (9.5%)	-
Baby's gender $(n = 200)$	n 120 (35.770)	n 02 (00.070)	n 1) ().570)	0.019
Male	59 (54.6%)	42 (38.9%)	7(6.5%)	0.012
Female	60 (65.2%)	20 (21.7%)	19 (9.5%)	
Delivery mode (n = 196)				<mark><0.00</mark> 1
Vaginal without IAP (n=103)	50 (48.5%)	40(38.8%)	13 (12.6%)	_
Vaginal with IAP (n= 43)	19 (44.2%)	19(44.2%)	5 (11.6%)	
Elective C-section(n=26)	26 (100.0%)	0	0	1
C-section with $labour(n=24)$	22 (91.7%)	2 (8.3%)	0	1
Term gestation (n= 200)		· · · · /		0.031
No	6 (75.0%)	2 (25.0%)	0	
Yes	113 (58.9%)	60 (31.3%)	19 (9.9%)	
Infant diet 3 months (n= 201)		• • •	· · ·	0.853
EBF = Yes	64 (61.0%)	33 (31.4%)	8 (7.6%)	
EBF= Partial	40 (60.6%)	19 (28.8%)	7 (10.6%)	
EBF= No	16 (53.3%)	10 (33.3%)	4 (13.3%)	
Parity (n=201)				0.114
Primipara	34 (50.0%)	25 (30.85)	9 (13.2%)	
Multipara	86 (64.7%)	37 (27.8%)	10 (7.5%)	
Membrane rupture >18 Hou				0.227
No	103 (61.3%)	51 (30.4%)	14 (8.3%)	
Yes	12 (44.4%)	11 (40.7%)	4 (14.8%)	
Length of hospital stay (n=19				0.227
24 hours of less	28 (65.1%)	11 (25.6%)	4 (9.35)	
2-3 days	67 (54.0%)	44 (35.5%)	13 (10.5%)	
4 days or more	19 (76.0%)	5 (20.0%)	1 (4.0%)	
Maternal ethnicity (n=198)	1		1	0.900
Caucasian	92 (59.7%)	48 (31.2%)	14 (9.1%)	
Other	14 (60.9%)	6 (26.1%)	3 (13.0%)	1
Asian	13 (61.9%)	7(33.3%)	1 (4.8%)	
Prenatal smoke exposure (n=	,	1	Γ	0.070
No	114 (60.3%)	60 (31.7%)	15 (7.9%)	
Yes	3 (42.9%)	1 (14.35)	3 (42.9%)	
Maternal asthma (n= 200)	1	1	Γ	0.218
No	86 (61.4%)	44 (31.4%)	10 (7.1%)	4
Yes	<u>33 (55.0%)</u>	18 (30.0%)	9(15.0%)	

IAP = Intrapartum Antibiotic Prophylaxis; EBF = Exclusive breastfeeding Comparison made by Chi square test. p-value <0.05 are in boldface type.

Table 3.2b

	Duration of 2nd	Duration of 2nd stage	Duration of 2nd	p-
	stage ≤ 1 hour	> 1 to ≤ 2 hours	stage > 2 hours	value
	[Group 1]	[Group 2]	[Group 3]	(x^2)
Row percentages	N (%)	N (%)	N (%)	
	150 (72.1%)	26 (12.5%)	32 (15.4%)	
Baby's gender (n = 208)		<u> </u>		<mark>0.018</mark>
Male	72 (64.9%)	20 (18.0%)	19(17.1%)	
Female	78 (80.4%)	6 (6.2%)	13 (13.4%)	
Delivery mode (n = 202)				<mark>0.004</mark>
Vaginal without IAP (n=109)	72 (66.1%)	20 (18.3%)	17 (15.6%)	
Vaginal with IAP (n=43)	28 (65.1%)	5 (11.6%)	10 (23.3%)	
Elective C-section (n=26)	26 (100.0%)	0	0	
C-section with labour (n=24)	20 (83.3%)	0	4 (16.7%)	
Term gestation (n= 208)				0.460
No	7 (87.5%)	1 (12.5%)	0	
Yes	143 (71.5%)	25 (12.5%)	32 (16.0%)	
Infant diet 3 months (n= 208)				0.296
EBF = Yes	74 (69.8%)	18 (17.0%)	14 (13.2%)	
EBF= Partial	53 (76.8%)	5 (7.2%)	11 (15.9%)	
EBF= No	23 (69.7%)	3 (9.1%)	7 (21.2%)	
Parity (n=208)				<mark><0.00</mark>
Primipara	34 (49.3%)	14 (20.3%)	21 (30.4%)	
Multipara	116 (83.5%)	12 (8.6%)	11 (7.9%)	
Membrane rupture >18 Hours				0.116
No	128 (74.0%)	22 (12.7%)	23 (13.3%)	
Yes	17 (60.7%)	3 (10.7%)	8(28.6%)	
Length of hospital stay (n=199)			0.898
24 hours of less	30 (69.8%)	7 (16.3%)	6 (14.0%)	
2-3 days	92 (70.8%)	16(12.3%)	22 (16.9%)	
4 days or more	20 (76.9%)	3 (11.5%)	3 (11.5%)	
Maternal ethnicity (n=205)				0.788
Caucasian	117 (73.6%)	18 (11.3%)	24 (15.1%)	
Other	17 (68.0%)	4 (16.0%)	4 (16.0%)	
Asian	13 (61.9%)	4 (19.0%)	4 (19.0%)	
Pre-natal smoke exposure (n=	203)			0.984
No	141 (71.9%)	24 (12.25)	31 (15.8%)	
Yes	5 (71.4%)	1 (14.35)	1 (14.3%)	7
Maternal asthma (n= 208)				0.723
No	104 (71.2%)	20 (13.7%)	22 (15.1%)	
Yes	46 (74.2%)	6 (9.7%)	10 (16.1%)	

IAP = Intrapartum Antibiotic Prophylaxis; EBF = Exclusive breastfeeding Comparison made by Chi square test. p-value <0.05 are in boldface type.

Table 3.3a

	Duration of 1 st stage	Duration of 1 st stage	Duration of 1 st stage	p-
	≤ 6 hours	> 6 to ≤ 13 hours	> 13 hours	value
	[Group 1]	[Group 2]	[Group 3]	(x^2)
D	N (%)	N (%)	N (%)	_
Row percentages	n=99 (65.1%)	n=40 (26.3%)	n=13 (8.6%)	0.40
Baby's gender (n = 152)	55 (60 (0/)	10(22.00/)		0.481
Male	55 (69.6%)	18(22.8%)	6 (7.6%)	-
Female	44 (60.3%)	22 (30.1%)	7 (9.6%)	0.00
$\frac{\text{Delivery mode (n = 148)}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	25 (51 50/)	2((20,20/)	7(10.20/)	<mark>0.00</mark> 1
Vaginal without IAP (n=68)	35 (51.5%)	26 (38.2%)	7(10.3%)	_
Vaginal with IAP ($n=30$)	16 (53.35)	10 (33.3%)	4 (13.3%)	_
Elective C-section(n=19)	19 (100.0%)	0	0	_
C-section with labour(n=31)	26 (83.9%)	3 (9.7%)	2 (6.5%)	
Term gestation (n= 152)		Γ		
No				_
Yes	99 (65.1%)	40 (26.3%)	13 (8.6%)	0.70
Infant diet 3 months (n= 152		12 (26 00 ()	5 (10.00()	0.794
EBF = Yes	32 (64.0%)	13 (26.0%)	5 (10.0%)	_
EBF= Partial	37 (71.2%)	12 (23.1%)	3 (5.8%)	
EBF= No	30 (60.0%)	15 (30.0%)	5 (10.0%)	0.040
Parity (n=152)	20 (52 (0))	01 (07 50/)	5 (0.00()	<mark>0.049</mark>
Primipara	30 (53.6%)	21 (37.5%)	5 (8.9%)	-
Multipara	69 (71.9%)	19 (19.8%)	8 (8.3%)	0.00
Membrane rupture >18 Hou			0.46 - 0.4	0.202
No	81 (65.3%)	35 (28.2%)	8 (6.5%)	_
Yes	14 (60.9%)	5 (21.7%)	4 (17.4%)	
Length of hospital stay (n=14		7(42,00/)	0 (10 50/)	0.08
24 hours of less	7 (43.8%)	7(43.8%)	2 (12.5%)	_
2-3 days	65 (64.4%)	27 (26.7%)	9 (8.9%)	4
4 days or more	23 (85.2%)	3 (11.1%)	1 (3.7%)	0.1.6
Maternal ethnicity (n=152)	04/05 10/1	22/25 22/2		0.16
Caucasian	84 (66.1%)	32(25.2%)	11 (8.7%)	
Other	15 (68.2%)	6 (27.3%)	1 (4.5%)	4
Asian	0	2 (66.7%)	1 (33.3%)	0.0
Prenatal smoke exposure (n=			12 (0 (0))	0.25
No	86 (63.2%)	37 (27.2%)	13 (9.6%)	
Yes	11 (84.6%)	2 (15.4%)	0	0.07
Maternal asthma (n= 152)		0.5 (0.5 0.0 ()	0 (0 10/)	0.89
No	65 (65.7%)	25 (25.3%)	9 (9.1%)	4
Yes	34 (64.2%)	15 (28.3%)	4 (7.5%)	

IAP = Intrapartum Antibiotic Prophylaxis; EBF = Exclusive breastfeeding Comparison made by Chi square test. p-value <0.05 are in boldface type.

Table 3.3b

				1
	Duration of 2nd $(1 + 1)$	Duration of 2nd stage > 1 to ≤ 2 hours	Duration of 2nd $2 h$	p-
	stage ≤ 1 hour [Group 1]	$ 10 \leq 2$ hours [Group 2]	stage > 2 hours [Group 3]	(x^2)
Row percentages	<u> </u>	N (%)	<u> </u>	- (x-)
Row percentages	<u>118 (75.2%)</u>	18 (11.5%)	<u>N (%)</u> 21 (13.4%)	-
Baby's gender (n = 157)	118 (73.270)	18 (11.3%)	21 (13.4%)	0.695
Male	62 (74.7%)	11 (13.3%)	10 (12.0%)	0.075
Female	56 (75.7%)	7 (9.5%)	11 (14.9%)	_
Delivery mode (n = 153)	50 (15.170)	7 (9.570)	11 (11.970)	0.007
Vaginal without IAP (n=71)	51 (71.85)	10 (14.1%)	10 (14.1%)	
Vaginal with IAP (n=32)	18 (56.3%)	8(25.05)	6 (18.8%)	-
Elective C-section $(n=19)$	19 (100.0%)	0	0	
C-section with labour $(n=31)$	26 (83.95)	0	5 (13.7%)	-
Term gestation (n= 157)	_0 (00.00)	· · · · · · · · · · · · · · · · · · ·	. (10.170)	
No				
Yes	118 (75.2%)	18 (11.5%)	21 (13.4%)	1
Infant diet 3 months (n= 157)				0.220
EBF = Yes	36 (69.2%)	10 (19.2%)	6 (11.5%)	
EBF= Partial	44 (81.5%)	4 (7.4%)	6 (11.1%)	_
EBF= No	38 (74.5%)	4 (7.8%)	9 (17.6%)	
Parity (n=157)		• · · · · ·	\$ * *	<mark><0.00</mark>
Primipara	34 (57.6%)	11 (18.6%)	14 (23.7%)	
Multipara	84 (85.7%)	7 (7.1%)	7 (7.1%)	
Membrane rupture >18 Hours	s (n= 152)			<mark>0.01.</mark>
No	100 (77.5%)	17 (13.2%)	12 (9.3%)	
Yes	15 (65.2%)	1 (4.3%)	7 (30.4%)	
Length of hospital stay (n=149				<mark>0.028</mark>
24 hours of less	11 (64.7%)	5 (29.4%)	1 (5.9%)	
2-3 days	81 (77.1%)	12 (11.4%)	12 (11.4%)	
4 days or more	21 (77.85)	0	6 (22.2%)	
Maternal ethnicity (n=157)				0.313
Caucasian	97 (74.0%)	16 (12.2%)	18 (13.7%)	
Other	20 (87.0%)	1 (4.3%)	2 (8.7%)	
Asian	1 (33.35)	1 (33.3%)	1 (33.35)	
Pre-natal smoke exposure (n=		<u> </u>		0.074
No	101 (72.1%)	18 (12.95)	21 (15.0%)	
Yes	14 (100.0%)	0	0	
Maternal asthma (n= 157)		1		0.369
No	80 (78.4%)	11 (10.8%)	11 (10.8%)	4
Yes	38 (69.1%)	7 (12.7%)	10 (18.2%)	

IAP = Intrapartum Antibiotic Prophylaxis; EBF = Exclusive breastfeeding Comparison made by Chi square test. p-value <0.05 are in boldface type.

INFANTS BORN TO WOMEN WITH NORMAL PRE-PREGNANCY WEIGHT (BMI<25)

Table 3.4

Summary table showing <u>significant</u> (p<0.05) median relative abundance changes of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the duration of active first stage of labour among infants born to normal weight mothers, and following stratification by mode by IAP

ALL MO	Group 1 (Reference group):		
Reference group:	Group 2	Group 3	Active 1st stage ≤ 6 hours
Group 1			Group 2: Active 1st Stage
(n=322)	(n=156)	(n=53)	> 6 to ≤ 13 hours
Phylum Actinobacteria	\rightarrow		
Bifidobacteriaceae	\downarrow		Group 3: Active 1st Stage > 13 hours
Phylum Bacteroidetes			_
Phylum Firmicutes			
Lactobacillaceae		↓	
Phylum Proteobacteria			

L

VAGINAL BIRTHS			
WITHOUT IAP (n=293)			
Group 1	Group	Group	
(Ref)	2	3	
(n=170)	(n=94)	(n=29)	
Phylum		\downarrow	
Actinobacteria			
Bifidobacteriaceae		\downarrow	
Phylum			
Bacteroidetes			
Phylum			
Firmicutes			
Lactobacillaceae			
Phylum			
Proteobacteria			

ſ

VAGINAL BIRTHS WITH				
IAP (n=108)				
Group 1	Group	Group		
(Ref)	2	3		
(n=40)	n=48)	(n=20)		
Phylum	\downarrow			
Actinobacteria				
Bifidobacteriaceae	\downarrow			
Phylum				
Bacteroidetes				
Phylum				
Firmicutes				
Ruminococcaceae	\downarrow			
Phylum				
Proteobacteria				

C-SECTION WITH ACTIVE 1 ST			
STAGE			
(n=6)	9)		
Group 1	Active 1 st stage		
(Ref)	> 6 hrs		
(n=57)	(n=12)		
Phylum			
Actinobacteria			
Bifidobacteriaceae			
Phylum			
Bacteroidetes			
Phylum			
Firmicutes			
Ruminococcaceae			
Phylum			
Proteobacteria			

IAP = Intrapartum Antibiotic Prophylaxis

-- indicates no significant change

(Note: Elective C-section excluded from analyses)

INFANTS BORN TO WOMEN WITH NORMAL PRE-PREGNANCY WEIGHT (BMI<25)

Table 3.5

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among all modes of delivery in normal weight mothers, according to the duration of active first stage of labour (n=531)

	1 st Stage of labour <= 6 hours	1 st Stage of labour > 6 to <=13 hours	p- value	1 st Stage of labour > 13 hours	p- value
Bacterial Taxa	[Reference group] (n=322; 60.6%)	(n=156; 29.4%)		(n=53; 10.0%)	
	Median (IQR)	(II-130, 29.4%) Median (IQR)		Median (IQR)	
DI I				()	
Phylum	6.775	3.585		3.504	
Actinobacteria	(1.875-16.695)	(0.761-13.265)	<mark>0.025</mark>	(0.474-14.453)	0.157
Bifidobacteriaceae	6.306 (1.669-15.516)	3.487 (0.558-13.191)	<mark>0.037</mark>	3.317 (0.285-13.869)	0.174
Coriobacteriaceae	0.039 (0.008-0.140)	0.031 (0002-0.137)	0.639	0.023 (0.004-0.066)	0.189
g_Bifidobacterium	6.306 (1.669-15.516)	3.487 (0.558-13.191)	<mark>0.037</mark>	3.317 (0.285-13.869)	0.174
Bacteroidetes	7.525 (0.093-56.454)	18.880(0.132-61.441)	0.108	13.817 (0.093-58.459)	0.493
Bacteroidaceae	3.805 (0.068-52.451)	10.042(0.070-58.918)	0.213	13.717 (0.067-57.067)	0.562
Firmicutes	23.330(9.888-47.099)	23.895(8.084-47.094)	0.612	25.008 (7.265-48.272)	0.890
Lactobacillaceae	0.000 (0.000-0.054)	0.000 (0.000-0.037)	0.987	0.000 (0.000-0.000)	<mark>0.007</mark>
Streptoccocaceae	0.690 (0.223-1.887)	0.533 (0.182-1.513)	0.347	0.538 (0.270-1.880)	0.844
Clostridiaceae	0.428 (0.029-3.265)	0.206 (0.023-1.851)	0.175	0.703 (0.074-4.481)	0.446
Lachnospiraceae	2.371 (0.029-10.481)	1.784 (0.046-9.675)	0.978	1.408 (0.019-9.810)	0.424
Ruminococcaceae	0.054 (0.000-2.096)	0.035 (0.000-0.655)	0.160	0.023 (0.000-1.664)	0.367
Veillionellaceae	4.315 (0.755-16.178)	6.486 (0.587-17.063)	0.787	4.092(0.823-22.326)	0.570
g_Lactobacillus	0.000 (0.000-0.054)	0.000 (0.000-0.037)	0.987	0.000 (0.000-0.000)	<mark>0.007</mark>
Proteobacteria	19.718(9.126-41.385)	21.169(9.884-40.226)	0.950	20.257(7.900-41.382)	0.898
Enterobacteriaceae	18.220 (6.543-39.289)	18.828(7.902-37.721)	0.985	18.287 (7.769-39.816)	0.817
Verrucomicrobia	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.497	0.000 (0.000-0.008)	0.939
g_Akkkermansia	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.497	0.000 (0.000-0.008)	0.939
Results are presented	as median and interquartil	e range (IQR) in parenth	eses. Cor	nparisons were performed	d using
Mann-Whitney U-tes	st. P values < 0.05 are indi	icated in boldface type. I	AP = Intr	apartum Antibiotic Proph	nylaxis

INFANTS BORN TO WOMEN WITH NORMAL PRE-PREGNANCY WEIGHT (BMI<25)

Table 3.6

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births without IAP in normal weight mothers, according to the duration of active first stage of labour (n=293)

Bacterial Taxa	1 st Stage of labour <= 6 hours [Reference group]	1 st Stage of labour > 6 to <=13 hours	p- value	1 st Stage of labour > 13 hours	p- value
	(n=170; 58.0%)	(n=94; 32.1%)		(n=29; 9.9%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	8.079 (2.881-19.182)	4.825 (1.417-15.435)	0.080	2.028 (0.219-13.590)	<mark>0.043</mark>
Family Bifidobacteriaceae	7.166 (2.530-18.597)	4.538 (1.387-14.870)	0.082	1.974 (0.113-13.528)	<mark>0.051</mark>
Family Coriobacteriaceae	0.043 (0.008-0.144)	0.035 (0.000-0.117)	0.452	0.016 (0.000-0.054)	0.151
Genus_Bifidobacterium	7.166 (2.518-18.521)	4.538 (1.387-14.870)	0.080	1.974 (0.113-13.528)	<mark>0.051</mark>
Phylum Bacteroidetes	35.083 (0.930-62.249)	28.278 (0.993-60.856)	0.832	34.334 (0.198-66.856)	0.807
Family Bacteroidaceae	31.413 (0.570 -60.721)	26.078 (0.176-54.222)	0.394	26.814 (0.183-59.566)	0.840
Phylum Firmicutes	16.720 (7.447-32.061)	20.435 (7.362-45.654)	0.526	15.281 (4.649-45.482)	0.740
Family Lactobacillaceae	0.000 (0.000-0.049)	0.000 (0.000-0.049)	0.601	0.000 (0.000-0.008)	0.230
Family Streptoccocaceae	0.660 (0.194-1.883)	0.457 (0.130-0.946)	0.083	0.497 (0.118-2.045)	0.654
Family Clostridiaceae	0.151 (0.016-1.567)	0.171 (0.023-1.239)	0.872	0.641 (0.066-5.786)	0.116
Family Lachnospiraceae	1.817 (0.023-8.851)	1.819 (0.093-8.715)	0.293	2.206 (0.019-9.810)	0.912
Family Ruminococcaceae	0.046 (0.000-1.562)	0.081 (0.008-1.052)	0.603	0.008 (0.000-0.519)	0.155
Family Veillionellaceae	2.730 (0.527-13.243)	3.949 (0.442-12.525)	0.762	2.477 (0.861-14.733)	0.897
Genus_Lactobacillus	0.000 (0.000-0.049)	0.000 (0.000-0.049)	0.601	0.000 (0.000-0.008)	0.230
Genus_Clostridium	0.012 (0.000-0.511)	0.015 (0.000-0.403)	0.597	0.101 (0.000-4.018)	0.287
Genus_Veillionella	1.805 (0.259-10.975)	2.197 (0.247-8.766)	0.801	2.477 (0.805-12.683)	0.518
Phylum Proteobacteria	16.306 (7.647-36.570)	15.674 (9.602-33.592)	0.591	25.729 (7.900-43.662)	0.241
Family Enterobacteriaceae	14.843 (4.620-33.061)	14.734 (7.075-31.039)	0.577	24.350 (7.769-42.174)	0.151
Phylum Verrucomicrobia	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.509	0.000 (0.000-0.001)	0.736
Genus_Akkermansia	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.509	0.000 (0.000-0.001)	0.736
Results are presented as medi- Mann-Whitney U-test. P valu					

INFANTS BORN TO WOMEN WITH **NORMAL PRE-PREGNANCY WEIGHT** (BMI<25)

Table 3.7

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births with IAP in normal weight mothers, according to the duration of active first stage of labour (n=108)

1 st Stage of labour <= 6 hours	1 st Stage of labour > 6 to <=13 hours	p- value	1 st Stage of labour > 13 hours	p- value
	(n=48:44.4%)		(n=20: 18.5%)	
Median (IQR)	Median (IQR)		Median (IQR)	
4.912 (2.076-14.877)	2.483 (0.229-7.578)	0.016	5.711 (1.210-19.453)	0.962
4.493 (2.039-12.324)	2.285 (0.054-7.251)	0.020	5.101 (0.849-19.205)	0.875
0.019 (0.000-0.122)	0.023 (0.008-0.134)	0.552	0.035 (0.008-0.190)	0.658
4.493 (2.039-12.324)	2.285 (0.054-7.246)	0.019	5.101 (0.849-19.205)	0.875
5 464 (0 054-68 602)	7 575 (0 046-67 733)	0.997	8 569 (0 049-55 431)	0.707
2.290 (0.046-61.340)	3.383 (0.046-64.342)	0.887	6.084 (0.033-53.672)	0.578
21.225	20.000		22.654	
(9.713-46.318)	28.908 (8.943-55.611)	0.476	32.654 (13.330-52.666)	0.301
0.000 (0.000-0.050)	0.000 (0.000-0.016)	0.885	0.000 (0.000-0.000)	0.062
0.562 (0.134-1.574)	0.819 (0.284-2.394)	0.127	0.681 (0.342-1.694)	0.331
0.124 (0.015-2.393)	0.291 (0.019-6.103)	0.425	0.668 (0.029-3.627)	0.323
2.425 (0.039-12.053)	0.533 (0.023-7.128)	0.372	0.833 (0.014-10.601)	0.490
0.240 (0.000-3.061)	0.008 (0.000-0.362)	<mark>0.046</mark>	0.015 (0.000-2.844)	0.904
3.861 (0.479-16.569)	10.679 (1.262-22.634)	0.152	14.638 (0.554-31.406)	0.272
0.000 (0.000-0.050)	0.000 (0.000-0.016)	0.885	0.000 (0.000-0.000)	0.062
0.016 (0.000-0.400)	0.023 (0.000-0.505)	0.838	0.198 (0.002-0.856)	0.216
3.584 (0.479-16.565)	10.679 (1.073-21.642)	0.191	9.982 (0.366-27.257)	0.541
14.714 (8.869-41.491)	25.432 (15.577-43.282)	0.149	16.729 (6.358-38.882)	0.742
13.704 (6.571-38.955)	23.253 (9.149-42.469)	0.147	16.299 (4.294-35.137)	0.863
0.000 (0.000-0.000)	0.000 (0.000-0.008)	0.626	0.000 (0.000-0.008)	0.665
0.000 (0.000-0.000)	0.000 (0.000-0.008)	0.626	0.000 (0.000-0.008)	0.665
	<= 6 hours [Reference group] (n=40; 37.0%)Median (IQR)4.912 (2.076-14.877)4.493 (2.039-12.324)0.019 (0.000-0.122)4.493 (2.039-12.324)5.464 (0.054-68.602)2.290 (0.046-61.340)21.225(9.713-46.318)0.000 (0.000-0.050)0.562 (0.134-1.574)0.124 (0.015-2.393)2.425 (0.039-12.053)0.240 (0.000-3.061)3.861 (0.479-16.569)0.000 (0.000-0.050)0.016 (0.000-0.400)3.584 (0.479-16.565)14.714 (8.869-41.491)13.704 (6.571-38.955)0.000 (0.000-0.000)	<= 6 hours [Reference group]> 6 to <=13 hours(n=40; 37.0%)(n= 48; 44.4%)Median (IQR)Median (IQR) 4.912 (2.076-14.877)2.483 (0.229-7.578) 4.493 (2.039-12.324)2.285 (0.054-7.251) 0.019 (0.000-0.122)0.023 (0.008-0.134) 4.493 (2.039-12.324)2.285 (0.054-7.246) 5.464 (0.054-68.602)7.575 (0.046-67.733) 2.290 (0.046-61.340)3.383 (0.046-64.342) 21.225 28.908(9.713-46.318)(8.943-55.611) 0.000 (0.000-0.050)0.000 (0.000-0.016) 0.562 (0.134-1.574) 0.819 (0.284-2.394) 0.124 (0.015-2.393) 0.291 (0.019-6.103) 2.425 (0.039-12.053) 0.533 (0.023-7.128) 0.240 (0.000-3.061) 0.008 (0.000-0.362) 3.861 (0.479-16.569) 10.679 (1.262-22.634) 0.000 (0.000-0.050) 0.000 (0.000-0.505) 3.584 (0.479-16.565) 10.679 (1.073-21.642) 14.714 (8.869-41.491) 25.432 (15.577-43.282) 13.704 (6.571-38.955) 23.253 (9.149-42.469) 0.000 (0.000-0.000) 0.000 (0.000-0.008)	<= 6 hours [Reference group]> 6 to <=13 hoursvalue $(n=40; 37.0\%)$ $(n=48; 44.4\%)$ Nedian (IQR)4.912 (2.076-14.877)2.483 (0.229-7.578)0.0164.493 (2.039-12.324)2.285 (0.054-7.251)0.0200.019 (0.000-0.122)0.023 (0.008-0.134)0.5524.493 (2.039-12.324)2.285 (0.054-7.246)0.0195.464 (0.054-68.602)7.575 (0.046-67.733)0.8872.290 (0.046-61.340)3.383 (0.046-64.342)0.78921.22528.9080.4760.000 (0.000-0.050)0.000 (0.000-0.016)0.8850.562 (0.134-1.574)0.819 (0.284-2.394)0.1270.124 (0.015-2.393)0.291 (0.019-6.103)0.4252.425 (0.039-12.053)0.533 (0.023-7.128)0.3720.240 (0.000-3.061)0.008 (0.000-0.362)0.0463.861 (0.479-16.569)10.679 (1.262-22.634)0.1520.000 (0.000-0.050)0.000 (0.000-0.016)0.8850.016 (0.000-0.400)0.023 (0.000-0.505)0.8383.584 (0.479-16.565)10.679 (1.073-21.642)0.14714.714 (8.869-41.491)25.432 (15.577-43.282)0.14913.704 (6.571-38.955)23.253 (9.149-42.469)0.1470.000 (0.000-0.000)0.000 (0.000-0.008)0.626	<= 6 hours [Reference group]> 6 to <=13 hoursvalue> 13 hours(n=40; 37.0%)(n=48; 44.4%)(n=20; 18.5%)Median (IQR)Median (IQR)Median (IQR)4.912 (2.076-14.877)2.483 (0.229-7.578) 0.016 5.711 (1.210-19.453)4.493 (2.039-12.324)2.285 (0.054-7.251) 0.020 5.101 (0.849-19.205)0.019 (0.000-0.122)0.023 (0.008-0.134)0.5520.035 (0.008-0.190)4.493 (2.039-12.324)2.285 (0.054-7.246)0.0195.101 (0.849-19.205)0.019 (0.000-0.122)0.023 (0.008-0.134)0.5520.035 (0.008-0.190)4.493 (2.039-12.324)2.285 (0.054-7.246)0.0195.101 (0.849-19.205)0.019 (0.004-61.340)3.383 (0.046-64.342)0.7896.084 (0.033-53.672)21.22528.90832.654(13.330-52.666)0.000 (0.000-0.050)0.000 (0.000-0.016)0.8850.000 (0.000-0.000)0.562 (0.134-1.574)0.819 (0.284-2.394)0.1270.681 (0.342-1.694)0.124 (0.015-2.393)0.291 (0.019-6.103)0.4250.668 (0.029-3.627)2.425 (0.039-12.053)0.533 (0.023-7.128)0.3720.833 (0.014-10.601)0.240 (0.000-3.061)0.008 (0.000-0.362)0.0460.015 (0.000-2.844)3.861 (0.479-16.569)10.679 (1.262-22.634)0.15214.638 (0.554-31.406)0.000 (0.000-0.050)0.000 (0.000-0.505)0.8380.198 (0.002-0.856)3.584 (0.479-16.565)10.679 (1.073-21.642)0.1919.982 (0.366-27.257)14.714 (8.869-41.491)25.432 (15.577-43.282)0.1

INFANTS BORN TO WOMEN WITH **NORMAL PRE-PREGNANCY WEIGHT** (BMI<25)

Table 3.8

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by C-section with active 1^{st} stage of labour in normal weight mothers, according to the duration of active first stage of labour (n= 69)

Bacterial Taxa	C-section with 1 st Stage of labour <= 6 hours [Reference group]	C-section with 1 st Stage of labour > 6 to <=13 hours	p-value
	(n= 57; 82.6%)	(n= 12; 17.4%)	
	Median (IQR)	Median (IQR)	
Phylum Actinobacteria	4.584 (0.437-13.187)	7.436 (0.683-53.076)	0.350
Family Bifidobacteriaceae	3.985 (0.200-12.583)	6.686 (0.302-52.346)	0.282
Family Coriobacteriaceae	0.039 (0.000-0.109)	0.059 (0.002-0.235)	0.602
Genus_Bifidobacterium	3.985 (0.200-12.529)	6.686 (0.302-52.325)	0.350
Phylum Bacteroidetes	0.119 (0.039-1.427)	0.128 (0.037-0.245)	0.669
Family Bacteroidaceae	0.101 (0.031-0.647)	0.074 (0.025-0.224)	0.457
Phylum Firmicutes	34.292 (21.792-64.305)	29.662 (21.977-81.857)	0.962
Family Lactobacillaceae	0.000 (0.000-0.070)	0.000 (0.000-0.000)	0.205
Family Streptoccocaceae	0.887 (0.328-2.364)	0.706 (0.308-3.799)	0.740
Family Clostridiaceae	1.614 (0.089-7.550)	1.144 (0.262-1.672)	0.194
Family Lachnospiraceae	4.812 (0.016-13.154)	4.068 (0.033-21.331)	0.569
Family Ruminococcaceae	0.093 (0.004-3.308)	0.282 (0.008-6.427)	0.775
Family Veillionellaceae	8.744 (2.328-28.551)	11.674 (5.463-24.262)	0.580
Genus_Lactobacillus	0.000 (0.000-0.070)	0.000 (0.000-0.000)	0.205
Genus_Clostridium	0.255 (0.027-2.745)	0.2921 (0.087-0.613)	0.831
Genus_Veillionella	8.064 (1.104-25.934)	11.662 (5.463-24.232)	0.393
Phylum Proteobacteria	27.777 (14.315-52.52.369)	13.860 (2.659-36.432)	0.053
Family Enterobacteriaceae	25.861 (12.688-51.391)	13.711 (1.633-32.321)	0.074
Phylum Verrucomicrobia	0.000(0.000.008)	0.000 (0.000-0.025)	0.655
Genus_Akkermansia	0.000(0.000.008)	0.000 (0.000-0.025)	0.655
	n and interquartile range (IQR) in p es <mark>< 0.05</mark> are indicated in boldface t		rformed using

INFANTS BORN TO WOMEN WITH NORMAL PRE-PREGNANCY WEIGHT (BMI<25)

Table 3.9

Summary table showing <u>significant</u> (p<0.05) median relative abundance changes of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the duration of second stage of labour among infants born to normal weight mothers, and following stratification by mode by IAP

ALL MOD	Group 1 (Reference group)		
Reference group: Group 1 (n=379)	Group 2 (n=75)	Group 3 (n=102)	2nd stage <=1 hour Group 2: 2nd stage > 1 to
Phylum Actinobacteria		\downarrow	≤ 2 hours
Bifidobacteriaceae		↓	Group 3: 2nd stage > 2 hours
Phylum Bacteroidetes			
Phylum Firmicutes			
Lactobacillaceae		\downarrow	
Clostridiaceae		↓	
Phylum Proteobacteria			

1	_	_	-

VAGINAL BIRHTS				
WITHOUT IAP (n=293)				
Group 1	Group	Group		
(Ref)	2	3		
(n=200)	(n=45)	(n=48)		
Phylum		\downarrow		
Actinobacteria				
Bifidobacteriaceae		\downarrow		
Phylum	↓			
Bacteroidetes				
Phylum	1			
Firmicutes				
Clostridiaceae		\uparrow		
Phylum				
Proteobacteria				

VAGINAL BIRHTS WITH						
IAP (n=115)						
Group 1 Group Group						
(Ref)	2	3				
(n=54)	n=24)	(n=37)				
Phylum						
Actinobacteria						
Bifidobacteriaceae						
Phylum						
Bacteroidetes						
Phylum	↑					
Firmicutes						
Clostridiaceae						
Phylum	Phylum					
Proteobacteria						

C-SECTION WITH 2 nd STAGE				
(n=69)				
Group 1	2nd stage			
(Ref)	> 1 hour			
(n=53)	(n=16)			
Phylum				
Actinobacteria				
Bifidobacteriaceae				
Phylum				
Bacteroidetes				
Phylum				
Firmicutes				
Clostridiaceae				
Phylum				
Proteobacteria				

IAP = Intrapartum Antibiotic Prophylaxis

-- indicates no significant change

(Note: Elective C-section excluded from analyses)

INFANTS BORN TO WOMEN WITH NORMAL PRE-PREGNANCY WEIGHT (BMI<25)

Table 3.10

Median relative abundance of dominant bacterial taxa at different taxonomic level in infant gut microbiota at 3-4 months among *all modes* of delivery in normal weight mothers, according to the duration of second stage of labour (n=556)

	2 nd Stage of labour <= 1 hour	2 nd Stage of labour > 1 to <=2 hours	p- value	2 nd Stage of labour > 2 hours	p- value
Bacterial Taxa	(n=379; 68.2%)	(n=75; 13.5%)		(n=102; 18.3%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Actinobacteria	6.300 (1.797-15.943)	5.104 (0.66-14.227)	0.220	3.511 (0.321-13.815)	<mark>0.033</mark>
Actinomycetaceae	0.023 (0.000-0.100)	0.023 (0.000-0.108)	0.622	0.023 (0.000-0.080)	0.681
Bifidobacteriaceae	5.773 (1.612-15.327)	4.487 (0.489-13.424)	0.211	3.290 (0.076-13.427)	<mark>0.040</mark>
Coriobacteriaceae	0.039 (0.008-0.140)	0.054 (0.000-0.155)	0.951	0.015 (0.000-0.104)	<mark>0.013</mark>
g_Bifidobacterium	5.773 (1.612-15.327)	4.487 (0.489-13.424)	0.211	3.290 (0.076-13.427)	<mark>0.040</mark>
Bacteroidetes	10.050 (0.116 (0.000)	(170 (0 070 5(200)		2 577 (0.070 52 020)	
	18.252 (0.116-60.293)	6.179 (0.070-56.222)	0.237	2.576 (0.070-53.938)	0.116
Bacteroidaceae	13.588 (0.077-56.419)	3.483 (0.055-50.285)	0.196	1.616 (0.045-50.206)	0.130
Firmicutes	22.304 (7.960-46.034)	27.664 (11.527-50.496)	0.085	23.352 (9.480-49.216)	0.276
Enterococcaceae	0.023 (0.000-0.108)	0.016 (0.000-0.116)	0.875	0.039 (0.000-0.124)	0.466
Lactobacillaceae	0.000 (0.000-0.039)	0.000 (0.000-0.023)	0.956	0.000 (0.000-0.008)	<mark>0.012</mark>
Streptoccocaceae	0.564 (0.209-1.877)	0.757 (0.318-2.543)	0.165	0.649 (0.2107-1.651)	0.916
Clostridiaceae	0.255 (0.023-1.884)	0.574(0.023-4.231)	0.285	1.165 (0.063-6.254)	<mark>0.002</mark>
Lachnospiraceae	2.206 (0.031-9.295)	1.389 (0.039-11.440)	0.661	0.581 (0.023-8.707)	0.241
Ruminococcaceae	0.062 (0.000-1.869)	0.023 (0.000-1.370)	0.530	0.008 (0.000-0.746)	<mark>0.032</mark>
Veillionellaceae	4.073 (0.681-16.870)	4.585 (1.097-15.229)	0.774	7.466 (0.497-20.397)	0.439
g_Lactobacillus	0.000 (0.000-0.039)	0.000 (0.000-0.023)	0.956	0.000 (0.000-0.008)	<mark>0.012</mark>
Proteobacteria	18.951 (8.536-39.933)	26.958 (11.257-42.748)	0.269	21.541 (10.616-42.280)	0.223
Enterobacter_unclss	16.723 (6.573-36.741)	26.865 (8.098-42.355)	0.156	20.146 (10.047-40.683)	0.125
Verrucomicrobia	0.000 (0.000-0.008)	0.000 (0.000-0.008)		0.000 (0.000-0.008)	
g_Akkermansia	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.507	0.000 (0.000-0.008)	0.995 0.995

Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values ≤ 0.05 are indicated in boldface type.
INFANTS BORN TO WOMEN WITH **NORMAL PRE-PREGNANCY WEIGHT** (BMI<25)

Table 3.11

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births without IAP in normal weight mothers, according to the duration of second stage of labour (n=293)

Bacterial Taxa	2 nd Stage of labour <= 1 hour [Reference group]	2 nd Stage of labour > 1 to <=2 hours	p- value	2 nd Stage of labour > 2 hours	p- value
	(n= 200; 68.3%)	(n= 45; 15.4%)		(n= 48; 16.4%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	7.484 (2.292-17.110)	6.978 (1.009-18.320)	0.369	3.426 (0.1718-13.617)	<mark>0.038</mark>
Family Bifidobacteriaceae	6.659 (2.224-16.414)	6.533 (0.817-17.796)	0.402	3.290 (0.275-13.563)	<mark>0.049</mark>
Family Coriobacteriaceae	0.039 (0.008-0.155)	0.047 (0.000-0.081)	0.398	0.012 (0.000-0.091)	<mark>0.066</mark>
Genus_Bifidobacterium	6.659 (2.224-16.414)	6.533 (0.817-17.796)	0.402	3.290 (0.275-13.563)	<mark>0.048</mark>
Phylum Bacteroidetes	39.043 (4.863-64.734)	3.483 (0.081-51.039)	0.001	25.895 (0.269-66.759)	0.279
Family Bacteroidaceae	35.785 (2.230-61.803)	1.019 (0.070-42.092)	<mark>0.000</mark>	19.415 (0.109-61.981)	0.288
Phylum Firmicutes	15.505 (6.747-32.052)	27.576 (13.194-47.873)	<mark>0.008</mark>	23.460 (5.655-46.579)	0.194
Family Lactobacillaceae	0.000 (0.000-0.054)	0.000 (0.000-0.012)	0.976	0.000 (0.000-0.014)	0.132
Family Streptoccocaceae	0.552 (0.144-1.846)	0.721 (0.271-1.526)	0.414	0.379 (0.128-1.257)	0.342
Family Clostridiaceae	0.108 (0.0.15-0.746)	0.752 (0.023-4.964)	0.014	0.679 (0.065-7.179)	<mark>0.000</mark>
Family Lachnospiraceae	1.943 (0.031-8.338)	1.197 (0.039-16.075)	0.549	1.572 (0.039-9.361)	0.975
Family <i>Ruminococcaceae</i>	0.054 (0.000-1.327)	0.100 (0008-2.240)	0.535	0.008 (0.000-0.877)	0.127
Family Veillionellaceae	2.640 (0479-11.731)	3.485 (1.333-14.381)	0.360	6.791 (0.298-14.617)	0.599
Genus Lactobacillus	0.000 (0.000-0.054)	0.000 (0.000-0.012)	0.976	0.000 (0.000-0.014)	0.132
Genus_Clostridium	0.008 (0.000-0.187)	0.117 (0.000-2.276)	<mark>0.013</mark>	0.031 (0.002-3.108)	<mark>0.010</mark>
Genus_Veillionella	1.750 (0.173-9.519)	3.485 (1.212-12.248)	0.066	6.130 (0.229-14.611)	0.332
Phylum Proteobacteria				17.448 (10.059-	
Family <i>Enterobacteriaceae</i>	15.395 (7.146-32.240)	30.422 (11.120-47.721)	0.024	39.098)	0.240
-	14.666 (5.026-29.593)	29.447 (9.770-44.866)	0.008	14,590 (9.650-33.902)	0.207
Phylum Verrucomicrobia	0.000 (0.000-0.008)	0.000 (0.000-0.012)	0.647	0.000 (0.000-0.008)	0.260
Genus_Akkermansia	0.000 (0.000-0.008)	0.000 (0.000-0.012)	0.647	0.000 (0.000-0.008)	0.260
Results are presented as med Mann-Whitney U-test. P val					

INFANTS BORN TO WOMEN WITH **NORMAL PRE-PREGNANCY WEIGHT** (BMI<25)

Table 3.12

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births with IAP in normal weight mothers, according to the duration of second stage of labour (n=115)

Bacterial Taxa	2 nd Stage of labour <= 1 hour [Reference group]	2 nd Stage of labour > 1 to <=2 hours	p-value	2 nd Stage of labour > 2 hours	p- value
	(n= 54; 47%)	(n= 24; 20.9%)		(n= 37; 32.2%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	4.257 (1.886-17.070)	3.621 (0.399-13.850)	0.346	3.328 (0.227-10.608)	0.101
Family Bifidobacteriaceae	3.812 (1.540-16.876)	3.330 (0.066-10.126)	0.256	3.127 (0.039-9.681)	0.082
Family Coriobacteriaceae	0.023 (0.008-0.085)	0.077(0.008-0.258)	0.139	0.015 (0.000-0.121)	0.328
Genus_Bifidobacterium	3.812 (1.540-16.876)	3.330 (0.066-10.122)	0.256	3.127 (0.031-9.677)	0.078
Phylum Bacteroidetes	17.805 (0.060-69.400)	3.452 (0.048-57.351)	0.398	0.194 (0.043-48.759)	0.139
Family <i>Bacteroidaceae</i>	17.755 (0.052-66.818)	3.437 (0.046-56.812)	0.369	0.177 (0.031-45.257)	0.144
Phylum Firmicutes	20.782 (7.396-43.471)	32.015 (16.076-57.797)	0.027	33.328 (9.175-53.222)	0.182
Family <i>Lactobacillaceae</i>	0.000 (0.000-0.016)	0.000 (0.000-0.052)	0.838	0.000 (0.000-0.004)	0.139
Family Streptoccocaceae	0.508 (0.220-1.958)	0.793 (0.379-4.614)	0.104	0.907 (0.205-1.838)	0.328
Family <i>Clostridiaceae</i>	0.124 (0.016-1.315)	0.654 (0.035-5.7840	0.104	1.154 (0.035-7.270)	<mark>0.055</mark>
Family Lachnospiraceae	1.375 (0.023-8.899)	1.328 (0.041-9.370)	0.766	0.257 (0.016-7.417)	0.553
Family <i>Ruminococcaceae</i>	0.027 (0.000-2.833)	0.019 (0.000-0.713)	0.566	0.008 (0.000-0.457)	0.424
Family <i>Veillionellaceae</i>	5.220 (0.444-18.392)	8.887 (1.256-30.807)	0.176	11.484 (0.805-29.344)	0.238
Genus Lactobacillus	0.000 (0.000-0.016)	0.000 (0.000-0.052)	0.838	0.000 (0.000-0.004)	0.139
Genus_ <i>Clostridium</i>	0.016 (0.000-0.377)	0.019 (0.000-0.819)	0.757	0.093 (0.004-1.397)	0.130
Genus_Veillionella	5.049 (0.348-18.291)	8.075 (0.682-24.160)	0.289	11.484 (0.805-29.340)	0.216
Phylum Proteobacteria	17.249 (8.643-42.195)	23.727 (10.294-39.936)	0.931	27.181 (17.280-46.125)	0.075
Family Enterobacteriaceae	14.888 (7.503-39.407)	23.517 (4.294-38.678)	1.000	22.673 (17.208-45.327)	0.036
Phylum Verrucomicrobia	0.000 (0.000-0.000)	0.000 (0.000-0.006)	0.560	0.000 (0.000-0.008)	0.097
	0.000 (0.000-0.000)	0.000 (0.000-0.006)	0.560	0.000 (0.000-0.008)	0.097

INFANTS BORN TO WOMEN WITH **NORMAL PRE-PREGNANCY WEIGHT** (BMI<25)

Table 3.13

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by C-section with labour in normal weight mothers, according to the duration of second stage of labour (n= 69)

Bacterial Taxa	C-section with 2 nd Stage of labour <= 1 hour [Reference group]	C-section with 2 nd Stage of labour > 1 hour	p-value
	(n= 53; 76.8%)	(n= 16; 23.2%)	
	Median (IQR)	Median (IQR)	
Phylum Actinobacteria	4.143 (0.437-11.138)	13.820 (0.683-53.076)	0.118
Family Bifidobacteriaceae	3.872 (0.200-10.004)	13.630 (0.302-52.346)	0.113
Family Coriobacteriaceae	0.039 (0.000-0.097)	0.063 (0.002-0.239)	0.412
Genus_Bifidobacterium	3.872 (0.200-10.004)	13.630 (0.302-52.325)	0.143
Phylum Bacteroidetes	0.116 (0.039-1.427)	0.139 (0.037-0.399)	0.765
Family Bacteroidaceae	0.095 (0.031-0.647)	0.116 (0.025-0.399)	0.629
Phylum Firmicutes	35.457 (24.622-64.305)	24.907 (16.943-71.202)	0.477
Family Lactobacillaceae	0.000 (0.000-0.039)	0.000 (0.000-0.052)	0.652
Family Streptoccocaceae	0.887 (0.328-2.080)	0.706 (0.308-4.271)	0.943
Family <i>Clostridiaceae</i>	1.568 (0.089-7.550)	1.253 (0.262-2.001)	0.460
Family Lachnospiraceae	0.4941 (0.015-13.387)	1.488 (0.027-16.282)	0.744
Family <i>Ruminococcaceae</i>	0.046 (0.000-3.589)	0.301 (0.008-5.191)	0.732
Family <i>Veillionellaceae</i>	10.654 (3.890-29.895)	8.339 (0.876-18.345)	0.348
Genus Lactobacillus	0.000 (0.000-0.039)	0.000 (0.000-0.052)	0.652
Genus Clostridium	0.209 (0.027-2.362)	0.321 (0.087-0.845)	0.836
_ Genus_Veillionella	8.736 (2.329-28.547)	8.327 (0.859-18.308)	0.522
Phylum Proteobacteria	27.777 (14.315-53.120)	15.669 (4.910-34.667)	0.059
Family Enterobacteriaceae	25.861 (12.688-52.725)	15.551 (4.885-32.381)	0.085
Phylum Verrucomicrobia	0.000 (0.000-0008)	0.000 (0.000-0.025)	0.328
Genus_Akkermansia	0.000 (0.000-0008)	0.000 (0.000-0.025)	0.328
Results are presented as media	0.000 (0.000-0008) n and interquartile range (IQR) in press < 0.05 are indicated in boldface t	arentheses. Comparisons were pe	

REGRESSION ANALYSES: Active 1st stage INFANTS BORN TO WOMEN WITH NORMAL PRE-PREGNANCY WEIGHT (BMI <25) Table 3.14

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of active 1st stage of labour among infants of normal weight mothers (n=531)

Microbiota Measure	l	Infant's gut microbiota at 3 to 4 months of age								
Ref. Group 1 =	= 1st		PHYI	JUM			FAMILY		GEN	US
Stage ≤ 6 Hrs Group 2 = 1st > 6 to ≤ 13 Hrs	Stage	Actino- bacteria (below vs above median)	Bacteroidete s (below vs above median)	Firmicutes (below vs above median)	Proteo- bacteria (below vs above median)	Bifidobacteria- ceae (below vs above median)	Clostridia- ceae (below vs above median)	Veillonella- ceae (below vs above median)	Bifidobacterium (below vs above median)	Lactobacillu s (below vs above median)
Group $3 = 1$ st 3 13Hrs	Stage >	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Crude OR for	Grp2	0.62 (0.42-0.91)*	1.25 (0.85-1.84)	0.99 (0.67-1.45)	1.10 (0.75-1.61)	0.64 (0.44-0.95)*	0.73 (0.50-1.08)	1.26 (0.86-1.85)	0.64 (0.44-0.95)*	1.13 (0.76- 1.66)
1st stage of labour	Grp3	0.63 (0.35-1.13)	1.18 (0.66-2.10)	1.16 (0.65-2.09)	1.03 (0.57-1.84)	0.65 (0.37-1.17)	1.18 (0.66-2.11)	0.98 (0.55-1.77)	0.65 (0.37-1.17)	0.44 (0.22- 0.87)*
Adjusted for	Grp2	0.61 (0.40-0.92)*	0.95 (0.63-1.42)	1.26 (0.84-1.89)	1.23 (0.83-1.83)	0.64 (0.42-0.97)*	0.90 (0.60-1.35)	1.61 (1.08-2.41)	0.64 (0.42-0.97)*	1.06 (0.71- 1.57)
MODE by IAP	Grp3	0.69 (0.37-1.28)	0.89 (0.48-1.64)	1.46 (0.80-2.68)	1.18 (0.65-2.15)	0.72 (0.39-1.34)	1.44 (0.79-2.65)	1.18 (0.65-2.16)	0.72 (0.39-1.34)	0.45(0.22- 0.89)*
Adjusted for	Grp2	0.59 (0.40-0.87)*	1.23 (0.83-1.81)	1.00 (0.68-1.47)	1.09 (0.74-1.61)	0.61 (0.42-0.91)*	0.75 (0.51-1.10)	1.25 (0.85-1.84)	0.61 (0.42-0.91)*	1.15(0.77- 1.70)
gestation al age	Grp3	0.59 (0.33-1.07)	1.15 (0.64- 2.06)	1.18 (0.66-2.13)	1.02 (0.57-1.84)	0.62 (0.34-1.12)	1.20 (0.67-2.16)	0.98 (0.54-1.76)	0.62 (0.34-1.12)	0.45(0.23- 0.89)*
Adjusted for infant	Grp2	0.59 (0.40-0.87)*	1.24 (0.84-1.82)	0.98 (0.67-1.45)	1.10 (0.75-1.65)	0.62 (0.42-0.91)*	0.73 (0.50-1.08)	1.28 (0.87-1.89)	0.62 (0.42-0.91)*	1.16(0.78- 1.73)
diet at 3 months	Grp3	0.63 (0.35-1.14)	1.18 (0.66-2.12)	1.14 (0.63-2.05)	1.03 (0.57-1.86)	0.66 (0.37-1.18)	1.17 (0.65-2.11)	0.97 (0.54-1.75)	0.66 (0.37-1.18)	0.44(0.22- 0.88)*
Adjusted	Grp2	0.63 (0.43- 0.94)*	1.32 (0.90-1.95)	0.93 (0.63-1.36)	1.05 (0.7155)	0.65 (0.44-0.96)*	0.63 (0.42-0.94)*	1.22 (0.82-1.79)	0.65 (0.44-0.96)*	1.14(0.77- 1.68)
for parity	Grp3	0.67 (0.37-1.21)	1.32 (0.73-2.38)	1.01 (0.56-1.84)	0.93 (0.52-1.69)	0.68 (0.37-1.23)	0.89 (0.49-1.64)	0.91 (0.51-1.65)	0.68 (0.37-1.23)	0.45(0.22- 0.89)*
Adjusted for ROM	Grp2	0.62 (0.42-0.92)*	1.23 (0.83-1.81)	1.01 (0.69-1.49)	1.11 (075-1.63)	0.65 (0.44-0.96)*	0.71 (0.48-1.05)	1.24 (0.84-1.83)	0.65 (0.44-0.96)*	1.14(0.77- 1.69)
>18 hours	Grp3	0.59 (0.33-1.08)	1.15 (0.64-2.08)	1.12 (0.62-2.02)	1.05 (0.58-1.89)	0.63 (0.35-1.13)	1.05 (0.58-1.91)	0.93 (0.51-1.67)	0.63 (0.35-1.13)	0.46(0.23- 0.91)*
Adjusted for	Grp2	0.59 (0.40-0.88)*	1.18 (0.79-1.75)	1.10 (0.74-1.64)	1.09 (0.73-1.61)	0.60 (0.41-0.90)*	0.82 (0.55-1.22)	1.34 (0.90-1.20)	0.60 (0.41-0.90)*	1.01(0.68- 1.51)
length of hospital stay	Grp3	0.68 (0.37-1.23)	1.12 (0.62-2.04)	1.25 (0.69-2.28)	1.00 (0.55-1.81)	0.70 (0.38-1.27)	1.29 (0.71-2.34)	0.95 (0.52-1.72)	0.70 (0.38-1.27)	0.45(0.23- 0.89)
Adjusted for age	Grp2	0.73 (0.44-1.23)	1.34 (0.80-2.24)	1.37 (0.81-2.32)	1.16 (0.69-1.95)	0.72 (0.43-1.21)	0.94 (0.56-1.58)	1.60 (0.95-2.72)	0.72 (0.43-1.21)	1.78(1.06- 3.00)*
of stool collectio n	Grp3	0.56 (0.25-1.25)	1.15 (0.52-2.54)	1.10 (0.50-2.44)	1.58 (0.69-3.60)	0.52 (0.24-1.17)	1.66 (0.75-3.71)	0.91 (0.41-2.02)	0.52 (0.24-1.17)	0.45 (0.18-1.10)

Adjusted for Model 1	Grp2	0.57 (0.37- 0.86)*	0.94 (0.62- 1.44)	1.22 (0.80- 1.86)	1.21 (0.80- 1.84)	0.59 (0.39- 0.89)*	0.75 (0.49-1.15)	<mark>1.60</mark> (1.05- 2.44)*	<mark>0.59</mark> (0.39-0.89)*	1.12 (0.73- 1.70)
	Grp3	0.62 (0.33-1.16)	0.91 (0.48- 1.72)	1.27 (0.67- 2.39)	1.11 (0.59- 2.10)	0.64 (0.34-1.19)	1.00 (0.52-1.90)	1.10 (0.59- 2.06)	0.64 (0.34-1.19)	0.47 (0.23- 0.97)*
Adjusted for Model 2	Grp2	0.52 (0.29- 0.95)*	1.05 (0.57- 1.92)	<mark>1.97</mark> (1.07- 3.61)*	1.47 (0.80- 2.69)	0.51 (0.28- 0.93)*	1.04 (0.57-1.89)	2.31 (1.24- 4.32)*	0.51 (0.28-0.93)*	1.63 (0.89- 2.99)
	Grp3	0.40 (0.16-1.01)	1.09 (0.42- 2.83)	1.11 (0.44- 2.81)	1.87 (0.70- 4.94)	0.36 (0.14- 0.93)*	1.42 (0.55-3.62)	0.69 (0.26- 1.79)	0.36 (0.14-0.93)*	0.44 (0.16- 1.19)

MODEL 1: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) at 3 months, parity and ROM> 18 hours

MODEL 2: Adjusted for mode by IAP, GA, exclusive breastfeeding (infant diet) at 3 months, parity, ROM>18hr, infant's length of hospital stay, stool collection age

* p < 0.05; ** p < 0.005; OR = odds ratio; CI = confidence interval;

IAP = Intrapartum antibiotic prophylaxis; GA = gestational age; ROM = rupture of membranes; Grp=Group

REGRESSION ANALYSES: 2nd stage INFANTS BORN TO WOMEN WITH **NORMAL PRE-PREGNANCY WEIGHT** (BMI <25)

Table 3.15

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of 2nd stage of labour among infants of normal weight mothers (n= 556)

Microbiot Measure	a	Infant's gut microbiota at 3 to 4 months of age								
Ref. Group 1			PHYL	JUM			FAMILY		GEI	NUS
Stage ≤ 1 Hrs Group 2 = 2 ¹ > 1 to ≤ 2 Hrs	nd Stage	Actino- bacteria (below vs above median)	Bacteroidete s (below vs above median)	Firmicutes (below vs above median)	Proteo- bacteria (below vs above median)	Bifidobacteria- ceae (below vs above median)	Clostridia- ceae (below vs above median)	Veillonella- ceae (below vs above median)	Bifidobacteriu m (below vs above median)	Lactobacillus (below vs above median)
Group $3 = 2^{t}$ >2Hrs	nd Stage	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Crude OR for 2 nd	Grp2	0.75 (0.46-1.23)	0.83 (0.51-1.37)	1.34 (0.81-2.20)	1.24 (0.75-2.04)	0.81 (0.49133)	1.33 (0.81-2.19)	1.10 (0.67-1.81)	0.81 (0.49-1.33)	0.99 (0.60-1.63)
stage of labour	Grp3	0.60 (0.39-0.94)*	0.70 (0.45-1.10)	1.33 (0.86-1.06)	1.34 (0.86-2.08)	0.61 (0.39-0.94)*	1.99 (1.27-2.11)*	1.59 (1.02-2.48)	0.61 (0.39-0.94)*	0.54 (0.33-0.86)*
Adjuste d for	Grp2	0.75 (0.45-1.25)	0.57 (0.34- 0.95)*	1.79 (1.06- 2.30)*	1.45 (0.97-2.42)	0.80 (0.48-1.32)	1.75 (1.05-2.94)*	1.37(0.82- 2.29)	0.80 (0.48-1.32)	0.89 (0.53-1.49)
MODE by IAP	Grp3	0.60 (0.38-0.93)*	0.65 (0.41-1.03)	1.40 (0.89-2.19)	1.38 (0.88-2.15)	0.59 (0.38-0.93)*	2.10 (1.33-3.33)	1.65 (1.05-2.59)	0.59 (0.38-0.93)*	0.52 (0.32-0.84)*
Adjuste d for	Grp2	0.73 (0.44-1.20)	0.82 (0.50-1.35)	1.35 (0.82-2.23)	1.24 (0.75-2.05)	0.79 (0.48-1.29)	1.36 (0.83-2.23)	1.09 (0.66-1.79)	0.79 (0.48-1.29)	0.99 (0.60-1.64)
gestatio nal age	Grp3	0.58 (0.37-0.91)*	0.69 (0.44-1.08)	1.34 (0.86-2.09)	1.34 (0.86-2.08)	0.59 (0.38-0.92)*	2.02 (1.29-3.17)	1.58 (1.01-2.47)	0.59 (0.38-0.92)*	0.53 (0.33-0.86)*
Adjuste d for	Grp2	0.74 (0.44-1.22)	0.87 (0.53-1.44)	1.36 (0.82-2.62)	1.20 (0.72-1.99)	0.79 (0.48-1.31)	1.38 (0.83-2.28)	1.13 (0.68-1.87)	0.79 (0.48-1.31)	0.96 (0.57-1.62)
infant diet at 3 months	Grp3	0.59 (0.44-1.22)*	0.72 (0.46-1.13)	1.34 (0.86-2.09)	1.29 (0.83-2.02)	0.60 (0.38-0.94)*	2.05 (1.31-3.23)*	1.63 (1.04- 2.55)*	0.60 (0.38-0.94)*	0.50 (0.31-0.82)*
Adjuste	Grp2	0.79 (0.47-1.30)	0.89 (0.54-1.49)	1.20 (0.72-2.00)	1.14 (0.68-1.90)	0.83 (0.50-1.37)	1.07 (0.64-1.79)	1.07 (0.64-1.77)	0.83 (0.50-1.37)	0.99 (0.60-1.67)
d for parity	Grp3	0.64 (0.40-1.02)	0.78 (0.49-1.23)	1.15 (0.72-1.82)	1.19 (0.75-1.89)	0.62 (0.39-0.99)*	1.47 (0.92-2.38)	1.53 (0.96-2.44)	0.62 (0.39-0.99)*	0.54 (0.33-0.89)*
Adjuste d for	Grp2	0.70 (0.42-1.15)	0.82 (0.50-1.36)	1.37 (0.83-2.27)	1.25 (0.75-2.07)	0.76 (0.46-1.26)	1.28 (0.77-2.12)	1.11 (0.67-1.84)	0.76 (0.46-1.26)	1.02 (0.61-1.69)
ROM >18 hours	Grp3	0.55 (0.34-0.87)*	0.71 (0.45-1.12)	1.30 (0.82-2.06)	1.35 (0.75-2.14)	0.57 (0.36-0.91)*	1.70 (0.17-2.70)	1.54 (0.97-2.44)	0.57 (0.36-0.91)*	0.55 (0.33-0.90)*
Adjuste d for	Grp2	0.75 (0.46-1.24)	0.86 (0.52-1.42)	1.39 (0.84-2.30)	1.17 (0.71-1.93)	0.81 (0.49-1.33)	1.39 (0.84-2.31)	1.16 (0.70-1.91)	0.81 (0.49-1.33)	0.97 (0.58-1.61)
length of hospital stay	Grp3	0.63 (0.40-0.98)*	0.69 (0.44-1.09)	1.30 (0.83-2.05)	1.29 (0.82-2.02)	0.63 (0.40-0.99)*	1.91 (0.21-3.21)*	1.62 (0.13- 2.55)*	0.63 (0.40-0.99)*	0.53 (0.32-0.86)*
Adjuste d for	Grp2	0.75 (0.45-1.23)	0.84 (0.51-1.39)	1.40 (0.85-2.32)	1.19 (0.72-1.97)	0.81 (0.49-1.32)	1.39 (0.84-2.29)	1.16 (0.70-1.92)	0.81 (0.49-1.32)	0.97 (0.58-1.60)

age of stool collecti on	Grp3	0.60 (0.38-0.93)*	0.71 (0.46-1.11)	1.41 (0.91-2.21)	1.27 (0.81-1.98)	0.60 (0.39-0.94)*	2.11 (1.34-3.31)*	1.73 (1.10- 2.71)*	0.60 (0.39-0.94)*	0.52 (0.32-0.84)*
Adjuste d for Model 1	Grp2	0.72 (0.42- 1.23)	0.58 (0.33- 0.99)*	<mark>1.76</mark> (1.02- 3.03)*	1.35 (0.79- 2.33)	0.75 (0.44- 1.29)	1.45 (0.84- 2.52)	1.45 (0.85- 2.48)	0.76 (0.44- 1.29)	0.92 (0.53- 1.59)
	Grp3	0.57 (0.35- 0.93)*	0.65 (0.39- 1.08)	1.28 (0.78- 2.11)	1.24 (0.76- 2.05)	0.57 (0.35- 0.93)*	1.49 (0.90- 2.47)	1.70 (1.03- 2.76)*	0.57 (0.35- 0.93)*	<mark>0.51</mark> (0.30- 0.87)*
Adjuste d for Model 2	Grp2	0.71 (0.41- 1.21)	0.60 (0.35- 1.04)	1.83 (1.05- 3.19)*	1.30 (0.75- 2.27)	0.74 (0.43- 1.27)	1.50 (0.86- 2.63)	1.53 (0.88- 2.64)	0.74 (0.43- 1.27)	0.91 (0.52- 1.59)
	Grp3	0.57 (0.34- 0.94)*	0.63 (0.38- 1.07)	1.30 (0.78- 2.17)	1.20 (0.72- 2.00)	0.57 (0.34- 0.94)*	1.47 (0.87- 2.47)	<mark>1.76</mark> (1.05- 2.94)*	0.57 (0.35- 0.94)*	0.50 (0.29- 0.87)*

MODEL 1: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) at 3 months, parity and ROM> 18 hours

MODEL 2: Adjusted for mode by IAP, GA, exclusive breastfeeding (infant diet) at 3 months, parity, ROM>18hr, infant's length of hospital stay, stool collection age

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval; IAP = Intrapartum antibiotic prophylaxis; GA = gestational age; ROM = rupture of membranes; Grp=Group

RICHNESS and DIVERSITY

INFANTS BORN TO WOMEN WITH NORMAL PRE-PREGNANCY WEIGHT (BMI <25)

Table 3.16

Crude and adjusted likelihood ratio of gut microbiota richness and diversity measures at 3-4 months according to duration of active 1st stage of labour among infants of **normal weight mothers (n=531)**

(below vs above median) OR (95% CI) 0.98 (0.67- 1.44)	(below vs above median) OR (95% CI) 0.82 (0.56-1.21)
0.98 (0.67- 1.44)	
0.90 (0.07 1.44)	0.82 (0.56-1.21)
1.05 (0.59-1.88)	1.08 (0.60-1.93)
0.88 (0.58-1.35)	0.89 (0.58-1.35)
0.82 (0.43-1.57)	1.12 (0.59-2.12)
5	

Crude and adjusted likelihood ratio of gut microbiota richness and diversity measures at 3-4 months according to duration of second stage of labour among infants of normal weight mothers (n=556)

Ref. Group 1 = 2nd Stage <= 1 Hour		Chao1 richness	Shannon diversity
Group $2 = 2^{nd}$ Stage > 1 to <=2 Hrs	(1	pelow vs above median)	(below vs above median)
Group $3 = 2^{nd}$ Stage > 2 Hrs		OR (95% CI)	OR (95% CI)
Crude OR for 2 nd stage of	Group2	0.87 (0.53-1.43)	1.16 (0.71-1.91)
labour	Group3	0.81 (0.52-1.25)	0.85 (0.55-1.31)
Adjusted for mode by	Group2	0.77 (0.45-1.34)	1.25 (0.72-2.15)
IAP, infant diet at 3 months, parity, ROM > 18 hours	Group3	0.73 (0.44-1.21)	0.87 (0.53-1.42)
* p <0.05; ** p<0.005; OR = odds ra IAP = Intrapartum antibiotic prophyla		-	

INFANTS BORN TO WOMEN WITH PRE-PREGNANCY

OVERWEIGHT (BMI ≥25 to <30)

Table 3.17

Summary table showing <u>significant</u> (p<0.05) in median relative abundance changes of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the duration of active first stage of labour among infants born to overweight mothers, and following stratification by mode by IAP

ALL MOD	DES OF BIRTHS (n=	=201)	Group 1 (Reference
Reference group: Group 1 (n=120)	Group 2 (n=62)	Group 3 (n=19)	group): Active 1st stage ≤6 hours
Phylum Actinobacteria	\downarrow		Group 2: Active 1st Stage
Bifidobacteriaceae			> 6 to ≤ 13 hours
Phylum Bacteroidetes		<u></u>	Group 3: Active 1st Stage > 13 hours
Phylum Firmicutes			
Lactobacillaceae	\downarrow		
Streptococcaceae		\downarrow	
Phylum Proteobacteria		↓	

L

VAGINAL BIRHTS								
WITHOUT IAP (n=103)								
Group 1	Group	Group						
(Ref)	2	3						
(n=50)	(n=40)	(n=13)						
Phylum	↓							
Actinobacteria								
Bifidobacteriaceae	\downarrow							
Phylum								
Bacteroidetes								
Phylum								
Firmicutes								
Clostridiaceae		\uparrow						
Streptococcaceae		\downarrow						
Phylum								
Proteobacteria								

ſ

VAGINAL BIRHTS WITH								
IAP (n=43)								
Group 1	Group	Group						
(Ref)	2	3						
(n=19	n=19)	(n=5)						
Phylum								
Actinobacteria								
Bifidobacteriaceae	\downarrow							
Phylum								
Bacteroidetes								
Phylum								
Firmicutes								
Clostridiaceae	1							
Streptococcaceae								
Phylum								
Proteobacteria								

C-SECTION WITH ACTIVE 1 ST						
STA	GE					
(n=19)						
Group 1	Active 1 st stage					
(Ref)	> 6 hrs					
(n=17)	(n=2)					
Phylum						
Actinobacteria						
Bifidobacteriaceae						
Phylum						
Bacteroidetes						
Phylum						
Firmicutes						
Clostridiaceae						
Streptococcaceae						
Phylum						
Proteobacteria						

IAP = Intrapartum Antibiotic Prophylaxis

-- indicates no significant change

(Note: Elective C-section excluded from analyses)

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.18

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among all modes of delivery in overweight mothers, according to the duration of active first stage of labour (n= 201)

Bacterial Taxa	1 st Stage of labour <= 6 hours [Reference group]	1 st Stage of labour > 6 to <=13 hours	p- value	1 st Stage of labour > 13 hours	p- value
	(n=120; 59.7%)	(n=62; 30.8%)		(n=19; 9.5%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	7.000 (2.112-19.334)	3.416 (0.857-12.511)	0.029	5.332 (0.976-18.759)	0.500
Bifidobacteriaceae	5.688 (1.313-16.675)	3.303 (0.494-12.330)	0.092	3.325 (0.968-18.417)	0.704
Coriobacteriaceae	0.062 (0.008-0.295)	0.039 (0.008-0.172)	0.242	0.008 (0.000-0.163)	0.074
g_Bifidobacterium	5.688 (1.313-16.675)	3.303 (0.494-12.330)	0.092	3.325 (0.968-18.417)	0.704
Bacteroidetes	2.544 (0.077-63.237)	30.557 (0.228-67.709)	0.130	53.228 (2.286-76.915)	<mark>0.009</mark>
Bacteroidaceae	0.963 (0.062-55.954)	23.556 (0.180-57.650)	0.103	47.489 (2.247-76.915)	<mark>0.005</mark>
Firmicutes	16.215 (7.702-38.262)	16.532 (6.927-34.984)	0.676	14.377 (7.379-39.118)	0.641
Lactobacillaceae	0.000 (0.000-0.068)	0.000 (0.000-0.008)	<mark>0.008</mark>	0.000 (0.000-0.016)	0.419
Streptoccocaceae	0.859 (0.213-2.650)	0.643 (0.232-1.569)	0.393	0.209 (0.102-0.427)	<mark>0.004</mark>
Clostridiaceae	0.263 (0.016-1.879)	0.419 (0.047-1.979)	0.303	0.450 (0.140-2.642)	0.184
Lachnospiraceae	1.681 (0.052-8.603)	2.619 (0.062-8.265)	0.554	4.003 (0.581-6.447)	0.272
Ruminococcaceae	0.144 (0.008-1.829)	0.039 (0.000-0.562)	0.145	0.565 (0116-3.341)	0.104
Veillionellaceae	4.004 (0.870-13.181)	2.376 (0.424-12.728)	0.273	2.578 (0.806-7.955)	0.506
g_Lactobacillus	0.000 (0.000-0.068)	0.000 (0.000-0.008)	<mark>0.008</mark>	0.000 (0.000-0.016)	0.419
Proteobacteria	18.930 (7.962-47.522)	21.297 (9.943-41.161)	0.810	8.180 (4.677-22.815)	<mark>0.016</mark>
Enterobacteriaceae	16.972 (5.039-42.885)	18.771 (8.388-41.088)	0.652	5.947 (2.229-20.413)	<mark>0.012</mark>
Verrucomicrobia	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.925	0.000 (0.000-0.008)	0.788
g_Akkermansia	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.925	0.000 (0.000-0.008)	0.788

Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values ≤ 0.05 are indicated in boldface type.

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.19

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births without IAP in overweight mothers, according to the duration of active first stage of labour (n=103)

41-18.695) 1 045-0.678) 1 045-0.678) 1 236-68.114) 3 497-62.515) 2 673-23.444) 1 000-0.041) 2 207-2.460) 0 014-0.632) 1	(n=40; 38.8%) Median (IQR) 3.634 (0.922-12.078) 3.518 (0.519-11.906) 0.027 (0.000-0.168) 3.503 (0.519-11.906) 34.452 (4.363-68.427) 25.545 (3.364-59.636) 18.502 (6.925-34.225) 0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582) 2.586 (0.056-7.932)	0.007 0.033 0.005 0.034 0.942 0.845 0.262 0.244 0.259 0.185	(n=13; 12.6%) Median (IQR) 6.675 (1.533-15.951) 4.864 (1.451-15.577) 0.008 (0.000-0.230) 4.864 (1.451-15.577) 53.228 (21.299-73.848) 48.020 (21.280-73.848) 18.509 (8.214-38.371) 0.000 (0.000-0.012) 0.179 (0.090-0.342) 0.722 (0.157-7.583)	0.393 0.530 0.015 0.530 0.308 0.144 0.221 0.262 0.011 0.003
n (IQR) 21-23.980) 41-18.695) 045-0.678) 41-18.695) 236-68.114) 3 497-62.515) 2 673-23.444) 1 000-0.041) 207-2.460) 014-0.632)	Median (IQR) 3.634 (0.922-12.078) 3.518 (0.519-11.906) 0.027 (0.000-0.168) 3.503 (0.519-11.906) 34.452 (4.363-68.427) 25.545 (3.364-59.636) 18.502 (6.925-34.225) 0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.033 0.005 0.034 0.942 0.845 0.262 0.244 0.259	Median (IQR) 6.675 (1.533-15.951) 4.864 (1.451-15.577) 0.008 (0.000-0.230) 4.864 (1.451-15.577) 53.228 (21.299-73.848) 48.020 (21.280-73.848) 18.509 (8.214-38.371) 0.000 (0.000-0.012) 0.179 (0.090-0.342)	0.530 0.015 0.530 0.308 0.144 0.221 0.262 0.011
21-23.980) 1 41-18.695) 1 045-0.678) 1 236-68.114) 3 497-62.515) 2 673-23.444) 1 000-0.041) 2 207-2.460) 0 014-0.632) 1	3.634 (0.922-12.078) 3.518 (0.519-11.906) 0.027 (0.000-0.168) 3.503 (0.519-11.906) 34.452 (4.363-68.427) 25.545 (3.364-59.636) 18.502 (6.925-34.225) 0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.033 0.005 0.034 0.942 0.845 0.262 0.244 0.259	6.675 (1.533-15.951) 4.864 (1.451-15.577) 0.008 (0.000-0.230) 4.864 (1.451-15.577) 53.228 (21.299-73.848) 48.020 (21.280-73.848) 18.509 (8.214-38.371) 0.000 (0.000-0.012) 0.179 (0.090-0.342)	0.530 0.015 0.530 0.308 0.144 0.221 0.262 0.011
41-18.695) 1 045-0.678) 1 141-18.695) 1 236-68.114) 3 497-62.515) 2 673-23.444) 1 000-0.041) 2 207-2.460) 0 014-0.632) 1	3.518 (0.519-11.906) 0.027 (0.000-0.168) 3.503 (0.519-11.906) 34.452 (4.363-68.427) 25.545 (3.364-59.636) 18.502 (6.925-34.225) 0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.033 0.005 0.034 0.942 0.845 0.262 0.244 0.259	4.864 (1.451-15.577) 0.008 (0.000-0.230) 4.864 (1.451-15.577) 53.228 (21.299-73.848) 48.020 (21.280-73.848) 18.509 (8.214-38.371) 0.000 (0.000-0.012) 0.179 (0.090-0.342)	0.530 0.015 0.530 0.308 0.144 0.221 0.262 0.011
045-0.678) 41-18.695) 236-68.114) 3 497-62.515) 2 673-23.444) 1 000-0.041) 207-2.460) 014-0.632)	0.027 (0.000-0.168) 3.503 (0.519-11.906) 34.452 (4.363-68.427) 25.545 (3.364-59.636) 18.502 (6.925-34.225) 0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.005 0.034 0.942 0.845 0.262 0.244 0.259	0.008 (0.000-0.230) 4.864 (1.451-15.577) 53.228 (21.299-73.848) 48.020 (21.280-73.848) 18.509 (8.214-38.371) 0.000 (0.000-0.012) 0.179 (0.090-0.342)	0.015 0.530 0.308 0.144 0.221 0.262 0.011
41-18.695) 236-68.114) 3 497-62.515) 2 673-23.444) 1 000-0.041) 207-2.460) 014-0.632)	3.503 (0.519-11.906) 34.452 (4.363-68.427) 25.545 (3.364-59.636) 18.502 (6.925-34.225) 0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.034 0.942 0.845 0.262 0.244 0.259	4.864 (1.451-15.577) 53.228 (21.299-73.848) 48.020 (21.280-73.848) 18.509 (8.214-38.371) 0.000 (0.000-0.012) 0.179 (0.090-0.342)	0.530 0.308 0.144 0.221 0.262 0.011
236-68.114) 3 497-62.515) 2 673-23.444) 1 000-0.041) 207-2.460) 014-0.632) 1	34.452 (4.363-68.427) 25.545 (3.364-59.636) 18.502 (6.925-34.225) 0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.942 0.845 0.262 0.244 0.259	53.228 (21.299-73.848) 48.020 (21.280-73.848) 18.509 (8.214-38.371) 0.000 (0.000-0.012) 0.179 (0.090-0.342)	0.308 0.144 0.221 0.262 0.011
497-62.515) 2 673-23.444) 1 000-0.041) 2 207-2.460) 0 014-0.632) 1	25.545 (3.364-59.636) 18.502 (6.925-34.225) 0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.845 0.262 0.244 0.259	48.020 (21.280-73.848) 18.509 (8.214-38.371) 0.000 (0.000-0.012) 0.179 (0.090-0.342)	0.144 0.221 0.262 0.011
673-23.444) 1 000-0.041) 207-2.460) 014-0.632) 1	18.502 (6.925-34.225) 0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.262 0.244 0.259	18.509 (8.214-38.371) 0.000 (0.000-0.012) 0.179 (0.090-0.342)	0.221 0.262 0.011
000-0.041) 207-2.460) 014-0.632)	0.000 (0.000-0.008) 0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.244	0.000 (0.000-0.012) 0.179 (0.090-0.342)	0.262 0.011
207-2.460) 014-0.632)	0.458 (0.168-1.299) 0.171 (0.023-1.582)	0.259	0.179 (0.090-0.342)	<mark>0.011</mark>
014-0.632)	0.171 (0.023-1.582)			
,	. ,	0.185	0.722 (0.157-7.583)	0.002
285-7.538)	2 586 (0 056-7 932)			0.003
-	1 .000 (0.000 (1.90 1)	0.981	3.438 (0.492-6.338)	0.747
008-2.637)	0.031 (0.000-0.660)	0.041	0.467 (0.194-2.726)	0.633
561-6.413)	4.240 (0.551-15.675)	0.256	3.834 (0.717-14.651)	0.415
207-2.450)	0.458 (0.168-1.299)	0.259	0.179 (0.090-0.342)	<mark>0.011</mark>
0000-0.041)	0.000 (0.000-0.008)	0.244	0.000 (0.000-0.012)	0.262
000-0.109)	0.008 (0.000-0.214)	0.890	0.016 (0.000-6.985)	0.384
114-4.623)	1.847 (0.211-13.337)	0.299	1.368 (0.436-9.888)	0.445
510-35.087) 1	18.855 (9.496-41.345)	0.381	8.180 (5.283-21.458)	0.135
782-33.664) 1	16.404 (7.571-41.318)	0.180	6.092 (1.499-21.206)	0.203
000-0.015)	0.000 (0.000-0.008)	0.301	0.000 (0.000-0.008)	0.790
	0.000 (0.000-0.008)	0.301	0.000 (0.000-0.008)	0.790
e	,	610-35.087) 18.855 (9.496-41.345) 782-33.664) 16.404 (7.571-41.318) 000-0.015) 0.000 (0.000-0.008) 000-0.015) 0.000 (0.000-0.008)	610-35.087) 18.855 (9.496-41.345) 0.381 782-33.664) 16.404 (7.571-41.318) 0.180 000-0.015) 0.000 (0.000-0.008) 0.301 000-0.015) 0.000 (0.000-0.008) 0.301	610-35.087) 18.855 (9.496-41.345) 0.381 8.180 (5.283-21.458) 782-33.664) 16.404 (7.571-41.318) 0.180 6.092 (1.499-21.206) 000-0.015) 0.000 (0.000-0.008) 0.301 0.000 (0.000-0.008)

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.20

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births with IAP in overweight mothers, according to the duration of active first stage of labour (n=43)

	1 st Stage of labour	1 st Stage of labour	p-	1 st Stage of labour	p-
	<= 6 hours	> 6 to <=13 hours	value Exact	> 13 hours	value
Bacterial Taxa	[Reference group]	(n-10, 44, 20/)	Exact	(n=5; 11.6%)	Exact
	(n=19; 44.2%)	(n=19; 44.2%)		· · · · · · · · · · · · · · · · · · ·	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	5.708 (0.679-30.569)	2.494 (0.650-10.133)	0.402	2.451 (0.479-36.935)	0.836
Family Bifidobacteriaceae	5.654 (0.503-30.251)	2.414 (0.402-9.231)	0.370	2.118 (0.428-36.714)	0.89
Family Coriobacteriaceae	0.031 (0.000-0.109)	0.039 (0.016-0.210)	0.246	0.031 (0.008-0.194)	0.629
Genus_Bifidobacterium	4.604 (1.450-14.629)	2.267 (0.058-6.640)	<mark>0.008</mark>	3.670 (0.717-19.039)	0.717
Phylum Bacteroidetes	4.794 (0.054-78.533)	0.265 (0.039-55.870)	0.418	35.928 (0.397-72.037)	0.731
Family Bacteroidaceae	0.667 (0.046-74.033)	0.218 (0039-55.613)	0.583	32.361 (0.078-65.831)	0.679
Phylum Firmicutes	12.258 (5.334-37.636)	16.781 (6.942-57.107)	0.339	7.379 (4.593-63.297)	0.891
Family Lactobacillaceae	0.000 (0.000-0.116)	0.000 (0.000-0.008)	0.311	0.031 (0.004-0.116)	0.406
Family Streptoccocaceae	0.324 (0.109-5.336)	0.818 (0.338-2.868)	0.354	0.427 (0.164-0.915)	1.00
Family Clostridiaceae	0.023 (0.008-2.539)	0.825 (0.110-6.270)	0.022	0.070 (0.023-0.499)	0.89
Family Lachnospiraceae	0.231 (0.031-4.026)	2.309 (0.732-8.798)	0.130	4.003 (0.728-48.142)	0.088
Family Ruminococcaceae	0.239 (0.008-1.576)	0.047 (0.008-0.464)	0.452	1.142 (0.341-6.401)	0.10
Family Veillionellaceae	3.399 (0.217-6.655)	1.752 (0.317-7.727)	0.977	2.578 (1.927-4.089)	0.83
Genus_Streptococcaceae	0.402 (0.109-1.565)	0.794 (0.272-2.394)	0.033	0.574 (0.335-1.381)	0.11
Genus_Lactobacillus	0.000 (0.000-0.016)	0.000 (0.000-0.015)	0.643	0.000 (0.000-0.008)	0.55
Genus_Clostridium	0.016 (0.000-0.366)	0.051 (0.000-0.536)	0.266	0.035 (0.000-0.571)	0.81
Genus_Veillionella	3.300 (0.383-11.163)	6.766 (0.578-16.743)	0.205	2.276 (0.325-21.268)	0.786
Phylum Proteobacteria	15.664 (7.665-27.001)	23.992 (11.765-41.063)	0.096	20.421 (4.493-34.639)	0.94:
Family Enterobacteriaceae				· · · · ·	
	15.243 (6.844-26.776)	23.693 (9.916-37.359)	0.163	5.259 (4.312-21.614)	0.629
Phylum Verrucomicrobia	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.863	0.000 (0.000-0.004)	0.891
Genus_Akkermansia	0.000 (0.000-0.008)	0.000 (0.000-0.008)	0.863	0.000 (0.000-0.008)	0.89
Results are presented as media Mann-Whitney U-test. P valu					

INFANTS BORN TO WOMEN WITH PRE-PREGNANCY

OVERWEIGHT (BMI ≥25 to <30)

Table 3.21

Summary table showing <u>significant</u> (p<0.05) in median relative abundance changes of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the duration of second stage of labour among infants born to overweight mothers, and following stratification by mode by IAP

ALL MOD	ES OF BIRTHS (n=	=208)	Group 1 (Reference
Reference group: Group 1 (n=379)	Group 2 (n=75)	Group 3 (n=102)	group): 2nd stage ≤ 1 hour Group 2: 2nd stage > 1 to
Phylum Actinobacteria			≤ 2 hours
Bifidobacteriaceae			
			Group 3: 2nd stage
Phylum Bacteroidetes			> 2 hours
Phylum Firmicutes			
Phylum Proteobacteria			
1			1

VAGINAL BIRHTS						
WITHOUT IAP (n=109)						
Group 1	Group	Group				
(Ref)	2	3				
(n=72)	(n=20)	(n=17)				
Phylum						
Actinobacteria						
Bifidobacteriaceae		\downarrow				
Phylum						
Bacteroidetes						
Phylum						
Firmicutes						
Ruminococcaceae	↓					
genus_Veillionella		1				
Phylum						
Proteobacteria						

VAGINAL BIRHTS WITH						
IAP (n=43)						
Group 1	Group	Group				
(Ref)	2	3				
(n=65)	(n=5)	(n=10)				
Phylum						
Actinobacteria						
Bifidobacteriaceae						
Phylum						
Bacteroidetes						
Phylum						
Firmicutes						
Streptococcaceae		\downarrow				
genus_Veillionella	\downarrow	\downarrow				
Phylum						
Proteobacteria						

C-SECTION WITH 2 nd STAGE				
(n=	19)			
Group 1	Active 2nd stage			
(Ref)	> 1 hour			
(n=15)	(n=4)			
Phylum				
Actinobacteria				
Bifidobacteriaceae				
Phylum				
Bacteroidetes				
Phylum				
Firmicutes				
Ruminococcaceae				
genus_Veillionella				
Phylum				
Proteobacteria				

IAP = Intrapartum Antibiotic Prophylaxis

-- indicates no significant change

(Note: Elective C-section excluded from analyses)

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.22

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among all modes of delivery in overweight mothers, according to the duration of second stage of labour (n= 208)

Bacterial Taxa	2 nd Stage of labour <= 1 hour [Reference group]	2 nd Stage of labour > 1 to <=2 hours	p- value	2 nd Stage of labour > 2 hours	p- value
-	(n=150;72.1%)	(n=26; 12.5%)		(n= 32; 15.4%)	
-	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum					
Actinobacteria	6.076 (1.861-15.408)	8.729 (0.141-25.500)	0.953	3.880 (0.899-14.425)	0.535
Bifidobacteriaceae	5.433 (1.324-14.089)	8.288 (0.108-25.081)	0.872	2.925 (0.572-12.679)	0.280
Coriobacteriaceae	0.054 (0.008-0.259)	0.055 (0.006-0.151)	0.467	0.043 (0.008-0.273)	0.956
g_Bifidobacterium	5.433 (1.324-14.089)	8.288 (0.108-25.081)	0.872	2.925 (0.572-12.679)	0.280
Bacteroidetes	23.868 (0.094-63.324)	25.436 (0.102-61.764)	0.930	41.159 (0.315-74.830)	0.094
Bacteroidaceae	17.349 (0.077-53.370)	22.191 (0.078-61.201)	0.841	28.981 (0.118-70.575)	0.106
Firmicutes	18.613 (7.971-39.067)	12.912 (6.927-34.221)	0.280	13.284 (5.026-26.955)	0.090
Lactobacillaceae	0.000 (0.000-0.054)	0.000 (0.000-0.014)	0.139	0.000 (0.000-0.045)	0.732
Streptoccocaceae	0.644 (0.233-1.885)	0.502 (0.147-2.155)	0.887	0.283 (0.156-1.580)	0.266
Clostridiaceae	0.269 (0.023-1.885)	0.442 (0.014-8.520)	0.753	0.322 (0.035-1.390)	1.00
Lachnospiraceae	1.823 (0.052-9.297)	1.984(0.054-5.955)	0.442	3.795 (0.772-6.392)	0.455
Ruminococcaceae	0.201 (0.008-1.789)	0.016 (0.000-1.302)	0.141	0.109 (0.002-0.976)	0.387
Veillionellaceae	4.426 (0.908-14.402)	1.337 (0.489-8.998)	0.072	1.922 (0.690-6.818)	0.170
g_Lactobacillus	0.000 (0.000-0.054)	0.000 (0.000-0.014)	0.139	0.000 (0.000-0.045)	0.732
Proteobacteria	19.771 (7.768-40.985)	16.956 (7.533-42.926)	0.990	10.267 (4.956-41.345)	0.234
Enterobacteriaceae	16.992 (5.221-37.464)	14.601 (4.132-42.850)	0.977	9.929 (4.270-41.318)	0.520
Verrucomicrobia	0.000 (0.000-0.008)	0.000 (0.000-0.000)	0.219	0.000 (0.000-0.023)	0.071
g_Akkermansia	0.000 (0.000-0.008)	0.000 (0.000-0.000)	0.219	0.000 (0.000-0.023)	0.071

Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values ≤ 0.05 are indicated in boldface type.

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.23

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births without IAP in overweight mothers, according to the duration of second stage of labour (n=109)

	2 nd Stage of labour	2 nd Stage of labour	p-	2 nd Stage of labour	p-
Bacterial Taxa	<= 1 hour	> 1 to <=2 hours	value Exact	> 2 hours	value Exac
Dacterrar raxa	[Reference group] (n= 72; 66.1%)	(n= 20; 18.3%)	Endet	(n= 17; 15.6%)	Exac
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	7.276 (2.422-16.028)	10.751 (0.178-21.008)	0.880	3.846 (1.300-11.848)	0.29
Family <i>Bifidobacteriaceae</i>	6.652 (1.925-14.570)	10.425 (0.132-20.947)	0.992	2.856 (0.579-5.737)	0.052
0	0.128 (0.015-0.595)	0.039 (0.000-0.114)	0.035	0.054 (0.008-1.028)	0.814
Family Coriobacteriaceae	6.652	10.425	0.000	2.856	0.01
Genus_Bifidobacterium	(1.869-14.570)	(0.120-20.947)	0.970	(0.0579-5.737)	<mark>0.052</mark>
Phylum Bacteroidetes	51.639 (7.905-69.746)	29.808 (0.231-59.194)	0.103	54.093 (0.747-72.237)	0.950
Family Bacteroidaceae	40.164 (7.814-61.742)	26.399 (0.100-57.552)	0.205	25.601 (0.568-67.510)	0.85
Phylum Firmicutes	13.549 (6.807-28.922)	12.912 (7.093-36.343)	0.784	13.987 (6.497-32.710)	0.738
Family Lactobacillaceae	0.000 (0.000-0.021)	0.000 (0.000-0.029)	0.377	0.000 (0.000-0.015)	0.98
Family Streptoccocaceae	0.457 (0.167-1.246)	0.549 (0.144-2.323)	0.379	0.317 (0.156-1.664)	0.83
Family Clostridiaceae	0.132 (0.16-0.739)	0.415 (0.010-5.848)	0.421	0.142 (0.027-2.011)	0.545
Family Lachnospiraceae	1.846 (0.287-8.063)	1.997 (0.062-8.659)	0.733	3.459 (0.785-6.151)	0.770
Family Ruminococcaceae	0.307 (0.008-2.262)	0.008 (0.000-1.455)	<mark>0.043</mark>	0.212 (0.012-1.078)	0.600
Family Veillionellaceae	2.497 (0.422-12.271)	2.625 (0.730-12.875)	0.865	4.585 (1.665-18.461)	0.20
Genus_Streptococcaceae	0.457 (0.167-1.246)	0.549 (0.144-2.323)	0.379	0.317 (0.156-1.664)	0.83
Genus_Lactobacillus	0.000 (0.000-0.021)	0.000 (0.000-0.029)	0.377	0.000 (0.000-0.015)	0.98
Genus_Clostridium	0.008 (0.000-0.119)	0.016 (0.002-1.096)	0.145	0.008 (0.000-0.055)	0.922
Genus_Veillionella	0.830 (0.131-8.350)	0.951 (0.250-11.757)	0.541	4.494 (1.396-18.446)	0.041
Phylum Proteobacteria	16.146 (5.211-32.823)	16.956 (8.730-45.833)	0.316	10.586 (8.130-38.075)	0.794
Family Enterobacteriaceae	13.710 (2.941-29.263)	14.601 (3.932-45.808)	0.410	9.941 (3.011-37.357)	0.859
Phylum Verrucomicrobia	0.000 (0.000-0.008)	0.000 (0.000-0.006)	0.296	0.008 (0.000-0.089)	0.072
Genus Akkermansia	0.000 (0.000-0.008)	0.000 (0.000-0.006)	0.296	0.008 (0.000-0.089)	0.072

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.24

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births with IAP in overweight mothers, according to the duration of second stage of labour (n=43)

	2 nd Stage of labour <= 1 hour	2 nd Stage of labour > 1 to <=2 hours	p- value	2 nd Stage of labour > 2 hours	p- value
Bacterial Taxa	[Reference group]		Exact		Exact
	(n= 28; 65.1%)	(n= 5; 11.6%)		(n=10; 23.3%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	2.725 (0.776-16.868)	2.808 (0.104-60.434)	0.865	4.475 (0.672-21.181)	0.858
Family Bifidobacteriaceae	2.586 (0.469-16.011)	2.414 (0.074-59.380)	0.981	3.875 (0.510-21.098)	0.961
Family Coriobacteriaceae	0.035 (0.008-0.091)	0.226 (0.008-0.806)	0.314	0.024 (0.008-0.186)	0.987
Genus_Bifidobacterium	2.586 (0.469-16.011)	2.414 (0.070-59.380)	0.942	3.875 (0.510-21.098)	0.961
Phylum Bacteroidetes	2.750 (0.048-63.179)	0.086 (0.032-44.018)	0.575	41.159 (0.228-91.501)	0.116
Family Bacteroidaceae	0.581 (0.046-57.682)	0.086 (0.016-43.949)	0.509	35.230 (0.106-91.501)	0.116
Phylum Firmicutes	23.271 (6.157-55.587)	16.781 (7.161-52.213)	0.903	7.848 (4.000-18.334)	0.060
Family Lactobacillaceae	0.000 (0.000-0.044)	0.000 (0.000-0.020)	0.903	0.004 (0.000-0.131)	0.482
Family Streptoccocaceae	1.165 (0.330-3.514)	0.338 (0.124-7.614)	0.364	0.240 (0.130-0.731)	<mark>0.037</mark>
Family <i>Clostridiaceae</i>	0.133 (0.017-4.028)	0.780 (0.023-14.661)	0.609	0.689 (0.039-1.263)	0.782
Family Lachnospiraceae	1.620 (0.049-9.895)	2.309 (0.366-4.565)	0.827	2.752 (0.544-8.322)	0.757
Family Ruminococcaceae	0.288 (0.019-1.104)	0.239 (0.008-34.917)	0.903	0.070 (0.000-0837)	0.230
Family Veillionellaceae	3.734 (1.052-10.498)	0.241 (0.035-2.620)	0.022	1.143 (0.269-4.563)	0.116
Genus_Streptococcaceae	1.165 (0.290-3.514)	0.338 (0.124-7.614)	0.391	0.240 (0.130-0.731)	<mark>0.040</mark>
Genus_Lactobacillus	0.000 (0.000-0.044)	0.000 (0.000-0.020)	0.903	0.004 (0.000-0.131)	0.482
Genus_Clostridium	0.012 (0.000-0.290)	0.232 (0.004-11.024)	0.314	0.066 (0.000-0.787)	0.442
Genus_Veillionella	3.355 (0.694-10.498)	0.132 (0.027-1.444)	<mark>0.006</mark>	0.557 (0.119-2.293)	<mark>0.034</mark>
Phylum Proteobacteria	19.952 (11.951-37.451)	23.992 (8.221-55.960)	0.827	16.370 (3.963-57.188)	0.708
Family <i>Enterobacteriaceae</i>	17.982 (7.853-26.311)	23.992 (7.806-54.284)	0.509	16.366 (3.728-56.941)	0.858
Phylum Verrucomicrobia	0.000 (0.000-0.008)		0.268	0.000 (0.000-0.016)	0.883
Genus_Akkermansia	0.000 (0.000-0.008)		0.268	0.000 (0.000-0.016)	0.883
Results are presented as med Mann-Whitney U-test. P val					

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.25

Median relative abundance of dominant bacterial taxa at the genus level in infant gut microbiota at 3-4 months among overweight mothers with C-section with labour, according to the duration of second stage of labour (n = 19)

2 nd Stage of labour <= 1 hour [Reference group]	2 nd Stage of labour > 1 hour	p-value Exact
(n= 15; 78.9%)	(n=4; 21.1%)	
Median (IQR)	Median (IQR)	
N (%); IQR	N (%); IQR	
5.037 (0.248-16.530)	16.037 (3.540-51.045)	0.30
0.031 (0.000-0.093)	0.078 (0.014-1.868)	0.53
3.519 (0.070-16.500)	15.808 (3.225-47.545)	0.41
0.109 (0.039-0.279)	0.288 (0.027-43.529)	0.96
0.086 (0031-0.209)	0.269 (0.025-42.506)	1.0
25.162 (16.201-61.669)	20.916 (11.775-30.931)	0.35
0.015 (0.000-0.147)	0.592 (0.045-1.457)	0.22
0.000 (0.000-0.077)	0.000 (0.000046)	0.53
1.209 (0.551-3.223)	1.457 (0.449-16.662)	0.66
0.384 (0.008-2.364)	0.070 (0.006-1.146)	0.66
0.039 (0.000-2.654)	3.969 (0.002-15.931)	0.59
0.008 (0.000-0.031)	0.284 (0.010-0.805)	0.22
9.652 (1.499-16.958)	0.858 (0.398-4.066)	0.08
37.253 (13.836-69.584)	39.420 (6.054-74.851)	0.81
0.614 (0.062-1.499)	0.070 (0.006-0.446)	0.15
34.647 (8.891-66.643)	39.068 (5.777-74.689)	0.96
0.000 (0.000-0.008)	0.000 (0.000-1.582)	0.88
0.000 (0.000-0.008)	0.000 (0.000-1.582)	
	hour [Reference group] (n= 15; 78.9%) Median (IQR) N (%); IQR 5.037 (0.248-16.530) 0.031 (0.000-0.093) 3.519 (0.070-16.500) 0.109 (0.039-0.279) 0.086 (0031-0.209) 0.086 (0031-0.209) 25.162 (16.201-61.669) 0.015 (0.000-0.147) 0.000 (0.000-0.077) 1.209 (0.551-3.223) 0.384 (0.008-2.364) 0.039 (0.000-2.654) 0.008 (0.000-0.031) 9.652 (1.499-16.958) 37.253 (13.836-69.584) 0.614 (0.062-1.499) 34.647 (8.891-66.643)	hour hour [Reference group] (n=4; 21.1%) (n=15; 78.9%) (n=4; 21.1%) Median (IQR) Median (IQR) N (%); IQR N (%); IQR 5.037 (0.248-16.530) 16.037 (3.540-51.045) 0.031 (0.000-0.093) 0.078 (0.014-1.868) 3.519 (0.070-16.500) 15.808 (3.225-47.545) 0 0.109 (0.039-0.279) 0.288 (0.027-43.529) 0.086 (0031-0.209) 0.269 (0.025-42.506) 25.162 (16.201-61.669) 20.916 (11.775-30.931) 0.015 (0.000-0.147) 0.592 (0.045-1.457) 0.000 (0.000-0.077) 0.000 (0.000-0.046) 1.209 (0.551-3.223) 1.457 (0.449-16.662) 0.384 (0.008-2.364) 0.070 (0.006-1.146) 0.039 (0.000-2.654) 3.969 (0.002-15.931) 0.008 (0.000-0.031) 0.284 (0.010-0.805) 9.652 (1.499-16.958) 0.858 (0.398-4.066) 37.253 (13.836-69.584) 39.420 (6.054-74.851) 0.614 (0.062-1.499) 0.070 (0.006-0.446) 34.647 (8.891-66.643) 39.068 (5.777-74.689)

REGRESSION ANALYSES: Active 1st stage INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30) **Table 3.26a**

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of active 1st stage of labour among infants of overweight mothers (n=201)

Г

			Infan	t's gut micro	obiota at 3	to 4 months of	f age		
Ref. Group 1 = 1st Stage ≤6 Hrs			PHYLU (below versus abo		FAMILY (below versus above median)				
a a 1									
Group $2 = 1$ Stage >6 to ≤ 13 Hrs	st	Actino- bacteria	Bacteroidetes	Firmicutes	Proteo- bacteria	Bifidobacte- riaceae	Bacteroida- ceae	Veillonella- ceae	
Group $3 = 1$ Stage > 13E		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	
Crude	Grp	0.61	1.94 (1.03-	1.04	1.21	1.94	1.94 (1.03-	0.72	
OR for 1st stage	2	(0.33-1.13)	3.63)*	(0.56-1.94)	(0.66- 2.25)	(1.03-3.63)*	3.63)*	(0.39-1.34)	
of labour	Grp 3	0.62 (0.24-1.64)	3.20(1.08- 9.44)*	0.62 (0.22-1.75)	0.43 (0.15- 1.21)	3.20 (1.08-9.44)*	3.20(1.08- 9.44)*	0.49 (0.18-1.38)	
Adjusted for	Grp 2	0.49 (0.25-0.96)*	1.16(0.58-2.32)	1.46 (0.74-2.89)	1.63(0.83 -3.18)	1.16 (0.58-2.32)	1.16(0.58- 2.32)	0.99 (0.51-1.93)	
MODE by IAP	Grp 3	0.56 (0.20-1.58)	1.66(0.53-5.20)	0.97 (0.33-2.89)	0.63(0.21 -1.85)	$ \begin{array}{r} 1.66 \\ (0.53-5.20) \end{array} $	1.66(0.53- 5.20)	0.75 (0.25-2.20)	
Adjusted for infant	Grp 2	0.60 (0.32-1.13)	1.98(1.04- 3.78)*	1.04 (0.56-1.93)	1.25(0.66 -2.36)	1.98 (1.04-3.78)*	1.98(1.04- 3.78)*	0.71 (0.38-1.33)	
diet	Grp 3	0.69 (0.25-1.91)	3.00(0.99-9.11)	0.61 (0.22-1.71)	0.47(0.16 -1.35)	3.00 (0.99-9.11)	3.00(0.99- 9.11)	0.46 (0.16-1.31)	
Adjusted	Grp 2	0.62 (0.33-1.15)	1.92(1.02- 3.61)*	1.15 (0.61-2.17)	1.25(0.67 -2.33)	1.92 (1.02-3.61)*	1.92(1.02- 3.61)*	0.73 (0.39-1.36)	
for parity	Grp 3	0.64 (0.24-1.71)	3.16(1.06- 9.37)*	0.72 (0.25-2.05)	0.45(0.16 -1.27)	3.16 (1.06-9.37)*	3.16(1.06- 9.37)*	0.50 (0.18-1.40)	
Adjusted for ROM	Grp 2	0.59 (0.32-1.12)	1.96(1.04- 3.70)*	1.00 (0.53-1.87)	1.18(0.63 -2.21)	1.96(1.04- 3.70)*	1.96(1.04- 3.70)*	0.66 (0.35-1.24)	
>18 hours	Grp 3	0.66 (0.24-1.81)	3.04(1.01- 9.15)*	0.66 (0.23-1.89)	0.44(0.15 -1.26)	3.04 (1.01-9.15)*	3.04(1.01- 9.15)*	0.47 (0.16-1.36)	
Adjusted for infant gender	Grp 2	0.59 (0.31-1.09)	1.80 (0.95-3.41)	1.09 (0.58-2.04)	1.24 (0.66- 2.32)	0.66 (0.35-1.23)	2.06 (1.09-3.91)	0.76 (0.41-1.44)	
-	Grp 3	0.63 (0.24-1.68)	3.41 (1.15-10.16)	0.61 (0.22-1.71)	0.43 (0.15- 1.20)	0.60 (0.22-1.59)	3.91 (1.31-11.66)	0.47 (0.17-1.33)	

MODEL 1	Grp 2	<mark>0.45</mark> (0.22-0.95)*	1.06 (0.50-2.23)	1.80 (0.86-3.75)	1.85 (0.90- 3.84)	1.06 (0.50-2.23)	1.06 (0.50-2.23)	0.95 (0.47-1.92)
	Grp 3	0.70 (0.21-2.29)	1.16 (0.34-3.94)	1.56 (0.48-5.13)	0.84 (0.26- 2.72)	1.16 (0.34-3.94)	1.16 (0.34-3.94)	0.75 (0.24-2.36)
MODEL 2	Grp 2	<mark>0.40</mark> (0.19-0.87)*	0.95 (0.44-1.03)	1.88 (0.90-3.96)	1.86 (0.89- 3.89)	0.50 (0.24-1.07)	0.95 (0.44-1.03)	0.99 (0.48-2.03)
	Grp 3	0.75 (0.23-2.48)	1.28 (0.37-4.47)	1.49 (0.45-4.94)	0.83 (0.25- 2.74)	0.72 (0.22-2.39)	1.28 (0.37-4.47)	0.71 (0.22-2.29)

MODEL 1: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity and ROM> 18 hours

MODEL 2: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity, ROM> 18 hours and infant gender

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval; IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes; Grp=Group

REGRESSION ANALYSES: Active 1st stage INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.26b

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of active 1st stage of labour among infants of overweight mothers (n=201)

		Infant's gu	t microbiota at 3 to 4	l months of age			
Ref. Group $1 = 1$ st Stage ≤ 6 Hrs		GENUS					
Group 2 = 1st Stage \geq \leq 13Hrs	>6 to	Bifidobacterium (below vs above median)	Bacteroides (below vs above median)	Lactobacillus (below vs above median)			
Group 3 = 1 st Stage >	13Hrs	OR (95% CI)	OR (95% CI)	OR (95% CI)			
Crude OR for 1st stage of labour	Grp2	1.94 (1.03-3.63)*	1.94 (1.03-3.63)*	0.44(0.23-0.84)*			
	Grp3	3.20(1.08-9.44)*	3.20(1.08-9.44)*	0.78(0.29-2.07)			
Adjusted for MODE	Grp2	1.16(0.58-2.32)	1.16(0.58-2.32)	0.48(0.24-0.95)*			
by IAP	Grp3	1.66(0.53-5.20)	1.66(0.53-5.20)	0.92(0.33-2.58)			
Adjusted for infant diet	Grp2	1.98(1.04-3.78)*	1.98(1.04-3.78)*	0.44(0.23-0.84)*			
	Grp3	3.00(0.99-9.11)	3.00(0.99-9.11)	0.83(0.31-2.24)			
Adjusted for parity	Grp2	1.92(1.02-3.61)*	1.92(1.02-3.61)*	0.45(0.23-0.87)*			
	Grp3	3.16(1.06-9.37)*	3.16(1.06-9.37)*	0.81(0.30-2.18)			
Adjusted for ROM >18 hours	Grp2	1.96(1.04-3.70)*	1.96(1.04-3.70)*	0.44(0.23-0.85)*			
	Grp3	3.04(1.01-9.15)*	3.04(1.01-9.15)*	0.69(0.25-1.93)			
Adjusted for infant gender	Grp2	0.66 (0.35-1.23)	2.06(1.09-3.91)*	0.44 (0.22-0.85)*			
	Grp3	0.60 (0.22-1.59)	3.91 (1.31-11.66)	0.78 (0.29-2.08)			

MODEL 1	Grp2	1.80 (0.95-3.41)	1.80 (0.95-3.41)	0.49 (0.24-1.01)
	Grp3	3.41 (1.15-10.16)	3.41 (1.15-10.16)	0.96 (0.32-2.95)
MODEL 2	Grp2	0.50 (0.24-1.07)	1.104 (0.49-2.22)	0.48 (0.23-1.00)
	Grp3	0.72 (0.22-2.39)	1.39 (0.40-4.76)	0.98 (0.32-3.02)

MODEL 1: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity and ROM> 18 hours

MODEL 2: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity, ROM> 18 hours and infant gender

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval; IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes; Grp=Group

REGRESSION ANALYSES: 2nd stage INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30) **Table 3.27a**

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of 2^{nd} stage of labour among infants of overweight mothers (n= 208)

		Infant's gut microbiota at 3 to 4 months of age						
Ref. Group $1 = 2^{nd}$ Stage ≤ 1 Hrs			PHYLI (below versus ab	(below	FAMILY (below versus above median)			
Group $2 = 2$ Stage > 1 to ≤ 2 Hrs		Actino- bacteria	Bacteroidetes	Firmicutes	Proteo- bacteria	Bifidobac- teriaceae	Bacteroid aceae	Veillonella- ceae
$\leq 2 \text{ His}$ Group 3 = 2 Stage >2 Hrs		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Crude OR for 2 nd stage of	Grp 2	1.16 (0.50-2.70)	1.05 (0.46-2.42)	0.61 (0.25-1.44)	0.88 (0.38-2.01)	1.05 (0.46-2.42)	1.05 (0.46-2.42)	0.46 (0.19-1.11)
labour	Grp 3	0.66 (0.31-1.43)	1.50 (0.68-3.28)	0.52 (0.23-1.17)	0.60 (0.28-1.30)	1.50 (0.68-3.28)	1.50 (0.68-3.28)	0.70 (0.32-1.53)
Adjusted for MODE	Grp 2	1.00 (0.42-2.41)	0.52 (0.21-1.27)	0.82 (0.33-2.02)	1.21 (0.51-2.91)	0.52 (0.21-1.27)	0.52 (0.21-1.27)	0.63 (0.25-1.58)
by IAP	Grp 3	0.67 (0.31-1.46)	1.22 (0.51-2.90)	0.57 (0.25-1.31)	0.69 (0.31-1.50)	1.22 (0.51-2.90)	1.22 (0.51-2.90)	0.82 (0.37-1.82)
Adjusted for infant diet at 3	Grp 2	1.00 (0.42-2.37)	1.22 (0.52-2.88)	064 (0.27-1.53)	0.75 (0.32-1.77)	1.22 (0.52-2.88)	1.22 (0.52-2.88)	0.49 (0.20-1.20)
months	Grp 3	0.71 (0.32-1.55)	1.42 (0.64-3.17)	0.50 (0.22-1.14)	0.63 (0.28-1.39)	1.42 (0.64-3.17)	1.42 (0.64-3.17)	0.67 (0.31-1.47)
Adjusted for parity	Grp 2	1.22 (0.52-2.91)	1.00 (0.43-2.36)	0.76 (0.31-1.87)	0.92 (0.39-2.17)	1.00 (0.43-2.36)	1.00 (0.43-2.36)	0.47 (0.19-1.16)
ioi puiity	Grp 3	071 (0.32-1.60)	1.41 (0.62-2.22)	0.71 (0.30-1.70)	0.64 (0.28-1.46)	1.41 (0.62-2.22)	1.41 (0.62-2.22)	0.71 (0.32-1.64)
Adjusted for ROM >18 hours	Grp 2	1.29 (0.54-3.07)	0.93 (0.40-2.18)	0.60 (0.25-1.45)	0.95 (0.41-2.25)	0.93 (0.40-2.18)	0.93 (0.40-2.18)	0.46 (0.19-1.14)
× 10 nours	Grp 3	0.57 (0.25-1.25)	1.42 (0.63-2.16)	0.53 (0.23-1.22)	0.49 (0.22-1.12)	1.42 (0.63-2.16)	1.42 (0.63-2.16)	0.66 (0.30-1.46)
Adjusted for infant gender	Grp 2	1.10 (0.47-2.60)	0.90 (0.38-2.12)	0.63 (0.26-1.52)	0.90 (0.38-2.10)	1.13 (0.48-2.67)	0.90 (0.38-2.12)	0.98 (0.42-2.30)
Sender	Grp 3	0.65 (0.30-1.40)	1.42 (0.64-3.13)	0.53 (0.23-1.19)	0.61-1.32)	0.52 (0.24-1.15)	1.42 (0.64-3.13)	1.35 (0.62-2.95)

	Grp2	0.91 (0.34-2.48)	0.38 (0.14-1.06)	1.38 (0.50-3.82)	1.27 (0.47- 3.39)	1.06 (0.39-2.89)	0.38 (0.14-1.06)	0.82 (0.30-2.21)
MODEL 1	Grp3	0.62 (0.25-1.57)	0.75 (0.27-2.03)	1.01 (0.39-2.61)	0.65 (0.26- 1.66)	0.58 (0.23-1.48)	0.75 (0.27-2.03)	0.89 (0.36-2.21)
Madal	Grp2	0.78 (0.27-2.21)	<mark>0.29</mark> (0.10-0.83)*	1.52 (0.53-4.32)	1.20 (0.44- 3.32)	0.87 (0.31-2.49)	<mark>0.29</mark> (0.10- 0.84)*	0.45 (0.15-1.35)
Model 2	Grp3	0.56 (0.22-1.45)	0.63 (0.23-1.74)	1.06 (0.41-2.75)	0.69 (0.27- 1.79)	0.53 (0.20-1.37)	0.62 (0.22-1.71)	1.36 (0.54-3.43)

MODEL 1: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity and ROM> 18 hours

MODEL 2: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity, ROM> 18 hours and infant gender

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval; IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes; Grp=Group

REGRESSION ANALYSES: 2nd stage INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.27b

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of 2^{nd} stage of labour among infants of overweight mothers (n= 208)

		Infant's	gut microbiota at 3 to 4	months of age			
Ref. Group $1 = 2^{nd}$ St	Ref. Group $1 = 2^{nd}$ Stage ≤ 1 Hrs		GENUS				
Group 2 = 2 nd Stage > Group 3 = 2 nd Stage >		Bifidobacterium (below vs above median)	Bacteroides (below vs above median)	Lactobacillus (below vs above median)			
		OR (95% CI)	OR (95% CI)	OR (95% CI)			
Crude OR for 2 nd stage of labour	Grp2	1.23 (0.53-2.84)	1.05 (0.46-2.42)	0.48 (0.19-1.22)			
	Grp3	0.54 (0.25-1.18)	1.50 (0.68-3.28)	0.90 (0.41-1.94)			
Adjusted for MODE	Grp2	1.16 (0.48-2.78)	0.52 (0.21-1.27)	0.57 (0.22-1.48)			
	Grp3	0.57 (0.26-1.26)	1.22 (0.51-2.90)	0.97 (0.44-2.13)			
Adjusted for infant diet at 3 months	Grp2	1.03 (0.43-2.47)	1.22 (0.52-2.88)	0.42 (0.16-1.08)			
	Grp3	0.56 (0.25-1.27)	1.42 (0.64-3.17)	0.95 (0.43-2.09)			
Adjusted for parity	Grp2	1.26 (0.53-2.99)	1.00 (0.43-2.36)	51 (0.20-1.32)			
	Grp3	0.56 (0.25-1.28)	1.41 (0.62-2.22)	0.93 (0.43-2.24)			
Adjusted for ROM >18 hours	Grp2	1.37 (0.57-3.26)	0.93 (0.40-2.18)	0.41 (0.15-1.09)			
	Grp3	0.51 (0.23-1.15)	1.42 (0.63-2.16)	1.00 (0.45-2.22)			
Adjusted for infant gender	Grp2	1.13 (0.48-2.67)	0.98 (0.42-2.30)	0.49 (0.19-1.24)			
	Grp3	0.52 (0.24-1.15)	1.35(0.62-2.95)	0.90 (0.41-1.96)			
MODEL 1	Grp2	1.06 (0.39-2.89)	0.38 (0.14-1.06)	0.46 (0.16-1.33)			
	Grp3	0.58 (0.23-1.48)	0.75 (0.27-2.03)	1.34 (0.54-3.35)			

MODEL 2	Grp2	0.87 (0.31-2.49)	<mark>0.29</mark> (0.10-0.84)* p=0.023	0.45 (0.15-1.35)
	Grp3	0.53 (0.20-1.37)	0.62 (0.22-1.71)	1.36 (0.54-3.43)

MODEL 1: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity and ROM> 18 hours

MODEL 2: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity, ROM> 18 hours and infant gender

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval; IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes; Grp=Group

RICHNESS and DIVERSITY

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OVERWEIGHT** (BMI ≥25 to <30)

Table 3.28

Crude and adjusted likelihood ratio of gut microbiota richness and diversity measures at 3-4 months according to duration of active 1st stage of labour among infants of overweight mothers (n=201)

Ref. Group 1 = 1st Stage <= 6 Hours		Chao1 richness	Shannon diversity
Group 2 = 1st Stage > 6 to <=13 Hrs	(be	low vs above median)	(below vs above median)
Group 3 = 1st Stage > 13 Hrs	OR (95% CI)		OR (95% CI)
Crude OR for 1st stage of labour	Group2	0.96 (0.52-1.78)	0.65 (0.35-1.21)
	Group3	0.94 (0.36-2.48)	0.62 (0.23-1.64)
MODEL 1	Group2	0.86 (0.42-1.76)	0.52 (0.26-1.07)
	Group3	0.67 (0.21-2.12)	0.55 (0.18-1.70)
MODEL 2	Group2	0.85 (0.41-1.75)	0.52 (0.25-1.07)
	Group3	0.69 (0.22-2.22)	0.54 (0.17-1.71)

MODEL 1: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity and ROM> 18 hours MODEL 2: Adjusted for mode by IAP, exclusive breastfeeding status, parity, ROM> 18 hours and infant gender

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval; IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

Crude and adjusted likelihood ratio of gut microbiota richness and diversity measures at 3-4 months
according to duration of second stage of labour among infants of overweight mothers (n= 208)

Ref. Group 1 = 2nd Stage <= 1 Hour		Chao1 richness	Shannon diversity
Group $2 = 2^{nd}$ Stage > 1 to <=2 Hrs	(be	elow vs above median)	(below vs above median)
Group $3 = 2^{nd}$ Stage > 2 Hrs		OR (95% CI)	OR (95% CI)
Crude OR for 2 nd stage of labour	Group2	0.34 (0.14-0.83)*	0.51 (0.22-1.18)
_	Group3	0.98 (0.46-2.12)	0.37 (0.16-0.83)*
MODEL 1	Group2	<mark>0.31 (0.11-0.85)*</mark>	0.57 (0.21-1.53)
	Group3	0.53 (0.21-1.35)	<mark>0.34 (0.13-0.89)*</mark>
MODEL 2	Group2	<mark>0.28 (0.10-0.80)*</mark> p=0.018	0.57 (0.21-1.56)
	Group3	0.45 (0.17-1.18)	<mark>0.30 (0.11-0.81)*</mark> p=0.017

MODEL 1: Adjusted for mode by IAP, exclusive breastfeeding (infant diet) status, parity and ROM> 18 hours MODEL 2: Adjusted for mode by IAP, exclusive breastfeeding status, parity, ROM> 18 hours and infant gender

* p <0.05; ** p<0.005; OR = odds ratio; CI = confidence interval;

IAP = Intrapartum antibiotic prophylaxis; ROM = rupture of membranes

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI ≥30)

Table 3.29

Summary table showing <u>significant</u> (p<0.05) median relative abundance changes of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the duration of active first stage of labour among infants born to obese mothers, and following stratification by mode by IAP

ALL MOD	Group 1 (Reference				
Reference group: Group 1	Group 2	Group 3	group): Active 1st stage <= 6 hours		
(n=99)	(n=40)	(n=13)	Correct 2: A stine 1st Steere		
Phylum Actinobacteria	\downarrow	\downarrow	Group 2: Active 1st Stage > 6 to ≤ 13 hours		
Bifidobacteriaceae	\downarrow	\downarrow			
			Group 3: Active 1st Stage		
Phylum Bacteroidetes	↑	1	> 13 hours		
Phylum Firmicutes		\downarrow			
Lactobacillaceae					
Phylum Proteobacteria			—		

J

VAGINAL BIRHTS				
WITHOUT IAP (n=68)				
Group 1	Group	Group		
(Ref)	2	3		
(n=35)	(n=26)	(n=7)		
Phylum				
Actinobacteria				
Bifidobacteriaceae		\rightarrow		
Phylum				
Bacteroidetes				
Phylum				
Firmicutes				
Lactobacillaceae				
Phylum				
Proteobacteria				

ſ

VAGINAL BIRHTS WITH							
IAP (n	IAP (n=30)						
Group 1 Group Group							
(Ref)	2	3					
(n=16)	(n=10)	(n=4)					
Phylum							
Actinobacteria							
Bifidobacteriaceae							
Phylum							
Bacteroidetes							
Phylum							
Firmicutes							
Ruminococcaceae							
Phylum							
Proteobacteria							

1					
C-SECTION WITH ACTIVE 1 ST					
STAGE	L (n=19)				
Group 1 Active 1 st stage					
(Ref)	> 6 hrs				
(n=17)	(n=2)				
Phylum					
Actinobacteria					
Bifidobacteriaceae					
Phylum					
Bacteroidetes					
Phylum					
Firmicutes					
Ruminococcaceae					
Phylum					
Proteobacteria					

IAP = Intrapartum Antibiotic Prophylaxis -- indicates no significant change

(Note: Elective C-section excluded from analyses)

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI ≥30)

Table 3.30

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among all modes of delivery in infants born to obese mothers, according to the duration of active first stage of labour (n= 152)

Bacterial Taxa	1 st Stage of labour <= 6 hours [Reference group]	1 st Stage of labour > 6 to <=13 hours	p- value	1 st Stage of labour > 13 hours	p- value
	(n=99; 65.1%)	(n=40;26.3%)		(n=13;8.6%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	6.314 (2.791-18.029)	3.566 (0.228-11.478)	<mark>0.016</mark>	2.112 (0.597-8.177)	<mark>0.034</mark>
Bifidobacteriaceae	5.748 (2.142-17.068)	2.814 (0.103-9.937)	<mark>0.014</mark>	1.851 (0.046-6.451)	<mark>0.014</mark>
Coriobacteriaceae	0.078 (0.008-0.511)	0.031 (0.000-0.225)	0.129	0.008 (0.000-1.221)	0.234
g_Bifidobacterium	5.748 (2.142-17.068)	2.814 (0.103-9.937)	<mark>0.015</mark>	1.851 (0.046-6.451)	<mark>0.014</mark>
Bacteroidetes	7.600 (0.101-55.309)	47.377 (0.205-76.583)	0.037	50.280 (9.842-74.443)	<mark>0.036</mark>
Bacteroidaceae	6.086 (0.069-47.833)	37.429 (0.198-75.316)	0.021	48.508 (9.761-74.443)	<mark>0.014</mark>
Firmicutes	27.689 (13.666-48.550)	22.298 (12.169)	0.266	14.577 (4.110-28.349)	<mark>0.015</mark>
Lactobacillaceae	0.000 (0.000-0.008)	0.000 (0.000-0.000)	0.107	0.000 (0.000-0.000)	0.128
Streptoccocaceae	0.579 (0.162-2.086)	0.476 (0.197-2.679)	0.974	0.479 (0.175-1.823)	0.646
Clostridiaceae	0.537 (0.085-2.390)	0.603 (0.079-1.903)	0.993	0.233 (0.031-1.254)	0.340
Lachnospiraceae	4.438 (0.985-10.719)	4.382 (0.553-11.749)	0.970	2.600 (0.015-7.965)	0.229
Ruminococcaceae	0.728 (0.008-3.616)	0.449 (0.008-1.589)	0.291	0.101 (0.012-2.772)	0.924
Veillionellaceae	6.646 (1.116-21.094)	4.073 (1.129-15.404)	0.180	3.017 (0.225-10.523)	0.091
g_Lactobacillus	0.000 (0.000-0.008)	0.000 (0.000-0.000)	0.107	0.000 (0.000-0.000)	0.128
Proteobacteria	12.961 (4.593-34.660)	9.235 (4.917-20.536)	0.596	16.360 (8.957-39.989)	0.437
Enterobacteriaceae	11.272 (2.875-33.300)	8.230 (4.047-19.221)	0.748	13.980 (5.050-38.234)	0.608
Verrucomicrobia	0.000 (0.000-0.023)	0.000 (0.000-0.008)	0.429	0.000 (0.000-0.008)	0.640
g_Akkermansia	0.000 (0.000-0.023)	0.000 (0.000-0.008)	0.429	0.000 (0.000-0.008)	0.640
Results are presented as me Mann-Whitney U-test. P va			s. Comp	arisons were performed	lusing

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI \geq 30)

Table 3.31

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births without IAP in obese mothers, according to the duration of active first stage of labour (n=68)

Bacterial Taxa	1 st Stage of labour <= 6 hours [Reference group]	1 st Stage of labour > 6 to <=13 hours	p- value Exact	1 st Stage of labour > 13 hours	p- value Exact
Daeteriai Taxa	(n=35; 51.5%)	(n=26; 38.2%)		(n=7;10.3%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	5.773 (2.907-19.550)	4.536 (0.251-22.848)	0.199	3.084 (1.094-5.983)	0.085
Family Bifidobacteriaceae	5.532 (2.496-18.917)	4.199 (0.126-20.631)	0.246	2.112 (0.031-3.164)	<mark>0.017</mark>
Family Coriobacteriaceae	0.124 (0.008-1.066)	0.047 (0.000-0.520)	0.323	0.015 (0.000-2.710)	0.552
Genus_Bifidobacterium	5.532 (2.496-18.917)	4.199 (0.126-20.631)	0.246	2.112 (0.031-3.164)	<mark>0.017</mark>
Phylum Bacteroidetes	45.728 (8.549-75.219)	30.097 (5.026-75.905)	0.560	58.016 (11.101-77.551)	0.741
Family <i>Bacteroidaceae</i>	40.987 (2.057-58.751)	26.688 (4.208-74.648)	0.782	49.017 (10.977-77.551)	0.597
Phylum Firmicutes	19.767 (8.670-32.331)	20.543 (12.079-43.560)	0.759	16.141 (4.157-33.515)	0.446
Family Lactobacillaceae	0.000 (0.000-0.016)	0.000 (0.000-0.000)	0.100	0.000 (0.000-0.000)	0.287
Family <i>Streptoccocaceae</i>	0.756 (0.149-1.893)	0.408 (0.167-3.014)	0.896	0.479 (0.070-2.755)	0.792
Family <i>Clostridiaceae</i>	0.257 (0.062-2.052)	0.272 (0.029-1.426)	0.988	0.233 (0.155-2.411)	0.766
Family Lachnospiraceae	3.993 (0.985-8.446)	4.287 (0.702-10.186)	0.610	1.793 (0.015-6.165)	0.217
Family <i>Ruminococcaceae</i>	0.949 (0.000-2.451)	0.174 (0.006-1.577)	0.167	2.326 (0.070-2.999)	0.487
Family Veillionellaceae	6.037 (1.102-16.416)	4.073 (1.438-11.577)	0.771	3.997 (0.147-15.060)	0.597
Genus_Streptococcaceae	0.756 (0.149-1.893)	0.408 (0.167-3.014)	0.896	0.472 (0.070-2.755)	0.792
Genus_Lactobacillus	0.000 (0.000-0.016)	0.000 (0.000-0.000)	0.100	0.000 (0.000-0.000)	0.287
Genus_Clostridium	0.008 (0.000-0.085)	0.019 (0.000-0.204)	0.741	0.139 (0.000-0.196)	0.644
Genus_Veillionella	2.896 (0.599-14.629)	1.625 (0.218-8.292)	0.307	0.302 (0.031-5.423)	0.243
Phylum Proteobacteria	7.041 (3.756-17.937)	11.281 (5.258-21.269)	0.166	16.075 (3.925-19.669)	0.353
Family Enterobacteriaceae	5.710 (2.420-17.913)	8.934 (4.646-20.756)	0.119	11.826 (3.254-19.661)	0.487
Phylum	0.000 (0.000-0.008)	0.004 (0.000-0.016)	0.249	0.000 (0.000-43.597)	0.620
Verrucomicrobia	0.000 (0.000-0.008)	0.004 (0.000-0.016)	0.249	0.000 (0.000-43.597)	0.620
Genus_Akkermansia Results are presented as med Mann-Whitney U-test. P val					

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI \ge 30)

Table 3.32

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births with IAP in obese mothers, according to the duration of active first stage of labour (n= 30)

Bacterial Taxa	1 st Stage of labour <= 6 hours [Reference group]	1 st Stage of labour > 6 to <=13 hours	p- value Exact	1 st Stage of labour > 13 hours	p- value Exact
Buotoniui Tunu	(n=16; 53.3%)	(n=10; 33.3%)		(n=4; 13.3%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	4.882 (1.550-11.178)	1.995 (0.244-3.384)	0.201	1.842 (0.497-25.569)	0.617
Family Bifidobacteriaceae	4.650 (1.383-10.307)	1.796 (0.032-3.166)	0.097	1.757 (0.480-23.548)	0.682
Family Coriobacteriaceae	0.047 (0.008-0.313)	0.019 (0.000-0.157)	0.391	0.050 (0.002-1.474)	0.963
Genus_Bifidobacterium	4.650 (1.383-10.307)	1.796 (0.032-3.166)	0.097	1.757 (0.480-23.548)	0.682
Phylum Bacteroidetes	46.882 (5.762-74.715)	71.610 (38.139-85.404)	0.182	48.237 (11.821-82.796)	0.820
Family Bacteroidaceae	35.302 (5.211-64.109)	68.179 (31.442-78.215)	0.109	47.351 (11.821-82.353)	0.437
Phylum Firmicutes	19.708 (10.953-31.599)	19.483 (5.950-38.598)	0.856	7.215 (3.885-19.978)	0.099
Family Lactobacillaceae	0.000 (0.000-0.000)	0.000 (0.000-0.004)	0.816	0.000 (0.000-0.006)	0.820
Family Streptoccocaceae	0.190 (0.097-0.503)	0.414 (0.219-3.236)	0.135	0.548 (0.289-6.525)	0.099
• •	0.411 (0.128-1.990)	0.633 (0.304-0.778)	0.856	0.031 (0.017-0.903)	0.178
Family <i>Clostridiaceae</i> Family <i>Lachnospiraceae</i>	4.346 (0.553-11.188)	2.601 (0.384-20.954)	0.979	3.616 (0.264-8.305)	0.554
Family Ruminococcaceae	0.910 (0.046-4.074)	1.271 (0.022-3.223)	0.816	0.004 (0.000-0.660)	0.080
Family Veillionellaceae	5.376 (0.195-9.072)	9.113 (0.114-16.261)	0.623	1.222 (0.457-3.040)	0.437
Genus_ <i>Streptococcaceae</i>	0.190 (0.097-0.503)	0.414 (0.219-3.236)	0.135	0.548 (0.289-6.508)	0.099
Genus_Lactobacillus	0.000 (0.000-0.000)	0.000 (0.000-0.004)	0.816	0.000 (0.000-0.006)	0.820
Genus_Clostridium	0.151 (0.002-1.012)	0.160 (0.029-0.307)	0.856	0.019 (0.004-0.029)	0.249
Genus_Veillionella	1.150 (0.074-9.072)	5.697 (0.050-16.085)	0.897	1.195 (0.440-2.040)	0.963
Phylum Proteobacteria	10.682 (1.848-21.026)	7.149 (2.098-17.351)	0.551	40.313 (9.845-47.991)	0.249
Family Enterobacteriaceae	9.250 (1.149-17.686)	4.609 (1.521-10.405)	0.586	25.000 (2.178-47.989)	0.554
Phylum Verrucomicrobia	0.008 (0.000-6.541)	0.000 (0.000-0.008)	0.077	0.004 (0.000-0.008)	0.385
Genus_Akkermansia	0.008 (0.000-6.541)	0.000 (0.000-0.008)	0.077	0.004 (0.000-0.008)	0.385
·	0.008 (0.000-6.541) in and interquartile range	0.000 (0.000-0.008) (IQR) in parentheses. Co	0.077 ompariso	0.004 (0 ns were per	0.000-0.008) rformed using

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI \geq 30)

Table 3.33

Summary table showing <u>significant</u> (p<0.05) median relative abundance changes of the dominant bacterial taxa of infant gut microbiota at 3-4 months according to the duration of second stage of labour among infants born to obese mothers, and following stratification by mode by IAP

ALL MOD	Group 1 (Reference		
Reference group: Group 1	Group 2	Group 3	group): 2nd stage <=1
(n=118)	(n=18)	(n=21)	hour
Phylum Actinobacteria		\downarrow	Group 2: 2nd stage > 1 to
Bifidobacteriaceae		\downarrow	≤ 2 hours
Phylum Bacteroidetes			Group 3: 2nd stage > 2 hours
Phylum Firmicutes			
Lactobacillaceae			
Clostridiaceae			
Phylum Proteobacteria			

VAGINAL BIRHTS					
WITHOUT IAP (n=71)					
Group 1	Group	Group			
(Ref)	2	3			
(n=51)	(n=10)	(n=10)			
Phylum					
Actinobacteria					
Bifidobacteriaceae		\downarrow			
Phylum	1				
Bacteroidetes					
Phylum	↓				
Firmicutes					
Clostridiaceae	↓				
Phylum					
Proteobacteria					

ſ

VAGINAL BIRHTS WITH							
IAP (n=32)							
Group 1	Group 1 Group Group						
(Ref)	2	3					
(n=18)	(n=8)	(n=6)					
Phylum							
Actinobacteria							
Bifidobacteriaceae							
Phylum	\downarrow						
Bacteroidetes							
Phylum	↑						
Firmicutes							
Veillionellaceae	1						
Phylum							
Proteobacteria							

C-SECTION WITH 2 nd STAGE					
(n=	27)				
Group 1	2nd stage				
(Ref)	> 1 hour				
(n=22)	(n=5)				
Phylum					
Actinobacteria					
Bifidobacteriaceae					
Phylum					
Bacteroidetes					
Phylum					
Firmicutes					
Clostridiaceae					
Phylum					
Proteobacteria					

٦

IAP = Intrapartum Antibiotic Prophylaxis

-- indicates no significant change

(Note: Elective C-section excluded from analyses)

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI \ge 30)

Table 3.34

Median relative abundance of dominant bacterial taxa in infant gut microbiota at 3-4 months among all modes of delivery in obese mothers, according to the duration of second stage of labour (n= 157)

Bacterial Taxa	2 nd Stage of labour <= 1 hour [Reference group]	2 nd Stage of labour > 1 to <=2 hours	p- value	2 nd Stage of labour > 2 hours	p- value
	(n=118; 75.2%)	(n= 18; 11.5%)		(n=21; 13.4%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum	5.584 (2.534-19.128)	4.081 (1.672-6.899)	0.116	2.030 (0.414-5.103)	<mark>0.004</mark>
Actinobacteria	5.111 (1.744-18.180)	2.497 (1.219-6.184)	0.071	1.851 (0.093-4.199)	<mark>0.004</mark>
Bifidobacteriaceae Coriobacteriaceae	0.062 (0.008-0.436)	0.055 (0.000-0.860)	0.604	0.023 (0.004-0.101)	0.085
g_Bifidobacterium	5.111 (1.744-18.180)	2.497 (1.219-6.184)	0.071	1.851 (0.093-4.199)	<mark>0.004</mark>
Bacteroidetes	15.992 (0.109-58.894)	48.517 (24.615-81.598)	0.068	50.280 (0.125-73.516)	0.335
Bacteroidaceae	9.819 (0.083-50.710)	44.328 (24.615-72.575)	0.049	37.098 (0.125-73.492)	0.207
Firmicutes	26.473 (12.288-47.833)	17.325 (5.106-30.741)	0.103	19.633 (12.472-40.558)	0.374
Lactobacillaceae	0.000 (0.000-0.008)	0.000 (0.000-0.017)	0.928	0.000 (0.000-0.000)	0.198
Streptoccocaceae	0.655 (0.216-2.591)	0.229 (0.106-1.368)	0.140	0.467 (0.257-1.028)	0.347
Clostridiaceae	0.582 (0.105-2.108)	0.188 (0.019-1.312)	0.127	0.541 (0.079-3.965)	0.883
Lachnospiraceae	4.619 (0.469-10.885)	3.009 (0.517-5.432)	0.214	6.410 (0.782-13.097)	0.860
Ruminococcaceae	0.570 (0.008-1.391)	0.521 (0.000-2.188)	0.590	0.814 (0.031-2.498)	0.645
Veillionellaceae	6.118 (0.986-19.543)	5.171 (1.421-16.261)	0.676	4.212 (0.546-16.191)	0.457
g_Lactobacillus	0.000 (0.000-0.008)	0.000 (0.000-0.017)	0.928	0.000 (0.000-0.000)	0.198
Proteobacteria	12.353 (4.484-32.931)	12.167 (4.280-25.698)	0.729	17.604 (10.316-53.364)	0.083
Enterobacteriaceae	10.793 (3.240-32.527)	5.267 (3.536-25.675)	0.644	14.255 (6.920-53.353)	0.110
Verrucomicrobia	0.000 (0.000-0.023)	0.000 (0.000-0.018)	0.612	0.000 (0.000-0.008)	0.072
g_Akkermansia	0.000 (0.000-0.023)	0.000 (0.000-0.018)	0.612	0.000 (0.000-0.008)	0.072

Results are presented as median and interquartile range (IQR) in parentheses. Comparisons were performed using Mann-Whitney U-test. P values ≤ 0.05 are indicated in boldface type.

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI \geq 30)

Table 3.35

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births without IAP in obese mothers, according to the duration of second stage of labour (n= 71)

	2 nd Stage of labour	2 nd Stage of labour	p- value	2 nd Stage of labour > 2	p-
Bacterial Taxa	<= 1 hour [Reference group]	> 1 to <=2 hours	Exact	hours	value Exact
	(n= 51; 71.8%)	(n= 10; 14.1%)		(n=10; 14.1%)	
	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	5.558 (2.636-21.948)	4.777 (1.801-8.514)	0.436	2.071 (0.671-5.431)	0.064
Family Bifidobacteriaceae	5.014 (1.943-19.325)	3.400 (1.640-7.869)	0.447	1.911 (0.108-3.892)	<mark>0.048</mark>
Family Coriobacteriaceae	0.063 (0.008-0.595)	0.043 (0.000-1.474)	0.390	0.055 (0.000-1.083)	0.598
Genus_Bifidobacterium	5.014 (1.943-19.325)	3.400 (1.640-7.869)	0.447	1.911 (0.108-3.892)	<mark>0.048</mark>
Phylum Bacteroidetes	41.143 (6.598-67.439)	73.837 (37.964-85.015)	<mark>0.018</mark>	57.953 (17.898-77.624)	0.311
Family <i>Bacteroidaceae</i>	26.576 (2.057-56.869)	63.955 (36.457-82.169)	0.019	51.428 (7.734-77.553)	0.259
Phylum Firmicutes	23.968 (12.347-40.658)	8.400 (4.707-23.996)	<mark>0.010</mark>	17.546 (6.143-30.062)	0.320
Family Lactobacillaceae	0.000 (0.000-0.008)	0.000 (0.000-0.258)	0.401	0.000 (0.000-0.002)	0.384
Family Streptoccocaceae	0.756 (0.209-2.536)	0.166 (0.087-1.368)	0.149	0.516 (0.256-0.960)	0.459
Family <i>Clostridiaceae</i>	0.467 (0.085-2.052)	0.058 (0.000-0.195)	0.012	0.290 (0.142-2.707)	0.815
Family Lachnospiraceae	4.438 (0.735-9.567)	2.720 (0.461-3.414)	0.205	3.077(0.131-8.629)	0.675
Family <i>Ruminococcaceae</i>	0.619 (0.008-2.175)	0.229 (0.000-0.945)	0.202	1.344 (0.174-2.474)	0.463
Family Veillionellaceae	5.985 (1.102-17.190)	3.426 (0.993-6.928)	0.330	7.674 (0.643-15.625)	0.868
Genus_Streptococcaceae	0.756 (0.209-2.536)	0.166 (0.087-1.368)	0.149	0.516 (0.256-0.960)	0.459
Genus_Lactobacillus	0.000 (0.000-0.008)	0.000 (0.000-0.258)	0.401	0.000 (0.000-0.002)	0.384
Genus_Clostridium	0.016 (0.000-0.163)	0.000 (0.000-0.027)	0.130	0.085 (0.023-0.223)	0.241
Genus_Veillionella	2.198 (0.382-11.084)	2.644 (0.467-3.771)	0.785	2.066 (0.176-11.770)	0.682
Phylum Proteobacteria	8.217 (4.593-20.803)	5.329 (3.175-25.698)	0.360	16.217 (10.470-31.161)	0.144
Family <i>Enterobacteriaceae</i>	7.018 (3.254-19.661)	4.203 (2.823-25.675)	0.330	13.311 (6.325-30.535)	0.167
Phylum Verrucomicrobia	0.000 (0.000-0.015)	0.000 (0.000-0.018)	0.914	0.008 (0.000-0.012)	0.713
Genus Akkermansia	0.000 (0.000-0.015)	0.000 (0.000-0.018)	0.914	0.008 (0.000-0.012)	0.713

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI \geq 30)

Table 3.36

Median relative abundance of dominant bacterial taxa at different taxonomic levels in infant gut microbiota at 3-4 months among infants born by VAGINAL births with IAP in obesity mothers, according to the duration of second stage of labour (n= 32)

	2 nd Stage of labour <= 1 hour	2 nd Stage of labour > 1 to <=2 hours	p- value Exact	2 nd Stage of labour > 2 hours	p-value Exact
Bacterial Taxa	[Reference group] (n=18; 56.3%)	(n=8; 25%)	Exact	(n=6; 18.8%)	
-	Median (IQR)	Median (IQR)		Median (IQR)	
Phylum Actinobacteria	2.939 (0.123-14.154)	2.811 (0.467-8.070)	0.849	2.062 (1.375-2.997)	0.673
Family <i>Bifidobacteriaceae</i>	. , ,	2.497 (0.021-5.866)	0.429	1.996 (1.313-2.945)	0.721
	2.846 (0.109-13.782) 0.031 (0.000-0.269)	0.058 (0.002-0.711)	0.567	0.019 (0.008-0.041)	0.673
Family <i>Coriobacteriaceae</i>					
Genus_Bifidobacterium	2.846 (0.109-13.782)	2.497 (0.021-5.866)	0.429	1.996 (1.313-2.945)	0.721
Phylum Bacteroidetes	69.503 (27.852-81.586)	37.637 (0.033-49.679)	0.035	58.450 (3.069-75.665)	0.454
Family Bacteroidaceae	52.600 (12.556-76.442)	37.360 (0.023-45.260)	0.115	42.803 (3.069-73.374)	0.673
Phylum Firmicutes	11.020 (5.10(.21.22.5)	20.027.415.220.44.52	0.047		0 45 4
I nyium Firmicutes	11.938 (5.196-24.226)	29.937 (15.739-66.534)	0.047	21.866 (8.731-31.881)	0.454
Family Lactobacillaceae	0.000 (0.000-0.000)	0.000 (0.000-0.000)	0.849	0.000 (0.000-0.002)	0.923
Family Streptoccocaceae	0.241 (0.091-1.595)	0.473 (0.165-2.423)	0.367 0.338	0.290 (0.128-1.597) 0.079 (0.012-1.985)	0.820 0.224 0.251
Family Clostridiaceae	0.563 (0.190-1.141)	0.768 (0.295-3.707)			
Family Lachnospiraceae	4.107 (0.062-7.122)	3.353 (0.456-28.063)	0.765	11.877 (1.051-18.728)	
Family Ruminococcaceae	0.910 (0.006-2.324)	0.733 (0.126-5.559)	0.644	1.157 (0.000-5.814)	0.820
Family Veillionellaceae	2.243 (0.102-7.425)	14.840 (3.489-22.878)	<mark>0.035</mark>	3.879 (0.667-11.433)	0.415
Genus_Streptococcaceae	0.241 (0.091-1.595)	0.473 (0.165-2.423)	0.367	0.290 (0.128-1.597)	0.820
Genus_Lactobacillus	0.000 (0.000-0.000)	0.000 (0.000-0.000)	0.849	0.000 (0.000-0.002)	0.923
Genus_Clostridium	0.124 (0.006-0.449)	0.147 (0.021-0.235)	0.935	0.016 (0.000-1.853)	0.537
Genus_Veillionella	0.532 (0.061-6.211)	12.559 (0.402-22.878)	0.196	1.613 (0.666-11.433)	0.280
Phylum Proteobacteria	5.631 (1.965-18.458)	17.599 (9.317-40.551)	0.080	22.939 (1.220-55.613)	0.310
Family Enterobacteriaceae	5.153 (0.911-13.927)	16.831 (4.104-40.545)	0.070	7.622 (1.210-55.039)	0.494
Phylum Verrucomicrobia	0.008 (0.000-0.027)	0.000 (0.000-0.100)	0.495	0.000 (0.000-0.008)	0.199
Genus_Akkermansia	0.008 (0.000-0.027)	0.000 (0.000-0.100)	0.495	0.000 (0.000-0.008)	0.199

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI \geq 30)

Table 3.37

Median relative abundance of dominant bacterial taxa at the genus level in infant gut microbiota at 3-4 months among obese mothers with C-section with labour, according to the duration of second stage of labour (n = 27)

Bacterial Taxa	2 nd Stage of labour <= 1 hour [Reference group]	2 nd Stage of labour > 1 hour	p-value Exact	
	(n= 22; 81.5%)	(n= 5; 18.5%)		
	Median (IQR)	Median (IQR)		
	N (%); IQR	N (%); IQR		
Actinobacteria	9.188 (4.912-22.897)	0.116 (0.066-17.688)	0.165	
g_Actinomyces	0.085 (0.021-0.347)	0.031 (0.008-0.236)	0.314	
g_Bifidobacterium	8.833 (3.756-19.473)	0.008 (0.000-17.347)		
Bacteroidetes	0.128 (0.070-9.619)	0.070 (0.023-35.745)	0.485	
g_Bacteroides	0.097 (0.052-9.244)	0.070 (0.023-35.745)	0.786	
Firmicutes	47.389 (30.324-52.842)	43.271 (26.210-51.134)	0.485	
g_Enterococcus g_Lactobacillus	0.078 (0.014-0.189)	0.109 (0.093-0.278)	0.314	
	0.000 (0.000-0.002)	0.000 (0.000-0.093)	1.00	
g_Streptococcus	1.590 (0.255-3.527)	0.557 (0.268-2.052)	0.606	
g_Clostridia g Ruminococcus L	0.121 (0.014-1.439)	2.654 (0.143-14.651)	0.165	
g_Kuminococcus_L g Oscillospira	0.269 (0.000-7.183)	0.008 (0.004-3.833)	0.650	
g Veilloinella	0.027 (0.000-2.428)	0.186 (0.000-6.925)	1.00	
0_1	11.999 (0.941-31.344)	1.928 (0.070-33.255)	0.524	
Proteobacteria	23.116 (12.887-38.843)	42.365 (16.955-58.600)	0.165	
g_Citrobacter	0.078 (0.000-0.291)	0.054 (0.000-0.558)	0.832	
g_Enterobacter_unclss	19.202 (10.945-36.440)	42.187 (16.474-56.978)	0.086	
Verrucomicrobia	0.000 (0.000-0.018)		0.232	
g_Akkermansia	0.000 (0.000-0.018)		0.232	
Results are presented as median a Whitney U-test. P values 	and interquartile range (IQR) in parenthes are indicated in boldface type.	es. Comparisons were performed using I		

CHAPTER 3 REGRESSION ANALYSES: Active 1st stage

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI \geq 30)

Table 3.38 Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of active 1st stage of labour among infants of obese mothers (n=152)

Microbiota Measure]	Infant's gu	t microbio	ta at 3 to 4 n	nonths of a	ge		
Ref. Group $1 = 1$ st Stage ≤ 6 Hrs Group $2 = 1$ st Stage > 6 to ≤ 13 Hrs			PHY	LUM			FAMILY		GENUS	
		ria s (b (below vs abo	Bacteroidete s (below vs above median)	Firmicutes (below vs above median)	Proteo- bacteria (below vs above median)	Bifidobacteria- ceae (below vs above median)	Clostridia- ceae (below vs above median)	Veillonella- ceae (below vs above median)	Bifidobacteriu m (below vs above median)	Lactobacillu s (below vs above median)
Group $3 = 1^{st}$ Stag > 13Hrs	ge	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Crude OR C for 1st stage of	Grp2	0.42 (0.19- 0.90)*	2.23 (1.04- 4.77)*	0.74 (0.35- 1.54)	0.76 (0.36-1.63)	0.45 (0.21-0.96)*	1.06(0.51- 2.22)	0.56 (0.27- 1.18)	0.45(0.21- 0.96)*	0.50 (0.21-1.21
labour	Grp3	0.54 (0.17-1.77)	2.70 (0.78- 9.35)	0.33 (0.09- 1.14)	1.21 (0.38-3.87)	0.25 (0.07-0.96)*	0.74 (0.23- 2.37)	0.28(0.08- 0.96)*	0.25(0.07- 0.96)*	0.36 (0.08-1.74
Adjusted C for MODE	Grp2	0.47 (0.21-1.06)	1.02 (0.43- 2.46)	1.20(0.54- 2.70)	1.31 (0.56-3.10)	0.50 (0.22-1.13)	1.37(0.61- 3.06)	0.74(0.33- 1.63)	0.50 (0.22-1.13)	0.53 (0.21-1.34
by IAP Grp3	Grp3	0.58 (0.18- 1.94)	1.81 (0.45- 7.30)	0.42(0.11- 1.52)	1.74 (0.50-6.05)	0.27 (0.07-1.04)	0.90(0.27- 2.98)	0.31(0.09- 1.10)	0.27 (0.07-1.04)	0.38 (0.08-1.82
Adjusted C for infant diet at 3	Grp2	0.42 (0.19- 0.90)*	2.22 (1.04- 4.75)*	0.74 (0.35-1.54)	0.78 (0.35-1.73)	0.45 (0.21-0.97)*	1.04 (0.50-2.19)	0.55 (0.26-1.16)	0.45 (0.21-0.97)*	0.50 (0.20-1.24
months Grp3	Grp3	0.54 (0.17-1.77)	2.70 (0.78- 9.35)	0.33 (0.09-1.14)	1.25 (0.37-4.23)	0.25 (0.07-0.96)*	0.74 (0.23-2.37)	0.27 (0.08- 0.95)*	0.25 (0.07-0.96)*	0.35 (0.07-1.71
Adjusted for parity	Grp2	0.44 (0.20- 0.96)*	2.42 (1.10- 5.29)*	0.66 (0.31-1.42)	0.72 (0.33-1.58)	0.45 (0.21-0.97)*	1.06 (0.50-2.25)	0.53 (0.25-1.14)	0.45 (0.21-0.97)*	0.45 (0.18-1.11
Grp3	Grp3	0.55 (0.17-1.81)	2.80 (0.80- 9.74)	0.31 (0.09-1.09)	1.19 (0.37-3.81)	0.25 (0.07-0.96)*	0.74 (0.23-2.37)	0.27 (0.08- 0.94)*	0.25 (0.07-0.96)*	0.35 (0.07-1.67
Adjusted Grp2 for ROM >18 hours	0.41 (0.19- 0.90)*	2.17 (1.01- 4.67)*	0.73 (0.35-1.53)	0.80 (0.37-1.73)	0.46 (0.22-0.99)*	1.05 (0.50-2.21)	0.55 (0.26-1.16)	0.46 (0.22-0.99)*	0.49 (0.20-1.19	
	Grp3	0.44 (0.12-1.58)	3.31 (0.84- 13.31)	0.24 (0.06- 0.95)*	1.17 (0.34-4.03)	0.18 (0.04-0.87)*	0.64 (0.19-2.18)	0.21 (0.05-0.84)	0.18 (0.04-0.87)*	0.40 (0.08-1.96
Adjusted C for MODEL 1	Grp2	0.49 (0.21- 1.14)	0.99 (0.40- 2.48)	0.99 (0.43- 2.31)	1.52 (0.60- 3.87)	0.52 (0.22- 1.22)	1.29 (0.56- 3.01)	0.63 (0.27- 1.47)	0.52 (0.22- 1.22)	0.45 (0.17- 1.23)
C	Grp3	0.48 (0.13- 1.80)	1.73 (0.39- 7.67)	0.31 (0.07- 1.30)	2.20 (0.52- 9.27)	0.20 (0.04- 0.97)*	0.79 (0.22- 2.83)	0.24 (0.06- 0.97)*	<mark>0.20</mark> (0.04- 0.97)*	0.38 (0.07- 2.04)

IAP = Intrapartum antibiotic prophylaxis; GA = gestational age; ROM = rupture of membranes; Grp=Group
REGRESSION ANALYSES: 2^{nd} stage INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI \geq 30)

Table 3.39

Crude and adjusted likelihood ratio of abundance of key gut microbiota measures at 3-4 months according to duration of 2nd stage of labour among infants of obese mothers (n= 157)

Microbiota Measure				Infant's gu	t microbio	ta at 3 to 4	months of	age		
Ref. Group $1 = 2^{nd}$ Stage ≤ 1 Hrs Group $2 = 2^{nd}$ Stage $>$ 1 to ≤ 2 Hrs		PHYLUM			FAMILY			GENUS		
		Actinobact eria	Bacteroide tes (below	Firmicutes (below vs	Proteo- bacteria	Bifidobact eriaceae	Clostridia- ceae	Veillonella ceae	Bifidobact erium	Lactobacil us (below
		(below vs above median)	vs above median)	above median)	(below vs above median)	vs above median)				
Group $3 = 2^{nd}$ S >2Hrs	Stage	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Crude OR for 2 nd	Grp2	0.62 (0.22-1.70)	3.88 (1.21- 12.47)*	0.65 (0.24-1.77)	0.93 (0.34-2.56)	0.62 (0.22-1.70)	0.84 (0.28-2.54)	0.74 (0.27-1.99	0.62 (0.22-1.70)	0.84 (0.28-2.54
stage of labour	Grp3	023 (0.07- 0.72)*	1.80 (0.69-4.66)	0.74 (0.29-1.88)	1.33 (0.52-3.37)	0.23 (0.07- 0.72)*	0.52 (0.16-1.64)	0.67 (0.26-1.70)	0.23 (0.07- 0.72)*	0.52 (0.16-1.64
Adjusted for MODE	Grp2	0.70 (0.25-1.96)	2.31 (0.69-7.76)	0.90 (0.32-2.51)	1.33 (0.46-3.84)	0.70 (0.25-1.96)	0.62 (0.22-1.75)	0.88 (0.32-2.44)	0.70 (0.25-1.96)	0.86 (0.28-2.66
by IAP	Grp3	0.24 (0.08- 0.76)*	1.76 (0.60-5.19)	0.79 (0.30-2.08)	1.43 (0.53-3.82)	0.24 (0.08- 0.76)*	0.91 (0.35-2.34)	0.67 (0.26-1.73)	0.24 (0.08- 0.76)*	0.53 (0.17-1.69
Adjusted for infant diet at 3 months	Grp2	0.63 (0.23-1.76)	4.12 (1.26- 13.45)*	0.64 (0.25-1.77)	0.69 (0.24-2.03)	0.59 (0.21-1.66)	0.55 (0.20-1.53)	0.78 (0.29-2.14)	0.59 (0.21-1.66)	0.65 (0.21-2.04
	Grp3	0.23 (0.07- 0.71)*	1.77 (0.68-4.59)	0.74 (0.29-1.89)	1.51 (0.56-4.03)	0.23 (0.07- 0.73)*	0.84 (0.33-2.14)	0.65 (0.26-1.66)	0.23 (0.07- 0.73)*	0.54 (0.16-1.76
Adjusted	Grp2	0.65 (0.23-1.83)	4.77 (1.42- 16.01)	0.53 (0.19-1.51)	0.85 (0.30-2.41)	0.60 (0.21-1.69)	0.45 (0.16-1.29)	0.67 (0.24-1.87)	0.60 (0.21-1.69)	0.74 (0.24-2.31
for parity	Grp3	0.24 (0.07- 0.78)*	2.26 (0.82-6.18)	0.59 (0.22-1.57)	1.20 (0.45-3.15)	0.22 (0.07-0.71)	0.78 (0.29-2.04)	0.60 (0.23-1.59)	0.22 (0.07-0.71)	0.44 (0.13-1.47
Adjusted for ROM >18 hours	Grp2	0.64 (0.23-1.76)	3.91 (1.21- 12.63)	0.66 (0.24-1.80)	0.92 (0.33-2.55)	0.63 (0.23-1.74)	0.50 (0.18-1.37)	0.73 (0.27-1.97)	0.63 (0.23-1.74)	0.84 (0.28-2.53
	Grp3	0.17 (0.05- 0.65)*	2.21 (0.77-6.36)	0.74 (0.27-2.01)	1.24 (0.45-3.44)	0.11 (0.03- 0.52)*	0.95 (0.35-2.59)	0.72 (0.27-1.95)	0.11 (0.03- 0.52)*	060 (0.18-1.99
Adjusted for MODEL 1	Grp2	0.78 (0.26- 2.31)	2.92 (0.82- 10.38)	0.71 (0.24- 2.09)	0.93 (0.29- 2.96)	0.69 (0.23- 2.03)	0.60 (0.20- 1.79)	0.84 (0.29- 2.44)	0.69 (0.23- 2.03)	0.59 (0.17- 1.99)
	Grp3	0.20 (0.05- 0.76)*	2.18 (0.63- 7.57)	0.67 (0.23- 2.00)	1.77 (0.54- 5.86)	0.12 (0.03- 0.58)*	0.88 (0.30- 2.55)	0.67 (0.23- 1.95)	0.12 (0.03- 0.58)*	0.65 (0.18- 2.35)
MODEL 1: A	5	-	-	c	. ,	status, parity a	nd ROM> 18	hours	<u> </u>	<u>. </u>
* p <0.05; ** IAP = Intrap						I = rupture c	fmamhrona	a: Grn-Gra	n	

RICHNESS and DIVERSITY

INFANTS BORN TO WOMEN WITH **PRE-PREGNANCY OBESITY** (BMI ≥30)

Table 3.40

Crude and adjusted likelihood ratio of gut microbiota richness and diversity measures at 3-4 months according to duration of active 1st stage of labour among infants of obese mothers (n=152)

Ref. Group 1 = 1st Stage <= 6 Hours	Chao1 richness		Shannon diversity	
Group $2 = 1$ st Stage > 6 to	(below vs above median)		(below vs above median)	
<=13 Hrs	OR (95% CI)		OR (95% CI)	
Group 3 = 1st Stage > 13 Hrs				
Crude OR for 1st stage of	Group2	1.60 (0.74-3.45)	0.43 (0.21-0.91)*	
labour	Group3	0.90 (0.28-2.86)	0.33 (0.10-1.08)	
Adjusted for mode by IAP, infant diet at 3 months,	Group2	1.29 (0.54-3.10)	<mark>0.37 (0.16-0.88)*</mark>	
parity, ROM > 18 hours	Group3	0.82(0.22-2.07)	0.36 (0.10-1.32)	
* p <0.05; ** p<0.005; OR = IAP = Intrapartum antibiotic pr		CI = confidence interval; ROM = rupture of membranes		

Crude and adjusted likelihood ratio of gut microbiota richness and diversity measures at 3-4 months according to duration of second stage of labour among infants of **obese mothers (n= 157)**

Ref. Group 1 = 2nd Stage <= 1 Hour		Chao1 richness	Shannon diversity
Group $2 = 2^{nd}$ Stage > 1 to	(below vs above median)		(below vs above median)
<=2 Hrs	OR (95% CI)		OR (95% CI)
Group $3 = 2^{nd}$ Stage > 2 Hrs			
Crude OR for 2nd stage of labour	Group2	1.56 (0.42-3.19)	0.29 (0.10-0.82)*
	Group3	1.84 (0.67-5.07)	0.52 (0.21-1.33)
Adjusted for mode by IAP, infant diet at 3 months,	Group2	1.20 (0.39-3.70)	0.32 (0.10-0.99)*
parity, ROM > 18 hours	Group3	1.96 (0.56-6.79)	0.59 (0.20-1.74)
* p <0.05; ** p<0.005; OR =			
IAP = Intrapartum antibiotic p	rophylaxis	ROM = rupture of membranes	

Figure 3.1

NORMAL WEIGHT PREGNANT WOMEN

a) Distribution of active 1^{st} stage duration (n = 531)

Active 1 st stage duration	Frequency	Percent
1st Stage ≤ 6Hrs	322	60.6
1st Stage> 6 to ≤ 13 Hrs	156	29.4
1st Stage > 13 Hrs	53	10.0
Total	531	100.0

b) Distribution of second stage duration (n = 556)

2 nd stage duration	Frequency	Percent
2nd Stage <=1Hr	379	68.2
2nd Stage >1 to <=2Hrs	75	13.5
2nd Stage >2 Hrs	102	18.3
Total	556	100.0

Figure 3.2

OVERWEIGHT PREGNANT WOMEN

a) Distribution of active 1^{st} stage duration (n =201)

Active 1 st stage		
duration	Frequency	Percent
1st Stage <=6Hrs	120	59.7
1st Stage > 6 to ≤13 Hrs	62	30.8
1st Stage > 13 Hrs	19	9.5
Total	201	100.0

b) Distribution of second stage duration (n = 208)

2 nd stage duration	Frequency	Percent
2nd Stage <=1Hr	150	72.1
2nd Stage >1 to <=2Hrs	26	12.5
2nd Stage >2 Hrs	32	15.4
Total	208	100.0

Figure 3.3

OBESE PREGNANT WOMEN

a) Distribution of active 1^{st} stage duration (n = 152)

Active 1 st stage duration	Frequency	Percent
1st Stage <=6Hrs	99	65.1
1st Stage > 6 to ≤13 Hrs	40	26.3
1st Stage > 13 Hrs	13	8.6
Total	152	100.0

b) Distribution of second stage duration (n = 157)

2 nd Stage duration	Frequency	Percent
2nd Stage <=1Hr	118	75.2
2nd Stage >1 to <=2Hrs	18	11.5
2nd Stage >2 Hrs	21	13.4
Total	157	100.0

CHAPTER 4

General Discussion and Conclusion

4.1 Summary of the Results

Using data from the CHILD longitudinal birth cohort, this thesis explored the influence of duration of labour on infant gut microbiota composition, diversity and richness at 3 to 4 months of age.

Chapter 2 presents the investigation of impact of duration of active first stage and second stage of labour on infant gut microbiota in the general cohort of 999 infants. In infants delivered after active first stage longer than 13 hours and second stage longer than 2 hours, there were statistically significant under-representation phylum Actinobacteria and family *Bifidobacteriaceae* (p=0.042) when all delivery modes were considered. When stratified by mode of delivery and intrapartum antibiotic prophylaxis (IAP) exposure, these changes remained significant only among vaginal births without antibiotic exposure where as no differences were observed in infants born vaginally but expose to IAP and by C-section births after labour. Besides, multivariate logistic regression analyses showed that infants born after active first stage longer than 13 hours had a 44% decreased likelihood of colonization with *Bifidobacterium* along with 47% reduced likelihood of colonization with *Bifidobacterium* along with 47% reduced likelihood of colonization with *Lactobacillus*. These findings were adjusted for delivery mode by IAP use, gestational age, infant diet, parity, duration after rupture of membranes, infant's length of hospital stay and age at stool collection.

Chapter 3 presents a further examination of impact of labour duration on infant gut microbiota in infants born to mothers with different BMI (Body Mass Index) classification. Among infants of normal weight mothers (BMI <25), statistically significant underrepresentation of *Bifidobacterium* was noted when the infants were born after active labour >6 to \leq 13 hours, but not after active first stage > 13 hours, and when the infants were born after 2nd stage > 2 hours.

Multivariate logistic regression analyses showed a decreasing trend for colonization with *Bifidobacterium* and *Lactobacillus* with increasing lengths of active first stage and second stage. Interestingly, likelihood of colonization with Veillionellaceae increased tended to increase with longer active first stage and reached a 1.7 times increased likelihood of colonization when second stage was longer than 2 hours. Among infants born to overweight mother (BMI \ge 25 to < 30), a trend for underrepresentation of phylum Actinobacteria only in association with longer active 1st stage was noted. Among infants born to overweight mothers, longer labour duration was associated with decreased trend of colonization with phylum Actinobacteria and genus Bacteroides at 3-4 months of age, independent of mode of delivery and intrapartum antibiotic prophylaxis (IAP), breastfeeding, parity, membrane rupture duration greater than 18 hours and infant sex. And, among infants of obese mothers (BMI \geq 30), underrepresentation of *Bifidobacterium* was observed with active first stage > 13 hours and second stage > 2 hours in vaginally delivered, IAP-free infants. Multivariate logistic regression analyses revealed a more pronounced reduction in colonization likelihood of *Bifidobacterium* with increasing lengths of active first stage and second stage in infants born to obese mothers. Further, a 76% decreased likelihood of colonization with Veillionellaceae with active first stage > 13 hours was also observed among these infants. The final estimates were adjusted for delivery mode by IAP use, infant diet, parity and duration after rupture of membranes. Other co-variates of interest such as maternal ethnicity, maternal age etc. were not included in the final model because no significant differences were detected in the distribution of these co-variates according to duration of labour categories by the Chi-square tests. Finally, a reduced trend for microbial diversity (Shannon diversity) was observed with longer labour durations in infants born to overweight and obese mothers, but not among infants of normal weight mothers.

In summary, longer duration of labour was significantly associated with changes in the infant gut microbial composition, including reduced colonization with beneficial *Bifidobacterium* and *Lactobacillus*, at 3 to 4 months of life. When examined within different maternal BMI categories, longer labour duration was associated with more drastic underrepresentation of these probiotic organisms in the infants of obese mothers. Maternal pre-pregnancy BMI also affected

infant gut colonization with *Veillionellaceae* in relation to longer labour durations in the CHILD cohort at 3-4 months of age.

4.2 Strengths of the Study

This study has several strengths. First, this thesis utilized data from participants from three sites (Edmonton, Winnipeg and Vancouver) of the CHILD longitudinal cohort, and is representative of the Canadian general population. Due to its prospective longitudinal cohort study design, the information collected from the participants occurred over time which allows us to measure the changes in the outcome variable over time. It also allows us to associate the changes in one variable to changes in another variable in relation to time, ascertain temporality, reduces recall bias and allows us to hypothesize casual relationships. In addition, data on birth labour durations and birth mode, intra-partum antibiotics prophylaxis (IAP), parity, duration after rupture of membranes, maternal pre-pregnancy BMI, exclusive breastfeeding status in first 3 months were retrieved from hospital birth chart reviews or maternal report at 3-month post-partum or both. All CHILD questionnaires were subjected to an internal validity test, standardized, and validated prior to start of the study. Besides, the large sample size permitted us to conduct stratified analyses to investigate the effect of labour duration independent of delivery mode and IAP use.

Second, high-throughput Illumina sequencing of 16S rRNA gene was employed to profile the infant gut microbiota. 16S rRNA gene is a universal gene for use in bacterial phylogeny and taxonomy, and the most popular housekeeping genetic marker employed in bacterial identification (Janda JM and Abbott SL, 16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls. J Clin Microbiol.2007 Sep; 45(9): 2761–2764). The hyper-variable regions (eg. V4) of 16S rRNA gene provide good taxonomic resolution and have sufficient variability between species so as to distinguish each bacterium with high accuracy. The length of 16S rRNA gene (1500 bp) also allow ample availability of sequence data in databases. In addition, Illumina sequencing technology is popularly used in taxonomic studies of the microbiome and allows us to compare the findings of our study with other microbiome research across the globe.

Third, we employed multivariate logistic regression models to establish that the observed associations were attributable to the exposure variable of interest (labour duration), and to account for possible confounders and covariates that could have influenced the observed associations. Unadjusted crude odds ratio was obtained for each covariate, and the final models for research question one (duration of active first stage and second stage of labour) was adjusted for delivery mode by IAP use, gestational age, parity, duration after rupture of membranes, infant's length of hospital stay, infant diet (breastfeeding status), infant age at stool collection and maternal pre-pregnancy weight. The final models for research question two (duration of labour in different maternal BMI categories) were controlled for delivery mode by IAP use, parity, duration after rupture of membranes and infant diet. The rationale for adjusting these covariates was that they have an impact on exposure variable (duration of labour) or the outcome (gut microbiota composition and diversity) or both. In addition, most of these covariates in logistic regression models, the associations between labour duration and gut microbiota dysbiosis, and changes among infants of different maternal BMI categories, remained statistically significant.

4.3 Limitations of the Study

This study also has some limitations. First, majority of participants in the study were recruited from urban areas. Although 80% of Canadian population enjoy urban living (Statistics Canada 2011), it may limit the generalizability and external validity of our results. To add, home deliveries were excluded form our study. Thus, the results from our investigation do not reflect changes in infants born at home.

Second, information on important variables e.g. maternal smoking, breastfeeding status, were obtained from review of self-administered questionnaires. This limits our ability to use objective measurement for those variables of interest.

Third, for the second research question, the sample size infants of mothers with prepregnancy overweight and obesity were smaller than that of infants born to normal weight mother.

This may have limited the power of the study to detect significant gut microbiota changes in infants of overweight and obese mothers.

Finally, the high throughput gene sequencing is unable to identify differences among individual species (Jost et al., 2012) and we did not employ qPCR for species identification. Therefore, our findings are limited to reporting at genus level.

4.4 Bias and Confounding

The design of the observational cohort study prevents some bias while allowing a few. First, the very specific inclusion and exclusion criteria from the CHILD study makes the participants of this study very homogenous, thus controlling for many potential confounding. However, the very same specific inclusions and exclusion criteria, along with the fact that most participants were from urban dwellings, could have introduced some *selection bias* in our study because the general population may not have been represented in its entirety. In addition, our second study investigated the outcome (infant gut microbial profile) in relation to exposure (duration of labour) within different maternal BMI categories. Since higher BMI is inversely associated with social economic status and level of education (CIHI 2011: Obesity in Canada), potential socioeconomic disparities between participants of normal weight, overweight and obese categories may have introduced some *selection bias* during identification of the study population for our second study.

Second, the CHILD study collected the information on exposure variable (duration of labour) at the time of baby's birth. Since the hospital personnel recording the length of different stages of labour and other birth parameters were unaware which birth parameters would be investigated in this study, *measurement bias* is reduced. Use of validated CHILD questionnaires, structured interviews, and hospital chart reviews to obtain data for this study also minimized *interviewer bias* in this study. Besides, we deliberately avoided including the *latent* phase of first stage as a measure of our exposure variable because the onset latent phase of first stage is often based on subjective perception, and is thus unreliable. Instead, we only included *active* first stage and second stage of labour as our exposure variable. The objective nature of cut-offs for the

duration of these parameters minimize misclassification of participants, thereby further reducing measurement bias.

In addition, all participating mothers in the study were recruited by CHILD during their pregnancy between the period 2009 and 2012. Although obstetric guidelines have changed over the course of time, and secular trends within medical practice could influence how disease is diagnosed and interventions administered (Paradis 2008), the use of study participants enrolled within narrow span of time and belonging to a prospective cohort reduces potential for *chronology bias* in our study. Some loss of information due to *recall bias* is expected when data is retrieved from self-administered questionnaires to participants. However, this was kept to a minimum in the CHILD study by administering the questionnaires to participants at the most relevant phase of data collection, for instance collection of breastfeeding data at 3 to 4 moths-postpartum home visits etc.

For our second research question, we failed to see significant difference in mean durations of labour between parturients of three different BMI categories (i.e. normal vs. overweight vs. obese). Evidence shows that duration of active first stage is longer as BMI increases, with slowest progression in women with BMI \geq 40 (Kominiarek 2011). However, no such difference in duration of active labour by maternal BMI categories was observed in our study. Since obstetricians are aware that overweight and obese mothers are more likely to encounter labour complications such as 'failure to progress' and unplanned C-section, and blinding them to parturients' BMI is virtually impossible, it is likely that overweight/obese women received more closer monitoring of labour and lower threshold for intervention. This could have inadvertently introduced some *performance bias* (measurement bias) on behalf of health-care providers resulting shortened labour lengths in women of elevated BMI in our study.

Finally, the use of high throughput gene sequencing technique imparts high degree of accuracy and reliability in characterizing gut microbiota, and reduces *inter-observer measurement bias*. Since Illumina sequencing is PCR-based technology, some *measurement bias* inherent to PCR-amplification is expected. However, the strictly standard CHILD protocol limits the PCR-amplification to 20 cycles, minimizing this potential bias.

202

This study has also strived to identify and control for potential confounders so that true association that is devoid of spurious influence by an extrinsic (or a third) factor may be established between the exposure (duration of labour) and outcome (changes in infant gut microbial profile). Covariates that had potential to affect either the exposure or the outcome, or both, and clinically relevant covariates were adjusted for in the analyses. In addition, Chi-square tests were conducted to identify covariates having significant difference in distribution according to exposure categories.

Employing 'stratified analyses' to compare outcome by exposure *separately* for mode of delivery and IAP administration categories was one approach used in this study for controlling confounding effects of birth mode and antibiotic prophylaxis. In addition, for both the first and second research questions, we sought to further minimize the effect of confounding by employing multivariate logistic regression models to control for multiple potential confounders such as mode of delivery by administration of (IAP) (i.e. vaginal delivery without IAP, vaginal delivery with IAP, elective C-section, Emergency C-section), exclusive breastfeeding status, parit and duration after rupture of membranes. Additional covariates adjusted for by logistic regression models for the first question were gestational age, infant's length of hospital stay and age of stool collection as these were also deemed to affect either exposure, outcome, or both.

4.5 Clinical relevance

Balanced development of infant gut microbiota is crucial for immune system maturation and host energy homeostasis. Early life exposures such as mode of delivery (vaginal versus Csection), antibiotic use and breastfeeding (Azad et al., 2015) profoundly influence the infant gut microbial composition and diversity. However, a knowledge void exists on the impact of duration od labour, an inherent element of natural birth, on the development of infant gut microbiota.

Significant associations between duration of labour and changes in infant gut microbiota composition add novel insights to early life factors that influence the development of gut microbiota. Infant gut dysbiosis can impact the development of gut immunity, immune maturation

and host energy harvest, with potential long-term consequences of increased risk of childhood atopy, allergy, and adiposity. Identifying the early life factors, such as protracted duration of labour, that influence the development of infant gut microbiota provides new insights into implementation of early life remedial measures. Besides, results of this study can be implied in favor of healthy pregnancy, promoting ideal maternal weight-maintenance during pregnancy, informed decision making during protracted labour, and to possibly target increment of probiotics to reduce long-term pediatric disease risks.

4.6 Conclusion

In this thesis, the associations between duration of labour and infant gut dysbiosis at 3 to 4 months of age were reported. Depletion of beneficial probiotic organisms was observed with prolonged labour durations. Moreover, these changes were noted to be more severe in infants born to obese mothers and after longer labour durations. Findings from this thesis provides a population-based evidence of influence of labour duration on infant gut microbiota composition and diversity, and adds to our understanding of early life factors that affect balanced growth of infant gut microbiota.

BIBLIOGRAPHY

For Chapter 1:

- Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants' and children's health? J Pediatr Gastroenterol Nutr. 2015 Mar;60(3):294–307.
- Francino M. Early Development of the Gut Microbiota and Immune Health. Pathogens. 2014;3(3):769–90.
- Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013 Jun;4(3):203–14.
- O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006 Jul;7(7):688–93.
- DiBaise JK, Frank DN, Mathur R. Impact of the Gut Microbiota on the Development of Obesity: Current Concepts. Am J Gastroenterol Suppl [Internet]. 2012;1(1):22–7.
- 6. Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015 Sep;26(9):493–501.
- Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6(1):23129.
- Nuriel-Ohayon M, Neuman H, Koren O. Microbial Changes during Pregnancy, Birth, and Infancy. Front Microbiol. 2016;7:1031.
- Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012 Aug;150(3):470–80.
- Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010 Jun;107(26):11971– 5.
- 11. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Vol. 17,

Cell host & microbe. United States; 2015. p. 852.

- Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009 Feb;98(2):229–38.
- Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015 Feb;21(2):109–17.
- Messer JS, Liechty ER, Vogel OA, Chang EB. Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunol. 2017 May;10(3):567–79.
- Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016 Oct;22(10):1187–91.
- Koleva PT, Bridgman SL, Kozyrskyj AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients. 2015 Mar;7(4):2237–60.
- Kalliomaki M, Antoine JM, Herz U, Rijkers GT, Wells JM, Mercenier A. Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of allergic diseases by probiotics. J Nutr. 2010;140.
- Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050.
- Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016 May;123(6):983–93.
- Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014 Feb 27;63(4):559 LP-566.
- 21. Jhon. Bible. 16:20.
- 22. Betrán AP, Ye J, Moller A, Zhang J, Gülmezoglu AM. The Increasing Trend in Caesarean Section Rates : Global , Regional and National Estimates : 1990-2014. 2016;1–12.
- 23. Hyattsville. Data from the 2012 final natality file; National Center for Health Statistics [Internet]. 2014. Available from: http://www.cdc.gov/nchs/data_access/vitalstatsonline.htm

- 24. ACOG, SMFM, Caughey A, Cahill A, Rouse D. Safe Prevention of the Primary Cesarean Delivery. Am Congr Obstet abd Gynecol [Internet]. 2014; Available from: https://www.acog.org/Resources-And-Publications/Obstetric-Care-Consensus-Series/Safe-Prevention-of-the-Primary-Cesarean-Delivery
- Gifford DS, Morton SC, Fiske M, Keesey J, Keeler E, Kahn KL. Lack of progress in labor as a reason for cesarean. Obstet Gynecol. 2000 Apr;95(4):589–95.
- 26. Cunningham F, Leveno K, Bloom S, Spong C, Dashe J, Hoffman B, et al. Characteristics of Normal Labor. In: Williams Obstetrics. 24th ed. 2014.
- FRIEDMAN E. The graphic analysis of labor. Am J Obstet Gynecol. 1954 Dec;68(6):1568–75.
- Zhang J, Troendle JF, Yancey MK. Reassessing the labor curve in nulliparous women. Am J Obstet Gynecol. 2002 Oct;187(4):824–8.
- Neal JL, Lowe NK, Ahijevych KL, Patrick TE, Cabbage LA, Corwin EJ. "Active labor" duration and dilation rates among low-risk, nulliparous women with spontaneous labor onset: a systematic review. J Midwifery Womens Health. 2010;55(4):308–18.
- Kilpatrick SJ, Laros RKJ. Characteristics of normal labor. Obstet Gynecol. 1989 Jul;74(1):85–7.
- Zhang J, Landy HJ, Branch DW, Burkman R, Haberman S, Gregory KD, et al. Contemporary patterns of spontaneous labor with normal neonatal outcomes. Obstet Gynecol. 2010 Dec;116(6):1281–7.
- Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013 Mar;185(5):385–94.
- Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006 Aug;118(2):511–21.
- Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol. 2016 Jul;16(1):86.
- Quenby S, Pierce SJ, Brigham S, Wray S. Dysfunctional labor and myometrial lactic acidosis. Obstet Gynecol. 2004 Apr;103(4):718–23.

- 36. Nordstrom L, Achanna S, Naka K, Arulkumaran S. Fetal and maternal lactate increase during active second stage of labour. BJOG. 2001 Mar;108(3):263–8.
- Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol. 2004 Oct;70(10):5810–7.
- 38. Lee SM, Romero R, Lee KA, Yang HJ, Oh KJ, Park CW, et al. The frequency and risk factors of funisitis and histologic chorioamnionitis in pregnant women at term who delivered after the spontaneous onset of labor. J Matern Fetal Neonatal Med. 2011;24(1):37–42.
- 39. Eliasson AH, Phillips YY, Stajduhar KC, Carome MA, Cowsar JDJ. Oxygen consumption and ventilation during normal labor. Chest. 1992 Aug;102(2):467–71.
- Brusa T, Canzi E, Pancini N. Oxygen tolerance of anaerobic bacteria isolated from human feces. Curr Microbiol [Internet]. 1989;19:39. Available from: https://doi.org/10.1007/BF01568901
- Rocha ER, Selby T, Coleman JP, Smith CJ. Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol. 1996 Dec;178(23):6895–903.
- Kawasaki S, Mimura T, Satoh T, Takeda K, Niimura Y. Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol. 2006 Oct;72(10):6854–8.
- Carlhall S, Kallen K, Blomberg M. Maternal body mass index and duration of labor. Eur J Obstet Gynecol Reprod Biol. 2013 Nov;171(1):49–53.
- Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008 Oct;88(4):894–9.
- 45. Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010 Jul;104(1):83–92.
- Vonk JM, Boezen HM, Postma DS, Schouten JP, Van Aalderen WMC, Boersma ER. Perinatal risk factors for bronchial hyperresponsiveness and atopy after a follow-up of 20 years. J Allergy Clin Immunol. 2004;114(2):270–6.

- 47. Dik N, Tate RB, Manfreda J, Anthonisen NR. Risk of physician-diagnosed asthma in the first 6 years of life. Chest. 2004;126(4):1147–53.
- Keski-Nisula L, Karvonen A, Pfefferle PI, Renz H, Büchele G, Pekkanen J. Birth-related factors and doctor-diagnosed wheezing and allergic sensitization in early childhood. Allergy. 2010 Jan 1;65(9):1116–25.
- 49. Black M, Bhattacharya S, Philip S, Norman JE, McLernon DJ. Planned Cesarean Delivery at Term and Adverse Outcomes in Childhood Health. Jama. 2015;314(21):2271.
- Almqvist C, Cnattingius S, Lichtenstein P, Lundholm C. The impact of birth mode of delivery on childhood asthma and allergic diseases-a sibling study. Clin Exp Allergy. 2012;42(9):1369–76.

For Chapter 2:

- O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688– 93.
- Francino M. Early Development of the Gut Microbiota and Immune Health. Pathogens. 2014;3(3):769–90.
- 3. Johnson CC, Ownby DR. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res. 2017;179:60–70.
- Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int [Internet]. 2017;66(4):515–22. Available from: https://doi.org/10.1016/j.alit.2017.07.010
- Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: A prospective cohort study. BJOG An Int J Obstet Gynaecol. 2016;123(6):983–93.
- Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1

responses in infants delivered by Caesarean section. Gut. 2014 Feb 27;63(4):559 LP-566.

- Barker PM, Olver RE. Invited Review: Clearance of lung liquid during the perinatal period. J Appl Physiol. 2002 Oct 1;93(4):1542 LP-1548.
- Jain L, Eaton DC. Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol. 2006 Feb 1;30(1):34–43.
- Ceanga M, Spataru A, Zagrean AM. Oxytocin is neuroprotective against oxygen-glucose deprivation and reoxygenation in immature hippocampal cultures. Neurosci Lett. 2010;477(1):15–8.
- Mazzuca M, Minlebaev M, Shakirzyanova A, Tyzio R, Taccola G, Janackova S, et al. Newborn Analgesia Mediated by Oxytocin during Delivery. Front Cell Neurosci. 2011;5(April):1–9.
- Thilaganathan B, Meher-Homji N, Nicolaides KH. Labor: An immunologically beneficial process for the neonate. Am J Obstet Gynecol. 2017 Oct 24;171(5):1271–2.
- Thysen AH, Larsen JM, Rasmussen MA, Stokholm J, Bønnelykke K, Bisgaard H, et al. Prelabor cesarean section bypasses natural immune cell maturation. J Allergy Clin Immunol. 2015;136(4):1123–1125e6.
- 13. Black M, Bhattacharya S, Philip S, Norman JE, McLernon DJ. Planned Cesarean Delivery at Term and Adverse Outcomes in Childhood Health. Jama. 2015;314(21):2271.
- Rusconi F, Zugna D, Annesi-Maesano I, Baïz N, Barros H, Correia S, et al. Mode of delivery and asthma at school age in 9 European Birth Cohorts. Am J Epidemiol. 2017;185(6):465–73.
- Almqvist C, Cnattingius S, Lichtenstein P, Lundholm C. The impact of birth mode of delivery on childhood asthma and allergic diseases-a sibling study. Clin Exp Allergy. 2012;42(9):1369–76.
- Vonk JM, Boezen HM, Postma DS, Schouten JP, Van Aalderen WMC, Boersma ER. Perinatal risk factors for bronchial hyperresponsiveness and atopy after a follow-up of 20 years. J Allergy Clin Immunol. 2004;114(2):270–6.

- Dik N, Tate RB, Manfreda J, Anthonisen NR. Risk of physician-diagnosed asthma in the first 6 years of life. Chest. 2004;126(4):1147–53.
- Keski-Nisula L, Karvonen A, Pfefferle PI, Renz H, Büchele G, Pekkanen J. Birth-related factors and doctor-diagnosed wheezing and allergic sensitization in early childhood. Allergy. 2010 Jan 1;65(9):1116–25.
- Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6(1):23129.
- Lee SM, Romero R, Lee KA, Yang HJ, Oh KJ, Park CW, et al. The frequency and risk factors of funisitis and histologic chorioamnionitis in pregnant women at term who delivered after the spontaneous onset of labor. J Matern Fetal Neonatal Med. 2011;24(1):37–42.
- Gifford DS, Morton SC, Fiske M, Keesey J, Keeler E, Kahn KL. Lack of progress in labor as a reason for cesarean. Obstet Gynecol. 2000 Apr;95(4):589–95.
- Kjaergaard H, Olsen J, Ottesen B, Dykes A-K. Incidence and outcomes of dystocia in the active phase of labor in term nulliparous women with spontaneous labor onset. Acta Obstet Gynecol Scand. 2009;88(4):402–7.
- 23. Boyle A, Reddy UM, Landy HJ, Huang C-C, Driggers RW, Laughon SK. Primary cesarean delivery in the United States. Obstet Gynecol. 2013 Jul;122(1):33–40.
- 24. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med [Internet]. 2017 Mar;23(3):314–26. Available from: http://dx.doi.org/10.1038/nm.4272
- Cornelison JL, Johnson EA, Fisher WM. Bacteriology of the oronasal cavity of the newborn. Am J Obs Gynec. 1946;52(797–802).
- Brook I, Barrett CT, Brinkman CR, Martin WJ, Finegold SM. Aerobic and Anaerobic Bacterial Flora if the Maternal Cervix and Newborn Gastric Fluid and Conjunctiva. Obstet Gynaecol Surv. 1979;34(10):743–4.

- Keski-Nisula L, Kyynarainen H-R, Karkkainen U, Karhukorpi J, Heinonen S, Pekkanen J. Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth. Acta Paediatr. 2013 May;102(5):480–5.
- Neal JL, Lowe NK, Ahijevych KL, Patrick TE, Cabbage LA, Corwin EJ. "Active labor" duration and dilation rates among low-risk, nulliparous women with spontaneous labor onset: a systematic review. J Midwifery Womens Health. 2010;55(4):308–18.
- Kilpatrick SJ, Laros RKJ. Characteristics of normal labor. Obstet Gynecol. 1989 Jul;74(1):85–7.
- Tissier H. Recherchers sur la flora intestinale normale et pathologique du nourisson. University of Paris, France; 1900.
- Turroni F, Taverniti V, Ruas-Madiedo P, Duranti S, Guglielmetti S, Lugli GA, et al. Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl Environ Microbiol. 2014 Jan;80(2):730–40.
- Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol [Internet].
 2017;8(December):1–9. Available from: http://journal.frontiersin.org/article/10.3389/fmicb.2017.02345/full
- Enomoto T, Sowa M, Nishimori K, Shimazu S, Yoshida A, Yamada K, et al. Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergol Int. 2014 Dec;63(4):575– 85.
- Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001 Jan;107(1):129–34.
- Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016 Oct;22(10):1187–91.
- 36. Mikami K, Takahashi H, Kimura M, Isozaki M, Izuchi K, Shibata R, et al. Influence of

maternal bifidobacteria on the establishment of bifidobacteria colonizing the gut in infants. Pediatr Res. 2009 Jun;65(6):669–74.

- 37. Makino H, Kushiro A, Ishikawa E, Kubota H, Gawad A, Sakai T, et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota. PLoS One. 2013;8(11).
- Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006 Aug;118(2):511–21.
- Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol. 2016 Jul;16(1):86.
- 40. Nagpal R, Kurakawa T, Tsuji H, Takahashi T, Kawashima K, Nagata S, et al. Evolution of gut Bifidobacterium population in healthy Japanese infants over the first three years of life: a quantitative assessment. Sci Rep. 2017 Aug;7(1):10097.
- Ruiz L, Ruas-Madiedo P, Gueimonde M, de Los Reyes-Gavilan CG, Margolles A, Sanchez B. How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr. 2011 Aug;6(3):307–18.
- 42. Hagerdal M, Morgan CW, Sumner AE, Gutsche BB. Minute ventilation and oxygen consumption during labor with epidural analgesia. Anesthesiology. 1983 Nov;59(5):425–7.
- 43. Eliasson AH, Phillips YY, Stajduhar KC, Carome MA, Cowsar JDJ. Oxygen consumption and ventilation during normal labor. Chest. 1992 Aug;102(2):467–71.
- Cindrova-Davies T, Yung H-W, Johns J, Spasic-Boskovic O, Korolchuk S, Jauniaux E, et al. Oxidative stress, gene expression, and protein changes induced in the human placenta during labor. Am J Pathol. 2007 Oct;171(4):1168–79.
- 45. Diaz-Castro J, Florido J, Kajarabille N, Prados S, de Paco C, Ocon O, et al. A new approach to oxidative stress and inflammatory signaling during labour in healthy mothers and neonates. Oxid Med Cell Longev. 2015;2015:178536.

- Rao G, Kamath U, Raghothama C, Pradeep KS, Rao P. Maternal and fetal indicators of oxidative stress in various obstetric complications. Indian J Clin Biochem [Internet].
 2003;18(2):80–6. Available from: http://link.springer.com/10.1007/BF02867371
- Kawasaki S, Mimura T, Satoh T, Takeda K, Niimura Y. Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol. 2006 Oct;72(10):6854–8.
- Talwalkar A, Kailasapathy K. The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol. 2004 Mar;5(1):1–8.
- Vásquez A, Jakobsson T, Ahrné S, Forsum U, Molin G. Vaginal *Lactobacillus* Flora of Healthy Swedish Women. J Clin Microbiol. 2002;40(8):2746–9.
- 50. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl Environ Microbiol. 2008;74(16):4985–96.
- 51. Papagianni M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds Abstract : Lactic acid bacteria (LAB) are receiving increased attention for use as cell factories for the production of metabolites with wide use by the. 2012;(October):1–8.
- 52. Wells JM. Immunomodulatory mechanisms of lactobacilli. Microb Cell Fact [Internet].
 2011 Aug;10(1):S17. Available from: https://doi.org/10.1186/1475-2859-10-S1-S17
- 53. van Baarlen P, Wells JM, Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol. 2013 May;34(5):208–15.
- Kalina W V, Mohamadzadeh M. Lactobacilli as natural enhancer of cellular immune response. Discov Med. 2005 Apr;5(26):199–203.
- Rautava S, Kainonen E, Salminen S, Isolauri E. Maternal probiotic supplementation during pregnancy and breast-feeding reduces the risk of eczema in the infant. J Allergy Clin Immunol. 2012 Dec;130(6):1355–60.

For Chapter 3:

- Rodd C, Sharma AK. Recent trends in the prevalence of overweight and obesity among Canadian children. CMAJ. 2016 Sep;188(13):E313-20.
- Biro S, Barber D, Williamson T, Morkem R, Khan S, Janssen I. Prevalence of toddler, child and adolescent overweight and obesity derived from primary care electronic medical records: an observational study. C open. 2016;4(3):E538–44.
- Biro FM, Wien M. Childhood obesity and adult morbidities. Am J Clin Nutr. 2010 May;91(5):14998–15058.
- 4. Vos MB, Welsh J, Drive U. Childhood obesity: update on predisposing factors and prevention strategies. Curr Gastroenterol Rep. 2011;12(4):280–7.
- Weng SF, Redsell SA, Swift JA, Yang M, Glazebrook CP. Systematic review and metaanalyses of risk factors for childhood overweight identifiable during infancy. Arch Dis Child. 2012 Dec;97(12):1019–26.
- Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and metaanalysis. PLoS One. 2013;8(4):e61627.
- Mamun AA, Mannan M, Doi SAR. Gestational weight gain in relation to offspring obesity over the life course: a systematic review and bias-adjusted meta-analysis. Obes Rev. 2014 Apr;15(4):338–47.
- 8. Lau EY, Liu J, Archer E, McDonald SM, Liu J. Maternal weight gain in pregnancy and risk of obesity among offspring: A systematic review. J Obes. 2014;2014.
- Backhed F, Ding H, Wang T, Hooper L V, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004 Nov;101(44):15718–23.
- Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesityassociated gut microbiome with increased capacity for energy harvest. Nature [Internet].
 2006 Dec 21;444:1027. Available from: http://dx.doi.org/10.1038/nature05414

- Dumas M-E, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulinresistant mice. Proc Natl Acad Sci U S A. 2006 Aug;103(33):12511–6.
- Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007 Jan;104(3):979–84.
- Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006 Dec;444(7122):1022–3.
- Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW, et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring). 2013 Dec;21(12):E607-15.
- Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017 May;17(1):120.
- Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008 Nov;32(11):1720–4.
- Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010 Jan;18(1):190–5.
- Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol. 2017 Jan;19(1):95–105.
- 19. Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008 Mar;87(3):534–8.
- Luoto R, Kalliomaki M, Laitinen K, Delzenne NM, Cani PD, Salminen S, et al. Initial dietary and microbiological environments deviate in normal-weight compared to overweight children at 10 years of age. J Pediatr Gastroenterol Nutr. 2011 Jan;52(1):90–5.

- Kozyrskyj AL, Kalu R, Koleva PT, Bridgman SL. Fetal programming of overweight through the microbiome: boys are disproportionately affected. J Dev Orig Health Dis. 2016 Feb;7(1):25–34.
- Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012 Aug;150(3):470–80.
- Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008 Oct;88(4):894–9.
- Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010 Jul;104(1):83–92.
- 25. Stanislawski MA, Dabelea D, Wagner BD, Sontag MK, Lozupone CA, Eggesbo M. Prepregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants. Microbiome. 2017 Sep;5(1):113.
- Mueller NT, Shin H, Pizoni A, Werlang IC, Matte U, Goldani MZ, et al. Birth modedependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Sci Rep. 2016 Apr;6:23133.
- Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010 Nov;92(5):1023–30.
- Kominiarek MA, Zhang J, Vanveldhuisen P, Troendle J, Beaver J, Hibbard JU. Contemporary labor patterns: the impact of maternal body mass index. Am J Obstet Gynecol. 2011 Sep;205(3):244.e1-8.
- Hilliard AM, Chauhan SP, Zhao Y, Rankins NC. Effect of obesity on length of labor in nulliparous women. Am J Perinatol. 2012 Feb;29(2):127–32.
- Norman SM, Tuuli MG, Odibo AO, Caughey AB, Roehl KA, Cahill AG. The effects of obesity on the first stage of labor. Obstet Gynecol. 2012 Jul;120(1):130–5.

- Carlhall S, Kallen K, Blomberg M. Maternal body mass index and duration of labor. Eur J Obstet Gynecol Reprod Biol. 2013 Nov;171(1):49–53.
- Zhang J, Bricker L, Wray S, Quenby S. Poor uterine contractility in obese women. BJOG.
 2007 Mar;114(3):343–8.
- 33. Moynihan AT, Hehir MP, Glavey S V, Smith TJ, Morrison JJ. Inhibitory effect of leptin on human uterine contractility in vitro. Am J Obstet Gynecol. 2006 Aug;195(2):504–9.
- Poobalan AS, Aucott LS, Gurung T, Smith WCS, Bhattacharya S. Obesity as an independent risk factor for elective and emergency caesarean delivery in nulliparous women--systematic review and meta-analysis of cohort studies. Obes Rev. 2009 Jan;10(1):28–35.
- Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013 Mar;185(5):385–94.
- 36. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014 Feb 27;63(4):559 LP-566.
- 37. Neal JL, Lowe NK, Ahijevych KL, Patrick TE, Cabbage LA, Corwin EJ. "Active labor" duration and dilation rates among low-risk, nulliparous women with spontaneous labor onset: a systematic review. J Midwifery Womens Health. 2010;55(4):308–18.
- Kilpatrick SJ, Laros RKJ. Characteristics of normal labor. Obstet Gynecol. 1989 Jul;74(1):85–7.
- 39. Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015 Sep;26(9):493–501.
- 40. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016 May;7(3):189–200.
- 41. Diaz-Castro J, Florido J, Kajarabille N, Prados S, de Paco C, Ocon O, et al. A new approach to oxidative stress and inflammatory signaling during labour in healthy mothers

and neonates. Oxid Med Cell Longev. 2015;2015:178536.

- Rao G, Kamath U, Raghothama C, Pradeep KS, Rao P. Maternal and fetal indicators of oxidative stress in various obstetric complications. Indian J Clin Biochem [Internet].
 2003;18(2):80–6. Available from: http://link.springer.com/10.1007/BF02867371
- Kawasaki S, Mimura T, Satoh T, Takeda K, Niimura Y. Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol. 2006 Oct;72(10):6854–8.
- Talwalkar A, Kailasapathy K. The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol. 2004 Mar;5(1):1–8.
- 45. Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, et al. Obesityassociated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes (Lond). 2012 Jun;36(6):817–25.
- 46. Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One. 2015;10(5):e0126931.
- 47. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr. 2010 Jun;64(6):636–43.
- 48. Omar Jaclyn M. A4 Chan, Yen-Ming A4 Jones, Mitchell L. A4 Prakash, Satya A4 Jones, Peter J.H. JMA-O. Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. J Funct Foods. 2013;v. 5:116-123–2013 v.5.
- 49. Yu Q, Yuan L, Deng J, Yang Q. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol. 2015;5:26.
- 50. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007 Jul;56(7):1761–72.

- Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog. 2012 Aug;53(2):100–8.
- 52. Vendt N, Grunberg H, Tuure T, Malminiemi O, Wuolijoki E, Tillmann V, et al. Growth during the first 6 months of life in infants using formula enriched with Lactobacillus rhamnosus GG: double-blind, randomized trial. J Hum Nutr Diet. 2006 Feb;19(1):51–8.
- 53. Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C, et al. Differences in gut microbiota composition between obese and lean children: a crosssectional study. Gut Pathog. 2013 Apr;5(1):10.
- Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Vol. 74, The Proceedings of the Nutrition Society. England; 2015. p. 13–22.
- 55. Quenby S, Pierce SJ, Brigham S, Wray S. Dysfunctional labor and myometrial lactic acidosis. Obstet Gynecol. 2004 Apr;103(4):718–23.
- 56. Nordstrom L, Achanna S, Naka K, Arulkumaran S. Fetal and maternal lactate increase during active second stage of labour. BJOG. 2001 Mar;108(3):263–8.
- 57. Kjaer M. Hepatic glucose production during exercise. Adv Exp Med Biol. 1998;441:117– 27.
- Yun Y, Kim H-N, Kim SE, Heo SG, Chang Y, Ryu S, et al. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017 Jul;17(1):151.
- Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012 Sep;96(3):544–51.