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Abstract

MEDLINE, a large and constantly increasing collection of biomedical article references,

has been the source of numerous investigations related to textual information retrieval and

knowledge capture, including article categorization, bibliometric analysis, semantic query

answering, and biological concept recognition and relationship extraction. This disserta-

tion discusses the design and development of novel methods that contribute to the tasks of

document categorization and relationship extraction. The two investigations result in a fast

tool for building descriptive models capable of categorizing documents to multiple labels

and a highly effective method able to extract broad range of relationships between enti-

ties embedded in text. Additionally, an application that aims at representing the extracted

knowledge in a strictly defined but highly expressive structure of ontology is presented.

The classification of documents is based on an idea of building association rules that con-

sist of frequent patterns of words appearing in documents and classes these patterns are

likely to be assigned to. The process of building the models is based on a tree enumeration

technique and dataset projection. The resulting algorithm offers two different tree travers-

ing strategies, breadth-first and depth-first. The classification scenario involves the use

of two alternative thresholding strategies based on either the document-independent confi-

dence of the rules or a similarity measure between a rule and a document. The presented

classification tool is shown to perform faster than other methods and is the first associative-

classification solution to incorporate multiple classes and the information about recurrence

of words in documents. The extraction of relations between entities embedded in text in-

volves the utilization of the output of a constituent parser and a set of manually developed

tree-like patterns. Both serve as the input of a novel algorithm that solves the newly formu-

lated problem of constrained constituent tree inclusion with regular expression matching.

The proposed relation extraction method is demonstrated to be parser-independent and out-

performs in terms of effectiveness dependency-parser-based and machine-learning-based

solutions. The extracted knowledge is further embedded in an existing ontology, which to-

gether with the structure-driven modification of the ontology results in a comprehensible,

inference-consistent knowledge base constituting a tangible representation of knowledge

and a potential component of applications such as semantically enhanced query answering

systems.
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Chapter 1

Introduction

1.1 Motivation

The ever increasing number of scientific articles, which appears in various collections, calls

for automated methods that are capable of categorizing, searching, summarizing, and pre-

senting the knowledge embedded therein in a timely manner. For instance, MEDLINE

[3], a National Library of Medicine’s (NLM) database, which consists of approximately 16

million article references to biomedical journal articles dated back to 1949, is a rapidly ex-

panding collection with currently around 700,000 new article references added every year,

which translates to 2,000-4,000 references added each day. Each article reference is semi-

automatically assigned terms [19] from Medical Subject Headings (MeSH) [2], a controlled

vocabulary that comprises medical terms at various levels of specificity.

Huge datasets pose a challenge to the task of finding relevant information. For instance,

PubMed, a publicly available search interface to MEDLINE and other resources, receives

over 700 million queries a year1 from researchers and medical practitioners alike [148].

Search engines performing pure boolean retrieval (returning all documents that match the

logical conditions specified in a query) are no longer satisfactory. There is a need for more

sophisticated tools capable of determining the relevance of the returned documents with

respect to the query, and able to perform semantic inference in order to translate a what-is-

stated-like query to a what-is-meant-like query. To some extent this can be accomplished by

the use of lexicons, which may extend the query by the synonyms of the words appearing in

the query. However, more elaborate solutions involve well-defined concept structures with

a network of labeled interconnecting links between the concepts, which could enrich the

query by adding some semantic meaning to it in the form of inferred relationships between

the concepts specified in the query.

1More statistics available on http://www.nlm.nih.gov/bsd/bsd key.html
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These well-defined and well-structured knowledge bases, ontologies in particular, not only

exhibit powerful reasoning capabilities, but also serve as the visual representation of con-

cisely summarized knowledge that can be tangibly explored by users. Although creating

one all-knowing ontology, even limited to a particular field such as biomedicine, is a rather

futile task, there are ongoing efforts to build interchangeable links between smaller, specific,

and well-established ontologies. For instance, the Open Biomedical Ontologies Foundry

(OBO Foundry) [134] is a collaborative project that aims at establishing the framework of

interoperable yet orthogonal ontologies in the biomedical domain. The framework consists

of ontologies of different levels of specificity forming a pyramid-like structure. Top-level

ontologies are well established and subsequently do not change considerably over time;

however, specific ontologies constantly evolve with new knowledge and new discoveries

regularly appearing in scientific sources. Therefore, not only do the new incoming sci-

entific publications need to be properly categorized, but also the new knowledge contained

therein needs to be extracted and embedded into ontologies. This constitutes another task in

the field of information retrieval, especially challenging in the biomedicine domain where

sentences can be very complex and the language filled with expressions that may be incom-

prehensible to a layperson.

1.2 Existing solutions

MEDLINE has been attracting researchers attention mainly due to its public availability,

large and constantly increasing size, the complexity of specialized, biomedical language,

and well indexed and cross-referenced contents. The numerous investigations with the use

of MEDLINE include document categorization/classification/indexing to various hierarchi-

cal structures or ontologies such as MeSH or Gene Ontology (OBO Foundry candidate)

[127, 19, 126, 135, 144, 78], bibliometric analysis [149, 34], semantic (usually ontology-

driven) query answering [106, 102, 147], biomedical concept (or named entity) recognition

[145, 80, 103], biomedical entity (usually binary) relation extraction [37, 14, 122] as well

as more specific protein-protein interaction extraction [69, 45, 152].

Most of the attempts to categorize documents are based on document feature extraction and

the use of machine learning methods to learn the features and apply the learnt model to new,

unseen documents [87, 127, 135]. However, although the machine learning tools used in

this process possess the predictive power, they lack the descriptive value, i.e., the models

are not “transparent” to a user. Additionally, very effective state-of-the-art binary classifiers

do not scale well when applied to the classification problem, which requires assignment of

multiple labels to a single document [144].

Similar techniques, i.e., the use of machine learning, is used in relation extraction [22]. The

2



features used in the learning process are mainly based on the output of shallow or deep

linguistic parsers. However, the effectiveness of this approach is inferior to methods that

rely on manually tailored sets of patterns or rules that are matched against the output of

typed dependency parsers, which produce grammatical dependencies between tokens in a

sentence, to extract relations without the learning process [36, 122]. These methods, on

the other hand, lack a standardized set of grammatical dependencies, which makes them

sensitive to the selection of the parser.

1.3 Thesis statement and contributions

In this work several novel methods that contribute to the tasks of document categorization

and relation extraction are proposed.

In the case of categorizing documents, special emphasis is put on techniques capable of

building descriptive models, which can be easily interpreted by humans, an important char-

acteristic that allows diagnosing the means that led to the prediction in a comprehensible

manner. Additionally, as opposed to binary classifiers, a single model is expected to in-

corporate all the classes to overcome the problem of scalability when applied to classifi-

cation with a large number of classes. In the case of relation extraction, the problem of

parser-dependence is overcome by using a standardized set of tags used in constituent trees,

which represent the syntactic decomposition of a sentence. Due to the fact that the pro-

posed method uses similar principles to other pattern/rule-based methods, it is expected to

maintain superior effectiveness when compared to the machine learning techniques.

As a result, this work proposes (1) a fast algorithm for generation of multi-label document

classification models based on the descriptive associative classification approach, and (2)

an algorithm for extracting relations between biological terms in documents based purely

on the syntactic decomposition of constituents in sentences. Additionally, the structural

modification and enrichment of an existing ontology is shown as an application that embeds

the knowledge discovered in the process of extracting relations from documents. Such an

ontology concisely summarizes the discovered knowledge and may be further used in, e.g.,

semantic query answering systems.

To summarize, this dissertation lays forward the following thesis statements:

1. Associative classification with recurrent items is an efficient and human-interpretable

method to categorize large text data with multiple labels.

2. Constituent trees are sufficient representations of sentences to effectively extract a

variety of relationships that appear in linguistically complex sentences.

3



3. Web Ontology Language (OWL) is a highly expressive, description-logic-based lan-

guage capable of incorporating automatically extracted textual knowledge in a reasoner-

oriented manner.

1.4 Overview of the proposed approach

The objectives of the various investigations presented in this dissertation include:

Classification A fast tool for building descriptive models capable of classifying text docu-

ments to multiple categories.

Relation extraction An effective tool for extracting user-defined relations between anno-

tated concepts in text.

Ontology enrichment Structural, conceptual, and quantitative modification of an existing

ontology based in part on knowledge discovered in the process of relation extraction.

An application scenario that incorporates the three objectives is shown in Figure 1.1.

<A> <B>

Figure 1.1: Application scenario of classification, relation extraction, and ontology enrich-
ment components.

The scenario involves classification of new, uncategorized documents to a set of predefined

labels to form a well-indexed repository of documents. A portion of the labeled documents

is retrieved for further investigation, this time narrowed to a specific field of study or a

specific ontology. This portion of documents is processed to annotate entities in text based
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on concepts from the ontology. The relation extraction process captures relations between

these entities and populates the ontology with the newly discovered knowledge.

Relating the diagram to the data sources and knowledge bases used in this work the scenario

involves the use of (1) MEDLINE as the source of new documents, (2) MeSH as the set of

labels, (3) the GENIA corpus as an example of a collection of documents retrieved from

MEDLINE using a query composed of several MeSH terms, and (4) the GENIA ontology

that serves as both the source of concepts to annotate entities in text and the destination

of the extracted relations (see Section 2.2.1 for the description of the aforementioned data

sources). It is important to notice that the GENIA corpus already includes manually iden-

tified entities annotated according to the GENIA ontology, thus this information is used

directly in the process of relation extraction.

The following sections briefly summarize the work presented in Chapters 3, 4, and 5.

1.4.1 Multi-label associative classification

The classification part is based on associative classification, which enables building de-

scriptive models that, apart from their predictive capabilities, provide easily interpretable

rules. The rules are accompanied by the level of confidence which they hold in the given

dataset. The proposed solution is an Apriori-like approach with novel techniques of enu-

merating itemsets and projecting transactions (see Section 2.1.1 for an introduction to text

classification and associative classification in particular).

As opposed to binary classifiers that require independent training for each class when ap-

plied to multi-label classification, the proposed algorithm produces a single model that in-

corporates all the classes. This significantly reduces the time needed to build the model,

especially important in classification with large number of classes. The algorithm is also

capable of accounting for the recurrence of features (words) in documents. Evaluation

comprises a scalability study as well as the effectiveness of classification with different

thresholding strategies. Although the comparative evaluation shows that state-of-the-art

Support Vector Machines (SVM) remains superior in terms of classification effectiveness,

it is demonstrated that this method is not efficient in the multi-label classification environ-

ment, unlike the proposed associative classifier.

The findings on multi-label, recurrent-item, associative classification, presented in Chapter

3, have been published in parts in [119, 113, 114, 116] with Lukasz Kurgan and Marek Re-

format as major collaborators, as well as Wojciech Stach, Osmar Zaı̈ane, and Luiza Antonie,

who were involved in the investigation of the recurrence of items in transactions. RR con-

ceptualized, designed, and implemented the algorithm for multi-class, recurrent-item rule

generation, prepared the datasets, performed the evaluation of efficiency and effectiveness

5



of multi-class classification, analyzed the results, and wrote the manuscripts [113, 114, 116]

and helped with writing the manuscript [119]. LK and MR helped with conceptualiza-

tion of [113, 114, 116], coordinated the projects, and helped with writing the manuscripts

[113, 114, 116]. OZ and LA conceptualized and coordinated the project investigating the

recurrence of items, performed experimental evaluation, analyzed the results, and wrote the

manuscript [119]. WS helped with implementation of the algorithm for recurrent-item rule

generation and with writing the manuscript [119].

1.4.2 Entity relation extraction

The proposed method for extracting relations between annotated entities in text is based

on constituent trees and involves a set of manually tailored patterns representing different

types of relations (see Section 2.1.2 for an introduction to text mining and natural language

processing). Experiments performed on a set of sentences from the GENIA corpus pro-

cessed by two different constituent parsers, the Stanford parser and the Charniak-Lease

parser, show that the method outperforms other approaches based on shallow parsers and

dependency parsers. The constituent pattern trees are shown to be parser-independent and

flexible enough to cover a vast majority of the different types of relations while maintaining

high levels of both precision and recall while yielding almost perfect scores on a subset of

error-free constituent trees. Similar results with the same set of patterns were obtained from

a general English corpus showing that the developed patterns can be used across different

application areas.

The investigation of constituent-tree-based relation extraction presented in Chapter 4 was

undertaken in collaboration with Marek Reformat and Lukasz Kurgan and has been sub-

mitted for publication in an international journal [118]. RR defined the problem of con-

stituent tree inclusion, conceptualized, designed, and implemented the algorithm for solv-

ing the problem, prepared the datasets, performed the evaluation of efficiency and effective-

ness of the method, analyzed the results, and wrote the manuscript. MR and LK helped

with conceptualization of the solution, coordinated the project, and helped with writing the

manuscript.

1.4.3 Ontology enrichment

The GENIA ontology enrichment (or population) is demonstrated as an application of uti-

lizing knowledge discovered in the process of relation extraction. Moreover, the trans-

formation of the ontology to conform with OWL and its expressive description logic is

investigated (see Section 2.1.3 for an introduction to knowledge representation, ontologies,

and OWL). As a result, a new, structurally changed ontology is presented. The ontology
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encompasses a more comprehensive (reasoner-oriented) taxonomy of categories, relation-

ships between biological entities, and a hierarchy of relationships. OWL proved to be a

well-suited language to accommodate the knowledge base.

The experiences of using OWL to encode the various new features of the enriched GENIA

ontology, presented in Chapter 5, have been published in parts in [115, 117] in collaboration

with Lukasz Kurgan and Marek Reformat. RR conceptualized the problem, prepared tools

for creating the ontologies, created the ontologies, and wrote the manuscript. LK and MR

helped with conceptualization of the problem, coordinated the project, and helped with

writing the manuscript.

1.5 Outline

The remainder of this dissertation is presented as follows. Chapter 2 includes background

information necessary to understand the issues discussed in the remaining chapters. A spe-

cial emphasis is put on the role of associative classification in text categorization, deep

linguistic parsing of sentences in relation extraction, and OWL as an ontology language in

knowledge representation. Chapters 3, 4, and 5, present the main contributions and corre-

spond to the multi-label associative classification, biological entity relation extraction, and

ontology enrichment projects, respectively. The dissertation is summarized by enumerating

contributions and findings as well as limitations and future directions in Chapter 6.
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Chapter 2

Background and Related Work

2.1 Background

The following sections include background information necessary to understand the issues

discussed in the coming chapters. Section 2.1.1 describes text categorization (classification)

focused especially on associative classification and thresholding strategies used in multi-

label classification problems. The methods of extracting knowledge from textual sources

are discussed in Section 2.1.2, whereas Section 2.1.3 provides a concise introduction to

formal and practical notations used in knowledge representations, ontologies in particular.

The three sections provide background for Chapters 3, 4, and 5, respectively.

2.1.1 Text classification

Text classification or text categorization1 is one of the task of Information Retrieval, i.e.,

searching for information contained in or based on documents. The goal of text classifica-

tion is to label text with thematic categories from a predefined set [131].

More formally, given a set of documents D = {d1, . . . , d|D|} and a set of categories C =
{c1, . . . , c|C|}, categorization aims at assigning a Boolean value (true or false) to each pair

{dj, ci} ∈ D × C. The task is to find a hypothesis (model), H : D × C → {true, f alse}, that

approximates the unknown target function, i.e., a function that describes how the documents

should be classified.

Text categorization appears in many varieties by imposing constraints on the definition

1The terms classification and categorization are used interchangeably. Although the term annotation is also
used in literature to describe classification/categorization, here annotation is used exclusively to denote the
marking of one or more words in text and should not be mistaken with classification/categorization meant as
assigning labels to a document.
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provided above. Binary categorization limits the number of predefined categories to two, c

and its complement c̄, and therefore can be simplified to hypothesisH : D→ {true, f alse}.
Single label categorization is when exactly one category from a set of |C| categories can be

assigned to each document dj ∈ D. Lastly, multilabel categorization is when any number

of |C| categories can be assigned to each document.

Research on building hypotheses that would best approximate target functions has been

carried out for several decades. The most popular and accurate methods come from machine

learning [99], where inductive learning is utilized in the process of building a hypothesis.

Inductive learning in text categorization is a process that ”observes” certain characteristics

of a set of pre-categorized documents, e.g., frequently co-occurring words, based on which

a hypothesis is built. It is expected that the discovered characteristics be present in unseen

(yet to be categorized) documents.

The machine learning and data mining methods of text categorization include instance-

based classifiers [87, 94], probabilistic (based on Bayes’ theorem) classifiers [85, 88, 91,

125, 94], neural networks [47, 127, 61], support vector machines [70, 71, 96, 57, 157],

decision trees [108, 94, 25], decision rules [42, 154, 119, 114, 111], associative classifiers

[95, 155, 154], and other.

Associative classification, a promising descriptive method of classification, is an approach

that is investigated in this work and presented in Chapter 3. The next section provides an

introduction to the problem of associative classification.

Associative classification

Associative classification is one of the classification methods that produces a descriptive,

human-interpretable model. Associative classification is a simple reformulation of associ-

ation rule mining, a process of discovering frequent patterns in data and forming a set of

rules based on those patterns. The problem of association rule mining was first defined by

Agrawal and Srikant [16] who used an analogy to shopping basket analysis. Therefore, the

original terminology, such as transactions and items, has been used ever since and is kept

throughout this paper. In the context of text classification, transactions refer to documents,

whereas items refer to words in these documents.

Formally, the problem is defined as follows. Let I = {i1, i2, . . . , im} be a set of items (an

alphabet). Let D be a set of n transactions Tj, ∀ j ∈ [1, n] : T j ⊆ I, such that
⋃n

j=1 T j = D.

The goal of association rule mining is to find a frequent pattern or frequent itemset X =

{ix1, ix2, . . . , ixp} in transactions Tj such that X is contained in at least σ̂ transactions Tj. σ̂

is called a support count and is one of the parameters used in the association rule mining.

More often it is expressed as the fraction of transactions in D that contain pattern X, or
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formally:

σD(X) = P(X) =
σ̂D(X)
|D|

(2.1)

where σ̂D(x) denotes the support count of x in D.

The rules are obtained from frequent patterns by splitting them into two parts, antecedent

XA and consequent XC, where XA∩XC = ∅. The rule of the form XA → XC indicates that the

transactions containing XA also contain XC with probability ϕ in D. ϕ is called confidence

and is formally defined as follows:

ϕD(〈XA, XC〉) = P(XC |XA) =
P(XA, XC)

P(XA)
=
σ̂D(〈XA, XC〉)
σ̂D(XA)

(2.2)

The association rule mining process, in its basic form, is subjected to two thresholds, mini-

mum support and minimum confidence. Both these values are treated as parameters in the

process of association rule mining.

In associative classification the above problem is reformulated such that the goal is to find

association rules in the form of X → C, where X is a set of classification features and C is

a set of class labels. The intuition behind associative classification is that the rules X → C,

which constitute the classification model, indicate strong relationship between items in X

and the set of classes C. Therefore, new and unlabeled documents that consists of the set of

items X are likely to be labeled with the set of classes C.

An associative classifier is presented in Chapter 3 and applied to categorization of MED-

LINE documents to multiple MeSH terms (see the description of MEDLINE and MeSH in

Section 2.2.1). The next section discusses strategies commonly used in deciding on class

assignment in the multi-label environment.

Thresholding strategies in multi-label classification

Apart from a decision whether a particular class should be assigned to a document, clas-

sifiers also produce a score (confidence or probability), which is a numerical value that

indicates how well a class fits the document being classified. In multi-label classification,

scores for each class–document pair are the basic measures used in thresholding strategies

while deciding on class assignment.

There is a variety of thresholding strategies, which can be grouped in the following cate-

gories [151]:

RCut For each document, the ranked-based strategy involves sorting classes according to
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their scores and choosing the top t classes, which will constitute the classification

decision for that particular document.

PCut For each class c ∈ C, the proportional-based strategy involves sorting the documents

according to their scores and assigning k = P(c) · x · |C| top documents to c, where P(c)

is the fraction of documents assigned to class c in the training set, |C| is the number

of classes, and x is a real-valued parameter that may range from 0 (in which case no

documents will be assigned to c) to the total number of documents |D| (in which case

all documents will be assigned to c).

SCut The score-based strategy assigns a class to a document based purely on the score be-

tween the two and depends on a score threshold si, which is parametrized separately

for each class.

The RCut parameter t and the set of SCut parameters {s1, . . . , s|C|}, are tuned on a validation

set (see Section 2.2.2). RCut t as well as PCut x may also be specified by a user, in which

case x should be set close to the average number of documents a classifier assigns to a class.

The three main strategies have their pros and cons. Yang [151] points out, for instance,

that although PCut uses the most information (class distribution) to make classification

decisions, it is not suitable for online responses, i.e., it is not able to make the decisions

for each document separately, which is a major drawback in real-life scenarios, such as

categorization of MEDLINE to MeSH (which is one of the main foci of this dissertation),

that perform classification instantly every time a new document arrives. SCut per-class

tuning may overfit the validation set, which is less likely in case of RCut as it uses only a

single parameter. On the other hand, properly cross-validated SCut appears to be the best

choice for online classification as each class is parametrized separately. Such individual

class-oriented parametrization, however, may become an inconvenient solution when a large

number of classes is considered (as is the case with MeSH).

2.1.2 Biomedical text mining

Biomedical text mining is a process of deriving information from biomedical text and con-

stitutes an important part of a broader discipline, text mining. Biomedical text mining

mainly includes biomedical named entity recognition and relation extraction.

Named entity recognition is a process of identifying biological terms (entities) in text,

whereas relation extraction aims at capturing some kind of activity between (usually) two

entities. For example, the sentence ”Spi-B binds DNA sequences containing a core 5’-

GGAA-3’ and activates transcription” contains four entities, Spi-B, DNA sequences, 5’-
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GGAA-3’, and transcription, and three relations, Spi-B binds DNA sequences, DNA se-

quences contain 5’-GGAA-3’, and Spi-B activates transcription.

Various approaches have been introduced for both biological entity recognition and rela-

tion extraction between those entities. These attempts can be classified into the following

groups:

Linguistic-based approach. In the case of entity recognition, this approach often involves

natural language processing (NLP) and is often seen as a preliminary step used in

other methods [18, 103, 38, 37, 14]. In the case of relation extraction, it is reduced

to employing shallow parser techniques that, based on some pre-developed patterns,

search for a certain sequence in text.

Dictionary-based approach. Biological terms are identified by scanning text and match-

ing expressions with dictionary entries [74, 141, 103, 145, 38]. The drawback of

this solution is that a dictionary may not contain all variations of spelling and thus,

additional linguistic-based preprocessing is usually required.

Machine-learning-based approach. This approach is mainly used in biological term recog-

nition and includes machine-learning methods [80, 21, 22]. Learning process is usu-

ally based on training sets consisting of pre-generated n-grammes from a corpus and

mostly character-based and word-based features are taken into consideration.

Statistical approach. This approach, found in biological term recognition as well as term

relations extraction, involves the use of statistical tools and is mostly based on count-

ing co-occurrence of sequences of words in text [38, 37, 14]. This information may

be further used to identify terms and relations as well as to calculate their strength.

Due to their complementary properties, most of the recent systems use a combination of the

approaches. Selected achievements in biomedical text mining are presented in Section 2.3.

The proposed relation extraction method presented in Chapter 4 is a linguistic-based ap-

proach, which heavily relies on natural language processing described in the following

section.

Natural language processing

Natural language processing (NLP) is a broad concept that, in information retrieval, can be

roughly summarized as converting text into a formal, computer-understandable representa-

tion. In the context of text mining (as described in this section), NLP usually involves part-

of-speech (POS) recognition and shallow or deep linguistic parsing including constituent

parsing and dependency parsing.
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Shallow parsers, or chunkers, aim at finding contiguous, non-overlapping spans of words

by grouping them into chunks, presumably atomic grammar structures. They work on POS-

tagged sentences and are not guaranteed to group all of the words in a sentence, i.e., some

words may not belong to any chunk. An example of a popular chunker is CASS [11].

Constituent parsers (or phrase structure parsers) process sentences using the productions of

a grammar and produce one or more multi-level tree structures per sentence. An example

of a constituent tree is given in Figure 2.1. Due to the many ambiguities in languages, the

parsers produce several alternative trees accompanied by probabilities with which the trees

are likely to be correct decompositions of the sentences they represent. Usually only the

tree with the highest probability is taken into further consideration. Some notable examples

of constituent parsers include the Charniak parser [32], the Stanford parser [82], the Bikel

parser [27], and the Collins parser [43].

Spi-B binds DNA sequences containing a core 5’-GGAA-3’ and activates transcription

DT JJ NNP

NP

NNP NNS

VP

VBG NP

NN

NP

NNP

VP

VP CC VP

VBZ NP VBZ NP

S

Figure 2.1: Example of a constituent tree. The POS and constituent labels correspond to
the Penn Treebank notation [26] (see Appendix A for the explanation of the tags).

The typed dependency parsers aim at assigning a grammatical dependency/role (such as

subject, object, modifier, etc.) between a pair of tokens. This is accomplished by (1) identi-

fying heads and their dependents and (2) applying a pattern search algorithm that matches

a grammar relation to each head-dependent pair identified in the previous step. The first

step is usually based on a constituent tree, whereas the second step involves the usage of

manually prepared grammar relation patterns that match phrase structures with the gram-

mar relations. An example of a dependency graph is given in Figure 2.2. Some examples

of typed dependency parsers include the Link parser [133], Minipar [51], and the Stan-

ford dependency parser [49] (an extension of the Stanford constituent parser [82]). The

main differences between these parsers lie in the number and the structure of the considered
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grammatical relations.

bindsSpi-B DNA sequences containing a core 5'-GGAA-3' and activates transcription

nsubj

cc

conj

dobj

nn partmod

dobj

amod

det

dobj

nsubj

Figure 2.2: Example of a dependency graph. The dependency role labels correspond to
those produced by the Stanford dependency parser [49] (see Appendix B.2 for the explana-
tion of the role labels).

Chapter 4 discusses the use of the three parsers in the process of relation extraction.

Regular expressions

Extracting or transforming textual information often involves the use of regular expressions,

concise sequences of characters that form flexible patterns capable of capturing a broad

range of characters, words, or larger constituents in text.

Regular expressions were introduced by Kleene [81] and were originally applied to au-

tomata theory. Kleene described models of automata using his own mathematical notation

originally called regular sets. Later on these sets were implemented in text editors and used

to match patterns in text. Nowadays, the regular expressions appear as a built-in functional-

ity of many programming languages such as Perl, Ruby, Python, Tcl, Java, JavaScript, and

PHP.

Regular expressions define sets of strings (constants) and operations over these sets. For-

mally, given two sets of strings P and Q over some finite alphabet the following three oper-

ations are defined:

• Product or Concatenation. PQ = {pq|p ∈ P ∧ q ∈ Q}.

• Union or Alternation. P|Q = P ∪ Q.

• Kleene star or Iteration. P∗ =
⋃∞

n=0 Pn, where P2 = PP, P3 = PPP, etc., and P0 = ε,

where ε denotes an empty string.

If there is ambiguity between operations in a regular expression, i.e., parentheses grouping

operations are omitted, iteration has the highest priority followed by concatenation and

alternation. Several examples or regular expressions are shown in Table 2.1.
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Table 2.1: Examples of regular expressions

Regular expression Matching sets of strings

ab {ab}
a|b {a, b}
a* {ε, a, aa, aaa, . . . }
a*|b {ε, a, b, aa, aaa, . . . }
(a|b)* {ε, a, b, aa, aa, aaa, . . . , b, bb, bbb, . . . }
ab|c(de)* {ab, abde, abdede, abdedede, . . . , ac, acde, acdede, acdedede, . . .}

Regular expressions are used extensively in this work, e.g., in preprocessing of text cor-

pora to desired formats. They are also a means for creating relation extraction patterns as

described in Chapter 4.

In this dissertation, regular expressions are presented in a commonly used (especially in the

software developers community) notation (supported by languages such as Perl, Java, Tcl,

etc.). Some frequently used examples of regular expressions are given in Table 2.2.

Table 2.2: Examples of Perl-like regular expressions

Regular expression Matching strings

/.*/ any (possibly empty) string
/abc/ any string containing abc
/ˆabc/ strings that begin with abc
/xyz$/ strings that end with xyz
/ˆabc|xyz$/ strings that begin with abc or end with xyz
/ˆ(abc)?xyz$/ abcxyz and xyz only

2.1.3 Knowledge representation

Ontology and the Semantic Web

Ontologies, a key enabling technology for the Semantic Web [24], were developed in ar-

tificial intelligence to facilitate knowledge sharing. Nowadays they are utilized in fields

such as intelligent information integration, information retrieval, electronic commerce, and

knowledge management [48]. Biomedicine is one of the areas where large and standardized

structured vocabularies, e.g., OBO Foundry [134], are being developed.

Two main ontology layers in the context of the Semantic Web applications include the

definition layer and the instance layer. The definition layer represents the structure of the

ontology and provides the definition of the ontology concepts described by a set of proper-

ties. Once the definition layer is constructed, the ontology is populated with the real data

that constitute the instance layer.
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One of the most important aspects in the realization of the Semantic Web is the develop-

ment of languages to encode knowledge in order to make it comprehensible for web agents

searching for information. World Wide Web Consortium (W3C)2 has developed RDF [7],

an assertion-based language intended to provide a basic foundation for the more advanced

languages of knowledge representation, such as DAML+OIL [1] or OWL [6]. These lan-

guages have a well-defined semantics and are capable of manipulating complex taxonomic

relations between entities on the Web [98].

Description logic

Description Logic (DL) is a knowledge representation language that facilitates creating,

reasoning about, and manipulating knowledge bases [20]. A knowledge base expressed in

DL consists of two components:

TBox The TBox contains terminology, which is comprised of concepts denoting sets of

individuals (e.g., Person, Woman), and roles denoting binary relationships between

individuals (e.g., hasChild), as well as recursive descriptions for defining complex

concepts from atomic concepts and roles (see below).

ABox The ABox contains assertions about individuals in the scope of the TBox (e.g.,

“John” and “Jane” may be asserted as individuals of classes Man and Woman, respec-

tively).

DLs come in many varieties, which differ in their expressiveness. Usually the more ex-

pressive the DL, the more complex (less tractable) the inference becomes. For instance,

the AL DL, which is considered the basic DL, includes the following (informally stated)

definitions:

• atomic concept A,

• top concept �, which covers all possible individuals,

• bottom concept ⊥, which has no individuals,

• complement of an atomic concept ¬A,

• intersection of two concepts C and D, denoted C � D,

• universal quantification (value restriction), denoted ∀R.C, where R is a role and C is

a concept,

2http://www.w3.org
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• limited existential quantification, denoted ∃R.�, where R is a role.

For example, the following statements can be expressed inAL: Person�¬Woman, Woman�
∃hasChild.�, and Woman � ∀hasChild.Man, which denotes persons who are not women,

women who have at least one child, and women all of whose children (if any) are men,

respectively. On the other hand, the union Man � Woman is an example of a statement that

cannot be expressed in AL.

Using the equivalence ‘≡’ and inclusion ‘�’ operators the following complex descriptions

can be created: Man ≡ Person � ¬Woman, i.e., men are equivalent to persons who are not

women; Man � Person, i.e., men are persons or, in other words, Person is a more general

concept that Man; and Man � Woman � ⊥, i.e., men and women are two distinct (not sharing

any individuals) concepts.

Equivalence and inclusion have two distinct interpretations. Equivalence (A ≡ B) satisfies

the necessary and sufficient criteria (i.e., if an individual is a member of class A, it is also a

member of class B, and vice versa), whereas inclusion (A � B) satisfies only the necessary

criteria (i.e., if an individual is a member of class A, it is also a member of class B, but the

reverse does not hold).

Description Logic forms a base for many ontology languages such as OWL (described in

the next section).

Web Ontology Language (OWL)

Web Ontology Language (OWL3) [6] is a widely used ontology standardized specification

popularized in both academic and commercial sectors [132, 54]. The language is heavily

based on Description Logics, and thanks to its explicit logical basis successfully superseded

less formal specifications such as DAML+OIL. The original version of OWL, or more

specifically its sublanguage, OWL-DL, provides the expressiveness of the SHOIN(D)

DL language, whereas its successor OWL 2 [4] corresponds to the SROIQ(D) logic.

The expressiveness of OWL 24, SROIQ(D), includes:

• the AL DL (described in the previous section) augmented by qualified existential

quantification (∃R.C), concept union (C � D), and complex concept negation (¬C),

• complex roles inclusion (R1 ◦ · · · ◦ Rn � S ),

• qualified cardinality restrictions (≥n R.C, ≤n R.C),

3The natural acronym WOL was intentionally replaced by its creators with easier to pronounce and associate
with, OWL.

4As of 22 September 2009, the OWL 2 specification is a W3C Proposed Recommendation.
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• inverse, transitive, reflexive, irreflexive, and disjoint roles,

• data values, data types, and data roles.

OWL uses its own jargon and thus concepts and roles are substituted with classes and prop-

erties, respectively. It also differentiates between object properties (roles between concepts)

and data properties (roles between concepts and data)5.

The primary syntax of OWL is RDF/XML [7] and is meant to be used for exchanging

ontologies written in OWL 2 among tools and applications. Additionally, OWL 2 provides

more human-readable syntaxes, such as the functional-style syntax and the Manchester

syntax, all of which can be translated to the primary RDF/XML syntax6.

For example, the axiom Person � ≥2 hasChild.Man � ≤3 hasChild.Woman, which de-
notes persons who have at least two sons and at most three daughters, is written in the OWL
functional-style syntax as:

ObjectIntersectionOf(

Person,

ObjectMinCardinality(2 hasChild Man),

ObjectMaxCardinality(3 hasChild Woman))

The functional-style syntax is used in Chapter 5 to encode the proposed enrichment of an

existing ontology in OWL 2.

Ontology evolution

Ontology evolution is the process of encompassing a set of activities that ensure timely

adaptation of an ontology to changes, and propagation of those changes to dependent ob-

jects wile preserving the consistency of underlying data [139]. Ontology evolution is re-

alized by the means of ontology changes and involves defining a set of possible changes

(heavily dependent on the structure of an ontology) as well as decisions on how and when

to introduce these changes in order to preserve consistency in the underlying structure of

the ontology, its instances, applications, and other knowledge sources dependent on the

ontology being modified.

Stojanovic [139] identifies the following types of change discovery:

Structure-driven change discovery involves the decisions to modify the ontology’s struc-

ture and is handled by ontology engineers.

5The use of data values, data types, and data properties is denoted by the ‘(D)’ in SROIQ(D).
6Protégé (http://protege.stanford.edu) is an example of a popular tool for ontology management that sup-

ports all RDF/XML, funtional, and Manchester syntaxes
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Data-driven change discovery involves changes in the underlying data (instances) in or-

der to refine an ontology.

Usage-driven change discovery is the process of adapting the ontology to end-users’ needs,

e.g., by tracking frequency of accessing certain parts of the ontology, which may be-

come a signal for engineers to rearrange those parts.

This work presents the structure-driven and data-driven change discovery, as described in

Chapter 5, to modify the structure of an existing ontology as well as to enrich the ontology

with knowledge extracted from text.

2.2 Performance evaluation

This section describes datasets and data structures together with effectiveness measures and

evaluation techniques that were used to test the various methods presented in the following

chapters.

2.2.1 Datasets

The OHSUMED and GENIA corpora [67, 79] (presented below in detail) are the main

biomedical datasets used in experiments. The remaining datasets serve to show effective-

ness and efficiency of the presented methods in a broader, non-biomedical context.

Both OHSUMED and GENIA are subsets of the MEDLINE database, where OHSUMED

is a complete collection of articles with MeSH keywords (a set of well-defined, structured

biomedical categories) from a certain period of time, and GENIA is a selected collection

of articles matching a small set of MeSH keywords. The two collections differ in size and

in terms of additional information associated with them, and therefore serve different pur-

poses. The OHSUMED corpus together with the MeSH categories are used in Chapter 3

to verify classification capabilities of the presented methods, whereas the GENIA corpus

and the GENIA ontology are used in Chapters 4 and 5 to demonstrate biological relation

extraction and ontology enrichment process.

Additionally, RCV1 [90], a vast collection of Reuters articles, is used to show the scala-

bility of the proposed algorithm for generating multi-label, associative-classification rules

(see Chapter 3), whereas a general English corpus [22] is used to demonstrate the diverse

domains the proposed algorithm for relation extraction from text can be applied to (see

Chapter 4).
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OHSUMED

The OHSUMED collection [67] consists of 348,566 records from MEDLINE, a National

Library of Medicine’s (NLM) database consisting of approximately 16 million article ref-

erences to biomedical journal articles. OHSUMED is limited in scope to 5 years, 1987 to

1991. Each article includes title, abstract, 10 to 15 MeSH indexing terms, author, source,

and publication type. A modified version of the dataset used in this work is limited to

233,445 documents and comprises the original OHSUMED articles that have both titles

and abstracts. This version has become a standard in reported text classification attempts

[92, 150, 127].

MeSH is an annually updated controlled vocabulary of medical terms [2]. The thesaurus

consists of over 25,000 terms arranged in an eleven-level hierarchical structure7 correspond-

ing to the various levels of specificity. At the top of the tree structure there are 15 general

concepts such as Anatomy, Organisms, or Diseases. Any other lower-level concept can

occur more than once in the tree. A fragment of the MeSH hierarchy is shown in Figure

2.3.

Figure 2.3: Fragment of the MeSH hierarchy

GENIA corpus and ontology

The GENIA corpus [79] consists of a set of 2000 annotated abstracts from the MEDLINE

database. This subset was obtained by querying the database with the MeSH terms, human,

blood cell, and transcription factor. The annotation includes, but is not limited to, sentence

boundaries, term boundaries, and the classification of biological entities. GENIA consists

of 18,545 sentences, which contain a total of 96,582 annotated biological entities (including

nested entities). The biological entities are categorized according to the GENIA ontology,

a taxonomy of 47 categories also created by the authors of the corpus.

Since its development, both the corpus and the ontology have been intensively used by

7The numbers provided for both MeSH and MEDLINE correspond to the 2009 release
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researchers in biological entity recognition [80, 157], query answering [136, 12, 14], and

ontology creation and population [128, 13].

An example of a MEDLINE document and its annotated version in the GENIA corpus are

shown in Figure 2.4.

Each document in GENIA has a MEDLINE Unique Identifier8, title, and abstract. Bio-

logical entities, i.e., multi-word expressions that carry some biologically significant mean-

ing, such as IL-2 gene, nuclear protein, T cell activation, etc., are enclosed in (possibly

nested) cons tags that are further enclosed in sentence, abstract or title, and finally,

article.

Each of the entities is assign one of 36 distinct categories. These categories together with

additional 12 concepts that generalize them constitute the GENIA ontology9. The ontol-

ogy is simply the hierarchy of categories, which begins with top three concepts, Source,

Substance, and Other name, and is distributed across six levels (Other name being a sole

example of a terminal category on the first level. A fragment of this ontology is shown in

Figure 5.2(a) in Chapter 5.

RCV1

RCV1 [90] is a collection of news stories from Reuters, which consists of 804,414 records

covering exactly one year of publishing limited to the English version only. The stories

are manually assigned labels from three sets of categories: 103 topic labels, 354 industry

labels, and 366 region labels. Both the topic and industry labels are organized in hierarchical

structures denoting their level of specificity.

The collection has mainly been used in testing machine learning methods applied to classi-

fication [90, 72, 60].

General English corpus

The general English corpus, as it is being referred to in Chapter 4, is a collection of 500

sentences used in the open information extraction project [22]. The corpus consists of

mostly article headlines and biographical entries, and comes with annotated entities such

as the names of companies, people, and places. Each sentence consists of exactly two

manually annotated entities.

8In 2004 MEDLINE Unique Identifier (UI) were replaced with PubMed Unique Identifier (PMID). Details
available at http://www.nlm.nih.gov/bsd/mms/medlineelements.html#pmid.

9http://www-tsujii.is.s.u-tokyo.ac.jp/˜genia/corpus/GENIAontology.owl
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MEDLINE:92043714

Charybdotoxin-sensitive, Ca(2+)-dependent membrane potential changes are not involved in human T or B cell activation
and proliferation.

The involvement of ion channels in B and T lymphocyte activation is supported by many reports of changes in ion fluxes
and membrane potential after mitogen binding. Human T and B lymphocytes demonstrate an early and transient hy-
perpolarization after ligand binding. Inasmuch as the change in membrane potential is dependent on elevation of free
cytosolic calcium, the hyperpolarization is presumably through opening of Ca(2+)-stimulated K+ channels. We have
used charybdotoxin, a known inhibitor of Ca(2+)-dependent K+ channels, to study the role of these channels in lym-
phocyte activation and mitogenesis. We demonstrate that charybdotoxin inhibits the ligand-induced transient membrane
hyperpolarization in B and T cells in a dose-dependent fashion, without affecting changes in cytosolic Ca2+. However,
blockade of the Ca(2+)-activated K+ channel is not associated with changes in cell-cycle gene activation, IL-2 produc-
tion, IL-2R expression or B and T cell mitogenesis. These results imply that membrane potential changes secondary to
the ligand-dependent opening of Ca(2+)-activated K+ channels are not involved in B and T lymphocyte activation and
mitogenesis.

(a)

<article>

<articleinfo>

<bibliomisc>MEDLINE:92043714</bibliomisc>

</articleinfo>

<title>

<sentence>

Charybdotoxin-sensitive,

<cons lex="Ca(2+)-dependent_membrane_potential_change" sem="G#other_name">

<cons lex="Ca(2+)" sem="G#atom">Ca(2+)</cons>

-dependent membrane potential changes

</cons>

are not involved in

<cons lex="(AND (OR human_T_cell_activation human_B_cell_activation) (OR human_T_cell_proliferation

human_B_cell_proliferation))" sem="(AND (OR G#other_name G#other_name) (OR G#other_name G#other_name))">

<cons lex="human*">human</cons>

<cons lex="(OR *T_cell* *B_cell*)" sem="(OR G#cell_type G#cell_type)">

<cons lex="T*">T</cons>

or

<cons lex="B*">B</cons>

<cons lex="*cell">cell</cons>

</cons>

<cons lex="*activation">activation</cons>

and

<cons lex="*proliferation">proliferation</cons>

</cons>

.

</sentence>

</title>

<abstract>

<sentence>The involvement of

<cons lex="ion_channel" sem="G#protein_N/A">ion channels</cons>

in

<cons lex="(AND B_lymphocyte_activation T_lymphocyte_activation)" sem="(AND G#other_name G#other_name)">

<cons lex="B*">B</cons>

and

<cons lex="T*">T</cons>

<cons lex="*lymphocyte_activation">lymphocyte activation</cons>

</cons>

is supported by many reports of changes in

<cons lex="ion_flux" sem="G#other_name">ion fluxes</cons>

and

<cons lex="membrane_potential" sem="G#other_name">membrane potential</cons>

after

<cons lex="mitogen_binding" sem="G#other_name">

<cons lex="mitogen" sem="G#protein_family_or_group">mitogen</cons>

binding

</cons>

.

</sentence>

[...]

</abstract>

</article>

(b)

Figure 2.4: Example of (a) a MEDLINE document (UI: 92043714, PMID: 1719077) and
(b) its annotated version from the GENIA corpus. Indentation and extra vertical spaces are
added to improve readability.
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2.2.2 Evaluation measures and techniques

There are several quantitative, usually complementary, measures of the effectiveness of used

methods, which denote the degree to which a hypothesis reflects the target function (in the

case of classification) or to which the obtained results are correct and complete (in the case

of information retrieval). The most popular, used in both classification and information

retrieval, are precision and recall.

In information retrieval, precision P is seen as the proportion of retrieved elements (e.g.,

documents, relations) that are relevant to the total number of the retrieved elements, whereas

recall R is the proportion of retrieved and relevant elements to the total number of the

relevant items, i.e.,

P =
|retrieved ∩ relevant|

|retrieved | , R =
|retrieved ∩ relevant|

|relevant| . (2.3)

In text categorization, precision and recall are calculated based on the contingency matrix

shown in Figure 2.5.

Actual label
positive negative

Predicted positive TP FP
label negative FN TN

TP - true positive, FP - false positive,
FN - false negative, TN - true negative

Figure 2.5: Contingency matrix

True positives (T P) and true negatives (T N) are the numbers of elements correctly labeled

as belonging or not belonging, respectively, to the given class. False positives (FP) and

false negatives (FN) are the numbers of elements incorrectly labeled as belonging or not

belonging, respectively, to the given class. Precision is then seen as the ratio of true posi-

tives by the total number of elements labeled as positive, whereas recall is the ratio of true

positives by the total number of elements that should be labeled as positive, i.e.,

P =
T P

T P + FP
, R =

T P
T P + FN

. (2.4)

In real-world scenarios the goal is to balance precision and recall since the two negatively

influence each other, i.e., setting the parameters of a classification or information extraction

method to increase precision may result in decreasing recall, and vice versa. The most often

used measure that shows this balance is the F1 measure [146]:

F1 =
2 · P · R
P + R

. (2.5)
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In the case of multi-class classification, there is a necessity of combining single results

from contingency matrices built for each class. There are two different ways of averaging

the obtained results [131]:

• macro-averaging, which is an arithmetical average of measures calculated for each

class individually, and

• micro-averaging, which is an average calculated by combining TP, TN, FP, and FN

across all classes into a single contingency matrix.

Macro-averaging reflects well the performance of a classification system with unevenly dis-

tributed classes, whereas micro-averaging favors larger classes in expense of poorer results

for small ones.

While evaluating a classifier, a set of pre-categorized elements is usually divided into three

parts:

• a training set based on which the classifier is built (the hypothesis is created),

• a validation set based on which the parameters of the classifier are tuned, and

• a testing set based on which the classifier is evaluated.

Validation (using the validation set) is the process of evaluating the classifier’s parameters

that have been used in the learning process (using the training set). Testing is the process

of evaluating the classifier after all the parameters have been optimized. The validation and

test sets should always be disjointed to avoid evaluation bias.

2.3 Related work

This section briefly discusses related work revolving around classification and relation ex-

traction, focused mainly on the biomedical domain. Further discussion of work related

specifically to the methods used in Chapters 3 to 5 are provided in the respective chapters.

The OHSUMED corpus as a subset of the MEDLINE database has been used by many re-

searchers to perform classification using MeSH terms as class labels. Due to the huge num-

ber of categories (MeSH terms), most of the investigations have been focused on smaller

subsets of the MeSH thesaurus. For instance, the MeSH tree structure was reduced to a

particular subtree, such as Heart Diseases, and the documents were classified using var-

ious learning techniques such as k-nearest neighbours (kNN) [86, 150], linear classifiers

[92, 150], or Neural Networks (NN) [127]. Although the Heart Diseases subtree represents
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the multi-label problem, the distribution of categories shows that vast majority of them are

assigned to one document only.

Other reductions include limiting the category pool to those that occur more than 75 times in

the OHSUMED dataset [87]. The authors used instance-based learning to assign documents

to the selected MeSH terms. The Naı̈ve Bayes (NB) classifier was used in the investigation

of optimal training sets for classification of MEDLINE documents to a small set of 20

MeSH terms [135]. The optimal sets were searched for each MeSH term separately and

involved building the sets by including the documents that were assigned to a given term

but excluded the documents that were assigned to terms “closest” to the one for which the

set was being built. The NB classifier was also used to classify MEDLINE documents to

Gene Ontology (GO) [78].

Other approaches involve a combination of machine learning methods, linguistic parsing,

and lexicons. MetaMap [18] is a linguistic and lexicon-based approach that processes text

by chunking it to noun phrases and generating lexical variants, which are further compared

against UMLS Metathesaurus [9]. MetaMap is also a major component of NLM’s Medical

Text Indexer (MTI) [19]. A large number of categories, almost 20,000, was reported in

[126] with three methods based on regular expression matching, vector space model, and

the combination of the two. The advantages of these approaches lie in virtually no learning

(model building) process. However, the evaluation was performed on a small set of 1,000

documents, and the author aimed to maximize the precision of the methods, neglecting

recall.

The comparative evaluation of MetaMap [18], MTI [19], and the approach presented in

[126] was shown by Trieschnigg et al. [144], who attempted categorization of 1,000 MED-

LINE articles from year 2008 to the MeSH terms, focusing on maximizing the precision of

the methods (similarly to [126]). The authors additionally evaluated two concept-oriented

methods, which rely on creating probabilistic models for each of the MeSH terms by com-

bining all the documents assigned to these terms, as well as another instant-based method,

kNN, which proved to be the most effective.

As opposed to document-oriented classification, relation extraction is sentence-oriented,

and therefore involves smaller sets of documents than those used in classification. Extract-

ing entity relations have been attempted using (1) predefined sets of patterns with the output

of a shallow phrase structure parser, (2) sets of logic rules or spanning graph heuristics ap-

plied on the output of a dependency parser, (3) combination of dependency parsing with

machine learning, and (4) rarely the output of a constituent tree. An example of processing

sentences with a shallow phrase parser and a set of flat patterns was shown in [37]. The au-

thors used GENIA as an input corpus and two simple patterns to extract relations consisting

of a verb or a verb followed by a preposition. Pro3Gres [129], a typed dependency parser,
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was used to create a set of Prolog rules to combine several dependencies to form relations

between entities [121, 123, 122]. The authors evaluated the performance of the linguistic

performance on a subset of GENIA and another 147-sentence set of annotated MEDLINE

abstracts. During evaluation they considered only a few verbs and were interested in the

biological significance of the obtained results. A similar dependency-like approach was

used in [36]. The authors used the constituent parser to built dependency graphs between

the tree constituents. They looked for entity relations by traversing the graph with a hand-

ful of heuristics and constraints. Similarly to [37] they were interested in generalizing the

relations to an appropriate GENIA ontology level. BIEQA [13, 14] combines linguistic

analysis and co-occurrence-based principles to extract relations present in GENIA. It also

uses co-occurrence to find feasible relations between the annotated terms. BioPatentMiner

[101] identifies biological terms and relations from patent databases and integrates the ob-

tained information into biomedical ontologies. The system uses BioAnnotator [141], a tool

for dictionary-based identification and classification of biological terms that refer to UMLS

Metathesaurus [9] as a dictionary. Relations between the terms are searched using a tem-

plate with a set of predefined verbs.

A combination of dependency parsing and machine learning techniques has also been in-

vestigated [30, 29, 21, 22]; however, although these attempts usually do not require any

manual work, they exhibit inferior effectiveness when compared to the methods that require

the input of an expert user to prepare a set of patterns or rules.

A number of investigations have been undertaken in the study of protein-protein interactions

(PPI) [69, 46, 45, 100, 152, 35], which is considered a specific case of relation extraction.

The PPI extraction has the advantage of knowing the verbs and verb expressions indicating

interaction beforehand.
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Chapter 3

Multi-label Associative Classification

3.1 Introduction

Multi-label classification is the process of categorizing objects (in the case of this disser-

tation, MEDLINE documents) to one or more classes (labels). The process of building

classification models (learning) can be realized with a variety of machine learning tech-

niques such as Support Vector Machines (SVM), Naı̈ve Bayes (NB), k-Nearest Neigh-

bours (kNN), decision trees, etc., some of which need to undergo sophisticated adaptation

to suit multi-label classification. This work addresses associative classification, a rela-

tively new classification method, which has been recently gaining researchers’ attention

[95, 93, 154, 155, 23, 142]. The advantage of using associative classification lies in 1)

the simplicity of the core idea, i.e., using a statistical approach (finding frequent patterns),

which may be perceived as conceptually simpler and more intuitive than creating a math-

ematical model (such as in SVM or NB classifiers), and 2) the descriptive nature of the

model, i.e., a flat list of human-interpretable and independent (modular) rules. Therefore,

not only do the rules possess predictive power, but they can also be utilized in other ap-

plications such as highlighting the most important words, i.e., the words that appear on the

left-hand side of the rule, in documents or document summarization. Additionally, the rules

can be presented to a user who could manually adjust and remove them, and even add new

rules, to improve the prediction model.

It has been shown [33] that associative classification is more accurate in text classification

when compared to other descriptive classifiers. Moreover, it has been argued [144] that

binary classifiers, such as the very effective SVM, require considerable amount of effort to

be adapted to multi-label classification and are not suitable for tasks with large number of

classes. This is the case with MeSH, which is considered in this work.

Although multi-label classification has been widely studied [90, 31, 96, 97, 57], a relatively
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small amount of work has been devoted to multi-label associative classification. Several

different associative classifiers, such as CBA [95], CMAR [93], CPAR [154], ARC-AC/BC

[155], or LM
3 [23] have been proposed. However, most of them consider only single-label

classification. As an exception, ARC-AC/BC [155] uses dominance factor, a score propor-

tional to the frequency of classes appearing in rules matching the document, in combination

with the variation of SCut thresholding to determine a subset of classes that should be as-

signed to the document. MCAR [143] and MMAC [142] consider multiple labels, though

the generated association rules are built by iteratively repeating the method for generating

single-label rules. Furthermore, more effort has been dedicated to investigating different

classification schemata based on previously generated association rules rather than the ef-

ficient generation of these rules, which is justified providing that the above methods were

designed to work with small datasets. Another considerable limitation of these methods

is that they do not handle observations with repeated features, i.e., they do not account for

recurrence of words in documents, and instead acknowledge only the binary presence or ab-

sence of words. However, it has been recognized that the repetition of words is significant,

hence the common use of TF/IDF (i.e., the frequency of a word in a document relative to

the frequency of the word in a collection) in the vector-space representation of documents

[73, 124].

As opposed to the aforementioned efforts, the proposed approach aims at multi-label asso-

ciative classification with recurrent items, hereinafter referred to as MLACRI, with a special

emphasis on self-sufficient models, i.e., models that do not require any further adaptation

to multi-label classification, that can be applied to large datasets (containing hundreds of

thousands of documents).

The process of discovering frequent patterns, the first step towards forming association rules

(see Section 2.1.1), is undoubtedly the most demanding in terms of computational complex-

ity. The maximum number of patterns over the alphabet of n items (the number of words

in a collection) is 2n out of which only a small portion may be frequent, i.e., satisfying the

support threshold. In real-life applications, such as classification of MEDLINE documents

to MeSH, it is not unusual that n represents values in several thousands. Verifying all the

possible patterns against the dataset of, again, often hundreds of thousands of documents

may be an unfeasible task. Numerous algorithms have been developed so far to address

this problem. Two main methodologies include apriori-based and pattern-growth-based

approaches. Apriori [16] (and its variations) is an algorithm that utilizes so called apriori

property and states that if an itemset is not frequent (does not meet the support threshold),

its supersets cannot be frequent either. Beginning with atomic itemsets, which consist of

one item only, the algorithm extends them while discarding these itemsets that are not fre-

quent, which reduces the number of generated patterns that would never be frequent. Later

improvements of the Apriori algorithm include a tree projection algorithm [15], which sig-
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nificantly reduces the number of itemset candidate tests. A new, even more efficient version

of tree projection is the key component of MLACRI.

The remainder of this chapter is organized as follows: Section 3.2 presents work related

to associative classification, which is followed by a formal problem definition in Section

3.3. The inner-workings of generating multi-label, associative-classification, recurrent-item

rules are described in Section 3.4, whereas Section 3.5 discusses different classification

strategies. Quantitative and qualitative evaluations of MLACRI are given in Section 3.6.

A version of this chapter has been published in parts in [119, 113, 114, 116].

3.2 Related work

Integration of association rule mining with classification was originally shown in the CBA

algorithm [95]. The authors extended the commonly used Apriori algorithm [16] to gen-

erate classification rules. Similar approach has been employed in the family of associative

classification algorithms ARC-AC/BC [155]. However, Apriori-based algorithms, that use

candidate set generate-and-test approach are computationally expensive, especially with

long and numerous patterns in an input dataset. As an alternative, the pattern-growth fam-

ily of algorithms has been proposed [63]. This approach adopts a method to project and

partition the dataset based on the currently discovered patterns. Its first implementation,

FP-growth [65, 66], is based on a frequent-pattern tree (FP-tree) and was claimed to be an

order of magnitude faster than the Apriori algorithm. FP-growth has been used in associa-

tive classification in CMAR [93].

Another approach to accelerate rule generation and improve classification accuracy was

proposed in CPAR [154], an algorithm that integrates rule-based methods, such as FOIL/

FFOIL [109, 111, 112, 110] and RIPPER [40, 41], to generate rules with features of asso-

ciative classification in predictive rule analysis. A technique based on intersection method

[156] has been proposed in MCAR [143] and MMAC [142].

Currently there are several techniques that perform efficient projection of the data to gener-

ate association rules. A pattern-growth approach [63] adopts a divide-and-conquer method

to project and partition the dataset based on the currently discovered patterns. This method

has been applied in, e.g., FP-growth [65], FreeSpan [64], PrefixSpan [105], and as a frame-

work for parallel data mining [44]. A similar divide-and-conquer approach has been applied

to the tree projection algorithm [15], where frequent itemsets and their projected datasets

are embedded in a tree structure. Although the data-projection-based technique can be

applied to both Apriori and pattern-growth families of algorithms, the introduction of re-

current items appeared to be a challenge for the latter. For instance, the only FP-tree-based
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approach known to incorporate recurrent items [104] is not capable of discovering all fre-

quent patterns in text. The Apriori algorithm is more flexible in this matter as it does not

impose restrictions on how data is stored, which seems to be the major issue with FP-tree.

The core component of MLACRI, i.e., discovering frequent patterns (itemsets), is similar

to the tree projection algorithm described in [15] in that the information about itemsets

together with their projected datasets are organized in a tree structure. Main differences

are that the nodes of the MLACRI tree represent items instead of the whole itemsets, and

that new nodes are created directly from the tree without using additional structures (which

require additional space) such as triangular matrices used in [15]. Such a structure allows

for a significant reduction of the number of candidate tests, which is a crucial problem for

association-rule algorithms, which produce candidates to obtain longer itemsets. Further-

more, MLACRI uses less space to store the projected datasets [116]. In order to accommo-

date the algorithm dealing with class labels (or more precisely, with multiple class labels)

as well as with recurrence of items in a single transaction, further modifications have been

imposed on the projected tree.

3.3 Problem definition

Let C be a set of labels and I a set of items. The dataset D consists of transactions1 being a

powerset of C and I in the form of 〈Xi,Ci〉 where Xi ⊂ I is a set of items {xi1, xi2, . . . , xik}
and Ci ⊂ C is a set of labels {ci1, ci2, . . . , ci j} for each transaction Ti with j labels and k

items, such that
⋃n

i=1 Ti = D.

The task of associative-classification rule generation is to find association rules in the form

of X → C indicating a strong relationship between items in X and the set of classes C.

(Traditional associative classification considers C a single class as opposed to a multi-label

scenario presented in this chapter.) The set of items X in a rule is commonly called a

condition set or simply condset.

There are two measures indicating the strength of a rule. The support σ of the rule X → C

is the fraction of transactions in D that contain both X and C, or formally:

σD(〈X,C〉) = σ̂D(〈X,C〉)
|D|

(3.1)

where σ̂D(x) denotes the number of occurrences of x in D.

The confidence ϕ of the rule is the fraction of transactions containing X which also contain

1The remainder of this chapter refers to documents and words as transaction and items, respectively (see
Section 2.1.1 for explanation).
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C, or formally:

ϕD(〈X,C〉) = σ̂D(〈X,C〉)
σ̂D(X)

(3.2)

In recurrent-item associative classification transactions are in the form of 〈{ρ1x1, ..., ρnxn},C〉,
where xi ∈ I is an item, C ⊂ C is a set of labels, and ρi is the number of occurrences of the

item xi in the transaction.

Let T = 〈XT ,CT 〉 be a transaction such that XT = {ρ1T x1, . . . , ρmT xm} and CT = {c1, . . . , cn},
and R = 〈XR,CR〉 be a ruleitem such that XR = {ρ1Rx1, . . . , ρkRxk} and CR = {c1, . . . , cl}.
Transaction T supports ruleitem R if ∀i ∈ [1, l] : ci ∈ CR → ci ∈ CT and ∀ j ∈ [1, k] : xj ∈
XR → x j ∈ XT ∧ρ jR ≤ ρ jT . Less formally, a transaction supports a ruleitem if each item and

label from the ruleitem has its counterpart in the transaction and the number of occurrences

of each corresponding item in the transaction is no less that this in the ruleitem.

A simple example enhancing the difference between recurrent- and non-recurrent-item rep-

resentation is shown in Figure 3.1.

uncategorized document D : {a, b, c, d, a, b, c, a, c, a, c}
non-recurrent-item representation recurrent-item representation
D = {a, b, c, d} D = {4a, 2b, 4c, 1d}

rules
R1 = 〈{a, b, d}, {C1,C2}〉
R2 = 〈{a, b, c}, {C2,C3}〉

rules
R1 = 〈{3a, 2b, 1d}, {C1,C2}〉
R2 = 〈{3a, 3b, 2c}, {C2,C3}〉

Both R1 and R2 match D Only R1 matches D ({3a, 3b, 2c} � D)

Figure 3.1: Difference between non-recurrent- and recurrent-item representation

Recurrent-item representation allows for further discrimination of the rules based on the

number of recurrent items in both the document and rules. In the given example, both

rules R1 and R2 in non-recurrent-item representation match document D, however, when

the recurrence of items is considered, R2 no longer matches D due to an excess amount of

item b.

3.4 Generating multi-label, recurrent-item, classification rules

This section discusses the design of the proposed algorithm and, to ease reading, is bro-

ken down into several parts, each introducing a new concept. Section 3.4.1 describes the

problem of generating frequent patterns and although it does not consider class labels, it is

an essential step in generating associative-classification rules. Sections 3.4.2 to 3.4.5 dis-

cuss the extensions, constraints, and optimization techniques applied to the basic frequent

pattern generation in order to generate multi-label, recurrent-item, associative-classification
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rules. The final algorithm comes in two flavors that are based on breadth-first and depth-first

search algorithms as presented in Section 3.4.6.

3.4.1 Frequent pattern mining

The item enumeration is based on a tree, where nodes represent items and labels and paths

from the root of the tree to terminal nodes are graphical representations of rules.

To improve the transparency of the description we initially describe the problem without

considering class labels, focusing on items only. The tree discussed in this section is there-

fore called an itemset tree in contrast to a ruleitem tree, the details of which are discussed

in Section 3.4.2.

Following the problem defined in section 4.3, it is further assumed that there is an order

between the items in each transaction, e.g., based on the position of the items in the input

dataset. Expression xi < x j denotes that item xi precedes xj. The itemset tree is defined as

follows:

1. Each node (vertex), except the root node, in the tree represents an item in I.

2. Each edge corresponds to an order between two items in a transaction.

3. The root node does not correspond to any item and does not have any incoming edges.

4. Each path of length l in the tree connecting the root node with any other node cor-

responds to an l-itemset, either frequent or hypothetical (candidate), such that each

node in the path represents a single item in the itemset.

An example of an itemset tree and the corresponding set of itemsets is shown in Figure 3.2.

The tree in this figure is complete, i.e., it consists of all possible itemsets that can be created

from four items. The nodes are generated starting with the enumeration of the items at the

first level (the closest to the root node). The following levels are generated by rewriting

the items in the nodes following (standing to the right of) each of the current-level nodes.

The itemsets shown in this example correspond to paths spanning from the root of the tree

to its leaves. For instance, the longest itemset {1, 2, 3, 4} is represented by the far-left path

spanning from the root, through nodes 1, 2, and 3 to node 4.

For simplicity, given a node p and an item x represented by p, p is referred to as if it were

actually the item x. For any two nodes p and q, the expression p = q denotes that both

represent the same item.
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root

1 2 3 4

2 43 3 4 4

3 4 4 4

4

(a)

1-itemsets: {1}, {2}, {3}, {4}
2-itemsets: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
3-itemsets: {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
4-itemset: {1, 2, 3, 4}

(b)

Figure 3.2: Example of (a) an itemset tree and (b) its corresponding itemsets

Definition 3.4.1 (Candidate itemset and frequent itemset) A k-itemset, i.e., a set of k items,

is frequent if it satisfies a support threshold ξ. A k + 1-itemset is a candidate k + 1-itemset

if it was obtained by adding an item to a frequent k-itemset.

Definition 3.4.2 (Candidate node and frequent node) A node q in an itemset tree is a

candidate node if all of its ancestor nodes form a frequent itemset. The node q is frequent if

it is one of the nodes forming a frequent itemset.

The intuition behind candidate and frequent itemsets is that a candidate itemset becomes

frequent if it satisfies a support threshold of ξ. A similar analogy applies to the candi-

date and frequent nodes. It is important to note that according to the above definitions, a

candidate node can only be generated from a frequent node, which is the very essence of

Apriori property, i.e., if an itemset is not frequent, its superset cannot be frequent either,

and therefore any further generation of candidate nodes based on this itemset is of no avail.

The outcome of an algorithm for generation of frequent itemsets is the itemset tree consist-

ing of frequent nodes only. The approach taken here is similar to the one in the Apriori

algorithm [16] in that it produces candidate nodes that are tested against a set of trans-

actions. However, in the proposed algorithm candidate itemsets are tested only against a

subset of transactions, which narrows down with an increasing length of itemsets. This

reduction in the number of itemset–transaction comparisons is facilitated through projected

datasets.
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Definition 3.4.3 (Projected dataset) Given a node q, a dataset Dq ∈ D is a q-projected

dataset if for each transaction Ti ∈ Dq, q ∈ Ti. Dq = D if q = r, where r is the root node.

Definitions 3.4.2 and 3.4.3 imply that Dq ⊂ Dp if p is the parent of q. This is an important

property as it guarantees that a projected dataset at some node is no bigger than the projected

dataset of this node’s parent.

The pseudocode of the general behavior of the algorithm with respect to generation of

frequent itemsets is shown in Figures 3.3 to 3.5, whereas Table 3.1 contains the symbols

and terminology used in the algorithm and the following sections.

Table 3.1: Symbols used in rule generation

σ, σ̂ Support and support count, respectively
ξ, ξ̂ Support threshold and support threshold count, respectively
ρ Number of word occurrences
Parent(q) Parent of node q
Vl Set of nodes at level l
Cp Set of candidate nodes that are children of node p
Fp Set of frequent nodes that are children of node p
S q Set of siblings that follow (stand to the right of) node q
Dq Set of transactions at node q (q-projected dataset)

input : root node r
set of items I
support count threshold ξ̂

output: set of frequent nodes F
Cr � I1

CountSupport(Cr)2

Fr � Prune(Cr, ξ̂)3

V1 � Fr4

l := 15

while Vl � ∅ do6

for each p ∈ Vl do7

Cp � GenerateCandidates(S p)8

CountSupport(Cp)9

Fp � Prune(Cp, ξ̂)10

Vl+1 � Vl+1 ∪ Fp11

l = l + 112

Figure 3.3: Pseudocode of the general algorithm for generation of frequent itemsets

Given a set of all possible items I in dataset D, the first level of nodes is generated based

upon the frequency of the occurrences of these items in the dataset (Figure 3.3). Function

CountSupport traverses the dataset and increases the support count for each node from
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the set passed to the function as an argument. Infrequent nodes are pruned based on the

support threshold. Subsequent levels are created based on preceding levels. The three

functions, GenerateCandidates, CountSupport, and Prune are repeated for each node

at the current level. The algorithm stops if there is no new level of nodes to generate further

nodes.

for each q ∈ Cp do
for each T ∈ Dp do

if q ∈ T then
σ̂(q) � σ̂(q) + 1
Dq � Dq ∪ T

Figure 3.4: Pseudocode of the CountSupport function

For a given node p the GenerateCandidates function simply creates copies of p’s sib-

lings and adds them as p’s own children. Function CountSupport, shown in Figure 3.4,

verifies the existence of each generated candidate against a projected dataset by testing if

the candidate exists in the transactions of this dataset. If it does exist, the candidate’s sup-

port count is increased by one, whereas T is added to the candidate’s projected dataset2.

Function Prune, shown in Figure 3.5, simply verifies the support count of each candidate

and prunes those that do not satisfy the given support threshold.

Fp � Cp

for each q ∈ Cp do
if σ̂(q) < ξ̂ then

Fp � Fp \ q

Figure 3.5: Pseudocode of the Prune function

3.4.2 Class labels in the projected tree

Although probably the most obvious way of including labels in an itemset tree is to treat

the labels as items, i.e., to neglect the distinction between items and labels, such a solution

would result in a vast number of association rules without labels, as well as rules consisting

of labels only. In other words, there would be cases where creating a rule in the form of

X → C would be impossible due to the lack of either X or C. Although after pruning

incomplete rules this solution is undoubtedly correct, it is highly inefficient. For instance,

in the tree shown in Figure 3.2, if “1” denotes a label and “2”, “3”, and “4” denote items,

from the total of 15 rules only seven would have both a label and at least one item.

2The actual implementation counts the support and creates projected datasets using more advanced tech-
niques. More specifically, transactions are verified against the entire set of candidates Cp at once and projected
datasets keep only references to transactions in dataset D. A detailed discussion is given in Section 3.4.4.
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The proposed modification of the tree to efficiently enumerate association rules with class

labels includes the following constraints:

• The first level consists of nodes that represent labels only.

• The second level consists of nodes that represent items only.

• Level three and higher consist of nodes that represent both items and labels.

• If nodes have the same parent, nodes representing items precede those representing

labels.

An example of a complete tree consisting of items and labels with the aforementioned

constraints is depicted in Figure 3.6.

root

A

2 3

2 3

3

1

B C

B C

B C C

C

B C

C

C

3 B

B C C

C

C B C

C

1 32

2 3

3 C C

C

C 3 C

C

C

B

21 3

3

3

3

C

2

Figure 3.6: Example of a multi-label ruleitem tree. Labels and items are denoted by capital
letters and numbers, respectively.

Placing labels at the first level ensures that all rules have at least one label. A lack of labels

at the second level prevents generating rules without items. It is important to note that

though the first level of labels is essential for building further, larger itemsets, it cannot be

used to produce any rules by itself.

When relating the new constraints to the basic algorithm, it is observed that the second

level candidates cannot be generated from Sp of any first-level node p. Similarly the third

level of nodes does not fully follow the CandidateGeneration function. However, the

generation of the nodes for levels four and higher fully complies with this function. This

leads to the modifications of the basic algorithm as shown in Figure 3.7.

The new algorithm consists of four parts. The first part builds the first level of nodes repre-

senting labels (lines 1–4). The second part (lines 5–9) adds items as children to each first-

level node. At this point the fully qualified rules X → C consist of exactly one item and one
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input : root node r
set of labels C
set of items I
support count threshold ξ̂

output: set of frequent nodes F
Cr � C1

CountSupport(Cr)2

Fr � Prune(Cr, ξ̂)3

V1 � Fr4

for each p ∈ V(1) do5

Cp � I6

CountSupport(Cp)7

Fp � Prune(Cp, ξ̂)8

V2 � V2 ∪ Fp9

for each p ∈ V2 do10

Cp � GenerateCandidates(S p ∪ S Parent(p))11

CountSupport(Cp)12

Fp � Prune(Cp, ξ̂)13

V2 � V2 ∪ Fp14

l := 315

while Vl � ∅ do16

for each p ∈ Vl do17

Cp � GenerateCandidates(S p)18

CountSupport(Cp)19

Fp � Prune(Cp, ξ̂)20

Vl+1 � Vl+1 ∪ Fp21

l = l + 122

Figure 3.7: Pseudocode of a general algorithm for mining a ruleitem tree
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label can be produced. Unlike the first two levels, the generation of the third level involves

the two preceding levels (lines 10–14). Given node p at level two, the third-level candidates

are generated based on p’s siblings Sp as well as siblings of p’s parent SParent(p). Level

four and higher are generated in the same fashion as described in the previous section (lines

15–22).

3.4.3 Recurrent items in the projected tree

A fragment of a tree consisting of recurrent items and its corresponding set of ruleitems

is shown in Figure 3.8. To avoid ambiguity between item’s identifier and a number of its

occurrences, the latter is put in round brackets, i.e., notations ρixi and xi(ρi) are equivalent.

1 2

2

A

3

3 B

2 3 3

2 3

2

B

(a)

2-ruleitems: 〈{1(1)}, {A}〉, 〈{2(1)}, {A}〉, 〈{3(1)}, {A}〉
3-ruleitems: 〈{1(1), 2(1)}, {A}〉, 〈{1(1), 3(1)}, {A}〉,

〈{1(1)}, {A, B}〉, 〈{2(2)}, {A}〉,
〈{2(1), 3(1)}, {A}〉, 〈{3(1)}, {A, B}〉

4-ruleitems: 〈{1(1), 2(2)}, {A}〉, 〈{1(1), 2(1), 3(1)}, {A}〉,
〈{1(1), 3(2)}, {A}〉, 〈{2(3)}, {A}〉

(b)

Figure 3.8: Fragment of (a) a tree with recurrent items and (b) its corresponding set of
ruleitems

The adaptation of the algorithm to account for recurrence of items requires a simple modi-

fication of the definition of the set of siblings S . Given a node p, the new set of sibling Sp

is augmented by p itself if

• p ∈ I, and

• the number of p’s ancestors representing the same item in the path from the root node

to p is less that the maximum number of occurrences of p in any of the transactions.

The first constraint comes from the fact that labels in a rule must be distinct, whereas the

latter ensures that the maximum number of occurrences of any item in a ruleitem is no

larger than the maximum number of occurrences of that item in any transaction.
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3.4.4 Candidate test optimization

Most of the existing solutions related to the generate-and-test approach in frequent itemset

mining rely on a simple candidate test method. Each candidate itemset is verified against

each transaction from a projected (or original) dataset.

Let X = {x1, x2, . . . , xk} be a candidate k-itemset and T = {y1, y2, . . . , yl} be a transaction of

length l. The easiest strategy to test the candidate is to compare each item in X with every

item in T . In the worst case scenario this results in k× l comparisons. If items in both X and

T are ordered (the order in X is embedded into the generated tree, whereas the order in T

requires a single sort operation) then the complexity decreases to the size of the transaction.

This, however, has to be repeated |Dp| times for every node p in the tree.

A new method of ruleitem-tree-based candidate testing is proposed as follows. It is ob-

served that (1) maintaining projected datasets allows for checking only the last item in an

itemset, which is represented by a node in Cp for some p (since the remaining part of the

itemset has already been tested in the previous levels), and (2) Cp is ordered in the tree.

Therefore, the entire Cp can be tested against a transaction all at once. Instead of testing

whether X ⊂ T , the support of each item xi ∈ X is increased if xi = y j for any yj ∈ T . Thus,

the new approach results in |CParent(p)| times fewer comparisons.

Function IncreaseSupportAndCreateProjDatasets, shown in Figure 3.9, performs

the candidate test described above.

input : transaction T
set of candidates Cp

x� Next(T)1

q� Next(Cp)2

while x � ∅ ∧ q � ∅ do3

if x = q ∧ ρ(x) ≥ ρ(q) then4

σ̂(q) := σ̂(q) + 15

D(q) := D(q) ∪ T6

else7

if x > q then8

q� Next(Cp)9

else10

x� Next(T)11

Figure 3.9: Pseudocode of the IncreaseSupportAndCreateProjDatasets function

Function Next(X) successively returns items from set X, one at each call, with respect to

the order in X.
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3.4.5 Dataset optimization

The algorithm distinguishes between two types of datasets: generic and projected. The

generic dataset is read from a hard drive and stored in main memory. This dataset is kept at

the root node of the ruleitem tree and used for a candidate test at the first level of the tree.

The projected datasets are obtained from the generic dataset and used for the candidate test

at levels higher than one. This section discusses the optimization techniques for storage and

accessing both generic and projected datasets.

One possibility of storing a dataset in the main memory is to keep transactions in the form

of bit vectors such that each bit represents either the existence or absence of an item. This

allows for a very fast candidate test if itemsets are kept in the same fashion. However, this

solution is memory consuming, especially when dealing with sparse data which is almost

always the case in text categorization (due to a large vocabulary). Another solution is to

keep items in a transaction in the form of a list. Although it slows down candidate tests,

this structure is very often the only way to deal with large amount of sparse and highly

dimensional data, and therefore is used in MLACRI.

To reduce the amount of required memory, the stored transactions consist of frequent items

only. Frequent items can be filtered out by either 1) reading the complete transactions

once into the main memory and then pruning infrequent items, or 2) reading the complete

transactions to compute item frequency values and then reading the data once again and

storing in the main memory only the frequent items, selected based on the counts computed

during the first reading. The former solution is faster as it reads the dataset only once,

whereas the latter is indispensable when there is not enough space to load the entire dataset.

MLACRI implements both by giving a user the option to choose from the two.

Once the entire (generic) dataset is in the main memory, the projected datasets store only

references to particular transactions in this dataset, which additionally reduces memory

consumption.

Another optimization employed in MLACRI involves deleting projected datasets when they

are no longer needed. For instance, once the level k + 1 has been created, the projected

datasets of nodes at level k are deleted.

3.4.6 The proposed multi-label, recurrent-item, rule generation algorithm

This section discusses two strategies for exploring the ruleitem tree, the breadth-first search

and the depth-first search. These strategies differ from each other with respect to the total

number of projected datasets required to compute the rules and the time needed to generate

the tree.
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Breadth-first strategy

In a breadth-first search approach the tree is explored level by level, i.e., level l + 1 of

the tree is generated only if computations are completed for all nodes at level l. The basic

mechanism of the breadth-first search is employed in the algorithm presented in the previous

sections. Here more details are provided with a discussion of pros and cons of this search.

As opposed to the depth-first search, the breadth-first search takes advantage of Apriori

property, i.e., if an itemset is not frequent its superset cannot be frequent either. Due to the

fact that the tree is a representation of itemsets, this property can be exploited to optimize

the algorithm by introducing the concept of base node.

Definition 3.4.4 (Base node) Given nodes p and q such that q ∈ Cp, a node s ∈ S p is a

base node of q, denoted Base(q), if q has been directly generated from node s.

Before generating an (l + 1)-level node q for the l-level node p from some s ∈ Sp, the

algorithm verifies if s belongs to frequent nodes of p’s (l − 1)-level base node, i.e. whether

s ∈ FBase(p). This prevents testing nodes that are guaranteed to not be frequent, and thus

saves time needed for candidate tests. This new procedure, GenerateCandidatesBF, is

depicted in Figure 3.10, whereas Figure 3.11 presents the complete breadth-first search

algorithm.

input : node p
set of sibling S p

set of frequent nodes F
output: set of candidates Cp

for each s ∈ S p do1

if s ∈ FBase(p) then2

Cp � Cp ∪ s3

Figure 3.10: Pseudocode of the GenerateCandidatesBF function

The algorithm begins with determining a set of first-level frequent nodes. After employing

dataset optimization, as described in section 3.4.5, this set is equal to the set of labels C. A

set of candidates Cp is generated for each node in the current level l (lines 8–13) following

the corresponding procedures related to level l (discussed in Section 3.4.2). After deter-

mining the frequency of candidates in the transactions and creating projected datasets (lines

14–15), the infrequent candidates are pruned (line 16) and the current projected dataset is

removed from the memory (line 18). The procedure is repeated as long as new frequent

nodes are generated.
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input : root node r
set of labels C
set of items I
support count threshold ξ̂

output: set of frequent nodes F
Cr � C � 1st level1

CountSupport(Cr)2

Fr � Prune(Cr, ξ̂)3

V1 � Fr4

l := 15

while Vl � ∅ do6

for each p ∈ Vl do7

if Parent(p) ∈ ∅ then8

Cp � I � 2nd level9

else if Parent(p) � ∅ ∧ Parent(Parent(p)) ∈ ∅ then10

Cp � GenerateCandidatesBF(S p ∪ S Parent(p)) � 3rd level11

else12

Cp � GenerateCandidatesBF(S p) � levels 4 and up13

for each T ∈ Dp do14

IncreaseSupportAndCreateProjDatasets(T, Cp)15

Fp � Prune(Cp, ξ̂)16

Vl+1 � Vl+1 ∪ Fp17

Delete(Dp)18

l = l + 119

Figure 3.11: Pseudocode of the breadth-first algorithm for multi-label, recurrent-item,
associative-classification rule generation
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Depth-first strategy

The main drawback of the breadth-first algorithm is that the number of projected datasets

is equal to the number of nodes in the current level l and additional dataset at level l − 1.

With a large number of items and a low support threshold the tree may become very wide,

resulting in substantial memory consumption. The depth-first search approach addresses

this problem by generating nodes path-wise, i.e., given a node p, a set of frequent nodes Fp

is found and for each node q ∈ Fp the procedure is recursively repeated until the last level

of the tree is reached.

The pseudocode of the depth first algorithm is shown in Figures 4 and 3.13.

input : root node r
set of labels C
set of items I
support count threshold ξ̂

output: set of frequent nodes F
Cr � C � 1st level1

CountSupport(Cr)2

Fr � Prune(Cr, ξ̂)3

for each f ∈ Fr do4

DepthFirst( f)5

Figure 3.12: Pseudocode of the depth-first algorithm for multi-label, recurrent-items,
associative-classification rule generation

input : node p
support count threshold ξ̂

output: set of frequent nodes Fp

if Parent(p) ∈ ∅ then1

Cp � I � 2nd level2

else if Parent(p) � ∅ ∧ Parent(Parent(p)) ∈ ∅ then3

Cp � GenerateCandidates(S p ∪ S Parent(p)) � 3rd level4

else5

Cp � GenerateCandidates(S p) � levels 4 and up6

for each T ∈ Dp do7

IncreaseSupportAndCreateProjDatasets(T, Cp)8

Fp � Prune(Cp, ξ̂)9

for each f ∈ Fp do10

DepthFirst( f)11

Delete(Dp)12

Figure 3.13: Pseudocode of the recursive function DepthFirst

The depth-first algorithm begins with calling the DepthFirst function for each (frequent)
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label. DepthFirst generates candidates following, again, the level-dependent procedure

described in Section 3.4.2 (lines 1–6 in Figure 3.13). Since with the depth-first search it is

impossible to determine a base node Base(p) for any p during the process of generating

candidates (due to the fact that Base(p) is yet to be generated), the GenerateCandidatesBF

function (see Figure 3.10) cannot be used. The original GenerateCandidates is used in-

stead. DepthFirst is performed recursively for each frequent candidate (lines 10–11).

The maximum number of projected datasets held in the main memory at the same time

depends on the number of levels and is equal to Σni=1|Cpi | where n is the number of levels in

the currently mined path. Note that |Cpi | ≤ |Cpi−1 |.

The number of levels depends on the dataset and support threshold. The lower the threshold

or the longer the patterns in the data, the bigger the number of levels and the longer the rules.

Nevertheless, the maximum number of levels can never exceed the number of items, which

creates a significant reduction in the number of projected datasets when compared to the

exponential growth of projected datasets in the breadth-first search. A closer look at the

complexity of these two algorithms is provided in the next section.

3.4.7 Complexity and limitations

The runtime and space complexities are discussed by comparing the breadth-first and depth-

first algorithms as well as the tree-based Apriori algorithm, which was implemented for

evaluation purposes (briefly described in Section 3.6).

Runtime complexity

Runtime complexity depends on the number of nodes (candidates) in the tree and the com-

putation time needed for each node. For the sake of simplicity (without loss of generality),

labels are treated in the same fashion as items.

The size of the tree depends on the number of items (and labels) and the pruning factor,

i.e., the difference between the number of candidates and the number of frequent items.

To further simplify the analysis, this difference is assumed to be constant for all groups of

candidates, i.e., Cp − Fp = k for each node p, where k = const.

This results in the following formula for the size of a tree T (excluding the root node):

|Tk(n)| = Fk+1(n + 1) − 1, (3.3)

where n is the number of items (and labels) and Fm is a generalized Fibonacci number,
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which, in its combinatorial representation [83], is:

Fm(n) =
� n+m−2

m �∑

i=0

⎛⎜⎜⎜⎜⎜⎝
n + m − 2 − (m − 1) i

i

⎞⎟⎟⎟⎟⎟⎠ (3.4)

In the worst case scenario (e.g., a dataset with only one transaction or a set of exactly the

same transactions) the size of the tree is 2n − 1 (which can be derived from (3.3) for k = 0).

This exponential growth becomes weaker for greater values of k, and the complexity can

be expressed as O(cn) for some constant c, where c = 2 for k = 0 and converges to 1 with

increasing values of k.

If, however, pruning factor k is relative to the number of items n (for instance, k = n/2, i.e.,

a situation where half of first-level candidates are always frequent) it is expected that for

certain relations of k and n the computational complexity will become lower than O(cn).

The recursive formula for the size of the tree is as follows:

|Tk(n)| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n if n ≤ k + 1,
∑n−k−1

i=1 |Tk(i)| + n if n > k + 1,
(3.5)

This formula is derived directly from the visual representation of the ruleitem tree. Elimi-

nating the recursion in (3.5) results in the following formula, which depends on the relation

between k and n:

|Tk(n)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n if n ≤ 3k+1
2 ,

2n−3k−1
2 k + n if 3k+1

2 < n ≤ 2k + 1,
∑n−2k−1

i=1 Fk+1(n − 2k − i) i + 2n−3k−1
2 k + n if n > 2k + 1,

(3.6)

It is observed from (3.6) that the bigger the difference between n and k, the bigger the tree

growth rate. With constant k and increasing n the size of the tree grows from O(n) (the

first case) to O(n2) (the middle case) to O(cn) (the latter case, where the sum of generalized

Fibonacci numbers mainly dictates the growth). Thus, if k is relative to n, the tree growth

rate can decrease significantly. For instance, to continue with the previous example, for

k = n/2 the tree growth becomes quadratic.

Analysis of the complexity of operations that must be performed at each node of the tree

is reduced to the following operations: (1) generation, (2) support count, and (3) pruning.

Both generation and pruning of a single node are constant. The complexity of counting

support was already discussed in Section 3.4.4 and is proportional to
|Dp |

|CParent(p) | |T | for a

node p and a transaction T , i.e., it takes |CParent(p)| times less time than support counting

in other algorithms [15].
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The difference between the depth-first and breadth-first algorithms lies in the latter gener-

ating fewer candidates (though it yields additional comparisons). However, the asymptotic

complexity of those two algorithms remains the same. As such, the majority of time is spent

on the candidate test (counting support). The denominator |CParent(p)| ranges from 1 to n

with lower values on deeper levels of the tree. At the same time, the numerator |Dp|, bound

by ξ̂ and |D|, also decreases. Although the asymptotic upper bound of the candidate test is

still O(|D|), there is a substantial reduction in the number of candidate tests when compared

to other algorithms that use tree-dataset projection. This is due to the decreasing size of the

projected datasets Dp and performing aggregated (versus one node at a time) tests [116].

The total computational complexity of the proposed algorithms is O(nm), O(n2m), and

O(cnm) depending on the relation between k and n [116]. This varies from being linear

to quadratic to exponential (the first two apply only if the pruning factor depends on the

number of items) with respect to the number of items (and labels) with a constant number

of transactions; and linear with respect to the number of transactions with a constant num-

ber of items (and labels). The tree-size-dependent complexity imposes certain limitations

on MLACRI, which does not scale well in situations with long patterns in data (very similar

transactions) and/or very small support thresholds. In both such situations the pruning fac-

tor will be close to zero which, in turn, will ”trigger” exponential growth in the number of

operations. However, in text categorization the pruning factor is relatively high, and thus,

the complexity is expected to be, at most, quadratic.

Space complexity

Due to the fact that MLACRI keeps projected datasets, its memory consumption is naturally

higher than, for instance, the one of Apriori, in which memory consumption is proportional

to |D| + |T |. However, breadth-first and depth-first algorithms differ from each other in the

number of projected datasets they maintain, and their respective memory consumption is

proportional to:

• |D| + |T | +
∑

p∈Vmax
|Dp| for the breadth-first algorithm, and

• |D| + |T | +
∑� n+k

k+1 �−1
i=0

∑
q∈Cpi

|Dq| for the depth-first algorithm,

where n, as before, is the number of items (and labels), pi is an i-th node of the currently

searched path in the tree (with p0 being the root node), and Vmax is a set of nodes at the

widest level of the tree with the following cardinality (assuming the concept of pruning

factor is as described above):

|Vmax| = max0≤i≤� n+k
k+1 �

⎛⎜⎜⎜⎜⎜⎝
n + k − ki

i

⎞⎟⎟⎟⎟⎟⎠ . (3.7)
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Equation (3.7) is obtained from (3.4) and is equal to the maximum component of the sum

for Fk+1(n + 1) in (3.4), which can be estimated as O(cn) for constant c, 1 < c < 2. The

number of nodes in Cpi for each pi in the path is O(n2). Based on these estimates and

those made for the runtime complexity, the asymptotic complexity, in terms of memory

consumption, is

• O(m) + O(cn) + O(cn)O(m) and

• O(m) + O(cn) + O(n2)O(m)

for the breadth-first and depth-first algorithms, respectively [116]. Thus, the projected

datasets increase memory usage (when compared to Apriori) exponentially and quadrati-

cally with an increasing number of items (and labels) for the breadth-first and depth-first

algorithms, respectively.

3.5 Classification

Although association rules in models produced by MLACRI already consist of sets of

classes to which a matching document should be assigned, usually more than one rule

matches a given document. In order to overcome the problem of deciding which rule and/or

how many of them should be taken into consideration when categorizing a document, the

following thresholding strategies are proposed (see Section 2.1.1 for introduction to thresh-

olding strategies):

RCut.% As opposed to RCut, which assigns top t classes to a document, RCut.% assigns a

fraction of the total number of rules. Due to the variable number of rules matching a

document, this strategy may assign it a different number of classes, which is desirable

in classification with a variable number of classes.

SCut.global SCut.global is introduced to reduce the multi-parameter SCut strategy, which

is impractical in classification with large number of classes, to a single parameter,

which constitutes a global threshold for all the classes. Since in MLACRI all the

classes on the right-hand-side of an association rule have the same score (the confi-

dence of the rule), SCut.global in this case is rule-oriented.

There are two scoring variables that can be taken into consideration when applying the

different thresholding strategies with MLACRI:

• the confidence of rules that match a document and
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• the cosine measure that reflects the similarity between the rule and the document

given their vector-space representations.

Whereas the former is document-independent, the latter shares similarities with scoring

variables in other classifiers, such as SVM, in that it is calculated for each pair of class–

document, or in the case of MLACRI, for each pair of rule–document.

Cosine measure is a value equal to an angle between two vectors. Given a document

{w1i1, . . . ,wnin} and a rule {o1i1, . . . , onin} → C , where oi and wi are the numbers of occur-

rence of word ii, the cosine measure is equal to arccos ∠(�o, �w), where �o = {o1, o2, ..., on} and

�w = {w1,w2, ...,wn}.

The entire process of both learning (building the model) and testing (verifying the effective-

ness of the model) is illustrated in Figure 3.14.

Figure 3.14: Classification learning and testing process

The documents that are used for building the model are split into two subsets: a training set

and a validation set. The training set is used to generate a model, whereas the validation

set is used to tune the thresholding parameters. The tuning is performed by testing a range

of thresholding values in ten-fold cross validation (see Section 2.2.2) with the purpose of

optimizing some classification efficiency measure (usually macro and micro F1). The best

value (the fraction of rules in the case of RCut.%, or the confidence or cosine measure in

the case of SCut.global) tuned on the training–validation sets is expected to perform equally

well with new, unseen documents.

The efficiency of classifying MEDLINE documents to MeSH is described in Section 3.6.4.
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3.6 Evaluation

The evaluation of MLACRI is divided into quantitative and qualitative analysis. Section

3.6.1 describes the experimental setup used for both types of analysis. The empirical study

of runtime and memory complexity is provided in Section 3.6.2. Section 3.6.3 discusses

different characteristics of associative-classification rules with examples. The effectiveness

of MLACRI compared to other relevant approaches is presented in Section 3.6.4.

3.6.1 Experimental setup

The experiments were performed on the OHSUMED [67] and RCV1 [90] corpora, com-

monly used in testing text classifiers (see the description of the datasets in Section 2.2.1).

The MeSH headings assigned to OHSUMED records have been modified such that the

original 11-level structure was generalized to the second level resulting in the total of 114

class labels. From the three dimensions of labels available for the RCV1 collection, the

103-label ”topics” were chosen as the most commonly used and adequate for the task. The

two setups are referred to as ohsumed-gen2 and rcv1-topics, respectively. Both datasets are

summarized in Table 3.2.

Table 3.2: Dataset statistics
Number of labels Number of words

Dataset Size Total μ σ Total μ σ

ohsumed-gen2 233,445 114 9.8 3.1 99,775 95.6 40.62
rcv1-topics 804,414 103 3.2 1.4 288,062 123.9 110.3

μ – average per transaction, σ – standard deviation

Both ohsumed-gen2 and rcv1-topics are used in testing runtime and memory complexi-

ties. The ohsumed-gen2 is also used in testing the effectiveness of MLACRI. The 233,445

records of OHSUMED were divided into two subsets: (1) 183,229 documents covering the

years 1987–1990, which were used used as the training set, and (2) 50,216 documents from

1991, which were used as the testing set. This split conforms to other investigation with

OHSUMED [92, 150, 127]. However, unlike the other attempts that used the testing set

to tune the parameters of a classifier, the training set was further divided to perform ten-

fold cross validation. This approach is more strict and produces non-overfitted models. A

similar approach was used in [87] except that the authors performed only two-fold cross

validation. The class distribution and frequency of the ohsumed-gen2 dataset is shown in

Figure 3.15.

The document preprocessing steps involved stop word pruning and word stemming. Stop
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Figure 3.15: (a) Distribution and (b) frequency of classes in the ohsumed-gen2 dataset

words, which are words that appear frequently but are irrelevant with respect to classifica-

tion, e.g., a, the, of, at, etc., were pruned from the documents to reduce the search space.

Word stemming aimed to unify words by transforming lexical variants of words to sin-

gle distinct entities. This operation was performed by employing the widely used Porter’s

algorithm [107].

3.6.2 Runtime and memory consumption

The time and memory complexity of the algorithm was empirically analyzed taking into

consideration the different values of support threshold (which influences the number of

items and labels) and dataset size as shown in Table 3.3.

Table 3.3: Experimental setup

Dataset Size [k] Support threshold [%]

ohsumed-gen2 12.5, 25, 50, 100, 200 2, 3, 4, 8, 12, 16, 20
rcv1-topics 25, 50, 100, 200, 400, 800 2, 3, 4, 8, 12, 16, 20

Apart from investigating the difference between the depth-first and breadth-first strategies,

an additional algorithm, an Apriori-like version of an associative classifier, is also included

in the comparison. This type of algorithm was chosen since an alternative pattern-growth-

based method has been shown to generate only a subset of all frequent patterns [104] (see

Section 3.2).

The Apriori algorithm works in a similar fashion to the one described in [95]. The main

difference is that it is based on the ruleitem tree presented in this chapter, but does not

incorporates the projection of datasets. This algorithm is referred to as Apriori, whereas the

two versions of MLACRI, breadth-first and depth-first, are referred to as MLACRI-BF and

MLACRI-DF, respectively.

Runtime was measured excluding the time needed for loading a dataset from a hard drive.
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The loading time depends on the size of a dataset only, i.e., it is indifferent to parameters

and algorithms chosen, and ranges from several seconds for the smallest datasets to several

minutes for the biggest datasets used in the experiments.

The runtime and memory complexity with a fixed-size dataset of 100,000 transactions and

various support threshold values is shown in Figures 3.16 and 3.17, whereas the algorithms’

performance with various dataset sizes and a fixed 4%-support threshold is shown in Figure

3.18.

Support threshold

Figures 3.16 (a), (c), (e), and (g) show the runtime in the function of support threshold

(notice the reverse order). Both MLACRI-BF and MLACRI-DF algorithms, whose plots

almost overlap, outperform Apriori, which is especially visible in the lower values of the

support threshold. Figures 3.16 (b), (d), (f), and (h) show the same runtime in function of

the number of generated rules. Again, both MLACRI-BF and MLACRI-DF require signifi-

cantly less time to generate the same number of rules than the Apriori algorithm. Although

the three considered algorithms are characterized by the same linear asymptotic complexity

with respect to runtime, linear extrapolation to 50,000 rules shows that it takes almost nine

hours to generate rules using Apriori and only about 16 minutes using MLACRI.

The difference in runtime between Apriori and the two proposed algorithms is a result of

storing projected datasets in MLACRI. The difference between MLACRI-BF and MLACRI-

DF is the result of the lower number of candidates in MLACRI-BF. MLACRI-BF limits this

number during the generation of nodes using information from the upper levels of the tree,

which is not available in MLACRI-DF.

Memory characteristics, shown in Figure 3.17, are similar to those for runtime, i.e., mem-

ory consumption rapidly grows with the lower values of support threshold (Figures 3.17

(a), (c), (e), and (g)). However, in contrast to the runtime results, the faster algorithms,

MLACRI-BF and MLACRI-DF, require more memory than the slowest, Apriori. The rel-

atively large memory consumption in the case of both MLACRI-BF and MLACRI-DF is

due to the storage of projected datasets, which is not the case with Apriori whose memory

consumption depends solely on the number of generated rules.

Although MLACRI-BF and MLACRI-DF require comparable amounts of memory for higher

values of the support threshold, the former requires significantly more memory for medium

and low values of support. For MLACRI-DF, the number of projected datasets depends

on the depth of the tree and not, as in the case of MLACRI-BF, its width. Since lowering

support threshold results in creating wider, rather than deeper, ruleitem trees, MLACRI-DF

is consequently characterized by higher memory consumption than MLACRI-BF.
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Figure 3.16: Comparison of the runtime of the algorithms MLACRI-BF, MLACRI-DF,
and Apriori in the function of support threshold and the number of rules. (The plots for
MLACRI-BF and MLACRI-DF overlap.)
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Figure 3.17: Comparison of the memory consumption of the algorithms MLACRI-BF,
MLACRI-DF, and Apriori in the function of support threshold and the number of rules

53



0.5 1 1.5 2

x 10
5

0

1000

2000

3000

4000

5000

Dataset size

T
im

e 
[s

]

ohsumed−gen2 (support=4%, multi−label)
Apriori
MLACRI−BF
MLACRI−DF

(a)

0.5 1 1.5 2

x 10
5

0

100

200

300

400

Dataset size

M
em

or
y 

[M
B

]

ohsumed−gen2 (support=4%, multi−label)
Apriori
MLACRI−BF
MLACRI−DF

(b)

1 2 3 4 5 6 7 8

x 10
5

0

2000

4000

6000

8000

Dataset size

T
im

e 
[s

]

rcv1−topics (support=4%, multi−label)
Apriori
MLACRI−BF
MLACRI−DF

(c)

1 2 3 4 5 6 7 8

x 10
5

0

100

200

300

400

500

Dataset size

M
em

or
y 

[M
B

]

rcv1−topics (support=4%, multi−label)
Apriori
MLACRI−BF
MLACRI−DF

(d)

0.5 1 1.5 2

x 10
5

0

1000

2000

3000

Dataset size

T
im

e 
[s

]

ohsumed−gen2 (support=4%, single−label)
Apriori
MLACRI−BF
MLACRI−DF

(e)

0.5 1 1.5 2

x 10
5

0

50

100

150

200

250

Dataset size

M
em

or
y 

[M
B

]

ohsumed−gen2 (support=4%, single−label)
Apriori
MLACRI−BF
MLACRI−DF

(f)

1 2 3 4 5 6 7 8

x 10
5

0

2000

4000

6000

8000

Dataset size

T
im

e 
[s

]

rcv1−topics (support=4%, single−label)
Apriori
MLACRI−BF
MLACRI−DF

(g)

1 2 3 4 5 6 7 8

x 10
5

0

100

200

300

400

500

Dataset size

M
em

or
y 

[M
B

]

rcv1−topics (support=4%, single−label)
Apriori
MLACRI−BF
MLACRI−DF

(h)

Figure 3.18: Comparison of the runtime and memory consumption of the algorithms
MLACRI-BF, MLACRI-DF, and Apriori in the function of dataset size. (The plots for
MLACRI-BF and MLACRI-DF overlap in the left-hand-side figures.)
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The computational limitations of MLACRI discussed in Section 3.4.7 are confirmed by the

experiments. Either a low support threshold or long patterns in data, i.e., when very similar

transactions yield a large number of patterns even if a support threshold is high, result in

numerous nodes in the tree and potentially large projected datasets (or references to the

generic dataset as discussed in Section 3.4.5). Nevertheless, setting a reasonable support

threshold is left to user’s discretion (e.g., building a rule-based classification model that

consists of more rules than transactions may raise some doubts about the usefulness of such

a model).

Dataset size

Figure 3.18 shows the runtime and memory complexity with different sizes of the datasets.

The results indicate a linear relation to the number of transactions (as estimated in Section

3.4.7). Similarly to the previous results, MLACRI-BF and MLACRI-DF show comparable

scalability and are superior to Apriori with respect to runtime (Figure 3.18 (a), (c), (e),

and (g)). For instance, it takes about 237 seconds for Apriori and only about 12 seconds

for MLACRI-DF to generate rules from 25,000 transactions on rcv1-topics and a support

threshold of 4%. For larger 800,000-transaction dataset Apriori needs almost two hours

compared to about 7 minutes in the case of MLACRI.

On the other hand, memory consumption diagrams (Figure 3.18 (b), (d), (f), and (h)) show

an opposite relation. Memory usage for Apriori is almost constant, whereas for MLACRI

the required memory linearly increases with the increasing number of transactions.

Assuming uniform distribution of words in a dataset, the number of rules generated with

the same support threshold should be virtually the same for any subset of the dataset. This

implies that the ruleitem tree structure be almost identical. That is why Apriori uses nearly

the same amount of memory for different dataset sizes. Since MLACRI requires storing

projected datasets, its memory consumption increases linearly with the size of the generic

dataset.

Single- vs. multi-label rule generation

The results discussed in the previous sections show that the three considered algorithms

applied to both single-label and multi-label rule generation have the same asymptotic com-

plexity. Figure 3.19 shows a summarized comparison of the cost of generating multi-label

rules in relation to single-label rules with respect to the number of rules generated and

runtime.

With the same support threshold the two types of rule generation methods differ in the
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Figure 3.19: Increase (a) in the number of rules between multi-label and single-label rules,
and (b) in runtime to generate multi-label rules in relation to single-label rules

number of generated rules. This difference is especially visible with the low values of

support threshold. For instance, setting the support threshold value to 4% on the ohsumed-

gen2 dataset results in generation of about 110% more multi-label rules than single-label

rules with only about 80% increase in runtime. (The difference between the two datasets

used in the experiments is a consequence of their class label distribution, i.e., the average

number of labels per transaction is significantly higher in the ohsumed-gen2 dataset than in

the rcv1-topics dataset (see Table 3.2).) This shows that the generation of the multi-label

rules, that are supersets of single-label rules, can be accomplished with relatively low cost

when compared to the generation of the single-label rules.

3.6.3 Analysis of generated rules

Table 3.4 shows several rules for each of the dataset used in the experiments.

The presented rules were chosen to show the variety of forms they can take and to be

comprehensible to non-experts. All item names are shown in their preprocessed, stemmed

form, e.g., studi, compan, or pric (which in some cases may be ambiguous). The table

includes rules with one item and one label (rules (iii), (v), and (ix)), with multiple items

and one label (rules (i), (ii), (viii), and (xi)), with one item and multiple labels (rules (vi)

and (vii)), and finally multiple items and labels (rules (iv), (x), and (xii)). As expected,

introducing recurrent items increases the confidence of the rule, decreasing support at the

same time (rules (iv) and (vi)). Rules with high support and low confidence (such as rule

(vii)) indicate that the left-hand-side words are commonly used with the vast number of

classes and therefore might be candidates to be included on the list of stop words, i.e.,

the list of words that appear frequently but are irrelevant to classification. Clearly, the

most valuable rules, from a predictive point of view, are those with high support and high

confidence. However, in practice such rules are of doubtful usefulness from a descriptive

point of view, as they usually carry obvious knowledge (see rule (ix)). Thus, experts may be

more interested in rules with high confidence disregarding their support at the same time.
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Table 3.4: Examples of associative-classification rules in (a) ohsumed-gen2 and (b) rcv1-
topics

Rule* Support Confidence

(a) ohsumed-gen2
(i) rat(2)→ Animals 5.30% 99.96%
(ii) effect, studi, control→ Animals 4.29% 99.35%
(iii) children→ Persons 4.64% 95.71%
(iv) tumor(2)→ Animals, Neoplasms 4.11% 93.80%
(v) tumor→ Neoplasms 6.13% 89.09%
(vi) tumor→ Animals, Neoplasms 6.10% 82.94%
(vii) studi→ Persons, Animals, Investigative

Techniques
12.26% 30.75%

(b) rcv1-topics
(viii) million, net, profit→ Corporate/Industrial 4.02% 92.28%
(ix) compan→ Corporate/Industrial 21.84% 78.50%
(x) net, profit→ Corporate/Industrial, Perfor-

mance
4.19% 78.09%

(xi) net, profit→ Performance 4.19% 78.09%
(xii) market, pric→ Commodity markets, Markets 4.00% 31.03%

*) number in parentheses denotes recurrence

3.6.4 Classification

The effectiveness of classification was tested by performing a number of experiments that

included different thresholding strategies and scoring methods.

The results of evaluating the different thresholding strategies on the ohsumed-gen2 dataset

are presented in Table 3.5.

MLACRI was compared against SVM [71], a binary classifier shown to exhibit superior ef-

fectiveness to other methods [90], which was adapted to multi-label classification by com-

bining results from n independent classifications, where n is the number of classes. In this

scenario each binary classification aims at categorizing documents to either the positive or

negative class in the one-vs-all fashion, i.e., one class is treated as the positive while the

remaining classes are treated as the negative3. The SVM model learning process was used

in a setup similar to the one presented in [90].

The thresholds for both MLACRI and SVM were allocated automatically in the process of

ten-fold cross validation (see Section 3.5) and tuned for best macro F1 and best micro F1

separately.

3Another adaptation of binary classifiers to multi-label classification is the one-vs-one strategy, where sep-
arate classifiers are built for each pair of classes. However, due to the large number of such combinations, this
strategy is not suitable for the considered task.
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Table 3.5: Comparison of multi-label classification performance on ohsumed-gen2 between
two baseline classifiers, MLACRI, its version with suppressed recurrent item information
MLACRI, and SVM. Precision (P), recall (R), and F1 are reported in percentages.

macro-averaging micro-averaging
Method Thresholding Scoring P R F1 P R F1

Baseline 9.0 8.5 8.7 28.0 26.4 27.2
MLACRI RCut.% confidence 40.8 55.3 42.0 53.5 58.8 56.0
MLACRI SCut.global confidence 41.9 52.9 41.7 53.4 58.3 55.8
MLACRI RCut.% confidence 44.9 56.6 45.9 55.4 59.8 57.5
MLACRI RCut.% cosine 43.8 59.0 45.5 57.8 57.7 57.7
MLACRI SCut.global confidence 43.1 58.1 45.4 54.8 60.9 57.7
SVM RCut 8.9 15.6 11.1 27.3 32.0 29.5
SVM SCut.global 70.4 63.9 65.9 78.9 69.6 74.0

In order to investigate the influence of recurrence of items in transactions on classification

performance, the comparison also includes a version of MLACRI, referred to as MLACRI,

where this feature is suppressed. Additionally, a baseline showing the random assignment

of classes according to their distribution in the training set is drawn4. When compared to

the baseline, MLACRI increases micro-averaged F1 over two times, and macro-averaged

F1almost five times.

Considerable differences between the micro- and macro-averaged measures is the result

of highly unbalanced classes (see Figure 3.15(b)). For instance, the most frequent class

appears in 97.02% of the ohsumed-gen2 documents, whereas the least frequent, in only

0.02%. The higher values of the micro-averaged measures over the macro-averaged mea-

sures suggest that the classifiers model frequent classes more effectively.

The results show that the introduction of recurrent items improves the performance of

MLACRI. The difference is especially notable for macro-averaged F1, which suggests that

MLACRI performed comparably well for all the classes (regardless of their distribution in

the documents).

Insofar as the thresholding strategies did not have a big impact on MLACRI, SVM was

significantly affected. Low results for SVM with the RCut strategy shows that this strat-

egy is inferior to RCut.%. RCut assigns a fixed number of classes to a document, and this

strategy proved to be of no use in classification with a variable number of classes per docu-

ment. Moreover, since SVM does not produce a variable number of classes, as opposed to

MLACRI, RCut.% cannot be used with this classifier.

4The random assignment of classes involves randomly selecting a number of documents for each class from
the testing set proportionally to the number of documents assigned to a particular class in the training set. This
procedure was repeated ten times and the results averaged.
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Nevertheless, SVM with SCut.global strategy proved to be a superior method of classifi-

cation and outperforms all other methods by a significant margin. It was shown, however,

that this margin can be reduced by using a two-stage learning strategy. Antonie [17] used

association rule mining to build a first-stage classification model and applied another learn-

ing strategies, such as NN and kNN, to automatically learn the scoring scheme used in the

final model of classification. The method was evaluated on a set of 12,202 documents of

the Reuters-21578 collection [8] boasting overall performance comparable to SVM.

It has also been argued [144] that binary classifiers, such as SVM, are not scalable to prob-

lems such as the classification of MEDLINE documents to the MeSH terms. This stems

from the fact that, in order to perform in the multi-label environment, binary classifiers

have to be trained for each class separately. Given the high complexity of the learning pro-

cess, SVM is limited to problems with a relatively low number of classes, which is not the

case with the large MeSH thesaurus. In order to show the difference in class scalability,

an analysis of the time needed to develop models with various number of classes has been

performed, the results of which are shown in Figure 3.20. Due to the differences in class

distributions, the time characteristics presented in the figure were obtained by randomly

choosing the corresponding number of classes from the pool of all the available classes. As

before, the procedure was repeated ten times and the results averaged.
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Figure 3.20: Runtime of building models with different number of classes for SVM and
MLACRI on the ohsumed-gen2 training set (183,229 examples) in (a) linear and (b) loga-
rithmic scales. Vertical bars denote standard deviation.

On average, the time needed to produce the models with SVM is two orders of magnitude

bigger than with MLACRI. For instance, SVM takes 15 h 23 min. to build models for 100

classes, while MLACRI tackles this task in less than 4 min. Linear extrapolation suggests

that if the MeSH terms used in the classification task were generalized to the third level, the

total of 1,734 third-level classes would take SVM over 263 hours compared to MLACRI’s

three hours. Moreover, the non-monotonic characteristic of MLACRI demonstrates that the

method is rather insensitive to the number of classes and depends mostly on their distribu-

tion in documents.
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Recently, Trieschnigg et al. [144] showed a comparative evaluation of MetaMap [18], MTI

[19], a pattern-based approach [126], and kNN by attempting to categorize 1,000 MED-

LINE documents to MeSH and analyzing different distributions of MeSH terms in the doc-

uments. The best results were reported with 196 MeSH terms that appeared in at most

5,000 documents, which is the closest test that can be compared to the evaluation setup

presented in this section. The winner, kNN, achieved micro F1 reported at a level of 56%,

which is an almost identical result to MLACRI. However, it is worth pointing out that the

evaluation strategy adopted in [144] overfits the (already incomparably small) testing set,

i.e., the authors did not perform a proper cross-validation. Moreover, the small class sizes

(at most 5,000 documents) suggest that the documents consisted of very selective sets of

terms, which fitted the testing set well. As long as the readability of models is considered,

kNN, whose instance-based model consist of virtually complete documents, is inferior to

the concise nature of the association rules produced by MLACRI.

A separate evaluation, not directly pertinent to the study presented in this chapter, was

performed to compare MLACRI to other descriptive classifiers in a single label classifica-

tion task. MLACRI was shown to outperform all reported classifiers including associative-

classification-based MMAC [142] and CBA [95], decision-tree-based PART [56], and rule-

based RIPPER [40]. The results are reported in [116].

3.7 Conclusions

The MLACRI classifier addresses the generation of “truly” multi-label association rules,

i.e., a model consists of rules with multiple classes generated in a single run. The exper-

imental results showed the superior performance of MLACRI over the Apriori-like algo-

rithm with respect to the runtime. As expected, memory consumption is bigger for the

proposed tree-projected algorithms than for the Apriori-like algorithm due to the use of

projected datasets. Although this difference is considerable for the breadth-first search, the

memory characteristics indicate significantly better (smaller) memory consumption for the

depth-first algorithm. At the same time, there is only a marginal difference between the

depth-first and the breadth-first algorithms in terms of runtime, with the latter being supe-

rior to the former. This nominates the depth-first algorithm as the recommended solution.

The depth-first and breadth-first algorithms scale linearly with respect to the dataset size for

both runtime and memory usage. Although complexity with respect to the number of items

may become exponential (for frequent and long patterns), several tree-based techniques

were presented to significantly slow down this growth.

Although the effectiveness of MLACRI was inferior to SVM, it was shown that SVM,

which is a binary classifier and requires an adaptation to perform classification with multiple
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classes, does not scale well to problems that involve large number of classes.

When compared to a baseline, MLACRI increased the effectiveness of classification by

over two times with respect to micro F1 and by almost five times with respect to macro

F1. Considering the recurrence of words in documents additionally improved the predictive

quality of the classifier, especially with respect to macro F1.

The performance was evaluated using a second-level generalization of the MeSH structure,

and as such, MLACRI (or any other known classifier for that matter) cannot be perceived

as a fully automatic method of classification given the task. Classification of the full set of

24,000 hierarchically distributed MeSH terms remains an open subject and fully automatic

methods are yet to be developed.
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Chapter 4

Entity Relationship Extraction

4.1 Introduction

Extracting entity relations from textual corpora is one of the information extraction tasks

that has been gaining researchers’ attention, motivated mainly by an overwhelming growth

in the number of scientific articles and the need for tools that concisely summarize and

present the knowledge embedded therein. The extracted relations between annotated enti-

ties are used in a variety of applications, such as querying-answering systems, often built on

top of ontologies which allow storing well-defined and well-structured data (e.g., [37, 14]),

or in biomedicine where proteins, genes, and cells are examples of entities, and the task of

extraction is to find interactions between them [69, 46, 45, 100, 152, 35].

Extracting binary relations have been attempted using several different techniques, most

notably shallow phrase structure parsers, typed dependency parsers, and machine learning

(often combined with either shallow or deep parsing).

Typed dependency parsers assign a grammatical dependency/role between a pair of tokens.

For instance, the Stanford dependency parser [49] identifies such pairs and assigns one from

over 50 grammatical dependencies to each pair. A generated set of grammatical dependen-

cies from a typed dependency parser is further used to build binary relations (involving one

or more grammatical dependencies) between a pair of entities, usually by traversing depen-

dency graphs or by creating a set of logic programming rules. The biggest disadvantage of

using dependency parsers is that there is no standard set of grammatical dependencies [39].

They differ in terms of number, granularity, direction, and even the part of speech (POS) of

the constituents on both sides of seemingly identical dependencies.

On the other hand, the Penn Treebank Project, a vast collection of manually annotated con-

stituent trees, created a de facto annotation standard, which has been followed by major
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leading constituent parsers created to date. Intuitively, given that a dependency parser pro-

duces dependency roles based on information from the phrase decomposition of a sentence

(either explicitly or implicitly), relation extraction systems based on pure phrase decompo-

sition (coming from a constituent parser) should perform no worse than systems based on

dependency parsing, as long as the constituent-parsing-based systems are capable of cap-

turing complete binary relations between entities embedded in a sentence, as opposed to

only finding local relations between tokens in a sentence (as it is the case with dependency

parsers).

Although the significance of constituent trees in extracting relations in sentences was rec-

ognized over a decade ago [77, 120], proper tools exhibiting the sufficient flexibility and

expressiveness necessary to discover a correct and complete set of relations have yet to be

designed. This investigation addresses this issue and proposes a method for extracting rela-

tions between two entities based on a manually tailored set of constituent pattern trees. As

a result, the major contributions of this work include the development of the constrained

constituent tree inclusion algorithm with regular expression matching as well as a syntax of

pattern trees together with a set of patterns.

Depending on the number of words connecting two entities in a relation and their POS, the

relations are grouped into several categories. They vary from relations including a single

verb (e.g., <inflammatory cytokine> initiate <autocrine regulatory mechanism>1) to the

more elaborate including verbs and prepositions (e.g., <LTR mutation> allow to replicate

during <acute phase of viral infection>).

The remainder of this chapter is organized as follows: Section 4.2 presents related work

in the field of relation extraction, which is followed by defining the problem of extracting

relations from constituent trees in Section 4.3. A solution to the given problem is proposed

in Section 4.4, where a new ordered-tree-inclusion-based algorithm together with a new set

of patterns are presented. The proposed solution is evaluated experimentally as described

is Section 4.5, whereas Section 4.6 summarizes the chapter.

A version of this chapter has been submitted for publication [118].

4.2 Related work

Extracting entity relations in sentences have been attempted using a variety of methods,

which involve shallow parsers, dependency parsers, binary trees, and, to a certain extent,

constituent trees.

Cimiano et al. [37] used a shallow parser (or chunker) to process sentences and a set of

1Annotated entities are denoted by enclosing them in triangle brackets (‘<’ and ‘>’)

63



flat patterns to extract relations from the shallow-parse trees. They used GENIA [79] as an

input corpus, the CASS chunker [11] as a shallow parser, and two simple patterns, a noun

phrase followed by a verb, followed by a noun phrase optionally preceded by a preposition.

They also attempted to find the appropriate generalization level for the relations obtained in

the GENIA ontology [79].

Rinaldi et al. [121, 123, 122] used Pro3Gres [129], a typed dependency parser, the output

of which they further converted into binary relations. The conversion involved combining

several dependencies, generated during parsing from a sentence, in a set of Prolog rules.

Querying the rules directly returned the relations. The authors evaluated the performance

of the linguistic performance of the parser on a subset of GENIA and the authors’ ATCR

corpus, a 147-sentence set of annotated MEDLINE abstracts, considering relations that

involved one of a small set of verbs. They further evaluated the biological significance of

the obtained results, reporting precision and recall separately for the pairs subject–verb and

verb–object.

A similar dependency-like approach was used by Ciaramita et al. [36]. The authors used the

Charniak parser and built dependency graphs between the tree constituents. They further

formed verb relations between the annotated entities in GENIA by selecting unidirectional

paths in graphs limited by a handful of dependency constraints, that connect the subject

entity through a verb to the object entity. Similarly to [37] they were interested in gener-

alizing the relations to an appropriate GENIA ontology level, and thus considered only the

categories of annotated entities.

Abulaish and Dey [14] proposed a novel tree-structure-like approach. They decomposed

sentences and encoded them as binary trees. Each of the nonterminal nodes of a tree stored

a verb, whereas the terminal nodes contained the remaining parts of the sentence directly

preceding and following a parent verb. This allowed the authors to create relations, which

were subjected to a frequency-based feasibility study on GENIA performed by replacing

the annotated entities with the GENIA categories.

An output of a constituent parser was used by Jang et al. [69] to extract protein-protein

interactions (PPI) from MEDLINE. The authors used the Stanford parser and a handful of

heuristics to traverse constituent trees in search for relations between annotated proteins.

Daraselia et al. [45] showed a pattern-based approach to extracting PPIs. A set of manually

tailored patterns was matched against sequences of sentence words. The patterns, encoded

as regular expressions, consisted of a set of named, identified beforehand, interactions, i.e.,

the patterns matched only those sequences in sentences that involved certain predefined

words. Due to the fact that PPI interactions are well known and identified, the process of

extracting these interactions in text is seen as a simplified problem of extracting unknown

relations, as presented in this chapter.
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Banko et al. [21, 22] is an example of a hybrid approach that combines both machine learn-

ing and linguistic parsing. Their self-supervised training is based on a set of heuristics that

was applied to Penn Treebank. The captured dependencies obtained via syntactic parsing

and typed dependency labeling were used with the heuristics to identify positive and nega-

tive examples. The categorized examples were further used to train a Naiv̈e Bayes (NB) or

Conditional Random Fields (CRF) classifier based on the examples’ features such as part

of speech (POS), the number of tokens, the number of stop words, etc. Once trained, the

tool is claimed to efficiently extract a huge number of sentences (predominantly the method

aims at extracting relations from the web), as at that point it only requires a shallow phrase

structure of sentences (obtained from a phrase chunker) to proceed. In order to evaluate the

method the authors manually identified several relation categories in a set of 500 sentences

fetched from the web [22] and reported the performance of their approach comparing both

the NB and CRF-based methods.

In Section 4.5 the proposed constituent-tree, pattern-based approach is evaluated by com-

paring it to the work of [37], [122], and [22], which represents shallow-parser-based, depen-

dency-parser, prolog-rule-based, and dependency-parser, machine-learning-based efforts to

extract binary relations between entities, respectively.

4.3 Problem definition

Given a constituent tree representing a sentence, the task of extracting entity relations can

be loosely defined as finding tree inclusions (formally defined below), which encompass

the words that constitute a relation and exclude those that do not. This task is accomplished

by creating a set of pattern trees and running a tool which returns inclusions matching the

patterns in the constituent trees.

An example of a constituent tree is given in Figure 4.12. Given the objectives, the en-

tity relation extraction process should result in three relations corresponding to three tree

inclusions as follows:

1. <Spi-B> binds <DNA sequences> – nodes 1, 2, 3, 4, 5, 6, 7, 8, 9;

2. <Spi-B> activates <transcription> – nodes 1, 2, 3, 4, 17, 18, 19, 20;

3. <DNA sequences> containing <5’-GGAA-3’> – nodes 1, 4, 5, 7, 8, 9, 10, 11, 12, 15.

The first two relations have similar tree inclusions in terms of structure and labels, whereas

the last relation differs from the former with regard to both structure (more nodes) and labels

2Although the Penn Treebank Project uses round brackets, throughout this chapter square brackets are used
instead to avoid confusion with the regular expression syntax (explained later in the text)

65



[S

[NP [ENT <Spi-B>]]

[VP

[VP [VBZ binds]

[NP

[NP [ENT <DNA sequences>]]

[VP [VBG containing]

[NP [DT a] [JJ core] [ENT <5’-GGAA-3’>]]]]]

[CC and]

[VP [VBZ activates]

[NP [ENT <transcription>]]]]]

(a)

<Spi-B> binds <DNA sequences> containing a core <5’-GGAA-3’> and activates <transcription>

DT (13) JJ (14) ENT (15)

NP (8)

ENT (9)

VP (10)

VBG (11) NP (12)

ENT (20)

NP (2)

ENT (3)

VP (4)

VP (5) CC (16) VP (17)

VBZ (6) NP (7) VBZ (18) NP (19)

S (1)

(b)

Figure 4.1: Example of a constituent tree in (a) the bracketed form and (b) its corresponding
graph representation. The ENT label is introduced to denote a leaf node that contains an
annotated entity and as such is not part of the Penn Treebank annotation tag set.
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(e.g., VBG instead of VBZ).

Extracting tree inclusions from trees has been already studied and several algorithms for

solving the ordered tree inclusion problem have been proposed [77, 120]. The problem is

defined as follows:

Definition 4.3.1 (Ordered tree inclusion) Given a labeled ordered pattern tree P and a

labeled ordered target tree T, the problem of ordered tree inclusion is to find a mapping

function f from P to T such that ∀v, v1, v2 ∈ P:

1. v2 is a descendant of v1 ↔ f (v2) is a descendant of f (v1),

2. v2 > v1 ↔ f (v2) > f (v1),

3. v and f (v) have the same labels.

In the above and following definitions the greater-than and lower-than operators (‘>’ and

‘<’) refers to the order of nodes in a tree, where order is understood as in traversing the

tree in preorder (an example is given in Figure 4.1(b), where the nodes’ unique identifiers

are allocated in preorder). When referring to the order between two nodes v1, v2, it is stated

that v1 precedes (follows) v2 if v1 < v2 (v1 > v2). Subsequently, previous and next are used

to express immediately preceding and immediately following, respectively.

Using the example given in Figure 4.1, the three relations can be extracted solving the or-

dered tree inclusion problem with the two patterns presented in Figures 4.2(a) and (b). The

first pattern, however, will also produce an incorrect relation, <Spi-B> binds <5’-GGAA-

3’>. Careful analysis of the tree reveals that, in fact, it is not possible to create a pattern or

a set of patterns that when used to solve the problem specified in Definition 4.3.1 yields the

correct and complete set of relations embedded in that particular sentence.

[S

[ENT]

[VP

[VP

[VBZ]

[ENT]]]

(a)

[NP

[ENT]

[VP

[VBG]

[ENT]]]

(b)

[/S|NP/

[ENT@ap!=/VP/]

[VP@ap!=/NP/

[/VB/@ap!=/VP/]

[ENT@ap!=/VP/]]]

(c)

Figure 4.2: Examples of (a,b) ordered tree inclusion patterns and (c) a constrained con-
stituent tree inclusion pattern

Although the tools solving the ordered tree inclusion problem are capable of extracting

relations in complex sentences (e.g., sentences with multiple subordinate clauses) boasting

high recall, they fail to show satisfactory levels of precision for practical use. Moreover,

in practical applications usually only the part of speech of words constituting a relation is
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specified, while other grammatical properties of words, such as tense in case of verbs or

number in case of nouns, are neglected. This lowers the value of the ordered tree inclusion

even more since more patterns are needed to account for all possibilities.

The above shows that inclusion patterns need to be more flexible so that a single node

covers more than one type of target nodes. At the same time certain cases also require

limiting the “greediness” of inclusion patterns by imposing some tighter constraints onto

the ancestor–dependent relations between nodes.

4.4 Proposed solution

This section describes the proposed solution to extracting entity relations in sentences. Sec-

tion 4.4.1 sets up the theoretical background to an algorithm described in Section 4.4.2;

whereas Section 4.4.3 presents the syntax of patterns required by the algorithm. Both the

algorithm and the patterns are the main components of the method presented in this work,

and a complete processing pipeline that uses the two is given in Section 4.4.4.

4.4.1 Constrained constituent tree inclusion problem

In order to accommodate the aforementioned flexibility of patterns, an algorithm that solves

the problem of constrained constituent tree inclusion with regular expression matching (de-

fined below) is proposed.

The constrained constituent tree inclusion problem necessitates extending the properties of

both a pattern node and a target node. Although from the tree structure perspective a word

and its POS are treated as separate nodes, for the obvious one-to-one parent-child relation

no such distinction is made and, instead, both are treated as one node where the POS is a

label and the word is a content, e.g., in [VBZ activates], VBZ is a label and activates

is a content; whereas nonterminal nodes have a label only.

The requirements imposed on a pattern node call for a more elaborate set of properties as

follows (all of the properties, except label, are optional):

label a string or regex3 representing node’s label or a class of labels (e.g., VBZ, VBG,

/ˆVB/),

content (leaf nodes only) a string or regex representing a token (word) or a class of tokens

(e.g., not, cannot, /(can)?not/),

3Following the software developers community, a sequence (or string) of characters is simply referred to as
string and a regular expression as regex. Regexes are presented in the Perl-like notation (see Section 2.1.2).
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ancestor path pattern constraint a string or regex representing a path of ancestors,

first (last) sibling path pattern constraint a string or regex representing a path of preced-

ing (following) siblings,

child-of constraint a flag that, when set, forces the child-of relation,

sibling constraint a flag that, when set, forces the sibling relation.

Definition 4.4.1 (Constrained constituent tree inclusion) Given an ordered pattern tree

P with nodes having the aforementioned properties and a target constituent tree T, the

problem of constrained constituent tree inclusion with regular expression matching is to

find all mapping functions f from P to T such that ∀v, v1, v2 ∈ P:

1. tree structure conditions:

(a) order: v2 > v1 ↔ f (v2) > f (v1),

(b) ancestor–descendant: v2 is a descendant of v1↔ f (v2) is a descendant of f (v1),

(c) child-of contraint: v2 has a child-of constraint and v2 is a child of v1 → f (v2) is

a child of f (v1),

(d) sibling constraint: v2 has a sibling constraint and v2 is the next sibling of v1 →
f (v1) and f (v2) are siblings.

2. string conditions:

(a) the label of v matches the label of f (v),

(b) v is a leaf and v has a content → the content of v matches the content of f (v),

(c) v2 is a child of v1 and v2 has an ancestor path pattern constraint→ the ancestor

path pattern of v2 matches the path between f (v2) and f (v1),

(d) v has a first (last) sibling path pattern constraint → the first (last) sibling path

pattern of v matches the path between f (v) and the first (last) child of the parent

of f (v),

3. optional node: � f (v) and v is optional → v and its descendants are excluded from P

for the map f .

To continue with the example given in Figure 4.1, as it was mentioned earlier, it is not pos-

sible to create a set of patterns that works with the ordered tree inclusion problem (as given

in Definition 4.3.1) and yields the correct and complete set of relations. The two proposed

patterns (Figures 4.2(a) and (b)) captured all the relevant relations and one irrelevant rela-

tion. On the other hand, solving the problem of constrained constituent tree inclusion (as
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given in Definition 4.4.1) with the pattern shown in Figure 4.2(c) results in the complete and

correct set of relations. The pattern combines the two previous patterns by incorporating

regexes in the first node (/S|NP/) and the fourth node (/VB/), as well as imposes an ances-

tor path pattern constraints (@ap!=/NP/ and @ap!=/VP/) on nodes 2–5. The constraints,

which read “the ancestor path must not contain NP/VP”, guarantee to capture all the relevant

relations, while omitting the irrelevant relation <Spi-B> binds <5’-GGAA-3’>.

The full syntax of pattern trees is presented in Section 4.4.3.

4.4.2 A constrained constituent tree inclusion algorithm

In this section a backtracking algorithm is proposed. The algorithm takes a pattern tree P

and a target tree T as input and gradually (in the order of nodes in P) builds a (possibly

empty) set of maps from P to T satisfying Definition 4.4.1. The algorithm is inspired by

the solution proposed for the ordered tree inclusion problem given in [120].

Table 4.1: Pattern tree node references
Parent(x) the parent node of x
PreviousPreorder(x)
and NextPreorder(x)

the previous and next node (in preorder) of x, respectively

PreviousSibling(x)
and NextSibling(x)

the previous and next sibling of x, respectively

FirstChild(x) the first (in preorder) descendant of x
LastLeaf(x) the farthest (in preorder) descendant of x, or x itself if x is

a leaf

The algorithm FindMatch is depicted in Figure 4.3, whereas Table 4.1 describes the nec-

essary references related to a node. Furthermore, in order to ease the understanding of the

algorithm the following notations/simplifications are adopted:

• ε represents an empty or null element.

• For each function/mapping F, F(p) evaluates to ε if p evaluates to ε.

• Expression F ∨ G evaluates to G if F evaluates to ε, or F otherwise.

• The comparison operators (=, �, >, ≥, ≤, <) between a pair of nodes refer to their

order in a tree (e.g., p < q asserts that p is before q in the tree),

• Head(G) denotes the head of a list for which NextPreorder returns the root node

of G.
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input : pattern node v
target node wstart

partial map f
output: target node found or ε if not found
if v is not the list head then1

wanc � f (Parent(v)) ∨ wstart2

if Visited(v,wstart,wanc) has not been initialized then3

w� Visited(v,wstart,wanc)4

else5

w� FindPartialCandidate(v, wstart, wanc)6

Visited(v,wstart,wanc)� w7

if w � ε then8

f (v)� w � mapping9

else10

return ε11

vnext � NextPreorder(v)12

continue � true13

while vnext � ε and continue = true do14

wanc � f (Parent(vnext)) ∨ wstart15

vsibling � PreviousSibling(vnext)16

while vsibling � ε and f (vsibling) = ε do17

vsibling � PreviousSibling(vsibling)18

wstartnext � GetFirstPotentialCandidate(vnext, wanc, f (vsibling))19

totalmaps � |Maps |20

while wstartnext � ε do21

w� FindMatch(vnext, wstartnext , f) � recursion22

if w � ε then23

wstartnext � GetNextPotentialCandidate(vnext, wanc, w)24

else25

wstartnext � ε26

if vnext is optional and |Maps | = totalmaps then27

vnext � NextPreorder(LastLeaf(vnext))28

else29

continue � false30

if vnext = ε then � solution31

add f to Maps32

return f (v)33

Figure 4.3: Pseudocode of the backtracking algorithm FindMatch
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input : pattern node v
target node to start with wstart

ancestor target node wanc

output: target node w or ε if not found
w� wstart1

repeat2

if v matches the label of w3

and v matches the content of w if there is any4

and w satisfies v’s ancestor path constraints if there are any5

and w satisfies v’s sibling path constraints if there are any6

then return w � found7

w� GetNextPotentialCandidate(v, wanc, w)8

until w � ε and w ≤ LastLeaf(wanc)9

return ε � not found10

Figure 4.4: Pseudocode of the FindPartialCandidate function

input : pattern node v
ancestor target node wanc

target node wprev mapped to v’s previous sibling (if any)
output: target node w or ε if not found
if wprev � ε then1

if v has a child-of constraint then2

w� FirstChild(wanc)3

repeat4

w� NextSibling(w)5

until w � ε and w ≤ wprev6

else if v has a sibling constraint then7

w� NextSibling(wprev)8

else9

if LastLeaf(wprev) < LastLeaf(wanc) then10

w� NextPreorder(LastLeaf(wprev))11

else12

w� ε13

else14

w� FirstChild(wanc)15

return w16

Figure 4.5: Pseudocode of the GetFirstPotentialCandidate function
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input : pattern node v
ancestor target node wanc

target node wprev mapped to v
output: target node w or ε if not found
if v has a child-of or sibling constraint then1

w� NextSibling(wprev)2

else3

if wprev < LastLeaf(wanc) then4

w� NextPreorder(wprev)5

else6

w� ε7

return w8

Figure 4.6: Pseudocode of the GetNextPotentialCandidate function

The general idea of the backtracking algorithm FindMatch is to incrementally construct

a partial map, extending it by adding partial candidates and abandoning this process (as

early as possible) if it becomes apparent that the map cannot result in a complete map,

which signals that further exploration be of no avail.

Definition 4.4.2 (Partial map) Given a pattern tree P and a target tree T, a partial map

fn is a map from P≤n to T, where P≤n is a subtree of P consisting of n first nodes of P and

n ≤ |P|, such that fn satisfies the conditions of the constrained constituent tree inclusion

problem.

Definition 4.4.3 (Complete map) Given a pattern tree P and a target tree T, a partial map

fn is complete if n = |P|.

Definition 4.4.4 (Partial candidate) Given a pattern tree P, a target tree T, and a partial

map fn, a partial candidate is any node w ∈ T such that ∃v ∈ P : fn(v) = w.

Definition 4.4.5 (Potential candidate) Given a pattern tree P, a target tree T, and a par-

tial map fn, a potential candidate is a node w ∈ T such that w satisfies the tree structure

conditions for vn+1 ∈ P, where vn+1 is the next target node for which a counterpart node

(partial candidate) is being sought.

From the above, complete map is also partial map, and partial candidate is also potential

candidate. The reverse does not hold.

Calling FindMatch(Head(P), Head(T), fφ), where fφ denotes an initial, empty map,

produces a set of maps from P to T .
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Given a pattern node v, a potential node wstart, and a partial map f , FindMatch is trying

to find a match for v exploring the subtree of T beginning with wstart (lines 1–11). If a

matching node is found, it is added to the partial map (line 9) and eventually returned (line

33). Before returning the newly mapped node, the algorithm continues building the map f

by selecting the next pattern node vnext, and recursively and repeatedly calling itself with

vnext, the augmented partial map f , and wstart recalculated with each repetition (lines 12–

30). If the algorithm completes the map, i.e., vnext = ε, a solution is found and the map f is

saved (lines 31–32).

Due to the fact that the string conditions (the conditions involving string comparisons) are

the most time-consuming of all the conditions in Definition 4.4.1, the algorithm limits the

search space in two steps. The first step takes into consideration only tree structure condi-

tions, which serve to nominate the limit nodes in T (lines 14–30), whereas the second step

proceeds with the string conditions looking for a match only within the nominated bounds

(lines 1–11).

Both functions GetFirstPotentialCandidateand GetNextPotentialCandidate, pre-

sented in detail in Figures 4.5 and 4.6, respectively, are guaranteed to return a potential

node, which satisfies the tree structure conditions, or ε if such a node does not exist, for the

current pattern node with the current partial map. Subsequently, given the potential node

wstart, the FindPartialCandidate function, presented in Figure 4.4, is guaranteed to re-

turn a partial node, which satisfies the remaining conditions, or ε if such a node does not

exist. FindPartialCandidate includes calls to GetNextPotentialCandidate itself.

The optional node resolution is embedded in the tree-structure-condition step of the algo-

rithm (lines 14–30). If no new maps have been produced for vnext and if vnext is optional, the

algorithm chooses another pattern node with which it proceeds (lines 27–28). The skipped

node and its descendants are ignored wherever necessary (lines 17–18).

Exploring the many possibilities of mapping P to T often results in revisiting parts of T

under similar conditions for which the outcome is exactly the same as in the previous visits.

This problem is overcome by a hash function/table (caching map), Visited, which returns

the previously found outcome and skips the costly FindPartialCandidate function (lines

3–4).

Correctness and completeness

In this section, the algorithm’s correctness is (informally) proven by showing that the al-

gorithm follows the conditions in Definition 4.4.1, whereas its completeness is proven by

showing that it produces all the maps.
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The order condition is taken care of by traversing the trees in preorder.

Given the partial map f and the next pattern node vnext, both GetFirstPotentialCandidate

and GetNextPotentialCandidate return a potential candidate (as given in Definition

4.4.5) if there is any, which is shown below.

The ancestor–descendant condition is satisfied as long as the candidate node is included in

the subtree of f (Parent(vnext)) and, in case vnext has a previous sibling, the candidate is af-

ter (has the preorder number greater than) the last descendant of f (PreviousSibling(vnext)).

If vnext is a first child of Parent(vnext), i.e., vnext has no previous siblings, the first potential

candidate is the first child of f (Parent(vnext)), which satisfies the ancestor–descendant

condition. Otherwise (vnext does have a previous sibling), determining the first potential

candidate depends on vnext’s tree structure constraints.

If vnext does not have any tree structure constraints, then the first potential candidate is

the first node with the preorder number greater than the one of the last descendant of

f (PreviousSibling(vnext)). The first potential candidate does not exist in that situation if

the last descendant of f (PreviousSibling(vnext)) is at the same time the last descendant

of f (Parent(vnext)), which satisfies the ancestor–descendant condition.

If vnext has a sibling constraint then the first potential candidate is the next sibling, if any,

of f (PreviousSibling(vnext)). Finally, if vnext has a child-of constraint then the first

potential candidate is the first child of f (Parent(vnext)) with the preorder number greater

then that of f (PreviousSibling(vnext)), if there is any. Both constraint conditions also

naturally satisfy the ancestor–descendant condition.

All of the above cases are comprised by the GetFirstPotentialCandidate function,

thus GetFirstPotentialCandidate returns a potential candidate if there is any. �

Given a potential candidate for vnext, the next potential candidate for vnext is the next sibling,

if any, of the previous potential candidate if vnext has any kind of tree structure constrained;

otherwise, the next node in preorder. In the latter case the next potential candidate does not

exist if the previous potential candidate is the last descendant of f (Parent(vnext)).

The two aforementioned cases are comprised by the GetNextPotentialCandidate func-

tion, thus GetFirstPotentialCandidate returns a potential candidate if there is any.

�

Showing that FindPartialCandidate returns a partial candidate is straightforward. The

function checks if a potential candidate (returned either by GetFirstPotentialCandidate

or GetNextPotentialCandidate) satisfies the string constraint conditions and returns the

potential candidate if it does or continues by checking the next potential candidates. If a po-

tential candidate satisfies the string constraint conditions then a potential candidate is also a
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partial candidate, thus GetFirstPotentialCandidate returns a partial candidate if there

is any. �

A partial map fn is built up by recursively calling FindMatch. There are two halting points

in the recursion: (1) if a partial candidate cannot be found, and (2) if the partial map is

complete, i.e., n = |P|. Only the second case produces a complete map satisfying the

conditions as given in Definition 4.4.1, thus the FindMatch algorithm is correct. �

Given the current state of a partial map, the next partial candidate is sought repeatedly for

each potential candidate. The repetition continues regardless of whether the found partial

candidates eventually lead to a solution or not. This procedure is repeated recursively for

every state of the partial map, resulting in it finding all possible maps from P to T . Thus,

the FindMatch algorithm is complete. �

Complexity

The tree inclusion algorithms have been shown to have the time and space complexity

of O(|P| · |T |) [77, 120, 76], which is satisfied as long as an algorithm compares a pair

of pattern–target nodes no more than once. In order to do that, the previously proposed

algorithms use dynamic programming storing the results of subcomputations in a |P| × |T |
table and using it whenever a comparison is repeated for the same pair of nodes. In the

constrained constituent tree inclusion algorithm a similar table (Visited in Figure 4.3) is

used. However, due to the ancestor path pattern constraint, the table must also store a target

ancestor node for a given pair of pattern–target nodes. This subsequently implies that a

pattern–target node pair can be visited more than once with a different target ancestor. The

number of target ancestor nodes for a given pair is limited by the depth of a target tree

T . The rough upper noninclusive bound of the total number of comparisons is therefore

|T | + (|P| − 1) · |T | · ∑Depth(T )
i=2 (i − 1)pi, where pi is the normalized number of target nodes

on i-th level, such that
∑Depth(T )

i=1 pi = 1, which in turn is bound by O(|P| · |T | · Depth(T )).

An empirical insight into the time and space complexity is given in Section 4.5.5.

4.4.3 Patterns

In this section a syntax of pattern trees, which accommodates the properties specified in

Section 4.4.1, is proposed. The syntax is based on the bracketed constituent tree syntax and

its grammar is shown in Figure 4.7.

The node definition starts with a label optionally followed by a list of constraints. Each con-

straint starts with an ‘@’ symbol and is followed by the acronym of the constraint (e.g., nsp

stands for next sibling pattern). In the case of string constraints, there are two comparison
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pattern = nonterminal | terminal ;

nonterminal = {gap} , "[" , node-def, [constraints] , (nonterminal | terminal) , "]" , {gap} ;

terminal = {gap} , "[" , node-def, [constraints] , [gap , content] , "]" , {gap}

node-def = ( "(" , label , ")" ) | label , ["?"] ;

constraints = [constraint-sibling] , [constraint-child-of | constraint-ancestor-path] ,

[constraint-previous-sibling-path] , [constraint-next-sibling-path] ;

constraint-child-of = "@c" ;

constraint-sibling = "@s" ;

constraint-ancestor-path = "@ap" , comparison-operator , path ;

constraint-previous-sibling-path = "@psp" , comparison-operator , path ;

constraint-next-sibling-path = "@nsp" , comparison-operator , path ;

comparison-operator = "=" | "!="

label = string | regex ;

path = string | regex ;

content = string | regex ;

gap = space | tabulation | new-line ;

Figure 4.7: The syntax of pattern trees in the extended Backus-Naur form (EBNF).

operators to choose from: ‘=’ (equal to) or ‘!=’ (different from). Although the pseudocode

of the algorithm in Section 4.4.2 does not specify the syntax of ancestor and sibling paths,

it is assumed that a path is given as a string formed by concatenating target tree node la-

bels separated by some symbol (in the implementation we adopted the ‘->’ symbol). For

instance, following the example in Figure 4.1, the path between ENT(15) and NP(7) (exclud-

ing these nodes) is expressed as NP->VP, hence the constraint @ap!=/NP/ in the pattern in

Figure 4.2(c). A question mark (‘?’) following the label is used to denote an optional node.

Additionally, labels can be enclosed in square brackets, which signals that the node is a

capture node. The notion of capture nodes was introduced to ease the formatting of relations

from inclusion maps produced by the algorithm (see relation formatting in Section 4.4.4 for

details). The algorithm itself is indifferent to the fact that the nodes are being captured.

Using the bracketed constituent tree syntax as the foundation syntax is motivated by its

portability, since it can be managed or visualized with the same tools for managing or

visualizing constituent trees. The main drawback to this approach lies in readability, which

may decrease significantly if a pattern incorporates multiple constraints and uses elaborated

regular expressions in a single node.

Example pattern trees are given in Figure 4.8. The four patterns shown were developed to

extract entity relations encompassing the following categories of relations:

X verb Y Entity X followed by a verb or a verbal adjective, followed by entity Y, e.g.,

<transcription factor> controls <cell death>
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X not verb Y as above but with negation, e.g., <hypoxia> not induce <ICAM-1>

X verb prep Y similar to “X verb Y” but with a preposition before the second entity, e.g.,

<I kappa B alpha> modified in <LMP-1-expressing B cells>

X not verb prep Y as above with negation, e.g., <NF-AT> not induced by <IL-2 stimulation>

X verb to verb Y X followed by a verb or a verbal adjective, followed by an infinitive form

of a verb, followed by Y, e.g., <T3SO4> failed to displace <[125I]T3>

X not verb to verb Y as above with negation

X verb to verb prep Y similar to “X verb to verb Y” but with a preposition before the

second entity, e.g., <IL-5 gene segment> sufficient to respond to <activating signal>

X not verb to verb prep Y as above with negation

[/.*/

[/NP|PRN/@c

[(ENT)@ap!=/PP|SBAR|VP/@nsp!=/ˆENT/]

]

[/ˆVP$|ˆADJP$/@ap!=/PP|NP|VP/

[(RB)? not]

[(/ˆVB|ˆJJ/)@ap!=/PP|NP|S/]

[/NP|PRN/@s

[(ENT)@ap!=/PP|SBAR|VP/@nsp!=/ˆENT/]

]]]

[/.*/

[/NP|PRN/@c

[(ENT)@ap!=/PP|SBAR|VP/@nsp!=/ˆENT/]

]

[/ˆVP$|ˆADJP$/@ap!=/PP|NP|VP/

[(RB)? not]

[(/ˆVB|ˆJJ/)@ap!=/PP|NP|S/]

[PP@s

[(/IN|TO/)@ap!=/NP|VP|ADJP|SBAR/]

[/NP|PRN/@s

[(ENT)@ap!=/PP|SBAR|VP/@nsp!=/ˆENT/]

]]]]

(a) (b)

[/.*/

[/NP|PRN/@c

[(ENT)@ap!=/PP|SBAR|VP/@nsp!=/ˆENT/]

]

[/VP|ADJP/@ap!=/PP|NP|VP/

[(RB)? not]

[(/VB|JJ|IN/)@ap!=/PP|NP|S/]

[S@s

[VP@c

[(TO)]

[VP@c

[(VB)@c]

[NP@ap!=/VP|ADJP|PP|SBAR/

[(ENT)@ap!=/PP|SBAR|VP/@nsp!=/ˆENT/]

]]]]]]

[/.*/

[/NP|PRN/@c

[(ENT)@ap!=/PP|SBAR|VP/@nsp!=/ˆENT/]

]

[/VP|ADJP/@ap!=/PP|NP|VP/

[(RB)? not]

[(/VB|JJ|IN/)@ap!=/PP|NP|S/]

[S@s

[VP@c

[(TO)]

[VP@c

[(VB)@c]

[PP@ap!=/NP|VP|ADJP|SBAR/

[(/IN|TO/)]

[NP@ap!=/VP|ADJP|PP|SBAR/

[(ENT)@ap!=/PP|SBAR|VP/@nsp!=/ˆENT/]

]]]]]]]

(c) (d)

Figure 4.8: Pattern constituent trees that extract relations of the following categories: (a)
“X verb Y” and “X not verb Y”, (b) “X verb prep Y” and “X not verb prep Y”, (c) “X verb
to verb Y” and “X not verb to verb Y”, and (d) “X verb to verb prep Y” and “X not verb to
verb prep Y”

The patterns presented in Figure 4.8 were developed by 1) building “frames” of pattern

trees that consisted of labels only, and 2) narrowing down the “greediness” of the patterns

by incorporating constraints. Whereas the first step was assisted by the Penn Treebank

guideline [26], the second step was the result of analysis of the most frequent structures of

constituent trees that appear in a biomedical corpus. In a sense, this process is similar to
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obtaining the constrained constituent pattern tree with regular expressions as presented in

Figure 4.2(c) from the inclusion trees presented in Figures 4.2(a) and (b).

For instance, [(ENT)@ap!=/PP|SBAR|VP/@nsp!=/ˆENT/] (the most common pattern node,

which appears twice in each pattern tree in Figure 4.8) reads as follows:

• The label of the node must be ENT (not part of the Penn Treebank annotation; see

Figure 4.1), i.e., an explicitly annotated entity.

• The ancestor path (denoted by @ap) must not contain nodes with labels PP, SBAR,

and VP to ensure that the to-be-matched node (an annotated entity in this case) is not

part of a preposition phrase, nor subordinate phrase, nor verb phrase, respectively.

Any other labels are permitted.

• The next sibling path (denoted by @nsp) must not start with a node labeled ENT.

This is to ensure that the to-be-matched node, an annotated entity, is not just a noun

modifier of another entity, i.e., it does not stand to the left of another annotated entity

in the sentence.

The performance of the patterns on two different text corpora, as well as their correctness,

completeness, and applicability are discussed in Section 4.5.

4.4.4 Processing pipeline

A processing pipeline for extracting relations in sentences is shown in Figure 4.9.

Pre-
processing

Annotated
sentences

Constrained
constituent tree

inclusion algorithm

Patterns

Constituent
parser

Relation
formatting

Entity
relations

Post-
processing

Figure 4.9: Pipeline for extracting relations in sentences.

The input sentences are assumed to have been already annotated with entities that are to be

part of relations. In order to preserve the annotation and the meaning of entities (usually

composed of more than one word) during parsing, it is necessary to pre-process them to the

form resilient to the parser’s internal tokenization process (e.g., by concatenating the words

that constitute an entity with underscore characters), and to “force” the parser to treat the

entities as nouns. Some parsers, such as the Stanford parser, allow for partially POS-tagged

sentences, whereas others can be “deceived” by replacing the entities with some common

nouns and bringing the original form back after parsing.
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Post-processing of parsed sentences mainly involves replacing labels of annotated entities

with the ENT tag or similar (as expected by patterns).

The constituent trees serve as input of the algorithm for solving the problem of constrained

constituent tree inclusion, which produces a set of maps reflecting the patterns in the target

trees. The relation formatting step involves converting the mapped nodes to relations con-

sisting of words only, which are embedded in the nodes. Since only the leaf nodes carry the

words, it is not unusual (especially with “loose” patterns) that the same set of leaves is part

of two or more maps, which results in duplicating the relations. Simple string comparison

statements alleviate this problem.

4.5 Evaluation

Three different types of evaluation have been performed to test for the quantitative and

qualitative aspects of the proposed method. Section 4.5.2 describes experimental results on

the GENIA corpus [79] with the patterns presented in Figure 4.8. The method is compared

against two other approaches for extracting binary relations on this corpus. The empiri-

cal correctness and completeness of the patterns are analyzed in Section 4.5.3; whereas in

Section 4.5.4 the applicability of the patterns to a general English corpus is examined by

comparing the proposed method with the results generated using the open information ex-

traction system reported in [22]. The empirical analysis of time and space complexity is

presented in Section 4.5.5.

4.5.1 Corpus preprocessing

The GENIA corpus is preprocessed by decomposing nested tags and biological entities

involving ellipses in coordinated clauses (an example is given in Figure 4.10).

<cons lex="(AND human_T_lymphocyte human_B_lymphocyte)" sem="(AND G#cell_type G#cell_type)">

<cons lex="human*">human</cons>

<cons lex="*T*">T</cons>

and

<cons lex="*B*">B</cons>

<cons lex="*lymphocyte">lymphocytes</cons>

</cons>

(a)

<cons lex="human_T_lymphocyte" sem="G#cell_type">human T lymphocytes</cons>

and

<cons lex="human_B_lymphocyte" sem="G#cell_type">human B lymphocytes</cons>

</cons>

(b)

Figure 4.10: Example of (a) an ellipsis in the GENIA corpus and (b) its corresponding
resolved form
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The terms are further processed with a set of manually developed rules, an approach com-

monly used in biological entity extraction [59, 46, 45, 128, 14]. Processing terms with

the rules involves removing unnecessary white spaces, dividing words and word sequences

into separate instances, and removing the acronyms embedded in the sequence of words

that represents their full form. A full list of rules with examples is given in Table 4.2.

Table 4.2: Preprocessing rules

1) 〈W〉 − 〈s〉〈D〉 → 〈W〉 − 〈D〉
HPP- 47.10 cell→ HPP-47.10 cell

2) 〈C1〉〈D1〉/〈D2〉〈C2〉 → 〈C1〉〈D1〉〈C2〉, 〈C1〉〈D2〉〈C2〉
Arp2/3 complex→ Arp2 complex, Arp3 complex

3) 〈D1〉/〈D2〉〈C〉 → 〈D1〉〈C〉, 〈D2〉〈C〉
4) 〈C〉〈D1〉/〈D2〉 → 〈C〉〈D1〉, 〈C〉〈D2〉

C3/5→ C3, C5
5) 〈C1〉 − 〈s〉and〈s〉〈Cs̄

2〉 − 〈C
s̄
3〉 → 〈C1〉 − 〈Cs̄

3〉, 〈C
s̄
2〉 − 〈C

s̄
3〉

biotin- and fluorescein-labeled amplicon → biotin-labeled amplicon, fluorescein-labeled
amplicon

6) 〈C1〉 − 〈s〉or〈s〉〈Cs̄
2〉 − 〈C

s̄
3〉 → 〈C1〉 − 〈Cs̄

3〉, 〈C
s̄
2〉 − 〈C

s̄
3〉

bi- or multi-functional domain protein→ bi-functional domain protein, multi-functional
domain protein

7) 〈C1〉〈s〉(〈C2〉) ∧ 〈C2〉 ⊂ 〈C1〉 → 〈C1〉
interleukin (IL)-1→ interleukin-1

8) 〈C1〉〈s〉[〈C2〉] ∧ 〈C2〉 ⊂ 〈C1〉 → 〈C1〉
activator protein-1 [AP-1] site→ activator protein-1 site

9) 〈s〉>1 → 〈s〉
〈C〉 = {character}+
〈W〉 = {a|...|z}+
〈D〉 = {0|...|9}+
〈s〉 = {white space character}
〈s̄〉 = {character different from 〈s〉}
〈Cs̄〉 = 〈s̄〉〈C〉〈s̄〉
〈X〉 ⊂ 〈Y〉 indicates that Y contains all the characters from X in the same order

4.5.2 Comparison with existing methods

The experimental setup consists of a 500-sentence extract from the GENIA corpus [79] (see

description in Section 2.2.1). In spite of having rich annotation, GENIA does not contain the

annotation of relations between the annotated biological entities. Therefore, the relations

of interest (see Section 4.4.3) have been manually extracted from a set of 500 randomly

selected sentences that contained at least two annotated entities. The number of sentences

chosen to perform the comparisons corresponds to the previous endeavors on extracting

relations from GENIA reported in [37] and [14], and is five times bigger than the one used

in [122]. Table 4.3 shows the distribution of relation categories in the corpus.

The patterns were applied on the output from two constituent parsers: the Stanford parser
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Table 4.3: Frequency of different categories of relations in the 500-sentence extract from
the GENIA corpus

Category Frequency

X verb prep Y 205 60.1%
X verb Y 107 31.4%
X verb to verb prep Y 12 3.5%
X verb to verb Y 11 3.2%
X not verb prep Y 3 0.9%
X not verb Y 3 0.9%
Total 341 100%

[82] (previously used in, e.g., [55, 68, 53, 75, 52]), and the Charniak-Lease parser [89], a

biomedical-literature-targeted version of the highly accurate Charniak parser [32]4. Both

parsers come with pre-trained models learned from the Penn Treebank and are ready to

parse raw (untagged) sentences. Two different parsers are used with the intention to inves-

tigate the independence of the method from a used parser.

Although the Penn Treebank allows one to specify grammatical function tags on con-

stituents by adding a suffix such as -NOM (nominal), -DTV (dative), -LOC (locative), -DIR

(direction), etc., different parsers use different subsets of these tags or do not produce any

at all. Therefore this piece of information is completely disregarded, which also makes it

possible to exclusively focus on the purely syntactic aspects of sentence decomposition and

makes the method truly parser-independent.

In order to compare the performance of the proposed method with the one that would be

achieved with a dependency parser, the Stanford dependency parser [49] was used. The

parser maps the constituent trees obtained from the two constituent parsers to sets of typed

dependencies. It uses a pattern search algorithm to identify head-dependent pairs in a con-

stituent tree (generated previously by a constituent parser) and assigns one from over 50

grammatical dependencies to each such pair. The use of the Stanford dependency parser is

motivated mainly by its modularity, which enables the use of different kinds of input (raw,

POS-tagged, or fully parsed text) and different styles of dependency representations (basic,

collapsed, propagated, or acyclic). The flexibility of the parser has been recognized, for

instance, in comparison of the performance of different constituent parsers [39].

In order to make use of the generated typed dependencies to extract the entity relations of

interest, a set of logic programming rules was prepared, in an approach similar to the one

used in [122]. The set of rules has been manually tailored to maximize the value of F1. An

example of a rule written in Prolog is given in Figure 4.11. The complete set of rules used

in the evaluation is provided in Appendix B.1.

4The performance of the two parsers have been studied in [39]
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rel(X,Verb,Y) :- subject(Verb,X), object(Verb,Y), annotated(X), annotated(Y).

rel(X,Verb,Y) :- subject(Y,X), cop(Y,Verb), annotated(X), annotated(Y).

subject(A,B) :- nsubj(A,B).

subject(A,B) :- nsubjpass(A,B).

subject(G,X) :- conj(Z,X), subject(G,Z).

subject(G,X) :- appos(Z,X), subject(G,Z).

subject(A,B) :- mod(B,A).

mod(A,B) :- partmod(A,B).

mod(A,B) :- amod(A,B).

object(A,B) :- dobj(A,B).

object(A,B) :- pobj(A,B).

object(G,Y) :- conj(Z,Y), object(G,Z).

object(G,Y) :- appos(Z,Y), object(G,Z).

Figure 4.11: Definition of the Prolog rule rel/3 representing the relation category “X verb
Y”. The predicate annotated/1 is not part of the Stanford grammatical dependency set,
and is introduced to assert that its argument is an annotated entity in a sentence.

The rule subject(G,X) :- conj(Z,X), subject(G,Z). and the rule object(G,Y)

:- conj(Z,Y), object(G,Z). in Figure 4.11 were introduced to propagate conjunct

dependencies, i.e., dependencies where the two arguments are connected by a coordinating

conjunction such as “and”, “or”, etc. Although the Stanford dependency parser is capable

of returning propagated dependencies, this option was not used for two reasons: (1) pre-

liminary experiments showed that the propagation was not always complete; and (2) using

the propagation automatically forces certain dependencies to collapse including the prep

dependency, which would only complicate the logic rules.

Extracting entity relations from typed dependencies using logic programming rules is anal-

ogous to extracting relations from constituent trees using the pattern trees. Therefore, gener-

ating dependencies directly from the constituent trees, as opposed to raw sentences, allows

us to neglect any differences in the parsers’ performance when comparing the pattern-tree

approach with the dependency-rule approach.

The results are shown in Table 4.4. The names of the methods refer to their respective

pipelines, e.g., Stanford�dep�rules is the method that uses the Stanford parser to obtain

constituent trees which are further processed with the dependency parser that produces

grammatical dependencies which, in turn, are processed with the logic programming rules

resulting in entity relations. The name frames in the chunker�frames method refers to “flat”

patterns and is introduced to avoid confusion with the patterns used with the constituent

parsers. Additionally, the term constituent-parser-based is used to refer in general to the

Stanford�patterns and Charniak-Lease�patterns methods, and analogically dependency-

parser-based is used to refer to the Stanford�dep�rules and Charniak-Lease�dep�rules

methods.

Both constituent-parser-based methods show similar overall performance in terms of F1

set at the level of 77-78% and both outperform their dependency-parser-based counter-
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Table 4.4: Performance of the extraction methods on the GENIA corpus. Precision (P),
recall (R), and F1 are reported in percentages.

Relation category Method P R F1

All Stanford�patterns 71.6 85.6 78.0
Charniak-Lease�patterns 73.4 81.8 77.4
Stanford�dep�rules 71.5 75.1 73.3
Charniak-Lease�dep�rules 72.5 72.7 72.6
chunker�frames 84.1 17.0 28.3

X verb prep Y Stanford�patterns 67.1 81.5 73.6
Charniak-Lease�patterns 69.8 80.0 74.5
Stanford�dep�rules 70.0 76.1 72.9
Charniak-Lease�dep�rules 68.4 71.7 70.0
chunker�frames 85.7 08.8 15.9

X verb Y Stanford�patterns 79.2 92.5 85.3
Charniak-Lease�patterns 78.2 86.9 82.3
Stanford�dep�rules 72.6 72.0 72.3
Charniak-Lease�dep�rules 79.6 76.6 78.1
chunker�frames 83.3 32.7 47.0

X verb to verb prep Y Stanford�patterns 58.8 83.3 69.0
Charniak-Lease�patterns 66.7 66.7 66.7
Stanford�dep�rules 64.3 75.0 69.2
Charniak-Lease�dep�rules 58.3 58.3 58.3
chunker�frames n/a n/a n/a

X verb to verb Y Stanford�patterns 90.9 90.9 90.9
Charniak-Lease�patterns 100.0 72.7 84.2
Stanford�dep�rules 88.9 72.7 80.0
Charniak-Lease�dep�rules 100.0 54.5 70.6
chunker�frames n/a n/a n/a

X not verb prep Y Stanford�patterns 100.0 100.0 100.0
Charniak-Lease�patterns 100.0 100.0 100.0
Stanford�dep�rules 100.0 100.0 100.0
Charniak-Lease�dep�rules 100.0 100.0 100.0
chunker�frames n/a n/a n/a

X not verb Y Stanford�patterns 100.0 100.0 100.0
Charniak-Lease�patterns 100.0 100.0 100.0
Stanford�dep�rules 100.0 100.0 100.0
Charniak-Lease�dep�rules 100.0 100.0 100.0
chunker�frames n/a n/a n/a
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parts by almost five percentage points. The difference is mainly caused by the inability

of the dependency parser to recognize a dependency, i.e., although some kind of depen-

dency between two tokens is detected it is not specified and is marked as dep (dependent),

which in the Stanford dependency parser taxonomy of dependencies is the uppermost label

that generalizes all dependencies. The only relation category where a dependency-parser-

based method performs better than both constituent-parser-based methods is “X verb to

verb prep Y”. However, the 0.2-percentage-point difference shown in this case between

Stanford�dep�rules and Stanford�patterns is negligible and is not confirmed by their

counterpart methods using the Charniak-Lease parser. A perfect 100% F1 was achieved by

all the four methods with relations that involved the “not” adverb; however, the frequency

of appearance of these categories of relations in the corpus was marginal.

Although the best precision was obtained with the method based on the shallow parser, its

recall is nowhere near the recall of the remaining methods. This suggests that the shallow-

parser method returns only a small set of, albeit mostly correct, relations. As expected,

although this method is fast (shallow parsing is less complex than deep constituent parsing

or dependency parsing) and easy to set up (it requires only flat chunking patterns), it is not

suitable for complex sentences nor for complex relation categories.

4.5.3 Correctness and completeness of the patterns

Due to the fact that the patterns were not tested in an ideal environment, i.e., they were used

with automatically generated error susceptible trees, the evaluation process was repeated

taking into consideration only the correctly parsed sentences. More precisely, the branches

of the 500 test trees that were either given a wrong POS or were incorrectly attached in

the tree were marked as invalid. Subsequently, all retrieved and relevant relations affected

by the marked branches were discarded. As long as marked branches did not influence a

relation, the relation was kept. That implies that for a given tree, there were situations where

some relations were kept and some were discarded.

As the result, the number of incorrect extractions was reduced to only two false positive

cases and one false negative case for the Stanford parser and four false positive and one

false negative for the Charniak-Lease parser, compared to 292 and 279 retrieved and rel-

evant cases for the two parsers, respectively. The incorrectly retrieved cases came from

the “but not” expression in sentences. For example, in the sentence “[...] <aspirin> and

<indomethacin>, but not <CyA>, induced <Hsp70 expression> [...]” the incorrectly re-

trieved relation was <CyA> induced <Hsp70 expression>. The only relevant case that was

not retrieved appeared in the sentence “<Transcriptional regulation> [...] is mediated by

<transcription factor> <Sp1> and <AP-2>”, where <transcription factor> was rejected

due to the pattern’s next-sibling constraint. The next-sibling constraint was introduced to

85



ignore noun modifiers; unfortunately, in this particular case it also ignored an appositional

modifier. It may be argued whether any modifiers should be taken into considerations at

all, since the problem could be solved by combining such entities into one single annota-

tion in the first place. Although GENIA does allow for nested annotations, this strategy is

inconsistent in this corpus. Methods based on dependency parsers have a potential advan-

tage over the constituent-parser-based methods when it comes to distinguishing between

different types of modifiers (as long as a typed dependency grammar is expressive enough);

despite this, proper categorization of modifiers still remains an open problem.

The patterns presented in Figure 4.8 were tailored to the constituent trees it is possible to

encounter in the corpus used in the evaluation, i.e., they do not account for all the (albeit

unlikely) possibilities specified in the Penn Treebank guideline [26]. Thus, theoretically the

patterns are neither correct nor complete. For instance, the optional node [(RB)? not],

which appears in every pattern in Figure 4.8, is used to “detect” verb negations. If there

are two verbs attached to the same verb phrase that the optional node is attached to, but

only one of these verbs is negated, the extraction process will result in an extra irrelevant

relation. Similarly, the optional node will not be used at all if the negation appears in a

contraction such as don’t (not the case in scientific articles, where formal writing is used),

which will result in missing a relevant relation. This and similar cases can be dealt with by

extending or creating more patterns; though, the cost and complexity of such patterns, as

well as the time needed to process them, may not always be justified by a (likely) negligible

increase in precision and/or recall.

4.5.4 Application to a general English corpus

In order to examine the applicability of the proposed patterns on a non-biomedical text,

additional evaluation was performed using the proposed method with the four patterns (in

Figure 4.8) with a general English corpus used in the open information extraction project

[22] . This corpus, as opposed to GENIA, is comprised of sentences that consists of exactly

two annotated entities.

Table 4.5 shows the performance of the six methods including the two constituent-parser-

based methods, two dependency-parser-based methods, as well as two methods reported by

the authors of the corpus, O-CRF (open extraction with Conditional Random Fields) and

O-NB (open extraction with Naiv̈e Bayes classifier). Both O-CRF and O-NB are based on

dependency relations (see Section 4.2 for details).

The results confirm that the constituent-parser-based methods outperform their dependency-

rule-based counterparts yielding a 5-to-6-percentage-point difference in F1. This time, how-

ever, the Charniak-Lease parser visibly outperformed the Stanford parser by a difference of
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Table 4.5: Performance of the extraction methods on a general English corpus used in [22].
Precision (P), recall (R), and F1 are reported in percentages. O-CRF and O-NB as reported
in [22]

Relation category Method P R F1

ALL Stanford�patterns 94.2 63.0 75.5
Charniak-Lease�patterns 95.3 71.5 81.7
Stanford�dep�rules 94.0 55.3 69.6
Charniak-Lease�dep�rules 95.2 63.4 76.1
O-CRF 88.3 45.2 59.8
O-NB 86.6 23.2 36.6

X verb Y Stanford�patterns 98.3 63.1 76.9
Charniak-Lease�patterns 95.5 71.5 81.8
Stanford�dep�rules 98.9 52.0 68.1
Charniak-Lease�dep�rules 96.8 66.5 78.8
O-CRF 93.9 65.1 76.9
O-NB 100 38.6 55.7

X verb prep Y Stanford�patterns 90.2 61.8 73.3
Charniak-Lease�patterns 95.5 71.9 82.0
Stanford�dep�rules 89.8 59.5 71.6
Charniak-Lease�dep�rules 96.2 56.2 70.9
O-CRF 95.2 50.0 65.6
O-NB 95.2 25.3 40.0

X verb to verb Y Stanford�patterns 76.9 66.7 71.4
Charniak-Lease�patterns 90.9 66.7 76.9
Stanford�dep�rules 83.3 66.7 74.1
Charniak-Lease�dep�rules 83.3 66.7 74.1
O-CRF 95.7 46.8 62.9
O-NB 100.0 25.5 40.6

X not verb Y Stanford�patterns 100.0 100.0 100.0
Charniak-Lease�patterns 100.0 100.0 100.0
Stanford�dep�rules 100.0 100.0 100.0
Charniak-Lease�dep�rules 100.0 100.0 100.0
O-CRF n/a n/a n/a
O-NB n/a n/a n/a
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over six percentage points.

Both O-CRF and O-NB were inferior to all of the other methods, falling by over 20 and

45 percentage points, respectively, behind the best-performing Charniak-Lease�patterns

method5.

4.5.5 Runtime and memory consumption

This section presents an empirical evaluation of the time and space complexity described in

Section 4.4.2.

The runtime complexity measured on a set of 4,000 experiments (500 GENIA sentences, 4

patterns, 2 parsers) shows that there is a significant margin between the scale of the problem

measured as |P| · |T | · Depth(T ) and the actual number of node comparisons for a given

pattern P and a target T . Figure 4.12(a) shows the distance between the actual number of

comparisons for each experiment (shown as points) and the theoretical upper bound (shown

as line |P| · |T | · Depth(T )); whereas the histogram in Figure 4.12(c) indicates that for each

experiment the total number of comparisons never exceeds 10% of |P| · |T | · Depth(T ).

To investigate the difference in the runtime complexity between the proposed algorithm

and ordered tree inclusion algorithms, which perform in O(|P| · |T |), the results were also

projected in the function of |P| · |T |, as shown in Figures 4.12(b) and (d). Only 0.9% of the

total number of experiments demonstrate a number of comparisons above |P| · |T |, indicating

a close relationship of the constrained constituent tree inclusion algorithm with the ordered

tree inclusion algorithms in terms of runtime complexity.

The algorithm implemented in Perl and run on a PC with a 1.8GHz processor took on

average about 35ms and 14kB per experiment. These numbers do not include the time and

memory needed for loading and storing input constituent trees.

4.6 Conclusions

The proposed method, which is based on a constituent parser and involves a set of hand-

crafted patterns and an algorithm for solving the problem of constrained constituent tree

inclusion, proved to be competitive when compared to other, more popular, attempts in-

volving shallow-parser- and dependency-parser-based methods. The experimental results

with a handful of patterns representing different categories of relations showed the superior

5Since the results were compared directly to those reported in [22], there is a chance of slight discrepancies
in the interpretation of relevant relations in the process of evaluation, which could either increase or decrease the
obtained difference. Nevertheless, it is unlikely that this divergence during the evaluation process meaningfully
affects the results
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Figure 4.12: Number of node string/regex comparisons relative to the scale of the problem
illustrated as scatter plots representing the 4,000 experiments in the function of (a) |P| · |T | ·
Depth(T ) and (b) |P| · |T |, and their respective histograms, (c) and (d).
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overall performance of the constituent-parser-based methods over the remaining methods

in terms of F1.

The expressiveness of patterns was flexible enough to cover the eight different categories

of relations considered in the experimental setup with just four patterns. This was possible

due to the employment of regular expressions, which allowed for defining classes of nodes

and thus reducing the number of patterns, as well as the use of the tree structure and string

constraints, which reduced the “greediness” of tree inclusion patterns, resulting in improved

precision.

The proposed method as well as all the other discussed methods suffer from the imper-

fection of their corresponding parsers, which propagates through the processing pipeline

and into the results. Although the proposed patterns for extracting relation categories of

interest are neither fully correct nor complete, an empirical study on a subset of error-free

constituent trees showed that only a small fraction (F1 above 99%) of the total number of

relations were mis-extracted.

The main advantage of the constituent-pattern-based approach is its parser independence

made possible by the widely accepted Penn Treebank annotation standard; this is virtually

impossible to obtain with dependency-parser-based methods. Additionally, as opposed to

the dependency-parser-based methods, which require identification of grammatical depen-

dencies/roles between words in a sentence, the proposed method proved to be a successful

competitor that solely relies on the syntactic decomposition of a sentence. The main draw-

back of all the parser-based methods lies in their performance being undeniably dependent

on the accuracy of the underlying syntactic parsers. As far as timely processing of large

data is considered, the machine-learning-based method is a clear choice since, once trained,

this method needs only a minimum of user input to extract relations in a single run using

the output of a shallow parser. Nevertheless, the methods based on deep linguistic parsing

with manually developed patterns or rules have proven to produce the most accurate results,

and as such are very well suited for applications where high quality output is required.
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Chapter 5

Ontology Enrichment Application

5.1 Introduction

Since its development, the GENIA corpus and ontology [79]1 have been extensively used

by researchers in biological entity recognition [80, 157], ontology creation and population

[128, 13], relation extraction [37, 123, 122, 14], and query answering [14, 136, 12]. These

efforts show a demand for a more comprehensive and complete ontology that would incor-

porate extracted knowledge and semantically enhanced query answering systems. It has

also been argued [130] that the structure of the ontology is inconsistent and does not fully

reflect the subsumption of concepts.

This chapter discusses an extension of the GENIA ontology that not only makes the original

ontology more comprehensive for reasoners but also accounts for additional information

embedded in the GENIA corpus. The main focus is put on investigating the possibilities

of encoding captured knowledge (as shown in the previous chapter) in OWL [6], or more

specifically in OWL 2 [4], an ontology language that is becoming increasingly popular in

both academic and commercial sectors [132, 54]. The proposed extension to the original

ontology involves:

• asserting the category membership of biological entities,

• introducing binary relationships between biological entities,

• building the hierarchy of relationships,

• connecting the ontology with an external, well-developed source of knowledge, and

1See Section 2.2.1 for the description of the GENIA corpus and ontology.
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• modifying and conceptually enriching the structure of the original taxonomy of cate-

gories.

The remainder of this chapter is organized as follows: Section 5.2 discusses the details of

encoding the information extracted from the corpus in OWL 2. Examples of the usage of

the enriched ontology are presented in Section 5.3. Section 5.4 summarizes the chapter.

A version of this chapter has been published in parts in [115, 117]

5.2 OWL representation

In the following sections, the description of encoding the knowledge base in OWL begins

with the knowledge extracted from the corpus and external sources, which is then followed

by discussion of the structure of the original GENIA ontology, its limitations, and the pro-

posed re-engineering of the ontology structure.

Due to the discrepancy in naming between OWL, description logic2, and GENIA terminol-

ogy, terms such as class, category, and concept are used interchangeably. Similarly, the

term biological entity is an individual or instance, and should not be confused with the term

entity used in OWL 2 syntax to express fundamental building blocks, which include classes,

individuals, properties, etc.

The OWL snippets presented in the following sections are written in the OWL functional-

style syntax [5].

5.2.1 Biological entities

Asserting the membership of individuals (biological entities) is straightforward. Each anno-

tated and preprocessed (see Section 4.5.1) biological entity is a member of a class indicated

by the annotation. For example, in Figure 5.1, IL-2 gene is asserted as a member of class

DNA domain or region3.

Due to the OWL entity naming constraints, the names of individuals are encoded (but still

fully understandable by humans). For the sake of clarity each individual additionally carries

a label property that contains the original form of the biological entity.

2See Section 2.1.3 for an introduction to description logic and OWL.
3There is some inconsistency between the corpus and the ontology in naming the categories. This issue is

fixed by a simple string processor.
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<sentence>

<cons lex="IL-2_gene_transcription" sem="G#other_name">

<cons lex="IL-2_gene" sem="G#DNA_domain_or_region">

IL-2 gene

</cons>

transcription

</cons>

is affected by several

<cons lex="nuclear_protein" sem="G#protein_family_or_group">

nuclear proteins

</cons>

.

</sentence>

Figure 5.1: Example of an annotated sentence from the GENIA corpus. Formatting (inden-
tation and line breaks) was added to improve readability.

Cross-referencing knowledge bases

The individuals are also associated with their definitions through UMLS Metathesaurus [9],
a large vocabulary database that contains information about biomedical and health-related
concepts. To properly link the biological entities with the database entries, the biological
entities were furthered normalized and compared against one of the indices of the local copy
of the Metathesaurus database. This process produced a Concept Unique Identifier (CUI)
for each recognized biological entity. CUIs are introduced to the ontology with a functional
data property, hasCUI, defined as follows:

FunctionalDataProperty(hasCUI)

DataPropertyDomain(hasCUI owl:Thing)

DataPropertyRange(hasCUI xsd:IDREF)

As an example, the following statements represent OWL constructs encompassing declara-
tion, class and data property assertions, and annotation of IL-2 gene:

EntityAnnotation(Individual(IL-2_gene) Label("IL-2 gene"))

ClassAssertion(DNA_domain_or_region IL-2_gene)

DataPropertyAssertion(hasCUI IL-2_gene "C0879590")

Although the hasCUI property is rather useless when it comes to inferring facts in the

ontology, it is a valuable piece of information for a user who needs to cross-reference two

different knowledge bases.

Lexical nesting of biological entities

The nested tags in the corpus serve as an additional piece of information that was used
to add two object properties, lexicallyStemsFrom and isLexicalStemFor. The two
properties were introduced to denote one individual as lexically composed from the other.

93



These properties are irreflexive object properties in inverse relation to each other. An in-
dividual can stem from more than one individual and an individual can be a root for many
individuals, i.e., the two properties are not functional. This property is defined in OWL as
follows:

IrreflexiveObjectProperty(lexicallyStemsFrom)

IrreflexiveObjectProperty(isLexicalStemFor)

InverseObjectProperties(isLexicalStemFor lexicallyStemsFrom)

For example, the fact that <IL-2 gene transcription> lexically stems from <IL-2 gene> is
asserted as follows:

ObjectPropertyAssertion(

Comment("IL-2 gene transcription stems from IL-2 gene.")

lexicallyStemsFrom IL-2_gene_transcription IL-2_gene)

The irreflexive property characteristic has rather limited inference capabilities in the ontol-

ogy, and was introduced more as a constraint to prevent from mistakenly adding statements

which assert that an individual stems from itself. It can also be argued whether lexi-

callyStemsFrom and isLexicalStemFor aim to make statements about the relationship

of labels or about the relationship of the individuals they represent. Although the lexi-

cal decomposition is directly related to the labels, it is assumed that such statements have

inference value for the individuals as well.

Acronyms

The identification of acronyms (see Section 2.2.1) leads to another fact that can be stated
about two individuals; when one is an acronym of the other, the two are the same. For
instance, knowing that IL-2 gene is an acronym for interleukin-2 gene the following is
stated:

SameIndividuals(interleukin-2_gene IL-2_gene)

5.2.2 Relationships between biological entities

The TBox of the ontology is extended by declaring a set of object properties that will be

used to assert verb relationships between biological entities in the corpus. These relation-

ships are fed by the relationship extraction process as described in Chapter 4. In fact, the

extracted triples are used to enrich both the TBox and the ABox by (1) deriving a hierar-

chical structure of object properties based on the syntax of expressions denoting kinds of
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functional relationships between two entities (e.g., activates, inhibits, is affected by, etc.),

and by (2) asserting a relationship between the subject and the object of the expression.

For instance, the relationship <IL-2 gene transcription> is affected by <nuclear protein>
translates to:

ObjectPropertyAssertion(

Comment("IL-2 gene transcription is affected by nuclear protein.")

affectedBy IL-2_gene_transcription nuclear_protein)

The hierarchy of verb expressions is built by looking for expressions that have the same
verb but different prepositions. For example, affect subsumes affectIn, affectWith,
etc. An exception to this rule is made whenever the preposition by is encountered, which
suggests that a verb expression with this preposition is in inverse relation to the verb alone.
For example, affectedBy is the inverse of affect. The above is stated in OWL as follows:

SubObjectPropertyOf(affectIn affect)

SubObjectPropertyOf(affectWith affect)

InverseObjectProperties(affectedBy affect)

5.2.3 Classes

The original GENIA taxonomy consists of only the declaration of classes and axioms about
subclasses. For example (translating from the original RDF/XML syntax to the functional-
style syntax):

SubClassOf(DNA_domain_or_region DNA)

SubClassOf(DNA_family_or_group DNA)

SubClassOf(DNA_molecule DNA)

SubClassOf(DNA_substructure DNA)

SubClassOf(DNA_ETC DNA)

An analysis of this taxonomy and the annotation of biological entities in the corpus delivers

additional, potentially useful pieces of information:

• there are a few default terminal classes that serve as placeholders for instances that

do not belong to any of these classes’ siblings,

• only terminal classes have instances, and

• an instance belongs to one and only one class.

The fact that the biological entities directly belong to the terminal classes can be embedded

in the ontology by introducing covering axioms, such that C ≡ D1 � · · · � Dn, where
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D1, . . . ,Dn are subclasses of class C, i.e., if an individual is a member of class C it must

also be a member of at least one of C’s subclasses. The “at least one” expression is further

narrowed to “exactly one” by declaring that the sibling classes are disjointed, i.e., D1�· · ·�
Dn �⊥. The disjointedness of classes is assumed by the fact that each distinct biological

entity that appears in the corpus is annotated to one and only one class.

The last axiom also addresses the issue of the default classes. Treating a default class in the

same way as other sibling classes (as this is the case in the original GENIA ontology) does

not fully reflect its meaning, namely a complement of the sibling classes. For example, in

the original taxonomy the class DNA contains five subclasses out of which DNA ETC is a sub-

class that represents instances that do not fall into the remaining DNA family or group,

DNA domain or region, DNA molecule, or DNA substructure classes. Thus, the only

way to differentiate between the default class and its siblings is the name of the class which,

in the original ontology, is prefixed or suffixed by either “ETC” or “other”. Although such

a notation is sufficient for a human to interpret, it lacks any meaning for a reasoner.

For instance, the DNA ETC class and its siblings can be reduced to the following expression
in OWL:

EquivalentClasses(

Comment("DNA_ETC is an intersection of DNA and the complement

of DNA_ETC’s siblings.")

DNA_ETC

ObjectIntersectionOf(

DNA

ObjectComplementOf(

ObjectUnionOf(

DNA_domain_or_region

DNA_family_or_group

DNA_molecule

DNA_substructure))))

There are five such cases in the GENIA ontology including the three top-level classes,

which suggests that Other name is a complement of the union of Substance and Source.

Inconsistencies in the GENIA ontology

It has been argued [130] that the structure of the original GENIA ontology is inconsistent

and does not fully reflect the subsumption of concepts. For instance, Protein family-

or group appears as a subconcept of Protein, wherein the more accurate relationship

between these categories would be described as: Protein belongs to Protein family-

or group. Similarly, Protein is composed of Amino acid rather than is an Amino acid.
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Such inconsistency may lead to surprising results when reasoning is applied.

To overcome this problem a structure-driven ontology evolution is proposed. Figure 5.2

shows a fragment of the original GENIA ontology and its corresponding restructured coun-

terpart4.

DNA_family_or_group

DNA_substructure

Nucleotide PolynucleotideAmino_acid_monomer Peptide

DNA_ETC

Amino_acid

Protein DNA

DNA_molecule

DNA_domain_or_region

RNA

RNA_domain_or_region

RNA_ETC RNA_substructure RNA_molecule

RNA_family_or_groupProtein_ETC

Protein_domain_or_region Protein_substructure

Protein_complex

Protein_molecule Protein_subunit

Protein_family_or_group

Other_organic_compound

Organic

Carbohydrate Nucleic_acid Lipid

(a)
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RNA RNA_domain_or_region RNA_substructure RNA_family_or_group

Nucleotide Polynucleotide

(b)

Figure 5.2: A fragment of (a) the original GENIA ontology and (b) its corresponding re-
structured version

The following list summarizes the structural changes of the GENIA ontology.

• The default classes have been removed. Individuals that belonged to these classes

are assigned an immediately subsuming class, e.g., individuals of the former class

Protein ETC are moved to Protein. That implies that the statement C ≡ D1 �
· · · � Dn, where D1, . . . ,Dn are subclasses of class C, no longer holds, i.e., it is now

possible to assert a membership to any class (not only terminal).

• Similar modification was made with the classes Protein molecule, DNA molecule,

and RNA molecule. Analysis of the membership of individuals in the corpus re-

vealed that the annotators used these classes as placeholders for Protein, DNA, and

RNA, respectively.

• Controversial is-a relationships have been removed. For instance, all the former sub-

classes of Protein, except Protein subunit, are now at the same level as Pro-

tein, and Protein itself is no longer a subclass of Amino acid.

• In order to distinguish between organic compounds related to amino acids and nu-

cleic acids, two “grouping” classes have been added, Amino acid or Peptide -

4The proposed modification of the GENIA ontology was undertaken in collaboration with Inge Christiaens,
an expert in gene-environment interactions.
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or Protein and Nucleid acid or Nucleotide. For instance, Amino acid or -

Peptide or Protein is defined as “amino acids and chains of amino acids con-

nected by peptide linkages”5. Such grouping is also motivated by the fact that there

are cases in the GENIA corpus where the same individuals are assigned two different

classes (which shows that the annotators could not unanimously decide on a single

membership). This ambiguity is resolved by asserting such individuals to a class one

level higher in the hierarchy, in most cases, to the two grouping classes.

Relationships between classes

The modification of the original ontology allows for additional relationships (other than is-

a) that can be explicitly stated in the ontology by introducing axioms using existential quan-

tifications. For instance, the statement “proteins are composed of peptides, which in turn,

are composed of amino acids” can be expressed as Protein� ∃composedOf.Peptide and

Peptide � ∃composedOf.Amino acid, where the composedOf role is a transitive object

property, or in OWL:

TransitiveObjectProperty(composedOf)

SubClassOf(Protein ObjectSomeValuesFrom(composedOf Peptide))

SubClassOf(Peptide ObjectSomeValuesFrom(composedOf Amino_acid))

The above structure-driven statements can be augmented by data-driven statements, i.e., the

relationship between individuals (biological entities) can be used to show the relationships

between the classes they belong to. Therefore, for each class CD: CD � (∃R.CR1 � · · · �
∃R.CRn), where CRi, . . . ,CRn is a set of filler classes obtained by looking up the membership

of the right-hand-side individuals directly from all the relationship triples with the property

R that have a left-hand-side individual of class CD.

For example, the OWL construct for class DNA domain or region with object property
affect is encoded as follows:

SubClassOf(

DNA_domain_or_region

ObjectUnionOf(

ObjectSomeValuesFrom(affect Cell_type)

ObjectSomeValuesFrom(affect Protein_family_or_group)

...))

The quantification constructs discussed above appear as the necessary criteria for the classes,

i.e., they are subsuming the classes. They cannot appear as the necessary and sufficient cri-

5This definition is part of UMLS Semantic Network [10].
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teria for those classes, i.e., they cannot be equivalent to those classes. Otherwise this would

result in inconsistencies. Due to class disjointedness and multiple object properties cross-

referencing throughout all the classes, it can be stated that if an individual is a member of

a particular class, it satisfies the necessary criteria given for that class, but the inverse does

not hold. For instance, it is valid to reason that a member of the class Protein is also a

member of things that are composed of Amino Acids, but it is invalid to state that a member

of things that are composed of Amino Acids is also a Protein, i.e., this is not always true.

5.3 Case study

This section presents several examples of using the enriched ontology in query-answering

and visualization scenarios.

Example 1: Relationships between individuals

Query: “What is the relationship between nuclear factor-kappa B and nuclear factor-kappa

B site?”

Result: “1) nuclear factor-kappa B and nuclear factor-kappa B site are both organic com-

pounds; and 2) nuclear factor-kappa B site activates IL-2R alpha enhancer, which binds

nuclear factor-kappa B.”

Explanation: The first part of the result is obtained by following the path in the class hi-

erarchy tree between the immediate classes the two entities are members of and their least

common subsumming class. Whereas the first part involves the use of asserted statements

only, the second part uses asserted statements to infer new knowledge. The assertions, with

regard to the query, include:

(a) ObjectPropertyAssertion(bind IL 2R alpha enhancer NF kappa B);

(b) ObjectPropertyAssertion(activatedBy IL 2R alpha enhancer

NF kappa B site);

(c) SameIndividuals(nuclear factor kappa B NF kappa B);

(d) SameIndividuals(nuclear factor kappa B site NF kappa B site); and

(e) InverseObjectProperties(activatedBy activate).

The reasoning process involves the use of (c), (d), and (e) to infer that (due to the fact

that nuclear factor kappa-B is the same entity as NF kappa-B, nuclear factor kappa-B site
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is the same entity as NF kappa-B site, and activated by is in inverse relation to activate)

nuclear factor kappa-B site activates IL-2R alpha enhancer and IL-2R alpha enhancer

binds nuclear factor kappa-B.

Example 2: Relationships between classes

Query: “What kind of concepts are composed of amino acids?”

Result: “Protein complexes, proteins, and peptides are composed of amino acids.”

Explanation: This query involves the use of the following assertions:

(a) TransitiveObjectProperty(composedOf);

(b) SubClassOf(Protein complex ObjectSomeValuesFrom(composedOf Protein));

(c) SubClassOf(Protein ObjectSomeValuesFrom(composedOf Peptide)); and

(d) SubClassOf(Peptide ObjectSomeValuesFrom(composedOf Amino acid)).

Due to the chain of assertions (b)–(d) and the transitivity of the mereological composed-

of property, it is inferred that, apart from peptide, protein and protein complex are also

composed of amino acids.

The result of this query could also be augmented by the list of individuals that belong to the

three classes, Protein complex, Protein, and Peptide.

Example 3: Visual representation

Figure 5.3 is an example of the visual representation of classes, individuals, and relation-

ships mentioned in the previous two examples.

It is important to note that the object properties, composedOf, bind, activate, and ac-

tivatedBy, are obtained from the subsumption statements with existential quantifications

(as explained in the previous section), and as such they do not imply that all the individuals

of one class appear in a particular relationship with all the individuals of another class; they

merely indicate the existence of the relationships between individuals in these classes.

5.4 Conclusions

The expressiveness of OWL 2 is well-suited to accommodate the presented knowledge base

automatically extracted from a text corpus. The OWL representation encompassing the

100



Amino_acid

Amino_acid_or_Peptide_or_Protein

PeptideProteinProtein_complex

DNA_domain_or_regionDNA_substructure activate

composedOfcomposedOf

activatedBy

bind

Organic_compound

Nucleic_acid_or_Nucleotide

Nucleic_acidcomposedOf
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Figure 5.3: Fragment of the enriched GENIA ontology with selected individuals and rela-
tionships. Ellipses and diamonds represent classes and individuals, respectively. Solid lines
indicate structure-driven relationships, whereas dashed lines indicate data-driven relation-
ships.

knowledge base included TBox elements such as classes, data and object properties, hier-

archies of classes and object properties, object properties’ characteristics, as well as ABox

assertions. Additionally, the structural modification of the original ontology was presented

to conform with OWL and its expressive description logic. As a result, the enriched on-

tology became a comprehensible, inference-consistent knowledge base, which constitutes

a tangible representation of knowledge and can be used in a variety of applications, such as

semantically enhanced query answering systems.
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Chapter 6

Conclusions

6.1 Summary

This dissertation tackled two challenging tasks in a broad textual information retrieval and

knowledge capture scenario, namely text categorization and entity relation extraction. The

two investigations resulted in a fast and relatively effective tool for building descriptive

models capable of categorizing documents to multiple labels, and a highly effective method

able to extract a broad range of relations between entities embedded in text. Additionally,

an application that aims at representing the extracted knowledge in a strictly defined but

highly expressive structure of ontology was presented. Such an ontology provides a tangible

representation of the knowledge base and could be used to build semantically enhanced

query answering systems.

The multi-label classification of documents was based on the simple and intuitive idea of

building association rules with the left-hand side consisting of frequent patterns (set of

words) that appear in documents, and the right-hand side composed of classes to which

these patterns should be assigned. The learning process, i.e., the process of building the

models, which consist of association rules, was based on a tree enumeration technique with

projected datasets. The resulting algorithm allowed for the choice between two different

tree traversing strategies, breadth-first and depth-first. The classification scenario involved

the use of two alternative thresholding strategies based on either the document-independent

confidence of the rules, or the more commonly used, cosine measure, reflecting the simi-

larity between a rule and a document in their vector-space representations. The two intro-

duced strategies, RCut.% and SCut.global, were used to decide on the number and selection

of classes assigned to a document by choosing a fraction of top scored rules (RCut.%) or

the rules that satisfied the minimum score (SCut.global). The evaluation included both the

quantitative (runtime and memory consumption) and qualitative (classification effective-
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ness) aspects of the proposed solution.

The extraction of relations between entities embedded in text involved the utilization of the

output of a constituent parser with a set of manually developed patterns and an algorithm

for extracting the patterns from the constituent trees. The algorithm was based on the or-

dered tree inclusion technique and was extended to solved the newly formulated problem of

constrained constituent tree inclusion with regular expression matching. The proposed syn-

tax for encoding patterns was based on the bracketed-style representation of a constituent

tree. An evaluation of the method was performed with four patterns, which covered twice

as many different types of relations. The constituent-parser-based approach was compared

against the dependency-parser-, shallow-parser-, and machine-learning-based methods on

two data sources coming from two different domains.

The extracted knowledge was further embedded into an existing ontology using OWL 2.

The resulting ontology included the category membership of the entities, binary relation-

ships between biological entities, the hierarchy of relationships, as well as cross-references

between concepts in ontology and an external thesaurus. The structure- and data-driven

analysis also resulted in the structural modification of the original ontology.

The major contributions of this dissertation include:

• the development of a novel, association-classification-based method for the catego-

rization of multi-label text documents,

• a novel, tree-structure-based technique for the enumeration of frequent patterns (ruleit-

ems) appearing in documents,

• a comparison of the depth-first and breadth-first traversals of a ruleitem tree,

• a comparison of recurrent-item and non-recurrent-item multi-label associative classi-

fication,

• a comparison of different thresholding strategies, RCut, SCut.global, and their varia-

tions, in the multi-label classification task,

• an algorithm for solving the newly-defined problem of constituent tree inclusion to

extract relations between multi-word expressions (entities) embedded in text,

• the development of compact constituent-tree patterns used in the process of relation

extraction,

• an evaluation of the constituent-tree patterns in the context of different constituent

parsers as well as domain-orthogonal text corpora,
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• a comparison of constituent-parser-based, dependency-parser-based, and machine-

learning-based methods for extracting relations,

• OWL-driven enhancement of the GENIA ontology, and

• structural modification of the original taxonomy of concept in the GENIA ontology.

The list below outlines the most important findings of the aforementioned studies:

Multi-label associative classification

The tree-based enumeration of itemsets proved to be a representation perfectly suited for

the incorporation of class labels and recurrent items. A set of small modifications was

needed to transform the basic frequent pattern algorithm into a tool for generating

multi-label, recurrent-item, classification rules.

A novel technique of storing nodes in a ruleitem tree as well as maintaining projected

datasets at every node in the tree significantly reduced the number of computationally

expensive candidate tests. Instead of testing each candidate against every transaction,

the new technique performs this test by combining all candidate nodes into a single

itemset, and therefore tests the entire set of candidates in just a single comparison.

The depth-first strategy of traversing a rulitem tree exhibits better balance between the

runtime and memory consumption than the breadth-first. Although the depth-first

search requires marginally more time to traverse the tree, it requires significantly less

space to store the tree with the projected datasets.

The inclusion of information about the recurrence of items in transactions improved the

effectiveness of classification. The difference was especially visible with macro-

averaged F1 suggesting that the recurrent-item representation works well with classes

of varying distributions.

An associative-classification model incorporating multiple classes and recurrent items is

faster to build than the more effective binary classifiers. The binary classifiers re-

quire a time-consuming adaptation to perform in a multi-label classification task, and

therefore are ill-fitted to problems with a large number of classes.

Association rules used in associative classification models constitute a concise summary

of the documents they appear in, as opposed to instance-based methods, and therefore

are easier to understand and analyze.

The RCut.% strategy used with the associative classifier proved superior to the RCut strat-

egy in the classification task that involves assinging a variable number of classes to a
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document. Due to the fact that only a limited (and variable) number of rules matches

a document, choosing only a (constant) fraction of the matching rules (as opposed to

a fixed number of classes as is the case with RCut) is indicative of the true number of

classes required by the document.

Entity relationship extraction

Extracting relations based purely on the syntactic decomposition of sentences proved to be

more effective than using the output of a dependency parser. It was also shown that

the presented method outperforms machine learning techniques by a considerable

margin.

Pattern-based methods that extract relations from shallow phrase structure parsers, al-

though efficient, were not suitable for a broader range of relation types.

The introduced constituent tree inclusion problem and the algorithm proposed for solving

this problem waived the limitations of previously proposed algorithms for solving the

ordered tree inclusion problem. This was achieved mainly due to the introduction of

regular expressions and a set of optional constraints.

While being more flexible and expressive than the ordered tree inclusion algorithms, the

constrained constituent tree inclusion algorithm demonstrated comparable computa-

tional complexity when compared to the former algorithms.

Regular expressions, extensively utilized in many areas of textual information retrieval and

capturing (including text categorization and relation extraction), offered an indispens-

able mean of combining Penn Treebank tags, which enabled significant simplification

of the relation extraction pattern trees.

As opposed to the dependency-parser-based methods, the proposed constituent-parser-

based relation extraction was shown to be parser independent, thanks to the use of

the Penn Treebank annotation standard.

The four relation extraction patterns, initially targeted towards biomedical text, performed

equally well on a general English text while outperforming other methods. This

suggests that the created patterns are domain independent.
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Ontology enrichment

OWL was shown to be a highly expressive ontology language capable of incorporating

automatically extracted knowledge in a comprehensible, reasoner-oriented fashion.

The analysis of the original structure revealed that an ontology that does not embed strict

and formal definitions may be harmful to the process of reasoning and may result in

false or misleading statements. The OWL’s underlying description logic “forced” the

structural modification of an existing ontology to improve the inference capabilities

and to eliminate ambiguity or misinterpretation of the concepts stated in the original

ontology.

6.2 Limitations and future directions

The studies undertaken in this dissertation constitute a few components of the bigger sce-

nario drawn in Introduction, and thus, the scenario itself naturally dictates the direction of

future development. One interesting avenue would be to explore the possibilities of using

richly populated ontologies (achieved in the process of knowledge capturing) in query-

answering systems, which would certainly contribute to the problem of translating a user-

specified queries into more elaborate semantically enriched statements involving various

relationships between the concepts in the query.

Below limitations and future directions related specifically to the work presented in this

dissertation are addressed.

Multi-label associative classification

Although the proposed classifier embeds the information about the recurrence of items in

transactions, this information is limited to a particular transaction only, i.e., it does not

consider the frequency of words in the global document context, as it is the case with, e.g.,

TF/IDF. Another related problem is the lack of transaction size normalization. Although

it is not a crucial step when working with the abstracts of articles, as they are usually

approximately of the same size, it becomes a problem when full articles are considered.

Another possible improvement of associative classification involves the preprocessing of

documents with a shallow phrase structure parser to identify noun phrases, which may

be indicative of multi-word entities found in lexicons. This step would transform bag-of-

words-like transactions into more meaningful sets that introduce a sense of semantics.
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Entity relationship extraction

In order to maintain the community standard, the proposed syntax of patterns was based

on the bracketed syntax of constituent trees. However, the readability of patterns may de-

crease significantly if a pattern incorporates multiple constraints and uses elaborated reg-

ular expressions; this may pose a challenge in making changes or finding potential errors.

Moreover, different patterns use similar blocks of nodes, which introduces inconvenient and

possibly error-prone redundancy. To reduce these problems, the development of a “meta-

syntax” for patterns could be considered. The metasyntax would consist of the definitions

of common tree structures involving labels and/or constraints that could be grouped under

easy-to-read and easy-to-interpret statements.

Another limitation comes from the fact that the patterns require the input of an expert user.

In order to make the method available for end users, the development of a semi-automated

tool for building constituent pattern trees is considered. The tool is expected to take a

handful of relations from sentences, which are of interest to a non-expert user, and to learn

the patterns based on the constituent trees that contain these relations. The automatic part

of the tool involves (1) identifying common tag-blind subtrees in the constituent trees, and

(2) employing the set of constraints (described in Section 4.4.1) and regular expressions to

refine the patterns. The first step aims at maximizing the recall of the retrieved relations,

whereas the second step reduces the number of this relations to improve precision.

Ontology enrichment

Future work related to embedding automatically extracted knowledge into an ontology in-

cludes the generalization of the discovered knowledge, which has already been attempted

[37, 14, 36]; however, no formal representation has been proposed. The process of general-

izing relationships is usually based on assigning some confidence, with which a particular

relationship holds between two classes, based on the distribution of individuals in these

classes. By knowing the confidence of a relationship, useful information can be inferred

about (1) the significance of such a relationship, and (2) the probability of the event that a

pair of individuals will participate in this relationship.

Although the confidence of relationships can be calculated indirectly by an application that

works on top of an OWL ontology, this type of information cannot be explicitly stated in

OWL (in neither of its versions) and, therefore, related reasoning is not possible. OWL 2

provides the expressiveness of the SROIQ DL language, and as such does not allow for

any kind of uncertainty in individuals’ membership, i.e., an individual (a pair of individuals)

either belongs to a concept (a relationship) or not. This uncertainty can be introduced to

the language by the fuzzy logic extension, originally proposed by [153]. The extension
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affects Boolean operators and quantifiers whose range is changed from the two-value set

{0, 1} to the interval [0, 1]. The importance of fuzzy description logic has already been

recognized. Major contributions in both defining the problem and proposing the OWL

syntax of the fuzzy DL extension include [138, 58, 140] and more recently (including new

features of OWL 2), [137, 28]. Recently, methodologies for evaluating the performance of

probabilistic reasoners (in particular the probabilistic description logic P-SHOQ(D) [62])

have also been proposed [84] including a demonstration on biomedical data.

108



Bibliography

[1] The DARPA Agent Markup Language Homepage. http://www.daml.org.

[2] Medical Subject Headings (MeSH) Fact Sheet.

http://www.nlm.nih.gov/pubs/factsheets/mesh.html.

[3] MEDLINE Fact Sheet. http://www.nlm.nih.gov/pubs/factsheets/medline.html.

[4] OWL 2 Web Ontology Language Document Overview. http://www.w3.org/TR/owl2-

overview/.

[5] OWL 2 Web Ontology Language Structural Specification and Functional-Style Syn-

tax. http://www.w3.org/TR/2009/CR-owl2-syntax-20090611.

[6] OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/.

[7] RDF/XML Syntax Specification (Revised). http://www.w3.org/TR/2004/REC-rdf-

syntax-grammar-20040210/.

[8] Reuters-21578 Text Categorization Collection. http://kdd.ics.uci.edu/databases/-

reuters21578/reuters21578.html.

[9] UMLS Metathesaurus Fact Sheet. http://www.nlm.nih.gov/pubs/factsheets/-

umlsmeta.html.

[10] UMLS Semantic Network Fact Sheet. http://www.nlm.nih.gov/pubs/factsheets/-

umlssemn.html.

[11] Abney, S. Partial parsing via finite-state cascades. Nat. Lang. Eng., 2(4):337–344,

1996.

[12] Abulaish, M. and Dey, L. Biological ontology enhancement with fuzzy relations: A

text-mining framework. In Proceedings of the 2005 IEEE/WIC/ACM International

Conference on Web Intelligence, pages 379–385, Los Alamitos, CA, USA, 2005.

IEEE Computer Society.

109



[13] Abulaish, M. and Dey, L. An ontology-based pattern mining system for extracting

information from biological texts. In Proceedings of 10th International Conference

on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pages 420–429,

Regina, SK, Canada, August 2005.

[14] Abulaish, M. and Dey, L. Biological relation extraction and query answering from

medline abstracts using ontology-based text mining. Data Knowl. Eng., 61(2):228–

262, 2007.

[15] Agarwal, R. C., Aggarwal, C. C., and Prasad, V. V. V. A tree projection algorithm

for generation of frequent item sets. Journal of Parallel and Distributed Computing,

61(3):350–371, 2001.

[16] Agrawal, R. and Srikant, R. Fast algorithms for mining association rules. In Pro-

ceedings of the International Conference on Very Large Data Bases, pages 487–499,

Santiago de Chile, Chile, 1994.

[17] Antonie, L. Associative Classifiers: Improvements and Potential. PhD thesis, Uni-

versity of Alberta, 2008.

[18] Aronson, A. R. Effective mapping of biomedical text to the UMLS Metathesaurus:

the MetaMap program. In Proceedings of AMIA Symposium, pages 17–21, 2001.

[19] Aronson, A., Mork, J., Gay, C., Humphrey, S., and Rogers, W. The NLM indexing

initiative’s Medical Text Indexer. Medinfo, 11(Pt 1):268–272, 2004.

[20] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F.

The description logic handbook: theory, implementation, and applications. Cam-

bridge University Press, New York, NY, 2003.

[21] Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. Open

information extraction from the web. In Proceedings of the International Joint Con-

ference on Artificial Intelligence, volume 51, pages 68–74, New York, NY, USA,

2007.

[22] Banko, M. and Etzioni, O. The tradeoffs between open and traditional relation ex-

traction. In Proceedings of the 46th Annual Meeting of the Association for Compu-

tational Linguistics: Human Language Technologies, pages 28–36, Columbus, OH,

USA, June 2008. Association for Computational Linguistics.

[23] Baralis, E. and Garza, P. Majority classification by means of association rules. In

Knowledge Discovery in Databases: PKDD 2003, pages 34–46, Cavtat-Dubrovnik,

Croatia, 2003.

110



[24] Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific American,

284(5), 2001.

[25] Berzal, F., Cubero, J.-C., A!nchez, D. S., and Serrano, J. A. M. A. ART: A hybrid

classification model. Machine Learning, 54(1):67–92, January 2004.

[26] Bies, A., Ferguson, M., Katz, K., and MacIntyre, R. Bracketing guidlines for Tree-

bank II style.

[27] Bikel, D. M. Design of a multi-lingual, parallel-processing statistical parsing engine.

In Proceedings of the second international conference on Human Language Technol-

ogy Research, pages 178–182, San Francisco, CA, USA, 2002. Morgan Kaufmann

Publishers Inc.

[28] Bobillo, F. and Straccia, U. FuzzyDL: An expressive fuzzy description logic rea-

soner. In Proceedings of the 2008 International Conference on Fuzzy Systems, pages

923–930, Hong Kong, China, June 2008.

[29] Bunescu, R. and Mooney, R. J. Subsequence kernels for relation extraction. In Pro-

ceedings of the 19th Conference on Neural Information Processing Systems, Van-

couver, BC, Canada, December 2005.

[30] Bunescu, R. C. and Mooney, R. J. A shortest path dependency kernel for relation

extraction. In Proceedings of the conference on Human Language Technology and

Empirical Methods in Natural Language Processing, pages 724–731, Morristown,

NJ, USA, 2005. Association for Computational Linguistics.

[31] Calvo, R. A., Lee, J.-M., and Li, X. Managing content with automatic document

classification. Journal of Digital Information, 5(2), Jun 2004.

[32] Charniak, E. A maximum-entropy-inspired parser. In Proceedings of the first confer-

ence on North American chapter of the Association for Computational Linguistics,

pages 132–139, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[33] Chen, J., Yin, J., Zhang, J., and Huang, J. Associative classification in text cate-

gorization. In Proceedings of International Conference on Intelligent Computing,

Advances in Intelligent Computing, pages 1035–1044, Hefei, China, 2005.

[34] Chou, L.-F. Medline-based bibliometric analysis of gastroenterology journals be-

tween 2001 and 2007. World Journal of Gastroenterology, 15(23):2933–2939, 2009.

[35] Chowdhary, R., Zhang, J., and Liu, J. Bayesian inference of protein-protein interac-

tions from biological literature. Bioinformatics, 25(12):1536–1542, 2009.

111



[36] Ciaramita, M., Gangemi, A., Ratsch, E., Saric, J., and Rojas, I. Unsupervised learn-

ing of semantic relations between concepts of a molecular biology ontology. In Pro-

ceedings of the Nineteenth International Joint Conference on Artificial Intelligence,

pages 659–664, Edinburgh, Scotland, July 30-August 5 2005.

[37] Cimiano, P., Hartung, M., and Ratsch, E. Finding the appropriate generalization

level for binary relations extracted from the GENIA corpus. In Proceedings of the

International Conference on Language Resources and Evaluation (LREC), pages

161–169, Genoa, Italy, May 2006. ELRA.

[38] Cimiano, P. and Völker, J. Text2onto - a framework for ontology learning and data-

driven change discovery. In Proceedings of the 10th International Conference on

Applications of Natural Language to Information Systems (NLDB’2005), pages 227–

238, Alicante, Spain, 2005.

[39] Clegg, A. B. and Shepherd, A. J. Benchmarking natural-language parsers for bio-

logical applications using dependency graphs. BMC Bioinformatics, 8:24, January

2007.

[40] Cohen, W. W. Fast effective rule induction. In Proceedings of the 12th International

Conference on Machine Learning, pages 115–123, Tahoe City, California, USA, July

1995.

[41] Cohen, W. W. and Singer, Y. Context-sensitive learning methods for text categoriza-

tion. ACM Transactions on Information Systems, 17(2):141–173, 1999.

[42] Cohen, W. Learning to classify English text with ILP methods. In Advances in

Inductive Logic Programming. IOS, 1996.

[43] Collins, M. Head-driven statistical models for natural language parsing. Comput.

Linguist., 29(4):589–637, 2003.

[44] Cong, S., Han, J., Hoeflinger, J., and Padua, D. A sampling-based framework for

parallel data mining. In Proceedings of the tenth ACM SIGPLAN symposium on

Principles and practice of parallel programming, pages 255–265, New York, NY,

USA, 2005. ACM Press.

[45] Daraselia, N., Yuryev, A., Egorov, S., Mazo, I., and Ispolatov, I. Automatic extraction

of gene ontology annotation and its correlation with clusters in protein networks.

BMC Bioinformatics, 8:243, 2007.

[46] Daraselia, N., Yuryev, A., Egorov, S., Novichkova, S., Nikitin, A., and Mazo, I.

Extracting human protein interactions from MEDLINE using a full-sentence parser.

Bioinformatics, 20(5):604–611, 2004.

112



[47] Dasigi, V., Mann, R. C., and Protopopescu, V. A. Information fusion for text classifi-

cation: an experimental comparison. Pattern Recognition, 34(12):2413–2425, 2001.

[48] Davies, J., Fensel, D., and van Harmelen, F. Towards the Semantic Web: Ontology-

driven Knowledge Management. John Wiley & Sons, 2003.

[49] de Marneffe, M.-C., MacCartney, B., and Manning, C. D. Generating typed de-

pendency parses from phrase structure parses. In Proceedings of the IEEE / ACL

2006 Workshop on Spoken Language Technology, Genoa, Italy, 2006. The Stanford

Natural Language Processing Group.

[50] de Marneffe, M.-C. and Manning, C. D. Stanford typed dependencies manual,

September 2008.

[51] Dekang, L. Dependency based evaluation of MINIPAR. In Proceedings of the Work-

shop on the Evaluation of Parsing Systems, First International Conference on Lan-

guage Resources and Evaluation, Granada, Spain, 1998.

[52] Dey, L., Abulaish, M., Sharma, J., and Sharma, G. Text mining through

entity-relationship based information extraction. In Proceedings of the 2007

IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent

Technology - Workshops, pages 177–180, Washington, DC, USA, 2007. IEEE Com-

puter Society.

[53] Dingare, S., Nissim, M., Finkel, J., Manning, C., and Grover, C. A system for identi-

fying named entities in biomedical text: how results from two evaluations reflect on

both the system and the evaluations: Conference papers. Comp. Funct. Genomics,

6(1-2):77–85, 2005.

[54] Dolbear, C., Ruttenberg, A., and Sattler, U., editors. Proceedings of the Fifth OWLED

Workshop on OWL: Experiences and Directions, collocated with the 7th Interna-

tional Semantic Web Conference (ISWC-2008), volume 432 of CEUR Workshop Pro-

ceedings, Karlsruhe, Germany, October 2009.

[55] Finkel, J., Dingare, S., Nguyen, H., Nissim, M., Sinclair, G., and Manning, C. Ex-

ploiting context for biomedical entity recognition: From syntax to the web. In Pro-

ceedings of the Joint Workshop on Natural Language Processing in Biomedicine and

its Applications (JNLPBA- 2004), pages 88–91, Geneva, Switzerland., 2004.

[56] Frank, E. and Witten, I. H. Generating accurate rule sets without global optimization.

In Proceedings of the 15th International Conference on Machine Learning, pages

144–151, San Francisco, CA, USA, 1998.

113



[57] Gao, B., Liu, T.-Y., Feng, G., Qin, T., Cheng, Q.-S., and Ma, W.-Y. Hierarchical

taxonomy preparation for text categorization using consistent bipartite spectral graph

co-partitioning. IEEE Transactions on Knowledge and Data Engineering, Special

Issue on Data Preparation, pages 41–50, 2005.

[58] Gao, M. and Liu, C. Extending OWL by fuzzy description logic. In Proceedings of

the 17th IEEE International Conference on Tools with Artificial Intelligence, pages

562–567, Washington, DC, USA, 2005. IEEE Computer Society.

[59] Gavrilis, D. and Dermatas, E. Automatic extraction of information from molecular

biology scientific abstracts. In Proceedings of International Workshop Speech and

Computer (SPECOM-2003), Moscow, Russia, 2003.

[60] Genkin, A., Lewis, D. D., and Madigan, D. Large-scale bayesian logistic regression

for text categorization. Technometrics, 49(3):291–304, 2007.

[61] Geutner, P., Bodenhausen, U., and Waibel, A. Flexibility through incremental learn-

ing: Neural networks for text categorization. In Proceedings of the World Congress

on Neural Networks, pages 24–27, Portland, OR, USA, 1993.

[62] Giugno, R. and Lukasiewicz, T. P-SHOQ(D): A probabilistic extension of

SHOQ(D) for probabilistic ontologies in the semantic web. In Proceedings of Euro-

pean Conference on Logics in Artificial Intelligence (JELIA), volume 2424 of Lecture

Notes in Computer Science, pages 86–97, Cosenza, Italy, 2002.

[63] Han, J. and Pei, J. Mining frequent patterns by pattern-growth: methodology and

implications. SIGKDD Explorations Newsletter, 2(2):14–20, 2000.

[64] Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., and Hsu, M.-C. FreeSpan:

frequent pattern-projected sequential pattern mining. In Proceedings of the sixth

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 355–359, New York, NY, USA, 2000. ACM Press.

[65] Han, J., Pei, J., and Yin, Y. Mining frequent patterns without candidate generation.

In Proceedings of the 2000 ACM SIGMOD international conference on Management

of data, pages 1–12, New York, NY, USA, 2000. ACM Press.

[66] Han, J., Pei, J., Yin, Y., and Mao, R. Mining frequent patterns without candidate gen-

eration: A frequent-pattern tree approach. Data Mining and Knowledge Discovery,

8(1):53–87, 2004.

[67] Hersh, W., Buckley, C., Leone, T. J., and Hickam, D. Ohsumed: an interactive

retrieval evaluation and new large test collection for research. In Proceedings of the

17th annual international ACM SIGIR conference on Research and development in

114



information retrieval, pages 192–201, New York, NY, USA, 1994. Springer-Verlag

New York, Inc.

[68] Huang, Y., Lowe, H. J., Klein, D., and Cucina, R. J. Improved identification of

noun phrases in clinical radiology reports using a high-performance statistical natural

language parser augmented with the UMLS Specialist Lexicon. J Am Med Inform

Assoc, 12(3):275–285, May 2005.

[69] Jang, H., Lim, J., Lim, J.-H., Park, S.-J., Lee, K.-C., and Park, S.-H. Finding the

evidence for protein-protein interactions from pubmed abstracts. Bioinformatics,

22(14):e220–e226, 2006.

[70] Joachims, T. Text categorization with support vector machines: learning with many

relevant features. In Proceedings of 10th European Conference on Machine Learn-

ing, pages 137–142, Chemnitz, Germany, 1998. Springer Verlag, Heidelberg, DE.

[71] Joachims, T. Learning to Classify Text using Support Vector Machines. Kluwer

Academic Publishers, Dordrecht, Netherlands, 2002.

[72] Joachims, T. Training linear svms in linear time. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

217–226, New York, NY, USA, 2006. ACM.

[73] Jones, S. A statistical interpretation of term specificity and its application in retrieval.

Journal of Documentation, 28:11–21, 1972.

[74] Kankar, P., Adak, S., Sarkar, A., Murali, K., and Sharma, G. MedMeSH summa-

rizer: Text mining for gene clusters. In Proceeding of the 2nd SIAM International

Conference on Data Mining, pages 548–565, Arlington, VA, USA, 2002.

[75] Kaufmann, E., Bernstein, A., and Zumstein, R. Querix: A natural language interface

to query ontologies based on clarification dialogs. In Proceedings of the 5th Interna-

tional Semantic Web Conference (ISWC 2006), pages 980–981, Athens, GA, USA,

November 2006. Springer.
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APPENDIX A Penn Treebank II Tags
The following is a selected set of tags used in the Penn Treebank annotation. The complete

list with examples is provided in [26].

Clause level

S simple declarative clause (not introduced by a subordinating conjunction)

SBAR clause introduced by a subordinating conjunction

Phrase level

ADJP adjective phrase

ADVP adverb phrase

CONJP conjunction phrase

FRAG fragment

NP noun phrase

PP prepositional phrase

PRN parenthetical

VP verb phrase

WHADJP adjective phrase introduced by a wh-word

WHAVP adverb phrase introduces by a wh-word

Word level (part of speech)

CC coordinating conjunction CD cardinal number

DT determiner IN preposition

JJ adjective JJR adjective, comparative

JJS adjective, superlative MD modal

NN noun, singular or mass NNS noun, plural

NNP proper noun, singular NNPS proper noun, plural

PRP personal pronoun PRP$ possessive pronoun

RB adverb RBR adverb, comparative

RBS adverb, superlative SYM symbol

TO to VB verb, infinitive

VBD verb, past tense VBG verb, gerund

VBN verb, past participle VBZ verb, present third person singular

WDT wh-determiner WP wh-pronoun

WRB wh-adverb
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APPENDIX B Dependency logic rules
Appendix B.1 presents the list of Prolog rules used in the comparison of relation extraction

methods presented in Section 4.5. The dependency/grammatical roles used in the list are

explained in Appendix B.2

B.1 Prolog typed dependency rules

% Rule ’X verb Y’

rel(X,Verb,Y) :- subject(Verb,X), object(Verb,Y),

annotated(X), annotated(Y).

rel(X,Verb,Y) :- subject(Y,X), cop(Y,Verb),

annotated(X), annotated(Y).

% Rule ’X not verb Y’

rel(X,Not,Verb,Y) :- subject(Verb,X), object(Verb,Y), neg(Verb,Not),

annotated(X), annotated(Y), token(Not,’not’).

% Rule ’X verb prep Y’

rel(X,Verb,Prep,Y) :- subject(Verb,X), prep(Verb,Prep), object(Prep,Y),

annotated(X), annotated(Y).

% Rule ’X not verb prep Y’

rel(X,Not,Verb,Prep,Y) :- subject(Verb,X), prep(Verb,Prep), object(Prep,Y), neg(Verb,Not),

token(Not,’not’), annotated(X), annotated(Y).

% Rule ’X verb to verb Y’

rel(X,Verb1,To,Verb2,Y) :- subject(Verb1,X), xcomp(Verb1,Verb2), aux(Verb2,To),

object(Verb2,Y), token(To,’to’), annotated(X), annotated(Y).

% Rule ’X not verb to verb Y’

rel(X,Not,Verb1,To,Verb2,Y) :- subject(Verb1,X), xcomp(Verb1,Verb2), aux(Verb2,To),

object(Verb2,Y), neg(Verb1,Not), token(To,’to’), token(Not,’not’),

annotated(X), annotated(Y).

% Rule ’X verb to verb prep Y’

rel(X,Verb1,To,Verb2,Prep,Y) :- subject(Verb1,X), xcomp(Verb1,Verb2), aux(Verb2,To),

prep(Verb2,Prep), object(Prep,Y), token(To,’to’), annotated(X), annotated(Y).

% Rule ’X not to verb prep Y’

rel(X,Not,Verb1,To,Verb2,Prep,Y) :- subject(Verb1,X), xcomp(Verb1,Verb2), aux(Verb2,To),

prep(Verb2,Prep), object(Prep,Y), neg(Verb1,Not), token(To,’to’), token(Not,’not’),

annotated(X), annotated(Y).

% auxiliary rules

subject(A,B) :- nsubj(A,B).

subject(A,B) :- nsubjpass(A,B).

subject(G,X) :- conj(Z,X), subject(G,Z).

subject(G,X) :- appos(Z,X), subject(G,Z).

subject(A,B) :- mod(B,A).

mod(A,B) :- partmod(A,B).

mod(A,B) :- amod(A,B).

object(A,B) :- dobj(A,B).

object(A,B) :- pobj(A,B).

object(G,Y) :- conj(Z,Y), object(G,Z).

object(G,Y) :- appos(Z,Y), object(G,Z).
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B.2 Stanford grammatical role hierarchy

The following is a selected list of the Stanford grammatical role hierarchy [49]. The com-

plete list with examples is provided in [50].

dep - dependent

aux - auxiliary

cop - copula

conj - conjunct

cc - coordination

arg - argument

subj - subject

nsubj - nominal subject

nsubjpass - passive nominal subject

comp - complement

obj - object

dobj - direct object

pobj - object of preposition

xcomp - clausal complement with external subject

mod - modifier

amod - adjectival modifier

partmod - participial modifier

appos - appositional modifier

nn - noun compound modifier

advmod - adverbial modifier

neg - negation modifier

det - determiner

prep - prepositional modifier

sdep - semantic dependent

xsubj - controlling subject
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