
Building an Interoperable Distributed Image
Database Management System

by

Bin Yao

Technical Report TR 00-07
May 2000

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta

Edmonton, Alberta, Canada

Abstract

The DISIMA project addresses the development of a distributed, interoperable im-
age database management system enabling content-based querying. The aim of
this project is to add an interoperability feature to the existing prototype.

As object-oriented distributed computing platforms, OMA and, in particular,
CORBA, can be helpful for database interoperability in terms of managing hetero-
geneity of platform and communication levels. The complete distributed architec-
ture will involve homogeneous systems and heterogeneous systems. In this project,
the goal is to develop a middleware on top of CORBA for homogeneous systems.
In the simplest scenario, we can assume all the systems involved are DISIMA sites,
and that they have the same schema with different database instances.

This technical report thus describes the development of such simpler (but not
trivial) scenario. We also highlight and justify some design decisions made as the
project was developed.

Contents

1 Introduction 6
1.1 Motivation and Scope . 6

1.1.1 The Content-based Image DBMS 6
1.1.2 The Interoperable Distributed DBMS 7

1.2 Objectives . 9
1.3 Report Organization . 10

2 DISIMA System 12
2.1 The DISIMA Model . 12

2.1.1 The Image Block . 13
2.1.2 The Salient Object Block 13

2.2 The DISIMA Architecture . 15
2.3 Querying Images . 17

2.3.1 MOQL . 17
2.3.2 VisualMOQL . 18

3 Distributed Object Oriented Computing Platform 23
3.1 Overview of OMA [27] . 23
3.2 CORBA . 28

3.2.1 Overview . 28
3.2.2 OMG IDL . 34
3.2.3 Object Adapters . 40
3.2.4 ORB Interoperability . 45

3.3 CORBAservices: Common Object Services 46
3.3.1 Naming Service . 47
3.3.2 Event Service . 47
3.3.3 Trading Service . 48
3.3.4 Life Cycle Service . 48
3.3.5 Persistent Object Service 49

1

3.3.6 Transaction Service . 49
3.3.7 Concurrency Control Service 50
3.3.8 Query Service . 50
3.3.9 Collections Service . 51
3.3.10 Other Object Services 51

3.4 CORBA 3 . 52
3.4.1 Internet Integration . 52
3.4.2 Quality of Service Control 53
3.4.3 The CORBAcomponent Architecture 54

3.5 MICO [44] . 55

4 CGI 57
4.1 Background . 57
4.2 The CGI Standard . 58
4.3 Limitations . 60

5 Distributed DISIMA 62
5.1 CORBA and Database Interoperability 62
5.2 The Single Site DISIMA . 65
5.3 The CORBA-based Single Site DISIMA 68
5.4 The Distributed DISIMA . 75
5.5 Implementation Issues . 83

6 Conclusion and Future Work 86

Bibliography 89

A Glossary 93

2

List of Figures

1.1 The Distributed Database System Environment (Taken from [38]) 7

2.1 The DISIMA Model Overview (Taken from [47]) 14
2.2 An Example of Logical Salient Object and Image Hierarchy . . . 14
2.3 The DISIMA Architecture (Taken from [7]) 15
2.4 VisualMOQL Interface . 20
2.5 Generated MOQL . 21
2.6 Query Results . 22

3.1 OMA Reference Model: Interface Categories (Taken from [27]) . 25
3.2 OMA Reference Model: Interface Usage (Adapted from [27]) . . 27
3.3 The Structure of Object Request Interfaces (Adapted from [37]) . 29
3.4 Invoking and Dispatching Requests (Adapted from [37]) 33
3.5 The OMG IDL Mappings (Taken from [44]) 35
3.6 Object and Servant Life Cycles (Taken from [21]) 42
3.7 Abstract POA Model (Adapted from [21]) 43
3.8 A Naming Graph . 47

4.1 The CGI Mechanism (Taken from [5]) 59

5.1 The Original Single DISIMA Implementation Structure 66
5.2 The Single DISIMA Implementation Structure 67
5.3 The CORBA-based Single DISIMA Architecture 69
5.4 Invoke an operation to DISIMA object via ORB (Adapted from [1]) 72
5.5 The Distributed DISIMA Architecture 76
5.6 Push-style Event Delivery Model (Adapted from [21]) 79
5.7 Pull-style Event Delivery Model (Adapted from [21]) 79
5.8 Introduce Event Channels into the DISIMA Architecture 79
5.9 Flow Chart of Global Query Agent 84
5.10 Distributed Query Results . 85

3

6.1 Introduce Java Servlet into the DISIMA Architecture 87

4

List of Tables

3.1 Invocation Types and Communication Modes 33
3.2 The OMG IDL Keywords (Taken from [37]) 36

5

Chapter 1

Introduction

1.1 Motivation and Scope

1.1.1 The Content-based Image DBMS

An information system is a computer software developed to manage and manip-
ulate data (mostly textual data), relevant to a certain application domain, for ex-
ample: Management Information System (MIS) or Geographical Information Sys-
tem (GIS). In the last three decades, database management systems (DBMSs) have
proven to be efficient tools to deal with such data. Some well-known commer-
cial DBMS products are Oracle [19], IBM DB2 [14], Sybase [42], Microsoft SQL
Server [17], and Informix [16]. While traditional DBMSs handle only textual data,
the recently expanding use of multimedia data (e.g., still images, video, and audio)
in information systems has raised the demand for efficient management of other
types of data, especially images.

An image DBMS is a software system that enables the acquisition, storage,
manipulation, and retrieval of large amounts of image data and related symbolic
data. Due to the visual nature of images, the use of traditional keywords or text
annotation matching to query images is inadequate. More efficient and effective
image retrieval methods need to be based on image visual features, such as color,
texture, shape, and spatial relationship, as well as content semantics. This is re-
ferred as content-based image retrieval [4].

6

Communication
Network

Site 3

Site 2

Site 1

Site 5

Site 4

Figure 1.1: The Distributed Database System Environment (Taken from [38])

1.1.2 The Interoperable Distributed DBMS

The development of computer network technology, especially the rapid growth of
the Internet, makes distributed computing possible. During the last couple of years,
more and more information systems have been using distributed data processing
technology, i.e., distributing data among some autonomous and heterogeneous
repositories. Most likely, these repositories are database management systems
(DBMS), and the information systems are referred as distributed database man-
agement systems (distributed DBMS). As defined in [38], a distributed database is
a collection of multiple, logically interrelated databases distributed over a computer
network. A distributed DBMS is a software system that permits the management of
the distributed database system and makes the distribution transparent to the users.
Figure 1.1 depicts an example of a distributed database system environment.

The promises of distributed DBMSs include transparent management of dis-
tributed and replicated data, reliability through distributed transactions, improved
performance, and easier system expansion. Detailed discussion on distributed
DBMSs can be found in [38]. Distributed DBMSs bring us many advantages in
addition to the potential heterogeneity both in hardware and software levels. There-
fore, one important issue of distributed DBMSs that needs to be solved is how to

7

manage the heterogeneity to provide interoperability to users in such environment.

It is well known that computer networks are usually heterogeneous. For in-
stance, the internal network of a department at a university might consist of mul-
tiple computing platforms. There might be a mainframe that handles large scale
computing, UNIX workstations for daily research use, personal computers that run
Windows/MacOS and provide desktop office automation tools, and other special-
ized systems, such as X terminals, telephony systems, and routers. A subsection of
a given network may be homogeneous, but the larger a network is, the more diverse
its components are likely to be.

A direct result of heterogeneous platforms is that the software on top of these
platforms has to cope with heterogeneity, in addition to all the problems normally
encountered in distributed systems (e.g., problems associated with network re-
source sharing or the failure of some of the systems in the network). It is possible
to end up with more than one version of an application for each platform, which
makes maintenance more difficult. [21]

Note that, besides computing hardware and operating systems, heterogeneity
in this context refers to the software (information system) itself as well. Differ-
ent DBMSs may have different data models, different query languages, or differ-
ent transaction management protocols — any of which can lead to heterogeneity.
Furthermore, in many cases, there is still a large amount of data that is stored in
non-DBMS repositories, such as file systems.

A feasible approach to achieving interoperability for distributed DBMS is us-
ing a multidatabase approach and object oriented technology [1]. A multidatabase
system resides on top of an existing database system and provides the users with
a single database interface including one global integrated schema and a unique
query language. Object orientation, a complement to the multidatabase approach,
has two basic features that are especially important as far as interoperability is
concerned. The first one is encapsulation capability, which makes it possible to
encapsulate existing DBMSs with different interfaces and implementations (even
though some of them may not be actually DBMSs), and provide a common DBMS-
like interface to the rest of the system. What has been proposed is also called
a wrapper. Another property of object orientation that is useful here is special-
ization/generalization, which enables the abstracting of the similarities in entities
coming from different databases during database schema integration. (See [38] for
examples.)

8

Taking all of the above characteristics of information systems into account,
there are some distributed object computing platforms which can facilitate the de-
velopment of open systems, especially interoperable distributed DBMSs. The two
most popular platforms are the Object Management Architecture (OMA) [27] from
Object Management Group (OMG) and the Distributed Component Object Model
(DCOM)/Object Linking and Embedding (OLE) [18] environment from Microsoft.
Both of these platforms provide an infrastructure that support distributed objects
communicating with each other, and both provide standard services that are com-
monly needed by all distributed components. Of these two platforms, OMA is su-
perior to DCOM/OLE for its better interoperability (with respect to cross-language
support, cross-platform support, network communications and common services);
reliability (transactions, messaging, and security); performance (scalability); and
viability (product maturity). (See [12] for a detailed comparison.)

1.2 Objectives

The DISIMA (see Chapter 2) project aims at the development of a database man-
agement system for images, which provides users with uniform interfaces to access
multiple, distributed, and possibly heterogeneous image and spatial repositories.

As described in [24, 46], the features of the DISIMA project can be summa-
rized as follows:

1. To use an object-oriented approach to build a DBMS kernel that provides
flexibility for user-defined classification of images, provides support for feature-
based and spatial querying over image content, and enables reasoning over
spatial relationships for query optimization;

2. To use image processing and indexing techniques for efficient querying and
access to image databases, and to develop query languages and primitives
for querying image databases;

3. To provide scalability, interoperability, and open access to image reposito-
ries.

The single site prototype which accomplished the first two features has been imple-
mented on top of a commercial Object Oriented DBMS (OODBMS) – ObjectStore.
Details on the implementation of the DISIMA kernel and the query system can be
found in [7]. This work focuses on the third feature.

9

The interoperable architecture used in this project is designed on top of a dis-
tributed object-oriented computing platform, CORBA, as defined in the OMA (see
Chapter 3 for a detailed description of CORBA). The CORBA provides transparen-
cies at the platform and communication levels. There remain two other levels —
the database level, where different data models can be found, and the semantic
level, where homogenization of the meanings of the objects takes place. The com-
plete distribution architecture will involve both homogeneous and heterogeneous
systems.

The objective of this project is to develop a middleware on top of CORBA for
homogeneous systems. In the simplest scenario, we can assume all the systems
involved are DISIMA sites, and that they have the same schema with different
database instances. A query in this environment has to be sent to all the systems
involved, and the query result is the union of the results from each of the systems.

This technical report thus describes the development of such simpler (but not
trivial) scenario. We also highlight and justify some design decisions made as the
project was developed.

1.3 Report Organization

This technical report includes six chapters followed by the Bibliography and Ap-
pendix.

� Chapter 1 is the introduction, which describes the background knowledge
and defines the objectives of our research.

� Chapter 2 gives a brief description of the DISIMA project, including the
DISIMA model, the DISIMA architecture, and its query language, MOQL
and VisualMOQL.

� In Chapter 3, we review the OMA, a distributed object oriented computing
platform provided by the OMG. Specifically, we describe CORBA and COR-
BAservices as well as a fully CORBA compliant implementation, MICO.

� Chapter 4 explains the CGI (Common Gateway Interface) technology, its
advantages and disadvantages.

� The design and implementation of the distributed DISIMA system is pre-
sented in Chapter 5. We start from a single site DISIMA, and then build a

10

CORBA-based single site DISIMA to the distributed DISIMA. The imple-
mentation issues are discussed at the end of the chapter.

� Finally, Chapter 6 concludes the project and suggests possible improvements
and future work.

11

Chapter 2

DISIMA System

The DIStributed Image database MAnagement (DISIMA) System research project
was carried out by the Database Systems Research Group at the University of
Alberta. The Natural Sciences and Engineering Research Council (NSERC) of
Canada provided the funding of the project through a strategic grant.

In an image DBMS, users want to query images using image content, as well as
conventional textual information. Content-based indexing is required to facilitate
content-based image querying. Since the DISIMA project addresses both image
and spatial databases, the DBMS also has to deal with more structured spatial re-
lated information, such as geo-referenced entities, attributes or specific properties
of entities, and relationships between entities. The query language must be suf-
ficiently sophisticated to allow content-based images similarity search, and also
support high level temporal/spatial notions and relationships. Such a DBMS can
be used in many application domains, e.g., office automation, education, medical
and healthcare, and telecommunication.

The following sections give an overview of the DISIMA model, the DISIMA
architecture, and the MOQL query language, as well as the VisualMOQL interface.
Details on the DISIMA model and architecture can be found in [47, 48]. MOQL
and VisualMOQL are fully described in [23] and [45, 46, 49], respectively.

2.1 The DISIMA Model

The DISIMA model [48] provides efficient representation of images and associated
meta-data to allow a wide range of content-based queries, by using the concept of

12

Salient Object. As illustrated in Figure 2.1, the DISIMA Model comprises two
main blocks: the image block and the salient object block. A block is defined as a
group of semantically related entities.

2.1.1 The Image Block

The image block is composed of two layers: the image layer and the image rep-
resentation layer. An image is distinguished from its representations in order to
maintain an independence between them. This is referred to as representation in-
dependence. In the image layer, users define an image type classification to cate-
gorize images according to functional relationships between images.

Figure 2.2(a) shows an example of an image class hierarchy. The Image class
is categorized into two classes, EducatonalImage and NewsImage, according to
certain criteria. The NewsImage class can be specified by three sub-classes: Po-
liticalImage, which includes all images related to politics; ShowbizImage, which
identifies images associated with show business; and MiscImage, which refers to
all other images.

There are two major image representation modes: the raster (good for image
applications), and the vector (useful for spatial applications).

2.1.2 The Salient Object Block

The definition of salient objects for a certain application can result in a type hi-
erarchy, as shown in Figure 2.2(b). DISIMA presents the content of an image by
a set of salient objects (i.e., interesting entities in the image) with certain spatial
relationships to each other. The salient object block is designed to handle salient
object organization.

DISIMA distinguishes two types of salient objects: physical and logical. A
logical salient object (LSO) is an abstraction of a salient object that is relevant
to some application. It retains image-independent generic information about this
object of interest. A physical salient object (PSO) is a particular instance of this
object which may appear in specific images. There is a set of information related
to the physical salient object, such as the location and the shape of the object in
that particular image. Obviously, a logical salient object can exist independently of
images while a physical salient object exists only if the image in which the physi-

13

(represented_by)
(represented_by)

Representation
Image

Image

Salient Object

Salient Object

Salient Object
Representation

category (class)

instance

belongs to inheritance

other relationships

Image Block Salient Object Block

(logical)

(physical)
(contains)

(correspond_to)

Figure 2.1: The DISIMA Model Overview (Taken from [47])

Logical Salient Object

Animal

Insect MammalScientist

Politician Crustacean Reptile

Athlete

Person

(a) Image Hierarchy

Image

NewsImage

MiscImage

ShowbizImage

EducationalImage

PoliticalImage

(b) Logical Salient Object Hierarchy

Figure 2.2: An Example of Logical Salient Object and Image Hierarchy

14

Query Processor

IndexManager

Image and

Manager

DISIMA API ODMG DDL
MOQL

Visual MOQL

Salient Object

ODMG Preprocessor

Index

Spatial
And

Image Object

ManagerManager

Object Repository (ObjectStore)

User Type System Meta-Data
Type System

Meta-Data

Image
Meta-
DataObject

Salient

Figure 2.3: The DISIMA Architecture (Taken from [7])

cal salient object appears exists in the database. Also, there can be several physical
salient objects linked to one logical salient object, since a salient object may appear
in many images.

As in the case of the image block, the content information of salient objects
is also separated from the representation. The representation can be either raster,
which is used to access part of images, or vector, which fits well with spatial in-
dexing and spatial relationships computation.

2.2 The DISIMA Architecture

As illustrated in Figure 2.3, The DISIMA architecture [48] comprises the inter-
faces, the processors, the meta-data manager, the image and salient object manager,

15

the image and spatial index manager, and the object index manager.

The interfaces provide several ways (visual and alphanumeric) to define and
query image data. The VisualMOQL [49] provides a user friendly graphical query
interface, generating a query in the underlying query language MOQL [23], which
is an extension of OQL [6]. (Query language aspects are discussed further in Sec-
tion 2.3.) The DISIMA project uses the data definition language (DDL) from the
Object Data Management Group (ODMG). DISIMA API is a library of low level
functions that allows applications to access the system services.

DISIMA is built on top of ObjectStore, which is used as an object repository.
The Image and Spatial Index Manager and Object Index Manager are also included
in the architecture because these object repositories may not have image and spatial
indices. Even if they do, their indices may not match the DISIMA requirements.
Furthermore, the image and spatial index manager and the object index manager
allow dynamic index management (dynamic integration of new indices).

Although ObjectStore provides some querying facilities over collections, it
does not have a built-in declarative query language and related query processor.
Therefore, DISIMA has fully implemented MOQL queries and a Query Processor
that handles the parsing and execution of the queries, including a MOQL parser and
a query engine. The MOQL parser checks the semantics and syntax of the external
query, which is then converted into an internal query tree with all the information
given by the external query. Based on the internal query, the query engine gener-
ates an execution plan. Details can be found in [7].

The Meta-Data Manager handles meta information about images and salient
objects. Based on object-oriented concepts, the DISIMA model integrates the raw
image and its meta-data (the alphanumeric data linked to it). Meta-data is a kind
of on-line documentation. It is important in improving the availability and quality
of the information to be delivered.

The Image and Salient Object Manager is the kernel part of the DISIMA
model. The User Type System (see [7] for details) defines the data structures and
methods that support database population and image retrieval by similarity match.
Images and salient objects are derived from a set of root types that are defined in
the user type system. The image root type facilitates the recognition of salient ob-
jects appearing in images. The recognition is done semi-automatically. The image
and salient object manager can control an application running in a classical trans-
action mode with the ACID properties, i.e., Atomicity, Consistency, Isolation, and

16

Durability.

DISIMA also supports an interoperable distributed architecture to allow users
to query multiple image sources through a uniform interface. The architecture is
designed on top of the Object Management Architecture (OMA) (see Chapter 3).
The design and implementation of the architecture is the work of this project, and
will be discussed in detail in Chapter 5.

2.3 Querying Images

2.3.1 MOQL

Object Query Language (OQL) from the Object Data Management Group (ODMG)
is the general language for multimedia object oriented databases. It is an embed-
ded language, which allows applications to query objects supported by the native
language. OQL defines an orthogonal expression language in which all operators
can be composed with each other, as long as the types of the operands are correct.
The return object type of an OQL query may be inferred from the operators con-
tributing to the query expression. The basic statement for querying objects in OQL
is:

select [distinct] projection attributes
from query [[as] identifier] �, query [[as] identifier] �
[where query] [group by partition attributes] [having query]
[order by sort criterion �, sort criterion�]

Based on OQL with multimedia extensions, Multimedia Object Query Language
(MOQL) is the query language used by DISIMA. The extensions include constructs
to handle spatial, temporal, and presentation properties. Most extensions added to
OQL by MOQL are in the where clause, in the form of four new predicate expres-
sions: spatial expression, temporal expression, contains predicate, and similarity
expression (see [23] for details). For example, the query “Find images with 2
people next to each other without any building, or images with buildings without
people” can be expressed in MOQL as follow:

SELECT m FROM image m, building b1,
person p1, person p2

WHERE (m contains b1 and m not in
(SELECT m1 FROM image m1, person p3

17

WHERE m1 contains p3))
OR (m contains p1 and m contains p2

and p1.MBB west p2.MBB and m not in
(SELECT m2 FROM image m2, building b2
WHERE m2 contains b2))

The above example shows that a MOQL query can be very complicated. Compos-
ing a MOQL query is not straightforward, even for a simple query. There is a need
for a user friendly query interface that helps users easily construct MOQL queries.

2.3.2 VisualMOQL

A visual language uses graphical information to represent objects and the relation-
ships among them. VisualMOQL is a visual query language that provides an easier
way to compose queries, and then translates them into MOQL. It implements the
image part of MOQL and allows users to query images by their semantics. Details
can be found in [45, 46, 49].

Utilizing VisualMOQL, the user can query the database by specifying the salient
objects in the image. The query can be refined by defining the color, shape, and
other attribute values of these salient objects. The user can also specify the spatial
relationships (both topological and directional) among salient objects in the image.
Furthermore, the user can specify properties of the image metadata.

Described in [46], VisualMOQL has the following features:

� It is a declarative visual query language with a step by step construction of
queries, which resembles natural language.

� It has a clearly defined semantics based on object calculus.

� It combines several querying approaches: semantic-based (query image se-
mantics using salient objects), attribute-based (specify and compare attribute
values), and cognitive-based (query by example).

VisualMOQL has been implemented as a platform independent Java applet.
The user can access the VisualMOQL interface using any web browser (e.g., Netscape
Navigator) on any platform, through the Internet. Figure 2.4 shows a VisualMOQL
window which includes a number of components facilitating the composition of a
query. The user can easily build a query by choosing the desired image class and

18

the desired salient objects in the images. According to the type of query and the
level of precision users want the result of the query to have, several levels of re-
finement are also provided. The VisualMOQL window is composed of:

� A chooser to select the image classes.

� A salient object class browser to choose the desired objects.

� An input field to specify the maximum number of images returned as the
result of the query.

� A horizontal slider to specify the minimum similarity threshold between the
query image and the target images stored in the database.

� A working canvas where the user constructs queries step by step.

� A query canvas where the user can compose compound queries based on
subqueries defined in the working canvas, using AND, OR, and NOT opera-
tors.

The spatial relationship of two-person objects is illustrated on the working can-
vas of Figure 2.4. The expression of the query � is shown on the query canvas.
The VisualMOQL expression is then translated into MOQL (see Figure 2.5) be-
fore being submitted to the query processor. Figure 2.6 is a result window which
includes a set of thumbnails of images matching the query. Clicking on the thumb-
nail returns the enlarged image.

19

Figure 2.4: VisualMOQL Interface

20

Figure 2.5: Generated MOQL

21

Figure 2.6: Query Results

22

Chapter 3

Distributed Object Oriented
Computing Platform

This chapter deals only with the OMA, a distributed object oriented computing
platform provided by the Object Management Group. OMA is one of the infras-
tructure platforms that is used in the distributed DISIMA implementation. Its use
in distributed DISIMA is discussed in Chapter 5.

3.1 Overview of OMA [27]

The Object Management Group (OMG) was formed in 1989 with the aim of de-
veloping interoperable, reusable, and portable distributed applications for hetero-
geneous systems, based on standard object oriented interfaces. The OMG solved
this problem by introducing an architectural framework with supporting detailed
interface specifications. One of the key industry standards produced by the OMG
is the Object Management Architecture (OMA) and its core, the Common Object
Request Broker Architecture (CORBA) specification. These provide a complete
architectural framework that is both rich enough, and flexible enough, to accom-
modate a wide variety of distributed systems.

There are two related models in the OMA — the Object Model and the Ref-
erence Model — which describe how distributed objects and the communications
among them can be specified in platform-independent ways. The Object Model
provides an organized description of objects distributed over a heterogeneous en-
vironment, while the Reference Model categorizes interactions among these dis-
tributed objects.

23

The Object Model defines an object as an identifiable, encapsulated entity that
provides services, through well-defined encapsulating interfaces, to clients, which
are any entities capable of issuing requests to the object. The detailed implemen-
tations of services are transparent to clients. The Object Model describes not only
basic object concepts, such as object creation and identity, requests and operations,
and types and signatures, but also concepts related to object implementations, in-
cluding methods, execution engines, and activation.

The Reference Model identifies and categorizes the components, interfaces and
protocols that constitute the OMA. As Figure 3.1 shows, all four categories (Ob-
ject Services, Common Facilities, Domain Interfaces and Application Interfaces)
of object interfaces are conceptually linked by an Object Request Broker (ORB)
component. This component enables communication between clients and objects,
transparently activating those objects that are not running when requests are deliv-
ered to them, in a distributed environment:

� The ORB component of the OMA is the communications heart of the archi-
tecture, whose programming interfaces are defined in the CORBA specifi-
cation [37] (see Section 3.2 for detailed discussion). It provides an infras-
tructure, allowing objects to communicate transparently, independent of the
specific platforms and techniques used to implement the addressed objects.
The ORB itself also provides an interface that can be used directly by clients,
as well as objects. The ORB component will guarantee portability and inter-
operability of objects over a network of heterogeneous systems.

The OMG Interface Definition Language (IDL) (see Section 3.2.2) provides
a standard way to define CORBA objects’ interfaces, in order to facilitate the
interactions with objects and clients. The IDL is a strongly typed declarative
language that is programming language-independent. Language mappings
enable the implementations of objects and sent requests to be programmed
in any of the popular programming languages (Ada, C, C++, COBOL, Java
or Smalltalk) at the developer’s choice.

� Object Services are application domain independent, general purpose ser-
vices that are essential for developing CORBA-based interoperable applica-
tions composed of distributed objects across multi-platform environments.
The Object Services component provides standardized interfaces through the

24

Figure 3.1: OMA Reference Model: Interface Categories (Taken from [27])

25

OMG IDL to manage the life cycle of objects. This includes creating objects,
controlling access to objects, keeping track of relocated objects, and consis-
tently maintaining the relationship between groups of objects. Adopted Ob-
ject Services used as standards by the OMG — including Naming, Events,
Life Cycle, Persistent Object, Transactions, Concurrency Control, Relation-
ships, Externalization, Licensing, Query, Properties, Security, Time, Col-
lections, and Trading — are collectively called CORBAservices [30]. The
Object Services supply operations that are used as building bricks by the
other three interface categories, and are usually considered part of the core
distributed object computing infrastructure. We will discuss some major ob-
ject services in Section 3.3.

� Common Facilities are interfaces for horizontal end-user-oriented facilities,
applicable to most application domains. The common facilities are used by
many or most applications, regardless of application content. There are four
major collections of these common facilities that are described in the OMG’s
specification, CORBAfacilities [26]: User Interface, Information Manage-
ment, System Management, and Task Management. The Common Facilities
provide higher level interoperable interfaces to objects from both Domain
Interface and Application Interface categories. The operations provided by
the Common Facilities are made available through the OMG IDL or through
proposed extensions to OMG IDL.

� Domain Interfaces are application domain-specific interfaces, previously known
as Vertical Common Facilities — such as Finance, Healthcare, Manufactur-
ing, Telecommunication, Electronic Commerce, and Transportation. Indus-
try groups are responsible for developing particular domain applications and
the OMG will aid them in integrating their contributions into the OMA. As
shown in Figure 3.1, there is a possible set of collections of Domain Inter-
faces grouped by application domains.

� Application Interfaces are non-OMG standardized application interfaces that
are developed specifically in order for a given application to participate in the
OMA. It is important to know that these applications themselves are not nec-
essarily constructed using the object oriented pattern. Non-object oriented
applications can be “wrapped” in objects, a subject which will be discussed
in Section 3.2.

26

OS: Object Services
DI: Domain InterfacesAI: Application Interfaces

CF: Common Facilities

Figure 3.2: OMA Reference Model: Interface Usage (Adapted from [27])

27

Based on interface categories of the Reference Model, the OMG introduces an-
other part of the Reference Model called domain-specific Object Frameworks, that
focuses on interface usage, as illustrated in Figure 3.2. An Object Framework com-
ponent is a group of collaborating objects that supply an integrated solution within
an application or technology domain, and which can be customized by end-users.
These objects are categorized into Application, Domain, Facility, and Service Ob-
jects, each of which supports or utilizes some combination of Application, Domain,
Facility, and Service Objects interfaces. Notice that the objects shown in the figure
are composed of two parts: an implementation core, and a concentric shell repre-
senting the interfaces that the object supports. Object Frameworks are complete
higher level components that provide functionality of direct interest to end-users in
specific application or technology domains.

There are currently many commercial CORBA-compliant ORBs (e.g., BEA’s
ObjectBroker [3], Expersoft’s PowerBroker [13], HP’s ORB Plus [8], IBM’s Com-
ponent Broker [15], Iona’s Orbix [43] and Sun’s NEO [41]), as well as non-commercial
CORBA-compliant ORBs (e.g., MICO [44], which will be discussed in Section
3.5), that can be chosen as a distribution and interoperability platform.

The latest version of CORBA specification is CORBA 3, but available ORBs
coming from vendors only support version 2.3, which is the most mature specifi-
cation.1 As with all specifications adopted by OMG, CORBAservices and COR-
BAfacilities are defined only in terms of interfaces and their semantics, not a par-
ticular implementation. Only parts of CORBAservices have been implemented by
vendors, and not much work on CORBAfacilities has yet been done.

3.2 CORBA

3.2.1 Overview

Figure 3.3 shows the structure of CORBA [21, 37] and the relationships among its
components, which we will describe in detail in the following sections. The inter-
faces to the ORB are shown by shaded boxes, and the arrows indicate whether the
ORB is called, or performs an up-call through the interface.

1By default, we refer to CORBA 2.3 as CORBA throughout the technical report, but in Section
3.4 we will also mention new features coming with CORBA 3.

28

Repository
Interface

Figure 3.3: The Structure of Object Request Interfaces (Adapted from [37])

29

Basic Concepts and Terminology

We first define some important concepts and terms that are used in CORBA. Un-
derstanding these terms and concepts is critical to achieving a good understanding
of CORBA itself.

� A Client is an entity that invokes a request/operation on an object by access-
ing its object reference. The client only knows the logical structure of the
object according to its interface, and has no knowledge of the implementa-
tion of the object, where the implementation is located, or any aspect which
is not reflected in the interface. The term “Client” exists only within the con-
text of a particular request because the implementation of one object, itself
may be a client of other objects.

� An Object refers to an abstract CORBA object that can be located by an
ORB, i.e., a programming entity, which includes an identity (encapsulated
in the object’s reference), an interface, and an implementation. The object’s
components are transparent to the client, which invokes an operation on it.

� An Object Reference includes all the information used to uniquely specify a
particular object within an ORB context. To both clients and object imple-
mentations, object references are opaque entities, whose actual representa-
tions are implemented only by the ORB. A client can use an object reference
to invoke a request on an object, but it cannot create or modify an object
reference.

� An Object Implementation actually implements an object by providing the
code for the object’s method, and the data for the object instance. One
implementation often includes other object implementations, or additional
software, to achieve the behavior of the object. Normally, object imple-
mentations are independent of the ORB and the methods that clients invoke
requests.

� A Server is a computational context in which the implementations of one
or more objects exist. A server usually corresponds to a process. As with
clients, this term is meaningful only within the context of a particular re-

30

quest. A given object could play both client and server roles.

The Common Object Request Broker Architecture

In the architecture, the ORB is responsible for all of the mechanisms required to
catch the request from the client, to dispatch the request to the object implemen-
tation (server), to help the server process the request, and finally to send the result
data, if applicable, back to the client. The ORB Core is an essential part of the ORB
that provides the basic representation of objects and communication of requests.

The Client can use either an OMG IDL stub — the static stub depending on the
interface of the target object — or the Dynamic Invocation interface (DII) — the in-
terface independent of the target object’s interface — to make a request. The Client
can also directly communicate with the ORB core for some functions through the
ORB interface.

As an up-call, the Object Implementation receives a request either through the
OMG IDL-generated skeleton interface, the Static IDL Skeleton interface, or a Dy-
namic Skeleton interface (DSI) — the server side’s analogue to the client side’s
DII. The Object implementation may call the Object Adapter (see Section 3.2.3)
and the ORB core while processing a request, or at other times.

As we can see from Figure 3.3, there are two ways to define the interfaces to
the objects.

� Interfaces are defined statically in the OMG IDL, which specifies the types of
objects and the parameters to the operations. By this static approach, OMG
IDL is mapped into programming language-specific stubs and skeletons that
are compiled into the client program and the server program, respectively.
Thus, a program (either a client or a server) can understand the types and
functions of remote objects described in the OMG IDL. Through a stub, a
client-side routine, a request can be invoked via a normal local function call
in its programming language. Similarly, a skeleton is a server-side function
that allows a request received by a server to be dispatched to the appropriate
object implementation.

� Sometimes, interfaces to objects cannot be decided at compile time. CORBA
provides an Interface Repository (IR) into which the IDL information of
these objects can be added at run time. The IR is a service that represents the

31

components of an interface as objects, permitting run-time access to these
components, and keeps additional information associated with interfaces to
ORB objects such as debugging information, and libraries of stubs or skele-
tons (see Figure 3.3).

Although no compile time interface information is available, DII and DSI
allow dynamic construction and handling of requests at run time, rather than
at compile time, by accessing the IR service. Instead of calling a specific
stub routine to a particular operation on the object, a client can create a re-
quest by specifying the object to be invoked, the operation to be performed,
and the set of arguments for the operation through the DII.2 Rather than be-
ing invoked through a specific skeleton to a particular operation, an object
implementation is located through the DSI, that provides access to the oper-
ation name and arguments in a way similar to the client side’s DII [37].

The static way provides a more natural programming model while the dynamic
approach is especially useful for situations in which a client does not know the type
or interface of the target object at compile time, and yet is able to invoke a valid
request to that object at run time.

According to CORBA’s specification, clients can invoke requests in the follow-
ing three communication modes:

Synchronous Mode: In this mode, a client blocks while it waits for the completion
of the request. Obviously, it is quite inefficient since those requests can be
processed parallelly by multiple objects.

Deferred Synchronous Mode: After a client invokes a request, it continues exe-
cuting, and keeps polling to get the results until the operation is completed,
or the client purposely stops polling. The client can invoke the request in
this mode by using only the DII.

One-way Mode: Invoked in this mode, a request performed by the client is not
guaranteed to be delivered to the target object, and the client is not allowed
to get any results from the operation.

2In particular, creating a DII request cause the ORB to transparently access the IR to obtain
information about the types of the arguments and return values.

32

Communication Modes Static Invocation Dynamic Invocation
Synchronous Yes Yes
Deferred Synchronous No Yes
One-way Yes Yes

Table 3.1: Invocation Types and Communication Modes

Object Implementation
(Server)

Server ORB Core

Skeleton
Static IDL

Skeleton
Dynamic

Adaptor
ORB Object

Interface

Client

Client ORB Core

Interface
ORB

Stubs
IDL

Invocation
Dynamic

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Interface identical for all ORB implementations

GIOP
IIOP

Request

Figure 3.4: Invoking and Dispatching Requests (Adapted from [37])

Current CORBA-compliant commercial ORBs do not support the asynchronous
mode of requests3, but asynchronism can be simulated by making two objects send
one-way requests to each other.

Table 3.1 shows the relationship between invocation types and communication
modes.

Figure 3.4 shows how requests from the Client flow down through the ORB
and up into the Object Implementation (the Server) in the following steps:

3Although CORBA 3 does support the asynchronous mode — which is discussed in Section 3.4
— no CORBA 3 compliant commercial ORBs are available as of time of this writing.

33

1. A client initiates a request through an object reference by calling stub proce-
dures (the static stub interface) for that particular object, or by constructing
the request dynamically (the DII), knowing exactly the type of the object and
the desired input/output arguments.

Either way, the request is sent to the client ORB core, and the target object
cannot tell in which way the request was invoked.

2. If the client ORB core cannot locate the target object for this request, it trans-
mits the request to the ORB core linked with the target object implementa-
tion (the server) by General Inter-ORB Protocol (GIOP)/Internet Inter-ORB
Protocol (IIOP) (see Section 3.2.4).

3. The server ORB core dispatches the request to the object adapter that created
the target object.

4. The object adapter locates the appropriate object implementation, transmits
arguments, and transfers control to the object implementation. Like the
client, the server can choose either a static (static IDL skeleton interface)
or dynamic (DSI) dispatching mechanism for its object implementation.

While processing the request, the object implementation may obtain some
services from the ORB through the object adapter, or from the ORB core
directly.

5. After the object implementation finishes the request, it returns the control
and the output values back to the client.

The following sections describe other important CORBA components.

3.2.2 OMG IDL

The OMG IDL defines the types of objects by specifying their interfaces. An
object’s interface is composed of a set of client-accessible operations, and in-
put/output data to those operations. The OMG IDL is purely a declarative language
and therefore clients and servers cannot be implemented directly in IDL. The only
purpose of the OMG IDL is to make interfaces to be defined in a language indepen-
dent way, which allows applications developed in different programming language
to interoperate.

To use or implement an interface, the language-independent interface defined
in the OMG IDL must be mapped (using the IDL compiler) into corresponding

34

server.ccclient.cc

sample.hsample.cc

sample.idl

ServerClient

Sources

Application

Generated Code

Dependency

Figure 3.5: The OMG IDL Mappings (Taken from [44])

types definitions and APIs of a particular programming language. These types and
APIs are used by the developer to provide application functionality and to interact
with the ORB.

Figure 3.5 shows the creation process of a client and a server in C++, as imple-
mented in the MICO ORB [44]. After compiling the source IDL file sample.idl, the
IDL compiler will generate two files: sample.h and sample.cc. The former contains
class declarations for the base class of the sample object implementation and the
stub class that a client will use to invoke methods on remote sample objects. The
latter contains implementations of those classes and some supporting codes. The
client side file client.cc includes ORB initialization and invocation of the method
on a particular interface declared in the IDL file. The files client.cc and sample.h
are compiled to create an objective file client.o, using any C++ compiler. The file
sample.cc is compiled to an objective file sample.o which is linked with client.o
to create an executable CORBA client. The server side file server.cc includes the
actual implementation codes for the methods. Similarly, the C++ compiler uses the
files server.cc, sample.h, and sample.cc together to create an executable CORBA
server.

The OMG IDL obeys the same lexical rules as C++, but adds some new key-

35

abstract double long readonly unsigned
any enum module sequence union
attribute exception native short ValueBase
boolean factory Object string valuetype
case FALSE octet struct void
char fixed oneway supports wchar
const float out switch wstring
context in private TRUE
custom inout public truncatable
default interface raises typedef

Table 3.2: The OMG IDL Keywords (Taken from [37])

words (e.g., any, attribute, interface, module, sequence, and oneway) to support
distribution concepts. Table 3.2 lists all the keywords supported in the OMG IDL.

The IDL grammar is a subset of the adapted ANSI C++ standard that supports
syntax only for constant, type, and operation declaration, and not for any algorith-
mic structures or variables. It includes additional constructs to support the opera-
tion invocation mechanism. As specified in CORBA, The OMG IDL grammar is
more restrictive than the C++ syntax in the following ways:

� A function return type is mandatory.

� A name must be supplied with each formal parameter to an operation decla-
ration.

� A parameter list consisting of the single token void is not permitted as a
synonym for an empty parameter list.

� Tags are required for structure, discriminated unions, and enumerations.

� Integer types cannot be defined as simply int or unsigned; they must be de-
clared explicitly as short, long, or long long.

� char cannot be qualified by signed or unsigned keywords.

An important feature of the OMG IDL interfaces is that they can inherit from
one or more other interfaces. This feature allows new interfaces to be defined by
existing ones and, since a derived interface inherits all attributes and operations

36

defined in all of its base interfaces, objects implementing a new derived interface
can be substituted anywhere objects supporting the base interfaces are allowed (the
well-known substitutability concept in object-oriented programming). Consider
the second example below. The AccountTransaction interface is derived from the
Account interface. Anything dealing with objects of type Account, can also use
an object supporting the AccountTransaction interface because such an object also
supports the Account interface.

Following are two OMG IDL examples. The first defines the interface through
which the client can get sets of images from an image DBMS. This example fo-
cuses on complicated user defined types:

1 //Example 1 - Filename ‘‘queryagent.idl’’
2
3 module DB {
4
5 interface QueryAgent {
6
7 //exception
8 exception SyntaxError {
9 unsigned short position;
10 string errMessage;
11 };
12
13 //user defined types
14 typedef sequence<octet> streamType;
15
16 //content of an image
17 struct imageType {
18 string serverId;
19 string imageId;
20 string imageLabel;
21 streamType imageStream;
22 float similarity;
23 };
24
25 typedef sequence<imageType> imagesType;
26
27 //operation

37

28 imagesType getImages (in string queryString)
29 raises (SyntaxError);
30
31 };//end of interface QueryAgent
32
33 };//end of module DB

IDL uses the module construct to create namespace, preventing pollution of the
global namespace. Line 3 defines the module DB. The declaration of the interface
QueryAgent starts at line 5. Lines 8-11 define the content of the exception this
interface may raise. Line 14 defines the type for the image stream, which is an
unbounded octet array. Lines 17-23 define the structure of the image type, which
includes the server Id (indicating which database this image comes from), the im-
age Id (an octet sequence that uniquely identifies the image in the database where
it comes from), the image label (name), the image stream (real image data), and the
similarity between the target image and the query image. Line 25 defines the return
type of the query, i.e., a set of images. Lines 28-29 declare an operation (method)
called getImages. The input parameter is query string that will be passed along
to the image database; the output is a set of result images matching the query.

The second example below demostrates interfaces to bank account transac-
tions. Most features of the IDL are covered, although some operations are not
realistic. This example also demonstrates the substitutability principle discussed
earlier. The AccountTransaction interface is derived from the Account interface.
Anything dealing with objects of type Account can also use an object supporting
the AccountTransaction interface, because such an object also supports the Account
interface.

1 //Example 2 - Filename "bank.idl"
2
3 //establish a unique prefix for interface repository Ids
4 #pragma prefix "bank.com"
5
6 module BANK {
7
8 //types
9 enum AccountType {CHECKING, SAVING};
10 //constant
11 const unsigned long MAX_LENGTH = 20;

38

12 typedef sequence<char, MAX_LENGTH> AccountNum;
13
14 interface Account {
15 //attributes
16 readonly attribute AccountNum check_account_num;
17 readonly attribute float check_account_balance;
18 readonly attribute AccountNum save_account_num;
19 readonly attribute float save_account_balance;
20 readonly attribute string pin;
21 attribute string address;
22 };//end of interface Account
23
24 //interface inheritance:
25 //AccountTransaction inherits attributes of Account
26 interface AccountTransaction : Account {
27
28 //exceptions
29 exception account_invalid {
30 string reason;
31 };
32 exception incorrect_pin {};
33
34 //operations and raising exceptions
35 float balance (in AccountType account_type,
36 in AccountNum account_num,
37 in string pin)
38 raises (account_invalid, incorrect_pin);
39
40 void deposit (in AccountType account_type,
41 in AccountNum account_num,
42 in float amount,
43 out float new_balance)
44 raises (account_invalid);
45
46 //one-way
47 oneway void withdraw (in AccountType account_type,
48 in AccountNum account_num,
49 in float amout,
50 in string pin);
51

39

52 };// end of interface AccountTransation
53
54 };// end of module BANK

CORBA provides an IR that allows run-time access to the IDL definition. The
IDL compiler assigns a repository Id as a unique name for each IDL type into the
IR. The prefix “pragma” adds a unique prefix to a repository Id to ensure its unique-
ness. Line 4 defines a prefix bank.com. Line 9 declares an enumerated variable
AccountType with CHECKING and SAVING representing types of a bank ac-
count. Lines 11-12 define the type of an account number which is a bounded
sequence with maximum length of 20. Lines 14-22 define an interface Account
which includes the primary information of a bank account, such as pin number,
home address, account numbers, account balances. An attribute defines read and
write operations on a variable. A readonly attribute defines a single read operation
on a variable. Line 20 is semantically equivalent to the preceding codes:

string get_pin ();

Line 21 is semantically equivalent to the following codes:

string get_address();
void set_address (in string address);

Even though attribute definitions look like variables, in fact they are just shorthand
for definition of a pair of operations (or a single operation for readonly). Lines
26-52 define an interface AccountTransaction, including some basic trans-
action related to a bank account (e.g., chequing balance, deposit, withdraw). Lines
29-32 define the contents of exception. Lines 35-38 define a method balance,
and lines 40-44 define a method deposit. Lines 47-50 define the oneway opera-
tion withdraw. Note that the oneway operation cannot return any values, nor can
it raise exceptions.

3.2.3 Object Adapters

An Object Adapter [21, 39] is the primary means through which an object imple-
mentation accesses most services provided by the ORB, such as:

� Generation and interpretation of object references

� Method invocation

� Security of interactions

40

� Object and implementation activation and deactivation

� Mapping object references to the corresponding object implementations

� Registration of implementations

An object adapter has a public interface to the object implementation, and two
private interfaces — one to the skeleton, and the other to the ORB core. The inten-
tion is to isolate object implementation from the ORB core as much as possible.

There is a variety of possible object adapters, according to different require-
ments of object implementations. Most object adapters are designed to cover a
range of object implementations.

Prior to CORBA 2.1, the Basic Object Adapter (BOA) was the only CORBA
object adapter, and provided a minimum of functionality to object implementa-
tions. As a consequence, many ORB vendors added custom extensions to BOA to
support more complex operations upon object adapters, resulting in poor compati-
bility of object implementations among different ORB vendors.

In CORBA 2.2, A new object adapter called Portable Object Adapter (POA)
was introduced to replace the BOA. The POA provides more extended interfaces
than the BOA, and fulfills the needs of most object implementations. Therefore,
the BOA specification has been removed from CORBA.

POA Related Concepts and Terminology

� A Servant is a programming language object or entity that implements re-
quests on one or more objects, providing bodies or implementations for those
objects. Servants generally exist within the context of a server process. A
request made on an object through its reference is interpreted by the ORB
and transformed into an invocation on a specific servant.

� An Object Id is an octet sequence that uniquely identifies a particular abstract
object within the scope of its host POA. Object Id values may be assigned
and managed by the POA, or by the user-supplied implementation. Encap-
sulated by object references, Object Id values are hidden from clients.

41

Object
Non-existent

Object
Non-existent

Object Exists

Servant Etherealized

Object
Deactivated

Object
Activated

Servant Incarnated

Activate Deactivate

Creation Destruction

Figure 3.6: Object and Servant Life Cycles (Taken from [21])

� An Active Object Map is a table maintained by an object adapter that maps
its active objects to their associated servants. Active objects are identified in
the map via Object Ids.

� A Policy is an object associated with a POA by an application in order to
specify a characteristic shared by the objects implemented in that POA.

POA is responsible for the entire life cycle of a CORBA object – from its cre-
ation to its destruction. Figure 3.6 shows the life cycle states of objects with respect
to the life cycle of their servants. When a request is received by the POA (via the
ORB) for the invocation of an object, the POA creates the CORBA object that will
service that request. Creation of an object associates a servant with it. A created
object is activated by its servant. The object must be incarnated by a servant to
have requests delivered to it. When the servant is finished with the CORBA object,
the servant is etherealized and its linkage to the object is broken [21]. The object
is then deactivated. A created object can alternate between the active and deactive
modes during its life-cycle. Eventually, the object is destroyed, which completes
its life-cycle.

42

Object Reference

Servant Servant

CORBA Object

Client

Logical

Connection

Client ORB
Request Flow

Server

Server ORB

Object Id
POA

Request Invocation

Physical

Figure 3.7: Abstract POA Model (Adapted from [21])

Abstract POA Model

Figure 3.7 shows the abstract POA model while a request sent from the client is
dispatching to the servant. First, the server exports an object reference for an ob-
ject. By accessing the object reference, perhaps via the Naming Service or the
Trading Service (see Section 3.3), the client invokes a request. The client ORB
uses the object reference to dispatch the request to the server ORB. The server
ORB then dispatches the request to the POA hosting the target object and, finally,
the POA further dispatches the request to the appropriate servant (identified by the
Object Id) that incarnates the target object. In Figure 3.7, the straight arrow be-
tween the object reference and the object indicates the logical connection between
them, while the curved arrow represents the physical request flow.

POA Policies

A major feature of the POA is that a server application can have more than one
POA, each of which represents a set of objects that have similar properties. These
properties are controlled via POA policies that are specified when a POA is created.
Each server application has at least one POA called Root POA, which stores a
standard set of policies. (In the following description of POA policies, the policy
values ending with ‘*’ are default policy values for Root POA.) A nested POA can
be created on an existing POA, from which the new POA inherits policy values by

43

default. The POA policies are described below:

� Thread Policy: A POA can either have the ORB control its threads (ORB CTRL MODEL*)
or be single-thread (SINGLE THREAD MODEL). If single-thread, all requests
are processed sequentially. Even though in a multi-threaded environment, all
requests are synchronized to only execute one request at a time. In contrast,
if ORB-controlled threading policy is specified, the ORB controls the use of
threads.

� Lifespan Policy: This policy is to specify whether the objects created within
a POA are transient (TRANSIENT*) or persistent (PERSISTENT). Tran-
sient objects are CORBA objects whose lifetimes are bounded by the life-
times of the server processes in which they are created, while the lifetimes of
persistent objects are independent of those of any server processes in which
they are activated.

� Object Id Uniqueness Policy: This policy allows the server to control whether
a servant can be associated with only a single object (UNIQUE ID*), or with
multiple objects (MULTIPL ID). The servants associated with multiple ob-
jects can reduce the server’s memory use.

� Id Assignment Policy: The SYSTEM ID* policy means that objects created
with a POA are assigned Object Ids only by that POA; otherwise (USER ID),
Objects Ids are assigned only by the server.

� Servant Retention Policy: This policy decides whether a POA retains (RE-
TAIN*) the associations between servants and objects, or whether it estab-
lishes a new association for each incoming request. The NON RETAIN pol-
icy requires either USE DEFAULT SERVANT or USE SERVANT MANAGER
policies.

� Request Processing Policy: When a request arrives for a specific object, the
POA can act as follows:

– USE ACTIVE OBJECT MAP ONLY* – If the Object Id is not found in
the Active Object Map, an OBJECT NOT EXIST exception is returned
to the client. The RETAIN policy is also required.

44

– USE DEFAULT SERVANT – If the Object Id is not found in the Active
Object Map or the NON RETAIN policy is present, and a default ser-
vant has been registered with the POA using the set servant operation,
a default servant can be registered. The MULTIPLE ID policy is also
required.

– USE SERVANT MANAGER – If a servant manager has been registered
with the POA, it is invoked by the POA to locate a servant or raise an
exception.

The combination of these policies with the RETAIN policy provides flexi-
bility to control servant registration and allocation within the server process.

� Implicit Activation Policy: If the implicit activation (IMPLICIT ACTIVATION*)
policy is chosen, a POA can activate a servant implicitly. This is useful for
registering servants for transient objects. For instance, a server can create
a servant by instantiating the server class and, invoking its ���� method, it
registers the servant and creates an object reference for the object, in one sin-
gle operation, in C++ language. IMPLICIT ACTIVATION also requires
the SYSTEM ID and RETAIN policies. The other value of this policy is
NO IMPLICIT ACTIVATION.

3.2.4 ORB Interoperability

ORB interoperability [50] specifies a comprehensive, flexible approach to support-
ing networks of objects that are distributed across and managed by multiple, het-
erogeneous CORBA-compliant ORBs [37].

As specified in CORBA, the elements of interoperability include:

� ORB interoperability architecture,

� Inter-ORB bridge support, and

� General and Internet inter-ORB Protocol (GIOPs and IIOPs)

In addition, the architecture accommodates Environment-Specific Inter-ORB
Protocols (ESIOPs) that are optimized for particular environments.

45

The ORB Interoperability Architecture provides a conceptual framework for
defining the elements of interoperability and for identifying its compliant points.
Specifically, the architecture initiates the concepts of immediate and mediated bridg-
ing between ORB domains. The IIOP forms the common basis for both immediate
and mediated bridgings.

The architecture clearly identifies the roles of different kinds of domains for
ORB-specific information. ORBs in the same domain can communicate directly,
while communication of ORBs in different domains must be achieved by a bridge
that fully maps the content and semantics of one ORB to that of the other.

The GIOP is a very basic protocol built for ORB-to-ORB communications, and
it is designed to be simple, scalable, and easy to implement. The IIOP, which is
the basic inter-ORB protocol for Transmission Control Protocol/Internet Protocol
(TCP/IP) environments, is one of the variants of the GIOP and shares the GIOP’s
features. The IIOP is a mandatory protocol for inter-bridge communications.

3.3 CORBAservices: Common Object Services

As defined by OMG, Object Services are “interfaces and sequencing semantics
that are widely available and are mostly commonly used to support building well-
formed applications in a distributed object environment built on a CORBA-compliant
ORB.” [30] Among all 15 object services described in the CORBAservices spec-
ification ([30]), Naming Service, Event Service, Life Cycle Service, and Persistent
Object Service are the most fundamental object services in the OMA, and were the
first adopted by the OMG as industry standards. During the subsequent couple of
years, more and more object services (including Transaction Service, Concurrency
Control Service, Relationship Service, Externalization Service, Licensing Service,
Query Service, Property Service, Security Service, Time Service, Collections Ser-
vice, and Trading Service) were proposed by OMG members, and added to the
Object Services interface category — which provides a better foundation for other
interface categories in the OMA. Some of these are important database related ob-
ject services, including Transaction Service, Backup and Recovery Service, Con-
currency Control Service, and Query Service. As we mentioned before, only some
of these Object Services are actually implemented by the vendors. The following
sections give a brief description of some major object services.

46

home sys

bin libkate

app

ben

staff

app2

grep

user

ben
john

ugrad

app1

unzip

Object Reference Object Context

grad

Figure 3.8: A Naming Graph

3.3.1 Naming Service

The Naming Service supports a name-to-object association called a name binding,
i.e., to bind a name to an object relative to a naming context. A naming context is
an object that contains a set of name bindings where each name is unique. Differ-
ent names can be bound to an object in the same or different contexts at the same
time, but each name can only identify exactly one object. To resolve a name is to
determine the object associated with the name in a given context.

A context is like any other object, and it can be bound to an object or another
context object. It forms a hierarchy of contexts and bindings known as a naming
graph, which can be supported in a distributed, federated fashion. A naming graph
is like a file system, in which contexts are analogous to directories that store bind-
ings either to directories (other contexts) or files (objects). See Figure 3.8.

3.3.2 Event Service

The Event Service supports asynchronous events by decoupling the communication
between objects. It defines two roles for objects: the supplier role, which produces
event data, and the consumer role, which processes event data. Event data are com-
municated between suppliers and consumers by issuing standard CORBA requests

47

through appropriate event channel implementations.

The push model and the pull model are two approaches defined to initiate event
communication. The push model allows a supplier of events to initiate the transfer
of the event data to consumers, while the pull model allows a consumer of events
to request the event data from a supplier. The communication can be generic, us-
ing a single parameter that packages all the event data, or typed, using operations
defined in OMG IDL.

An event channel is an intervening object that allows multiple suppliers to com-
municate with multiple consumers asynchronously, and is itself both a consumer
and a supplier of events.

3.3.3 Trading Service

The Trading Services facilitates objects advertising their capabilities and matching
their needs against advertised capabilities. A trader is an object that supports the
trading object service in a distributed environment.

The service provider registers the availability of the service by invoking an
export operation on the trader, giving the trader a description of a service, and
the location of an interface where that service is available. To import, an object
asks the trader for a service having certain properties against its needs. The trader
checks the service description it holds, and gives the object reference of the selected
service to the importer. Then, the importer is able to communicate with the service.

3.3.4 Life Cycle Service

The Life Cycle Service defines a framework composed of services and conventions
for creating, deleting, copying, and moving objects. A client is any piece of code
that initiates a life cycle operation for some object. Clients can perform life cycle
operations on objects in different locations under the conventions of the Life Cycle
Service.

A client model of creation is defined in terms of factory objects that provide
the client with specialized operations to create and initialize new instances for the
implementation. A factory has no standard interface, but a generic factory inter-
face. Clients can delete, move, or copy an object by invoking remove, move, or

48

copy requests, respectively, on target objects that support LifeCycleObject inter-
faces. The Life Cycle Service also defines factory finder objects which support a
find factories operation for returning a sequence of factories. Clients pass
factory finders to the move and copy operations that invoke the find factories
operation, to find a factory to interact with. The new copy or the migrated object
will be within the scope of the returned factory.

3.3.5 Persistent Object Service

The Persistent Object Service provides common interfaces to the mechanisms used
for retaining and managing the persistent state of objects in a data storage-independent
fashion. Objects can be considered in two states: the dynamic state, which is typi-
cally in memory and transient; and the persistent state, which is used to reconstruct
the dynamic state. The Persistent Object Service is primarily responsible for stor-
ing the persistent state of objects.

Each object ultimately has the responsibility of managing its own state, but can
use, or delegate to, the Persistent Object Service for the actual work. There is no
requirement that any object use any particular persistence mechanism. The Persis-
tent Object Service provides capabilities that support various styles of usage and
implementation, in order to be useful to a wide variety of objects. The architec-
ture of the Persistent Object Service has multiple components and interfaces. The
interfaces allow different implementations of the components to work together to
obtain different qualities of service.

3.3.6 Transaction Service

The Transaction Service supports concepts of transactions including flat transac-
tions (mandatory in the specification), and nested transactions, which have the fol-
lowing properties, known as ACID [20]:

Atomicity - Either all of the actions of a transaction are committed, or none are.
Thus, if a transaction is interrupted by failure, all efforts are undone (rolled
back).

Consistency - A transaction maintains a consistent state.

Isolation - A transaction is isolated from other transactions. Its intermediate states
are not visible to other transactions. Transactions appear to execute sequen-
tially even though they are performed concurrently.

49

Durability - Once a transaction commits (completes), its efforts are persistent and
survive future system failures.

The Transaction Service defines interfaces that allow multiple, distributed ob-
jects to cooperate in order to provide the above properties. Transaction semantics
can be defined as part of any object that provides ACID properties. This service
depends on the Concurrency Control Service to enforce isolation, and the Persis-
tent Object Service to enforce durability.

3.3.7 Concurrency Control Service

The purpose of this service is to coordinates the concurrent access to a single shared
resource (an object), such that the resource remains in a consistent state when ac-
cessed concurrently by multiple clients. The Concurrency Control Service ensures
that transactional and non-transactional clients are serialized.

Coordination is achieved by preventing multiple clients from simultaneously
processing locks (each lock is associated with a single resource and a single client)
for the same resource in a conflicting mode. Different lock modes are defined to
provide flexible conflict resolution.

The Concurrency Control Service, together with the Transaction Service can
be used to coordinate the activities of concurrent transactions.

3.3.8 Query Service

The Query Service provides query operations on collections of objects — including
predicate-based declarative specifications — and may return collections of objects.
Queries can be specified by object derivatives of SQL and/or other styles of object
query languages including direct manipulation query languages.

Queries are either executed on the source object collections by the application
of predicates, or by intermediate collections that are produced by query evalua-
tors. Query evaluators apply a given predicate to collections to generate other
collections. They can operate on implicit collections of objects through their OMG
IDL interfaces. Thus, the query service supports nested queries of traditional form.

50

3.3.9 Collections Service

The Collections Service provides a uniform way to create and manipulate the most
common collections (groups of objects such as sets, queues, stacks, lists, binary
trees) generically. Three categories of interfaces are defined to accomplish this
purpose:

1. Collection interface and collection factories. A client uses a collection fac-
tory to create a collection instance of a chosen collection interface which of-
fers grouping properties that match the client’s requirements. A client uses
collections to manipulate elements as a group.

2. Iterator interfaces. An iterator is created for a given collection, which is the
factory for it. An iterator is used to traverse the collection in a user-defined
manner, process elements it points to, mark ranges, etc.

3. Function interfaces A client creates user-defined specializations of these in-
terfaces using user-defined factories. Instances of function interfaces are
used by a collection implementation, rather than by a client.

3.3.10 Other Object Services

The Externalization Service describes protocols and conventions for object exter-
nalizing and internalizing. To externalize an object is to record the object’s state in
a stream of data (in memory, on a disk file, across the network, etc.). It can then be
internalized into a new object using the same or a different process.

The Relationship Service allows entities, represented as CORBA objects, and
relationships to be explicitly represented

The Licensing Service provides a mechanism for producers to control the use
of their intellectual properties.

The Property Service is used to dynamically associate named values with ob-
jects outside the static IDL-type system.

The Security Service consists of the following features: Identification and au-
thentication, authorization and access control, security auditing, security of com-
munication, non-repudiation, and administration.

51

The Time Service enables the user to obtain current time, together with an error
estimate associated with it, to synchronize clocks in distributed systems.

3.4 CORBA 3

In CORBA 3 [40], some important features are added into the current CORBA to
increase its capability and ease-of-use. Although the final official OMG specifica-
tions have not yet come out, the draft specifications are now available. They are
divided neatly into three major categories: Internet Integration, Quality of Service
Control, and The CORBAcomponent Architecture.

3.4.1 Internet Integration

Firewall Specification

The Firewall Specification [29] provides specifications and descriptions of how
to achieve inter-ORB interoperability through firewalls, and a bi-directional GIOP
connection useful for callbacks and event notifications.

There are two types of firewall: transport-level and application-level. The spec-
ification currently supports TCP (transport-level), SOCKS (transport-level) and
GIOP (application-level) firewalls. For each of these firewalls, the specification
provides feasible solutions to cope with CORBA traffic over the IIOP protocol, in-
cluding IIOP over Secure Socket Layer (SSL).

In CORBA, objects often need to callback the client that invoked them. Be-
cause standard CORBA connections carry invocations asymmetrically, a callback
typically requires the establishing of a second TCP connection for this traffic, in
a reverse direction. The essential problem with callbacks is that the target host
(where the client is) of callback operation invocation is usually a workstation rather
than a server host (where objects are). Since a firewall does not allow any incom-
ing TCP connection to an inside workstation, except to certain well-known and
carefully configured hosts like HTTP or FTP servers, this callback technique is not
acceptable across firewalls. The specification indicates that an IIOP connection can
accomplish the callback functionality under certain restrictive conditions, that do
not compromise security at either end of the connection.

52

Interoperable Name Service [31]

As we know, the object reference is a foundation of the whole CORBA architec-
ture. A client cannot access a remote object implementation (even though it knows
where the object implementation is located and that the object implementation is
running) unless the client can get the object reference of the object. CORBA pro-
vides a Naming Service where the client can access the reference of the object
implementation, but what if the reference of the Naming Service itself is not avail-
able? Suppose we know only that the Naming Service is running on a machine
whose domain name is darwell.cs.ualberta.ca. The Interoperable Name Service
supports the use of Uniform Resource Locator (URL)-based names, and defines
two types of URL-format object references that are user friendly and similar to
FTP and HTTP URLs: iioploc provides stringified references that can reach de-
fined services (like Naming Service) at a remote location represented by URLs,
while iiopname allows URLs to denote entries in a Naming Service.

In the above example, we could use an iioploc identifier:

������� � 		
��
������������������	�����������

to get the Naming Service running on that machine.

3.4.2 Quality of Service Control

Asynchronous Messaging and Quality of Service Control [28]

Two new invocation modes: Asynchronous Method Invocation (AMI) and Time
Independent Invocation (TII), both of which can be used in static and dynamic
invocations, are introduced in the Messaging Specification [28]. Clients can use
either polling or callback methods to get the results of invocations. Upon receiv-
ing these invocations, Routers handle the passing of messages between clients and
target objects, and communicate with them. Some policies are specified to control
the Quality of Service (QoS) of asynchronous invocations.

Minimum [32], Fault-Tolerant [35], and Real-Time CORBA [36]

minimumCORBA refers to a subset of CORBA designed for some systems with
limited resources, such as embedded systems. Once such systems are finalized,
their communications with outside world are predictable. Therefore, the dynamic

53

aspects of CORBA, such as DII and IR, are omitted — while portability, interop-
erability, and full IDL support are still the goals of minimumCORBA.

Real-time CORBA consists of some optional extensions added to CORBA to
be used in a real-time system. A real-time system has special requirements on both
resources management and predictability of system execution. Real-time CORBA
not only helps developers meet the requirements of real-time systems, but also
brings them the same benefits of implementation flexibility, portability, and inter-
operability which CORBA provides.

Fault Tolerant CORBA provides robust support for high level reliability appli-
cations which require absolutely no failure. Its standard is based on entity redun-
dancy (e.g., replication of objects), fault detection, and recovery management.

3.4.3 The CORBAcomponent Architecture

CORBAcomponents [34] and CORBAscripting [33]

CORBAcomponents introduces a new meta-type in CORBA called Component
which supports multiple independent interfaces (current CORBA only supports
multiple interfaces by inheritance). A CORBAcomponents container provides in-
frastructure to navigate among these interfaces.

The CORBAcomponents container environment is persistent, transactional,
and secure. For the developers, these functions are pre-packaged, and provided
at a higher level of abstraction than the CORBAservices provide. This helps put
CORBA middleware development within the domain of business application de-
velopment, thus allowing application developers with little knowledge of CORBA
to use it in a way they can understand.

Enterprise Java Beans (EJBs) will act as CORBAcomponents integrated in
the container. They will have CORBAcomponent-style remote interfaces, defined
by CORBA IDL. The specification states that CORBAcomponent implementation
may be packaged and deployed using XML-based tools, and also defines a multi-
platform software distribution format.

Specified in [33], Component Scripting is a standard scripting language used
to wire all components together, through which users can easily modify or upgrade
applications constructed utilizing the language. The specification maps component

54

assembly to a number of widely used scripting languages.

3.5 MICO [44]

The distributed DISIMA implementation uses a public domain implementation of
CORBA 2.3.1, called MICO. The acronym MICO expands to “MICO Is CORBA”.
It is a freely available and fully compliant implementation of the CORBA standard.
MICO has become fairly popular, and has been designated as CORBA-compliant
by the OMG. MICO is implemented in C++.

The current version of MICO includes the following features as indicated in
[44]:

� IDL to C++ mapping

� Dynamic Invocation Interface (DII)

� Dynamic Skeleton Interface (DSI)

� graphical Interface Repository browser that allows invocation of arbitrary
methods on arbitrary interfaces

� Interface Repository (IR)

� IIOP as native protocol (ORB prepared for multiprotocol support)

� Support for nested method invocations

� Any type offers an interface for inserting and extracting constructed types
that were not known at compile time

� Full BOA implementation, including all activation modes, support for object
migration, and the implementation repository

� BOA can load object implementations into clients at runtime using loadable
modules

� Portable Object Adapter (POA)

� Objects by Value (OBV)

� Support for using MICO from within X11 applications (Xt, Qt, and Gtk) and
Tcl/Tk

55

� Dynamic Any

� Interceptors

� Support for secure communication and authentication using SSL

� CORBA Object Services:

– Interoperable Naming service

– Trading service

– Event service

– Relationship service

– Property service

– Time service

MICO works on the following platforms:

� Solaris 2.5, 2.6, and 7 on Sun SPARC (egcs 1.x, native C++ compiler)

� AIX 4.2 on IBM RS/6000 (egcs 1.x, native C++ compiler)

� Linux 2.x on Intel x86 (egcs 1.x)

� Digital Unix 4.x on DEC Alpha (egcs 1.x)

� HP-UX 10.20 on PA-RISC (egcs 1.x, native C++ compiler)

� Ultrix 4.3 on DEC Mips (egcs 1.x)

� Linux 2.x on DEC Alpha (egcs 1.x)

� SGI-IRIX on DEC Mips (egcs 1.x, native C++ compiler)

� PowerMax OS (native C++ compiler)

� Windows 95/NT (Cygnus CDK beta19)

� Windows 95/NT (Visual-C++ 5+SP3 and 6+SP1)

� FreeBSD 3.x on Intel x86 (egcs 1.x)

MICO is free software. Though MICO does not provide much support in the
development of database systems, such as Query Service and Transaction Service,
it does have as many features as a fully CORBA compliant implementation, which
is one reason for its selection in the distributed DISIMA implementation.

56

Chapter 4

CGI

Besides the OMA, another infrastructure, that is used extensively in the distributed
DISIMA implementation, is the Common Gateway Interface (CGI [5, 9]). This is
useful in distributed DISIMA because the CGI provides the communications, via
the Web server, between Web-based DISIMA clients (VisualMOQL), and CORBA-
based DISIMA servers in the distributed DISIMA architecture (discussed in detail
in Chapter 5).

4.1 Background

A major benefit of the World Wide Web (Web or WWW) is that Web authors can pro-
vide users with interlinked hypertext documents on a diverse range of topics. Users
can then access a variety of information from anywhere in the world, through Web
browsers such as Netscape Navigator or Microsoft Internet Explorer. Web docu-
ments are normally delivered by HTTP (HyperText Transfer Protocol [10]) servers
running httpd (HTTP daemon). Servers and browsers communicate through the
Internet, which connects a large network of computers worldwide.

Web documents are usually written in HyperText Markup Language (HTML
[11]) and stored statically, as text files, on the server’s disk. Such simple static
hypertext documents can carry lots of information to users, but their limitations
prevent them from dealing with increasing numbers of “interactive”, dynamically
generated, Web documents. For example, what if an author wishes to provide flight
schedule information which changes over time? Or, as in DISIMA, one wishes to
provide an interactive interface that allows users to explore the database by speci-
fying the query?

57

There are mainly two approaches to generating dynamic documents. One is the
server-side include mechanism, which aims to assemble a single large HTML doc-
ument from several smaller documents. Unfortunately, the performance problems
[5] of this mechanism make it unpopular. The most commonly used approach is
Common Gateway Interface (CGI), a standard for the construction of completely
dynamic documents by external programs running on the server system, in a plat-
form independent manner.

4.2 The CGI Standard

The CGI standard was developed jointly by the US National Center for Super-
computing Applications (NCSA) and the European Laboratory for Particle Physics
(CERN) in 1993, and has since been widely utilized in the World Wide Web. It is
a simple standard in which external applications interact with information servers
(such as HTTP servers), and regulate the environment where the external applica-
tions execute. A plain HTML document retrieved by the Web server is static (i.e.,
existing as a text file in a constant state), while a CGI program is executed by the
server as per users’ requests in real-time, so that it can output dynamic documents.

The goals of CGI can be summarized as follows:

� To provide a consistent, standard interface between the Web server and the
external application.

� To make sure that user input will not be lost due to the limitations of the
server operating system.

� To provide the external program with as much information as possible about
the server, the browser, and the user.

� To keep the CGI standard as simple as possible to simplify the development
of the CGI application.

Figure 4.1 describes how the browser, the Web server, and the CGI program
collaborate to provide real-time dynamic information to the user.

Let’s take our DISIMA project as an example. We have a Web based Visual-
MOQL query interface, and an image DBMS running on the UNIX system. How

58

Server

CGI

files
Database instruments

Scientific

5. Server transmits complete
document to browser

2. Server recognizes CGI request
and executes CGI program

4. CGI program outputs a new
Web document

3. CGI program takes advantage of external resources

Disk

Browser

Program

document from server
1. Browser requests

Figure 4.1: The CGI Mechanism (Taken from [5])

59

can we connect these two components in order to make the image DBMS acces-
sible to users from all over the world? In addition to a Web server, we need to
create a CGI program that the Web server will execute to: transmit the query to
the database engine, receive the query results back, and display them to the user
through the browser.

Since a CGI program is executable, for security concerns, it needs to be lo-
cated in a special directory so that the Web server knows where to execute the CGI
program. The webmaster usually takes charge of this directory, prohibiting unau-
thorized users from creating CGI programs.

A CGI program can be written in virtually any language that allows it to be
executed on the system, such as: C/C++, Fortran, PERL, TCL, any Unix shell,
Visual Basic, and AppleScript. The CGI application developed in programming
languages, such as C/C++ and Fortran, needs to be compiled before it runs; while
the application in scripting languages, such as PERL, TCL, or a Unix shell, can run
directly. We chose C/C++ as the CGI programming language for DISIMA because
of its performance advantages [5] over others.

The browser sends its requests to the Web server by using HTTP, and the server
executes CGI programs based on the requests from the browser. There are several
kinds of HTTP requests (so called methods), two of which, GET and POST, concern
CGI programs:

� The GET method – The browser requests a document usually without sub-
mitting any other input.

� The POST method – This method is used to deliver information from the
browser to the server. Most likely, the information sent is a form submission.

The standard output of CGI programs can be either a new valid Web document,
an error code, or a redirection to another document. CGI programs can obtain input
information from environment variables shared with the Web server, data passed
on the command line of the browser, or the standard I/O calls.

4.3 Limitations

The simplicity of the CGI standard comes at a price. One major drawback is that
every time a CGI program is requested, the operating system must create a new,

60

distinct process for the CGI program and set the various CGI environment vari-
ables appropriately. This leads to the following issues:

� Each process consumes resources within the server’s operating system. The
fixed cost associated with every execution of a CGI program is a waste of
resources.

� If a CGI program process takes a long time to execute, the user will have to
wait in front of the browser until the CGI program returns something, or the
user must explicitly quit the request.

� Since there are no direct links between two CGI processes, it is difficult to
keep track of the state of communications between the user and the server.

61

Chapter 5

Distributed DISIMA

As we mentioned in Chapter 1, the DISIMA project addresses the development of
a distributed, interoperable image database management system with the following
features:

1. object oriented approach to image data management

2. use of image processing and indexing techniques for efficient querying and
access to image databases

3. access to distributed (and possibly heterogeneous) image storage systems

This project addresses the third point. Two steps are followed in reaching this goal:

� First we put the single DISIMA into the OMA; specifically, we create a
CORBA-based single DISIMA system.

� Then, based on the prototype, we put multiple databases into the structure
and deal with interoperability issues that arise.

All the distribution work will be implemented using C/C++ language, as the DIS-
IMA prototype is implemented in C/C++ and MICO only supports C/C++. Before
going any further on the design, we discuss how the OMA can fit into our require-
ments, and some design issues that need to be considered.

5.1 CORBA and Database Interoperability

As an object-oriented distributed computing platform, OMA, and in particular
CORBA, can be helpful for database interoperability in terms of managing hetero-

62

geneity. In a multidatabase system implementation, the major issue is how to deal
efficiently with heterogeneity which, basically, exists at four levels: the hardware
and operating system level (or jointly called the platform level), the communica-
tion level, the DBMS level, and the semantic level. CORBA deals primarily with
platform and communication heterogeneity. It provides implementation and loca-
tion transparency, which enables a client to access an object through the object’s
interfaces defined by IDL and its object reference, and independent of the platform
and the location where the object resides, or the communication protocol between
the client and the object. The DBMS-level heterogeneity is among DBMSs based
on different data models and query languages. Semantic heterogeneity addresses
incorporation of databases with different schemas, and includes schema conflicts
and data conflicts. One possible solution to handle the DBMS level and semantic
level heterogeneity is to develop a global layer that includes the global level DBMS
functionality. One issue with which CORBA cannot be directly helpful is semantic
heterogeneity.

Using CORBA as the infrastructure affects the upper layers of a multidatabase
system, since CORBA and CORBAservices together provide basic database func-
tionality for managing distributed objects. The most important database-related
services included in CORBAservices are: Transaction Service, Backup and Re-
covery Service, Concurrency Service, and Query Service. If they are available in
the ORB implementation used, it is possible to develop the global layers of a mul-
tidatabase system on CORBA, mainly by implementing the standard interfaces of
these services for the objects involved. For example, when using a Transaction
Service, implementation of a global transaction manager occurs by implement-
ing the interfaces defined in the Transaction Service specification for the involved
DBMSs. Unfortunately, most commercial ORBs do not support these services; nor
does MICO ORB.

In this section, we discuss some of the design issues that must be resolved in
order to use CORBA for database interoperability. This discussion is based on [1].

Object Granularity. A fundamental design issue is the granularity of the CORBA
objects. In registering a DBMS to CORBA, a row in a relational DBMS, an
object or a group of objects in an object DBMS, or a whole DBMS, can be an
individual CORBA object. The advantage of fine granularity objects is the
finer control they permit. However, in this case, all the DBMS functionali-
ties (e.g., querying and transactional control) needed to process and manage
these objects have to be supported by the global system level (i.e., the mul-

63

tidatabase system). If, on the other hand, a whole DBMS is registered as a
CORBA object, the functionality needed to process the entities is left to that
DBMS.

Another consideration with regard to granularity has to do with the capabil-
ities of the particular ORB being used. In the case of ORBs that provide
BOA, each insertion and deletion of classes necessitates recompiling of the
IDL code and rebuilding the server. Thus, if the object granularity is fine,
these ORBs incur significant overhead. A possible solution to this problem
is to use DII. This prevents recompilation of the code and rebuilding of the
server, but suffers the run-time performance overhead discussed earlier.

Object Interfaces. A second design issue is the definition of interfaces to the
CORBA objects. Most commercial DBMSs support the basic transaction
and query primitives, either through their Call Level Interface (CLI) library
routines or their XA interface1 library routines. This property makes it pos-
sible to define a generic database object interface through CORBA IDL, to
represent all the underlying DBMSs. CORBA allows multiple implementa-
tions of an interface. Hence, it is possible to encapsulate each of the local
DBMSs by providing a different implementation of the generic database ob-
ject.

Association Mode. The association mode between a client request and server method
is a third design issue. As specified earlier, CORBA provides three alterna-
tives for handling this: one interface to one implementation; one interface
to one of many implementations; and one interface to multiple implementa-
tions. The choice of alternative is dependent both on the data location and
the nature of the database access requests. If the requested data is contained
in one database, then it is usually sufficient to use the second alternative,
and choose the DBMS that manages that data — since DBMSs registered to
CORBA provide basic transaction management and query primitives for all
the operations the interface definition specifies. If the request involves data
from multiple databases, then the third alternative needs to be chosen.

1The XA interface is defined in the X/Open Distributed Transaction Processing model proposed
by the Open Group, a vendor consortium. The model comprises four components: Application
Programs, Resource Managers, Transaction Managers, and Communication Resource Manager. The
XA interface is a specification that describes the protocol for transaction coordination, commitment,
and recovery between Resource Managers and Transaction Managers. [2]

64

Call Mode. As discussed earlier, CORBA 3 defines four basic call communication
modes between a client and a server: synchronous, deferred synchronous,
one-way, and asynchronous. For objects of an interoperable DBMS, syn-
chronous call mode is generally sufficient. Deferred synchronous mode or
the asynchronous (peer-to-peer) approach should be used when parallel ex-
ecution is necessary. For example, in order to provide parallelism in query
execution, the global query manager of a multidatabase system should not
wait for the query to complete after submitting it to a component DBMS.

Concurrently Active Objects. Some of the objects in a multidatabase system need
to be concurrently active. This can be achieved either by using threads on a
server that uses a shared activation policy, or by using separate servers ac-
tivated in the unshared mode for each object. Otherwise, since a server can
only give service for one object at a time, client requests to other client re-
quests to the objects owned by the same server should wait for the current
request to complete. Further, if the server keeps transient data for the ob-
ject throughout its life cycle, all requests to an object must be serviced by
the same server. For example, if a global transaction manager is activated in
shared mode, it would be necessary to preserve the transaction contexts in
different threads. However, if the global transaction manager is activated in
unshared mode, the same functionality can be obtained with a simpler im-
plementation, at the cost of having one process for each active transaction.

5.2 The Single Site DISIMA

Let us first take a look at current single site DISIMA implementation structure. Fig-
ure 5.1 shows the original version of single site DISIMA implementation structure.
Anything inside the dotted line circle is physically located in the same machine,
called “Darwell”. After the user composes a query using VisualMOQL, and sub-
mits the query, the Web browser passes the query to the Web server. Upon receiv-
ing the request, the Web server executes a CGI program (the DISIMA program),
which opens the image database, parses the query, executes the query against the
database, sends the result image(s) back to the Web server through the CGI, and
closes the database. The Web server delivers generated documents to the browser.

The implementation structure is simple and clear. However, the underlying
problem is that since the DISIMA program is itself a CGI program, every time the
user sends requests, the Web server needs to create a separate DISIMA instance for

65

VisualMOQL

Web Browser

Server
 Web

HTTP

CGI

Darwell

DISIMA

Figure 5.1: The Original Single DISIMA Implementation Structure

each request. For each instance, the image database needs to be initialized, opened,
and closed repeatedly. As we discussed before, it is a waste of time and resources
of the operating system to use complicated CGI programs, such as DISIMA, in
this case. A better implementation structure is to make the DISIMA program run
as a service (daemon). Thus, the image database only needs to be initialized and
opened once. Upon the user’s requests, the Web server launches a small CGI pro-
gram, which passes the query to the DISIMA daemon. The DISIMA daemon ex-
ecutes the query against the image database, and returns the result images back to
the user through the CGI program.

Adapting ObjectStore ObjectForms [25], the latest single site DISIMA imple-
mentation structure, is illustrated in Figure 5.2. ObjectStore ObjectForms provides
a communication channel between the Web server and the DISIMA — an Object-
Store application. Instead of calling the DISIMA directly, the Web server executes
an ObjectForms CGI program, which sends the query to the DISIMA daemon and
waits for a response. The DISIMA program is modified to use ObjectForms API
to create and initialize a service which allows the DISIMA to respond to requests
from the Web server through the ObjectForms communication channel. The com-
munication channel is transparent to users and developers.

ObjectForms solves the problems we previously encountered. Only one in-

66

VisualMOQL

Web Browser

Server
 Web

DISIMA
Daemon

HTTP

Darwell

CGI

ObjectForms

ObjectStore
ObjectForms

Communication Channel

Figure 5.2: The Single DISIMA Implementation Structure

67

stance of the DISIMA program exists in the operating system. As long as the
image database is up, the DISIMA program only initializes and opens the database
once, and deals with the queries passed along from the ObjectForms. This solution
is perfect for the single site DISIMA structure.

5.3 The CORBA-based Single Site DISIMA

As we discussed before, when it comes to CORBA and database interoperability,
the primary issue is granularity. We decided to register an entire DISIMA as a
CORBA object for the following reasons:

� MICO ORB does not provide database-related object services, such as Trans-
action Service, Backup and Recovery Service, Concurrency Service, and
Query Service. Only two object adapters are included: BOA and POA. In
fact, database-related object services, and the object-oriented DBMS (OODBMS)
object adapter, are not implemented in most available commercial ORBs.

� Since the DISIMA itself is a fully functional DBMS, we can leave all database
related functionalities to the DISIMA.

ObjectStore ObjectForms is not suitable for the CORBA-based implementa-
tion because the communication channel it provides is transparent to the develop-
ers, and it requires that all the applications linked to it are ObjectStore applications
— which does not necessarily happen in the heterogeneous environment. Instead,
we create a small CGI program, Query Agent, which is also a CORBA client, to
provide the same functionalities.

If MICO ORB had Query Service, we could register each image in the image
database as a CORBA object. Thus, with Query Services, the Query Agent could
conduct finer query operations on the result images (a collection of CORBA ob-
jects) coming from the DISIMA. Furthermore, it could directly manipulate images
in the image database using some query languages (such as MOQL) without going
through the DISIMA.

The CORBA-based single DISIMA architecture is depicted in Figure 5.3. Ob-
jects in ellipse shape are CORBA objects. Since all the CORBA objects are known,
and the interface of the database object can be defined on compile time, stub-style
(static) interface invocation is sufficient. The input data is a query string and the

68

Server
 Web

DISIMA
(UNIX)

VisualMOQL

Web Browser
HTTP

CGI

Object Request Broker (IIOP)

Services
Object Query Agent

Figure 5.3: The CORBA-based Single DISIMA Architecture

69

output data is a set of thumbnails with related information, or an enlarged image.
The following is the major part of the IDL file.

1 module DISIMA {
2
3 exception SyntaxError {
4 unsigned short position;
5 string errMessage;
6 };
7
8 typedef sequence<octet> thumbnailStreamType;
9
10 typedef sequence<octet> imageStreamType;
11
12 struct thumbnailType {
13 string serverId;
14 string thumbnailLabel;
15 string thumbnailSuffix;
16 string thumbnailId;
17 thumbnailStreamType thumbnailStream;
18 float similarity;
19 };
20
21 struct imageType {
22 string serverId;
23 string imageLabel;
24 string imageSuffix;
25 string imageId;
26 imageStreamType imageStream;
27 };
28
29 typedef sequence<thumbnailType> Thumbnails;
30
31 typedef imageType AImage;
32
33 interface QueryAgent {
34 Thumbnails getThumbnails (in string queryString)
35 raises (SyntaxError);
36 AImage getImage (in string queryString)

70

37 raises (SyntaxError);
38 };
39 };

Lines 3-6 define the content of any exception that may be raised. Lines 8 and
10 define the types for thumbnail stream and image stream, which are unbounded
octet arrays. Lines 12-19 define the structure of the thumbnail type, which includes
the server Id indicating which database this thumbnail comes from; the thumbnail
label (name); the thumbnail suffix (image type); the thumbnail Id (an octet se-
quence that uniquely identifies the thumbnail in the database it comes from; in our
case, it is an object Id in ObjectStore); the thumbnail stream (real thumbnail data);
and the similarity between the target thumbnail and the query image. Lines 21-27
define the content of the image type. Lines 29 and 31 define the return type of the
query, i.e., a set of thumbnails or an image.

Lines 33-38 define an interface called QueryAgent which includes two op-
erations (methods) on a CORBA database object:

� getThumbnails – The input parameter is a MOQL query string that will
be passed along to the database object; the output is a set of result thumbnails
matching the query.

� getImage – The input parameter includes all information to get an image
from a particular database; the output is an image.

Both these operations may raise exceptions, defined in lines 3-6.

The IDL file is compiled by the IDL compiler and mapped into C++ language
files, including client stub (integrated into the Query Agent and used by it to in-
voke methods on remote database objects), server skeleton (class declarations for
the DISIMA object implementation), and other supporting codes.

The simplified process flow is shown in Figure 5.4. A Query Agent instance is
created by the Web server.

The main functionalities of the Query Agent are as follows:

� Get the query string from the environment variable QUERY STRING (con-
taining any information submitted by the browser as a result of a GET method)
using �������� function, and validate the query string. A typical query string
can be in either of the following forms:

71

Query Agent (Client)

to DISIMA
object

An object
reference

via Name
Service

O
peration Client

Stub

Object

Request

Broker

DISIMA Server

Server
A

Method

Object Implementation

LocalDISIMA

Portable O
bject A

dapter

Skeleton Interface DBMS

Figure 5.4: Invoke an operation to DISIMA object via ORB (Adapted from [1])

String=SELECT|m|FROM|Image|m;&num=25&threshold=0.95
or

Image=%3C%2Fdarwell%2Fvar%2Ftmp%2Fdemo_c%2Edb+%7C+2+%7C+5e808%3E&
size=13258&server=DB_darwell

� Initialize ORB and connect to naming service

// ORB initialization
CORBA::ORB_var orb =

CORBA::ORB_init(argc, argv, "mico-local-orb");
...

// Get reference to initial naming context
CORBA::Object_var nobj =

orb->resolve_initial_references ("NameService");
...

// Narrow
CosNaming::NamingContext_var nc =

CosNaming::NamingContext::_narrow (nobj);
...

� Using Naming Service, get the object reference to the remote DISIMA server
object

// Construct a server object name context

72

CosNaming::Name name;
name.length (1);
name[0].id = CORBA::string_dup (serverName);
name[0].kind = CORBA::string_dup ("");
...

// Resolve the name and get the object reference to the server object
CORBA::Object_var obj = nc->resolve (name);
...

// Narrow
QueryAgent_var client = QueryAgent::_narrow(obj);
...

� Depending on the content of the query string, call getThumbnailsmethod
in synchronous mode to get a set of thumbnails, or call getImage method
in synchronous mode to get the image data.

� Construct a dynamic HTML file and send it back to the Web server as a stan-
dard output

The Naming service is the simplest and most basic of the standardized CORBA
common object services, and is itself an object. Through a running naming service
daemon, which is registered with the CORBA implementation repository, the DIS-
IMA server object can bind its names to its object reference, and the Query Agent
can query the name server to resolve the object reference.

The IDL-wrapped DISIMA server is registered with the CORBA implementa-
tion repository, using shared persistent activation policy, which means the server
is started manually. The MICO ORB automatically delivers the request from the
Query Agent to the DISIMA server, specifically on a particular method. The im-
plementation codes for each method declared in the IDL file are included in a class
called QueryAgent impl, as follows:

class QueryAgent_impl : virtual public POA_QueryAgent {
public:

Thumbnails *getThumbnails(const char * queryString) {...}
AImage *getImage(const char * queryString) {...}
...

73

}

Inside each method, the query string is sent to the local DBMS through its CLI,
and results are composed and returned to the invoker. Based on the user’s request,
the appropriate method will be invoked.

The CORBA DISIMA server includes the following functions:

� Initialize the image database through the interfaces.

� Initialize ORB and root POA, and create the servant that provides the ser-
vices to the Query Agent.

// ORB initialization
CORBA::ORB_var orb;
...

// Obtain a reference to the RootPOA and its Manager
CORBA::Object_var poaobj =

orb->resolve_initial_references ("RootPOA");
PortableServer::POA_var poa =

PortableServer::POA::_narrow (poaobj);
PortableServer::POAManager_var mgr = poa->the_POAManager();
...

// Create and activate the servant
QueryAgent_impl *servant = new QueryAgent_impl;
QueryAgent_var oid = servant->_this();
...

� Connect to naming service and bind its name to its object reference

// Connect naming service
CosNaming::NamingContext_var nc;
...

// Bind
appName.length (1);
appName[0].id = CORBA::string_dup (serverName);
appName[0].kind = CORBA::string_dup ("");

74

...

nc->rebind (appName, oid);
...

� After the initialization, the server waits for requests, or for the termination
signals which are handled by the function sigHandler. One of the impor-
tant tasks is to unbind the server’s name so that the Query Agent can know
that the DISIMA server is not available anymore.

nc->unbind(appName);

The CORBA-based, single-site DISIMA prototype is a milestone for this project
because it is the first time that a CORBA-based DBMS is actually implemented.

5.4 The Distributed DISIMA

In our distributed DBMS environment, the query results may come from multiple
databases, and these databases are potentially heterogeneous. Therefore, the best
choice of association mode between a client request and a server method is one
interface to multiple implementations.

We can still use the same IDL interface QueryAgent, as our generic database
object interfaces to all local DBMSs. Each local DBMS provides a different im-
plementation of that generic interface.

The distributed DISIMA architecture is described in Figure 5.5. We use the
query language (MOQL), the data model and schema of the DISIMA system as our
global query language, data model and schema, respectively. Note that we add a
Local Query Agent for each CORBA DBMS server object to deal with the database
system (e.g., data models, query language) and semantic (schema) heterogeneity —
i.e., the third and fourth level heterogeneity from Section 5.1. The implementation
of the Local Query Agent is beyond the scope of this project. The functions of the
Local Query Agent would at least include:

� Mapping the global query language (MOQL) into local query languages;

� Translation of the global data model into local data models; and

� Resolving schema conflicts between global and local schemas.

75

Server
 Web

Local
Query Agent

DISIMA(UNIX)

VisualMOQL

Web Browser
HTTP

CGI

Local
Query Agent

 DISIMA(NT)

Local
Query Agent

 Other DBMS

Global

Query Agent

Object Request Broker (IIOP)

Services
Object

Figure 5.5: The Distributed DISIMA Architecture

76

The Global Query Agent is derived from the Query Agent in Figure 5.3. Be-
sides all the functions of the Query Agent, the Global Query Agent sends the query
request to all database server objects, and integrates result thumbnails from avail-
able database servers. For example, the user sends out the query with the maximum
number of returned images, � . The Global Query Agent sends the same query,
with the same number � , to all the servers. If the total number of images (in the
form of thumbnails) returned from available servers is larger than � , the Global
Query Agent sorts the thumbnails according to their similarities, in descending or-
der, and returns the first � thumbnails to the user; otherwise, the Global Query
Agent sorts the thumbnails and returns all thumbnails back to the user. The Global
Query Agent would also be responsible for resolving semantic heterogeneity issues
among results returned by individual servers. Since this is beyond the scope of this
project, the issue is not discussed further.

At this point, one important issue needs to be addressed: whether the syn-
chronous communication mode is still suitable for the distributed environment. In
the synchronous communication mode, the client waits until it gets a response from
the server. If the server shuts down normally, it will unbind its name on naming
service daemon and update the implementation repository; thus, the client will be
informed, and won’t call this server. However, if the server shuts down abnor-
mally, this will make the name binding, and the information in the implementation
repository, out of date. The client that invokes the server will keep waiting forever,
which is not acceptable. The same problem happens when the network is congested
(which occurs frequently on the Internet), and the server cannot send its response
back promptly. Clearly the synchronous communication mode no longer satisfies
our requirements.

We cannot use the asynchronous communication mode because the current ver-
sion of MICO ORB does not support it. We could use one-way callbacks, but
one-way operations have “best effort” semantics, which means that one-way calls
are not guaranteed to be delivered. Issues like object reference equality, callback
persistence, callback failure, and scalability bring new complicated requirements
to our design and implementation. Detailed discussion of one-way callbacks can
be found in [21].

The communication problem is solved in the current implementation by means
of the Event Service. The Event Service allows an application to use a decou-
pled communications model (specifically, deferred synchronous mode), rather than
strict client-to-server synchronous request invocations. In the Event Service model,
suppliers produce events, and consumers receive them, through an event channel.

77

Event channels allow multiple suppliers and consumers to be connected to them.
It is not necessary for suppliers to know about consumers, or vice versa.

The Event Service provides the push model and the pull model for event deliv-
ery, illustrated in Figures 5.6 and 5.7, respectively. Using the push model, suppliers
(clients) push events to the event channel, and the event channel pushes events to
consumers (servers). With the pull model, consumers (clients) pull events from
the event channel, and the event channel pulls events from the suppliers (servers).
Besides, event channels support a hybrid push/pull model (suppliers push events
to the channel and consumers pull events from the channel) and a hybrid pull/push
mode (the channel pulls events from suppliers and pushes events to consumers).
The supplier and the consumer never contact the event channel directly. Instead
they interact with proxy interfaces, which represent the actual supplier and the ac-
tual consumer.

The type of data that is carried on through the event channel is called Any,
which is an IDL type that provides a universal type that can hold a value of arbi-
trary IDL type. Thus, we can send and receive values whose types are not fixed at
compile time, through the event channel.

For our distributed DISIMA architecture, we need two event channels: the Re-
quest Event Channel and the Result Event Channel. We use the push model for the
request event channel, and the hybrid push/pull model for the result event channel
(Figure 5.8). The global query agent still uses Naming Service to fetch the image
from the particular server.

For the MOQL query string, the global query agent pushes the query with a
certain tag to the requests event channel (we use the dotted-decimal IP address of
the client browser to identify itself from other query agent instances). Based on the
above changes, we modify the IDL file as follows:

1 module DISIMA {
2
3 exception SyntaxError {
4 unsigned short position;
5 string errMessage;
6 };
7
8 typedef sequence<octet> thumbnailStreamType;
9

78

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

PushPushConsumer Supplier
(Server) (Client)

Direction of Event Flow

Event

Channel

Proxy Supplier Interface Proxy Consumer Interface

Figure 5.6: Push-style Event Delivery Model (Adapted from [21])

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

Consumer Supplier

Direction of Event Flow

Event

Channel

Proxy Supplier Interface Proxy Consumer Interface

(Client) (Server)
Pull Pull

Figure 5.7: Pull-style Event Delivery Model (Adapted from [21])

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

Event Channel

Event Channel

Agent

Query

Global

DISIMA
(UNIX)

DISIMA
(NT)

Other
DBMS

Event channel proxy interface

push

push

push

pull

Request

Result

Figure 5.8: Introduce Event Channels into the DISIMA Architecture

79

10 typedef sequence<octet> imageStreamType;
11
12 struct thumbnailType {
13 string serverId;
14 string thumbnailLabel;
15 string thumbnailSuffix;
16 string thumbnailId;
17 thumbnailStreamType thumbnailStream;
18 float similarity;
19 };
20
21 struct imageType {
22 string serverId;
23 string imageLabel;
24 string imageSuffix;
25 string imageId;
26 imageStreamType imageStream;
27 };
28
29 typedef sequence<thumbnailType> thumbnailsType;
30
31 struct Thumbnails {
32 string remoteAddr;
33 thumbnailsType thumbnails;
34 };
35
36 struct Requests {
37 string remoteAddr;
38 string queryString;
39 };
40
41 typedef imageType AImage;
42
43 interface QueryAgent {
44 Thumbnails getThumbnails (in Requests requests)
45 raises (SyntaxError);
46 AImage getImage (in string queryString)
47 raises (SyntaxError);
48 };
49 };

80

The major difference between the new IDL file, and the original IDL file in Sec-
tion 5.3, is that we attach a string type tag remoteAddr, which is an IP address,
to the input/output parameter of the method getThumbnails. Lines 29-34 de-
fine the return type Thumbnails of the method, i.e., a set of thumbnails with a
tag. Lines 36-39 define the input type of the method, i.e., a query string with a
tag. The global query agent can get the IP address of the client browser from the
environment variable REMOTE ADDR using getenv() function.

The global query agent does not have to worry about how many DBMS servers
are available, and what they are. On the other side of the channel, the requests are
pushes to all the servers that are linked to the request event channel. Each server
pushes back its results through the result event channel, while the global query
agent keeps trying to pull the results from the result event channel, after it sends
the query request. When the global query agent detects any result from the event
channel, it uses the tag attached to the results to identify whether the results are
desired. If so, it sends the results back to the client; otherwise, it ignores that result.

The global query agent uses the following major codes to connect to the re-
quest event channel and push the request.

// Get the object reference to request event channel
CosNaming::Name name;
name.length (1);
name[0].id = CORBA::string_dup ("RequestsEventChannel");
name[0].kind = CORBA::string_dup ("");
CORBA::Object_var requests_obj = nc->resolve (name);
...

// Connect to request event channel
CosEventChannelAdmin::EventChannel_var requests_event_channel;
CosEventChannelAdmin::SupplierAdmin_var supplier_admin;
CosEventChannelAdmin::ProxyPushConsumer_var proxy_consumer;
requests_event_channel =

CosEventChannelAdmin::EventChannel::_narrow (requests_obj);
supplier_admin = requests_event_channel->for_suppliers ();
proxy_consumer = supplier_admin->obtain_push_consumer ();
...

// Construct a request

81

Requests *requests = new Requests;
requests->queryString = queryString;
requests->remoteAddr = remoteAddr;

// Insert the query data into a CORBA::Any
CORBA::Any anyRequests;
anyRequests <<= (Requests *) requests ;

// Push the event to the event channel;
proxy_consumer->push (anyRequests);
...

The database server includes a class, Consumer impl, in which the push
method retrieves the query from any data through the request event channel, sends
the query to the local DBMS through its CLI, gets the results, and pushes the re-
sults back to the global query agent through the result event channel.

class Consumer_impl : virtual public POA_CosEventComm::PushConsumer{
public:

...

void push (const CORBA::Any& data) {
...

// (*retThumbnails) are query results
Thumbnails *retThumbnails;
...

// Insert the query results into a CORBA::Any
CORBA::Any anyOut;
anyOut <<= (Thumbnails *)retThumbnails;

// Push the event to Results Event Channel
proxy_consumer->push (anyOut);
...

}
...

82

};

The try-pull procedure in the global query agent is actually a loop procedure,
which is depicted in Figure 5.9. We can specify how long the global query agent
needs to wait for a database server to response.

Figure 5.10 shows an example of distributed query results. It shows that cur-
rently there are four active database servers and nine images (in the form of thumb-
nails) that match the query coming from two servers (DB delia and DB sakwatamau).
The server name of each image is indicated below the image label.

5.5 Implementation Issues

To summarize the design and implementation of the distributed DISIMA system,
we need to point out three issues for further improvement.

CGI Because we use CGI programming, the distributed system is subject to the
shortcomings of CGI, e.g., for each VisualMOQL user, the Web server in-
vokes a separate global query agent instance.

Image Integration The global query agent simply integrates all the images (in the
form of thumbnails) coming from all database servers, without considering
whether two images from different servers may have the same contents.

IP Address The whole distributed system has one result event channel. Each
global query agent instance needs to know whether the event it pulls from the
channel is what it wants. Assume that, with only one user for each machine,
we use the IP address to identify each event. However, if a proxy server is
used by a particular set of users, many machines may appear to have one IP
address. Two users in such a group may get the same results if they submit
two different queries at the same time. If two users on the same client ma-
chine issue two different queries at the same time, or if one user issues two
queries (by instantiating multiple VisualMOQL interfaces), the same prob-
lem would arise.

83

Time
Out?

Any

?
My Results

Process
Results

?

Any
More Servers

Integrate
All Results

Generate
HTML

End

Send
Doc Back

Image
Get

Start

String
Get Query

MOQL
Query ?

via Request
EventChannel

Push Query

No

Yes

No

Yes

No

Yes

Yes

No

Try Pull

EventChannel
Result

Figure 5.9: Flow Chart of Global Query Agent

84

Figure 5.10: Distributed Query Results

85

Chapter 6

Conclusion and Future Work

In this technical report, we describe the design and implementation of building
an interoperable distributed image database management system on top of a dis-
tributed object oriented computing platform, CORBA. Based on the object oriented
methodology, the interoperable integration framework provides users with uniform
interfaces for accessing images from multiple, disparate data repositories. We can
take advantage of the distributed environment and sufficiently exploit image re-
sources, while keeping the autonomy of each individual data repository.

Each image data repository participating in the framework is encapsulated as a
DBMS-like CORBA object with a generic interface to the global query agent. This
provides a single database illusion to users. The global query agent is responsi-
ble for passing queries from users to all available DBMS-like servers, integrating
result images from each server matching queries, and sending the results back to
users.

Clearly, CGI programming is the bottleneck of our distributed system. A pos-
sible improvement is that using Java Servlets [22] as a replacement for CGI pro-
grams. A Java servlet is a Java class that can be loaded dynamically to expand the
functionality of a server (mostly a Web server), and it takes the place of CGI scripts.
A servlet runs inside a Java Virtual Machine on the server, so it is safe and portable.
One important feature of servlets is that different programs and/or requests are all
handled by separate threads within one main web server process, while CGI uses
multiple processes to handle separate programs and/or separate requests. By using
the Java servlet programming, we can achieve the same functionalities of the CGI
programming, without the difficulties of CGI.

86

Java Virtual Machine

Java Servlet-based Web Server

Web Browser N

Web Browser 2

Web Browser 1

HTTP Thread

Push

Pull

Event Channel

Event Channel
Result

Request

Agent

(Servlet)

Query
Global

Figure 6.1: Introduce Java Servlet into the DISIMA Architecture

In Figure 6.1, we introduce the Java servlet programming into DISIMA archi-
tecture. The Global Query Agent is a servlet, as well as a CORBA object but,
throughout its life cycle, it only has one instance. When a user first accesses the
global query agent through the Web server, that user is assigned a new HttpSes-
sion object and a unique session Id, which can be accessed by the global query
agent using the getId() method:

������ ������ ����������������
��

Thus, the global query agent can use this Id as a unique tag for each event so that
each user can get exactly what (s)he wants.

We need to implement the global query agent using the Java language so that
it can fit into a Java virtual machine. Since MICO ORB only supports C/C++
language, we can use JacORB, a free implementation of the CORBA standard sup-
porting Java. Slight changes need to be made for the VisualMOQL’s interface to
the global query agent.

In Section 5.5, we mentioned three implementation issues — CGI, Image In-
tegration and IP Address. By using Java servlet, we will efficiently solve the first
and third issues. The second issue needs to be further studied.

Additional further work is to efficiently resolve the database model and se-
mantic heterogeneity in the distributed DBMS environment. Topics needing to be
investigated include: how to map the global query language into a local query lan-
guage (say from MOQL to OQL), how to translate the global data model into local

87

data models, how to resolve schema conflicts between global and local schemas,
and how to homogenize the meanings of the object.

88

Bibliography

[1] A. Dogac, C. Dengi, and M. T. Özsu. Building Interoperable Databases
on Distributed Object Management Platforms. Communications of ACM,
41(9):95–103, September 1998.

[2] S. Allamaraju. Nuts and Bolts of Transaction Processing. URL:
http://www.subrahmanyam.com/articles/transactions/NutsAndBoltsOfTP.html,
July 1999.

[3] BEA Systems, Inc. URL: http://www.beasys.com.

[4] A. D. Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers,
Inc., 1999.

[5] T. Boutell. CGI Programming in C & Perl. Addison Wesley Longman, Inc.,
1996.

[6] R. Cattell. The Object Database Standard: ODMG-93 (Release 1.1). Morgan
Kaufmann, San Francisco, CA, 1994.

[7] I. L. Cheng. Image Databases: A Content-Based Type System and Query
By Similarity Match. Master’s thesis, Department of Computing Science,
University of Alberta, May 1999.

[8] Hewlett-Packard Company. URL: http://www.hp.com/ovc/index.html.

[9] The World Wide Web Consortium. CGI: Common Gateway Interface. URL:
http://www.w3.org/CGI/Overview.html.

[10] The World Wide Web Consortium. HTTP: Hypertext Transfer Protocol
Overview. URL: http://www.w3.org/Protocols/Overview.html.

[11] The World Wide Web Consortium. HyperText Markup Language Home Page.
URL: http://www.w3.org/MarkUp/Overview.html.

89

[12] META Group Consulting. CORBA vs. DCOM: Solutions for the En-
terprise. URL: http://www.sun.com/swdevelopment/news/CORBA.shtml,
March 1998. Sun Microsystems, Inc.

[13] Expersoft Corporation. URL: http://www.expersoft.com.

[14] IBM Corporation. URL: http://www.ibm.com/software/data/db2.

[15] IBM Corporation. URL: http://www.ibm.com/software/webservers/appserv.

[16] Informix Corporation. URL: http://www.informix.com/informix/products/servers.

[17] Microsoft Corporation. URL: http://www.microsoft.com/sql/default.htm.

[18] Microsoft Corporation. URL: http://www.microsoft.com/NTServer/appservice/
exec/overview/dcombus.asp.

[19] Oracle Corporation. URL: http://www.oracle.com/database.

[20] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-
Wesley Publishing Company, second edition, 1994.

[21] M. Henning and S. Vinoski. Advanced CORBA Programming with C++.
Addison Wesley Longman, Inc., 1999.

[22] J. Hunter and W. Crawford. Java Servlet Programming. O’Reilly & Asso-
ciates, Inc., 1998.

[23] J. Z. Li, M. T. Özsu, D. Szafron, and V. Oria. MOQL: A Multimedia Object
Query Language. In 3rd International Workshop on Multimedia Information
Systems, pages 19–28, Como, Italy, September 1997.

[24] M. T. Özsu, X. Li, and L. Liu. DISIMA - A Dis-
tributed Image Database Management System. URL:
http://www.cs.ualberta.ca/˜database/research/ImageDB/proposal/proposal.html,
November 1995.

[25] Object Design, Inc. ObjectStore ObjectForms User Guide, July 1997. Release
2.0.

[26] Object Management Group, Inc. Common Facilities Architecture. Revision
4.0, November 1995.

[27] Object Management Group, Inc. A Discussion of the Object Management
Architecture. January 1997.

90

[28] Object Management Group, Inc. CORBA Messaging. URL:
http://www.omg.org/cgi-bin/doc?orbos/98-05-05, May 1998.

[29] Object Management Group, Inc. CORBA/Firewall Security. URL:
http://www.omg.org/cgi-bin/doc?orbos/98-05-04, May 1998.

[30] Object Management Group, Inc. CORBAservices: Common Object Services
Specification. December 1998.

[31] Object Management Group, Inc. Interoperable Naming Service. URL:
http://www.omg.org/cgi-bin/doc?orbos/98-10-11, October 1998.

[32] Object Management Group, Inc. minimumCORBA. URL:
http://www.omg.org/cgi-bin/doc?orbos/98-08-04, July 1998.

[33] Object Management Group, Inc. CORBA Component Scripting. URL:
http://www.omg.org/cgi-bin/doc?orbos/99-08-01, August 1999.

[34] Object Management Group, Inc. CORBA Components. URL:
http://www.omg.org/cgi-bin/doc?orbos/99-02-05, March 1999.

[35] Object Management Group, Inc. Fault Tolerant CORBA. URL:
http://www.omg.org/cgi-bin/doc?orbos/99-12-08, December 1999.

[36] Object Management Group, Inc. Real-Time CORBA. URL:
http://www.omg.org/cgi-bin/doc?orbos/99-02-12, March 1999.

[37] Object Management Group, Inc. The Common Object Request Broker: Ar-
chitecture and Specification. Minor Revision 2.3.1, October 1999.

[38] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems.
Prentice Hall, Inc., second edition, 1999.

[39] D. C. Schmidt and S. Vinoski. Object Adapters: Concepts and Terminology.
SIGS C++ Report, 9(11), November/December 1997.

[40] J. Siegel. What’s Coming in CORBA 3. URL:
http://www.omg.org/news/pr98/compnent.html, 1999. Object Manage-
ment Group, Inc.

[41] Sun Microsystems, Inc. URL: http://www.sun.com/software/neo.

[42] Sybase, Inc. URL: http://www.sybase.com/products/databaseservers.

[43] IONA Technologies. URL: http://www.iona.com.

91

[44] URL: http://www.mico.org. MICO Is CORBA: An Open Source CORBA 2.3
Implementation, 1999. Version 2.3.0.

[45] V. Oria, B. Xu, and M. T. Özsu. VisualMOQL: A Visual Query Language
for Image Database. In 4th IFIP 2.6 Working Conference on Visual Database
Systems - VDB 4, pages 186–191, L’Aquila, Italy, May 1998.

[46] V. Oria, M. T. Özsu, B. Xu, L. I. Cheng, and P. J. Iglinski. VisualMOQL: The
DISIMA Visual Query Language. In Proceedings of the 6th IEEE Interna-
tional Conference on Multimedia Computing and Systems, volume 1, pages
536–542, Florence, Italy, June 1999.

[47] V. Oria, M. T. Özsu, D. Szafron, and P. J. Iglinski. Defining Views in an
Image Database System. In 8th IFIP 2.6 Working Conference on Database
Semantics (DS-8) ”Semantic Issues in Multimedia Systems”, pages 231–250,
Rotorua, New Zealand, January 1999.

[48] V. Oria, M. T. Özsu, L. Liu, X. Li, J. Z. Li, Y. Niu, and P. J. Iglinski. Modeling
Images for Content-Based Queries: The DISIMA Approach. In 2nd Interna-
tional Conference on Visual Information Systems, pages 339–346, San Diego,
CA, December 1997.

[49] B. Xu. A Visual Query Facility for DISIMA Image Database Management
System. Master’s thesis, Department of Computing Science, University of
Alberta, April 2000.

[50] Z. Yang and K. Duddy. CORBA: A Platform for Distributed Object Comput-
ing. In Operating Systems Review, volume 30(2), pages 4–31. ACM SIGOPS,
April 1996.

92

Appendix A

Glossary

AMI – Asynchronous Method Invocation

BOA – Basic Object Adapter

CERN – European Laboratory for Particle Physics

CGI – Common Gateway Interface

CLI – Call Level Interface

CORBA – Common Object Request Broker Architecture

DBMS – DataBase Management System

DCOM – Distributed Component Object Model

DDL – Data Definition Language

DII – Dynamic Invocation Interface

DISIMA – DIStributed Image database MAnagement system

DSI – Dynamic Skeleton Interface

EJBs – Enterprise Java Beans

ESIOP – Environment-Specific Inter-ORB Protocol

GIOP – General Inter-ORB Protocol

GIS – Geographical Information System

93

HTML – HyperText Markup Language

HTTP – HyperText Transfer Protocol

IDL – Interface Definition Langauge

IIOP – Internet Inter-ORB Protocol

IP – Internet Protocol

IR – Interface Repository

LSO – Logical Salient Object

MIS – Management Information System

MOQL – Multimedia Object Query Language

NCSA – National Center for Supercomputing Applications

NSERC – Natural Sciences and Engineering Research Council

ODMG – Object Data Management Group

OLE – Object Linking and Embedding

OMA – Object Management Architecture

OMG – Object Management Group

OODBMS – Object Oriented DataBase Management System

OQL – Object Query Language

ORB – Object Request Broker

POA – Portable Object Adapter

PSO – Physical Salient Object

QoS – Quality of Service

SSL – Secure Socket Layer

TCP/IP – Transmission Control Protocol/Internet Protocol

TII – Time Independent Invocation

URL – Uniform Resource Locator

WWW – World Wide Web

94

