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Abstract

High stress levels and depression are commonly observed in hospitalized pa-

tients, which may negatively impact them on recovery after surgery. Sound

therapy has been widely used for its effectiveness in increasing relaxation and

reducing stress levels, and one could also fine-tune music features such as pitch,

volume and reverb to improve sleep quality and reduce anxiety. Our sound

therapy project aims to select and fine-tune a soundscape that maximizes a

subject’s relaxation level. We simplified this problem and formulated it as a

reinforcement learning problem where the goal is to select a soundscape, and

determine the best volume setting for each of its component sounds. For the

virtual subject experiment, we tested RTA*, UCT and few baseline algorithms.

We also conducted experiments on human subjects, divided into a treatment

group that listen to sounds selected by the UCT algorithm and a control group

that listen to sounds selected by a human experimenter. The UCT algorithm

displayed the same performance as the human, suggesting that sound therapy

can be automated using UCT.
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Act without action. Pursue without interfering. Taste the tasteless.

– Tao Te Ching

为无为，事无事，味无味。

– 道德经
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Chapter 1

Introduction

In order to reduce the subjects’ stress and anxiety level, a learning system

can be built to produce sounds that are relaxing to the subjects via their

implicit feedback. High stress levels, anxiety, insomnia and depression are

commonly observed in critically ill patients that may negatively impact their

recovery from surgery and illness [30, 10, 37]. There is mixed evidence [29,

35, 39, 1, 13] showing that sound therapy is effective at increasing listeners’

relaxation levels. It is also an inexpensive, low-risk, and a highly accepted tool

for addressing mental health issues caused by stress [39]. In addition, research

[29] suggests that personalized sound therapy sessions are the most effective

form of sound therapy. The effectiveness of sound therapy can be affected

by many factors such as medical condition, age, ethnic background, listening

history, musical preferences [33], previous music experience [38], and the type

of stress [1, 13, 4]. Different measurements of sound therapy experiments might

lead to opposite conclusions [39]. Some experiments suggest that various types

of sound might have different effects on subjects’ relaxation level [35, 17, 33].

For example, a group that listened to the sound of bubbling water had lower

concentrations of cortisol (a stress hormone) than a group that listened to

relaxing music [35]. Another study illustrated that the genre of music is a

significant factor for stress reduction in contrast to music preference [17]. Some

evidence indicates that music selected based on personal preference has a great

effect on decreasing anxiety level [33].

If we apply sound therapy to critically ill patients, the challenge arises that
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these patients might not be able to give verbal feedback via self-reporting.

The question then arises whether it is possible to design a system capable of

producing an effective soundscape to reduce stress, in such a manner as to

require minimal or no conscious feedback from the patient.

Our goal is to build a learning system that is able to automatically select

and fine-tune soundscapes to increase listeners’ relaxation level, with mini-

mal patient feedback. We include various categories of natural sounds to this

system as acoustic nature sounds showed a significant effectiveness in decreas-

ing subjects’ anxiety [35]. With the assumption of requiring minimal user

feedback, the system should learn to determine the sound categories that the

patient likes and dislikes given minimal information gained from the patient.

We build two separate systems based on two Reinforcement Learning (RL)

problem models. These RL models can be applied to this task by training an

agent to take actions seeking higher reward from the environment [34]. For

each system, we develop several algorithms to explore soundscapes on the basis

of implicit and subjective responses. One system is built on a Markov Decision

Process (MDP) model [34] while the other is built using a multi-armed bandit

[2] model. We propose an algorithm that is based on Real-Time Heuristic

Search (RTA*) [24] to solve the MDP problem, and another algorithm us-

ing Upper Confidence Bound for trees (UCT)[2] for the multi-armed bandit

problem. We also implement some baseline algorithms for comparison.

In this work we specify a sound category for each sound, which means

every sound belongs to only one sound category and each sound category is

comprised of multiple sounds. Every sound is at one of three volume levels:

silent, low and high. The agent running the UCT algorithm chooses a vector

of volume levels for each component sound in a category since it assumes the

state space has a hierarchical structure. In other words, the volume level of

all sounds under a selected category can be low or high while rest of sounds

are silent. Unlike UCT, the agent running RTA* ignores sound categories and

might explore all combinations of the volumes of sounds.

RTA* is a path-finding algorithm that assumes the goal is the most relaxing

soundscape for the subject. The goal is not guaranteed to be unique, which
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means there might be multiple goals or the goal might change over time. For

simplicity, we assume the goal is steady and unique for RTA*. The agent

running RTA* starts with any soundscape at any volume level, set randomly.

It aims at determining the goal soundscape by exploring various soundscapes

with different combinations of volume for each of its component sounds. But

because RTA* does not organize sounds hierarchically, it cannot determine

the goal soundscape within a reasonable time period. Furthermore, RTA* is

not practical for real subjects when the subjects prefer multiple soundscapes or

they change their preference over time. Thus, the UCT algorithm is introduced

to address the above problems and balance the exploration-exploitation trade-

off. We model each participant as having a potential preference score for

each sound category and volume level; the purpose of the UCT algorithm is

determining the score of all sounds and volume levels. UCT keeps exploring

when the soundscape has an inaccurate preference score or a small number

of visits. The drawback of UCT is that when the soundscape with potential

maximum score is found, it keeps sampling other soundscapes for exploration,

which might annoy the subjects.

We conducted experiments on both virtual subjects and real subjects. The

result of the experimental testing on virtual subjects indicates that the multi-

armed bandit model performs better than the MDP model. Overall, the results

show that both RTA* and UCT algorithms perform better than baseline algo-

rithms, and UCT performs better than RTA*. Since UCT outperforms RTA*

in virtual subject experiments, we measured the system running UCT algo-

rithm on real subjects where the subjects were divided into two groups for

comparison. The treatment group listened to sounds selected by the UCT al-

gorithm and the control group listened to sounds selected by the experimenter.

Self-reported responses from both groups indicate that subjects’ stress levels

were significantly reduced. We conclude that the sound therapy can be auto-

mated using the UCT algorithm, as it displayed the same performance as the

human.
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Chapter 2

Background and Related Work

In this chapter, background and literature related to Reinforcement Learning,

music therapy, and music recommendation systems are introduced. In partic-

ular, we present some algorithms for heuristic search such as A* and RTA*,

as well as bandit algorithms such as UCB1 and UCB applied to trees (UCT).

In addition, we provide related work to demonstrate the effectiveness of music

therapy and state-of-the-art of music recommendation systems in this chapter.

2.1 Reinforcement Learning

Reinforcement Learning (RL) [34] is an area of Machine Learning that trains

from experience, making a sequence of decisions based on past experiences

in an attempt to maximize cumulative reward from the environment. The

agent-environment interface can be described as follows:

1. Agent: The agent takes actions and interacts with the environment. At

each step, the agent receives an observation from the environment by

taking an action.

2. Environment: The environment responds to each action with a reward

and presents a new state to the agent.

3. Reward: Reward is a number given by the environment. The agent

tries to maximize the total amount of reward it receives.

4. State: observations the agent receives from the environment.

4



Agent

Environment

State

Reward

Action

Figure 2.1: Agent-Environment Interface of Reinforcement Learning System

5. Action: Each state is associated with a set of possible actions that the

agent can perform.

In addition, there is other terminology we will use in the following sections.

A policy [34] maps the states of the environment to actions the agent can take.

The reward signal [34] defines the goal in a RL problem. This is a number

that indicates a better or worse event for the agent. The value function

[34] represents the total amount of reward the agent expects to accumulate

starting from a particular state: V π
s is expected reward from following policy

π at state s.

2.1.1 Heuristic Search

Heuristic search takes advantage of heuristic information where it approxi-

mates the cost of reaching the goal from a state in search problems. The agent

starts in one state and aims at determining a path to a goal state in the state

space. A heuristic h(s) is an estimate of the cost of a path from the current

state s to a goal state. A heuristic is admissible if it never overestimates the

cost to get to the goal. g(s) is the actual cost of the path from the start state

to current state s. f(s) is an evaluation function that estimate the total cost
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to the goal from state s. It varies according to different search algorithms. For

example, the evaluation function in A* algorithm is f(s) = h(s) + g(s), and

the evaluation function in greedy best-first search is f(s) = h(s).

A state is expanded if its successors are generated in the state space. The

open list is a queue that stores and sorts the states that have been generated

but not expanded. If a state is expanded, it will be removed from the open

list and put into the closed list. The closed list maintains the states that have

been expanded.

There are many algorithms in heuristic search, such as A*[15], Iterative

Deepening A* (IDA*) [23], weighted A* [12], and Real Time A* (RTA*) [24].

A* is initialized with an empty closed list and an open list that includes

the start state. Every time the agent reaches a new state, adjacent states that

are not on the closed list are added to the open list. The state on the open list

with the minimum f(s) is expanded, removed from the open list and added to

the closed list. The algorithm terminates when the goal is reached (assuming

there exists a goal in the state space), or the open list becomes empty.

Algorithm 1 A*

1: openlist[0]← start
2: while openlist != NULL do
3: state← min(openlist)
4: add state to closedlist
5: if state is goal then
6: break
7: while action in next actions do
8: next←applyAction(action)
9: if next in closedlist then
10: continue
11: else if next in openlist then
12: new cost← gcost(state) + Cost()
13: if new cost < gcost(next) then
14: gcost(next) ← new cost

15: else
16: add next to openlist

A* has a limited performance when the environment cannot provide the

knowledge that A* requires. Since A* finds a path offline before taking ac-
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tions, it might fail to take an action within a limited time when the heuristic

information is not accurate enough. In contrast to A*, Real Time A* (RTA*)

is able to explore the state space by interleaving actions and thinking.

Real Time A* (RTA*), is commonly used in real-time planning and learning

problems such as path planning for mobile robots. As RTA* doesn’t require

offline exploration to find the path to the goal before execution and allows

the agent to search in real time, it is suitable for the tasks where the agent

interacts in real time with an unknown environment within a limited time

period. Bulitko and Lee [5] studied real time heuristic search algorithms for

learning and planning problems. They developed an algorithm called Learn-

ing in real-time search (LRTS) that unifies many prior algorithms such as

LRTA* [24], ϵ-LRTA*, SLA* [31], and γ-Trap [6]. algorithm. Cannon and

Rose et al [7] proposed an algorithm called Partitioned Learning Real-time

A* (PLRTA*) adapting the LSS-LRTA* [22] algorithm for real-time heuristic

searching in a high dimensional space. PLRTA* allows the agent to perform

well in dynamic motion planning. Howlett and McLain et al. [16] present

a path-finding algorithm based on LRTA* for unmanned air vehicle (UAV)

with a specific sensor footprint. This algorithm enables the agents to quickly

determine short-distance paths. Kim [20] proposed the DFS-RTA* algorithm

based on depth-first search that adapts real-time path-finding methods for fast

backtracking. This prior work implies the efficacy and efficiency of real time

heuristic search for addressing real-time path finding problems in unknown

environments.

While A* finds an entire path offline before execution, RTA* approaches

the problem by making a sequence of decisions to the goal in a single trial

[24]. The challenge of RTA* is to avoid infinite loops when backtracking out

of local minima. The principle of backtracking to a previous state is when the

estimated cost of going forward from the previous state h(prev) is less than

the estimate cost of going forward from the current state h(current).

h(prev) < h(current)

The estimate of the previous state h(prev) at the next step is composed of its
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original estimate of solving the problem horiginal(prev) and the actual cost of

returning from the current state g(current).

h(prev) = g(current) + horiginal(prev)

The agent is allowed to backtrack when this assumption holds: the estimate

cost of previous state horiginal(prev) plus the cost from the current state to the

previous state g(current) is less than the estimate cost of going forward from

the current state h(current).

At the same time, the estimate cost of the previous state is updated with

the second best f(s) from its neighbors. This is because the estimate cost

of solving the problem from the previous state can be represented by the

estimate of the previous state’s second best neighbor since its best adjacent

state was chosen as the current state at the previous step. Unlike A*, the

interpretation of g(s) in RTA* is the actual cost relative to the current state

and is independent of the initial state. Further details about how RTA* is

adapted into the system are introduced in Chapter 5.2.

c

a

b

d

e fh=5

h=4

h=3

h=2 h=4

Step 1

c

a

b

d

e fh=5

h=4

h=3

h=2 h=4

h=5

Step 2

Figure 2.2: An example of RTA* where the agent fails to backtrack to a
previous state

An example of RTA* is explained as follows. Figure 2.2 illustrates a situa-

tion in which an agent running RTA* could not backtrack to a previous state.

We assume that the g(s) of each edge is 1, and that the start state is state

c. Since the adjacent state d has the minimum h(s), the agent moves to state

d and the h(s) of c is updated with the second best f(s) from state b. The

8



agent will not backtrack to state c because it has the highest h(s) among all

neighbors (state c, e and f).

2.1.2 Bandit Algorithms

.

Bandit algorithms are commonly applied to decision-making problems to

balance the exploration-exploitation trade-off. The general bandit framework

process is to choose an arm to pull based on a bandit algorithm 1, observe the

reward after pulling the selected arm, and update its estimated reward.

A multi-armed bandit model can be described as a set of tuples < A,X >

where A represents the action and X represents the reward. The reward

probability distribution of the k arms is {P1, P2, ..., Pk} with respective means

{µ1, µ2, ..., µk}. The expected reward E [r|a] = µa. The optimal arm is argmax

over i of µi. The definition of the regret Rn from the book [25] is as following:

The regret of a learner following policy π is the difference between

the total expected reward using policy π for n rounds and the total

expected reward that the learner actually collected for n rounds.

The regret is a measure of loss over a policy π.

Rn(π) = nµ∗ − E

[︄
n∑︂

t=1

Xt

]︄

where Xt is the reward at time step t and Xt are 1-subgaussian random vari-

ables.

We define sub-optimal gap ∆ = µ∗ − µa as the difference between the

expected reward of optimal arm and the selected arm.

Ta(t) =
t∑︂

s=1

I{As = a}

is the number of times that action a was selected by the learner after t steps.

Let I{As = a} be a binary variable (1 or 0) to indicate whether or not action

1the player pulls arms in a bandit machine for payoffs
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a is chosen at time step s. Thus, the regret can be decomposed as:

Rn =
∑︂
a∈A

∆aE[Ta(n)].

The policy UCB1 (Upper Confidence Bound) [3] is a bandit algorithm that

selects the next arm to play based on the sequence of previous actions and

obtained rewards. It has a good performance on multi-armed bandit problem

and does not depend on knowledge of sub-optimal gaps.

Algorithm 2 UCB1(k, δ)

1: t← 1
2: while t ≤ n do
3: choose action At = argmaxiUCB(t− 1, δ)
4: Observe reward Xt and update upper confidence bound
5: t← t+ 1

UCB1 is optimistic about uncertainty and prefers to explore actions with-

out an accurate estimate value [25]. The strategy of being optimistic works

because if the optimism is justified, the selected action is the optimal action;

if the optimism is not justified (the learner assumes the action should receive

larger reward but in fact does not), the learner will soon learn the true payoff

of the action [25]. A smaller sub-optimal gap ∆ makes the algorithm harder

to determine the optimal action as the algorithm requires more sampling to

distinguish the optimal action from all sub-optimal actions when the expected

reward of a sub-optimal action is close to that of the optimal action.

The following derivation closely follows the outlines provided in the book “

Bandit Algorithm” by Szepesvari and Lattimore [25]. Let µ̂ =
∑︁n

t=1
Xt

n
where

n is the number of selected times, and P(µ̂ ≥ ϵ) as the probability of µ̂ greater

than ϵ , and we can get

P(µ̂ ≥ ϵ) ≤ exp (−nϵ2

2
)

according to Hoeffding’s inequality since Xt are 1-subgaussian independent

random variables. A random variable X has 1-subgaussian distribution when

E [X] = 0 and E [X2] ≤ 1. Let δ = exp (−nϵ2

2
), and then

P(µ̂ ≥
√︃

2

n
log(

1

δ
)) ≤ δ

10



Since Ta(t− 1) represents the number of times that action a was selected, we

can estimate the highest possible mean of action a as:

µ̂a(t− 1) +

√︄
2

Ta(t− 1)
log(

1

δ
)

In summary, the UCB1 algorithm chooses the action a at time step t ac-

cording to:

At = argmaxi(µ̂a(t− 1) +

√︄
2

Ta(t− 1)
log(

1

δ
))

UCB applied to trees (UCT) [21] is a popular algorithm in Monte-Carlo

Tree Search (MCTS). The purpose of UCT is determining the true value of

the actions that might be taken in each state. It treats the bandit problem as

a separate multi-armed bandit for each node in a tree structure. UCT applies

the UCB1 algorithm to action selections in rollout-based planning [21] where

the action selected in state s, at depth d aims at maximizing Qt(s, a, d) +

cNs,d(t),Ns,a,d(t). Qt(s, a, d) is an estimated value of action a at time step t and

depth d in state s. Ns,d(t) is the number of times that state s has been visited

before t steps, and Ns,a,d(t) is the number of times that action a has been

chosen in state s at depth d before t steps. The reward of node s is the

discounted cumulative rewards of the path originated at the node s.

In UCT, it traces the best reward of µi,Ti(t−1) for each arm and selects the

arm with the best UCB:

At = argmaxi(µ̂i,Ti(t−1) + ct−1,Ti(t−1))

where ct,s is 2Cp

√︂
log t
s

and Cp is an appropriate constant parameter. When

the reward value is in the range of [0, 1], Cp = 1√
2
satisfies the Hoeffding’s

inequality [21]. Kocsis and Szepesvari [21] also proved that the bounds on

the regret of UCB1 hold when applied to non-stationary bandit problem and

the failure probability converges to zero at a polynomial rate as the number

of episodes increases to infinity. Furthermore, section 5.3 introduces specific

utilization of UCT in this work.
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2.2 Music Recommendation

Several research studies center on the field of music recommendation using

assessments of mood or emotion via user interactions. Some of these studies

[11, 14] require prior knowledge, such as user preferences for different emo-

tions or situations. Dhahri and Kazunori et al.[11] proposed an autonomous

and adaptive song recommendation system with implicit user input feedback

using a Reinforcement Learning framework with softmax selection. The sys-

tem includes a personalized song map that contains users’ preferred songs with

metadata, and a RL framework that selects songs based on users’ mood and

implicit input. Griffiths and Cunningham et al [14]. sought to generate music

playlists automatically using quantified human emotion data gathered from a

range of sensors. They determined human emotional state by analyzing phys-

iological and contextual data via a Fuzzy Inference System, while defining

musical categories by analyzing extracted audio features. Isuru and Cohen et

al. [18] provided a perspective on exploring the “sweet spot” in the soundscape

using a Deep Q-Network RL agent to improve mental health.

Some research addresses the problem of playlist generation using Reinforce-

ment Learning. DJ-MC [26] is a music recommendation system that formu-

lates the problem as a Markov Decision Process and generates a personalized

playlist within a single listening session of 25-50 songs using a model-based

RL approach. In this study, the Markov state includes an ordered list of songs

in the playlists, and the action is a selection of next songs to play. It also

defines a deterministic transition function P that represents the probability of

transitioning from the current state to the next state. A song is modeled by

spectral auditory descriptors where rhythmic characteristics, loudness and the

change over time are included. Each song can be factored as a 34-dimensional

descriptor vector. A reward function Rs(a) is applied to model the human

listening experience and it is composed of a binary feature vector θs(a) and a

weight vector ϕs(u). The reward is: Rs(a) = ϕs(u) · θs(a), where the parame-

ter of ϕs(u) should be learned for each new user. The reward over transition

Rt(ai, aj) represents the experience of listening to a song aj after a song ai.
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Similar to Rs(a), Rt(ai, aj) is composed of a binary feature factor θt(ai, aj) and

a weight vector ϕt(u) that depends on users where Rt(ai, aj) = ϕt(u) ·θt(ai, aj).

To avoid oversized transitions of feature vectors, only 10-percentile bins of the

same song descriptors are included in ϕt(u). The initial song preferences and

initial transition preferences are generated according to a list of favourite songs

provided by the user. To generate the next action based on the transition re-

ward function, a tree-search heuristic for planning is applied. It clusters songs

based on their features to reduce the search time complexity. This study is

evaluated with human participants using real data and songs. Binary listener

feedback is provided as “like” or “dislike”. According to their results, DJ-

MC outperforms the baseline algorithm significantly in terms of cumulative

rewards.

Wang and Yi et al.[40] study bandit approaches for a balanced exploration-

exploitation trade-off. Their results indicate that LinUCB [3] and Bayes-UCB

[19] perform well in terms of the user ratings. Bayes-UCB is adopted to this

study where the payoff Ui is viewed as a random variable and the posterior

distribution of Ui given the history payoffs of D is used as the upper confidence

bound (UCB) in Bayes-UCB. In this study, music is represented by a feature

vector x, and user preference Uc can be formed as Uc = θ′ · x. The objective is

to compute the posterior distribution of parameters Uc given the history data.

It also defines the novelty to describe the repetition of the songs at proper fre-

quencies. The recommendation is generated according to Zipf’s law [41] where

the users’ listening frequencies are ranked in decreasing order. A combined

model is applied to represent user feedback where the users’ preferences and

novelty are both considered. To enable a responsive and efficient model, this

research used piecewise linear approximation to represent the irregular payoff

Ui. In the experiments on human subject, they compared Bayes-UCB with

random, greedy algorithms as well as LinUCB. Each song is a 30-second audio

clip, transformed to a feature vector using the MARSYAS library [36]. The

user provides feedback using a scale number to indicate the listening experience

of each song. The results show a great effectiveness in music recommendation

using Bayes-UCB compared to other baseline algorithms. Further study may
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include extending Bayesian models to hierarchical Bayesian models as well

as considering more factors besides music features such as mood, genre and

diversity.

Latent Markov Embedding (LME) is used by Chen and Moore et al.

[8] for playlist generation, where the problem is formulated as a regularized

maximum-likelihood embedding of Markov chains in Euclidean space. LME

is a machine learning algorithm that doesn’t require songs descriptive fea-

tures to generate playlists. The goal of this study is to estimate a generative

model of playlists that helps to explore new playlists efficiently, where the

playlist is modeled as a path through a latent space. Latent space refers to

the multi-dimensional space that contains variables inferred from other ob-

served variables. In this study, they assume that Euclidean distance between

songs can indicate the transition probabilities and determining the location of

each song is an important problem to address. A dual-point model is intro-

duced where a pair of points (U(s), V (s)) is applied to represent each song s.

U(s) is the “entry point” of song s that models the interface to the previous

song and V (s) is the “exit vector” that models the interface to the next song.

Calculating the vector of (U(s), V (s)) becomes a maximum-likelihood prob-

lem given training samples of playlists. A norm-based regularizer is added to

the log-likelihood objective to avoid over-fitting. To address the optimization

problem of the LME model, stochastic gradient training and landmarks heuris-

tics are applied. Landmarks are randomly chosen and each song is assigned

to a nearby landmark. Landmarks reduce the complexity of search where a

subset of songs near a landmark is added to the successors of each song. The

experiment analyzes performance of LME compared to n-gram baselines. Re-

sults show that LME outperforms bigram models where the embedding of the

dual-point model qualitatively reflects the intuition of musical similarity.

2.3 Music Therapy

Music therapy is the use of sounds to improve the subject’s physical and mental

health, especially to increase relaxation and decrease anxiety and stress levels.
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Studies [38, 39, 30, 35] have shown significant effectiveness of music therapy

for increasing relaxation. In this section, we present a few works in the area of

music therapy to illustrate how different methods and experimental settings

affect the subject’s relaxation level, defined using a variety of measurement

techniques.

In order to assess the relative efficacy of music therapies based on different

formulations of personal preference, Walworth [38] investigated the difference

in subjects’ anxiety level after listening to music selected by three different

strategies: no music, music selected by personal preference, and music genre

listed as relaxing by the subject. The results showed that using patients’

preferred music was more effective than other options in reducing anxiety level

in a hospital setting. In addition, a specific preferred song was as effective as

a preferred music genre or artist.

Wang and Kulkarni et al. [39] studied the effectiveness of music therapy

in decreasing anxiety before surgery. Each patient was assigned one of two

groups: Subjects in group 1 listened to patient-selected music; Subjects in

group 2 received no intervention. The State-Trait Anxiety Inventory (STAI)

self-reports indicated that group 1 displayed a lower anxiety level compared

with the control group. In contrast, there were no differences between the two

groups regarding physiological outcomes such as blood pressure (BP), heart

rate (HR), electrodermal activity (EDA), or neuroendocrina variables such as

cortisol, epinephrine, and norepinephrine.

Robb and Nichols et al.[30] investigated the effects of music assisted re-

laxation (MAR) interventions applied to surgical patients. Subjects ranging

in age from 8 to 20 years were divided into an experimental and control groups.

Subjects in the experimental group received MAR intervention that includes

music listening, deep diaphragmatic breathing, progressive muscle relaxation

and imagery, while the control group received only standard preoperative in-

terventions. Results indicated that subjects who received MAR interventions

experienced a significant decrease of anxiety measured by State-Trait Anxiety

Inventory for Children (STAIC). No significant difference was found for either

group regarding physiological measures such as heart rate, respiration rate,
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blood pressure and temperature.

Thoma and Marca et al. [35] examined the effect of listening to music prior

to a standard stressor among healthy participants in a laboratory setting. The

hypothesis of the study was that participants who listened to relaxing music

prior to a stressor such as Trier Social Stress Test (TSST) would have a differ-

ent stress responses than the non-music control group. Stress responses were

measured with cortisol, salivary, alpha-amylase, heart rate, respiratory sinus

arrhythmia, and subjective perception of stress. Participants were divided

into three groups: an experimental group that listened to relaxing music, a

non-music acoustic control group that listened to natural sounds, and a non-

acoustic control group. Results indicated that pre-stress music listening might

not affect the physiological stress response, but might facilitate autonomic re-

covery from a stressor compared with the non-music and non-acoustic control

groups. The recovery data is the difference between the first baseline value

after the stressor and the peak values after the stressor.
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Chapter 3

Problem Definition

As introduced in the Chapter 1, the purpose of this work is to automatically

select sounds and volume levels that makes listeners feel relaxed without any

prior knowledge of the subject’s preferences or listening history. A learning

system can be built to explore the space of sounds and discover which ones

increase the patient’s relaxation level, and decrease stress and anxiety. Sound

features such as volume, filter, reverb and pitch might also influence stress

reduction [28, 9]. The system should be able to fine-tune such features to

maximize the listener’s relaxation level. The input of this system is subject

feedback, including autonomic bio-signals such as heart rate, blood pressure

or EEG signals, as well as minimal conscious response to sounds. The output

of this system is a soundscape: a mix of sounds, each at a particular volume

level, that is played to the subject.

Figure 3.1 illustrates a model, where subject feedback is converted to re-

ward. The selection of sounds can be viewed as the action taken by the agent.

We assume that the algorithm acts as the agent, while the environment con-

sists of either a real or virtual subject. With the general idea of developing

the system, we expect that the algorithm makes a decision on selecting sounds

and sound features to help increase reward, based on the subject’s feedback.

Subject feedback can be also used as the input to the agent to help it make

better decisions.

In this thesis, the subject feedback is the listener’s reaction to the sounds,

where the listener presses a “next soundscape” button to indicate dislike of
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Figure 3.1: The Architecture of Soundscape Exploration System built on RL
System

the current-playing sounds. We assume that people are satisfied with the

current-playing sounds when they keep listening and do not press this button

to switch to the next one. Thus, the longer the real subject listens, the higher

the reward. In order to test the system, we also introduced a virtual subject

to generate virtual reward in the experiment.
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Chapter 4

Environment Model

A soundscape is a set of sounds that are mixed together. It includes synthesized

sounds and natural sounds such as bird singing and rain. We choose a number

of distinctive environmental sonic categories, such as ocean, forest, and city,

and then select sounds that match those categories. In this section, we define

two types of state spaces along with one virtual reward model and one real-

world reward model.

4.1 State Space

For simplicity we assume the state space is composed of volume levels for all

sounds. The state space is multi-dimensional where each dimension corre-

sponds to one sound and the value in that dimension corresponds to a volume

level of the sound. The volume of each sound can be modified independently

regardless of its category. Each state represents a vector of volume values and

each volume value corresponds to one of the sounds comprising the sound-

scapes.

4.1.1 Grid-world Model

We define the following tuple to represent the Grid-World model for this prob-

lem: ⟨S,A, T ,D, (Rd)d∈D⟩ where S is a k-dimensional state space and k in-

dicates the number of sounds in the entire soundscape; A is an action space

where each action is the selection of sounds in the entire soundscape; D is

a distance function that returns a value based on the distance between the
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current state and the goals state; T is a time penalty function that returns a

value based on the time steps in one episode; and (Rd)d∈D is the reward that

is calculated according to the distance function D.

The state space is a k-dimensional discrete grid world and each dimension

represents one sound in the soundscape. The volume is categorized to three

levels, which are zero, low and high. The number of dimensions depends on

how many sounds we have in the experiment.

The agent is only allowed to take action on one dimension at each step,

where the action can be increasing or decreasing the volume by one level.

There are 3k states in the state space, and we assume there are no obstacles.

That is, all combinations of sounds are possible. The size of the grid world

is highly dependent on the number of dimensions, which might influence the

algorithm’s performance.

4.1.2 Tree Model

The Grid-World model assumes that all sounds in different categories have

equal weight, which might result in a large number of redundant states. There

is little chance that the goal is contained in redundant states as subjects prefer

sounds under the same category in general. We introduce a tree model (see

Figure 4.1) where a two-layer tree structure is applied for reducing the state

space. In the first layer are category nodes; actual sound tracks are in the

second layer, linked to the single category to which they belong.

We define the following tuple to represent the Tree model for this problem:

⟨S,A, T , (Rt)t∈T ⟩ where S is a state space of two-layer tree; A is an action

space where each action is the selection of sounds in the entire soundscape; T

is a time function that returns a value based on the time steps in one episode;

and (Rt)t∈T is the reward that is calculated according to time function T .

Applying a hierarchical structure to the state space only allows sounds

from the same category to be played together. Thus, the state space is reduced

dramatically. The reward comes either from real subject experience or a virtual

reward model. The real-world reward is measured by the length of time that a

subject listens to a soundscape before pressing the “next” button (see Section
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Figure 4.1: Tree model structure of the state space. The first layer consists of
category nodes and the second layer contains all sounds.

4.2.1). Each node in the second layer has a ground truth value to represent

the expected time length that the subject listens, and reward in each step is

generated from a Gaussian distribution where the mean is its ground truth

value.

4.2 Reward Model

In this study, we build a real-world reward model applied to human study

experiments and two virtual reward models for experiments on virtual subject.

4.2.1 Real-world Reward

Real-world reward is utilized in the system that implements the one-button

interface where listeners provide feedback by pressing the “next” button to

switch a soundscape or the volume setting of currently-playing soundscape.

Real-world reward is built on the one-button interface where it is measured

by the elapsed time length T during which the real subject listens to the

currently-playing soundscape. The reward is between 0 and 1: 1 if the listener

does not click the button, and the reward is 0 if the listener clicks the button

immediately after switching to a new soundscape. We define a reward func-
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tion for listener’s feedback where the time reward function is monotonically

increasing since the longer the subject listens, the larger the reward is. We

consider a sigmoid function that generate the reward Rreal−world
1:

Rreal−world =
1

1 + e(−0.2T +5)
, where T ∈ [0, Tmax]

4.2.2 Virtual Reward

A distance-based reward model and a one-button reward model are built for

experiments on virtual subjects. Both reward models are based on Euclidean

distance where the one-button reward model simulates the real-world reward

better.

Distance-based Reward

Assume there exists a volume setting that has the best effect on increasing a

subject’s relaxation level, we can define a goal in the state space to indicate

the best volume setting. Since some states that are far from the goal state

might have the same negative effect, we introduce a radius r to the distance

function. The reward value is greater than 0 when the distance between current

state and goal state is within the radius. Following this idea, we can define a

distance-based reward function based on Euclidean distance d:

Rdistance =

{︄
1
r
∗ (r − d), if d < r

0, if d ≥ r

One-button Reward

To simulate the real-world reward, we develop a one-button reward model

for virtual subject experiments based on the Euclidean distance between the

current-playing soundscape and the optimal soundscape in the state space.

1We selected the parameter values in the formula based on the assumptions: when
T = 0,Rreal−world = 0; and T = Tmax,Rreal−world = 1. We selected Tmax = 50 in
the experiments on real subjects.
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We model the existence of an optimal volume setting of one soundscape that

makes listener feel most relaxed. So, we can define a goal state in the state

space to indicate the optimal volume setting. Since the real-world reward is

measured by how long the subject decides to listen to the current soundscape,

the parameter we simulate is the elapsed time T of playing one soundscape.

The elapsed time T is dependent on the Euclidean distance d between the cur-

rent state and the goal state with additional noises generated from a Gaussian

distribution N (0, 1).

T =
1

d
· Tmax +N (0, 1)

Similar to the real-world reward, the one-button reward Rone−button is gen-

erated from the simulated elapsed time T with sigmoid function:

Rone−button =
1

1 + e(−0.2T +5)
, T ∈ [0, Tmax]
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Chapter 5

Methods

In this work, we implement baseline algorithms, heuristic search algorithms,

and bandit algorithm for experiments. Baseline algorithms are a random walk

and linear search, which don’t need to learn from the reward. Heuristic search

requires prior knowledge of the environment along with an estimation of dis-

tance from the current state to goal.

5.1 Baseline Algorithms

Baseline algorithms are applied as the benchmark to compare and to assess

the performance of proposed algorithms. We introduce random walk search

and linear search in this work for comparison.

5.1.1 Random Walk Search

The agent starts with a random position and walks through the grid-world

state space continuously where each step is to a random adjacent state.

5.1.2 Linear Search

The agent starts with a random position and sequentially runs through all the

states in the grid world.
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5.2 Real Time A*

Real Time A* (RTA*) is introduced by Korf [24] where the h(n) is updated

with the second best f(n) in the open list when the agent moves to the next

state. f(n) is composed of g(n) and h(n) where g(n) is the distance from the

previous state to current state and h(n) is an estimated cost of the path from

current state to the goal state. The open list maintains a list of states that

need to be visited. h(n) is initialized to 0 at the beginning. g(n) is independent

of the initial state, which is appropriate for addressing our problem definition

because the actual cost of a state only depends on the reward it receives from

the environment. The basic idea of RTA* is to expand all neighbors around

the current state and expand one neighbor with the minimum f(n).

Algorithm 3 RTA*

1: while succi of s do
2: f(succi)← g(s, succi) + h(succi)

3: h(s)← second best f(succi)
4: move to succi with minf(succi)

We simplified the state space model to make the agent work properly. In

RTA*, each state has up to 3k−1 neighbors in k-dimensional state space. The

simplified agent only moves along a single axis at each step, so that each state

has at most 2k neighbours. In addition, we modified the expansion path of the

agent to avoid redundant moves. The RTA* agent goes back to the current

state after expanding each neighbor. Instead of visiting the current state too

many times, the simplified agent moves clockwise to expand all neighbors that

are not visited before without returning to the current state.

5.3 UCT

Upper Confidence Bound applied to Trees (UCT) is an algorithm introduced

by L. Kocsis and C. Szepesvari [2]. In UCT, each node is treated as an arm of

a slot machine; thus this model becomes a multi-armed bandit model. UCT

considers the bandit problem as a separate multim-armed bandit for each
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node in the tree. It uses the UCB1 algorithm to select actions to maximize

the reward at each node in the tree structure.

UCT is efficient at balancing exploration and exploitation with unknown

branches in the tree search. The action selected to take at the current step

is the node that has the maximum UCB value among all nodes in current

layer, and every reward received in current node is averaged to the payoffs of

previous node.

The idea of using this algorithm is that it helps to reduce the state space

efficiently. The number of actions might increase dramatically when we in-

crease the number of categories and soundscape examples. UCT allows us to

identify if a large subset of actions is sub-optimal at an early stage, so we can

improve performance by avoiding sampling redundant states multiple times.

Algorithm 4 UCT algorithm [2]

1: function UCT
2: while not Timeout do
3: search(root, 0)

4: function search(node, depth)
5: if Terminal(node) then return 0

6: if Leaf(node) then Evaluate(node)

7: nextNode← argmax(nodes in depth+1)
8: reward← takeAction(nextNode)
9: q ← updateV alue(node, reward)
10: return q

We assume that reward Xit ∈ [0, 1], and the average reward value is X̄ in =

1
n

∑︁n
t=0Xit. An action is selected according to:

It = argmaxi∈[k]{X̄ i,Ti(t−1) + c(t−1),(Ti(t−1))},

where ct,s = 2Cp

√︃
ln t

s
.

It ∈ [1, ..., k] is the index of arm selected in time step t. Ti(t) is the number of

times arm i was played up to time t (including time t).
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Chapter 6

Experiments on the Virtual
Subject

The experiments on the virtual subject are tested on both a distance-based

reward model and a one-button reward model. We evaluated our proposed

system in two different ways. We compared both the distance between the

goal and the last state the agent reaches and the discounted cumulative re-

wards collected along the path given a fixed number of time steps. Unlike the

algorithms running on grid world, UCT has a different strategy of exploring

and exploiting. More precisely, the distance evaluation on UCT is based on

the distance between the goal state and the current state with the highest

mean of the state value.

The selection of the start state could impact the experiment results signif-

icantly. With the assumption that the state space has a potential hierarchical

structure, we define the goal to be a combination of volume levels of sounds

where all sounds are under one of the soundscape categories. In other words,

the goal is a soundscape category at any volume levels (low or high) instead

of a mix of sounds in different categories. The agent running RTA* algorithm

might have different performance with a different location of start state be-

cause there exist many zeros (silent sounds) in the goal state. Thus, we tested

on both cases where the start state locates at the origin of the Euclidean state

space (all sounds are silent), or the start state is a combination of random

volume levels of randomly selected sounds.

The virtual experiment has 20 trials and each trial has 1000 runs. A run is
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an episode where the agent completes a task and reaches the goal. There is a

fixed number of time steps for each trial ranging from 10 to 200 steps sampled

at 10-step intervals (e.g. 10, 20, ... 190, 200). We compared Real-Time A*

and UCT with two baseline algorithms (linear search and random walk search)

in all experiments.

6.1 One-button model

The one-button reward model generates the reward that is dependent on the

Euclidean distance. It simulates the elapsed time between button presses based

on Euclidean distance and uses the sigmoid function for generating the reward

from the time (See Section 4.2.2). We conducted experiments on one-button

reward model and measured with the distance and the discounted cumulative

rewards. We present two Figures 6.1 and 6.2 in this section to display the

evaluation on the mean of distance and discounted cumulative rewards with

95% confidence intervals.
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Figure 6.1: Distance over time of baselines random search, linear search, and
UCT, and RTA*. Low distance is optimal. The shadings are 95% confidence
intervals for each algorithm.
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Figure 6.2: Discounted cumulative reward of baselines, UCT, and RTA*.
Higher reward sooner indicates better performance. The shadings are 95%
confidence intervals for each algorithm.

Figure 6.1 reports the virtual subject experiment evaluated by distance.

Decreased distance means that the current state is moving closer to the goal

state. The curves are not smooth because the reward can be different even if

the distance between the current state and the goal state is the same, since

noise is being added to the Euclidean distance and sigmoid functions are ap-

plied to the simulated elapsed time. UCT requires less time to distinguish

the optimal and sub-optimal nodes when the true mean values of optimal and

sub-optimal are significantly different.

Figure 6.2 shows the virtual subject experiment evaluated by discounted

cumulative rewards. From this figure we can tell that UCT performs better

than RTA* before 160 steps, but worse afterwards because it continues to

sample. UCT is efficient at determining the optimal state within a small

number of steps, despite the fact that discounted cumulative reward can be

affected by exploring other states continuously. According to the result of

the virtual subject experiment, RTA* is also able to discover the goal state

eventually.
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For the one-button reward model, UCT outperforms RTA* when we evalu-

ate on distance. RTA* is able to determine the goal within 200 steps when the

start state is the origin of the Euclidean space, and it outperforms UCT after

around 160 steps because RTA* keeps sampling sub-optimal actions. Both of

UCT and RTA* display better performance than the two baseline algorithms.

6.2 Distance-based model

The distance-based reward model generates the reward based on the distance

between the agent and the goal state (See Section 4.2.2). The distance-based

reward model is tested and measured with the distance and the discounted

cumulative rewards. We display Figures 6.3 and 6.4 in this section to illustrate

the evaluation on the mean of distance and discounted cumulative rewards with

95% confidence intervals.
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Figure 6.3: Distance over time of baselines random search, linear search, and
UCT, and RTA* with start state being random and all zeros. Low distance is
optimal. The shadings are 95% confidence intervals for each algorithm.

Figure 6.3 shows the experiment on distance-based reward model measured

by distance. UCT is able to determine the state with maximum mean after
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Distance-based model, Evaluation based on discounted cumulative rewards
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Figure 6.4: Discounted cumulative reward of baselines, UCT, and RTA* with
start state being random and all zeros. Higher reward sooner indicates better
performance. The shadings are 95% confidence intervals for each algorithm.

about 40 steps, and RTA* with start state being all zeros spends around 180

steps to find the goal. When the start state is randomly selected, the distance

from the start state to the goal state can be relatively large. Thus, there is a

big gap between UCT and other algorithms at 10 steps as UCT can quickly

find the node in the first layer with maximum value. The curve of RTA*

declines as number of steps increases, but 200 steps are insufficient for finding

out the goal state.

Figure 6.4 shows the experiment on distance-based reward model measured

by discounted cumulative rewards. RTA* with start state being zeros performs

better than UCT when measured on discounted cumulative rewards. Both

UCT and RTA* increases when number of steps increases, and from this figure

we know that UCT and RTA* can’t converge within 200 steps. Although it

spends 40 steps to find out the state with the maximum mean, it needs more

than 1000 steps of sampling to determine the true value of each state (UCT

can barely converge after 1000 steps). In Figure 6.4, UCT has a small drop at

50 and 120 steps which is caused by sampling sub-optimal actions.
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Similar to the results in Section 6.1, UCT running on distance-based re-

ward model outperforms RTA* when measured on distance. RTA* with start

state being all zeros outperforms UCT when we evaluate them on discounted

cumulative rewards. Compared to one-button reward model, UCT has a worse

performance while RTA* has a better performance when running on distance-

based reward model.

6.3 Summary

As the one-button reward model is dependent on Euclidean distance, algo-

rithms running on grid-world environments based on a one-button reward

model perform similar to the distance-based reward model. We can conclude

that UCT has a better performance on the one-button model compared to

distance-based model as UCT is able to determine the soundscape with the

maximum mean value within 30 steps, which is 10 steps less than the result of

a distance-based model. In the distance-based reward model, all child nodes

that do not share the goal node could have the same Euclidean distance to the

goal state. In the one-button reward model, the reward is also dependent on

distance but each node has a different reward because of noise being added to

the Euclidean distance and sigmoid function being applied to the simulated

elapsed time. UCT performs well when the differences of nodes are larger.

Thus, UCT outperforms all grid-world algorithms within a limited number of

time steps.
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Chapter 7

Experiments on Real Subjects

In the previous chapter, we presented results of testing all algorithms on virtual

subjects. In this chapter, we report results of experiments on real subjects.

7.1 Experimental Setup

Subjects were asked to participate in a 20-minute experiment. They interacted

with the system that implements one-button interface by pressing the “next”

button to switch to the next soundscape or another volume combination of the

current soundscape. Subjects were asked to press the “next” button whenever

they felt the currently playing soundscape was not relaxing. Each soundscape

could be played up to 50 seconds with a cross-fade before switching to the

next soundscape.

In the soundscape there are 15 nature sounds in 5 different categories,

where each category has 3 sounds. The categories are forest, ocean, night-

time camping, rain on a tent, and city rain. Each sound has 3 different levels

of volume: silent, low and high. Subjects are always exposed to each of the

5 categories in order with all 3 sounds playing at ”low” before repeating a

category and/or adjusting the volume. After the experiment, subjects were

required to fill out a survey to report on their experiences and provide feedback

on the session.
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7.2 Recruitment

An experimental evaluation on 22 real subjects was conducted. The subjects

were undergraduate students with different majors, graduate students with

different majors, and professors1.

Subjects were divided into two groups: the treatment group and the control

group. Subjects in treatment group listened to soundscapes selected by the

UCT algorithm and initial soundscapes were also selected by UCT algorithm.

The reason we used the UCT algorithm in this experiment is that this algo-

rithm performed better than RTA* in the virtual experiments (see Chapter

6). Subjects in the control group listened to soundscapes selected by the ex-

perimenter, and the initial soundscapes were selected in order. The selection

strategy was based on how long the subject had listened to the currently-

playing soundscape. If the subject switched a soundscape immediately, this

soundscape would not be selected for a long time until the rest of soundscapes

were recognized as not relaxing by the experimenter. If the subject did not

press the “next” button for a particular soundscape, various combinations of

volume levels would be chosen. Each soundscape might be played multiple

times. Pressing the “next” button either switched to a different soundscape

or changed the volume of sounds in the current soundscape.

7.3 Execution

All subjects were asked to sit in a chair or lie on a bed to ensure they felt

comfortable with the surroundings. Online experiments were conducted using

the AnyDesk application to control the experiment machine remotely. All

subjects were asked to check the audio settings in their own machine after

connecting to the experiment machine to make sure they could hear sounds

from either their speaker or headphones. Subjects assumed they listened to

sounds selected by the automated sound therapy system. They knew that

there were 5 categories of natural sounds in the experiment and the system

1Due to the limitation caused by COVID-19 crisis, 18 out of 22 tests were done online
and 4 were done in person.
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would select soundscapes and fine-tune their component sounds. The subjects

did not know the experimenter’s sound selection strategy or the algorithm

used in the system; thus they were not aware what sounds would be played

after pressing the “next” button.

Subjects could press the ENTER key to switch soundscapes during the

experiment. If subjects felt the sound they were currently listening was not

pleasing or did not make them feel relaxed, they could switch to the next

sound by pressing the ENTER key. If they felt the sound they were currently

listening to was pleasing, they could keep listening to it. Subjects were asked

to fill out a survey form after the experiment to provide the feedback of their

experiences about the experiment.

7.4 Results

In this section, we present the results from different perspectives such as the

summary of the experience, Subject behaviors and correlations among button-

press frequency, rewards and user ratings.

7.4.1 Subjects’ Experiences

Based on the survey responses, 14 of 22 felt that the system eventually dis-

covered the sound they felt to be most relaxing. Figure 7.1 demonstrates the

distribution of the ratings of how relaxed subjects felt about the last sound-

scape chosen by the system. The upper plot is for the treatment group and

the lower plot is for the control group. The user ratings range from 1 to 10

where the higher rating indicates that the system is more effective at deter-

mining the relaxing soundscape and vice versa. We can conclude from this

figure that most users reported the system was able to choose relaxing sounds

before the end of the experiments no matter whether sounds are selected by

UCT algorithm or experimenter.

We compared the user ratings of two groups using the Mann Whitney U

test. The sample size of the treatment group is 15, and the sample size of the

control group is 7. We run the test at a 5% level of significance (i.e., α=0.05)
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Figure 7.1: Survey results for the question: “Did the system eventually choose
the most relaxing sound?”. Distribution of the ratings of whether the system
eventually chose the most relaxing sound. Here, 10 is excellent performance,
while 1 is unsatisfactory performance.

given the hypothesis:

H0: The two distributions are equal, versus

H1: The two distributions are not equal.

The U value is 42.0, and according to the table of critical values of U we

do not reject the null hypothesis H0 because 42.0 > 24.0. We do not have

sufficient evidence to conclude that the treatment group differs from control

group in terms of user ratings. Even though there is no significant difference

between the UCT algorithm and the experimenter, it is sufficient to imply that

experimenters could be replaced or automated by using the UCT algorithm.

To better understand the diversity of listeners’ preferences on sound cat-

egories, Figure 7.2 shows the distribution of all subjects’ self-reported most
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Figure 7.2: Distribution of the most relaxing sound from the surveys

relaxing sounds from the surveys. 35% of subjects preferred the sound of for-

est, and 20%-25% of subjects felt most relaxed listening to one of night-time

camping, city rain or rain on a tent. The selection of sounds and sound cat-

egories may influence the sound therapy session significantly. For example,

a sound in an arbitrary sound category might affect the subjects’ responses

towards the whole category if the sound is not relaxing.

7.4.2 Subject Behaviors

We collected the subjects’ interactions with the system during the experiments.

Based on the subject interactions, we analyze behaviors such as how often the

subjects press the “next” button, and how quickly they press the “next” button

when they feel the soundscape they are listening to is not relaxing.

Figure 7.3 displays the reward given by subjects in treatment group over

time. Figure 7.4 shows the reward given by subjects in control group over time.

In both figures, the maximum reward is represented by 1 and the minimum

reward is represented by 0. The participant indices presented in the figure

are sorted increasingly by cumulative rewards. We expected those who didn’t

press the “next” button too often had a large value of cumulative rewards.
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Figure 7.3: Depiction of reward over time for each participant in treatment
group (0th to 14th). Dark bars indicate low reward (clicking the “next” button
sooner), and light indicates high reward (clicking later or not at all). The
dominance of light colour indicates listeners were either satisfied most of the
time or our granularity of scoring reward is too fine or too quick.

But both of the plots indicate that those who pressed the “next” button many

times might have a larger value of cumulative rewards. This is caused by the

reward model function where the sum of rewards received in a period of time

might be greater when the subject presses the button many times comparing

to doing nothing. Most of the subjects reported a positive experience with

the experiments, according to Figure 7.3 and 7.4. In general, the decrease

of button-press frequency indicates that the real subject is getting more and

more satisfied with the current soundscapes.

Moreover, we attempt to observe the subjects’ behaviors and analyze the

effectiveness of the reward function. Figure 7.5 and Table 7.1 demonstrate

the distribution and summary statistics of the duration between the pressing

of the “next” button for treatment group. Generally, the number of “next”

button presses decreases when the elapsed time increases as the median and the

third quartile of duration between pressing the “next” button were 17.34 and

26.32 seconds. Most of the button-press actions occurred before 26.32 seconds
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Figure 7.4: Depiction of reward over time for each participant in control group
(0th to 6th). Dark bars indicate low reward (clicking the “next” button
sooner), and light indicates high reward (clicking later or not at all). The
dominance of light colour indicates listeners were either satisfied most of the
time or our granularity of scoring reward is too fine or too quick.

when subjects didn’t feel relaxed. Some self-reported feedback suggested that

subjects can get bored and change the category preferences over time. Thus

we can interpret that the reward model built on elapsed time is effective and

practical.

Min 25% Median Mean 75% Max Std.
0.00 5.77 13.07 17.34 26.32 48.03 13.16

Table 7.1: Summary statistics of duration between pressing the next button
for the treatment group

Figure 7.6 and Table 7.2 demonstrate the distribution and summary statis-

tics of the duration between the pressing of the “next” button for control

group. Generally, the number of “next” button presses decreases when the

elapsed time increases as the median and the third quartile of duration be-

tween pressing the “next” button were 21.60 and 22.59 seconds. From Figure

7.5 and 7.6 we observe that the two groups had different behaviors in terms of

pressing the “next” button. This might be affected by the smaller number of
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Figure 7.5: Distribution of duration between pressing the next button. The
median was 13.07 seconds, the average was 17.34 seconds, and the standard
deviation was 13.16 seconds.

subjects in control group, or a different strategy of sound selection.
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Figure 7.6: Distribution of duration between pressing the next button. The
median was 21.60 seconds, the average was 22.59 seconds, and the standard
deviation was 12.19 seconds.
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Min 25% Median Mean 75% Max Std.
0.46 11.99 21.60 22.59 30.59 48.52 12.19

Table 7.2: Summary statistics of duration between pressing the next button
for the control group

7.4.3 Factor Correlations

In order to further evaluate the system and have a better understanding of

how it performs, we measure the correlations among button-press frequency,

user ratings and cumulative rewards. Figure 7.7, 7.8, and 7.9 give an overview

of the relations between button-press frequency and user ratings, button-press

frequency and cumulative rewards, and cumulative rewards and user ratings.
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Figure 7.7: Button-press frequency vs. User ratings

The Pearson correlation coefficient between button-press frequency and

user ratings is -0.02 with p-value being 0.94, as presented in Figure 7.7. We

expect to see that lower button-press frequencies have higher user ratings.

But the result indicates that the button-press frequency and user ratings are

uncorrelated which means higher button-press frequency does not imply a

worse sound therapy experience.

There is no linear correlation between button-press frequency and cumu-

41



20 30 40 50 60
Button-press Frequency

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

Cu
m
ul
at
iv
e 
Re

wa
rd
s

Figure 7.8: Button-press frequency vs. Cumulative rewards

lative rewards as the Pearson correlation coefficient is 0.08 and its p-value is

0.73. Figure 7.8 reflects the weakness of the reward function where the cumu-

lative rewards in a fixed time duration might be higher when the button-press

frequency is higher. If we have a proper reward model, the cumulative rewards

can be higher if the button-press frequency is lower. In the real-world reward

model, we use a sigmoid function to generate the reward from the elapsed time

between button presses. The sigmoid function increases slowly at the begin-

ning and the end, and increases fast in the middle. So, the sum of rewards with

multiple button presses in a time period might be higher than the maximum

reward in a time period (without a button press).

We expected to see the user rating positively correlate with cumulative

rewards, but Figure 7.9 indicates that the user rating has no significant relation

with cumulative rewards. The Pearson correlation coefficient between these

two variables is -0.21 with p-value being 0.36.

Those figures demonstrate that the reward function might not be able to

represent listener’s preferences well, or the measurement of evaluation cannot

reflect the listener’s experience properly.

42



17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0
Cumulative Rewards

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Us
er
 R
at
in
gs

Figure 7.9: Cumulative rewards vs. User ratings

7.5 Threats to Validity of the Experiment

In this section, we discuss threats to validity of the experiments. We ana-

lyze some factors that might affect the internal validity, external validity and

construct validity of experimental results.

7.5.1 Interval Validity

Subjects were not randomly assigned to the treatment group and the control

group. We assigned first 15 subjects to the treatment group and the rest of

7 subjects to the control group. The results can be biased when subjects are

not randomly assigned.

7.5.2 External Validity

The population of the subjects was mostly university students and professors

with different specializations. Participants are a particularly well-educated

segment of society, and that most of them were young. It might impact the

result when we apply it to the general population.
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7.5.3 Construct Validity

The experiments were performed remotely because of COVID-19 pandemic,

and it affected the experiment settings such as the surroundings around the

subject, whether the subject uses headphones/earbuds or speaker. Further-

more, measurement on the influence of volume is limited as the subjects’ per-

ception levels of volume vary. This factor may bias the correlation of the user

ratings and system performance. Since some of the subjects can barely distin-

guish the difference of volume and the sound selection is based on the subjects’

feedback of currently listening sound, their feedback might prevent the system

from making good decisions. In addition, the experimenter is an amateur of

sound therapy, and a well-trained sound therapist might outperform the UCT

algorithm.

From the self-reported responses we also observe that the number of cat-

egories might be too small for exploration in the experiment. User behav-

iors were different with regard to pressing the “next” button. For example,

from many optional interviews we learn that some preferred listening to the

favourite soundscape all the time while some preferred to switch soundscapes

all the time. Most of the subjects preferred listening to more than one sound-

scapes during the experiment. A small number of subjects changed preferences

over time because of getting bored with a particular soundscape.

The mental health information of participants such as sleep quality, stress

and anxiety level were unknown before the experiment for either the treatment

group or the control group. We didn’t compare the stress and anxiety level

before and after the experiments for both the treatment group and the control

group.

7.6 Reflections on Experiments

Other than the threats to experimental validity mentioned in the previous

section, some issues remain that could be addressed and fixed in future exper-

imental research. In terms of the experiments design, we did not compare the

stress level of subjects before and after the experiment. Without the compar-
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ison, we were able to display the correlation between our work and positive

outcomes, but we can not show direct causation because subjects might be

already relaxed before the experiments. Apart from the comparison between

the stress level before and after the experiments, it would be better if we could

add a stressor to the subject before the experiment. Thus, State-Trait Anxiety

Inventory (STAI) [32] could be applied as a psychological measure for applying

a stressor and evaluating the subject’s stress level. We should ensure that the

subjects are in the same stress level before the experiments so that the stress

level does not bias the result.

Due to the limitation caused by COVID-19, we conducted the experiments

remotely. If we were able to perform the in-person experiments, we could

use physiological measures such as blood pressure, heart rate, and heart rate

variability (HRV) to evaluate the stress level before and after the experiments.

After the experiments, we should be able to collect both physiological and

psychological data from the experimental group and the control group. We

could apply a paired Mann Whitney U test to show if there was a significant

effect.

With regard to the survey, the answers for the previous three questions

scale from 1 to 10 (See Appendix E). Questions are:

1. Do you feel the algorithm eventually chose the soundscape that makes

you feel most relaxed?

2. Can you estimate how long it took to determine the soundscape that

makes you feel most relaxed?

3. Do you like all soundscapes chosen by the program?

The forth question (”How fast did you respond your feedback to the current

playing soundscape?”) had another scale from 1 to 5, so we need to unify the

scales. Since subjects might be confused by different scales, using a consistent

Likert scale [27] with fewer responses could improve the consistency of survey

responses.
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7.7 Summary

Based on the surveys and subjects’ feedback, we conclude that UCT performed

well at determining the listeners’ sound preferences in a small number of steps.

Although the control group exhibited no significant difference compared to the

treatment group, we can infer that the UCT algorithm is able to replace the

experimenter to conduct sound therapy.

Yet the human study can be affected by many factors apart from the algo-

rithm such as the diversity of sound categories, the quality of sounds and the

change of personal preferences over time. So, further experiments are needed

to improve validity.
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Chapter 8

Conclusion

In this work we present an interactive learning system that automatically

selects and fine-tunes soundscapes according to personal preferences obtained

from minimal user feedback intended to help relax the subjects. We conducted

experiments on both virtual subjects and real subjects. For experiments on

virtual subjects, we tested UCT, RTA* and baseline algorithms on both a one-

button reward model and a distance-based reward model. UCT had the best

performance among all algorithms in terms of the evaluation on distance and

discounted cumulative rewards within a limited number of time steps. Based

on the results of experiments on virtual subjects, we tested UCT algorithm

with one-button reward model on real subjects. Subjects were divided into

a treatment group and a control groups for comparison, where the treatment

group listened to sounds selected by the UCT algorithm and the control group

listened to sounds selected by the experimenter. The UCT algorithm per-

formed well in determining the most relaxing soundscape. While the control

group exhibited no difference compared to the treatment group, we can still

conclude that the UCT algorithm is able to replace the experimenter for sound

therapy.

There are several directions to pursue in future investigations. Since per-

sonal preferences might change over time during the experiment, we could

model preference as a non-stationary problem, and apply a non-stationary

bandit algorithm. In addition, we could increase the number of sounds and

sound categories in the human study to better illustrate the algorithm’s ef-
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fectiveness. Increasing the diversity of soundscape categories may provide a

wider range of choices and create a more even distribution of preferences to

eliminate the distribution bias. Another reward model might be developed to

ensure that the reward is not too time-sensitive. Our ultimate goal of the work

is to apply this system to help hospitalized patients who suffer from stress and

anxiety caused by the environment noises after surgeries and treatments. Be-

yond sound therapy, these results could be reused for music recommendation

systems.
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Consent Form
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INFORMATION	LETTER	and	CONSENT	FORM	

	
Study	Title:	Sound	Relaxation:	"Sweet	Spot"	Exploration	in	Soundscape	using	Reinforcement	
Learning	
	
Research	Investigator:	
Yourui	Guo	
259B	Computing	Science	Center	
University	of	Alberta	
Edmonton,	AB,	T6G	2S4	
yourui@ualberta.ca	
1.780.729.3565	

Supervisor:	
Professor	Abram	Hindle	
4-47	Athabasca	Hall	
University	of	Alberta	
Edmonton,	AB,	T6G	2E8	
abram.hindle@ualberta.ca	
1.780.492.3927	

	
Background					
• You	are	invited	to	participate	in	a	research	project	about	developing	sound	therapy.	We	will	ask	you	

to	attend	a	session	of	sound	therapy	conducted	by	our	system,	along	with	attending	a	survey	and	an	
optional	interview.	Your	friends	or	colleagues	might	have	recommended	you	for	this	study.	

• The	results	of	this	study	will	be	used	for	my	thesis	and	publication.	This	work	is	funded	by	KIAS.	
• Before	you	make	a	decision,	one	of	the	researchers	will	go	over	this	form	with	you.		You	are	

encouraged	to	ask	questions	if	you	feel	anything	needs	to	be	made	clearer.		You	will	be	given	a	copy	
of	this	form	for	your	records.	

	
Purpose	
• This	research	aims	at	increasing	individual's	relaxation	level	by	automatically	playing	sounds	fine-

tuned	by	our	system.	We	seek	to	validate	if	the	system	is	useful	for	individual's	relaxation	level,	and	
if	the	technique	can	determine	individual's	preference	on	soundscapes.	
	

Study	Procedures	
• After	you	agree	to	this	study	we	will	ask	you	to	listen	to	soundscapes	generated	by	the	system.	You	

will	give	feedback	by	pressing	the	“next”	button	to	indicate	that	you	want	to	switch	to	the	next	
sound.	One	can	also	participate	in	optional	interview.	Total	time	commitment	should	be	more	than	
30	minutes	and	less	than	40	minutes.	

	
Benefits		
• You	might	benefit	from	this	study	such	as	learning	about	the	algorithms	and	contributing	to	science.		
• This	study	can	benefit	individuals	who	need	sound	therapy	because	the	research	can	determine	a	

personalized	setting	of	soundscape	automatically	for	individuals.	
• Beyond	your	time,	there	is	no	cost	to	you,	or	compensation.	

	
	
	

Risk	
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Appendix C

Recruitment Letter

UO Version 1 - 2/21/11 

	

	

 

Hi, 

My name is Yourui Guo and I am a graduate student from the Computing Science at the 
University of Alberta. I am writing to invite you to participate in my research study about sound 
relaxation exploration using Reinforcement Learning. 

If you decide to participate in this study, you will be asked to listen to soundscapes selected by 
our system. You will need to control a remote desktop using AnyDesk and press a “next” button 
to indicate how much you like the current-playing soundscape. The system will change the 
soundscapes based on your feedbacks. Furthermore, we will ask you about the experience of the 
sound therapy session. The experiment session is around 20 minutes, and you will need few 
more minutes to fill out the survey. 

This is completely voluntary. You can choose to be in the study or not. If you'd like to participate 
or have any questions about the study, please email or contact me at yourui@ualberta.ca. 

Thank you very much.  

Sincerely,  

Yourui Guo 
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Appendix D

Experiment Instructions

8/4/2020 Soundscape Experiment Feedback

https://docs.google.com/forms/d/e/1FAIpQLSfy_AM7tcxkO2znVip0swP6J9zAAJfebim3jkdpph2RIdALkQ/viewform 1/2

Purpose
This research is related to sound therapy. It aims at increasing participant's relaxation level by listening 
to different soundscapes. We seek to validate the effectiveness of the proposed algorithm in this 
experiment. 

Before the experiment
This experiment takes about 20 minutes.

You might sit in a chair or lie on the bed to ensure you feel comfortable with the surroundings. 

You will need to connect the experiment machine via AnyDesk, and you can download the APP in here: 
https://anydesk.com/en/downloads. You will control the experiment machine remotely during the whole 
experiment.

After you connected to the experiment machine with a provided ID, you should check the audio settings in 
your own machine to make sure you can hear sounds from either the speaker or headphone.

The soundscapes you will hear are: forest, ocean, night camp, rain on the tent, and city rain. Each 
soundscape has three individual sounds, and the algorithm will also fine-tune the volume of each sound 
in each category.

Experiment procedure
You can provide your response by pressing the ENTER key. If you feel the sound you're currently listening 
is not pleasing and doesn't make you feel relaxed, you can switch to the next sound by pressing the 
ENTER key. If you feel the sound you're currently listening is pleasing, you can keep listening to it and 
don't press the ENTER key until you feel it doesn't make you feel relaxed anymore.

Please note that pressing ENTER key doesn't necessarily mean to switch to a different soundscape, it 
might change the volume of the sounds in current soundscape.

After the experiment
You can exit the experiment by pressing the ESC key and disconnecting the machine in AnyDesk APP.

You will need to finish this google forms and submit it. You'll be provided with a uuid after the 
experiment, which you'll need it to complete the survey.

Soundscape Experiment Feedback
* Required
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soundscape has three individual sounds, and the algorithm will also fine-tune the volume of each sound 
in each category.
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is not pleasing and doesn't make you feel relaxed, you can switch to the next sound by pressing the 
ENTER key. If you feel the sound you're currently listening is pleasing, you can keep listening to it and 
don't press the ENTER key until you feel it doesn't make you feel relaxed anymore.

Please note that pressing ENTER key doesn't necessarily mean to switch to a different soundscape, it 
might change the volume of the sounds in current soundscape.

After the experiment
You can exit the experiment by pressing the ESC key and disconnecting the machine in AnyDesk APP.

You will need to finish this google forms and submit it. You'll be provided with a uuid after the 
experiment, which you'll need it to complete the survey.

Soundscape Experiment Feedback
* Required
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Appendix E

Survey

8/4/2020 Soundscape Experiment Feedback

https://docs.google.com/forms/d/e/1FAIpQLSfy_AM7tcxkO2znVip0swP6J9zAAJfebim3jkdpph2RIdALkQ/formResponse 1/2

Soundscape Experiment Feedback

1: Forest

2: Ocean

3: Night-time camping

4: rain on the tent

5: City rain

Other:

not really

1 2 3 4 5 6 7 8 9 10

yes!!

Soundscape Experiment Feedback
* Required

Please provide the first 5 digits of uuid displayed in the terminal *

Your answer

Which soundscape did you like the most *

Do you feel the algorithm eventually chose the soundscape that makes you feel
most relaxed? *
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https://docs.google.com/forms/d/e/1FAIpQLSfy_AM7tcxkO2znVip0swP6J9zAAJfebim3jkdpph2RIdALkQ/formResponse 1/2

Soundscape Experiment Feedback

1: Forest

2: Ocean

3: Night-time camping

4: rain on the tent

5: City rain

Other:

not really

1 2 3 4 5 6 7 8 9 10

yes!!

Soundscape Experiment Feedback
* Required

Please provide the first 5 digits of uuid displayed in the terminal *

Your answer

Which soundscape did you like the most *

Do you feel the algorithm eventually chose the soundscape that makes you feel
most relaxed? *
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