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Abstract

Effective communication in English can facilitate educational and employment

opportunities for second-language learners. English as a second or foreign

language (ESOL) learners tend to employ rules from their native language

while communicating in English, which can lead to Negative Language Transfer

(NLT) when the rules transferred from the mother tongue do not match those

of English. To assist ESOL learners in writing in English, NLT errors should be

identified. However, manually identifying NLT is a difficult task, demanding

time and expertise in both languages. Although NLT is a well-researched

phenomenon in linguistics, few attempts have been made to automatically

identify NLT in learner writing using machine learning techniques.

In this work, I have implemented four classification algorithms to auto-

matically identify NLT errors in second-language learner writing. The results

show that the models can identify NLT in the English writing of Chinese and

Farsi native speakers. This work makes the following contributions: (1) it im-

plements supervised machine learning models and language models to identify

NLT in learner writing; (2) it evaluates the models using two different datasets

in two languages to investigate the generalizability of the models; and (3) it

identifies the most important features for detecting NLT. This work shows

that the implemented models can be used in unstructured domains to identify

NLT automatically for speakers of two languages: one is logographic and the

other alphabetic.
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Chapter 1

Introduction

Many areas have been positively affected by algorithms that can learn from

experience and adjust to new inputs, from search engines and spam detec-

tion to language translation and feedback-enabled writing tools. Natural Lan-

guage Processing (NLP) is a field that is concerned with how computer sys-

tems can be used to understand and process natural language text or speech

(Chowdhary, 2020). With the development of ML and NLP, several language-

learning tools (e.g., Duolingo, Grammarly) have been created. These tools

help users to learn a second-language and communicate (Jiang et al., 2020).

These language-learning systems and others like them may provide corrective

feedback to second-language learners (Monaikul and Di Eugenio, 2020; Nade-

jde and Tetreault, 2019). Corrective feedback can indicate the erroneous usage

of a target language (Bacquet, 2019). It can assist the learner in correcting

the error and may help in preventing the repetitive occurrence of the same

error type (Tsui, 2007). The continual research and development of language-

learning systems implies that researchers are trying to address challenges that

still exist in learning a new language, especially, the English language which

has billions of native and non-native speakers.

English is the world’s most commonly spoken language and it has more non-

native speakers than native speakers. Effective communication skills in English

can support the development of a person’s career. Precise communication can

prevent the unintended consequences that can emerge from miscommunication.

Learning a new language is often enabled by using strategies such as repe-
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tition, memorization, and translation (O’Malley and Chamot, 1990). Employ-

ing memorization and translation strategies while learning a second language

can lead to the occurrence of language transfer, which occurs when second-

language learners employ patterns from their first language (L1) while com-

municating in the second language (L2) (Lado, 1957). Language transfer can

occur through conscious or unconscious processes. Language transfer is con-

sidered conscious when language learners intentionally use the grammatical

structures of their L1 while generating speech or text in the second language.

Language transfer is unconscious when language learners unintentionally use

the grammatical structures of their L1 in the second language. Unconscious

language transfer happens when language learners are not paying attention to

the usage of the grammatical structures of the second language. It can also

happen when they have not mastered the grammatical structures of the second

language or they have forgotten the appropriate usage of the language.

There are two types of language transfer: positive language transfer and

NLT. Reusing the relevant unit or structure of the first language (L1) when the

corresponding structure in the second language (L2) is the same can result in

correct language production, which is called positive language transfer. NLT

occurs when the reused grammar and structure from the L1 do not fit the L2

grammar and structure. A lack of knowledge of the grammatical variations

across languages and similarities between grammatical structures are the main

causes of NLT. In this thesis, the focus is to identify NLT from structural

errors made by second-language learners. As an example of NLT, consider

this sentence written by a Chinese native speaker:

In my opinion, I recommend British museum.

In the above sentence, the British Museum should be preceded by a determiner

(i.e., the). As the language learner did not use a determiner before the noun

phrase, the sentence contains a missing determiner error. The existence of this

error could be due to the fact that articles do not exist in the Chinese lan-

guage (Robertson, 2000). This example demonstrates that the Chinese native

speaker transferred the grammatical rules from their L1 to their L2. Diver-
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gence of the determiner rules in Chinese and English caused the transferred

pattern to form an error.

As another example, consider the sentence below written by a Farsi native

speaker:

Especially for the people who have good sense of humour.

The Farsi native speaker committed an error while writing this sentence. Akin

to the previous example, the language learner did not include the determiner

(i.e., a) when writing this sentence.

NLT occurs frequently in English due to the large number of non-native

speakers of English. Despite the existence of various ML-based language-

learning tools for English, none of them detects NLT errors in language learner

writing. This implies the need for an automated tool that can detect NLT

errors. As the manual identification of NLT requires time and expertise in both

the L1 and L2, automatic identification of NLT can facilitate its detection. The

automatic identification could be integrated as a module in language-learning

tools to make language learners aware of the occurrence of NLT.

In this thesis, I applied four machine learning models to detect NLT in two

datasets from speakers of different languages: Chinese and Farsi. Two sets of

binary classification models were used to detect the erroneous utterances of

second-language learners: theory-based models and non-theory-based models.

Theory-based models represent the syntactical structure of the input language

using language models and part-of-speech (POS) information. The theory-

based models were built using n-grams and a recurrent neural network (RNN).

The non-theory-based models used logistic regression and random forest. As

a result, eight models were employed to identify NLT in the English writing

of Chinese and Farsi native speakers.

To determine to what extent and how accurately these models could iden-

tify NLT, two different datasets were used to evaluate the models: the Chinese

FCE dataset and the Farsi Lang-8 dataset. The choice of employing two dis-

tinct datasets from native Chinese and Farsi speakers was made to explore the

potential generalizability of the proposed methods. Using the two datasets

3



also enables comparing and contrasting model performance across languages.

The research questions posed in this work are as follows:

• RQ1: What is the performance of the proposed models in detecting

NLT?

• RQ2: What is the performance of the theory-based approaches (n-gram

and RNN) compared to the non-theory-based approaches (logistic re-

gression and random forest)?

• RQ3: What features are important for detecting NLT across approaches

and languages?

The rest of this thesis is organized as follows. Chapter 2 (Literature

Review) examines the relevant research on detecting grammatical errors and

NLT. Chapter 3 (Methodology) describes the datasets, input features, and

output (response or target variable) of the machine learning algorithms, as

well as the methods applied to the data and the model evaluation procedures.

Chapter 4 (Results) presents the model findings and it also includes an error

analysis. Chapter 5 (Discussion) provides an interpretation of the results,

implications, limitations, and future work. Chapter 6 (Conclusion) provides

a summary of the thesis and the conclusions that follow from the employed

methodology.
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Chapter 2

Literature Review

Over the past four decades, several different theories of second-language ac-

quisition have been proposed to explain how language learning takes place,

which variables play a role in second-language acquisition, and how to provide

guidance to second-language learners. The monitor model, which includes sev-

eral influential theories of second-language acquisition, developed by Stephen

Krashen, includes five central hypotheses (Gitsaki, 1998): (1) learning is a

conscious process, while acquisition is a subconscious process; (2) the role of

learning is to monitor and adjust the utterances generated throughout the ac-

quisition process; (3) there is a natural order in understanding second-language

rules which could be influenced by classroom instruction; (4) being exposed

to comprehensible input is the only way that can lead the language learner to

second language acquisition; and (5) the existence of a conceptual block can

hinder learners from utilizing comprehensible inputs.

Based on Krashen’s hypotheses, grammatical error detection (GED) and

identifying NLT from structural errors can make students aware of their gram-

matical mistakes and guide them toward the correct usage of the grammar

rules.

2.1 Grammatical error detection

A grammar represents the structure, rules, syntax, and morphology of a lan-

guage (Leacock et al., 2010). Grammatical errors are often categorized as

errors related to faulty or unconventional usage of a grammar. Grammatical
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errors can sometimes include a subset of spelling errors (Fraser and Hodson,

1978). The earliest grammar checking tools were based on string matching

rather than on syntax and grammar. Later, tools employed some linguis-

tic analysis. For example, IBM’s Epistle (Heidorn et al., 1982) and Critique

(Richardson and Braden-Harder, 1988) enabled full linguistic analysis using

complex grammars and parsers. The development of grammar checking pro-

grams using hand-coded grammar rules gave way to statistical methods in the

1990s. At this time, data-driven models began to be trained and developed

using large-annotated treebanks such as the Penn Treebank (Marcus et al.,

1993).

With the development of NLP, numerous studies have been conducted to

address grammatical error detection. Lee et al. (2014) developed a rule-based

and a statistical-based approach to detect grammatical errors in Chinese sen-

tences. Their rule-based method contained 142 rules written by language

experts and the statistical model was based on n-gram scores of correct and

incorrect training sentences. Their experiment used 880 sentences with gram-

matical errors written by Chinese students. The 142 developed rules, bigram,

and trigram language models were used to identify the grammatical errors.

The experiment was conducted using rule-based models, n-grams, and their

combination. Although the rule-based approach yielded a high precision score

of 86%, n-grams achieved higher recall. The highest F1-score was obtained us-

ing the trigram model with an F1-score of 69%. Additionally, the combination

of a rule-based model with n-grams resulted in the lowest false positive rate.

Given these results, the choice of the best model may depend on application

requirements or preferences.

With the development of word vector representations and deep learning,

new algorithms have emerged that can detect grammatical errors with higher

precision. Bell et al. (2019) presented an approach to effectively integrate

contextualized word embeddings to detect grammatical errors. The study used

a bi-LSTM sequence labeler that was applied over the sequence of tokens. For

each token, the model was trained to predict whether the token was correct

or incorrect (i.e., binary classification). The model was additionally trained
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with a bidirectional language model to predict the surrounding context of

the target word in the input sequence. Bell et al. (2019) further employed

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et

al., 2019), embeddings from Language Models (ELMo) (Peters et al., 2017),

and Flair word embeddings (Akbik et al., 2018) to discover the importance

of context in identifying errors. They conducted the prediction task on three

different datasets and found that BERT word embeddings provided the highest

improvement across all datasets.

Despite the development of grammatical error detection algorithms, there

has been limited research on developing algorithms that can detect NLT be-

cause NLT comprises a wide range of errors that second-language learners

make when speaking or writing in their second language.

2.2 NLT error detection

Detecting NLT in written essays or text could be an instrumental component of

language learning and assessment tools. While NLT is well-researched and has

been analyzed for decades (Selinker, 1969; Murphy, 2003), there have been only

a few attempts to identify NLT in texts written by English language learners

(Farias Wanderley and Demmans Epp, 2021; Farias Wanderley, Zhao, et al.,

2021).

The negative influence of language transfer on learning a second language

can be examined in two ways: theoretical and practical. Cortés (2005) con-

ducted a theoretical and practical analysis to understand the negative impact

of language transfer on British students learning Spanish as a second language.

The study found that factors such as type of the L1 and L2, the relationship

between the learner’s known languages and those being studied, and the learn-

ing context were involved in language transfer.

Kastell (2021) collected a dataset of university lecture materials in English

delivered by Finnish and Swedish native speakers to find out the rate of NLT

occurrence and the impact of the native language on NLT. The dataset is

composed of three different error types related to articles in English: omission
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errors, where the speaker omitted an article (a, an, the) due to the rules in

their native language; addition errors, where the speaker adds an unnecessary

article to the sentence; and substitution errors, where the speaker incorrectly

substitutes articles. The study analyzed the data and discovered that NLT

occurrence is more frequent in Finnish than in Swedish. They argued this was

because Finish does not use articles.

Chodorow et al. (2007) developed a maximum entropy classifier using ma-

chine learning and rule-based filters to detect preposition errors in English as a

second-language learner essays with a precision of 0.8 and a recall of 0.3. In ad-

dition to preposition errors, verb errors are another common error type made

by non-native speakers of the English language (Rozovskaya et al., 2014). To

train and evaluate a linguistically-motivated approach, the study used second-

language learner essays from the First Certificate in English (FCE) dataset.

The Cambridge Learner Corpus First Certificate in English contains texts writ-

ten by English as an additional language learners in response to exam prompts

(Yannakoudakis et al., 2011). Rozovskaya et al. (2014) employed the notion of

verb finiteness to improve the accuracy of a statistical machine learning model.

The pipeline starts with selecting the verb candidates and determining verb

finiteness. Subsequently, features are generated for each candidate and the

finiteness prediction results are used in the error identification component.

Based on the output of the error identification module, the corresponding

classifier for each error type is used to propose a proper correction. They used

a linear model called combined that assigned a score to each label of the label

space using the input verb and the weight vector w. The study discovered that

employing linguistically-derived knowledge in a machine learning model can

boost performance and enable a general correction approach to verb errors.

Wu et al. (2009) proposed language models to automatically detect and

correct NLT made by Chinese native speakers. The study implemented rela-

tive position language model and parse template language model to tackle the

error correction problem. The relative position language model was presented

to address the order of the error correction module and to preserve the relative

position and long-range lexical information between constituents of the sen-
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tence. The parse template language model was presented to introduce more

structural information to support the detection and correction modules. The

process of error detection and correction was composed of two modules. First,

models were trained to detect lexical, redundancy, omission, and word order

errors. These models were used to detect if the input sentence contained an

error. The error correction module then used the language models to com-

pose the correct sentence. This approach outperformed an existing machine

translation system trained on the same dataset.

In the most recent attempt of automatically identifying NLT errors, a ma-

chine learning model was trained with a dataset of learner errors and parallel

corpora to represent the structure of the L1 and L2 languages. It used parallel

corpora to distinguish the source language of a text sequence. Farias Wan-

derley and Demmans Epp (2021) trained language models (i.e., n-grams and

a recurrent neural network) with parallel corpora to represent language struc-

tures and recognize when Chinese native speakers incorrectly transfer rules

from their mother tongue (i.e., Chinese) into their L2 (i.e., English) writing.

The n-grams and RNN achieved an F1-score of 0.45 and 0.51 on the negative

language detection task, respectively. The methodology used in the paper is

replicated in this thesis by applying it to two languages and their associated

parallel corpora (i.e., Chinese and Farsi).

Farias Wanderley, Zhao, et al. (2021) introduced an annotated dataset of

errors made by Chinese native speakers who had written essays in English.

These errors are accompanied by information about the sources of the error.

Using the error information, logistic regression and random forest models were

trained to demonstrate potential for identifying NLT. The logistic regression

and random forest models yielded an accuracy of 0.72 and 0.78 on the NLT

detection task, respectively. These results imply the possibility of developing

a feedback generation module for Chinese learners of English. The logistic

regression and random forest models from this paper were employed in this

thesis.

While being a well-researched topic in linguistics, NLT detection requires

more attention from computer science researchers to address such errors in
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second-language learner writing. This thesis aims to detect NLT in two dif-

ferent languages to demonstrate the robustness and generalizability of the

methodology. The next chapter (i.e., methodology) introduces the datasets,

machine learning models, and procedures applied to identify NLT.
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Chapter 3

Methodology

In this chapter, I will describe the Chinese FCE dataset, the Farsi Lang-8

dataset, and the parallel corpora used to train the models. Then, I will ex-

plain the four algorithms I used to identify NLT in language-learner writing.

I discuss NLT identification, a binary classification task for which I use two

datasets and two categories of models: theory-based and non-theory-based.

The input features of the non-theory-based models are extracted from pre-

processing each learner’s erroneous utterance and the response variable is the

NLT status of that error. Non-theory-based models were trained, tuned, and

evaluated using the Chinese FCE and Farsi Lang-8 datasets. Theory-based

models were trained and tuned using parallel corpora and were evaluated us-

ing the Chinese FCE and Farsi Lang-8 datasets. The models were trained,

tuned, and tested using cross-validation. Finally, I will discuss the evaluation

criteria used in this work.

3.1 Data

The automatic identification of NLT errors in a sentence requires a dataset that

labels errors as “Negative Transfer”. Additionally, a parallel corpus containing

sentences of each language is required to enable the modeling of language

structure. This chapter starts with an overview of the two NLT datasets: (1)

Chinese native speakers’ errors while writing essays in English and (2) Farsi

native speakers’ errors while writing in English. Both datasets were used for

training and testing the non-theory-based models (i.e., logistic regression and

11



random forest) and in the evaluation process for the theory-based models (i.e.,

n-gram and RNN). Next, I describe the parallel corpora used in the training

process of the theory-based models (language modeling task). Parallel corpora

were used to model the language structure using POS tag sequences. Finally,

I describe the preprocessing techniques that were applied to the data while

preserving the structural information of the text.

3.1.1 The Chinese FCE Dataset

The Chinese FCE dataset contains 66 English essays written by 66 distinct

native speakers of Chinese. It has a total of 3,584 erroneous sentences. Each

erroneous sentence in the dataset is a row in a spreadsheet and contains the

learner’s erroneous English writing and thirteen other columns from the FCE

dataset.

This dataset was originally extracted from the Cambridge Learner Corpus

(Yannakoudakis et al., 2011) and later annotated (Farias Wanderley, Zhao,

et al., 2021). Each sentence of the dataset is associated with an error type and

is either labeled as NLT or not. Out of the 3,584 errors, 53% are associated

with NLT, 39% are not NLT errors, and the remaining 8% contain spelling

errors. Information about the dataset is provided in Table 3.1.

Table 3.1: Error distribution in the Chinese FCE dataset

Dataset
NLT
Errors

Non-NLT
Errors

Spelling
Errors

No Error
Annotation

Total

Original
1,891

(52.7%)
1,389

(38.7%)
292

(8.1%)
12

(0.3%)
3,584

Error Subset
1,891

(57.6%)
1,389

(42.3%)
0

(0%)
0

(0%)
3,280

Structural Errors
1,478

(62.4%)
887

(37.5%)
0

(0%)
0

(0%)
2,365

As shown in Table 3.1, I split the Chinese FCE dataset into two chunks:

error subset and structural errors. The error subset contains 3,280 records of

which 1,891 are associated with NLT and 1,389 with a non-NLT error type.

The original dataset has 292 samples that contain spelling errors and 12 sam-

ples with no error annotation. The error subset is the dataset that only con-
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tains NLT and non-NLT errors. Instances containing a spelling error were

excluded as they are not a type of structural error. Additionally, the samples

that were annotated with “no error” were excluded as they did not contain

error information. The structural errors subset was used because I aim to

detect errors in sentence structure. Consequently, the error subset was fil-

tered to contain instances containing structural error as their error type. The

structural error subset is not balanced in terms of class variable frequency.

However, the 25% difference between the majority and minority classes may

not require the application of an oversampling technique (Abd Elrahman and

Abraham, 2013).

Table 3.2 includes a sample taken from the Chinese FCE dataset. The

sample contains a “Missing Preposition” (MT) error which is a type of NLT.

The raw sentence demonstrates the three error types that are associated with

the corresponding sentence. All three errors are provided in the dataset as

separate instances with different error types and corrections.
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Table 3.2: An example from the Chinese FCE dataset

Column Data Type Example
Student ID Text TE2*0100*2001*01
Language Constant Chinese
Overall
Score

Discrete 27

Exam
Score

Continuous 3.3

Raw
Sentence

Text

I am writing to reply <NS type =”MT”>
<c>to</c></NS><NS type=”RD”><i
>your</i><c>the</c></NS>letter you
wrote <NS type=”MT”><c>to</c></N
S>me on 10 June.

Error
Type

Nominal MT

NLT Nominal Y
Likely
Reason for
Mistake

Text
Chinese doesn’t use
the word in this context

Error
Length

Discrete 1

Correction
Length

Discrete 1

Correct
Error Index

Discrete 5

Correct
Sentence

Text
I am writing to reply | to the letter you
wrote | to me on 10 June.

Incorrect Error
Index

Discrete 5

Incorrect
Sentence

Text
I am writing to reply | the letter you wrote
| me on 10 June.

Note: The pipe symbol (|) indicates the position of the error.

Table 3.3 shows the top five error types among NLT and non-NLT errors.

As shown, the replace punctuation, the missing determiner, and the incorrect

tense of verb error types are more frequent. The NLT and non-NLT error

categories have two error types in common: replace punctuation and incorrect

tense of verb are among the top five error types across both categories. This

indicates that, in general, Chinese language learners make these errors more

frequently than other error types when writing in English.
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Table 3.3: The top five NLT and non-NLT errors for the Chinese FCE
structural error subset

Category Error Code Error Type Label Frequency

Negative
Language
Transfer

RP Replace Punctuation 228 (15%)
MD Missing Determiner 206 (14%)
TV Incorrect Tense of Verb 185 (13%)
MP Missing Punctuation 138 (9%)
AGV Verb Agreement 75 (5%)

Non-negative
Language
Transfer

RP Replace Punctuation 108 (12%)
TV Incorrect Tense of Verb 82 (9%)
FV Verb Form 74 (8%)
UD Unnecessary Determiner 71 (8%)
UP Unnecessary Punctuation 59 (7%)

3.1.2 Farsi Lang-8 Dataset

The Farsi Lang-8 dataset is composed of 129 distinct English texts written by

31 Farsi native speakers. It has a total of 2,991 sentences. Of these, 50.35%

are associated with NLT and non-NLT errors, whereas 49.65% do not contain

an error. Each instance contains the learner’s English writing retrieved from

Lang-8.com and ten more features associated with it. A learner’s writing may

contain one or more sentences. As my goal is to detect which error is related

to NLT, I have excluded the samples whose negative transfer labels are neither

true nor false.

As shown in Table 3.4, the dataset is imbalanced. Akin to the Chinese FCE

dataset, the Farsi Lang-8 error subset was filtered to only contain structural

errors. The gap between the majority class (non-NLT errors) and the minor-

ity class (NLT errors) is 68%, prompting the use of an oversampling method

(Abd Elrahman and Abraham, 2013). Error-type distributions for the origi-

nal, error subset, and structural error subset are provided in Table 3.4. An

instance from the Farsi Lang-8 dataset is shown in Table 3.5. The example

represents an NLT occurrence of the missing determiner (M:DET) error type.

The error information associated with each erroneous sentence is represented

in the “Error” column which contains the type and the correction of the error.
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Table 3.4: Error distribution in the Farsi Lang-8 dataset

Dataset
NLT
Errors

Non-NLT
Errors

No Error
Annotation

Total
Samples

Original
181

(6%)
1,325
(44%)

1485
(50%)

2,991

Error Subset
181

(12%)
1,298
(88%)

0
(0%)

1,497

Structural Errors
131

(16%)
709

(84%)
0

(0%)
840

Table 3.5: An example from the Farsi Lang-8 dataset

Column Data Type Example
Raw
Sentence

Text
Especially for the people who has good
sense of humour.

Error Text
M:DET | | | a | | | REQUIRED | | |
-NONE- | | | 0

Has Error Nominal True
Incorrect
Sentence

Text
Especially for the people who have |
good sense of humor.

Correct
Sentence

Text
Especially for the people who have a
good sense of humor.

L1 Nominal Farsi

Link Nominal
http://lang-8.com/73510/journals/
690218

Indices Interval 6 6
Grammatical
Error

Nominal 1

NLT Nominal 1
Comment Nominal -

Note: The triple pipe symbol (|||) is a separator for the error information.

Table 3.6 shows the top five error types in the Farsi Lang-8 structural error

subset. As shown, missing determiner and missing punctuation are the most

frequent error types across NLT and non-NLT errors. The only error type that

is common across the two categories is the replacement error for noun-number.

Unnecessary preposition and replacement errors for verb tense are among the

other frequent error types of the Farsi Lang-8 structural error subset.
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Table 3.6: The top five NLT and non-NLT errors for the Farsi Lang-8
structural error subset

Category Error Type Description Frequency

Negative
Language
Transfer

M:DET Missing:Determiner 53 (40%)
U:PREP Unnecessary:Preposition 14 (11%)
R:NOUN:NUM Replacement:Noun Number 13 (10%)
U:OTHER Unnecessary:Other 7 (5%)
R:PART Replacement:Particle 6 (5%)

Non-negative
Language
Transfer

M:PUNCT Missing:Punctuation 96 (14%)
R:VERB:TENSE Replacement:Tense of Verb 47 (7%)
R:NOUN:NUM Replacement:Noun Number 46 (6%)
M:OTHER Missing:Other 45 (6%)
R:NOUN Replacement:Noun 41 (6%)

Oversampling

As shown in Table 3.4, the class distribution of the Farsi Lang-8 dataset is

skewed. This bias in the training set can induce the machine learning algo-

rithm to ignore the minority class and predict the majority class. A common

approach to address class imbalance is to randomly resample the training

dataset to rebalance the class distribution. I used this approach by applying

the Python library Imblearn1. As a result, I oversampled the minority class

so that the ratio of the minority class to the majority class would be equal

to 0.5; 50% was selected based on several attempts at model training. A per-

centage of oversampling higher than 50% caused the model to overfit and to

memorize the instances instead of learning the underlying pattern in the data.

Table 3.7 shows the frequency of the NLT errors before and after applying

random oversampling.

Table 3.7: Class frequency before and after random oversampling

NLT Non-NLT
Original 131 709
Oversampled 354 709

1https://imbalanced-learn.org/stable/
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3.1.3 Parallel Corpora for Language Modeling

Machine learning models equipped with POS tags can detect the occurrence

of NLT using information about the L1 and L2 language structures. Thus,

a POS-tagged corpus of Chinese and Farsi text with a parallel translation in

English could help express the structure of the languages. Moreover, it can

help the model find the patterns that support NLT identification. As shown

in Table 3.8, three parallel corpora were chosen. The parallel corpora contain

the same number of sample phrases across their respective language pair.

The first corpus, “Global Voices”, is a Chinese-English corpus that con-

tains news stories from around the world that were published on the Global

Voices website. The second corpus, WMT19, is a Chinese-English corpus that

was released in 2019 during the fourth conference on machine translation; it

contains parallel news stories from online websites. The combination of the

Global Voices and WMT19 was used to model the Chinese language. The

third corpus, MIZAN, is the largest Farsi-English parallel corpus. It contains

more than a million Farsi-English sentence pairs collected from masterpieces

of literature that were made available through Project Gutenberg (Kashefi,

2018).

These datasets were used as the training and validation data sources for

language modeling tasks since they can be used to extract a representation of

the grammatical structure of the Chinese and Farsi languages. Sentences that

did not have a corresponding match in English were removed. Table 3.8 shows

the dataset names, their corresponding languages, and the number of sentence

pairs they contain. The two Chinese-English corpora were merged to compose

a single parallel corpus.

Table 3.8: Dataset sizes for the parallel corpora used to train the
theory-based models

Dataset Languages Number of Sentence Pairs
Global Voices Chinese-English 138,582
WMT19 Chinese-English 11,960
MIZAN Farsi-English 1,021,596
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3.1.4 Preprocessing

The Chinese FCE and Farsi Lang-8 datasets were used to train and evaluate

the non-theory-based models. Both datasets were analyzed and annotated by

trained Chinese, Farsi, and English native speakers to minimize the occur-

rence of annotation errors. Preprocessing steps such as stop-word removal,

stemming, and tokenization that would alter the structure of the text were

not employed. To identify the occurrence of NLT, it is important to capture

grammatical and syntactical aspects of the sentence while preserving its orig-

inal structure. The Chinese FCE and Farsi Lang-8 datasets contain language

learner errors each of which is called an Incorrect Sentence. Given an Incor-

rect Sentence, four features were extracted to ensure that the error structure

is being preserved and passed on to the algorithms.

One of the standard representations that captures the information and

syntactical structure of a raw text is the POS tags that are associated with each

word in a text. These tags distinguish the grammatical properties of words.

POS tagging is the process of assigning specific labels of word categories to

tokens of a text (Jurafsky and James H. Martin, 2009). The assigned word

categories represent the syntactic function of the token within a text.

The Universal Dependencies tagset is a multilingual treebank collection

that provides cross-linguistically consistent tags for 33 languages (Nivre et

al., 2016). This tagset uses 17 tags to express the syntactic properties that

are shared across languages. The Universal Dependencies tagset is consistent

with the goals of this thesis as it can POS-tag all three languages (i.e., English,

Chinese, and Farsi) using the same set of tags. In addition to the Universal

Dependencies POS tags, I have employed Spacy’s2 dependency parser to tag

the Chinese FCE and Farsi Lang-8 datasets with syntactic dependency labels.

Dependency parse trees contain information that can be used to represent

sentence structure. They represent the relations between different constituents

in a sentence.

Figure 3.1 shows Universal Dependencies POS and dependency relation

2https://spacy.io/
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tag trigrams from a randomly chosen sentence of the Chinese FCE dataset.

As shown, “DET” is used to indicate the determiner that introduces the main

subject, “NOUN” is used to represent the word images which is the subject of

the sentence, and “VERB” is used to annotate the main verb in the sentence.

Also, “det” is used to represent the relation determiner, “nsubj” is used to

indicate the subject of the clause, and “root” is used to represent the root of the

sentence. An n-gram is a sequence of “n” tokens. Computing the probabilities

of n-grams can represent how often a sequence occurs in a corpus. Each POS

tag trigram starts with the POS tag of the first word of the error and the

two subsequent POS tags. Table 3.9 provides a list of Universal Dependencies

tags.

Figure 3.1: An example of the Universal Dependencies POS and dependency
relation tag trigrams
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Table 3.9: List of Universal Dependencies tags

Tag Description
ADJ Adjective
ADP Adposition
ADV Adverb
AUX Auxiliary
CCONJ Coordinating Conjunction
DET Determiner
INTJ Interjection
NOUN Noun
NUM Numerical
PART Particle
PROP Pronoun
PROPN Proper Noun
PUNCT Punctuation
SCONJ Subordinating Conjunction
SYM Symbol
VERB Verb
X Other

The logistic regression and random forest algorithms were trained using the

following features: Error Length, Error Type Dummy Variables, Universal De-

pendencies POS Tag Trigram Dummy Variables, and Universal Dependencies

Dependency Relation Tag Trigram Dummy Variables to identify NLT. Nomi-

nal features such as (Error Type, Universal Dependencies POS Tags, and Uni-

versal Dependencies Dependency Relation Tags) were converted to numerical

features using dummy variables prior to building the models.

The Chinese-English parallel corpora sentences were tagged by Spacy’s

Universal Dependencies POS tagger. The Spacy library does not support

the Farsi language, thus, the Mizan parallel corpus was POS-tagged using

Stanza’s3 Universal Dependencies POS tagger. The POS tags extracted

from the parallel corpora were used to train the language models.

3https://stanfordnlp.github.io/stanza/
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3.2 Model selection and evaluation procedure

In a machine learning algorithm, there are two types of parameters: those

whose values are derived through the training process and can be viewed as

the output of the learning process (e.g., weight matrices of a neural network)

and those whose values are used to control the learning process of the algo-

rithm and can be viewed as the input of learning, called hyperparameters (e.g.,

the solvers, penalty, or C in logistic regression). Various approaches can be

considered to find the best set of hyperparameters for a learning algorithm, in-

cluding Manual Search, Random Search, Grid Search, Bayesian Optimization,

Genetic Algorithms, and Artificial Neural Networks.

In supervised learning, we aim to predict a target (response) variable using

instances (examples) of input features. Two of the common phenomena that

occur when training a machine learning model are overfitting and underfitting.

Overfitting occurs when the model performs well on training data but fails to

generalize well to unseen data (i.e., making the model too complex for the

training data by using more parameters than are necessary) (Hawkins, 2004).

Underfitting is the opposite of overfitting; it occurs when the model is too

simple to learn the underlying pattern in the data (Van der Aalst et al., 2010).

Thus, the model’s prediction is prone to be inaccurate even on the training

data.

One of the most common approaches to avoid the problems of overfitting

and underfitting is to evaluate the model using resampling methods, such as

cross-validation. In this project, stratified nested cross-validation and K-fold

cross-validation were used from the scikit-learn4 package to report the

validation error from the tuning process and the test error from the final

model. Stratified cross-validation based on the target variable ensures that

each fold preserves the ratio of the target variable that was present in the

original dataset. Cross-validation over the grid of hyperparameters yields the

hyperparameter combination with the lowest validation error. As a result, it

selects the collection of parameters with the least amount of overfitting. The

4https://scikit-learn.org/stable/
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process includes splitting the training set into K distinct subsets called folds.

Subsequently, the training process occurs K times: each time, the training

is carried out on the combined K-1 folds and the evaluation is carried out

on the remaining fold (the validation set). Consequently, there would be K

evaluation scores that are usually averaged and reported as the validation set

accuracy. It is important to see model selection (e.g., hyperparameter tuning)

as a component of the model fitting procedure that should be done indepen-

dently in each trial to avoid selection bias and to represent best practices in

operational usage (Cawley and Talbot, 2010). Nested cross-validation is one

of the approaches that can handle hyperparameter tuning and model training

while attempting to address overfitting. Nested cross-validation employs a se-

ries of train, validation, and test splits by fitting a model to each training and

validation split to find the best combination of hyperparameters with respect

to the training/validation fold and to provide more accurate performance on

the test split.

In this work, I applied nested cross-validation with K1 = 10 (outer loop)

and K2 = 5 (inner loop) to support generalizability of the models to unseen

data. The model selection and evaluation procedure can be summarized as

follows:

1. Partitioning the dataset into K1 (i.e.,K1 = 10) folds

2. For each partition of K1 − 1 training folds and one test fold:

2.1. Split the train set into K2 (i.e.,K2 = 5) folds

2.1.1. For each partition of K2 − 1 tuning folds and one

validation fold:

2.1.1.1. Train on the tuning folds using hyperparameters h

2.1.1.2. Test the model on the validation fold

2.1.2. Calculate the average performance across all K2 folds

for the hyperparameter combination h

2.2. Return the hyperparameter combination hprime that maximizes

the performance.

3. Using the hprime value found in step 2.2, train on all train data and test

on the test data from step 2.
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4. Report the average performance across all K1 test folds

from step 3.

Figure 3.2 demonstrates the partitioning, training, and testing procedure

of the non-theory-based models.

Figure 3.2: Nested cross-validation

3.3 Machine learning models

In this work, I implemented four algorithms to identify NLT in language learner

text. The non-theory-based models used were logistic regression and random

forest. The theory-based models used were n-grams and an RNN.

Because NLT identification is a binary classification problem, I have used

precision, recall, F1-score, and Root Mean Squared Error (RMSE) to evaluate

the performance of the models. Due to the imbalanced nature of the datasets,

the accuracy metric was ignored during model evaluation.
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3.3.1 Non-theory-based Models

This section discusses the training and evaluation procedure of the logistic

regression and random forest models used to identify NLT in the Chinese FCE

and Farsi Lang-8 datasets. The features (input attributes) and the response

variable used to train the non-theory-based models were identical to assist

in cross model evaluation. Since this is a binary classification problem and

most of the features are nominal, dummy variable conversion was applied

to transform the data into binary vectors. Error length, Error type dummy

variables, Universal Dependencies POS tags dummy variables, and Universal

Dependencies dependency relation tags dummy variables are the categories of

features that were used to represent the input sentence from learner text.

Logistic Regression

Logistic regression is a commonly used binary classification algorithm. It is

a generalized linear model used to predict a dependent variable’s probability

given one or more independent variables as input (Hosmer Jr et al., 2013).

It estimates the probability that an instance belongs to a particular class.

For example, logistic regression can help answer the following question: what

is the probability that this sentence carries an NLT error? If the predicted

probability is greater than 0.5, the model predicts that the instance belongs to

the positive (i.e., NLT) class, labeled as 1. If the model predicts a value less

than 0.5, the instance belongs to the negative class (i.e., non-NLT), labeled

as 0. In logistic regression, the idea is to use a logistic function (i.e., sigmoid)

to map the output of a linear equation between 0 and 1 to one of two labels,

NLT or non-NLT in this case.

In this work, Python5 and scikit-learn were used to implement the

logistic regression model.

5https://www.python.org/
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Hyperparameter Tuning

Table 3.10 and Table 3.11 show the hyperparameter tuning settings and the

selected hyperparameter values of the logistic regression model. The range of

values was selected based on the scikit-learn website and observations

from training the model with different ranges of values.

Table 3.10: Logistic regression hyperparameter options

Hyperparameter Description Range of Values

Solvers Algorithm used for optimization
Lbfgs, sag, saga,
liblinear, newton-cg

Penalty Choice of regularization L2

C Inverse of regularization strength
0.01, 0.03, 0.05, 0.1,
0.3, 0.5, 1, 2, 3, 4, 5, 10

Table 3.11: Logistic regression hyperparameter options

Language Fold Solver C

Chinese

1 Saga 1
2 Saga 1
3 Liblinear 2
4 Sag 2
5 Sag 0.5
6 Liblinear 1
7 Lbfgs 1
8 Saga 2
9 Sag 2

10 Sag 2

Farsi

1 Lbfgs 10
2 Lbfgs 10
3 Lbfgs 10
4 Liblinear 5
5 Lbfgs 10
6 Lbfgs 10
7 Liblinear 10
8 Lbfgs 10
9 Lbfgs 10

10 Lbfgs 2
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Random Forest

Random Forest is an ensemble model that consists of a large number of in-

dividual decision trees. Decision trees are versatile non-linear prediction al-

gorithms that can perform well on supervised learning tasks (i.e., regression

and classification) and are able to fit complex datasets. In a random forest,

each decision tree acts as an individual classifier or regressor and affects the

final prediction of the forest. Since the decision trees in a forest are immune

to multi-collinearity and the random forest prediction takes into account the

decision of the individual trees, the performance of the forest is a better esti-

mation than the prediction provided by each tree. Random forest has shown

superior performance when dealing with complex data where the number of

features (m) is greater than the number of instances (observations) (n) (Xu

et al., 2012). If the dataset contains two features that are highly correlated

when deciding upon a split, the decision tree will only select one of them,

whereas logistic regression will use both of the features. Figure 3.3 represents

the structure of a random forest composed of (N) classification trees.

Figure 3.3: The structure of a random forest classifier
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Hyperparameter Tuning

The tuning and evaluation process of the random forest model was similar to

that of logistic regression.

As shown in Table 3.12, number of estimators, maximum depth, maximum

features, and minimum samples split are the hyperparameters that were tuned.

Table 3.12: Random forest hyperparameter options

Hyperparameter Description Range of Values

N estimator Number of trees
100 to 500 with a step
of 20

Max depth Maximum depth of the tree
10 to 100 with a step
of 5 & None

Max features Inverse of regularization strength Auto, sqrt, log2

Min samples split
Minimum number of samples
required to split an internal node

2, 3, 4, 5

Table 3.13 reports the selected hyperparameters for each fold from the

nested cross-validation process.
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Table 3.13: Selected hyperparameters of random forest per outer fold of
nested cross-validation

Language Fold
Max
Depth

Max
Features

Min
Samples
Split

N
Estimators

Chinese

1 70 Auto 4 380
2 65 Auto 5 200
3 85 Auto 5 160
4 40 Auto 5 200
5 70 Auto 5 300
6 45 Auto 4 300
7 60 Auto 5 400
8 55 Auto 4 280
9 40 Auto 5 500

10 40 Auto 3 380

Farsi

1 30 Auto 2 220
2 30 Auto 2 480
3 55 Log2 2 160
4 40 Log2 2 140
5 30 Auto 2 420
6 40 Auto 2 260
7 45 Log2 2 240
8 40 Auto 2 160
9 45 Log2 2 360

10 40 Log2 2 500
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3.3.2 Theory-based Models

This section introduces the n-gram and RNN language models used to repre-

sent Chinese-English and Farsi-English language structures and identify NLT

in learner writing. The methodology of this section is based on language mod-

eling using syntactic representations of the text. Theory-based models were

trained on large parallel corpora and were evaluated using the Chinese FCE

and Farsi Lang-8 datasets.

Using POS tag sequences enables language models to learn the common

patterns of a language and to differentiate them. For instance, language models

trained using POS information can assign probabilities to sequences of tokens

and use those probabilities to identify the source language of a given POS

sequence (Farias Wanderley and Demmans Epp, 2021). Theory-based models

were trained using POS tag sequences from the parallel corpora and were

evaluated using POS tags from the structural errors subset with different error

spans.

Different error spans were used to represent the Incorrect Sentence written

by a learner to ensure that the necessary information for identifying NLT

is included. The three distinct formats of the Incorrect Sentence not only

represent the error itself but also include the context of the error (i.e., words

that surround the erroneous token). As shown in Table 3.14, padded error

span, error + unigram span, and error + bigram span were used to represent

the Incorrect Sentence. Also, the error itself may contain one or more tokens.

The length of the error depends on the Error Length associated with a specific

sample from the dataset.
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Table 3.14: POS tag span examples

Incorrect
Sentence

Error
Length

Error
Type

Padded
Error
Span

Error +
Unigram
Span

Error +
Bigram
Span

This are only my
immature views.

1
Pronoun
Agreement

This are
DET AUX

This are
DET AUX

This are only
DET AUX ADV

Madrid is a big city
and have many
interesting places.

1
Verb
Agreement

and have many
CCONJ VERB ADJ

have many
VERB ADJ

have many interesting
VERB ADJ ADJ

The party will be
take place in the
Palace Hotel.

2
Unnecessary
Verb

will be take place
VERB VERB NOUN ADP

be take place
VERB NOUN ADP

be take place in
VERB NOUN ADP DET
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NLT N-gram Language Model

Language modeling uses statistical methods to calculate the probability of a

given sequence of tokens (Jurafsky and James H. Martin, 2009). An n-gram,

which is a sequence of “n” tokens, is one of the simplest yet most powerful

language models that assigns probabilities to sequences of language data. N-

grams are commonly used to predict the probability of a current token given

the context token(s), which are tokens that precede the current token. N-grams

can take different values for “n”. A 1-gram or unigram is a one-word sequence,

a bigram is a two-word sequence, a trigram is a three-word sequence, and an

n-gram is an n-word sequence. For instance, “natural language” and “natural

language processing” are examples of a bigram and a trigram, respectively.

The NLT n-gram language models represent the distribution of POS tag

sequences derived from the Chinese-English and Farsi-English parallel corpora.

The Universal Dependencies POS tag sequences were extracted from each of

the corpora using the Stanza and Spacy Python libraries. This resulted in

four POS-tagged corpora, each representing the syntactic structure of their

corresponding language.

Four n-gram models were trained to identify NLT: two of them represent

the Chinese-English parallel corpus and the other two represent the Farsi-

English parallel corpus. For each L2 (Chinese or Farsi), one of the models

represents the structure of the learner’s native language, and the other model

represents the structure of the English language.

All of the n-gram language models deployed in this work were trained using

Python’s KenLM 6 library, which is a specialized implementation of the n-gram

language model that uses modified Kneser-Ney smoothing. KenLM uses hash

tables and sorted arrays to train language models with high speed and low

memory usage (Heafield, 2011).

The likelihood of POS tag sequences extracted from learner errors was

calculated using both the L1 and English language models. Given an input

sequence of tokens, each language model outputs the probability of the input

6https://github.com/kpu/kenlm
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POS tag sequences belonging to the language structure it represents. The

resulting likelihoods are then compared to determine whether the error in

the input sequence was NLT. The input is flagged as NLT if the probability

assigned by the L1 model (Chinese or Farsi) is greater than that assigned by

the English model. This process is visualized in Figure 3.4.

Figure 3.4: Steps in the NLT n-gram language model process

Each POS tag sequence span (padded error, error + unigram, and error

+ bigram) is evaluated by both the L1 and English language models and the

resulting probabilities are compared. As mentioned in the data section, the

test dataset contains the learner’s erroneous English writing. Thus, when

an n-gram sequence is given a greater probability from the L1 model (e.g.,

Chinese) in comparison to the probability obtained from the English model,

that sequence is determined to belong to the Chinese language because the

POS tag sequence of the n-gram was more frequent in the Chinese language

model than it was in the English language model.

Table 3.15: An example of assigning an NLT label using the n-gram approach

Learner Error
Chinese

Model Output
English

Model Output
NLT

To: The teacher of English class. -3.68 -4 True
I am looking forward to hear
from you.

-6.57 -5.05 False

Table 3.15 shows the prediction results based on the probability values

generated by the model. As shown, the first row of the table represents the

occurrence of NLT where the Chinese model assigned a higher probability
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to the input sequence compared to the English model, indicating that the

structure of the input sequence was more similar to the structure of Chinese

than it was to that of English.

Hyperparameter Tuning

The value of “n” is one of the most important factors affecting the performance

of an n-gram language model. Therefore, the length of the POS tag sequences

analyzed by the n-gram models were tuned to find the parameter setting that

best supported the representation of each language’s structures. The models

used to identify NLT were trained using the best performing n-gram length.

The hyperparameter tuning phase occurred before the training and eval-

uation processes. The data for each language from the parallel corpora were

split into training and validation sets. The dataset containing L1 sentences

was used to train its L1 n-gram model, whereas the dataset containing English

sentences was used to train the English n-gram model. Five n-gram lengths,

from 2 to 6, were attempted.

I used a hold-out method for the hyperparameter tuning procedure of the n-

gram model. Each monolingual training dataset was split into an 80:20 ratio of

training to evaluation to enable the hyperparameter tuning process. The split

ratio was the same across languages for the parallel corpora. The K-fold cross-

validation process was applied to the training data to find the best-performing

parameter setting based on source language prediction accuracy. Each training

corpus was randomly split into five distinct folds. In each iteration, the models

(L1 and English) were trained using four folds and were evaluated on the

remaining fold. This procedure was applied to each of the n-gram lengths (2

to 6). The best performing n-gram length was selected based on the highest

mean accuracy across five iterations.
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Table 3.16: Number of sequences in the training and evaluation splits of the
parallel corpora

Language Training Split Evaluation Split
Chinese
English

120,433 30,109
120,433 30,109

Farsi
English

817,276 204,320
817,276 204,320

As shown in Table 3.16, the same number of sentences were used in the

training and evaluation splits for each L1-English pair when performing hy-

perparameter tuning. Evaluation splits were used to assess the performance

of the models. The hyperparameter combinations for both of the monolingual

splits were identical.

The evaluation procedure consisted of two steps. The first step was to

compute probabilities of each POS tag in the evaluation split using the L1 and

English language models. Then, the estimated likelihoods were compared and

the input sequence was labeled as L1 (Chinese or Farsi) or English, depending

on which model yielded a higher likelihood. In the second step, outputs from

the first step were compared to the input source language to determine the

correctness of the model’s prediction. If the Chinese language model produced

a higher probability than its English counterpart, the input POS tag sequence

was classified as Chinese and vice versa. Subsequently, a comparison of the

predicted source language with the actual source language of the POS tag

sequence was performed to determine whether the prediction was correct.

The evaluation process was repeated for n-grams of length 2 through 6

and the accuracies on the evaluation set were compared to select the best n.

The POS tag sequence length that resulted in the best average accuracy was

selected to train the models for the NLT identification task. The results of

the tuning process are shown in Table 3.17. For both datasets, n = 5 (i.e.,

5-gram) resulted in the highest mean accuracy on the evaluation set. The

superior mean performance is shown in bold.
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Table 3.17: Tuning accuracy for the n-gram approach

Model N Mean Median

Chinese-English N-gram

2 0.9578 0.9575
3 0.9633 0.9634
4 0.9694 0.9694
5 0.9697 0.9697
6 0.9688 0.9686

Farsi-English N-gram

2 0.9679 0.9679
3 0.9731 0.9732
4 0.9764 0.9763
5 0.9775 0.9774
6 0.9770 0.9770

The main disadvantage of the n-gram language model is that the mod-

els representing the English language’s structure and the L1’s structure are

independent. Despite training on a parallel L1-English corpus, the English

language model was never exposed to the L1 structure. Therefore, the prob-

ability generated by those models only reflects the likelihood of a POS tag

sequence belonging to the language represented by the corresponding model.

In contrast, a single RNN language model can differentiate between two lan-

guage structures (i.e., L1 and English).

NLT RNN Language Model

A Recurrent Neural Network (RNN) is a neural network where the output

of the previous step’s computation constitutes the input to the current step

(Jurafsky and J. Martin, 2021). Having access to information from previous

and current states can assist the model in making accurate inferences. RNN

language models process sentences word by word and preserve a representation

of the previously observed words at each time step (Mikolov et al., 2010).

One advantage of employing RNNs for language modeling is the fact that

the model preserves a representation of the preceding words. Unlike n-grams

where n defines the number of prior tokens that influence the calculation,

RNNs can compute the output vector using the whole preceding sequence.

These attributes explain RNN’s superior performance on many language mod-

eling tasks. In this thesis, I will use a type of RNN called Elman networks.
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Elman networks are three-layer neural networks with the addition of context

units (Jeffrey L., 1990). See Figure 3.5 for a graphical representation of an

RNN.

To enable NLT identification using an RNN, the model was provided with

POS tag sequences that had been extracted from L1 and English sentences.

Training the RNN using POS tag sequences from both languages allowed the

RNN to learn the language to which a POS tag sequence belonged. The

RNN language model analyzes the input POS tag sequence in both languages

and creates a hidden representation that can differentiate between language

structures.

Figure 3.5: Architecture of the NLT RNN language model

Vectorized Universal Dependencies POS tags where each POS tag from

the UD tagset is represented by a one-hot-encoding vector were used as the

inputs to the RNN. Each input vector is 17 units long (17 tags in the UD

tagset) and each of those 17 vector positions is equivalent to one of the UD

tags. Every training and test sample was transformed into an ordered list of

POS tag vectors. The output of the RNN language model is a source language

label. If the model is trained with the Chinese-English parallel corpus, the

output would be either Chinese or English and if the model is trained with

the Farsi-English parallel corpus, the output would be Farsi or English.

To implement the RNN language model, Python’s PyTorch 7 library was

7https://pytorch.org/
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used. Each RNN model was trained for 10 epochs using the Adam optimizer

(Kingma and Ba, 2014). During the training phase, the RNN model learned

to predict the label based on the input POS tag sequence. The model out-

puts a label, identifying the language to which the POS tag sequence is more

similar. The RNN weights were updated through backpropagation by using

the difference between the model’s output and the ground truth, which is the

actual source language of the input POS tag sequence.

The RNN language model was used to detect NLT errors committed by

English as a second-language learners after being trained using the ideal hy-

perparameter combinations. The error was identified as NLT when the RNN

language model predicted that a specific POS tag sequence extracted from a

learner error was more similar to L1 structures than to English structures.

Figure 3.6: Steps in the NLT RNN language model process

Figure 3.6 depicts the general procedure for how a sample from the Farsi

Lang-8 dataset advances through the RNN NLT detection process. During the

evaluation phase, the language model assigns a label to the POS tag sequence

extracted from the language learner error. If the source language prediction

label is “Farsi”, the error will be classified as NLT. In other words, the structure

of the input error would be more similar to Farsi than to English. Then, the

NLT prediction label associated with the error is compared to the ground truth

label. Based on the comparison, the models’ performance can be evaluated by

calculating how often the model’s output matched the ground truth label.
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Hyperparameter tuning

Similar to the three previous models, the RNN model was tuned to select

the best hyperparameter combination. The training dataset was divided into

training and evaluation sets to enable the hyperparameter tuning process.

The training split contained 80% of the training data and the evaluation split

contained 20% of the training data.

The input data for each of the RNN models consisted of POS tag sequences

extracted from the English-Chinese and English-Farsi sentences in the paral-

lel corpora. Each RNN model was trained with a different hyperparameter

combination and learned to predict the source language of the input sequence

from the training split.

Table 3.18: RNN hyperparameter options

Hyperparameter Description Range of Values

Number of
hidden units

The higher the number
of the units, the more
complex the algorithm

8, 16, 32, 64,
128, 256, 512

Loss function

A function computing
the distance between the
current and the expected
output

negative log likelihood,
binary cross-entropy

Mini-batch size
The amount of
data in each
weight change epoch

1, 2, 4, 8, 16, 32

Learning rate

A value determining
the step size of the
algorithm while moving
forward to the minimum of
a loss function

0.01, 0.001, 0.0001,
0.00001, 0.000001

Table 3.18 shows the hyperparameters used to tune the RNN models.

These potential hyperparameter values resulted in a total of 420 possible com-

binations. Due to the size of the Farsi parallel corpus and the computation

time needed to search this full space, I only used 5 different hyperparameter

combinations for tuning the Farsi RNN language model, as shown in Table

3.19. Since the Chinese-English parallel corpus was smaller, I was able to
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Table 3.19: RNN hyperparameter options for the Farsi parallel corpus

Hidden Units Learning Rate Loss Function Mini Batch-Size

16 0.001
BCE with
Logit Loss

4

8 0.001
BCE with
Logit Loss

8

16 0.0001
Negative Log
Likelihood

1

16 0.0001
Negative Log
Likelihood

8

64 0.0001
Negative Log
Likelihood

4

assess all 420 combinations for the Chinese RNN language model.

As shown in Table 3.20, 16 hidden units, learning rate = 0.0001, mini

batch size = 4, and negative log likelihood as the loss function was the best

performing combination of hyperparameters for the Chinese version of the

RNN language model. This combination resulted in an accuracy of 95.13%

on the evaluation set. For the Farsi version of the RNN language model, 16

hidden units, learning rate = 0.0001, and mini batch size = 1 was selected

as the best performing combination of hyperparameters. This combination

resulted in an accuracy of 93.5% on the evaluation data. The selected values

of mini batch size, 4 and 1, indicates that the weights of the models were

updated after processing that number of training samples. The selection of

a small value for the learning rate (i.e., 0.0001) prevents overshooting local

minima (Buduma and Locascio, 2017).

Table 3.20: Selected hyperparameter values for the RNN on the Chinese and
Farsi parallel corpora

Language Hidden Units Learning Rate Loss Function
Mini Batch

Size

Chinese 16 0.0001
Negative
Log Likelihood

4

Farsi 16 0.0001
Negative
Log Likelihood

1

40



3.4 Model evaluation

3.4.1 Evaluation Criteria

Since all four models are binary classification algorithms, the following evalu-

ation metrics were employed to evaluate them:

• Accuracy: The ratio of correctly predicted samples to the total test

samples.

• True Positive: Cases which were predicted as yes (i.e., has NLT) where

NLT was present.

• True Negative: Cases which were predicted as no (i.e., does not have

NLT) where NLT was not present.

• False Positive: Cases which were predicted as yes (i.e., has NLT) where

NLT was not present.

• False Negative: Cases which were predicted as no (i.e., does not have

NLT) where NLT was present.

• Precision: The ratio of true positives to the sum of true positives and

false positives.

• Recall: The ratio of true positives to the sum of true positives and false

negatives.

• F1-Score: F1-Score or harmonic mean is a balanced measure of preci-

sion and recall. F1-Score is an appropriate evaluation measure when the

dataset is not balanced in terms of its class variables.

• Confusion Matrix: In a binary classification task, a 2 × 2 table that

reports the number of True Positives, False Positives, True Negatives,

and False Negatives.

• Root Mean Squared Error: A measure of difference between the

values predicted by the model and the actual values.
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3.4.2 Model Comparison

To investigate whether model performance differed, the models’ prediction re-

sults were compared using Cochran’s Q test (Cochran, 1950; Raschka, 2018).

Cochran’s Q test is capable of comparing more than two classifiers, thus, it is

a generalized version of McNemar’s test, which can only compare the results

of two classifiers. Cochran’s Q test squares the differences between the ob-

served and the expected proportions and divides by the sum of the number of

successes multiplied by the number of failures for each case. Cochran’s Q test

does not provide information about which models differ. It only determines if

there is a difference among the models. The null hypothesis (H0) in Cochran’s

Q test states that there is no difference between the accuracies of the classifiers

(Fleiss et al., 2013).

Performing Cochran’s Q test requires a binary n × M matrix, where M is

the number of classifiers and n is the number of test samples. The test was

used to compare the prediction results of the four algorithms. I used α = 0.05.

When rejecting the null hypothesis, multiple post-hoc pair-wise tests should

be conducted to understand which pairs differ. I used correction to control for

the increased risk of making a Type I error (rejecting a true null hypothesis)

when performing multiple comparisons. I used Dunn’s tests with Bonferroni

adjustment. Additionally, the maximum corrected effect size, known as eta-

squared (η2q ) (Serlin et al., 1982) was calculated to express how large the

differences between the groups were. Effect size does not depend on sample

size. This measure of effect size is considered small when its value is close to

0.01. If the value of (η2q ) is close to 0.06, it is considered to be a medium effect,

and when the value is close to 0.14, it is interpreted as a large effect (Cohen,

1988).

3.4.3 Feature Importance

Feature importance refers to assigning numerical scores to input variables of

a model to demonstrate how useful they are in predicting the target variable.

The coefficients of the non-theory-based models were calculated to understand
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the relative importance of each input variable. For the theory-based models,

the error spans that resulted in the highest F1-score were reported as the most

important features.

3.4.4 Model Error Analysis

Categorizing the models’ true and false predictions by error type allowed me to

compare, contrast, and identify similar patterns in the results across models.

Model error analysis can reveal the error types that the model has difficulty

predicting. The analysis of those error types reveals weaknesses of the model.

The Chinese FCE dataset and the Farsi Lang-8 dataset are both annotated

by error categories. These categories include a general annotation scheme such

as “missing”, “replacement”, “unnecessary”, “wrong format”, and “wrongly

derived” (Nicholls, 2003). These error type annotations indicate information

about the missing POS, unnecessary words, wrong usage of the words with an

incorrect form, or words that require replacement. For instance, if a sentence

has an error type code of “unnecessary verb”, it means that the language

learner used a verb that was not required for the sentence to be grammatically

correct. As an example from the Farsi Lang-8 dataset, the sentence “if you

have look closer” contains an unnecessary verb error (have).

3.5 Summary

This chapter described the data sources, preprocessing techniques, and model

selection and evaluation procedures. The next chapter presents the results of

applying the trained models on the Chinese FCE and Farsi Lang-8 datasets.

It includes an error analysis of the model output.
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Chapter 4

Results

This chapter presents the results of binary classification algorithms for NLT

identification using non-theory-based models and theory-based (language) mod-

els. It also describes the results of the feature importance and model error

analysis.

4.1 What is the performance of the proposed

models in detecting NLT?

The results of the NLT identification task on the Chinese FCE and Farsi Lang-

8 datasets are reported in the next four sections. The first two subsections

include the results of the non-theory-based models (i.e., logistic regression and

random forest). The next two subsections provide the results of the theory-

based models (i.e., n-gram and RNN).

4.1.1 Logistic Regression

Table 4.1 and Table 4.3 present the classification results (weighted F1-score)

for all three data splits when applying logistic regression to the Chinese FCE

and Farsi Lang-8 datasets, using nested cross-validation. Although multiple

evaluation criteria were used, weighted F1-score was used to compare and

contrast model performance because of class imbalance in the dataset. As

shown in Table 4.2 and Table 4.4, weighted precision, weighted recall, and

RMSE were reported to enable a fair evaluation of model performance.

The logistic regression model yielded an average weighted F1-score of 76.5%
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with a standard deviation of 0.13 across 10 folds using nested cross-validation

on the Chinese FCE dataset. For the Farsi Lang-8 dataset, this model achieved

an average weighted F1-score of 84.8% with a standard deviation of 0.39 using

the same cross-validation procedure. The highest test F1-score across the ten

folds is shown in bold.

Table 4.1: Training, validation, and test F1-scores for logistic regression on
each nested cross-validation fold of the Chinese FCE dataset

Fold Training F1-score Validation F1-score Test F1-score
1 81.28 76.68 74.95
2 81.11 76.84 78.68
3 81.29 76.20 76.75
4 81.07 76.47 76.28
5 80.13 75.91 76.28
6 81.00 76.54 77.44
7 80.61 75.24 77.60
8 81.31 76.45 77.25
9 81.95 76.58 75.59

10 81.49 76.78 74.13

Table 4.2: Precision, recall, and RMSE for logistic regression on each nested
cross-validation fold of the Chinese FCE dataset

Fold Precision Recall RMSE
1 74.86 75.10 0.49
2 78.65 78.90 0.45
3 76.87 77.21 0.47
4 76.44 76.79 0.48
5 76.44 76.79 0.48
6 77.70 77.96 0.46
7 77.66 77.96 0.46
8 77.78 77.96 0.46
9 75.90 76.27 0.48

10 74.58 75.00 0.50
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Table 4.3: Training, validation, and test F1-scores for logistic regression on
each nested cross-validation fold of the Farsi Lang-8 dataset

Fold Training F1-score Validation F1-score Test F1-score
1 91.69 84.73 84.05
2 92.82 84.33 76.09
3 91.15 84.09 87.07
4 90.20 84.49 82.89
5 91.44 84.89 82.25
6 91.27 85.22 87.68
7 90.86 84.27 91.63
8 91.05 84.45 86.17
9 92.20 84.96 84.20

10 89.00 83.45 85.67

Table 4.4: Precision, recall, and RMSE for logistic regression on each nested
cross-validation fold of the Farsi Lang-8 dataset

Fold Precision Recall RMSE
1 84.01 84.11 0.39
2 76.97 75.70 0.49
3 87.47 86.91 0.36
4 82.83 83.01 0.41
5 82.56 82.07 0.42
6 87.66 87.73 0.35
7 92.19 91.50 0.29
8 87.75 85.84 0.37
9 84.83 83.96 0.40

10 85.66 85.84 0.37

As the evaluation was conducted using a nested 10-fold cross-validation

procedure, 10 distinct confusion matrices were generated for each of the mod-

els, showing the number of true positives, true negatives, false positives, and

false negatives. The confusion matrix plots can be found in Appendix A.

4.1.2 Random Forest

Akin to logistic regression, Table 4.5 and Table 4.7 represent the classification

results of the random forest classifiers applied to the Chinese FCE and Farsi

Lang-8 datasets using nested cross-validation.
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Table 4.5 and Table 4.7 present the classification results for all three data

splits when applying random forest to the Chinese FCE and Farsi Lang-8

datasets, using the nested cross-validation procedure. Table 4.6 and Table 4.8

report the weighted precision, weighted recall, and RMSE of the models.

The random forest classifier had an average weighted F1-score of 78.1%

with a standard deviation of 0.20 across 10 folds using nested cross-validation

on the Chinese FCE dataset. For the Farsi Lang-8 dataset, this model achieved

an average weighted F1-score of 94.8% with a standard deviation of 0.29 us-

ing the same cross-validation procedure. The results showing that random

forest outperforms logistic regression are consistent with other results in the

literature (Farias Wanderley, Zhao, et al., 2021).

Table 4.5: Training, validation, and test F1-scores for random forest on each
nested cross-validation fold of the Chinese FCE dataset

Fold Training F1-score Validation F1-score Test F1-score
1 95.22 79.20 76.37
2 94.21 79.39 79.87
3 94.03 77.98 81.24
4 91.88 78.62 77.06
5 93.97 77.89 77.66
6 94.21 78.63 77.27
7 94.08 77.81 80.58
8 94.79 78.58 74.40
9 92.42 78.03 79.21

10 94.68 78.60 77.34
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Table 4.6: Precision, recall, and RMSE for random forest on each nested
cross-validation fold of the Chinese FCE dataset

Fold Precision Recall RMSE
1 76.37 76.37 0.48
2 79.94 80.16 0.44
3 81.24 81.43 0.43
4 78.25 78.05 0.46
5 78.52 78.48 0.46
6 77.25 77.54 0.47
7 80.77 80.93 0.43
8 75.14 75.42 0.49
9 80.43 80.08 0.44

10 77.72 77.96 0.46

Table 4.7: Training, validation, and test F1-scores for random forest on each
nested cross-validation fold of the Farsi Lang-8 dataset

Fold Training F1-score Validation F1-score Test F1-score
1 98.43 91.94 95.39
2 98.22 93.42 92.57
3 98.43 92.51 95.31
4 98.33 91.81 94.37
5 98.64 93.51 85.98
6 98.33 93.43 92.39
7 98.22 92.07 97.19
8 98.12 93.14 94.37
9 98.22 93.33 94.33

10 98.43 92.15 95.32
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Table 4.8: Precision, recall, and RMSE for random forest on each nested
cross-validation fold of the Farsi Lang-8 dataset

Fold Precision Recall RMSE
1 95.89 95.32 0.21
2 92.68 92.52 0.27
3 95.31 95.32 0.21
4 94.48 94.33 0.23
5 86.26 85.84 0.37
6 92.41 92.45 0.27
7 97.39 97.16 0.16
8 94.48 94.33 0.23
9 94.33 94.33 0.23

10 95.53 95.28 0.21

4.1.3 NLT N-gram Language Model

The precision, recall, and F1-scores for the n-gram language model are pre-

sented in Table 4.9. The best performance was achieved using error + unigram

span. Error + unigram contains the POS tag extracted from the error and

the POS tag of the word that immediately follows the error. The highest F1-

scores on the test set are shown in bold. The results of the n-gram language

model for the Chinese FCE dataset are consistent with other results obtained

in the related literature (Farias Wanderley and Demmans Epp, 2021), where

the error + unigram span obtained the highest F1-score.

Table 4.9: Precision, recall, and F1-score of the n-grams for the Chinese FCE
and Farsi Lang-8 datasets

Language Span Precision Recall F1-score

Chinese – English
Padded error 0.68 0.32 0.44
Error + unigram 0.65 0.37 0.47
Error + bigram 0.62 0.25 0.36

Farsi – English
Padded error 0.16 0.21 0.18
Error + unigram 0.24 0.37 0.29
Error + bigram 0.22 0.28 0.24

4.1.4 NLT RNN Language Model

Table 4.10 provides the NLT error identification performance of RNN language

models when they were applied to the data from Chinese and Farsi second-
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language learners. In the Chinese-English RNN language model, the span

which consists of the POS tag of the error token and the next POS tag (i.e.,

error + unigram) yielded the highest F1-score (0.57) and the highest recall

(0.5). This result is consistent with the results reported by Farias Wanderley

and Demmans Epp (2021), where the error + unigram yielded the highest

F1-score. In contrast, the Farsi language model did not perform well on the

NLT detection task; yielding low precision and recall.

Table 4.10: Precision, recall, and F1-score of the RNNs for the Chinese FCE
and Farsi Lang-8 datasets

Language Span Precision Recall F1-score

Chinese – English
Padded error 0.68 0.35 0.46
Error + unigram 0.68 0.50 0.57
Error + bigram 0.67 0.33 0.44

Farsi – English
Padded error 0.13 0.17 0.15
Error + unigram 0.16 0.20 0.18
Error + bigram 0.18 0.21 0.19

4.2 What is the performance of the non-theory-

based approaches compared to the theory-

based approaches?

The results on the test datasets (Chinese FCE and Farsi Lang-8) of the four

models were compared using Cochran’s Q test to find the best performing

algorithm for each language.

4.2.1 Chinese FCE dataset

Cochran’s Q test indicated there was a significant difference in the perfor-

mance of the four models on the Chinese FCE dataset (Q = 970.49, p < .001,

η2q = .140). To further investigate the source of this difference, Dunn’s post-

hoc tests were conducted. As shown in Table 4.11, pairwise comparisons using

Dunn’s tests with Bonferroni correction revealed that all pairs except logistic

regression and random forest had significantly different performance. The per-

formance results show that random forest and logistic regression outperformed
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the other algorithms on the Chinese FCE dataset with average weighted F1-

scores of 76.5 and 78.1, respectively. Also, the RNN outperformed n-grams

with a F1-score of 0.57 using the error + unigram span.

Table 4.11: The p-values of the post-hoc Dunn’s tests for the Chinese FCE
dataset

Logistic
Regression

Random
Forest

N-gram RNN

Logistic Regression 1 - - -
Random Forest 1 1 - -
N-gram < .001 < .001 1 -
RNN < .001 < .001 < .001 1

4.2.2 Farsi Lang-8 Dataset

Cochran’s Q test indicated there was a significant difference in the performance

of the four models (Q = 11.48, p = .009, η2q = .004). To further investigate

the source of the difference in the results, Dunn’s post-hoc tests were con-

ducted. As shown in Table 4.12, pairwise comparison using Dunn’s tests with

Bonferroni correction revealed that only the results of the n-gram and ran-

dom forest were significantly different from each other, with the random forest

outperforming the n-gram language model.

Table 4.12: The p-values of the post-hoc Dunn’s tests for the Farsi Lang-8
dataset

Logistic
Regression

Random
Forest

N-gram RNN

Logistic Regression 1 - - -
Random Forest .18 1 - -
N-gram 1 .04 1 -
RNN .48 1 .15 1

4.3 What features are important for detecting

NLT across approaches and languages?

The Chinese FCE dataset and the Farsi Lang-8 dataset include 242 and 225

input variables, respectively. The input variables are a combination of error
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length, error type dummy variables, Universal Dependencies POS tag trigram

dummy variables, and Universal Dependencies dependency relation tag trigram

dummy variables. For the theory-based models, I have reported on the error

spans that resulted in the highest performance on those models.

4.3.1 Logistic Regression

The top three important features from the logistic regression model on the

Chinese and Farsi datasets based on model coefficients are shown in Table 4.13.

As listed, the error type dummy variables were among the most important

features for logistic regression when it was applied to the Chinese FCE dataset,

whereas the Universal Dependencies dependency relation tag trigram dummy

variables were more important for logistic regression when it was applied to

the Farsi Lang-8 dataset.

Table 4.13: The top three features by importance when applying logistic
regression to the Chinese FCE and Farsi Lang-8 datasets

Language Input Variable

Chinese
error type 0 Missing Determiner
error type 0 Missing Punctuation
error type 0 Missing Preposition

Farsi
incorrect deps 0 ccomp
incorrect deps 2 nummod
error type 0 R:Word Order

4.3.2 Random Forest

The top three features from the random forest model on the Chinese and

Farsi datasets based on model coefficients are shown in Table 4.14. As listed,

error type dummy variables were among the most important features for the

random forest model. The table also shows that two of the three important

features across languages are the same: including missing determiner error

type dummy variable (i.e., error type 0 Missing Determiner) and error length.
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Table 4.14: The top three features by importance when applying random
forest to the Chinese FCE and Farsi Lang-8 datasets

Language Input Variable

Chinese
error type 0 Missing Determiner
error type 0 Unnecessary Punctuation
error length

Farsi
error type 0 Missing Determiner
error length
incorrect ud tags 0 NOUN

4.3.3 Theory-based Models

Unlike the non-theory-based models, the training procedure for the theory-

based models was different. Theory-based models were trained using parallel

corpora and the input features were the Universal Dependencies POS-tagged

sequences of the Chinese and Farsi corpora. In the evaluation procedure,

different spans of the erroneous POS-tagged input sequence were used to assess

the models. Table 4.9 and Table 4.10 report the error spans that resulted in

the highest F1-score on the test dataset. On all of the four combinations of the

datasets (Chinese FCE and Farsi Lang-8) and models (n-gram and RNN), the

error + unigram span which consists of the error token(s) and the following

token resulted in the highest performance.

4.4 Model error analysis

4.4.1 Non-theory-based Models

Categorizing the logistic regression and random forest’s predictions by error

type allows us to compare and contrast model performance to reveal patterns

in the errors they make. Model error analysis on the Chinese FCE dataset

revealed that the most frequent error types were punctuation replacement,

wrong verb tense, and wrong verb form. The most frequent error types in

the Farsi dataset were missing determiner, noun number replacement, and

unnecessary preposition. These findings were enabled by using the prediction

results of all ten test folds from the nested cross-validation procedure.
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The following tables show the error types associated with the correct and

incorrect model predictions of NLT, respectively. Table 4.16 includes the er-

ror types associated with the correct and incorrect predictions of the logis-

tic regression and the random forest on the Chinese FCE dataset. Replace

punctuation, incorrect tense of verb, and wrong verb form are among the top

incorrect predictions for both the logistic regression and the random forest.

It is worth noting that some of the incorrect prediction error types can be

seen among the correct predictions of the models. One potential reason for

observing similar error types in both correct predictions and incorrect pre-

dictions could be related to the diverse patterns associated with some of the

error types that might be simple or difficult for the model to predict. For

example, replace punctuation is the most frequent error type in the Chinese

FCE dataset. Thus, it is expected to observe the existence of this error type in

both the correct and incorrect prediction error types. An investigation of the

replace punctuation error type from the Chinese FCE dataset showed the di-

versity of its patterns. Replace punctuation errors in the Chinese FCE dataset

contain inappropriate capitalization errors, incorrect use of punctuation mark

errors, overcorrection errors, and spelling errors which include more patterns

and will add more complexity to the patterns associated with this error type.

The same argument holds for the presence of the verb form and verb tense in

the incorrect predictions and correct predictions. As shown in Table 4.15, a

closer analysis using Spacy’s morphological features revealed the verb form

and tense diversity in the Chinese FCE dataset.

Table 4.15: Verb form and tense statistics from the Chinese FCE dataset

Verb Form and Tense Frequency
Non-3rd Person Singular Present 753
Past Tense 599
3rd Person Singular Present 397
Modal Verbs 358
Gerund or Present Participle 170
Base Form of Verb 31
Past Participle 24
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As an error example of the Chinese FCE dataset, “The teacher use video”

with a wrong verb form error type was incorrectly predicted. The potential

reason that led to the misprediction of the sentence is the limited ability of

the model to understand the correct structure of the sentence based on the

Universal Dependencies, which will be elaborated in the Discussion chapter.

Table 4.16: The top three error types that were correctly and incorrectly
identified as NLT when applying the non-theory-based models to the Chinese

FCE dataset

Model
Incorrect Prediction
Error Types

Correct Prediction
Error Types

LR Replace Punctuation (17%) Replace Punctuation (13%)
Incorrect Tense of Verb (15%) Missing Determiner (11%)
Wrong Verb Form (9%) Incorrect Tense of Verb (10%)

RF Replace Punctuation (16%) Replace Punctuation (14%)
Incorrect Tense of Verb (12%) Incorrect Tense of Verb (11%)
Wrong Verb Form (10%) Missing Determiner (11%)
Note: LR- Logistic Regression; RF- Random Forest

Table 4.18 presents the top error types observed in the correct and incor-

rect predictions of the logistic regression and random forest models for the

Farsi Lang-8 dataset. The most common incorrect prediction for both of the

models is the missing determiner error type, which can be seen in both in-

correct and correct predictions of the model. Next is the replacement noun

number error type that exists in the correct predictions as well. Most of the

replacement noun number errors in the Farsi Lang-8 dataset are concerned

with the choice of singular or plural noun, whereas the Universal Dependen-

cies can only represent different types of nouns (i.e., singular or plural) with

NOUN. As an erroneous example, “Many people in different nation” was clas-

sified incorrectly. The reason could potentially stem from the inability of the

model to learn the corresponding noun number due to the limited manner in

which nouns are represented through POS tags.

As shown in Table 4.17, the Farsi Lang-8 dataset also has diversity in verb

form and tense. Detailed statistics of the verb form and tense for the Farsi

Lang-8 dataset is provided in Table 4.17.
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Table 4.17: Verb form and tense statistics from the Farsi Lang-8 dataset

Verb Form and Tense Frequency
Non-3rd Person Singular Present 295
Past Tense 217
3rd Person Singular Present 139
Modal Verbs 108
Base Form of Verb 47
Gerund or Present Participle 25
Past Participle 1

Table 4.18: The top three error types that were correctly and incorrectly
identified as NLT when applying the non-theory-based models to the Farsi

Lang-8 dataset

Model
Incorrect Prediction
Error Types

Correct Prediction
Error Types

LR Missing Determiner (20%) Missing Punctuation (13%)
Replace Noun Number (12%) Missing Determiner (12%)
Unnecessary Preposition (11%) Replace Verb Tense (6%)

RF Missing Determiner (43%) Missing Punctuation (12%)
Unnecessary Preposition (14%) Missing Determiner (8%)
Replace Noun Number (11%) Replace Noun Number (7%)

An analysis of the Incorrect Tense of Verb from the Chinese FCE dataset

and Replace Verb Tense from the Farsi Lang-8 dataset was conducted to inves-

tigate the performance of the models in predicting these error types. Compared

to the Chinese FCE dataset, the Farsi Lang-8 dataset was smaller in size and

had a smaller number of verb-related error types. Since fewer verb patterns

were included in the Farsi Lang-8 dataset, it was expected that models trained

on the Farsi Lang-8 dataset could potentially have a higher prediction accuracy

in identifying verb patterns. Table 4.19 shows the higher prediction accuracy

of the models trained on the Farsi data in identifying NLT errors related to

the tense of the verb.
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Table 4.19: Analysis of the verb tense prediction accuracy for the Chinese
FCE and Farsi Lang-8 datasets

Dataset Error Type Model
Prediction
Accuracy

Chinese FCE Incorrect Tense of Verb
LR 0.69
RF 0.77

Farsi Lang-8 Replace Verb Tense
LR 0.88
RF 0.94

4.4.2 Theory-based Models

The best performing n-gram model on both the Chinese FCE and Farsi Lang-8

datasets included the error + unigram span. The NLT detection task results

for these models were analyzed to understand the prediction errors. Similar

to the logistic regression and random forest error analysis, analyzing the error

types found in the correct and incorrect predictions can help identify possible

causes of poor model performance.

Table 4.20: The top three error types that were correctly and incorrectly
identified as NLT when applying the theory-based models using Error +

Unigram span to the Chinese FCE dataset

Model
Incorrect Prediction
Error Types

Correct Prediction
Error Types

N-gram
Replace Punctuation (15%) Replace Punctuation (13%)
Incorrect Tense of Verb (12%) Incorrect Tense of Verb (10%)
Missing Determiner (9%) Missing Determiner (9%)

RNN
Replace Punctuation (17%) Replace Punctuation (12%)
Incorrect Tense of Verb (11%) Incorrect Tense of Verb (11%)
Missing Punctuation (9%) Missing Determiner (10%)

Table 4.20 shows the top three error types among correct and incorrect

predictions for the n-gram and RNN language models applied to the Chinese

FCE dataset. The table also shows the similarities between the correct and

incorrect predictions of n-gram and RNN models. The two most common er-

ror types across both of the correct and incorrect predictions are the same.

Akin to Table 4.16, similar error types are present in both columns. Re-

place punctuation, missing determiner, and incorrect tense of verb are the top
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three frequent error types in the Chinese FCE dataset. The top three error

types observed in the correct and incorrect predictions of the theory-based and

non-theory-based models are similar. The replace punctuation errors of the

Chinese FCE dataset include inappropriate capitalization errors, incorrect use

of punctuation mark errors, overcorrection errors, and spelling errors which

share different structures and patterns. The incorrect tense of verb error type

samples contain grammatical structures which are diverse and difficult for the

model to identify given the limited specificity of the Universal Dependencies

tagset.

Table 4.21: The top three error types that were correctly and incorrectly
identified as NLT when applying the theory-based models using Error +

Unigram and Error + Bigram spans to the Farsi Lang-8 dataset

Model
Incorrect Prediction
Error Types

Correct Prediction
Error Types

N-gram Missing Determiner (15%) Missing Punctuation (14%)
Replace Noun Number (11%) Missing Determiner (9%)
Missing Other (8%) Replace Verb Tense (7%)

RNN Missing Determiner (21%) Missing Punctuation (12%)
Missing Punctuation (10%) Replace Verb Tense (7%)
Replace Noun Number (9%) Missing Other (6%)

Table 4.21 shows the top incorrect predictions of the n-gram and RNN

language models using the error + unigram and error + bigram spans on

the Farsi Lang-8 dataset. As shown, the missing determiner and replace noun

number error types exist in both models’ incorrect predictions. Also, missing

punctuation and replacement of verb tense are present in the correct prediction

error types.

4.5 Summary

This chapter reported the results of the proposed methodology to address

the research questions provided in the Introduction. In the first section, the

performance of the models on the Chinese FCE and Farsi Lang-8 datasets was

reported. The second section compared and contrasted the results of the non-
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theory-based and theory-based models using statistical analysis. The third

section reported the top important features for identifying NLT. Finally, the

last section reported the error types associated with the correct and incorrect

predictions of the models.

The next chapter discusses the answers to the three research questions.

Also, it provides implications, limitations, and directions for future research.
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Chapter 5

Discussion

In this chapter, I interpret and discuss the results of the non-theory-based mod-

els (logistic regression and random forest) and theory-based models (n-gram

and RNN). The chapter also provides this work’s limitations, implications,

and future research directions.

5.1 What is the performance of the proposed

models in detecting NLT?

The eight models used in this thesis were evaluated. Non-theory-based mod-

els were trained using the Chinese FCE and the Farsi Lang-8 datasets and

were evaluated using stratified nested cross-validation to not only ensure a

fair evaluation and reduce overfitting but also to find the best hyperparameter

combination. Logistic regression was employed as it is a common baseline for

binary classification problems and it is a linear model. In contrast, random

forest was used as it is a non-linear model and is known to perform well with

high dimensional data (Niu, 2020; Xu et al., 2012). Both models were capable

of identifying NLT errors with high precision and recall scores.

The theory-based n-gram and RNN models were trained using parallel cor-

pora. A Chinese-English parallel corpus was used to train the models for Chi-

nese learners of English, and a Farsi-English parallel corpus was used to train

the models for Farsi learners of English. These models were evaluated using the

Chinese FCE and the Farsi Lang-8 datasets. Language models were trained

with various spans (i.e., unigram, bigram, padded) of POS tag sequences to
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represent each language’s syntactic structure. Both language models had high

precision and recall scores on the evaluation split. However, they did not per-

form well on the test set. Akin to logistic regression, n-grams were used as

a common baseline for language modeling. N-grams have shown promising

results in grammatical error detection and NLT identification (Farias Wander-

ley and Demmans Epp, 2021; Lee et al., 2014). However, the n-gram-based

model had a drawback. Each n-gram language model (i.e., Chinese or Farsi)

consists of two language models, one that represents the L1 (Chinese or Farsi)

and another that represents the L2 (English). Let us consider the n-gram lan-

guage model for the Chinese-English parallel corpus. Although the Chinese

and the English language models were trained on parallel corpora, they were

independent of each other. The L1 and L2 language structures were never

exposed to one another and could not represent the structural similarities and

differences between the two languages. Thus, the probability yielded by each

of the models only expressed the likelihood of a POS tag sequence belonging

to the language structure represented by that model. As a result, an RNN

was employed to distinguish between two languages (L1 and L2) using a single

language model.

The RNN language model outperformed the n-gram language model on

the Chinese FCE dataset. However, it had poor performance on the Farsi

Lang-8 dataset. Due to the large size of the Farsi corpus, I was only able to

train and tune a few hyperparameter combinations, whereas the size of the

Chinese parallel corpus allowed me to train and tune the RNN with 420 dif-

ferent hyperparameter combinations. In addition, there is also a significant

difference between the participants of the two datasets. The Lang-8 dataset

contains English sentences written by Farsi native speakers who are about to

learn English on a language forum, while the Chinese FCE dataset contains

English sentences written by Chinese native speakers who are taking an En-

glish proficiency exam and are more prepared. As a result, this could be a

potential reason for observing error types such as M:OTHER, R:OTHER, and

U:OTHER, where the dataset annotators could not assign the associated error

type of the erroneous sentence to a specific error type. These reasons could
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explain why the performance of the theory-based models for the Farsi language

was not as high as the performance on the Chinese FCE dataset.

To further investigate the performance of each model, an error analysis of

the results was conducted. Table 4.16 represents the top true and false predic-

tions of the logistic regression and random forest on the Chinese FCE dataset.

The existence of such replacement errors in the true prediction error types is a

side effect of using Universal Dependencies (UD) tagset which only contains 17

tags. For example, using the UD tagset, a tagger assigns the label “PUNCT”

to all different kinds of punctuation marks. Therefore, it is not possible to dif-

ferentiate a period or a comma from a question mark using the learner’s error

sequence. The misprediction of samples containing a wrong tense of verb could

also communicate that the POS tag was not able to represent and distinguish

differences between verbs and verb tenses. The UD tagset contains “VERB”

and “AUX” to represent verbs and auxiliaries. Although the UD tagset pro-

vides some morphological annotations that deliver information on the tense of

the verbs, these features are not common across Chinese and English and are

not included by the main tagset (Farias Wanderley, 2021). Also, the Stanza

library that was used to tag the Farsi corpus only supports a limited number

of verb features across Farsi and English. Thus, with such a general level of

verb annotation, the model will not learn the patterns required to distinguish

the error types from each other.

The top error types found in the true and false predictions of the logistic

regression and random forest models when they were applied to the Farsi Lang-

8 dataset were shown in Table 4.18. Identification of NLT in learner errors

containing a missing determiner does not arise from the POS tag limitation.

The missing determiner error type occurs when a determiner is missing before

a noun phrase. In Farsi, the usage of determiners is not the same as in English.

In English, a word is used before a noun group to indicate whether the noun

phrase refers to a specific or general subject and it also indicates number.

However, in Farsi, determiners can either follow or precede the noun group

to clarify the noun reference to the subject. This could be a reason for the

occurrence of such errors in writing English text.
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Compared to the Chinese FCE dataset, the Farsi Lang-8 dataset provides

more general error types. For instance, “U:OTHER” represents the category

of unnecessary actions that was not a fit to any specific unnecessary action,

e.g., “U:PREP” (unnecessary preposition). This generalization can make it

difficult for the model to detect the patterns in learner errors, as the category

may contain several different error types. The same argument holds for false

predictions of “M:OTHER” and “U:OTHER”. These error types comprise

8.4% of the NLT errors from the Farsi Lang-8 dataset.

Table 4.20 includes the top true and false prediction error types of the

n-gram and RNN language models on the Chinese FCE dataset. Replace

punctuation was the most common error type across both classes. An impor-

tant factor to consider is that learner errors and the corpora used to train and

evaluate the n-gram models were POS-tagged using a Universal Dependencies

tagger. The Universal Dependencies tagset assigns the “PUNCT” label to

commas, periods, and other symbols. This lack of annotation specificity re-

duces the precision of the model because it fails to provide information about

different punctuation patterns. Additionally, the usage of punctuation marks

in Chinese and Farsi is different from that of English (Liu, 2011). In Chinese,

commas are used as sentence boundaries to separate independent clauses and

to indicate pauses. In Farsi, commas have several applications. They are used

as separators of similar items in a series. They can be used between two de-

pendent clauses, and they are also used to indicate when a pause should be

taken to help the reader understand the primary intent of the text. In English,

commas are used to separate independent clauses and can be used after a sub-

ordinate clause or phrase. The second mispredicted error type was incorrect

verb tense. The Universal Dependencies tagset does not provide POS tags for

verb tense identification, which is one of the main reasons that this error type

occurs in both classes.

The next most common error types across the false prediction class were

missing determiner and missing punctuation. The occurrence of a missing

determiner is related to language transfer and it is not related to the employed

tagset. Chinese is a language that does not have an equivalent for English
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determiners (Robertson, 2000). As a result, a Chinese native speaker may

miss a determiner when writing in English.

The error analysis results of the n-gram and RNN language models on

the Farsi Lang-8 dataset were shown in Table 4.21. The existence of the

missing determiner error type in both of the false predictions classes suggests

the discussed differences in the usage of determiners across the languages.

The second mispredicted error type is “R:NOUN:NUM” which indicates

the incorrect noun-form, as it relates to number agreement. As an example

from the Farsi dataset, “Even if you have one thousand son” carries this error

type because the word “son” should take the plural form “sons”. The occur-

rence of this error type may stem from the differences between English and

Farsi languages. In Farsi, when there is a cardinal number before the noun,

the noun comes in its singular form (Swan and Smith, 2001).

The true and false predictions of the n-gram and RNN were similar to

each other. Missing determiner and replace noun number are the two most

common false predictions for both models. In addition, the true prediction

error types across models were similar. Missing punctuation and replace verb

tense are the two common error types that were present in both models’ true

predictions.

5.2 What is the performance of the non-theory-

based approaches compared to the theory-

based approaches?

Implementing the non-theory-based and theory-based models and evaluating

them on identical datasets has allowed me to compare and contrast the results

of the algorithms on two different languages to investigate the generalizability

of the proposed methodology.

The non-theory-based models obtained higher precision and recall scores

than the theory-based models. Results from the nested cross-validation proce-

dure for the non-theory-based models and a set of unseen data for evaluating

the theory-based models suggest that the models are generalizing to unseen
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data. Results of the theory-based models indicate the possibility of detecting

NLT on data that has structural and contextual variations with the training

dataset.

The random forest outperformed the n-gram on the data from the learners

who speak Farsi as their first language. The main reason behind this ob-

servation could be differences in the the training and testing datasets of the

theory-based models. In general, the performance of a machine learning model

is more robust when the structure of the training and evaluation data are simi-

lar. Non-theory-based models (i.e., logistic regression and random forest) were

trained, tuned, and evaluated on an error dataset, whereas the theory-based

models were trained and tuned on parallel corpora and were evaluated on the

Chinese FCE and Farsi Lang-8 datasets.

The differences identified when conducting statistical testing for each lan-

guage varied in magnitude. The differences detected for the Chinese FCE

dataset had a large effect size (η2q = .140). The difference identified in the

Farsi-Lang 8 dataset was small (η2q = .004).

As reported in the Results chapter, the random forest classifier outper-

formed other models on both the Chinese FCE and Farsi Lang-8 datasets.

The superior performance of the random forest over the logistic regression

was expected. Also, the superior performance of the non-theory-based models

over the theory-based models can be explained by the consistency between

their training and evaluation data. Moreover, non-theory-based models were

trained with more grammatical information compared to the theory-based

models. This information was provided by Error Length, Error Type Dummy

Variables, Universal Dependencies POS Tag Trigram Dummy Variables, and

Universal Dependencies Dependency Relation Tag Trigram Dummy Variables.

5.3 What features are important for detecting

NLT across approaches and languages?

The analysis shows that the most important feature for detecting NLT across

the Chinese FCE dataset is the missing determiner. This is inline with the
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error analysis. The Chinese language does not use a determiner. Beyond that,

the non-theory-based models for the Chinese language seem to prioritize the er-

ror type dummy variables over other input variables. The top three important

input variables to the Farsi non-theory-based models include the Error Type

Dummy Variables, Universal Dependencies POS Tag Trigram Dummy Vari-

ables, and Universal Dependencies Dependency Relation Tag Trigram Dummy

Variables.

The theory-based models were trained using POS tag sequences. The n-

gram language model approach that was used to represent the structure of

the languages was trained using Universal Dependencies POS tag sequences.

The n-gram models were evaluated using various error spans of the second-

language learner’s erroneous writing (i.e., padded error span, error + unigram

span, and error + bigram span). The error + unigram span (which consists

of the POS tag of the error and the POS tag of the next word that follows the

error) yielded the best performance. The same pattern was seen for the RNN

language model for the Chinese FCE dataset, but the error + bigram span

performed better in the RNN model for the Farsi Lang-8 dataset. The results

of the theory-based models for the Chinese FCE dataset were consistent with

previously obtained results (Farias Wanderley and Demmans Epp, 2021).

The inconsistency between the best performing feature of the n-gram and

RNN language models for the Farsi Lang-8 dataset may be due to the absence

of the best hyperparameter combination for the RNN language model on the

Farsi Lang-8 dataset. Unlike the RNN model for the Chinese language, which

was tuned using 420 hyperparameter combinations, the Farsi model was tuned

using five different hyperparameter combinations. Consequently, it is possi-

ble that the best hyperparameter combination for the Farsi dataset was not

included in the analyses.

5.4 Limitations

The first limitation of the work is the small size of the Chinese FCE (2,365

sentences) and Farsi Lang-8 (840 sentences) datasets. It is possible that, if the
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size of datasets were larger, more language patterns would be used to train

the learning algorithms, which would boost performance. In that case, deep

learning algorithms, such as Long Short Term Memory networks (LSTMs)

could be employed to identify grammatical errors including NLT (Bell et al.,

2019).

The methodology used in this thesis requires the language structures to be

represented using an identical POS tagset. Employing detailed tagsets such as

the Penn Treebank was not feasible because a shared annotation scheme with

the Penn Treebank does not exist for English-Chinese nor for English-Farsi.

As a result, the Universal Dependencies tagset was the only tagset that met

the requirements of the methodology.

From a methodological perspective, each of the algorithms used in this

thesis was trained using the Universal Dependencies tagset to express the

structure of the language. With only 17 tags, this tagset is too general to

capture the full range of error patterns. Although the Universal Dependen-

cies tagset was introduced as a multilingual annotation scheme, its POS tags

only represent general word categories and do not have the ability to express

grammatical aspects such as number, gender, and tense. The Universal De-

pendencies tagset does not have a specific tag for many POS categories. The

categories not covered by this tagset include gerunds, past participles, and

singular or plural nouns. This level of POS tag generalization does not differ-

entiate the tense, form, and type of the POS tags which can lead to a deficient

representation of a language structure.

Verbs are a POS whose form can change the sentence’s meaning. The Uni-

versal Dependencies tagset only expresses the existence of a verb using two

tags: VERB and AUX. Using only two tags for verb identification across En-

glish, Chinese, and Farsi, which have significant differences with each other,

can mislead the model and inhibit the model’s ability to distinguish verb us-

age patterns. Consequently, the POS tag representation of the learner error

was misrepresented by the inherent limitation of the Universal Dependencies

tagset. Figure 5.1 shows two POS-tagged sentences written by a Farsi native

speaker where the second sentence is grammatically incorrect. The verb “like”
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does not correspond to the form of the sentence’s subject. As shown, the Uni-

versal Dependencies POS-tagging does not represent the erroneous utterance.

Figure 5.1: Universal Dependencies identical POS tagging for the two
different sentences

Although a detailed tagset (e.g., Penn Treebank) could help represent lan-

guage structures that were not represented by the Universal Dependencies

tagset, there are several NLT errors that can not be distinguished using lan-

guage structure (e.g., spelling errors, semantic errors). The employed method-

ology only applies to identifying NLT when it is due to having structural errors

in the text.

The resources (i.e., datasets and corpora) that were used in this work can

be considered as another limitation. Despite the large size of the Farsi-English

parallel corpus, the context of the corpus was not similar to the Farsi Lang-8

dataset.

English, Chinese, and Farsi are three structurally different languages. Farsi

is an Indo-European language, which has been influenced by the Arabic lan-

guage. Farsi and English differ in phonology, punctuation, orthography, and

grammar (Swan and Smith, 2001). The Farsi language has a distinct writing

system where the words are written from right to left with the letters joining

each other based on pre-defined rules. For these reasons, Farsi speakers of

English are expected to have difficulty in learning English, especially in the

early stages (Swan and Smith, 2001). Although both English and Farsi are

Indo-European languages that share some grammatical similarities, there are

areas where the grammars of the languages diverge. For example, word order
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in Farsi can be different than in English. In Farsi, a sentence usually follows

the subject, object, and verb pattern (e.g., ”I the movie watched“). However,

in English the word order of a sentence is usually subject, verb, and object.

Akin to Farsi and English, there are limited similarities between the syn-

tactic structure of Chinese and English except the word order in Chinese which

follows the same pattern as in English. Chinese is a Sino-Tibetan language

which has major structural differences with English in phonology, orthogra-

phy, and grammar (Swan and Smith, 2001). The writing system of the Chinese

language is non-alphabetic. All the similarities and the differences among the

three languages add complexity to identifying NLT errors.

5.5 Implications

This work shows that the non-theory-based models can be used in unstructured

domains (e.g., short essays or text) to identify NLT errors across two different

languages. The manual identification of NLT errors can be expensive. It

requires expertise and time, which is not always available, especially in large

online settings. The evaluation results of the analyses using two categories of

models on two languages show the limited generalizability of the methods in

detecting NLT errors in unstructured domains.

From a practical perspective, the findings of this study can be used in

the automatic provisioning of verification feedback (i.e., information about

the correctness of a written text; Shute, 2008) for training and learning in

unstructured domains, which is a more challenging task than in structured en-

vironments. Using the proposed methodology, the feedback generation system

could make language-learners aware of the existence of NLT errors.

5.6 Future work

The rapid development of computer systems and Internet access led to a prolif-

eration of online tools that could benefit from the identification of NLT errors.

The findings of this study can be integrated to develop writing assistants and

to support online writing classrooms.
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Most ESOL learners find it challenging to write in English. While teachers

of English as an additional language can provide appropriate feedback for NLT

errors, many learners do not have access to such support. Instead, they rely

on writing software and computational writing assistants (e.g., Grammarly or

Wordtune) in the absence of instructor support. In these settings, a model

that can identify NLT errors could support the provisioning of appropriate

feedback of varying forms, including verification feedback. The feedback could

draw the learners’ attention to errors so that the errors could be corrected.

The results of this thesis show that it is possible to detect NLT in two

distinct languages. One of the possible future directions would be to use

the NLT detection models in a writing assistant program that indicates the

occurrence of such errors and provides feedback to inform the learner of the

error type and possible solutions. The employed methodology is suitable to

address the identification of NLT errors in other languages as the UD tagset

supports numerous languages. Moreover, this methodology can also be applied

to languages (e.g., Indigenous) that are not supported by most POS tagging

libraries. To do so, a corpus of the source language should be manually tagged

using a POS tagging method (e.g., rule-based or stochastic), which demands

rules be defined based on the linguistic features of the word and its context.

Once this has been done, the methods from this thesis could be applied.

The effectiveness of this idea can be explored by conducting a user study

in which Chinese or Iranian English-language learners are randomly divided

into two groups (i.e., control and treatment) and are given a writing task with

and without the existence of the writing assistant tool. The control group is

the group that would be provided with corrective feedback from the writing

assistant and the treatment group would be provided with an enhanced writ-

ing assistant tool that can provide metalinguistic feedback (Farias Wanderley,

2021).

There are several potential ethical concerns that need to be addressed be-

fore and during the development and employment of an NLP system (Leidner

and Plachouras, 2017). Inclusion and bias require investigation, given that

languages define linguistic communities. Also, as most NLP systems depend
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on machine learning models, automation and error analysis become other im-

portant topics to explore (Leidner and Plachouras, 2017).

Bender et al. (2020) proposed three primary topics that underlie ethical

issues in NLP research: dual use, bias, and privacy. Dual usage aims to

anticipate how technology could be misused for harmful purposes. Bias aims

to identify when a model provides findings that are fundamentally prejudiced

as a result of false assumptions made throughout the machine learning process.

Privacy aims to protect the written text in the construction or evaluation of

an NLP system (Bender et al., 2020).

The standard ethical considerations for an NLP system should be inves-

tigated by analyzing the proposed research questions to understand potential

misuse. In this thesis, the automatic identification of NLT is intended to assist

Chinese and Farsi native speakers with writing in English. However, there are

potential cases where the developed models can be misused to identify the

source language of the written text. These systems can be employed for dis-

crimination. For example, these models could be potentially used to restrict

the employment of Chinese and Farsi native speakers when applying to a job

or university using a resume or a cover letter.

The identification of NLT from the English writing of other groups than

Chinese and Farsi native speakers will heavily depend on the structural dif-

ferences between the writer’s native language and the learned patterns from

the training data. While the performance of the non-theory-based models was

noticeably higher than chance, the theory-based models did not perform as

well.

In this thesis, two datasets and three corpora were used to train and eval-

uate the NLT system. Mieskes (2017) proposes questions that should be an-

swered when using public or private datasets. The first question is whether

the dataset contains sensitive data. MIT Information Services and Technol-

ogy recognizes information about race, ethnicity, political and religious views,

mental health, and personal life as sensitive data (Mieskes, 2017). In this work,

the Chinese FCE and Farsi Lang-8 datasets include text written by Farsi and

Chinese native speakers which represents the writing style and the grammat-
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ical structure of the Chinese and Farsi native speakers’ writing. Thus, the

datasets contain potentially sensitive data as the grammatical patterns and

writing styles could be misused to identify the nationality of a writer. More-

over, although the datasets do not contain explicit gender information of the

writers, the likelihood of gender bias is not negligible. Gender identification

tools might be utilized to identify gender and even more detailed information

about the writers.

The second question that the article discusses is whether the data is anonymized.

The dataset that was used to train and evaluate the models only contains text,

written by an anonymous language learner, a participant of the FCE language

proficiency exam, or publicly available corpora. Although the dataset does not

share the personal information of the writer, it could reveal their nationality

which could be misused.
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Chapter 6

Conclusion

English is the most widely spoken language worldwide, with more than 1.5

billion speakers (Eberhard et al., 2022). English writing can be challenging

for many people, especially for non-native speakers. Although both native

and non-native speakers of English make errors while writing in English, the

type of errors that non-native speakers make is usually different from the

type of errors that native speakers make. Non-native speakers of the English

language are used to the grammar of their L1 language. This can intentionally

or unintentionally affect language learners when they are communicating in an

L2. If the transferred rules from the L1 diverge from those of the L2, errors are

introduced. Usually, second-language learners are not aware of the occurrence

of NLT.

Despite the fact that there are numerous writing assistant tools that help

learners write in English, there is no tool that makes non-native speakers aware

of their NLT errors. This thesis presents four machine learning algorithms

that can identify when learner errors are related to the structure of their L1

language: logistic regression, random forest, n-gram, and RNN models were

trained and evaluated using POS-tagged datasets of second-language learner

errors and parallel corpora.

The non-theory-based models, logistic regression and random forest, were

trained and evaluated using the Chinese FCE and Farsi Lang-8 datasets. The

theory-based models, n-gram and RNN, were trained using POS-tagged paral-

lel corpora of the L1 and L2. POS tags were used to distinguish the structure
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of each language. In the evaluation phase, theory-based models were used to

analyze the extracted POS tag sequences from the learner errors (Chinese FCE

and Farsi Lang-8 datasets) with various spans. The learner error is flagged as

NLT if the structure of the error is more similar to the learner’s L1.

Across all models, random forest obtained the highest F1-score for both

the Chinese and Farsi learner datasets. However, the training approach for the

theory-based and non-theory-based models was different. Non-theory-based

models were trained and evaluated on the same dataset of second-language

learner errors, whereas theory-based models were trained on parallel corpora of

structured text and were evaluated on second-language learner errors. Among

the theory-based models, the RNN outperformed the n-grams on the Chinese

FCE dataset. In contrast, the n-grams performed better than the RNN on the

Farsi Lang-8 dataset. This finding could be due to the limited hyperparameter

tuning that was performed on the RNN using the Farsi parallel corpus (i.e.,

5 different combinations) compared to the RNN using the Chinese parallel

corpus (i.e., 420 different combinations).

The implementation of the theory-based models was dependent on the POS

tags. The Universal Dependencies tagset was chosen as it was the only tagset

that is shared across the three languages. The Universal Dependencies tagset

contains 17 coarse-grained tags. This characteristic of the tagset limited the

model’s ability to capture the complete incorrect structure of the learner error

using POS tags.

Computational and resource limitations may have hindered the theory-

based models from identifying NLT using the Farsi Lang-8 dataset. However,

in general, the models were able to identify NLT in learner errors. The results

of this study can be further used to develop writing tools that alert the second-

language learner to such errors; the models could also be extended to provide

feedback to second-language learners.
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Appendix A

Non-theory-based Model
Confusion Matrices

A.1 Chinese FCE dataset

A.1.1 Logistic Regression

Confusion matrices of the first four folds (1-4) of the nested cross-validation

process of the logistic regression model evaluated on the Chinese FCE dataset.

Folds increment in a left to right direction.
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Confusion matrices of the second four folds (5-8) of the nested cross-

validation process of the logistic regression model evaluated on the Chinese

FCE dataset.

Confusion matrices of the last two folds (9, 10) of the nested cross-validation

process of the logistic regression model evaluated on the Chinese FCE dataset.
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A.1.2 Random Forest

Confusion matrices of the first four folds (1-4) of the nested cross-validation

process of the random forest model evaluated on the Chinese FCE dataset.
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Confusion matrices of the second four folds (5-8) of the nested cross-

validation process of the random forest model evaluated on the Chinese FCE

dataset.

Confusion matrices of the last two folds (9, 10) of the nested cross-validation

process of the random forest model evaluated on the Chinese FCE dataset.
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A.2 Farsi Lang-8 dataset

A.2.1 Logistic Regression

Confusion matrices of the first four folds (1-4) of the nested cross-validation

process of the logistic regression model evaluated on the Farsi Lang-8 dataset.
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Confusion matrices of the second four folds (5-8) of the nested cross-

validation process of the logistic regression model evaluated on the Farsi Lang-8

dataset.

Confusion matrices of the last two folds (9, 10) of the nested cross-validation

process of the logistic regression model evaluated on the Farsi Lang-8 dataset.
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A.2.2 Random Forest

Confusion matrices of the first four folds (1-4) of the nested cross-validation

process of the random forest model evaluated on the Farsi Lang-8 dataset.
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Confusion matrices of the second four folds (5-8) of the nested cross-

validation process of the random forest model evaluated on the Farsi Lang-8

dataset.

Confusion matrices of the last two folds (9, 10) of the nested cross-validation

process of the random forest model evaluated on the Farsi Lang-8 dataset.
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