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Abstract

Nonparametric statistical procedures are particularly useful in making inference in
situations where serious doubt exists about the assumptions of the underlying stochastic
process. In most cases, we will never know whether these assumptions hold in practical
situations, but will often be reasonably certain that departure from these assumptions will
be small enough so that the properties of the statistical procedure will be undisturbed.

In this thesis, we use sequential nonparametric techniques to validate the assumptions
of identical distribution of time process which is common in most practice. We validate
this assumption through a change detection procedure with particular attention to
censored data.

For our proposed sequential test, U-statistics using anti-symmetric kernels are
considered both under no-change and change hypothesis. We investigate the power of our
test using simulation study, and demonstrate its application on two real and well-known
data sets: the Stanford Heart Transplant data and the Radiation Therapy Oncology Group

data.
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Chapter 1
Introduction

In clinical trials, we are often interested in comparing the distribution of time to
failure among several different treatment groups. Two common nonparametric statistical
tests used in practice are the logrank statistic (Mantel, 1966; Cox, 1972; Peto and Peto,
1972) and modifications of the Wilcoxon statistic (Gilbert, 1962; Gehan, 1965a; Mantel,
1967, Breslow, 1970; Prentice, 1978). Clinical trials may be prophylactic or therapeutic.
Prophylactic trials are conducted in preventive medicine, and the purpose is to asses the
effectiveness of preventive treatment. A therapeutic trial is designed to compare a new
treatment with the best of the current treatments. In a typical therapeutic trial, patients
with similar characteristic are randomly allocated to two groups; one group is given the
new treatment and the other, usually called the control is given the current treatment (or
placebo). The interest is to see which group does better over a given time period. In a
prophylactic trial, one group is given the prophylactic and the other is not. The primary
interest in prophylactic trial is to investigate if the protected group has a lower incidence
of specific disease than the unprotected. Thus the basic principles for prophylactic and
therapeutic trials are similar. We disc:uss both trials in a single statistical context in this

thesis.



In most clinical trials, patients enter the study serially, and are assigned to treatment
according to some random mechanism. They are followed until they either fail or the study
is terminated. Almost all these studies are designed so that after sufficient amount of data is
collected on patient’s survival time a single terminal analysis will be made to test whether
the failure time distribution is the same among the different treatment groups. However in
practice, as well as for ethical considerations, the data should be monitored periodically and
if sufficient differences are found between the treatment groups, decision has to be made to
stop the study early. It is therefore very important to study the sequential properties of the
tests used in analysis of follow-up studies in order that correct and efficient methods are
employed in monitoring the data.

In 1969, Breslow provided sequential methods for comparing survival distributions.
Recent works examine the more commonly used nonparametric statistics. Jones and Whit-
head (1979) have studied the sequential logrank and modified Wilcoxon test. Tsiatis (1981)
has derived the group sequential distribution of the logrank score and Slud and Wei (1992)
that of the modified Wilcoxon score.

In this thesis, a nonparametric sequential method applied to clinical trials is consid-
ered through change detection procedures. Although the literature on change point detec-
tion problems is quite extensive, the case of sequential change point detection using ran-
domly censored data has not received much consideration. Liu (1998) has studied change-
point detection in distribution for censored data with fixed sample size data. In this thesis,
we use different methods to set up sequential statistics by using information contained in

a censored data. We discuss the test statistic and its properties under the null hypothesis.



Our discussion will be based on the generalization of Wilcoxon rank statistics which intro-
duces a special anti-symmetric score function. We then generalize it to J{-statistics using
non-degenerate anti-symmetric kernels under the null hypothesis of no change in survival

time distribution.

1.1 The Change-point Problem

Let us assume that we have a sequence of independent continuous random variables
Ty, Ty, .... Our interest is to investigate any possible changes in the underlying stochas-
tic mechanism. We wish to test the null hypothesis H,, : T;, i = 1,2, ...n, are identically
distributed with distribution function F(t), against the alternative that after some k obser-
vations the distribution function F'(t) changes to a different distribution function F*(t).
When we do not know F(t), F*(t) or the change-point &, this problem is completely non-
parametric. The problem is to determine whether a change in the distribution F occurred.
This problem is called the change-point problem and has important applications in medi-
cal studies where situations often arise entailing investigation of the distribution of patient
survival time T (i.e. time after treatment). It is possible that after some time, due to an im-
proved medical method, or changed admission criteria, or some other reason, there could
be a change in the distribution of the patient survival time.

Occasionally, the survival time cannot be observed because of the termination of the
study or for some other reason. Natural causes of failure of follow up, drop-out or some
other factors may happen and the survival time T of the patients may not be completely

observed, but censored by a sequence of random variable C' with an unknown distribution.



In situations like this, the random variable T is said to be censored on the right if we can
only observed X = min(T,C), where X is the observed survival time of the patient and
C arandom censoring variable or a constant. In most cases, patients will enter the study
at any time and receive treatment with one of the several therapies available. Instead of
completely observing the sequence of their lifetimes we can observe (X, 6;), ..., (Xn, 8n),
where X; = min(T;, C;) and é; equals 0 or 1 according as T; > C; or T; < C;. The index
i of a patient corresponding to the observation (X, é;) is the chronological order in which
the patient enters the study and receives the treatment.

In most of the published work to date, the mathematical theorems are developed for
only completely observed failure time, which, of course, is rare in reality. In this thesis, we
give consideration to typical cases of medical experiments, where the data of interest are
measurements on time elapsing between the occurrence of two events, i.e., time a patient
has spent in a follow up study and the index of the measurement corresponding to the

chronological order in which the patient enters the study.



Chapter 2
Review of the Literature

This chapter reviews various Wilcoxon type test statistics that have been developed in the
past to address nonparametric problems. We review the case of the two sample problem
with complete data or using right censored data. We then look at the nonparametric change-
point problem as a modification of the nonparametric two sample problem with particular

attention to right censored data.



2.1 U-Statistics

Definition

Let F be a set of distribution functions on R, the set of real measurements. Con-
sider a sequence Xj, ..., X, of independent random variables, identically distributed with
unknown distribution function F' € F. Let  be a functional defined on F. Suppose on
the basis of a sample X, ..., X5, we wish to estimate §(F), and that for a sufficiently large

sample size n, there is a function ¥,( X, ..., X,) such that

6(F)=E{y,(X;i,.... Xa)} (2.1)
forall F'in F. Then @ is said to admit an unbiased estimator if and only if there is a function

h of k variables such that

6(F) = /-00 /_00 h(zy, ...,zk)dF(zy)...F(zi), 2.2)

for all F' € F. The unbiased estimator v,,( X, ..., Xn) = h{z1, ..., i) satisfying (2.1) for
all n > k is called a regular statistical functional of degree k and h is called the kernel of

the functional.

For the sub-sample z1, ..., k, define

1
Ur =73 D _ h(zaa, - Zae) (2.3)

where the sum is taken over permutations (7,, ...ix) of all sub-samples of size k. Write

-1
U, = ( 1,: ) E Uk, (2.4)

(n.k)

where the sum is over all subsets 1< ¢; < ... < i < nof {1,...n}.



The statistic (2.4) is an unbiased estimator of (F') and is called a U/-statistic (Hoeffding,
1948). Such statistic has desirable properties as an estimator of the regular functional. The
variance of U-statistics based on i.i.d. sample can be usefully expressed in terms of certain
conditional expectations. For a survey on the theory of U-statistics, refer to Serfling (1980)

and Lee (1990).

2.2 Wilcoxon Type Nonparametric Methods in Survival
Analysis

In biomedical research, a clinician may be interested in comparing the ability of two
or more treatments to prolong life or maintain health. A laboratory researcher may want to
compare the tumor-free time of two or more groups of rats exposed to carcinogens. Almost
invariably, the survival time of the different groups vary. These differences can be illus-
trated by drawing graphs of the estimated survivorship function, but that only gives a rough
idea of the difference between the distributions. It does not reveal whether differences are
significant or merely chance variations. In clinical trials, only a statistical test will be able
to establish any real differences between the different treatment groups.

There are two types of methods in experimental clinical trials: fixed-sample method
and sequential method. In fixed-sample methods, the number of patients allocated to the
two treatment is fixed before the study begins. In sequential methods, the decision whether
to continue taking new patients or new observations is determined by the result accumulated

up to that time. In the following subsections, we discuss briefly some methods of fixed-



sample and sequential analysis already widely used based on the modified and generalized

Wilcoxon statistic.

2.2.1 Wilcoxon (Mann-Whitney) Statistics

Suppose there are two groups of patients who receive treatment 1 and treatment 2.
Let Xi,..., X5, and Y}, ..., Y5, be the independent samples from the two populations with
continuous but unknown distribution functions Fy and F3, respectively. The two-sample

nonparametric problem is to test
Hy: Fy = Foversus Hy: F| # F5. 2.5

Let S; and S; denote the set of subscripts corresponding to the samples from popu-
lations 1 and 2, respectively. Let R; denote the rank of Xj in the combined sample
Xiy-oy Xnys Y1, ooy Yo, Of size n (= ny + ny), where & = 1,...,n. When there are no
ties or censored observations, the Wilcoxon rank sum statistic is

W=> Rdl(keSs), (2.6)

k=1

where [ is the indicator function defined by

1 keS§

The statistic in (2.6) has an asymptotic normal distribution under Hy. The null hypothesis

H, is rejected if W is too large or too small.



Denote the conditional mean and variance of W under Hj given the group sample
sizes n; and ny by E(W| Hy, ny,n2) and var(W|Hy, ny,n3) respectively. Then

ni(ny +na +1)
2

E(WIH07nlrn2) = (27)

and

nlng(nl +no + 1)
12

var(W|Ho, n1,n2) = (2.8)

To test Hy against H), a large sample approximation (say n,, n, about 25 or more) uses
the standardized score

W E(WIHO ng, __)
\/’UG.T(WlHo, n, n2.—).

2 N(0,1). 2.9)

For a specified significant level a, Hy is rejected if | Zw| > Z,/2, where Z,» is the upper
100c/2 percentile of the standard normal distribution.
A simple modification was made in the Wilcoxon statistic to generalize the test fur-

ther to “tied” observations. Fori = 1,...n; and j = 1. ..., ng, define the score function

1 if Xi>Y,
-1 if X; <Y,

and

ny nz

U=y > Uy @.11)

i=l j=1
The score function (2.10) is the Mann-Whitney sign score function and the statistic U is

the Mann-Whitney U-SUM statistic, which has an asymptotic normal distribution under
Hp. The Mann-Whitney test rejects Hy if U or |U] is too large. The test is conditional on

the fact that there are no censored observations in the given sample from each groups. The
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conditional mean and variance of U are given by
E(UIH(), ny, 1’12) =0

and

nyna(ny +ng + 1)
3 .

var(U|Hy, n1,n2) =
Similarly, large sample approximation uses

_ U - E(U|Ho, n1,n9) D
V 'UGT(UIHO,TLI,TIQ)

under Hj and for a specified significant level a, Hy is rejected if | Zpr] > Zg /0.

Zn

N(0,1) (2.12)

2.2.2 Gehan Test

Gehan test is a generalization of the Wilcoxon-Mann-Whitney test. It assumes that
we have n;, n, independent observations with distribution functions Fy(z) and F,(y). re-
spectively. The conditions on sampling are such that there is a probability that each patient
in both groups will be right censored so that each of the samples consist of censored and un-
censored observations. It assumes that the conditions leading to the censored observations
are the same in the two groups. Ties are permitted among both censored and uncensored
observations.

Let Ty, ..., Ty, bethe i.i.d. sample from group 1 with d.f. F} and Cy,, ...C,, be i.i.d.
with d. f. G, where C}; is the censoring time associated with T;. We observe (X;,6;). ....
(Xn, s 6n,), where

X; = min(T;, Cy;) and §; = I(T; < Cyy),

and [ is the indicator variable.
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Similarly, for the second group, let V;, ..., V;,, be the i.i.d sample each with d.f. F,
and Cay, ...Can, be i.i.d with d. f. G, where Cy; is the censoring time associated with V;.

We observe (Y1,€1), -.., (Yn,,€n,), Where
Yj = min(Vj,C'g,-) and Ej = I(VJ < ng).

Gehan (1965) considered an extension of the Wilcoxon-Mann-Whitney test under the more
restrictive null hypothesis
Hj : Fy = Fy and G, = G,. (2.13)

For right censored data, Gehan (1965b) proposed the sign score function
¢
+1 if(Xi>Y,g=1)or(Xi=Y},6;=0,¢;=1)

U;=U(X,Y;)=¢ 0 otherwise

-1 if(Xi<Y,e=1)or(Xi=Y},6 =l.c,=0)

2.14)
and defined

ny n2

Ut =) "> "U;. (2.15)

i=] j=1
Gehan test uses the U-SUM statistic U* and rejects Hy if U* or |U*| is too large. The

statistic U* is asymptotically normally distributed by the theory of the two sample U-
statistics under Hg. To calculate the critical values, we need to know the moments under

the permutation model of U*. We may consider two cases as follows.
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CASE 1: Complete data
Denote the permutation mean and variance of U* by Ep(U* | Hg, 1y, ;) and var,(U*|
Hj3,ny,n2). Then
Ey(U*|Hg,n1,n2) = 0 = E(U|Hp, ny,n3)

and

nng(ny +nog + 1)
3

var,(U*|Hg,n1,ng) = = var(U|Hy, ny, na).
Under the null hypothesis Hj,

Zg = —__[j—_-_- 2’ N(01 1)7 (2.16)

Vvarg(U*|Hg, nyno)

for large samples. Hj is rejected for given significant value « if | Zg| > Z,/,. Note that
with no censored observations, the Gehan statistic reduces exactly to the Mann-Whitney

statistic.

CASE 2: With censoring observation

With censoring observations, Gehan uses permutation under the restrictive null hy-
pothesis. He considered the combined sample (Z:,&,), ..., (Z,,€,) of patients, where n
= n; + ny is the combined sample size, and considered sampling n, patients from n pa-
tients labelled with identity (Z,,,), ..., (Zn,€,,). Suppose the labels on the n; patients are
(X1,61), .-.(Xa,,6n,) and the labels on the n, patients are (Y;,¢€1), ..., (Y1,&n,). Then we
have

E,(U*|Hg,ny1.m2) =0

and varp(U*|Hj,n1,n2) is given on page 206 of Gehan (1965a). Gehan's formuia for

varp(U*| Hg,ny,ny) is too complicated and introduces computational inconvenience. Man-
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tel (1967) considered a computational form for varp(U*| H§, n;,n2) which is much easier
to work with, and we discuss this as follows.

Define

Uy = U(Zk &), (21,€) (2.17
'

+1 if (Zk>Zl,€l=1) Ol'(Zk=Zl,§k=0,€l =1)'

=4 0 otherwise,

-1 Zf (Zk < Zl)Ek = 1) or (Zk = Zlvglc = 11 El = 0)1

and
U,: = Z Ui, (2.18)
I£k: I=1
and
Ut =Y Uil(k € S1), (2.19)
k=1

where S is the set of integers corresponding to the subscripts of observations from popu-
lation 1. U* is the Mantel statistic which is equal to the Gehan statistic (because Uy, =
-Up so if K, I' € S, they cancel each other out in the sum). Mantel considered cal-
culating the permutation distribution of U* as follows. Suppose we are given U7}, ...U;.
where n = n; + no. Under Hg, sample n; of U's without replacement and calculate U*
using (2.19), the sum of these n, observations. Using results from sampling from finite

populations, Mantel showed that

Ep(U‘|H6, n;, n2) =0
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and
nine u .
varp(U*|Hg,n1,n9) = U2 2.20
P( I 041 2) (n1+n2_1)(n1+n2) ;( k) ( )
For large sample approximation, we use
Ut
Ze 2 N(0,1), 2.21)

~ Vvar,(U*[Hy, nyn)

under Hg and Hj is rejected for a given significance level value a if [Zg| > Z,/,.

2.3 The AMOC Change-point Problem

The two sample problem (2.5) is to test
Hy: Fy, = Fyversus Hy : Fy # F5.

In a fashion similar to the Gehan or Mantel procedure, we could consider the combined

sample of lifetimes T3, ..., Ty, and test the hypothesis

H,: T, .. T.iid F(t) (

N
[
(38
e

against the alternative
H, : there exists some k € {1,2,...,n — 1} such that

Ty, ... T iid FO(E) and Tieyy, ..., T iid FO(2), (2:23)
and F(V(t) # F?)(t) for some t, where the distribution functions F, F(!), F®) and k are
unknown and n (= n; + ny) is the size of combined sample. The aim is to find a detecting
procedure in order to raise an alarm that a change occurred in the sequence. If we are
interested in only one change in the sequence, then the problem is called At Most-One-

Change (AMOC) change-point problem. Therefore we can think of the AMOC change-
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point problem as a series of tests of two sample problems. The change-point problem has
many applications in a variety of areas such as the surveillance of a system, monitoring the
quality of production process, etc.

In medical applications, since we cannot completely observe the survival times T3, ..., T,

we instead observe (X1, 61), ..., (Xy, 6n), Where
X,’ = m.m(T,C’,) and 6,’ = [(T, < C,'), i=1,..,n (2.24)

The variables T; and C; are independent and 4 indicates whether T has been censored or not.
In the AMOC change-point problem, under the assumption that Cy, ..., C, are identically
distributed as G, we assume that the random variables X, ..., X, have the same distribution

function H under H,, where

H(z) = Py {X) <<z}

—_

2.25)

= 1-(1-F())(1-G(z)).

If H, is not true, then a change in the distribution function F results in a change in the
distribution function H. In view of this, we might think that methods designed for detecting
a change from a sequence of completely observable data could be applied to X's as well to
detect changes in . However, this procedure do not incorporate the information contained
in the 6 s and therefore leads to inefficient results.

Under H,, let Xj., .., X have the same distribution function H() and Xi, 1, .... X,

have the same distribution function H®, where

HWD(z) = Py {Xi <z} (2.26)

= 1-(1- FY(2))(1 - G(z))
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and

HP(z) = Py {Xn.<z} (2.27)

= 1-(1-F®)1-G(z)).

If H, is not true, then H(V)(z) # HP(z) for some z = min(¢,c).
Let
Z;=(X;,6;),i=1,..,n. (2.28)
Note that Z,, ..., Z, are a sequence of two-dimensional independent random vectors. We

define the score function for comparing two observations Z;and Z; in the sample as
4

+1 if(Xi> X 6,=1)or(X;=X,,6,=0,6; =1)

h(Zi,Z;)=¢ 0O otherwise (2.29)

-1 if(in<xYJ,6J‘=0)01'(X,=1Yj,(51’=1,6] =0)
\

This score function is equivalent to that proposed by Gehan and Mantel as a modification
to generalize the Wilcoxon-Mann-Whitney statistic for two samples test with right cen-
sored data. Both Gehan (1965a) and Mantel (1967) proposed their nonparametric test for
comparing two samples under the additional assumption of identical censoring distribu-
tions. Gehan and Mantel’s form of the statistic for comparing the samples {Z), ..., Zx} and

{Zks1, ..y Za} is

k n
Ue=Y_ Y h(Z:.Z)). (2.30)
i=1 j=k+1
By convention, if an uncensored observation Z; = (X;,8; = 1) and a censored

observation Z; = (X, 6; = 0) are tied, (i.e., X; = X;) we consider the uncensored X; to

occur just before the censored observation X, i.e., we break the tie by considering X; <
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X;. On the other hand, since X, ..., X, are independent continuous random variables, the
probability of ties is zero, so for simplicity and convenience in calculations, we assume no

ties without loss of generality. The score function (2.29) then simplifies as
h(Zi, ZJ) = I(X, > Xj,&j = 1) - I(X, < Xj,&i = 1) (2.31)
For a kernel h of degree two, we say A is symmetric if

h(z,y) = h(y,z),
and anti-symmetric if

h(z,y) = —h(y, z).
We assume that the kernel A is of bounded variation as a function of z or of y with the other
variable fixed at any value. For the sequence Xj, ..., X,, of independent random variables,

and with a kernel h of second degree, we assume that
ER*(X1, X2) < 00, ERY( X4y, X,) < 00 and ER3(X), X,) < . *

Define
hi(t) = ER(Xy,t) — ER(X1, X2)
and
ho(t) = BR(Xn,t) — ER(Xn_1, Xn).
Condition (*) implies that ER?(X) < oc and Eh3(X,) < oo. The kernel h is said to be

non-degenerate if
ERh%(X;) > 0and ER2(X,) > 0, **

otherwise, we have the degenerate case.
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U-statistics can be used to test for change in the distribution of a sequence of ran-
dom variables. This thesis considers I{-statistic based tests using anti-symmetric and non-
degenerate kernels. The score function (2.31) is the kernel function of second degree and
is anti-symmetric since h(Z;, Z;) = —h(Z;,2;). If Z,, Z, and Z,_,, Z, have the same

distribution function, then we have

Eh(Z,,2;) =0 and Eh(Zp_1,2,) =0 (2.32)
and
0< E{h¥ (2, Z;)} < =, alli < j. (2.33)
Define
h1(Z1) = ERr{(21, Z2)|21) (2.34)
and
0% = var(hy(Z,)) = Var(Eh(Zy, 2,)|Z,) > 0. (2.35)

The function defined in (2.34) is the projection of U-statistics and (2.33) ensures that o° is

finite. Using the definitions in (2.34) and (2.35). we have
Eh\(2,) = E{E{h(Z\, Z,)|Z:}} = ER(Z1,2Z,) = 0 (2.36)
and
1
13(;};1(2,-))2 =1,i=1,..,n, (2.37)
where hy(Z;), ..., h1(Z,) are i.i.d. random variables under H,.

Following Mantel (1967), we can write

U =Y h(Z,Z;), i=1,..n, (2.38)

=1
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and since A is anti-symmetric, we can write

kE n k n
YOS hZi,2) =) > h(Z.,Z;),1<k<n, (2.39)

i=1 j=1 i=1 j=k+1

where h(Z;, Z;)'s cancel each other out in the sum in the left hand side for 1 < i, j < k.
Therefore, from (2.30) we have

k n
Ue=)_ Y h(Z:2;) =) U. (2.40)

k

i=1 j=k+1 i=1

The statistic Uy, is a form of a U-SUM statistic with an anti-symmetric kernel k. Further-
more, since h(Z;, Z;) is anti-symmetric,

i=1 =1 j=1
and

S @/ R =1 2.4
1=1

1=t

Note that (2.41) and (2.42) are the sample representatives of (2.36) and (2.37).

Let H(t) be the sub-distribution function of Xi, ..., X, defined by

H(t) = Puo{Xi <t} (2.43)
= /_ ‘ (1 - G(u))dF(u).
Lemma 2.1 Under H,,
0? = Var(Eh(2,, 2,)|Z;) = / (1 - H(t))2dH(t) > 0 (2.44)
and

1 «
= Z U2 2= 62, (2.45)

i=1

where H(t), ﬁ(t) and U are defined in (2.25), ( 2.43 ) and (2.38), respectively.
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For the proof of this lemma, see Miller (1981). Lemma 2.1 provides a consistent

estimator of o; hence we can use (2.48) to estimate o2 from the data using the estimator

2_ 1 ¢
52 = = Z 2. (2.46)

i=]
Csorgd and Horvith (1997) showed that, for large samples, n=3/2¢-!Uj can be approxi-
mated by a Brownian bridge under H,; hence large sample critical values can be obtained

for different functionals of this process.

Theorem 2.1. Under H,,

Ukl b
= k=1,2,..,n, 2.
Vo 15ken n3/2g _'os;igl B, b2 mn (2:47)

where B()\) denotes a Brownian bridge.

The distribution of the right-hand side of (2.47 ) is well known, so tests of signifi-
cance can be performed at any specified significance level a. See Gombay and Liu (2000)
for details of the proof and some applications of this theorem.

n
From (2.45), we write 3 [U!]2 = n302. Let

i=1

~ Uk

Usr = max

1<k<n [/ n 172" (2.48)
(z {unz)

Then (7,,,,: is one-sided version of U, x. Here, it is proposed to reject H, for large values of
f'f.,'k. We can estimate U, /(n%20) using

g __ U _ U

(2.49)

where 52 is defined in (2.46).



Test: When we want to detect a change in the underlying stochastic mechanism of the data
(Zk, 6x), given that all past and future observations are available, we use the statistic (2.47)
or (2.49). For (2.47) the critical values are determined from the well known identity of

Kolmogorov (1933):

P{ sup |B(\)| > c} = 22(—1)"‘1 exp(—2i2c?), ¢ > 0. (2.50)
0<A<1

=1

Let c, denote the (1 — a)—quantile of the distribution of supg.,, |B(})|- Then the test
for the change-point problem with a fixed sample size n, is defined as

_J1 reject H,
I (15?@: Vol > C"‘) - { 0 fail to reject H,. (2.5D)

Hence, based on the process {Usk}, <<, » cOnclude that change occurs in the distribution

function F atk,2 < k <n,if

I( max U,i > ca) = 1. (2.52)

1<k<<n
Some critical values c,, for o = 0.001, 0.01, 0.05 and 0.10, using identity (2.50) are 1.78,

1.63, 1.36, and 1.22, respectively.
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Chapter 3

Sequential Change Detection

In clinical studies, it is important to follow interim results closely and continuously
as data become available. In this chapter, we construct sequential analyses for experimen-
tal clinical studies allowing for hypothesis testing at each inspection point in a continuous
time when the data gathered are right censored failure time data, i.e.,we formulate nonpara-
metric sequential test statistics for the change detection problem. The tests we construct
are most useful for examining the identical distribution assumption underlying the survival

distribution on the random vector Z = (X, 6).
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3.1 Formulation of Sequential Change Detection Problem

Sequential change detection problems involve consideration of a random sequence
of lifetimes X, Xo, ..., Xi, which may not be completely observable due to the existence
of corresponding censoring variables C, C, ...Ck, where k is a random integer. Accrued
data are analyzed after each k** inspection and a decision is made whether to reject the
null hypothesis or continue sampling. If experimentation is terminated at the k** stage,
where £ = 1,2,.... then we observe the data {(Z;,6;) : 1 < i < k}, where §; equals
0 or 1 according as Z; is a censoring time or true lifetime. This method and censoring
scheme may be used in any experimentation in which ethical or economical reasons require
that observations be ceased at the earliest possible stage if the current accumulated data
warrant a clear statistical decision. In this section, we look at the problem of constructing
a nonparametric sequential test for change detection in the distribution of right censored
data.

When data come as a sequence of independent observations T T, ..., we want to test

the hypothesis
H):T; i=1,2,..., have identical distributions F, 3.1)
against the alternative ,
H,:T,i=1,..k havedf FOand T}, i=k+1,k+2.... havedf F®, (3.2)

where F()(t) # FA(t) for some t € R, and k is an unknown positive integer. This test

advocates a serial testing decision. The difference between the sequential change detection



test and the change-point problem discussed earlier in section 2.3 is that, in the case of the
latter, we have a full set of data {(Z;,6;) : 1 < i < n} of size n and want to detect at most
one change at some point £, in the underlying distribution. Under the present problem, we
look at the value of the test statistic after k& observations and decide whether a change has
occurred in distribution at that point. In sequential testing, we may not have the full data set,
but it is desirable to formulate it in terms of some truncation point, V. Observations come
in one by one and a decision is taken after a random number of observations are observed.
The sequential test stops after one abrupt change. We refer to Csorgd and Horvith (1997)
for information on the change point detection literature, and to Gombay (2000b) for new
developments on sequential change detection.

In this thesis, we wish to design a nonparametric sequential test for H, where F,
F®O | F® and G are unknown. This test will use &{-statistics with anti-symmetric kernels
h(z,y) which are better suited for change detection than symmetric kernels. In Chapter
2, U-SUM statistics were examined for full data when there was a change at k and the
parameter n is the sample size. Change-point test and sequential change detection can be
compared. The new asymptotic analysis gives the result that in many situations, a sequen-
tial test analysis is more powerful than a fixed sample test for the AMOC change-point

problem.

3.2 Sequential Change Detection Procedures
Sequential analysis was originally developed by Wald (1947) and applied to clinical

trials by others. For example, Armitage (1975) gave a procedure for repeated testing of
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data. Armitage’s method assumes that the only decision to be made is whether the trial
should continue or be terminated because one of the groups is responding significantly
better, or worse, than the other. This classical sequential decision rule is called an “open
plan” because there is no guarantee of when a decision to terminate will be reached. Strict
adherence to an open plan will mean that the study could not be terminated at a fixed sample
size, N. For this reason, very few clinical trials use the “open” or classical sequential design
because there is no certainty of ever reaching a point at which the trial would be stopped.
The method also requires data to be paired, one observation from each group. In many
instances, the pairing of participants is not appealing because the paired participants may
be different and may not be well matched in important prognostic variables.

Because of these limitations of classical sequential methods, adhoc rules have been
suggested by others that attempt to ensure a conservative interpretation of interim results.
It is desirable to define procedures that are truncated after some number of observations
(say, N) and use a constant critical value, c,, at each interim look. Hypotheses have to be
formulated in terms of these truncation points. Accrued data at the k** inspection is of the
form {(Z;,6;) : 1 = 1,2, ..., k} (where Zs are defined in (2.28)).

Using the anti-symmetric non-degenerate kernel h, denote

i~1

U =Y h(Z.,Z;), i=2, ..k (3.3)
=1
We define
k
Up=> U= Y hZ.2) k=23,., (3.4)
i=1 1<j<i<k

which is a sequence of U-SUM statistics. Our sequential analysis considers the dis-

tribution of different functional of the process {U;} under H.,. We use the test process



{k~3/2U; o} whose limiting distribution is the well known Ornstein-Uhlenbeck process
['(¢), i.e., a zero mean stationary Gaussian process with covariance function exp(—|s —t}).

To ensure that the variance of the process {k~3/2U;} is bounded at each inspection, assume

that
0 < E{h*(Z:,Z;)} < oo foralli < j. (3.5)
Denote
* = var((z) = [ (1= HO)YaA() >0, 3.6)
where
h\(Zx) = E{h(Z;, Z¢)|Z;}, for1 < j < kand k =2,3... (3.7
Let
k
U= h(Z,Z;), 1<i<kandk=23,.. (3.8)
j=1

From (2.41) we have Ef=l Uix = 0. Under Lemma 2.1 and for a reasonable size k, we can
write

k3 Z Utzlc = 0" (3.9)
where o2 is the variance of our process {k 3/2Uz}. We define our sequential statistic at

each inspection point as follows:

-3/2r7= -
stat(k) = —— Yk _ Uk (3.10)

k k
JEEuR [z
Our analysis uses different modifications of (3.10). Before we look at the sequential testing
procedures, let us first discuss the limiting distribution of the test statistic max; <x<y U

under the null hypothesis based on anti-symmetric non-degenerate kernel. The following



theorems are needed to establish the asymptotic distribution of the test statistic under the

null hypothesis of no change in distribution.

Theorem 3.1. Under H, if (3.5) holds and

E\h(Z;, Z;)|" < oo for some r > 2, (3.11)
then
(2)
UL = max VU o sup T(t), (3.12)

1<k<N k324 0<t<T

where I'(t) is the Ornstein-Uhlenbeck process and T = 3 log, (N ): and

(43)

@ _ V3|U| b
ok = CkeN kav'N osslzlgl W, G139
where {W(t), t > 0} is a Wiener process.
Furthermore, if we let a(T) = (2log(T))"/2 and b(T) = 2log(T) + 1 loglog(T) —

3 log, (), then

‘/5 3/2 |
i — - < = —9e—t
Nh_rgo P {a(T) 5 DX =3\ U < t+6(T) exp(—2e™°), (3.14)
for all £. Sequential processes based on this theorem and its proof are discussed in Gombay
(2000b). For a sequential test truncated at NN, the critical value c for a level a test based on

Theorem 3.1 can be obtained from the following theorem.



Theorem 3.2.

() (Vostrikova, 1981): For all T > 0,

p{ sup |r(t)|>c}z5‘Lexp(‘—2/2){T-iT+i+o(i)} (3.15)

0<t<T 24/21°(d/2) 2 T2 A
as r — 00.
(22)
(2k +1)2
<c == _

where {W(t),t > 0} is a Wiener process.

For the analysis based on the process {k~%/ 2U,:}, the critical values of the test of H/,
can be determined using Theorem 3.2.

In our application, the critical value c.(NV) for a test based on (i) of Theorem 3.1
depends on both the level of significance a and on the truncation point V. Critical values
c2 of a level o test using (ii) of Theorem 3.1 can be obtained from the distribution of

sup |W(t)| in (ii) of Theorem 3.2.

0<t<1

3.3 Sequential Tests

(1) For a given data set, suppose the absolute value of the sequential statistic is de-
noted by |, |- Calculate in sequence |U, |, k = 5,6, ..., N, at each inspection, using (i)
or (éz) of Theorem 3.1. We start at k£ = 5 or 10 only, because of the estimation of o

(2) If we use a test based on (i) of Theorem 3.1, then the critical values cL(N) are

calculated using (3.15), where T = 3log, (V) and d = 1. Compute the LH S for different
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values of ¢, so that the value of P { sup |['(t)| > c} is between 0 and 1, and then take

0<t<T
the values ¢ which correspond to some selected (1-a)-quantile, say, 0.90, 0.95, 0.99. and
0.999. These values of c are the critical values c.(N) for a levels, say, 0.10, 0.05. 0.01.
and 0.001. Similarly, the critical values for a test based on (iz) of Theorem 3.1 can be
calculated using (i%) of Theorem 3.2.

(3) Define a sequential decision rule as follows:

landk < N reject H,

! (IUMI > ca)k.=56

fail toreject H. and (3.17)
OQandk < N  continue sampling

The stopping time of the sequential test can be defined as
k'=min{k<N:I(ma.x |(70'k|2c°) =1}. (3.18)
1<k<N
Test 1. Let

UV — max \/gU'“ (3.19)

oF TIk<N sk \ /2
(5 0z)
=1
Then ﬁ‘flk) is equivalent to Uél,c) . We estimate v/3U;/(k*/2c) by
su) _ V3UE
O = e (3.20)
or in practice, we use
~ V3|U:
O3 = ————ksl..,&’fl. (3.21)
where 57 = & S5, U2, is the estimator of ¢2.
Atthe first k = 5,6, ... , where
ir( (1) = 2
(0> Pm) =1, (3.22)
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stop and declare a change has occurred in distribution. This is an evidence for the alterna-

tive hypothesis.

Test 2. This test is designed with a higher sensitivity to detect small deviations from H_.

Let

@) _ V3UE (3.23)
* kN’ -

where 52 is as defined in Test 1. Reject H’, if

I ( max T3] > c“)) =1 (3.24)
1<k<h ok * ) k=ss....

Otherwise, do not reject H,.

The test using critical values from (3.14) gives a good conservative approximation for Test

1. Using this test, stop and declare a change in distribution at the first k, when

VAU
I (ﬁ > ) =1, (3.25)
where
(T) = 0™ (T)(~ log. (3 log.(1 — a)) +B(T)) (3.26)

is obtained from (3.14), with T = 3log,(NV), b(T) and a(T') as defined in Theorem 3.1,
and « is the level of significance. The theories to develop this test can be found in Gombay

(2000b).

In Chapter 4, we apply these tests and compare their relative performances at the

usual cut-off significance levels 0.1,0.05,0.01, and 0.001.
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Chapter 4

Implementation of Sequential Method

In sequential testing, we reject H_ the first time the value of the test statistic exceeds
some critical value at a chosen significance level. In this chapter, we first calculate the crit-
ical values c, using (3.16) and (3.26) for some selected significance levels and truncation
points. We then investigate the relative performance of Test 1 and Test 2 with a series of
simulations. We also compare the power of our test with that of the AMOC procedure.
Finally, we demonstrate the application of the sequential procedure on two real and well-
known data sets: the Stanford Heart Transplant data and the Radiation Oncology Group
data. These two illustrative data sets are typical examples of prophylactic and therapeutic
trials, respectively. Note that both Stanford Heart Transpiant Data and Radiation Oncol-
ogy Group data have been used many times in the literature, e.g., Turnbull, Brown and Hu
(1974), Crowley and Hu (1977), Kalbfleisch and Prentice (1980), Liu (1998), Gombay and

Liu (2000).



4.1 Tables of Critical Values for Selected Significance
Levels
Let c, denote the critical value at significance level o, and N, the sample size in
cases where the full data are available; otherwise, it represents the truncation point of the
sequential observation. By using (3.16) and (3.26), we compute the critical values c, for
Test 1 and Test 2 as discussed in Chapter 3. We will consider the truncation points N = 50,
100, 200, 500, and 1000. The results are reported in Table 4.1 below. It is clear from the

table that, whereas Test 2 statistic depends on the truncation point, its critical values do not.

Table 4.1 Critical Values for the Sequential Tests

N a Test | Test 2
50 0.10 3.4908 1.9597
0.05 3.8151 2.2414
0.01 4.5495 2.8070
0.001 5.5891 3.4808
100 0.10 3.5370 1.9600
0.05 3.8510 2.2414
0.01 4.5623 2.8070
0.001 5.5691 3.4808
200 0.10 3.4430 1.9600
0.05 3.7490 2.2414
0.01 4.4421 2.8070
0.001 5.4230 3.4808
500 0.10 3.4913 1.9600
0.05 3.7889 2.2414
0.01 4.4627 | 2.8070
0.001 5.4165 3.4808
1000 0.10 3.5229 1.9600
0.05 3.8153 2.2414
0.01 4.4773 2.8070
0.001 54143 | 3.4808
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4.2 Simulation Study

In this section, we investigate the power of our proposed sequential change detection
procedure. First, we carried out simulations to compare the power and stopping time of
Test 1 and Test 2. We then looked at the relative performance of both tests with respect to
the AMOC change-point problem (see Liu, 1998). We performed M = 5000 simulations
in each case by Monte Carlo. For the sequence of independent observations T 75, ...,
the hypotheses of interest are those of (3.1) and (3.2). We assumed that the survival of
each individual satisfies the memoryless property (i.e., the survival probability of each
individual surviving beyond any time ¢ in the trial is independent of entry time or how long

the individual has already been in the trial). That is,
P(T>r+tT >r)=P(T > t),

forallt > 0 and » > O ( may be the time an individual enters the trial). Hence the simulated
random variables T;s have an exponential distribution. Assume that under the null hypoth-
esis, T;, ¢ = 1,2, ..., have identical distribution F’ = exp(y). Under the alternative, let T;.
i=1,..,khaved.f. F; = erp(u,) before change atsome kand T}, i = k + 1,k + 2. ...,
have d.f. F, = exp(u,) after change. Also, the simulated censoring variables C;s are

assumed to have exponential distribution, with d.f. G = exp(p,.).
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Simulation of exponential random variable T':

Note that for exponential random variable T, the cumulative distribution function is

given by
¢
Fr(t) =/ Ae™Mdy =1-e ™ =u(say) €[0,1], t>0.
0
Generate uniform random numbers u between 0 and 1. Set u = 1 — e~*t. Then we have

t= —%ln(l - u),

where A\ = ﬁ We then obtained the simulated data Z; = (X}, §;) and values of the score
function h(Z;, Z;) using (2.24) and (2.31), respectively.

In all cases, we considered p; = 1.0 and i, = 3.0. Note that. in case of the sequential
test, the hypothesis has to be formulated in terms of some truncation point (say, V). We
considered N = 50, 100, 200, 500, 1000, p, = 1.5,2.0,2.5.3.0.3.5, and a = 0.10.0.05.
0.01,0.001. Suppose T denote the point at which the change occurred in the distribution of
T’sie., 7 = minf{k > 0 : F(t) # FA(t)}, and k* = min{k < N : [(max|T,| >
Ca)} defines the stopping time. Then k* > 7 and the mean value function of the process
{k=3/2U;} rakes the maximum of its absolute value at k* = 27 (see Gombay, 2000b). As
the variance is bounded, the sequential process has the best chance to detect changes when
the number of observations before and after change are approximately the same. We first
fixed the change at 7 = N/2. The simulation results are reported in the following tables.

Suppose 8 = |u, — u,|. Let P(6|7, N) denote the power function of 6, given + and

N. Let P; and P, denote the power function for Test 1 and Test 2, respectively. From the



Table 4.2 Simulated Power of Test 1

a=0.10 a = 0.05 a=0.01 a = 0.001
N 7
power power power power
50 25 1.5 0.1980 0.1380 0.0612 0.0258
2.0 0.2382 0.1860 0.0858 0.0366
2.5 0.3402 0.2326 0.0942 0.0428
3.0 0.4404 0.3226 0.1002 0.0554
3.5 0.5654 0.4066 0.1528 0.0668
100 50 1.5 0.2454 01718 0.0684 0.0196
2.0 0.4116 0.2968 0.1182 0.0234
2.5 0.6178 0.4966 0.2470 0.0448
3.0 0.7712 0.6626 04114 0.1182
3.5 0.7638 0.6756 0.4138 0.1104
200 100 1.5 0.3946 0.2906 0.1306 0.0300
2.0 0.6906 0.5870 0.3534 0.1080
2.5 0.8896 0.8188 0.6504 0.3186
3.0 0.9712 0.9442 0.8580 0.59728
3.5 0.9928 0.9862 0.9492 0.8088
500 250 1.5 0.6234 0.5460 0.4429 0.3783
2.0 0.9624 0.9332 0.8382 0.7644
2.5 0.9986 0.9970 0.9912 0.9320
3.0 0.9998 0.9998 0.9990 0.9952
3.5 1.0000 1.0000 1.0000 0.9998
1000 500 1.5 0.7842 0.6582 0.5551 0.4523
2.0 0.9942 0.9451 0.9010 0.8467
2.5 1.0000 0.9998 0.9945 0.9736
3.0 1.0000 1.0000 1.0000 1.0000
3.5 1.0000 1.0000 1.0000 1.0000
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simulated results, P(8|r = N/2, N) is a monotonic increasing function of 8 for both Test1



Table 4.3 Estimated Average Stopping (EAS) Times of Test 1

N v a=0.10 a=0.05 a = 0.01 o = 0.001
k* k* k* k*
50 25 1.5 47 48 49 49
2.0 47 48 49 49
2.5 46 48 49 49
3.0 45 47 48 49
3.5 44 46 48 49
100 50 1.5 92 94 97 99
2.0 89 92 97 99
2.5 83 88 95 99
3.0 79 88 91 98
3.5 78 83 90 98
200 100 1.5 175 182 192 197
2.0 160 168 183 195
2.5 144 153 169 188
3.0 133 140 154 177
3.5 127 132 144 163
500 250 1.5 409 426 441 457
2.0 336 351 394 402
2.5 304 313 334 372
3.0 291 296 311 335
3.5 283 288 298 317
1000 500 1.5 821 843 870 930
2.0 734 756 792 854
2.5 679 702 743 823
3.0 602 687 701 795
3.5 562 584 659 712

36



Table 4.4 Simulated Power of Test 2

a=0.10 a=0.05 a=0.01 a = 0.001
N 7
power power power power
90 25 1.5 0.6524 0.5266 0.3166 0.1654
2.0 0.7282 0.6026 0.3680 0.1698
2.5 0.7822 0.6848 0.4496 0.2020
3.0 0.8508 0.7610 0.5380 0.2914
3.5 0.8890 0.8266 0.6482 0.3784
100 50 1.5 0.7168 0.6010 0.3634 0.1656
2.0 0.8330 0.7498 0.5394 0.2992
2.5 0.9194 0.8586 0.6994 0.4702
3.0 0.9698 0.9426 0.8254 0.6540
3.5 0.9886 0.9702 0.9136 0.7834
200 100 1.5 0.8006 0.7016 0.4930 0.2468
2.0 0.9364 0.8918 0.7680 0.5622
2.5 0.9902 0.9758 0.9322 0.8342
3.0 0.9984 0.9964 0.9822 0.9460
3.5 0.9994 0.9992 0.9964 0.9838
500 250 1.5 0.9230 0.8658 0.6392 0.5643
2.0 1.0000 0.9942 0.9460 0.9726
2.5 1.0000 1.0000 0.9999 0.9920
3.0 1.0000 1.0000 1.0000 1.0000
3.9 1.0000 1.0000 1.0000 1.0000
1000 500 1.5 0.9942 0.9245 0.8555 0.7381
2.0 1.0000 0.9998 0.9824 0.8999
2.5 1.0000 1.0000 0.9945 0.9899
3.0 1.0000 1.0000 1.0000 1.0000
3.5 1.0000 1.0000 1.0000 1.0000
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Table 4.5 Estimated Average Stopping (EAS) Times of Test 2

N r g a=0.10 a = 0.05 a=0.01 a = 0.001
2 k* k* k* k*
50 25 1.5 39 42 45 47
2.0 38 41 45 47
2.5 37 40 44 47
3.0 36 39 43 47
3.5 36 38 42 46
100 50 1.5 76 81 90 95
2.0 73 7 86 93
2.5 69 74 82 91
3.0 65 69 78 87
3.5 63 67 74 82
200 100 1.5 148 158 175 189
2.0 134 142 159 177
2.5 124 131 145 161
3.0 119 124 135 149
3.5 117 120 129 140
500 250 1.5 338 360 385 392
2.0 283 311 339 342
2.5 276 291 308 325
3.0 272 282 296 304
3.5 268 277 287 317
1000 500 1.5 625 742 794 821
2.0 561 610 693 854
2.5 942 560 664 823
3.0 515 537 621 795
3.5 505 911 520 523
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and Test 2and P — 1 as 8§ — oo. When both 8 and N are small (say, § < 2.5 and
N < 500), we note that P, (0|7, N) <« Pz(8|7, N) and k3 < k}. However, P,(8|7. N) =
P.2(8|7, N) as N — oo. Comparing our results with those of the AMOC procedure, we note
the greater power and sensitivity of our proposed sequential method. For the same set of
parameters 8, 7, and V, the power of Test 2 in detecting a change in the sequence increases
on average by about 50% that of the AMOC procedure. Both tests yeilded considerable
reductions in the stopping time as compared with the AMOC procedure. Our proposed test
is really an impressive decision maker.

Next we carried out simulations to investigate the power of Test 1 and Test 2 given
different locations of change. One way of dealing with different locations given the trun-
cation point V is to let 7 = [uN], where v € [0, 1] is the location fraction. We considered
N =100, g, = 2.5,3.0,3.5, « = 0.1,0.05,0.01, and v = 0.1,0.2, ..., 0.9, in each simula-
tion for both Test 1 and Test 2. The results are reported in the following tables.

From Table 4.6 and Table 4.7, we note that the power of both tests reaches its greatest
value when the change is fixed at the middle time. That is, when change occurs near the
middle of a sequence of observation, it will be easier for both tests to detect this change
than when it occurs at the tails of the sequence. The power decreases very quickly when
the change occurs towards the upper tail (i.e., when v > 0.5) than the lower tail for both
Test 1 and Test 2. Also, we can see that for each 7. the power is an increasing function of
0. In all cases, we note the greater sensitivity of Test 2.

In Liu (1998), extensive simulation studies were done to see how the change-point

test performs when the change occurs close to the beginning or close to the end of the
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sequence. The result is that the test is not very powerful, as the power decreases quickly
towards the tail ends for the change-point problem than we observed in our sequential
change detection test.

In conclusion, comparing our simulation results with those of the AMOC procedure,

we note the superiority of our sequential method in terms of both power and stopping time.

Table 4.6 Power and EAS Times of Test 1 for N = 100

a=0.10 0.05 0.01
BT power k* power k* power k*
25 0.1 0.5762 60 0.4678 68 0.2622 83

0.2 0.4030 75 0.3074 81 0.1654 89
0.3 0.3062 82 0.2390 86 0.1270 92
0.4 0.5170 72 0.4392 76 0.2972 83
0.5 0.5946 84 0.4680 88 0.2252 95
0.6 0.4990 89 0.3842 92 0.1674 97
0.7 03724 94 0.2640 96 0.1114 98
0.8 0.2150 97 0.1388 98 0.0570 99
0.9 0.1094 98 0.0620 99 0.0266 99
3.0 0.1 0.5662 61 0.4590 69 0.2454 84
0.2 0.4008 75 0.3042 81 0.1534 90
0.3 0.2954 83 0.2314 86 0.1154 93
0.4 0.5870 68 0.4936 72 0.3534 80
0.5 0.7334 80 0.6218 84 0.3720 92
0.6 0.6448 87 0.5284 90 0.2924 95
0.7 0.5002 93 0.3360 94 0.1896 97
0.8 0.2814 97 0.1918 98 0.0706 99
0.9 0.1056 99 0.0706 99 0.0286 99
3.5 0.1 0.5552 62 0.4426 70 0.2364 85
0.2 0.3820 76 0.2046 82 0.1470 90
0.3 0.3076 82 0.2274 86 0.1108 93
04 0.6460 64 0.5774 67 0.4028 97
0.5 0.8360 76 0.7670 80 0.5134 89
0.6 0.7772 84 0.6862 87 0.4324 93
0.7 0.6194 91 0.5058 93 0.2636 97
0.8 0.3574 96 0.2588 97 0.1018 99
0.9 0.1158 99 0.0818 99 0.0268 99




Table 4.7 Power and EAS Times of Test 2 for N =100

a=0.1 0.05 0.01

BT power k* power k* power k*

25 0.1 0.7572 65 0.6348 74 0.3864 87
0.2 0.6960 69 0.5650 77 0.3134 90
0.3 0.6236 71 0.4656 78 0.2312 89
0.4 0.7924 61 0.6802 67 0.4366 79
0.5 0.9224 69 0.8700 73 0.7052 82
0.6 0.8978 76 0.8316 80 0.6556 86
0.7 0.8360 84 0.7456 86 0.5484 92
0.8 0.7054 91 0.5826 93 0.3898 95
0.9 0.4658 97 0.3690 97 0.2112 98

3.0 0.1 0.7552 65 0.6270 75 0.3822 88
0.2 0.6940 69 0.5468 78 0.3014 90
0.3 0.6250 70 0.4542 79 0.2208 90
0.4 0.8336 58 0.7362 63 0.5112 75
0.5 0.9644 66 0.9358 70 0.8436 78
0.6 0.9480 74 0.9144 77 0.8000 83
0.7 0.9132 82 0.8428 85 0.6846 90
0.8 0.7758 90 0.6886 92 0.4770 95
0.9 0.4994 97 0.4124 97 0.2278 98

3.5 0.1 0.7564 65 0.6186 76 0.3864 88
0.2 0.6836 69 0.5356 79 0.2816 91
0.3 0.6090 71 0.4770 78 0.2124 90
04 0.8774 54 0.7754 60 0.5594 72
0.5 0.9850 64 0.9738 67 0.9208 74
0.6 0.9780 72 0.9616 75 0.8826 81
0.7 0.9496 81 0.9094 83 0.7992 88
0.8 0.8534 89 0.9658 91 0.5728 94
0.9 0.5406 96 0.4362 97 0.2564 98
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4.3 Application of the Sequential Procedures

Example 4.1 Stanford Heart Transplant Survival Study

We reproduce below the data provided by Crowley and Hu (1977) and Kalbfleisch
and Prentice (1980) on 103 potential heart transplant recipients from their date of accep-
tance into the Stanford Heart Transplant study. The patients entered the study randomly
between 1967 and 1974 and received a heart transplant when a donor heart became avail-
able. Upon transplantation, it is assumed that the patient has migrated from the nontrans-
plant population (considered as placebo) to the transplant population, and the covariate
that indicates transplant changes from 0 to 1. Although this study was observational, it
was generally thought that no systematic bias is introduced by selection of patients for the
transplant operation. It was believed that no patient receives a heart transplant preferen-
tially. Hence, it is assumed that the availability of a donor heart is random enough with
respect to a patient receiving a heart transplant so that prognosis dissimilarity between the
transplant and placebo groups in terms of other covariates such as age, waiting time to
transplantation, calendar time of entry, etc., is reasonably zero. Table 4.8 is the sequential
list in order of patient acceptance in the Heart Transplant study. X; denotes the i** patient’s
survival time recorded in days starting at the date of acceptance in the program to the date
of death, or lost to follow up, or censored by the date prior to the closing date of the study
(April 1, 1974). See Crowley and Hu (1977) and Kalbfleisch and Prentice (1980) for more
detailed descriptions of this data set.

The survival time is said to be uncensored or censored depending on whether



Table 4.8 Stanford Heart Transplant Data

i 1 2 3 4 5 6 7 8 9 10
Xi 6 50 6 16 39 18 3 675 40 85
8; 1 1 1 1 1 1 1 1 1 1
Si 0 0 0 1 1 0 0 1 0 0
i 11 12 13 14 15 16 17 18 19 20
Xi 58 153 8 81 1386 1 308 36 43 37
i 1 1 1 1 1 1 1 1 1 1
S; 1 1 0 1 1 0 1 0 1 0

( 21 22 23 24 25 26 27 28 29 30
Xi 28 1032 51 733 219 1799 1400 263 72 35
0; 1 1 1 1 1 0 0 1 1 1
Si 1 1 1 1 1 1 0 0 1 0

{ 31 32 33 34 3 36 3 38 39 40
X: 82 16 77 1586 1571 12 100 66 5 33
o; 1 1 1 0 0 1 1 1 1 1
S; 1 0 1 1 1 0 1 1 1 1

i 41 42 43 4 45 46 47 48 49 50
X, 1407 1321 3 2 40 45 99 72 9 1141
0; 0 0 1 1 1 1 1 1 1 0
S; 1 1 0 0 0 1 1 1 0 1

() 51 52 33 54 55 56 57 58 59 60
X 979 285 102 188 3 61 941 149 342 915
d; 1 1 1 1 1 1 0 1 1 0
Si 1 1 0 1 0 1 1 0 1 1

(! 61 62 63 64 65 66 67 68 69 70
Xi 427 68 2 69 841 583 78 32 285 68
d; 0 1 1 1 0 1 1 1 1 1
S; 0 1 0 1 1 1 1 1 1 1

i 172 13 T4 7 76 77 18 79 80
X; 670 30 620 596 90 17 2 545 21 515
o 0 1 0 0 1 1 1 0 1 0
S; 1 1 1 1 0 1 0 1 0 1

T 81 8 8 8 8 8 8 88 &9 90
X: 9 482 445 80 33¢ S5 397 110 370 207
6; 1 0 0 1 1 1 0 1 0 1
S; 1 1 1 1 1 1 1 1 1 1

i 91 92 93 94 95 96 97 98 99 100
Xi 186 340 340 265 165 16 180 131 109 21
6: 1 1 0 0 1 1 0 0 0 1
S; 1 0 1 1 1 1 1 1 1 0
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Table 4.8 Stanford Heart Transplant Data (continued)

2 101 102 103
Xi 39 31 11
i 0 0 0
S; 1 0 0

Sources : Crowley and Hu (1977), Kalbfleisch and Prentice (1980) and Liu (1998)
the date last seen is the date of death or the closing date of the program. The censoring
indicator §; equals 0 or 1 depending on whether an observation is censored or not. S,
indicates the #** patient’s transplant status (1 = received transplant, 0 =no transplant) and
t denotes the sequential order based on the date of patient’s acceptance.

We initially perform some interim fixed sample size survival analyses on this data set
by comparing the mortality in the transplant and non-transplant participants using the stan-
dard methods in Chapter 2. The question of interest in this study was, do heart transplant
patients survive longer than heart disease patients who did not receive heart transplants?
The cumulative mortality curves of the two groups are shown in Figure 4.1. This figure
presents the mortality comparison over the follow-up time of the trial. There is an observ-
able consistent mortality difference in the two groups. Slower mortality rates are apparent
for the patients who received heart transplants than for the nontransplant patients. There
were 71 heart transplant recipients with 24 censored observations by the end of the study.
Note that two transplant patients were deselected during the study and their survival times
were censored by dates prior to the closing date. The mean (limited to 1799 days) and me-
dian of the transplant group are 630 and 285 days with 95% confidence intervals (455,

806) and (125, 445), respectively.
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There were 4 censored observations among the 32 non-migrating patients.

100

40 60 80

Comulative Mortality Rate, %

20

0 200 400 600 800 1000 1200 1400
Days of Follow-up

Figure 4.1 Cumulative mortality curves comparing transplant and nontransplant

The mean (limited to 1400 days) and median of this group are 147 and 21 days with
95% confidence intervals (18, 276) and (0, 44), respectively. Clearly, there is substantial
evidence that transplant increases survival significantly.

Using the original Gehan score for comparing the two groups or Mantel’s computa-

tionally simpler score function Uy, (k,! = 1.....103) of (2.17), by (2.19). we have
103
U* =) Uik € S)) = 1359,
k=1

where S; is the set of observations from the heart transplant population and U} is defined

in (2.18). From (2.20), we have

varp(U*|Hg,ny,ny) = 71510.2578.
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From these, we obtain the standardized statistic,

U‘
- Vvary(U*|Hy, ny,n2)

Zg = 5.0820,

with p-value=: 0, which is highly significant. Hence, we conclude from the Gehan test that
the groups really differ in survival experience and that the transplant group has a signifi-
cantly better prognosis.

Next, our interest is to see whether there was a change in survival times over the
years. The covariates were disregarded, and we look at the variables Xs, in order of
patient’s entry into the study. Sequentially, we are testing for only one abrupt change in
the sequence of the Stanford Heart Transplant data set of size N = 103, ( we assume N is
the truncation point of the sequence). We first apply our sequential test based on Theorem
3.1 by inspecting the sequential plot of (3.21) at each observation. The plot is shown in
Figure 4.2. The horizontal line indicates the critical level. The change is detected at the
first intersection of the sequential plot with the chosen critical line.

Our sequential plot suggests change at the 21* observation. Test 1 at the 5% level of
significance detected this change the first time at the 27** inspection, and the value of the

test statistic at this point is

[T = 3.9694, k =27.
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Figure 4.2 Plot of |U'}|, k= 1,2, ..., for the Stanford Heart Transplant Data

The p-value for Test 1 at this point is 0.0412, so the null hypothesis of identical distribution
of survival times is rejected. Here, the sequential test stopped after the 27** observation at
a = 0.05, and we conclude that there is a change in the survival distribution over the study
period at this point. This concurs with Kalbfleisch and Prentice’s findings that the year of
acceptance to the study is significant. Hence, thier analyses uses time dependent covariates
in the proportional hazard model, which is justified.

We next look at the performance of Test 2 using (3.23). The graph of the sequential
process is shown in Figure 4.3. The plot based on Test 2 also suggested change at the 21
observation and the test detected this change the first time at the 27*® inspection with 5%

significance giving [U})| = 2.3574, k = 27. Based on (3.16) of Theorem 3.2, the p-value
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is 0.0401 and the conclusion is similar to that of Test 1, i.e., we reject the null hypothesis

of identical distributions for the Stanford Heart Transplant data.
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Figure 4.3 Plot of |[7§2,3|, k=1.2..., for the Stan ford Heart Transplant Data

The following figures are the sequential paired plots for both tests at significance

levels a = 0.1, 0.01, and 0.001, respectively, for the Stanford Heart Transplant data.
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Figure 4.4 Plots of Iﬁo(l,zl and |(7§2| ata = 0.10 for Heart Transplant Data
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Table 4.9 gives the various stopping times at their corresponding significance levels and

truncation point N = 103.

Table 4.9 Table of a-level Stopping Times for Test1

Stopping Time k* | « |t7§‘,3| P-value

26 0.10 | 3.5813 | 0.0972
28 0.01 | 4.5593 | 0.0089
00 0.001 | NA NA

Table 4.10 lists the various stopping times for Test 2 using the Stanford Heart Transplant
study.

Table 4.10 T'able of a-level Stopping Times for Test2

Stopping Time &* | a | |U.| | P-value

26 0.10 | 1.9656 | 0.0672
36 0.01 | 2.5491 | 0.0043
73 0.001 | 3.5327 0

We note from the tables that the sensitivities of both tests are approximately the same for
detecting early changes in the sequence. By inspection of the plots, Test 1 could not detect
any change at o = 0.001 which occurred later in the sequence but was detected by Test 2
at the 737 inspection. Hence, Test 2 is more sensitive in detecting changes than Test 1.

Considering data from only the transplant group and using Test 1, the sequential
test gave max [ﬁilk)l = 3.441 (with a p-value of 0.1407). The result is not statistically
significant implying there are no statistical differences in methods of transplantation over
the study period. Hence, the observed significant change in the distribution of the data is
not due to changes in the transplant techniques over the time period.

We note the power of the sequential statistics over that of the fixed sample method.

Allowing for sequential testing, an initially 6% year planned study could be stopped after
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an average period of only 23 years.

Example 4.2 Radiation Therapy Oncology Group Study

The Radiation Therapy Oncology Trial was a randomized, multicenter clinical trial
comparing two levels of treatment therapy in people with primary tumors at any four sites
in the head and neck. We reproduce in Table 4.11 part of the data set for this clinical
trial carried out by the Radiation Therapy Oncology Group in the United States. This is
Data Set II of Kalbfleisch and Prentice (1980) which is reproduced and listed sequentially
in order of patient entry date in Liu (1998). Patients entering the study were randomly
assigned to one of the treatment groups: radiation therapy alone (test) or radiation therapy
together with a chemotherapy agent (standard). One objective of the study was to compare
the two treatment policies with respect to patient’s survival and the primary question was
whether the combined treatment mode is preferable to conventional radiation therapy. 195
patients with squamous carcinoma entered the study randomly between 1968 and 1972. The
need to accommodate censoring was an important point throughout the study, since some
patients were lost to follow-up because of change of residency, though these cases were
rare. Although this was a randomized study, considerable lack of homogeneity between
the individuals being studied became primarily important. To easily accommodate this in
any analysis, nonparametric or robust procedures need to be considered.

The censoring indicator §; equals 0 or 1 depending on whether an observation is
censored or not. S; indicates the i** patient’s treatment group (1 = test and 0 =standard)

and ¢ denotes the sequential order based on the date of patient’s acceptance.



Table 4.11 Radiation Therapy Oncology Data

1 2 3 4 5 6 7 8 9 10
631 270 327 243 916 1823 637 235 255 184
1 1 1 1 1 0 1 1 1 1
1 0 1 1 0 0 1 0 1 1
11 12 13 14 15 16 17 18 19 20
1064 414 216 324 480 245 1565 560 376 911
1 1 1 1 1 1 0 1 1 1
1 1 0 0 1 0 1 0 0 1
21 22 23 24 25 26 27 28 29 30
279 144 1092 94 177 1472 526 173 575 222
1 1 1 1 1 0 1 1 1 1
0 1 1 1 0 1 0 0 1 1
31 32 33 34 3 36 37 38 39 40
167 1565 134 256 404 1495 162 262 307 782
l 1 1 1 1 0 1 1 1 1
0 1 0 0 0 0 1 1 1 0
41 42 43 44 45 46 47 48 49 50
661 1609 546 1766 374 1489 1446 74 301 328

1 0 1 0 1 0 0 1 1 1

0 1 1 0 1 1 1 0 1 1
51 52 33 54 55 96 57 58 59 60
459 446 1644 494 279 915 228 127 1574 561

1 1 0 1 1 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1
61 62 63 64 65 66 67 68 69 70
370 805 192 273 1377 407 929 548 1317 1317
1 1 1 1 0 1 1 1 0 0
1 0 0 0 0 0 1 0 0 0
172 73 74 75 76 7 78 79 80
517 1307 230 763 172 1455 1234 544 800 1460
1 0 1 1 1 0 0 1 1 0
1 1 0 1 1 0 0 0 1 1
81 8 8 8 8 8 8 8 89 90
785 714 338 432 1312 351 205 1219 11 666
1 1 1 1 0 1 1 0 1 1
1 1 0 0 0 0 1 1 0 1
91 92 93 94 9 96 97 98 99 100
147 1060 477 1058 1312 696 112 308 15 130
1 0 1 0 0 1 1 1 1 1
1 0 1 1 0 0 1 0 0 0

Sources : Kalbfleisch and Prentice {1980) and Liu (1998)
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Table 4.11 Radiation Therapy Oncology Data ( continued )

1 101 102 103 104 105 106 107 108 109 110
X 296 293 545 1086 1250 147 726 310 599 998
d; 1 1 1 0 0 1 1 1 1 0
Si 1 1 0 1 1 0 1 0 1 1

( 111 112 113 114 115 116 117 118 119 120
Xi 1089 382 932 264 11 911 89 525 332 637
0; 0 1 0 1 1 0 1 1 0 1
S; 0 1 1 0 0 1 1 1 0 1

{ 121 122 123 124 125 126 127 128 129 130
Xi 112 1095 170 943 191 928 918 825 99 99
d; 1 0 1 0 1 0 0 0 1 1
S; 1 1 1 1 1 0 1 1 1 1

i 131 132 133 134 135 136 137 138 139 140
Xi 933 461 347 372 731 363 238 593 219 465
0; 0 1 1 1 0 1 1 0 1 1
Si 1 0 0 1 0 1 0 0 1 1

( 141 142 143 144 145 146 147 148 149 150
Xi 446 553 274 723 532 154 369 541 107 834
0; 1 1 1 0 1 1 1 1 l 0
Si 0 0 0 0 0 0 0 1 0 0

1 151 152 153 154 155 156 157 158 159 160
Xi 822 775 336 513 914 757 794 105 733 600
b 0 1 1 1 0 1 0 1 0 0
Si 1 1 1 0 0 1 1 0 1 0

i 161 162 163 164 165 166 167 168 169 170
Xi 266 317 407 346 o518 395 81 608 760 343
0; 1 1 1 1 1 1 1 0 0 1
Si 1 0 0 0 0 0 1 0 1 1

? 171 172 173 174 175 176 177 178 179 180
Xi 324 254 751 334 275 546 112 182 209 208
0; 1 1 0 1 1 0 1 0 1 1
S; 0 1 1 1 0 0 0 0 0 0

1 181 182 183 184 185 186 187 188 189 190
Xi 174 651 672 291 498 276 90 213 38 128
0; 1 0 0 1 1 0 0 1 1 1
Si 0 1 0 0 1 0 1 1 0 1

i 191 192 193 194 195
Xi 445 159 219 173 413

0; 0 1 1 1 0

Si 1 1 0 0 0

Sources : Kalbfleisch and Prentice (1980) and Liu (1998)
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We begin a nonparametric discussion of these data by looking at the Kaplan Meier
survival curves. The curves are shown in Figure 4.4. It is notable that the survival curves
do not suggest any wide swings. The curves indicate relatively weak difference between

the two groups.

100

| — Iftaar |

60 80

Proportion Surviving, %
40

20

Survival Time (Days)

Figure 4.7 Kaplan — Meier baseline survival curves

The mean (limited to 1823 days) and the median of the test group are 692 and 595 days
with 95% confidence intervals (555, 828) and (302, 488), respectively. For the standard
group, the mean (limited to 1609 days) is 717 days with 95% confidence interval (605,
828) and the median survival time is 525 with 95% confidence interval (392, 659). It is
of considerable interest to determine the relative extent to which chemotherapy relates to
subsequent survival. The estimated hazard ratio is 1.1722 (p-value= 0.3458) with 95%

confidence interval (0.8425, 1.6309).
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Using the Gehan test (2.16) for comparing the two treatments, the normalized statis-
tic was Zg = 1.3118 (two sided p-value= 0.0948). These results indicate no statistical
significant differences between the two treatment groups at the 5% level of significance,
i.e., the standard method and the new test have the same survival experience. Hence. at 5%
level of significance, we expect lifetime observations from the combined sample of the two
groups to be identically distributed.

Now we turn to the problem of determining whether the survival time distribution
changes over the period of study. The graph in Figure 4.8 is a plot of sequential statistics
based on Test 1. It is evident from the graph that a change is detected after the 837 inspec-
tion at the 5% significance level. Based on the standard interpretation of cumulative sum

plots, we estimate the time of change to be around 64.

Sequential Statistic 1
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Figure 4.8 Plot of Iff‘fl,c)l, k =1,2..., for the Radiation Therapy Oncology Data

The plot of Test 2 process is shown in Figure 4.9. The results are similar and consis-

tent with Test 1 but slightly more sensitive.
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Figure 4.9 Plot of [U3), k = 1,2..., for the Radiation Therapy Oncology Data

The following figures show the plots at the significance levels a = 0.1, 0.01, and 0.001.
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Figure 4.10 Plots of |U.})| and |US}| at « = 0.10

for the Radiation Therapy Data
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Figure 4.12 Plots of |U}}| and |U%| at @ = 0.001 for the Radiation Therapy Data

It is also clear that the change is not significant at the & = 0.01 and o = 0.001.

Both the data sets of the Stanford Heart Transplant program and Radiation Therapy

Oncology study have been extensively studied under the assumption of identical distribu-

tion of the survival time. In Gombay and Liu (2000c), using a test based on (2.48), they
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show that this assumption is not reasonable for the Stanford Heart Transplant data. Their
U-statistic change-point test detected a 5% level significant change at the 49** observation.
Our sequential test at the same level detected a change earlier in the sequence {k~%/2U;,
k =1,...,,103}, at the 21* observation and stopped at the 27** observation.

Their change-point test failed to detect any significant change in the process of the
Radiation Therapy Oncology data, giving support to the null hypothesis. However their
plot for the process suggested a test for a change alternative H. They shield this deficiency
by concluding that the purpose of the change-point test is to see that H, is not too wildly
violated before a user does some statistical inference, so the use of some powerful test is
not important. With this, they justify Kalbfleisch and Prentice’s use of time independent
covariates in the proportional hazard model. This visualized change in the change-point
test plot of {2:‘:1 U,k=1,.., 195} was easily detected by our sequential test, indicating
the greater power and sensitivity of our sequential test. So, even if the full sequence of
observations X\, ..., X, is available, the sequential test may be preferable to the change-

point test.

4.4 Some Problems in Sequential Analysis

When issues of ethics, feasibility, and cost all have to be addressed satisfactorily in a
randomized biomedical or clinical research, sequential analysis represents the “gold stan-
dard”. However, there are a number of issues to consider in sequential analysis to ensure
valid conclusions. Sequential testing of accumulating data is essential to monitoring, but it

does have statistical implications. If the null hypothesis, H, is in fact, true, and sequential
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tests of that hypothesis are made at the same level of significance using accumulating data,
the probability that, at some time, the test will be called significant by chance alone will be
greater than the significance level selected. That is, the rate of incorrectly rejecting the null
hypothesis will be larger than what is normally considered to be acceptable. The reason for
this is that the tests are based on asymptotic results, that is, when N — oo. where N is the

truncation point. So when N = 50, or 100, then caution must be used.

4.5 Conclusion and Future Work

The results of this thesis are based on the current research of Prof. E. Gombay. To our
knowledge, no studies have been done to accommodate such change detection procedures
for empirical data. In this thesis, we have demonstrated our findings and gave practical
examples where our research will be useful. The results from the analysis show that our
sequential procedure is an impressive decision maker. As pointed out in the simulation
study, Test 2 is more powerful than Test 1. However both tests suceeded in providing
extreme reduction in sample size ranging from about 20% to 80%. Comparing our results
with those of the AMOC procedure, this reduction is really impressive. Because of the
simplicity of applying our sequential procedure, we recommend its use whenever change
detection problems are considered.

It will be interesting to investigate the characteristic behavior of the test at the early
stages of the analysis. It is conjectured that the variance estimate of the process at the early
stage of the process will be reasonably stable enough not to affect our procedure. Analysis

of the process shows that if & is small, the process has early fluctuation even under the no
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change hypothesis. This means the probability of detecting false early changes increases
and the sampling process could often be truncated at some premature limit at the early
stages. In most situations, the level of “safety” obtained by employing our sequential test
would far exceed the level of any “harm” incurred by truncating too soon. However, the

conjecture remains to be investigated later through further simulation studies.
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C codes for the Simulation

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <unistd.h>

#define QUT_FILE "Result_file.dat"

int MM; /* Number of simulation */
int N1; /* Change point */
double L2; /* Mean after fixed change point*/

double L1 =1.0;
double L = 3.0;
int T =4 ;
int NN;

float *sum, *sqg, *statl, *avrstop, *stat2, *sdev;
float *v, *r, *tl, *t2, *c, *count, *x, *sumsqg, *u;;
int *stop

char *d;

float TS2[4], tmpfloat, tmpfloatl, tmpfloat2;
FILE *out_putfile;

int i,l'jlalk;

"site2nn";
"(Last Change : December 2000)";

char ProgramName[50]
char LastChange[100]

¥ e e e */
/*

_ register functions called by self/main other

*/

void ShowUsage (void) ;

void ProcessInput(int pbv_argc, char *pbv_argv(]);

void CreateArrays (void) ;



main(int argc, char *argv(])
{

ProcessInput (argc,argv) ;
CreateArrays();

out_putfile=fopen (OUT_FILE, "w+");

srand48 (getpid());

TS2[0]=1.96;
TS2[1]=2.24;
TS2[2]=2.81;
TS2[3]=3.48;

for(a=0; a<T; a++)

{

stop[0]=0;
count=0.0;
TS=TS2[a];

for(l=1;1l<=MM;1l++)
{
uf{0]1=0.0;
v{0]1=0.0;
sumsqg(0]=0.0;
sum{0]=0.0;
sdev[0]1=0.0;

statl{0]=0.0;
stat2[0]=0.0;

/* generating tl, exponential time for group 1 */

for(i=0;i<N1l;i++)

{
tmpfloatl = 0.0001+drand48();
tl[i] = (-1/L1)*log(tmpfloatl);
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}

/* generating t2, exponetial time for group 2 */
for(i=0;i<N2;i++)
{
tmpfloat2 =0.0001+ drand48();
t2(i] = (-1/L2)*log({tmpfloat2);
}

/* generating exponenetial censoring variable */
for(i=0;i<NN; i++)
{

tmpfloat =0.0001+ drand48();

cl[i] = (-1/L)*log{tmpfloat);

/* combine group 1 and 2 element */
for(i=0;i<NN; i++)

{
if(i<N1)
{ x[(i1=t1({i]; }
else
{ x(i1=t2{i-N1]; }
}

/* compute r */
for(i=0;i<=NN;i++)

{
if(cli)<x([1i])
{
r{i] = clil];
df(i} = 0;
}
else
{
r(i] = x[i];
dfi] = 1;
}
}

for(i=1;i<NN ;i++)
{
ufi]=0.0;

for (j=0;j<=i;j++)



{
if (((x[i]l>r(j)) && (dA{jl==1))]|((r{i]==x[j]) &&
(d[i}==0) && d(jl==1))
{ ufi)l=ulil+1.0; }
else
{
if ((rlil<r(j) && dA[il==1) || (x[i]l==x([]j] &&
diil==1 && d[j]1==0))
{ ulil=ulil-1.0; }
else
{ ufi]=ufil+0.0; }
}
}

sum{i]=sum[i-1]+uli];
sumsq[i]=0.0;

for (k=1;k<=i;k++)

{
v(ik]=0.0;
for (j=0; (j<=1)&&(ji=k);j++)
{

1E(((rlk]l>r[j])&&(d[jl==1)) || ((r{k]l==r[j])&&(d[k]==0)
&&(d[jl==1)))
{
vikl=v{k]+1.0;
}
else
{

if(((rlkl<r(jl)&&(dlkl==1)) || ((r[k]l==r[j])&&(d[k]==1)
&& (d[j]1==0)))
{
vikl=v[k]-1.0;
}
else
{
vikl=v{k]+0.0;
}
}
}
sumsqg[i]=sumsqgl[i]+v[k]*v[k];

}

sdev([i]=sqrt(sumsqli]);



/*Egtn 3.19*/

statl[i]= sqrt(3.0)*abs(sum[i])/sdev(i];

/*Egtn 3.25*/
stat2[il=sqrt(3.0*i)*abs(sum[i])/ (sqrt(NN) *sdev{i]);

void ProcessInput(int pbv_argc, char *pbv_argv(])
{
int CmdLinePtr;

if (pbv_argc==1)
ShowUsage () ;

CmdLinePtr=1;

MM = atoi(pbv_argv[CmdLinePtr++]);
N1 = atoi(pbv_argv(CmdLinePtr++]);
L2 = atof(pbv_argv[CmdLinePtr++]);
/*
report command line unput to user
*/
fprintf (stderr, "\n\n User Input
\"$s\"\n\n", ProgramName) ;
fprintf (stderr," MM : %u\n",MM);
fprintf (stderr," N1 : %u\n",N1l);
fprintf (stderr," L2 : $f\n",L2);

fprintf (stderr, "\n\n");

void ShowUsage (void)

{
fprintf (stderr, "\nUSAGE: %s MM N1 L2\n\n", ProgramName) ;
fprintf (stderr," MM : Number of Simulation\n");

fprintf (stderr," N1 : Sample Size \n");
fprintf (stderr," L2 : L2 (exp parameter)\n\n®);
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fprintf (stderr, "$s\n\n", LastChange) ;

exit(-1);

void CreateArrays(void)

{

fprintf (stderr, "Dynamically allocating arrays...");

if ((sum=(float *)malloc (NN*sizeof (float)))==NULL)
{
fprintf(stderr, "\nERROR : Could not malloc array
size N : %d\n\n",NN);
exit(-1);
}

if ((sg=(float *)malloc(NN*sizeof(float)))==NULL)
{

fprintf(stderr, "\nERROR : Could not malloc array
size N : %d\n\n",NN);

exitc(-1);

}

if ((statl=(float *)malloc(NN*sizeof (float)))==NULL)

{

fprintf (stderr, "\nERROR : Could not malloc array
size N : %d\n\n", NN);

exit(-1);

}
if ((stat2=(float *)malloc(NN*sizeof(float)))==NULL)

{

fprintf (stderr, "\nERROR : Could not malloc array
size N : %d\n\n",NN);

exit(-1);

}
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if ((sdev=(float *)malloc(NN*sizeof(float)))==NULL)
{
fprintf(stderr, "\nERROR : Could not malloc array
size N : %d\n\n",NN);
exit(-1);

}

if ((sumsqg=(float *)malloc (NN*sizeof (float)) )==NULL)
{

fprintf (stderr, "\nERROR : Could not malloc array
size N : %d\n\n",NN);

exit(-1);

}

if ((u=(float *)malloc(NN*sizeof(float)))==NULL)

{

fprintf (stderr, "\nERROR : Could not malloc array
size N : %d\n\n",NN);

exit(-1);

}

if ((v=(float *)malloc(NN*sizeof (float)))==NULL)

{

fprintf(stderr, "\nERROR : Could not malloc array
size N : %d\n\n",6NN);

exit(-1);

}
if ((r=(float *)malloc(NN*sizeof (float)))==NULL)

{

fprintf (stderr, "\nERROR : Could not malloc array
size N : $d\n\n",NN);

exit(-1);

}

if ((c=(float *)malloc(NN*sizeof(float)))==NULL)
{
fporintf (stderr, "\nERROR : Could not malloc array
size N : %d\n\n",NN); exit(-1);
}

if ((x=(float *)malloc(NN*sizeof (float)))==NULL)

{

fprintf (stderr, "\nERROR : Could not malloc array
size N : %d\n\n",NN);

exit(-1);
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}

if ((tl=(float *)malloc(Nl*sizeof (float)))==NULL)
{

fprintf (stderr, "\nERROR : Could not malloc array
size N1 : $%d\n\n",Nl);

exit(-1);

}

if ((t2=(float *)malloc(Nl*sizeof (float)))==NULL)
{

fprintf(stderr, "\nERROR : Could not malloc array
size N1 : $d\n\n",N1l);
exit(-1);
}
if ((count=(float *)malloc(MM*sizeof(float)))==NULL)
{
forintf (stderr, "\nERROR : Could not malloc array
size N1 : %d\n\n",MM);
exit(-1);
}
if ((stop=(int *)malloc (MM*sizeof (int)))==NULL)
{
fprintf (stderr, "\nERROR : Could not malloc array
size MM : %d\n\n",MM);
exit(-1);
}
if ((d=(char *)malloc(NN*sizeof (char)))==NULL)
{
fprintf (stderr, "\nERROR : Could not malloc array
size NN : %d\n\n",NN);
exit(-1);
}

fprintf (stderr, "Done\n\n");

}

if (i>=NN-1)
{
i=i+l;

count=count+0.0;
stopil]=stop[l-1]1+NN;

}
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else if (i>Nl&&stat2[i-1]>TS)

{

count=count+1.0;
stop[l]l=stop{l-1]+i+1;

break;

}

}

fprintf (out_putfile, "No of simmlation=%3d\n\n",MM);
fprintf (out_putfile, "sample size=%3d\n\n",NN);
fprintf (out_putfile, "Change point=%3d\n\n",N1);
fprintf(out_putfile, "s-Size after Change=%3d\n\n",N2);
fprintf (out_putfile, "Critical boundary =%5.2f\n\n",TS);
fprintf (out_putfile, "Mean after Change=%6.1f\n\n",L2);
fprintf (out_putfile, "simu-power=%6.4£\n\n",count/5000.0);
fprintf (out_putfile, "stop time=%6d\n\n" , stop[MM]/5000);

}

fclose(out_putfile);

return 0;

End of program.
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