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Abstract

Climate change concerns have raised awareness about the importance of decarbonizing

the power sector. In achieving such a goal, energy storage is a critical operation that

is currently done using mostly fossil fuels as a chemical energy storage. The only

viable alternatives are battery energy storage systems (BESS) given their portability,

scalability, and ease to install when compared with other storage technologies. BESS

have been an important subject of research for decades. However, their massification

has not been fully realized due to their cost and operational complexity.

The battery scheduling problem has been extensively analyzed and a great variety

of algorithms have been proposed as a solution. Nevertheless, considering that BESS

operation is highly dependant on the electrolyte chemistry, not all scheduling and con-

trol algorithms are useful for every real-time condition and every battery. Moreover,

sophisticated high performing BESS control algorithms demand high computational

resources that prevent them from being implemented in distributed energy systems.

For instance, behind the meter (BTM) applications for residential buildings require

real-time BESS control with high time resolution data.

In this work, we propose a real-time BESS control method based on reinforcement

learning and neural networks aimed at working with reduced computational resources

and independently from battery chemistry, which is then amenable to imbedded sys-

tems applications. On the one hand, neural network (NN) algorithms popularity

stems from their ability to solve high-dimensional complex problems with minimal

computational resources once the model has been trained. On the other hand, the

NN training process requires high amounts of good quality labelled data. During this
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project, we used 1-min resolution datasets containing photovoltaic (PV) generation,

residential demand, and price signals. Notwithstanding, the datasets used did not

contain BESS charge and discharge information. We, however, generated charge and

discharge data with a reinforcement learning (RL)-based Q-learning algorithm that

took into account the system characteristics of a real vanadium redox flow battery

experimental setup as well as the technical features of a lithium-ion battery available

in the market.

The RL-agent training process uses large amounts of data and takes considerable

processing time to obtain an optimal policy for a daily operational period. Therefore,

the RL-agent’s main function is to generate labels to train different NN models, but

not to be deployed on a real-time controller. The RL reward function privileged

charge and discharge sequences that minimize final user costs compared to a PV

system with no BESS. A positive reward was awarded every time the total electricity

cost of a PV system was higher than the cost obtained with a PV-BESS system. All

electricity costs were finally compared with the baseline PV system. However, the

battery agent was not always able to decrease electricity costs below the baseline as

its performance is dependant on battery size and efficiency. In turn, the scheduling

labels resulting from the RL-agent operation allowed us to train our NN models with

an accuracy such that we were able to abate PV system electricity costs.

Finally, an application of our workflow to the BTM problem is explored, by com-

paring the electricity costs calculated with both Q-learning and NN algorithms, to a

residential flat tariff offered by a local electricity provider in Edmonton. Our simula-

tion suggests that in the current scenario, it is still not economically viable to adopt

BESS technology at a large scale in Alberta, Canada.
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This thesis includes work from the article Carolina Quiroz-Juarez and Petr Musilek,
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Chapter 1

Introduction

1.1 Problem definition

Awareness about the imminent risks of climate change and global warming leads to

creative solutions in the way we generate, transport, and use energy. Global green-

house gas (GHG) emissions related to energy use account for more than 70% [1];

particularly in Canada, fossil fuel electricity generation plants were responsible for

10.9% of the total CO2e GHG emissions in 2015 [2]. This scenario has strengthened

the number of efforts in many jurisdictions to decarbonize electricity power sectors

through energy efficiency measures, a higher penetration of renewable energy tech-

nologies or the incremental use of nuclear power [1].

Canada’s commitment to contribute to the reduction of the risks associated with

climate change is centered on the Pan-Canadian framework, December 2016, which

establishes 30% GHG reductions below 2005 levels by 2030. The framework consists

of a) carbon pricing, b) complementary actions for reducing GHG emissions, c) adap-

tation measures, and d) support to low carbon technologies [3]. In line with this, the

Canada’s Energy Futures 2020 outlook (the outlook) establishes two main scenarios,

evolving and reference, for the long-term energy sector development. The evolving

scenario implies a reduction in the use of fossil fuels and, consequently an increase in

the use of low carbon technologies. This scenario relies on the assumption that solar
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power technology and EV battery costs drop by 75% and 50%, respectively, during

2020 to 2050 [4].

The 2020 pandemic provoked 5.6% energy use decline in 2020, mainly due to the

public health measures that instructed people to work from home. In Alberta, the

estimation is 5% total electricity decrease in commercial and industrial demand be-

cause it shifted to residential consumption. The outlook´s evolving scenario reflects

this tendency with an estimated energy use decline in 2050, driven mainly by an

assumed higher electrification on the end-user side, which is supplied mainly by re-

newable power (including hydropower, solar, wind, and renewable fuels) and natural

gas. Under this scenario, the current 16% electricity end-use demand increases to

27% by 2050, while wind, solar, and utility-scale battery storage capacities increase

up to 40 GW, 20 GW and 3 GW, respectively. Yet, uncertainty in the outlook is

related to solar, wind, and battery storage technology capital costs [4].

Four Canadian provinces, including Alberta, rely on coal and natural gas to gen-

erate electricity. According to Dolter and Rivers [2], wind and solar energy are able

to facilitate the country’s GHG reduction. Wind locations in southern Saskatchewan

and Alberta would potentially be the least-cost option through the expansion of inter-

provincial transmission lines with no further requirement of energy storage. Nonethe-

less, this scenario depends on the transmission infrastructure capital cost; in case

such cost is higher than modeled, the use of energy storage increases.

According to the International Energy Agency (IEA), photovoltaic (PV) technol-

ogy remains as the energy policy backbone to help in the decarbonization of the

power sector. Utility scale systems recorded levelized costs of electricity below 1.5

USD cents/kWh, and by the end of 2020, PV supplied more than 3.5% electricity gen-

eration globally. In Canada, the addition of new PV capacity concentrates in Ontario
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with 170.3 MW, Alberta with 31.8 MW, and Manitoba with 20.5 MW. Regarding

the 3.3 GW cumulative capacity, 83% is connected to the low voltage distribution

infrastructure. This industry added an estimated value to the Canadian economy of

403 MCAD in 2019. As a reference, commercial roof-top system prices varied be-

tween 1.80-2.5 CAN/W for 10-250 kW installed capacity systems [3]. Nonetheless,

technology costs for residential applications may decrease in the outlook’s scenario

where end use increases in 11% by 2050.

Both solar and wind energy resources are extensively analyzed to help in reducing

the electricity sector carbon footprint; however, its main drawback is the inherent

intermittency of renewable resource-dependent electricity generation that limits the

reliability of systems with a high penetration of such technologies [5]. Moreover,

particularly solar PV for residential applications has an additional disadvantage, the

mismatch between generation and demand. Solar power generation peaks during mid-

day, but residential demand mainly is higher during evenings. Given the low demand

when most of the PV power is produced, the power profile acquires the so-called ‘duck

curve’ form that negatively impacts the distribution grid [6]. This problem has been

tackled through the implementation of net or bidirectional metering programs where

a small fee is paid back to the distributed generator. As long as this mechanism is

not always economically attractive or nonexistent, the installation of battery storage

with PV systems is attracting attention by allowing the shift of electricity from the

time it is generated to the time it is required [7].

BESS economic viability is partially given by the optimal operation strategy ma-

terialized as savings in the final user’s monthly bill, which implies scheduling charge-

discharge cycles depending on the time when PV generation is available, retail elec-

tricity price, and household residential user’s demand [8, 9]. The challenge is then,

to find BESS-PV optimal operation strategies that allow the end-residential user to
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obtain electricity bill savings that contribute to the BESS-PV uptake.

More recently, machine learning methods have been utilized to tackle a wide range

of problems within the energy sector given its great potential to solve complex tasks

involving multiple highly stochastic variables. Two promising branches of machine

learning, deep learning and reinforcement learning (RL), are applied in this work to

define the optimal battery scheduling and then to predict the battery operation for

residential applications.

1.2 Thesis Objectives

The ability of a RL agent to learn the optimal scheduling of a grid-tied battery and

PV system has been shown [10]. However, there is room for improvement using data

with higher resolution. Hypothetically, a higher resolution implies a greater amount

of data, making the problem more complex and requiring more computation. Us-

ing neural networks (NN), once the optimal battery scheduling has been established,

computation complexity reduction may be possible. The research question is if a NN

real-time BESS controller, potentially implementable in a microprocessor, can reduce

the computational complexity of a RL model-based controller.

Model performance will be evaluated by comparison of the electricity costs associ-

ated with the PV-system (baseline) and the battery system. To analyze the effect of

regulatory incentives on the battery system economics, the battery controller based on

time of use (TOU) and feed-in tariff (FIT) incentives is compared to a flat electricity

tariff’s scheme. Specific objectives are as follows:

1. To apply RL and NN algorithms to battery scheduling and to analyze of the

potential improvement in terms of lower computation complexity along with
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lower real-time battery operation associated costs.

2. To investigate seasonal BESS operation.

3. To examine BESS economic benefits under the effect of regulatory incentives.

4. To compare two BESS chemistries, lithium-ion and vanadium redox flow, for

residential applications to analyze the potential uptake.

1.3 Thesis Outline

This thesis is structured as follows: Chapter 2 contains background information

about BESS operation strategies and related research on BESS control methods.

It is complemented by a brief introduction of the utilized machine learning methods,

Q-learning and NN. In Chapter 3, the vanadium redox flow battery (VRFB) exper-

imental setup and battery characterization are presented. The operational BESS

strategy is explained along with the real data utilized in the simulations and the de-

scription of the BESS adaptive controller principle in Chapter 4. In this chapter, a

brief explanation of TOU/FIT regulations is presented. Simulation results and cor-

responding analysis are included in Chapter 5, and conclusions as well as potential

future work are found in Chapter 6.
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Chapter 2

Background

2.1 BESS for residential applications

Electricity demand is variable during different parts of a day; depending on the period

of time when electricity is consumed, it is defined as off-peak, mid-peak, or peak. Each

tier is defined by the electricity system costs, e.g., at times of peak demand, power

system operators must include expensive generation to supply the total demand. To

decrease the high variation in demand, programs such as demand side management

(DSM) have been implemented together with dynamic pricing tariff schemes such as

time-of-use (TOU). The main goal of such programs is to displace demand from peak

to off-peak periods through the minimization of the final user electricity bill, which

is considered a strong incentive to change the end user’s electricity consumption pat-

terns [11]. Nonetheless, DSM programs have not been effectively implemented since

final users are required to keep track of their consumption and electricity rates [12].

Load shifting is one of six DSM generic techniques [13–15]; when implemented

through BESS systems, it automatically controls charge and discharge cycles by tak-

ing advantage of retail tariff differences established by TOU regulations, i.e., the

BESS charges during periods when the electricity price is lower and discharges dur-

ing on-peak periods [6, 16, 17].

Despite the capability of BESS to deal with solar PV intermittency and the mis-

match between renewable electricity generation and residential demand, the technol-
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ogy has not yet been broadly adopted in the BTM market due to the technology’s

prevalent high costs [18]. A remarkable case is Germany, where li-ion BESS declined

costs more than 50% between 2013 and 2018 [19]; actually, the net present value of

residential BESS-PV systems is there positive [20]. By the end of 2018, 125,000 BTM

BESS-PV systems had been installed in Germany [19]. Certainly, regulatory incen-

tives in Germany have played a major role in their mass-market uptake, however,

with declining feed-in-tariffs (FIT) and incentives, the question about the required

conditions to have economically viable PV-BESS systems persists [21–23].

VRFB has been pointed out as a viable option for large-scale stationary applica-

tions because in some aspects they outperform li-ion batteries. For instance, they

have a great lifetime, chemical compounds represent a lower risk for human activity,

no risk of explosion has been recorded, their unique feature of independent power

and energy sizing, larger depth of discharge (DOD) [24], competitive cost for larger

capacities [25], and lower cost of manufacturing [26]. However, the technology costs

reduction has not been sufficient to penetrate the residential sector.

BESS economic feasibility is highly dependent on the degree PV generation is self-

consumed [22], i.e., it implies shifting PV generation for later utilization at a time

when no solar energy is available [27]. This, in fact, improves the relative PV system

cost by increasing the total amount of PV energy consumed [28]. In accordance to

Johann and Madlener [29], and Luthander et al [30], a 0.5-1 kWh BESS system per

installed kW PV is able to increase self-consumption by 13-24%. Moreover, Kucevic

et al [31] highlights that self-consumption seems to be the main driver for BESS

stationary uptake.

Based on the experience in Germany, where retail prices are high and wholesale

price access is limited for distributed generators, regulatory incentives are important

in the short term to rise investments on residential BESS-PV systems [22]. Especially

FIT programs are considered highly effective regulatory instruments for the creation of

renewable technology markets by mitigating the costs associated with the technology,
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among other benefits [32].

In 2009, Ontario provincial government in Canada launched the microFIT program

that ended up in December 2017, very likely due to the loss of political support during

its implementation [32]. Although this program is already finished, existing contracts

received an economical incentive for 20 years of contract duration. Among the five

countries in America, Canada and the United States have the highest scores in terms

of policy density, which is the number of renewable energy policies related to a specific

goal. Canada alone accounted the most acute budget intensity score that indicates

that more of the designed energy policies have a budget, and as a result the country

will more likely reach its goal in terms of GHG emissions reduction. Ten provinces

in Canada created 18 policies between 1998 and 2015 [1]. However, Alberta did not

design a FIT program; instead, it established the microgeneration regulation allowing,

for instance, up to 5 MW PV systems to receive credits for the electricity sent back

to the grid.

Independently of the regulatory incentives in place, the question about the con-

ditions in which BESS-PV systems are an economically viable option for final users

persists. This viability is partially supported by the optimal BESS operation strategy

that provides savings on the monthly bill to the final user.

2.2 BESS control methods

Four types of algorithms have been used to control battery storage systems cou-

pled with residential PV systems: optimization-based , rule-based, machine learning-

based, and model-based [10, 33].

Optimization- and model-based methods usually provide high performance, how-

ever, they require high computation resources hardly implementable in microproces-

sors. Rule-based algorithm implementation is simpler, but they are designed accord-

ing to the battery operation conditions; in the long term, this type of algorithms may

deteriorate if not updated [33]. A review of the existing literature demonstrates the
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application of each type of methods.

The operation of a residential PV-battery system was simulated with two meth-

ods, rule-based and linear programming, to determine if the difference in resulting

costs justifies the implementation of the simpler method [28]. Authors found that

the rule-based resulted in 5% higher costs with the advantage that it only requires

real-time information. In [11], authors employed the sequential quadratic program-

ming method to obtain the maximum profit of a BESS based on real-time prices.

The analysis included the comparison of two flow battery chemistries, polysulfide

bromine and vanadium. Results demonstrate that the vanadium redox flow battery

obtains higher annual revenue, but with a larger payback period based on the op-

timal operation strategy defined by the optimization algorithm. Bergner et al. [23]

explored the linear optimization solved with the simplex algorithm to define the op-

eration strategies of a residential PV-battery system with feed-in power limitation.

According to their results, adaptive PV forecasts and intelligent battery operation

are economically feasible in the long-term. Residential PV-battery grid-tied systems

have demonstrated its potential to reduce the final user’s electricity bill by deter-

mining the optimal battery scheduling, in this case two different methods were used,

stochastic mixed integer nonlinear programming (MINLP) solved with metaheuristic

techniques [34] and particle swarm optimization (PSO) [9]. MINLP allowed an annual

electricity cost reduction of 58.65%, while with PSO the reduction accounted 4.2%.

Matallanas et al. [35] successfully implemented an active demand-side manage-

ment and battery load shifting strategy aimed at maximizing the residential self-

consumption rate with neural networks (NNs). In this case, the authors tuned NN

parameters with a genetic algorithm. At a higher level, to analyze the penetration

of BESS in power distribution networks, the optimal scheduling of such devices was

modelled with Markov Decision Processes (MDP). The objective of reducing the en-

ergy cost and network losses was only reached by the defined optimal policy; the

revenue was strictly higher than with the other two defined policies, and the losses
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reduced a maximum of 1.62% [36]. Another branch of machine learning refers to

reinforcement learning (RL) algorithms that rely on an agent with no previous expe-

rience to gradually learn an optimal policy. Bijapur et al [37] as well as Kim and Lim

[38] simulated energy management systems oriented towards reducing energy costs;

in both cases, RL algorithms provided significant cost optimization. Contrastingly,

in [10], the economic improvement was marginal when comparing the results of a

battery system to a battery-less system, and even lower when compared to a mixed

linear programming (MILP) method. In this case, Graham trained the battery-RL

agent using the proximal policy optimization in a continuous action space.

Machine learning- and model-based methods are combined by Henri et al [33, 39],

and Kazhamiaka et al. [40] for adaptive battery control in household applications.

Model-predictive control (MPC) was first employed to define the optimal real-time

battery control strategy that maximizes profit depending on the time the electricity is

purchased or sold back to the grid i.e., based on a time-of-use pricing scheme. Results

obtained with the MPC method were then compared with supervised machine learn-

ing algorithms; NNs and support vector machine (SVM) in [33]; NNs, SVM, logistic

regression, and random forest in [39]; and NNs in [40]. According to Kazhamiaka

et al., NNs approached the MPC-level performance, however, Henri reported in [33]

85% prediction accuracy versus the 72% reached with the MPC algorithm. It is re-

markable that the improvement was possible at a fraction of the MPC computational

cost when using machine learning-based methods.

2.3 Reinforcement Learning

Reinforcement learning (RL) is considered a third machine learning paradigm, which,

different from supervised and unsupervised learning approaches, relies on agent learn-

ing through its interaction with the environment based on trial-and-error action selec-

tion. Like how human learning functions, the agent is not previously told what action

to take to obtain the higher reward from the environment, although its main goal is
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to get the highest possible accumulated reward in the long run by selecting optimal

actions. Given this nature, there are two actions the agent performs; exploration of

different actions to 1) observe the reward coming back from the environment and 2)

finding possible better actions; exploitation of the actions previously taken to improve

what the agent already knows trying to gather more rewards. This is a challenging

trade-off between exploration and exploitation in RL.

2.3.1 RL learning problem

The learning agent’s problem is captured by Markov decision processes (MDP), where

the agent observes the state of the environment and based on the information attained,

it takes one of multiple possible actions. During this process, the agent receives a

reward, a positive or negative number, depending on the desirability of the transition

from state to state, Figure 2.1. When looking at this process from a higher perspec-

tive, what the agent is doing when it observes a state and selects an action is that it

learns a policy that lets it gather rewards. Reward accumulation modelling depends

on the type of task being solved, for instance, a finite horizon model of determined

length and state assumes the expected reward is just the sum of the rewards over

that horizon [41].

Figure 2.1: Reinforcement learning mechanics.

The reward positively and immediately incentivizes a good action of the agent,
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but in the long run, the state-value function accounts for the rewards the agent is

expected to receive when in state s, in other words, the state-value function vπ of a

state is the expected reward the agent can accumulate under a policy π.

vπ(s)
.
= Eπ

[ ∞∑
k=0

Rt+k+1|St = s
]
, (2.1)

Likewise, the action-value function qπ is the expected return of taking action a

when starting in state s under a policy π.

qπ(s , a)
.
= Eπ

[ ∞∑
k=0

Rt+k+1|St = s, At = a
]
, (2.2)

As the agent’s goal is to obtain the maximum possible reward in the long run,

it is precise to identify the optimal policy π∗ or policies whose expected return is

greater when compared to other policies for all states. All optimal policies share

the same optimal state-value, v∗, and optimal action-value, q∗, functions; in fact, the

state value under an optimal policy equals the maximum expected return for the best

action from that state [42].

v∗(s) = max
a∈A(s)

qπ∗(s, a),

= max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a],
(2.3)

The optimal action-value, similarly, is given by the expected return when taking

the optimal action a′ at each following state in the following Q-function.

q∗(s , a) = E[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s, At = a], (2.4)

The second part of equation (2.3) and equation (2.4) are the Bellman equations

that recursively solve the MDP problem by giving the optimal policy to the agent [42].

2.3.2 Model-free and Temporal-difference learning (TDL)

Optimal policy computing is possible by using either model-based or model-free meth-

ods. Model-based methods can be solved with dynamic programming algorithms since
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the agent is able to estimate the model of the environment for the posterior policy

computing. As the term suggests, model-free methods assume the agent has no ac-

cess neither to the transition model nor the reward model. What the agent can do is

sampling and exploring to directly estimate action values, in other words, the agent

uses its own experience to solve the prediction problem. Once the agent starts acting,

it receives information of the state of the environment and selects an action, it then

receives feedback in the form of a reward and updates the estimated value of the next

state. This working principle allows value updating along the way without waiting for

the update at the end of the process and constitutes the main principle of TDL. As

long as TDL is based on the estimation of other values, it is known as a bootstrapping

method with the advantage of being implementable in an online fashion [41].

V (St) ← V (St) + α[Rt+1 + γV (St+1)− V (St)], (2.5)

2.3.3 Q-learning: an off-policy method

Q-learning is considered an off-policy method because it does not depend on a specific

policy to approximate the optimal action value function. The only requirement for

convergence is that the agent updates continuously all state-action pairs. Equation

(2.6) describes the Q-learning update rule that follows the same working principle as

TDL. Each time step k the algorithm estimates the Q-value of the action taken in the

state where the action is performed, and considering two elements, the reward and

the agent’s Q-value function, the Q-value of the next state is determined to update

Qk to Qk+1.

Qk+1 (St ,At) ← Qk(St, At) + α[Rt+1 + γmax
a

Qk(St+1, a)−Qk(St, At)], (2.6)
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2.4 Neural Networks

Supervised learning paradigm has been extensively used to solve classification and

regression tasks; depending on the problem intricacy, the solving method is selected.

Neural network is a popular method because of its flexibility to solve highly diverse

problems with different grades of complexity, and its ability to fast process new data

once the model has been trained with a large number of labeled examples. For

instance, solving a problem with a higher degree of complexity implies the addition

of more layers in the network or the number of nodes within a layer.

2.4.1 Multi layer perceptron architecture

Cutting-edge neural network research has proposed different network architectures

that apply in specific knowledge realms offer superior performance, yet the multilayer

perceptron architecture (MLP) is still the backbone of neural network models. MLP

is a feedforward neural network whose working principle is based on mapping an input

value x to an output category or target value y while learning some parameters θ that

result in the best function approximation [43].

Feedforward MLP architecture relies on the neuron as its basic unit to process

information, i.e., where a weighted sum of input signals is passed to a transfer func-

tion. More than one unit, a node or neuron vertically located one next to another,

conforming a layer. The minimal number of layers in a MLP is one hidden and one

output layer; the number of neurons in the output layer corresponds to the number

of categories we are mapping the inputs to in a classification problem. Neurons in

the same layer are not connected to each other, thus they do not communicate; com-

munication is just given between fully interconnected layers. The feedforward term

refers to the fact in MLP architecture the information is forward propagated from

left to right, with no feedback within the network.

Designing the architecture of an MLP involves the definition of the number of
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hidden layers, the number of neurons within each hidden layer, and the selection of

the appropriate activation function. A diagram of an MLP is shown in 2.2.

Figure 2.2: MLP architecture, minimal number of layers.

2.4.2 Training an MLP for multiclass classification problems

MLP training or learning refers to the process of finding the value of parameters

θ (both bias and weight terms); this process that is carried out with the back-

propagation and stochastic gradient descent algorithms. According to Haykin [44],

the training process includes two phases denominated forward and backward.

During the forward phase, the input signal is propagated through each hidden

layer up to the output layer. First, the input signal is multiplied by the fixed weights

associated with each neuron link in the first hidden layer. Second, the sum of all

terms in the first step is calculated. Third, the weighted sum is subjected to the

activation function and the resulting signal is input to the jth hidden neuron. This

process is repeated for all hidden layers throughout the MLP until the output layer.

Supervised learning problems require labeled training datasets to train an MLP. For

classification problems, the label of a training example predicted during the forward
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phase is compared to the label of the corresponding example in the training dataset,

if both labels are different, an error signal is generated. The error or loss function

expresses the errors as a function of the MLP parameters.

The backward phase, as the name suggests, is the propagation of the loss function

through the network in the opposite direction to the forward process, i.e., from the

output to the hidden layers (green dashed lines in Figure 2.2). This phase aims at

adjusting the values of the parameters associated to each neuron link while looking

for the optimization of the classification performance; this is based on the principle

that the weight terms modify the network’s behavior [45]. Adjusting MLP parameters

is a gradual optimization problem driven by the stochastic gradient descent (SGD)

algorithm that minimizes a cost function J(θ) conceptualized as an average over the

training set in equation (2.7). L is the error between the model’s predicted output

f(x, θ) for an input x, and the target y, and pdata is the empirical distribution of the

training set [43].

J (θ) = E(x,y)�p̂dataL(f(x; θ), y), (2.7)

Every time the backward phase is carried out, the partial derivative of each pa-

rameter is calculated and the gradient updated. The gradient is then used to update

parameters θ; in equation (2.8) ĝ is the gradient and m is the size of the training set.

ĝ =
1

m
∇θ

∑
i

L(f(x(i); θ), y(i)), (2.8)

One forward and one backward pass accomplishes an epoch; particularly for neural

network models, updating the MLP parameters is a process that requires minimally

thousand epochs.

Multiclass classification problems are a generalization of binary classification prob-

lems; as such, they consist of datasets with C distinct classes of data where each label

yp takes a value between 1 and C [46]. Although multiclass classification has been
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solved with extensions of binary classification methods, algorithms such as neural

networks can be naturally applied by using the softmax activation function [47] and

the categorical cross entropy loss function.

2.4.3 Model performance

It is a common practice to divide the dataset into a training, validation, and testing

set; the training is the largest set and is utilized to build the model, the validation set

is for identifying the best hyperparameters, and the testing set to evaluate the selected

model. A model capable of correctly predicting most of the labels in the testing set

has a low bias and is considered to generalize well, while the opposite case sheds light

on the need of model improvement due to underfitting. Overfitting or high variance

happens when the model is too complex and perfectly predicts on the training set,

however, when tested with the validation and the testing set, it performs poorly [47].

Underfitting solutions include regularization methods that decrease model complexity

at the cost of increasing the models’ variance; this is known as the bias-variance trade-

off.

Model’s performance is assessed in machine learning with the use of metrics, for

instance, for classification problems the most popular metrics include the confusion

matrix and accuracy.

The confusion matrix summarizes in a table format the actual and the model’s

predicted labels; the actual labels are shown in one axis while the predicted ones lie

in the other axis. The diagonal of the matrix accounts for the correctly predicted

labels of each class, while the incorrectly labeled examples are visualized outside the

diagonal. For multiclass tasks, the number of rows and columns in the table reflects

the number of classes in the classification problem, this is, confusion matrices are

squared matrices.

A more refined performance analysis originates in the type of errors defined for

binary classification problems. Correct classification is either a true positive (TP) if
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the actual label is positive and it is correctly classified as positive, or a true nega-

tive (TN) in case the label is negative and correctly classified as negative; incorrect

classification has also two possibilities, false positive (FP) if the example is negative

and classified as positive, or false negative (FN) when a positive sample is classified

as negative. According to Figure 2.3, FP for class 1 corresponds to the sum E21 +

E31, while the FN for class 3 equals the sum E31 + E32 [48].

Figure 2.3: Confusion matrix for a multiclass classification problem.

Accuracy in Equation (2.9) accounts for the number of correctly classified examples

over the total number of classified examples. This metric ranges between 0 and 1,

being 0 in the case when the classifier performed poorly and misclassified all examples,

and 1 or 100% corresponds to the perfect case when all examples were perfectly

classified.

accuracy =
TP + TN

TP + TN + FP + FN
, (2.9)
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Chapter 3

Methodology and Experimental
Design

The following chapter defines the methodology followed in developing the research

work. It also describes the experimental setup and the tests carried out to characterize

the installed VRF BESS.

3.1 Methodology

According to Figure 3.1, this thesis work relies on two research approaches, experi-

mental and simulation. Experimental work was mainly carried out during the first

VRF BESS research project’s stage, in which a battery system was installed at Nisku

industrial park, and then reinstalled at the University of Alberta for its final stage.

Research objectives during the experimental work aimed at understanding VRF BESS

working principles, starting and operating the battery system, and characterizing the

system based on its electrochemical performance. The BESS experimental setup and

characterization are correspondingly detailed in sections 3.2 and 3.3.

Simulation work involved the construction of a residential environment using both,

real rooftop PV generation and household demand profiles, additional to the VRF

BESS information gathered during the experimental phase. The objective during

this stage was designing a BESS control strategy based on a load shifting technique

in two phases. Firstly, data that allow the observation of the VRF BESS dynamic
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Figure 3.1: Research approaches, based on [49]

behavior for residential applications under real conditions was generated with a RL

model-based Q-learning algorithm. Secondly, the generated data were further used

in the design of the NN-model based BESS adaptive/intelligent control, as explained

in chapter 4. For comparison purposes, the costs associated to the VRF BESS were

compared to the costs associated to a lithium-ion BESS in the last section of the

following chapter as well.

Engineering research methodology in this work, as agreed by [49] and [50], com-

prised the following execution process. First of all, the research problem hypothesis

and research question are defined in chapter 1 to frame the research work. This step

is supported by an extensive review of the existing literature about renewable and

sustainable energy technologies in the Canadian context; implemented mechanisms

to incentivize the installation of BESS and its impact toward the technology uptake

at the residential level; VRF BESS electrochemistry, technology working principles,

as well as previous experiences of its characterization and operation; battery tech-

nology costs as the main barrier for the broad adoption of the technology and cost

decrement strategies through optimal battery operation scheduling; and battery con-

trol methods, particularly methods based on machine learning algorithms such as
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reinforcement learning and neural networks.

Once the problem was framed, the research design involved the elaboration of the

outline, highlighting core concepts, and determining the samples to work on. This

included the selection of residential load and PV generation profiles used to simulate

the operation of a VRF BESS and a li-ion BESS. Data collection involved the use

of standard tests to characterize the installed VRF BESS; this information was later

used in the referred simulations.

Execution of the project alludes to the two-phase battery control presented in

this work. The battery optimized scheduling is obtained in the first phase with a

Q-learning algorithm and then utilized in the second phase for the adaptive battery

control using neural networks. Finally, the results of both algorithms are statistically

analyzed to test the hypothesis in the last part of Chapter ??.

3.2 VRF BESS setup

The installed VRF BESS for demonstration purposes consists of a 40-cell stack where

oxidation-reduction processes occur, two 83 L polyethylene tanks that serve as the

positive and negative electrolyte reservoirs, two centrifugal pumps providing the elec-

trolyte flow rates and instrumentation such as inlet and outlet pressure sensors to

monitor the inlet and drop pressures in the stack, and flow meters. Technical speci-

fications are shown in Table 3.1

Centrifugal pumps 24 VDC Max. flow: 28.34 Lpm

Flow meter Flow range: 0.4 Lpm-18.9 Lpm

Pressure transducer Max. pressure: 1 bar

Table 3.1: VRF BESS hydraulic system and sensors. *Lpm = Liters per minute

Battery system connection to the low voltage grid is carried out through an inverter

able to deliver 3 kW on the AC side, that also works as a battery charger with adaptive
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4-stage charging modes (bulk, absorption, float and storage). Details of the VRF

battery, the inverter, and a lithium (li-ion) battery for further comparison purposes

are shown in Tables 3.2 and 3.3, respectively.

BESS element Technical features

VRF battery stack Volterion, 40 cells, 2.5 kW

Efficiency: 82%;DOD = 100%

Vanadium electrolyte Oxkem, 40 L

Power inverter Victron Energy - Quattro 48

Max. Efficiency: 95%

Table 3.2: Technical characteristics of VRF battery.

BESS element Technical features

Li-ion module Pika Energy – Harbor 6, 6.7 kW

Efficiency: 96.5%, DOD = 84%

Total energy capacity 20.3 kWh

Usable energy capacity 17.1 kWh

Power inverter Pika islanding inverter

Max efficiency: 98%

Table 3.3: Technical characteristics of Li-ion battery.

Start up VRF battery control is based on an in-house algorithm programmed in

LabView that is connected to a National Instruments data acquisition unit (DAQ

6211) to obtain pressure and flow measurements. Through the LabView program, a

voltage command is sent to start up the centrifugal pumps which are usually warmed

up for a while before starting charging the VRF BESS.

Battery characterization procedure explained in the following section is supported

by the data acquired during the battery charging and discharging cycles. Battery
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charge is controlled via a modbus interface with the inverter. As reported in the

literature [51, 52], the most utilized constant current – constant voltage (CC-CV)

charging strategy was established by firstly setting the charging current in the inverter

interface. As long as the battery voltage is not smaller than the charge voltage, the

battery charges at constant current; once this condition changes, the battery charges

at a constant voltage reducing the charging current to fill the battery charge at a lower

pace. To complete the cycle, the battery was discharged by connecting a passive load

consisting of a three-phase resistor box that allowed a maximum discharge current of

5.5 A. Further experiments allowed to set higher charge currents and a larger passive

load to increase the discharge current up to a maximum of 47 A. In all cases, stack

voltage and current data were acquired at a 1-min resolution with the stack controller

purchased from the VRF battery provider.

An operational particularity of this technology is to prevent that the charged V 2+

oxidases to V 3+ by ensuring the system is air tight; a common practice is purging

nitrogen gas into the negative electrolyte container to displace oxygen throughout the

system [53–55] as shown in Figure 3.2.

Figure 3.2: VRF BESS experimental setup
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Differently to other research works [53, 56–58], in this case the open circuit voltage

(OCV) reference cell was not installed.

The simulation work explained in the following sections considers two BESS-PV

systems, each with different battery chemistry. One system configuration consists of a

VRF BESS, a rooftop PV system, the corresponding inverters, and a residential load.

The second system is equally configured, but instead of the VRF BESS, it includes a

li-ion battery. In both cases, the BESS-PV systems are grid-tied for the exchange of

energy with the distribution electrical grid. Figure 3.3. contains details of the VRF

BESS-PV system configuration.

Figure 3.3: VRF BESS-PV system configuration
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3.3 VRF BESS experimental characterization

Fully characterizing a VRF BESS, as for any battery chemistry, is a keystone step

to understand the potential behavior of the battery under real operation conditions.

Particularly, when connected to a PV system, its charge and discharge cycles depend

on both external conditions, like PV generation and load, as well as on internal

conditions such as its state of charge (SOC). In this order of ideas, the VRF battery

system was characterized in terms of its actual capacity, SOC, and efficiency, as it

has been previously reported in other research works [53, 56, 58–63].

VRF technology relies on the four possible oxidation states of vanadium (V2+,

V3+, V5+, V4+), which means battery charge and discharge processes result when

reduction-oxidation (redox) reactions cause electron transfer from one of such vana-

dium species to another. Two decisive parameters are the electrolyte flow rate and

electrical current flowing through each cell in the stack as they define the reaction

rate and vanadium concentration inside the cell, i.e., both define the rate at which

some vanadium species are produced and others depleted. Indeed, battery operation

should guarantee vanadium ion concentrations are not depleted below zero, in other

words, the cells in the stack should not overcharge to avoid side reactions such as oxy-

gen or hydrogen evolution that causes loss capacity and negatively affects the battery

performance [64–66].

To minimize the likelihood of side reactions, the VRF BESS operation is controlled

to charge and discharge within the upper and lower cut-off voltages, with the upper

(charge) cut-off voltage being the most critical parameter that may damage the elec-

trode materials if exceeded [66]. Cut-off voltage ranges between 1.26 and 1.41 V,

which is slightly lower than previously reported in literature [53, 66] because the

charge and discharge currents when characterizing SOC were lower than nominal.

Actual battery capacity was determined by fully charging at 30 A in CC-CV mode

up to the upper cut-off voltage and discharging at almost nominal current (47 A) in
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Table 3.4: Sample of battery charge and discharge cycles and calculation of CE, VE,
and EE

Charge DC Max. charge Disch. DC Max. disch. CE VE EE

energy [Wh] power [kW] energy [Wh] power [kW] [%] [%] [%]

905.42 2.16 423.18 2.49 81 52 42

973.92 2.16 489.62 2.54 92 45 41

954.34 2.20 459 2.46 86 49 42

1017.83 1.93 483.44 2.48 84 48 40

1313.65 1.89 348.84 2.35 76 28 21

1112.44 1.91 264.76 2.21 76 27 21

constant current mode to % 0 SOC. In contrast to li-ion batteries, the VRF BESS

capacity is determined by the amount of electrolyte in the reservoir tanks. In this set

of tests, the battery capacity corresponds to 40 L electrolyte, as shown in Table 3.4,

considering the charge voltage reached 62 V.

A common phenomenon when operating VRF BESS is the loss of capacity due to

cross-mixing of vanadium species through the membrane in the cell that is appreciated

as a shift of the electrolyte from the positive to the negative reservoir. As this

condition has been eased before, the electrolyte was manually remixed.

Battery SOC is calibrated based on the OCV-SOC relationship [60, 67]. OCV is

the voltage at the battery terminals when the battery is not connected to a load,

i.e., there is no external current flowing. For measuring the OCV, the battery was

fully charged with the CC-CV strategy up to the charging cut-off voltage and allowed

to rest for 45 minutes, then it was discharged in periods of five minutes with 10

minutes rest between measurements down to the discharge cut-off voltage. A second

set of experiments reduced the resting time between measurements to 5 minutes. All

experiments aimed at OCV-SOC characterization were made within the second-tier

measurements in Table 3.5 that resulted in the cut-off voltages above mentioned for
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Table 3.5: 60 charge and discharge cycles

Number of Max. charge Max. discharge Average CE Average VE Average EE

cycles current [A] current [A] [%] [%] [%]

13 16 6.18 69 88 66

23 30 6.18 60 88 53

8 33 6.08 66 82 54

16 39 46.98 75 42 31

a 10% - 90% SOC range.

Certainly, the literature reported up to five hours relaxing time to obtain the OCV

measurements for li-ion batteries [67–69] but in this case for a liquid-state battery, a

shorter resting time was perceived enough [70]. OCV was finally non-linearly fitted

as a function of the SOC with a third-degree polynomial regression [71], equation 3.1.

VOC (SOC ) =

np∑
i=0

ciSOC i, (3.1)

VRF BESS efficiency is evaluated in terms of three performance aspects: Coulom-

bic efficiency (CE), energy efficiency (EE), and voltage efficiency (VE). CE is calcu-

lated as the quotient between battery discharged capacity (Ah) and charged capacity

(Ah) and reflects battery inefficiencies at the electrochemical level, for instance, due

to electrolyte species crossover or side reactions. EE assesses the stack energy conver-

sion capability as it corresponds to the ratio of discharged energy (Wh) and charged

energy (Wh) and is considered of utmost importance when assessing the battery’s

performance for real applications since it is an indicator that accounts for energy

consumption by auxiliary systems such as pumps, ventilation or cooling system. VE

describes the relation between the average voltage at discharge and the average volt-

age at charging and reflects the ohmic and polarization losses [64, 66].

During a period of almost six months, the VRF BESS was cycled around 60 times at

different charge and discharge current rates, where four tiers were defined as shown in
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Table 3.5. Of particular importance are the 16 last cycles because they reflect charge

and discharge currents close to the nominal battery current.

In 13 out of 60 cycles, the EE of the stack registered values over 65%, which is a

reasonable value similar to what is being reported in other research works [53, 62,

63]. Nonetheless, there is a clear need to improve the operation of the system. As it

can be seen in Table 3.5, the increase of charge and discharge currents plumbed the

average battery EE and VE.

Inherent internal losses in the stack, referred as overpotentials, are associated to

the energy required to carry out redox reactions in the cells [65]. Concentration

overpotential depends on the current applied to the battery and the electrolyte flow

rate, while the ohmic overpotential depends on the temperature [64]; in this case,

the electrolyte flow rate was no optimized, so there is an opportunity to improve the

system operation. Also important is the reduction of energy losses due to electrolyte

leakage.
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Chapter 4

Model Design

As described in Chapter 3, subsequent sections describe the input data to the ML

model and the algorithms used to simulate both a VRF and a li-ion BESS in a BTM-

residential load shifting application.

4.1 Input data

In general terms, ML algorithms are algorithms able to learn from data [43] that

require, first of all, large datasets. Whereas there is no agreement about the proper

amount of data to train a particular model, it can be said that it depends on the

problem’s complexity or on the number of instances or features. Given the importance

of input data in ML models, the datasets used to model the proposed PV-BESS

systems are herein described.

4.1.1 Demand and PV generation profiles

Input data includes 1-min resolution household demand and PV generation profile

datasets that correspond to a house building located in Edmonton, Alberta, Canada.

Data were collected during a whole year, which means 1440 measurements per day

or 525,600 measurements per year. Data included timestamp, total demand, PV

generation, electricity imported from the grid, and the electrical energy consumption

of the most electricity consuming appliances, although for the model’s objective just
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the timestamp, total demand and PV generation were used.

One year data enabled the analysis of BESS functioning under different weather

conditions, in other words, considering different loads and PV generation throughout

the year. Given the great granularity of the datasets and to avoid the nonrepresenta-

tive problem in the data described in [72], the Q-learning algorithm was trained with

30 days in winter and 30 days in summer; these days exclude weekends according to

the daily variation given by the TOU retail electricity tariff later described. Demand

and PV generation profiles corresponding to 15 days in summer and 15 days in winter

can be appreciated in Figures 4.1 and 4.2. Differences between summer and winter

training data are shown in Table 4.1.

Figure 4.1: Demand and PV genera-
tion profiles (RL-summer).

Figure 4.2: Demand and PV genera-
tion profiles (RL-winter).

A second set of 60 days (winter and summer) was used to train and test the NN

models, the 15-days profile is shown in Figures 4.3 and 4.4, whereas their correspond-

ing differences can be visualized in Table 4.2.

Finally, an in-depth analysis of the results is driven by the simulation of another

set of 67 days in winter and 64 days in summer.
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Winter [kWh] Summer [kWh]

Max. demand in one day 36.48 34.22

Min. demand in one day 12.25 22.24

Average demand 30-days period 19.29 26.18

Total demand 30-days period 578.59 785.25

Max. PV generation in one day 3.12 3.43

Min. PV generation in one day 0.04 0.51

Average PV generation 30-days period 1.11 2.38

Total PV generation 30-days period 33.16 71.41

Table 4.1: Seasonal data for RL model.

Figure 4.3: Demand and PV genera-
tion profiles (NN-summer).

Figure 4.4: Demand and PV genera-
tion profiles (NN-winter).

4.1.2 Electricity Prices

As mentioned in Chapter 2, retail electricity prices play a fundamental role in rising

investments in new technologies that may ease the negative inherent effects of fossil

fuel-based power systems. Indeed, the design and implementation of regulatory incen-

tives is crucial to stimulate household final user investment in PV-BESS. Given the

highlighted effectiveness of FIT programs, this work includes the standard price per

kWh (63.5 cents/kWh) purchased by the electric utility to the residential user under
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Winter [kWh] Summer [kWh]

Max. demand in one day 32.04 29.70

Min. demand in one day 22.27 8.73

Average demand 30-days period 24.66 17.24

Total demand 30-days period 739.72 499.99

Max. PV generation in one day 1.0 3.72

Min. PV generation in one day 0.02 0.62

Average PV generation 30-days period 0.33 2.49

Total PV generation 30-days period 9.79 72.30

Table 4.2: Seasonal data for NN model.

the microFIT program launched in 2009 and phased out in November 2016. This

program was implemented in Ontario, Canada, for renewable electricity generation

up to 10 kW including rooftop PV systems [32, 73].

Moreover, the load shifting strategy to operate the battery is driven by the TOU

dynamic pricing tariff scheme also implemented in Ontario. Through this scheme is

expected a change in the residential user’s consumption pattern along a day in order

to mitigate demand power peaks by procuring savings in his monthly electricity bill.

TOU reference rate structure can be visualized in Figure 4.5.

Figure 4.5: TOU reference rate structure.

PV-BESS load shifting operational strategy is detailed in Section 4.2; nonetheless,

here it is pointed out that the microFIT tariff corresponds to the remuneration per
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kWh obtained by the residential user in case of electricity being exported to the grid,

while TOU is the rate at which the electricity is purchased from the grid depending

on the consumption time.

Finally, a retail electricity tariff in Edmonton is considered for assessing the feasi-

bility and likelihood of a residential user to adopt a PV-BESS system. The best-case

scenario would be having a supply system that pays off at a lower electricity cost

during its operation than the current cost given by the retail electricity tariff. This

tariff is offered by one of the electric utility companies in the city as a two-year fixed

electricity rate (6.39 cents/kWh).

4.1.3 Battery data

VRF battery maximum charge Ech,max and discharge Edis,max rates were experimen-

tally determined; the total battery energy charged was calculated and divided by the

total time it took the battery to be fully charged, equations 4.1 and 4.2. Edis,max was

similarly estimated by determining the total energy discharged and the time it took

to reach such state.

Ech,max =

∫
Pch dt

t
, (4.1)

Edis,max =
− ∫

Pdis dt

t
, (4.2)

Energy conversion losses are included in the charge Ech,t and discharge Edis,t rates

as reflected in equations 4.3 and 4.4. ηconv is the converter efficiency.

Ech,t = Ech,max ∗ ηconv, (4.3)

Edis,t =
−Edis,max

ηconv
, (4.4)
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Battery models also include the maximum battery capacity that constraints the

charge and discharge actions, i.e., they cannot be charged over their physical maxi-

mum capacity Emax neither discharged below Emin. These values were experimentally

obtained for the VRF, however, as li-ion batteries in particular cannot be fully charged

or discharged, Emax equals the usable energy in Table 3.3 that reflects its depth-of-

discharge (DOD). Li-ion SOC ranges 0 to 100% with Emax. Moreover, SOC for both

battery models is updated at each iteration as defined in equations 4.5 and 4.6.

SOCch,t+1 = SOCch,t +
Ech,t

Emax

, (4.5)

SOCdis,t+1 = SOCdis,t − Edis,t

Emax

, (4.6)

Different Ech,max and Edis,max rates were considered for the simulation of three

additional VRF batteries to the already described in Table 3.2, notwithstanding they

were calculated based on the same experimental information. Battery ageing and

repeated cycling effects over capacity were omitted with the objective of not increasing

computational burden.

4.1.4 Data Preprocessing

As stated by Geron [72], the two challenges faced when working with ML are the

use of a “bad algorithm” or feeding the model with “bad data”, being the second

most important. Nonrepresentative training data was dealt in this work by selecting

seasonal data in the same proportion for summer as for winter to feed both models.

Dataset’s quality was investigated to detect outliers and errors in the data; missing

data of a couple of hours was copied from a day having similar behavior during the

same missing hours. Feature selection process included the selection of the relevant

features as explained above.
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4.2 RL model: System Optimization

ML algorithms offer an alternative to rethink solutions to the BESS scheduling prob-

lem, previously solved with methods such as high-computing optimization-based al-

gorithms that can be hardly run in microprocessors. Paradigms such as smart grid

imposes the need to work with real-time BESS control systems that also adapt to fast

changing conditions such as demand, renewable generation, and electricity prices.

As overviewed in the first section of Chapter 3, the BESS adaptive control proposed

in this work bases on the load shifting technique and is developed in two phases. This

section elaborates on the solution to the BESS scheduling problem with the Q-learning

algorithm and the following explains the NN-based solution to the adaptive control.

The Q-learning solution is an adaptation of the algorithm presented in [10].

4.2.1 Action Space

The action space comprises two possible actions the autonomous battery agent can

choose from. At each time step t the agent can charge or discharge up to the maximum

charge (Ech,t) or discharge rate (Edis,t). By default, a third option is neither charging

or discharging when the TOU tariff is not enough low from the final user’s perspective.

At ∈ [Ech,t, Edis,t] (4.7)

Action selection process seeks the greatest estimated value action with a ε-greedy

policy afterwards validated through an action validation function. This function

limits charge and discharge actions within the physical battery capacity boundaries;

at each iteration, the action validation receives the battery’s SOCt and the action

at to evaluate if the battery can be further charged or discharged. Any action will

result in a battery energy difference (deltaE) that feeds the load balancing function

described in the following subsection.

35



4.2.2 Environment and State Space

The main purpose to solve the battery scheduling problem is to supply the normally

demanded amount of electricity to the residential consumer at any time with no

sacrifice of comfort and at the lowest cost. In other words, the battery should charge

and discharge according to the electricity price signals and the balance of energy

within the PV-BESS system at each time t. Thereby, the environment comprises all

information that allows the battery agent to choose one action from the described set

of actions, this is, the exported/imported energy at each moment.

Calculation of the exported/imported energy at each time t considers two energy

balancing scenarios, a pure PV system (with no BESS) denominated PV system and a

PV-BESS system referred to as PV-BESS system.

1. PV system: the available PV generation exclusively supplies the household de-

mand, any surplus of electricity is exported to the distribution grid. At times

when PV generation does no suffice the demand, the lacking amount of elec-

tricity is imported from the grid.

2. PV-BESS system: demand is firstly supplied by the available PV generation, in

case of having any surplus of electricity it is directed to charge the BESS ac-

cording to the deltat signal received from the action validation function. Any

still remaining electricity is exported to the grid. A second set of options de-

rives from the possibility of the PV system having not enough available energy

to supply the load. In this case, if the battery is able to discharge, it supplies

the demand in a deltat amount of energy; any amount of still missing energy is

imported from the grid. Finally, at any time step t when the electricity price is

low and the balance of energy within the system allows it, the battery is charged

with electricity imported from the grid.

Exported and imported electricity information is then delivered to a function that

calculates the costs associated with each system. The amount of exported or imported
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electricity is multiplied by the corresponding tariff (FIT or TOU). This information

is vital because it feeds the reward function later explained.

In practical terms, the information received by the agent at each time step t shapes

the state space that in this case has been modeled as a quintuple:

st = [pvt, demandt, TOUt, F ITt, SOCt] (4.8)

pvt represents the PV generation, demandt is the residential demand, TOUt cor-

responds to the time of use tariff or import tariff, FITt refers to the microFIT tariff

or export tariff, and SOCt describes the battery state of charge; all variables refer to

time t.

4.2.3 Reward Function

At the core of the Q-learning algorithm is the reward function that guides the agent

throughout the learning process by giving feedback to each action it chooses. The

design process of the reward function can lead the agent to the successful completeness

of the optimization task or to fail by finding a non-optimal solution; as such, this is

a crucial part of the design of the solution that is usually done by trial-and error.

After the agent senses the environment’s state at time t, it chooses an action and

receives a reward as feedback. The reward is calculated as the difference between the

total cost of the PV-BESS system and the PV system. A reward of (costPV –costbatt) ∗ 10
is awarded to the agent each time it obtains savings for charging and discharging

the BESS at times when importing and exporting energy translates into monetary

savings for the final user when compared to the PV system. At times when the PV

system is more expensive than the PV-BESS system, the agent is punished with a

reward calculated as costPV –costbatt. Costs are summed at the end of each episode

of 1440 time steps (1 day) and passed to Function 2.6 in order to update the Q-table

model.
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4.3 NN Model: Battery Adaptive Control

Particularly for residential applications, the BESS market is linked to the installation

of rooftop PV systems as its main application is the increase of PV generation self-

consumption [19]. Nonetheless, the BESS technology uptake requires to make it

accessible to residential users through integrated adaptive controllers that, depending

on the real-time conditions, allow the optimal battery charging or discharging. A NN

model-based BESS controller is here proposed.

NN algorithms gained great popularity during the last decades due to its ability

to approximate solutions of a great variety of high-dimensional nonlinear problems at

a fraction of the computational cost other methods require. They have, however, an

important disadvantage related to the access to labelled data for the initial training

in a supervised setting that is usually not available. Data acquisition for the real

implementation of the proposed battery controller is based on two possible cases:

1. Existing PV system: assuming the residential user has access to historical

PV generation and electricity demand data, otherwise applies the second case.

2. New PV system: PV generation and electricity demand data collection pro-

cess starts with the newly PV installed system, which may imply a delayed

initial operation of the BESS.

Either case implies carrying out the collection of data process and the later ex-

ecution of the Q-learning algorithm to obtain the optimal battery scheduling. As

a reference, in this work, the Q-learning execution required 60 working days of 1-

min data resolution comprising more than 86,000 data entries. Execution of the NN

model-based controller is divided into two phases, the offline training process and the

online control.
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4.3.1 Offline Training

As explained in Section 4.1, a second dataset of 30 summer and 30 winter days was

employed to train and test the NN models. This new dataset was also used to execute

the Q-learning algorithm to obtain the corresponding charge and discharge labels at

each time step t, this is, the derived dataset includes tuples of six elements: pvt,

demandt, TOUt, FITt, SOCt and battt.

battt signal is a quantity that describes the optimal battery scheduling in response

to the cost difference between the PV system and the PV-BESS system inscribed in the

reward function of the Q-learning algorithm. A positive number corresponds to a

battery charge action, a negative number indicates the battery discharge, and, con-

sequently, a zero indicates the battery does neither charge or discharge during each

time step.

An 80% - 20% rule was followed to split the dataset into NN model training and

testing, respectively, whereas the same proportion of data is taken from winter and

summer seasons for training and testing. A total of 40 NN models were trained and

tested, with architectures varying between one and seven hidden layers, and 20, 50,

100, 200, 250, and 400 nodes in each hidden layer. The number of nodes in the input

layer corresponds to the number of features, six as described above, and the number

of nodes in the output layer equals the three possible states the battery can take,

charge, discharge or zero.

All NN models were created in Keras deep learning API [74] that is coded with

Python, the model arguments were as follows:

1. Adam optimizer to train the models with the gradient descent algorithm

2. Categorical cross-entropy loss function

3. Rectified linear (ReLU) activation functions for the hidden layers and softmax

activation function for the output layer
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4. Accuracy metric to evaluate the performance of all proposed models

4.3.2 Online Control

Online control includes the selection of the most suitable NN model that is later used

in the prediction mode. The performance of each model is assessed with the accuracy

metric and the respective confusion matrix, such information assists the preselection

model. The final decision is taken once the preselected models are compared in terms

of the PV-BESS system calculated costs. Selected models are shown in Table 4.3, as it

is detailed in the following section, five batteries were simulated and for each one the

same model selection process was carried out.

Battery system Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Va1 50 300 300 50

Va2 50 300 300 50

Va3 50 300 100 300 50

Va4 50 200 200 200 50

Li 50 300 300 50

Table 4.3: Selected NN models.

In a real application, a selected NN model should be installed in the battery mi-

croprocessor; after an initial set of vectors with information from the PV generation

system, smart household meter, battery SOC, time of the day, and electricity import

and export tariffs are given, the controller can predict the BESS action. Figure 4.6

shows the adaptive battery controller schematic.

4.4 Battery controller evaluation: operational costs

A second set of 30 summer and 30 winter days were simulated with the selection of

NN models, five models in total. Va refers to VRF batteries, correspondingly, Li refers
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Figure 4.6: Adaptive BESS controller schematics.

to a li-ion battery. The efficiency of battery Va1 is given in Table 3.2, it represents

the installed battery when operated at a low charge and discharge constant current.

Va2 also represents the installed battery but in this case operated at higher charge

and discharge currents with a maximum current of 47 A at discharging. Efficiency in

this case dropped because battery operation was not optimized. Two larger batteries

were simulated to further analyze the proposed battery controller. Va3 and Va4 are

two high-efficiency batteries sized as 49 kWh and 28 kWh. Li battery is modelled

with information from Table 3.3.

The NN-model adaptive controller NN and the Q-learning default control system

RL are compared with the two systems in terms of daily electricity costs reflected in

the residential final user’s monthly bill.

1. PV: baseline system, costs are calculated when optimizing the PV system with the

Q-learning algorithm.
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2. Flat tariff: calculated costs with no PV system neither PV-BESS system.

PV, RL and NN systems include the effect of both, the microFIT regulatory incentive

applied when exporting electricity surplus from PV system/PV-BESS system to the grid

and the TOU policy applied when importing missing electricity to the PV system/PV-

BESS system based on the differences in electric retail tariffs in periods of 24 hours.

An in-depth analysis of the results obtained when comparing the described systems

can be found in Chapter 5.
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Chapter 5

Simulation Results

5.1 Input data to simulations

Data were divided into summer and winter seasons mimicking the TOU policy. Ta-

ble 5.1 contains details of the data used to train and test both the Q-learning and

the NN algorithms, as well as data for final simulations. Figure 5.1 only shows PV

generation and demand used for the simulation of the battery behavior. It is high-

lighted that PV generation in winter is about 40% of the generation in summer, while

demand is 126% higher in winter than in summer.

No. Days Dataset Season Month

30 Training RL Summer August, September

30 Training & Testing NN Summer July, August

64 Simulation NN Summer May, June, September, October

30 Training RL Winter February, March

30 Training & Testing NN Winter November, December

67 Simulation NN Winter March, April, December, January

Table 5.1: Details of the data used to train and test the algorithms.

Simulation data used in the paper “Optimal real-time scheduling of battery op-

eration using reinforcement learning” referred in the Preface section is in this work

extended in 131 summer and winter days. Results shown in this section correspond
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Figure 5.1: Input data used to simulate battery behavior.

to a total of 93 days in summer and 97 days in winter, additionally to the 60 days

used to train the Q-learning algorithm.

Regarding the retail electricity tariff in Edmonton used to compare the battery

controller electricity costs, since March 2015 up to July 2021 includes variations be-

tween 7.29 cents/kWh that decreased during 53 months down to a minimum of 5.49

cents/kWh. This tariff later sustained a cost per kWh above 6 cents during the last

21 months up to now. Indeed, this trend does not reflect large variations from the

residential consumer point of view, but in the long term nothing prevents from larger

variations that may relate, for example, to green taxes aimed at decarbonizing the

power sector.

The following analysis of the results includes a comparison of electricity costs cal-

culated as follows:

1. RL and NN vs the flat tariff

2. RL and NN vs the baseline PV system
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5.2 Va1 and Va2 BESS

Va1 and Va2 correspond to the experimental VRF battery setup with a capacity of

1.03 kWh and efficiencies of 82% and 40%.

Season Month Flat tariff PV RL NN

Winter Jan-Apr, Nov,Dec 136.909 236.226 236.656 234.984

Summer May-Aug, Sep, Oct 108.264 159.218 159.667 158.828

Table 5.2: Total flat tariff, PV and PV-BESS systems costs for Va1.

Season Month Flat tariff PV RL NN

Winter Jan-Apr, Nov,Dec 136.909 236.225 237.648 237.095

Summer May-Aug, Sep, Oct 108.264 159.218 160.772 159.468

Table 5.3: Total flat tariff, PV and PV-BESS systems costs for Va2.

RL NN

Season Costs Savings Revenue Costs Savings Revenue

Winter -0.431 0.000 0.000 0.000 1.242 0.000

Summer -0.449 0.000 0.000 0.000 0.390 0.000

Table 5.4: PV-BESS cost differences, RL and NN Va1 battery controller.

RL NN

Season Costs Savings Revenue Costs Savings Revenue

Winter -1.422 0.000 0.000 -0.869 0.000 0.000

Summer -1.554 0.000 0.000 -0.250 0.000 0.000

Table 5.5: PV-BESS cost differences, RL and NN Va2 battery controller.
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5.2.1 RL and NN compared to flat tariff

As shown in Tables 5.2 and 5.3, installing a battery system with technical charac-

teristics similar to those of Va1 or Va2 is not an option that translates into savings

for a residential user in Edmonton when taking the flat tariff scenario as a benchmark,

electricity costs are higher with any of these systems. Additional to the calculated

electricity cost, a residential user would have to consider investments in equipment.

As mentioned above, Va1 and Va2 are different just in terms of efficiency. The

most efficient battery (Va1) reflects slightly lower costs with respect to the flat tariff

than battery Va2, in the order of 1 CAD during both seasons. This result suggests

the importance of battery operation optimization in terms of charge and discharge

currents and flow rate for VRF batteries. Consistently, NN battery controller resulted

in lower electricity costs than the RL controller with respect to the flat tariff.

5.2.2 RL and NN compared to PV system

Having a Va1 battery controlled with the suggested NN controller results in slightly

lower electricity costs than costs derived from the RL controller when compared to

the baseline PV system. Contrastingly, NN and RL controllers are not able to schedule

Va2 battery to decrease electricity costs as the PV system renders slightly lower costs

during both seasons. Calculated electricity costs with NN and RL are further analyzed

in Tables 5.4 and 5.5. TOU and microFIT regulations are used to solve the BESS

scheduling problem with the Q-learning algorithm in two systems, PV and PV-BESS,

able to export and import energy from the power grid. Therefore, total electricity

costs are broken down in potential costs, savings and revenues for the residential user.

NN calculated costs are also broken down into potential costs, savings and revenues,

since Va1 and Va2 models were trained with labels generated with the Q-learning

algorithm, indirectly containing the effect of both regulations.

The operation of Va1 system during winter and summer seasons with the RL con-

troller is not economically feasible for a residential user because it would end paying
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more for the operation of the battery. In any of both seasons, RL controller results

in the user paying more for operating the battery than just letting operate the PV

system. NN controller offers potential savings in the electricity bill to the final user

by optimally scheduling the BESS. Va2 reflects the same tendency than Va1 when

comparing costs calculated with the RL and the NN controllers to the baseline. Yet,

Va2 economic feasibility’s is lower than Va1 from the final user’s perspective because

both controllers result in electricity costs when operating the BESS with no savings.

The NN controller, in this case, is able just of decreasing the BESS electricity costs

with no possibility of offering potential savings in the electricity bill. As mentioned

before, differences in electricity costs are due to the Va2 system lower efficiency. BESS

performance in summer and winter is remarkably different. Electricity costs derived

from the RL action for Va1 results in lower costs in winter than in summer, likewise,

NN controller potential savings in winter are three times higher than in summer. Elec-

tricity costs related to the RL controller for Va2 are higher in summer than in winter,

and NN action translates into higher winter than summer costs.

Furthermore, the battery sizing effect can be visualized in Figures 5.2 and 5.3. Va1

battery system is required to fully charge and discharge in a period of 24 hours to

satisfy electricity needs within the residential system in summer and in winter. As

shown in Figure 5.2, during a day in summer season, Va1 with PV system are able to

deal with the residential demand. However, during a day in winter (Figure 5.3) the

demand is too high in the evening hours with no local generation during that time,

so the battery is required to fully discharge to supply demand during a very short

period of time up to its minimum capacity.

Units in these graphs are not shown since all displayed variables are different,

however, they can be understood as [kWh] for PV and demand, [%] for batt soc, and

[CAD/kWh] for the cost.
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Figure 5.2: Va1 system, one day in
summer.

Figure 5.3: Va1 system, one day in
winter.

5.3 Va3 and Va4 BESS

Va3 and Va4 systems were defined with capacities of 49 and 28 kWh, and 82% efficiency

for comparison purposes with Va1, Va2 and Li systems.

Season Month Flat tariff PV RL NN

Winter Jan-Apr, Nov,Dec 136.909 236.226 225.946 133.418

Summer May-Aug, Sep, Oct 108.264 159.218 111.032 54.147

Table 5.6: Total flat tariff, PV and PV-BESS systems costs for Va3.

Season Month Flat tariff PV RL NN

Winter Jan-Apr, Nov,Dec 136.909 236.226 238.977 221.804

Summer May-Aug, Sep, Oct 108.264 159.218 148.837 127.231

Table 5.7: Total flat tariff, PV and PV-BESS systems costs for Va4.

5.3.1 RL and NN compared to flat tariff

In contrast with Va1 and Va2, in this case we have two larger systems that repre-

sent potential monetary benefits for residential users in form of costs reduction and

48



RL NN

Season Costs Savings Revenue Costs Savings Revenue

Winter 0.000 10.087 0.192 0.000 82.633 4.911

Summer 0.000 32.000 13.304 0.000 56.484 22.646

Table 5.8: PV-BESS cost differences, RL and NN Va3 battery controller.

RL NN

Season Costs Savings Revenue Costs Savings Revenue

Winter -2.752 0.000 0.000 0.000 14.421 0.000

Summer 0.000 9.904 0.477 0.000 25.042 4.078

Table 5.9: PV-BESS cost differences, RL and NN Va4 battery controller.

even obtaining savings and revenues. Although electricity costs calculation for Va3

with RL system accounts for a reduction of about 10 CAD in winter and 48 CAD

in summer when compared to Va1 also with RL, it still does not improve the flat tariff

scenario. This maintains the premise that it would be cheaper for a residential user

not having a PV-BESS system in Edmonton. However, when comparing electricity

costs derived from the action of the proposed NN controller, the scenario may change

and the operation of a PV-BESS system could pay off the final user by offering lower

electricity costs in summer and winter, as shown in Table 5.6. Va4 system decreases

the difference between Va1-RL and flat tariff electricity costs but does not achieve the

goal of economical feasibility for the final user, Table 5.7. Moreover, NN controller

improves over cost decrease of RL controller, but costs are still higher when compared

to the flat tariff scenario.

5.3.2 RL and NN compared to PV system

The comparison between the Va3-RL system and the baseline scenario accounts lower

estimated electricity costs due to the action of the RL agent in winter and summer. As
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expected, this result is even improved by the proposed NN battery controller. Total

electricity costs resulting from the action of the RL and NN controller are further

broken down in costs, savings and revenues in Tables 5.8 and 5.9. The effect of the

TOU and microFIT regulations are in this case clearly visualized. Va3-RL electricity

cost dropped to zero while the amount of savings and revenue is significant when

compared to those obtained with Va1 and Va2. NN controller, as mentioned before,

improved the amount of savings and revenue for Va4, savings were almost two times

higher in summer and around eight times higher during winter. Va4-RL electricity costs

during winter registered savings during some months, however, the higher costs of the

remaining months during the season did not result in lower total season electricity

costs. In summer, differently to winter, resulted in potential savings and a low revenue

for the residential user. This can be explained by the RL agent having a limited

margin for optimal battery scheduling with lower PV generation and higher demand

to supply during winter. NN controller in both seasons resulted in some savings and

even revenue in summer for the residential user. In general terms, although RL and

NN for Va3 and Va4 represent potential savings and revenues for the householder, PV-

BESS economical feasibility should consider even higher equipment investments than

the required for Va1 and Va2.

Sizing effects of Va3 and Va4 can be visualized in Figures 5.4, 5.5, 5.6, and 5.7. For

each system one day in summer and one day in winter is presented. As expected,

contrary to the requirement of fully charging and discharging Va1 and Va2 batteries,

Va3 and Va4 do not fully cycle throughout the day. Lower summer demand, compared

to winter demand, can be supplied by the local generation and both battery systems

without requiring them to fully charge or discharge. In fact, the SOC of both batteries

is kept around 50% along the day. In winter, although the demand is higher and the

PV generation is lower, battery systems are still not required to fully charge and

discharge. This battery behavior suggests that battery capacities are underutilized

for the given residential demand and the residential user would have more benefits
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by properly sizing the battery capacity.

Figure 5.4: Va3 system, one day in
summer.

Figure 5.5: Va3 system, one day in
winter.

Figure 5.6: Va4 system, one day in
summer.

Figure 5.7: Va4 system, one day in
winter.

Units can be understood as [kWh] for PV and demand, [%] for batt soc, and

[CAD/kWh] for the cost.

5.4 Li

Li-ion battery was defined as 17.1 kWh capacity and efficiency of 96.5%, according

to vendor information.
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Season Month Flat tariff PV RL NN

Winter Jan-Apr, Nov,Dec 136.909 236.226 235.503 234.454

Summer May-Aug, Sep, Oct 108.264 159.218 156.050 156.153

Table 5.10: Total flat tariff, PV and PV-BESS systems costs for Li.

RL NN

Season Costs Savings Revenue Costs Savings Revenue

Winter 0.000 0.722 0.000 0.000 2.002 0.000

Summer 0.000 3.106 0.063 0.000 2.967 0.098

Table 5.11: PV-BESS cost differences, RL and NN Li battery controller.

5.4.1 RL and NN compared to flat tariff

Li system is closer in magnitude to Va4 capacity but is characterized by a higher

efficiency and lower DOD. Lower li-ion DOD with respect to VRF BESS impacts on

the amount of energy the battery can charge and discharge. which could probably

increase electricity costs derived from the action of RL and NN controllers. Despite of

this, the DOD effect can be compensated with the li-ion higher efficiency.

Electricity costs that result from the Li-RL controller are slightly lower than costs

from Va1-RL, which is expected because Va1 capacity is lower. Though, when Li-

RL associated costs are compared to the flat tariff scenario, no Li system neither Va1

represent a viable option from the householder perspective. It is more expensive for

the user to keep a Li system working in comparison to just purchasing electricity from

the local retailer throughout the year. Information is found in Table 5.10.

5.4.2 RL and NN compared to PV system

By comparing Li-RL electricity costs to the baseline system, it was found that Li

system renders subtly lower costs that are comparable to Va1-RL costs. However,
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differently to all other battery systems, Li-NN case in summer does not outperforms

RL by a negligible amount of 103 cents. A more detailed analysis of the total costs in

Table 5.11 shows that savings obtained with RL in summer are higher than savings

obtained with NN controller. This cost difference suggests that NN model selection

method should be improved.

Li battery size behaves as Va4 battery to supply demand throughout a day in

summer and winter. In other words, battery does not fully charge or discharge in a

period of 24 hours. For instance, for a day in summer, Li battery does not fully charge

at any moment when PV generation is maximum, but it discharges up to 40% SOC at

evening to supply demand when there is no more local generation available. Similarly,

in a day in winter, Li battery maintains a high SOC during the day to discharge up

to 60% at evening. By considering both elements, electricity costs derived from the

RL and NN functioning, as well as battery SOC being not fully depleted, the following

is suggested. NN model selection process can include a more detailed analysis of

electricity costs for the selection of the best model. Battery sizing, particularly for

li-ion batteries, may imply higher costs than for VRF technology. Scaling the VRF

battery capacity solely relies on the acquisition of extra quantities of electrolyte with

no need of acquiring a new battery stack, while scaling li-ion capacity implies the

acquisition of new battery modules.

Figure 5.8: Li system, one day in
summer.

Figure 5.9: Li system, one day in
winter.
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Chapter 6

Conclusions & Future Work

6.1 Conclusions

The battery scheduling problem is investigated in this thesis by proposing an adaptive

battery controller that relies on reinforcement learning (RL) and neural networks

(NN). NN algorithms working in a supervised setting require large amounts of high-

quality data containing labels for each sequence of input features during the training

process. In our case, as battery charge and discharge labels were not available to

train the NN, the optimal scheduling problem was firstly solved with a RL-based Q-

learning algorithm based on Graham’s [10] work. The RL-agent is supposed to find

the optimal scheduling policy by comparing in the reward function the electricity costs

derived from two supply residential systems, a purely photovoltaic (PV) system, and

a PV-battery energy storage system (BESS). At any time step when the electricity

costs from the PV-BESS system are lower than those from the PV system, the RL-

agent is rewarded. RL algorithm’s performance is first investigated by comparing

PV-BESS and PV electricity costs. Labels that result from the battery scheduling

process are then used to train some NN models. NN model validation is analyzed

through the model’s accuracy and inspection of the confusion matrix, as well as from

the comparison of PV-BESS and PV electricity costs. To verify the functioning of

RL and NN models, experiments over five BESS were performed. BESS models vary

in terms of size, efficiency, and chemistry. The individual cases are named Va1, Va2,
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Va3, Va4 and Li. Va refers to vanadium redox flow (VRF) battery and Li to lithium

ion (li-ion) battery. VRF technical features were obtained from the characterization

of a real battery setup while li-ion features were taken from manufacturer information.

Results obtained with the NN battery controller from a residential user’s perspec-

tive, favor the use of the PV-BESS. Total electricity costs from Va1, Va3, Va4, and Li

decreased in comparison to PV system (baseline) electricity costs in the winter and

summer seasons, except for Li whose results improved just in winter. For all batteries,

a variable reduction of electricity costs and an increment in savings were observed.

Likewise, depending on the size of the batteries, different revenues were observed.

That is the case of the larger battery system (Va3) that earned the highest revenue

throughout the year. Va4 and Li systems obtained modest revenues in summer.

Battery efficiency is another factor with an important impact on the results. A

clear example is Va2 system that equals Va1 capacity but has a lower efficiency. Va2

could not improve on the baseline electricity costs, although the NN battery controller

was able to decrease the loss registered by the RL algorithm in comparison to the

baseline. The exceptional case is the Li system during summer. Li-NN electricity

cost decreased in comparison to the baseline system, however, it did not improve on

the reduction reached by the RL when compared to the baseline. In this case, a more

detailed analysis of the NN model is recommended.

Finally, the contributions made in this thesis are summarized. First, the RL al-

gorithm reached, depending on the BESS size and efficiency, reductions in electricity

costs when compared to the baseline system. The proposed NN controller decreased

electricity costs with respect to the baseline system in a larger proportion than the

cost reduction obtained by the RL initial labeling for charge and discharge. Another

benefit of using NN controllers is that they require reduced computational resources

once the models have been trained. In this case, NN controllers required a couple

of seconds to compute an episode of 24 hours, while the RL algorithm computes the

same information in about 3.5 minutes. This processing time difference is important
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when dealing with a real-time BESS controller. Second, the house demand in winter

season is 79% higher than summer season, while winter PV generation represents just

the 38% of the summer PV generation. Larger battery systems, Va3, Va4, and Li,

reflected the described seasonal differences by obtaining higher savings and revenues

during the summer. A higher PV generation and lower demand conditions in summer

give a broader margin for larger batteries satisfying local demand and trading the re-

maining energy with the local electricity supplier. In the case of smaller batteries,

as their capacities are below the total demand of energy, the impact on savings due

to seasonal changes is negligible. Third, TOU and microFIT regulatory incentives

are included in the design of the battery controllers. We analyzed its impact on the

Edmonton area market. For this case study, the electricity cost associated with the

action of RL and NN battery controllers was compared to the electricity costs calcu-

lated with the flat tariff offered by a local electricity supplier. Except for the Va3-NN

system, all other BESS are not economically feasible for a residential user in Edmon-

ton based on the regulatory incentives, as retail electricity rates are below the baseline

with incentives. Fourth, the comparison of simulation results of VRF versus a li-ion

battery suggests that vanadium-based battery technology is a potential competitor of

li-ion batteries for the residential market in terms of operational performance, despite

their lower efficiency. However, an important disadvantage for VRF BESS that falls

out of the scope of this work, is the requirement of space for installing the equipment

as well as the cost of installation that should include qualified technicians to put the

battery into operation.

6.2 Future Work

Utilization of reinforcement learning and neural networks to configure an adaptive

battery controller has shown that real-time operation of PV-BESS systems is feasi-

ble for residential applications. Nonetheless, based on the opinion of the author, a

continuation of this project should aim at answering the following questions. Firstly,

56



what is the impact of the battery size on the economic feasibility for the installation

of PV-BESS systems. Secondly, what is the minimum amount of data to train the

proposed controller. In the third place, an in-depth analysis of regulatory incentives

and their impact on economic viability for the end user is necessary.
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