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Abstract

The classical particle filter, introduced in 1993, approximates the normalized filter

directly. It has two defiencies, over resampling and the inability to distinguish mod-

els, the former of which was overcome but the later is fundamental. Conversely, the

weighted particle filter, motivated by the unnormalized filter development, does not

employ resampling and facilitates Bayes’ factor model selection but often suffers

particle spread, where the majority of particles do not track the underlying signal.

Still, resampling introduces noise and there are situations where the weighted par-

ticle filter does perform well. Herein, the weighted particle filter is analyzed in a

simple discrete-time setting and rate-of-convergence baseline results are established

that can be compared to results for other particle filters. Moreover, an example

illustrating failure of the weighted particle filter is given.

Key words: Unnormalized Filter, Particle Filter, Law of Large Numbers,

Functional Central Limit Theorem, Functional Law of the Iterated Logarithms,

Large Deviations Principle

2010 MSC: primary 60B05; secondary 60B10

Preprint submitted to 5 June 2014



1 Introduction

Nonlinear filtering deals with estimating the current state of a non-observable signal X

based on the history of a distorted, corrupted partial observation process Y living on the

same probability space (Ω,F , P ) as X. For many practical problems the signal is a time-

homogeneous discrete-time Markov process {Xn, n = 0, 1, 2, ...}, living on some complete,

separable metric space (E, ρ), with initial distribution π0 and transition probability kernel

K. The observation process takes the form (Y0 = 0 and) Yn = h (Xn−1)+Vn for n ∈ N, where

{Vn}∞n=1 are independent random vectors with common strictly positive, bounded density g

and the sensor function h is a measurable mapping from E to Rd. Then, the objective of

filtering is to compute the conditional probabilities πn (A) = P
(
Xn ∈ A

∣∣∣FY
n

)
, n = 1, 2, ...,

for all Borel sets A or, equivalently, the conditional expectations πn (f) = EP
(
f (Xn)

∣∣∣FY
n

)
for all bounded, measurable f : E → R, where FY

n
.
= σ{Yl, l = 1, ..., n} is the information

obtained from the back observations. Since πn only depends upon the joint distribution

of (X, Y ) there is no loss of generality in taking Ω = (E × Rd)∞,F = B((E × Rd)∞) in

the sequel. While there are well-known mathematical formulae for πn, these formulae are,

with few exceptions like the Kalman and Benes filters, fundamentally infinitely dimensional

and hence not computer implementable. Still, there are many ways to approximate these

conditional distributions πn in a computer workable manner. Particle filters are one of the

most popular ways to approximate these distributions.

Hammersley and Morton [9] appear to be the first to have thought of using particle filters.

However, the ideas were formulated more clearly in the pioneering work of Handschin and

Mayne [11] as well as Handschin [10]. Still, Gordon, Salmond and Smith [8] were probably

the first to derive a general particle filter to approximate the filter distributions πn directly.

∗ Corresponding author.
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Their so-called Bootstrap algorithm was later improved in Del Moral, Kouritzin and Miclo

[7]. Alternatively, one can approximate the unnormalized filter distributions introduced (in

the continuous setting) by Zakai [15], which was first done (also in the continuous setting) by

Crisan and Lyons [5] as well as Crisan, Gaines and Lyons [6]. However, the actual weighted

method was introduced by Kurtz and Xiong [13], [14] and illustrated by Ballantyne, Chan

and Kouritzin [1]. Various authors have added resampling techniques to improve performance

but it is this weighted method that we explain and study below in the discrete-time setting.

Suppose hereafter that FZ
−1 $ {∅, Ω}, FZ

n $ σ{Zk
l , k ∈ K, l ≤ n} when n ∈ N0 and

FZ
∞ $ σ{Zk

l , k ∈ K, l < ∞} for random variables {Zk
n, k ∈ K, n ∈ {0, 1, 2, ...}} on (Ω,F).

(This is consistent with FY
n defined above if K just has one element.) One of best ways of

constructing particle filters is to transfer all of the information contained in the observations

to a likelihood process by way of measure change. In this reference probability method, a new

fictitious probability measure Q is introduced under which the signal, observation process

{(Xn, Yn+1), n = 0, 1, 2, ...} has the same (process) distribution as the signal, noise process

{(Xn, Vn+1), n = 0, 1, 2, ...} does under P . In particular, this means that the observations

become i.i.d. random vectors with strictly-positive, bounded density g that are independent

of X under measure Q. All the observation information is absorbed into the likelihood ratio

process {Ln, n = 1, 2, ...} transforming Q back to P , which in our case has the form

dP

dQ

∣∣∣
FX
∞∨FY

n

= Ln =
n∏

j=1

Wj, Wj = αj(Xj−1), (1)

and the weight function has the form

αj(x) =
g (Yj − h (x))

g (Yj)
, (2)

so Ln = WnLn−1 and L0 = 1. The following result constructs the real probability P from

the fictitious one Q.
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Theorem 1 Suppose {Xn, n = 0, 1, ...} and {Yn, n = 1, 2, ...} are independent processes and

{Yn} are i.i.d. with strictly-positive, bounded density g on Rd with some probability measure

Q, and Vn = Yn − h(Xn−1) for all n = 1, 2, ... Then, there exists a probability measure P

such that (1) holds, {Vn, n = 1, 2, ...} are i.i.d. on (Ω,F , P ) with density g and {Xn} is

independent of {Vn} with the same law as on (Ω,F , Q).

This is basically a discrete version of Girsanov’s theorem. We give the proof for completeness,

even though the ideas are well known.

Proof. Define Pn by Radon-Nykodym derivative

dPn

dQ
= Ln =

n∏
m=1

g (Ym − h (Xm−1))

g (Ym)
(3)

and let 1 ≤ j1 < j2 < · · · < jk ≤ n, 0 ≤ i1 < i2 < · · · < il. Then, by the independence of X

and Y under Q we have for fr ∈ B(Rd) and φp ∈ B(E)

EPn

 k∏
r=1

fr(Vjr)
l∏

p=1

φp(Xip)

 (4)

= EQ

 n∏
m=1

g (Ym − h (Xm−1))

g (Ym)

k∏
r=1

fr(Yjr − h(Xjr−1))
l∏

p=1

φp(Xip)


= EQ

 l∏
p=1

φp(Xip)
∫
Rd

g1 (y1 − h (X0)) dy1 · · ·
∫
Rd

gn (yn − h (Xn−1)) dyn


= EQ

 l∏
p=1

φp(Xip)

 ∫
Rd

g1 (v1) dv1 · · ·
∫
Rd

gn (vn) dvn

= EQ

 l∏
p=1

φp(Xip)

 k∏
r=1

∫
Rd

fr(vjr)g (vjr) dvjr ,

where gi =


gfr if i = jr

g if i /∈ {j1, ..., jk}

. (5)
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The {Pn} are consistent by (4). The result follows by Kolmogorov’s consistency (see e.g.

Dudley Theorem 12.1.2). 2

We define the unnormalized filter as

σn (f) = EQ
(
Lnf (Xn)

∣∣∣FY
n

)
(6)

so σ0 = π0, as L0 = 1 and FY
0 = {∅, Ω}. Two nice features about σn are that: 1) σn(1)

provides the Bayes factor that {Ym}n
m=1 satisfies Ym = h(Xm−1) + Vm over Ym = Vm, with

{Vm} being i.i.d. with density g, since

σn(1) =
EQ

[
n∏

m=1
g (Ym − h (Xm−1)) |FY

n

]
EQ

[
n∏

m=1
g (Ym) |FY

n

]

is the ratio of marginal likelihoods for these two models. 2) πn (f) = σn(f)
σn(1)

by Bayes rule

since

EQ[πn(f)σn(1)1A] = EQ[EP (f(Xn)|FY
n )EQ(Ln|FY

n )1A] (7)

= EQ[EQ(LnE
P (f(Xn)1A|FY

n )|FY
n )]

= EQ[LnE
P (f(Xn)1A|FY

n )]

= EP [f(Xn)1A]

= EQ[Lnf(Xn)1A] = EQ[σn(f)1A]

for any A ∈ FY
n . Therefore, one can construct particle system approximations (σN

n in this

note) to σn and then produce filter approximations to πn as πN
n (f) = σN

n (f)
σN

n (1)
. Moreover, Bayes

factor for model selection is obtained by taking the ratio B12 = σ
(1)
n (1)

σ
(2)
n (1)

of unnormalized filter

total mass for two models. In particular, if σ(1)
n (f) = EQ

(
Lnf

(
X(1)

n

) ∣∣∣FY
n

)
and σ(2)

n (f) =

EQ
(
Lnf

(
X(2)

n

) ∣∣∣FY
n

)
for two different signal models X(1) and X(2), then B12 provides the

Bayes factor for {Ym = h(X
(1)
m−1) + Vm}n

m=1 over {Ym = h(X
(2)
m−1) + Vm}n

m=1. Hence, we can

also do Bayesian model selection by approximating the unnormalized filter for each candidate

model (see Kouritzin and Zeng [12]).
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2 Notation and Unnormalized Filter

For any finite measure η and integrable function f , we define

ηf =
∫
E

f (x) η (dx)

ηK (dx) =
∫
E

K (z, dx) η (dz) and Kn(y, dx) =
∫
E

Kn−1(z, dx)K(y, dz) for n = 2, 3, ...

Kf (x) =
∫
E

f (z) K (x, dz) .

Since Q
(
Xn+1 ∈ A

∣∣∣FX
n

)
= K (Xn, A), one has EQ

[
f(Xn)

∣∣∣FX
n−1

]
= EP

[
f(Xn)

∣∣∣FX
n−1

]
=

Kf(Xn−1). Now, we let B(E), B(E)+, C(E) and C(E)+ denote the bounded measurable,

non-negative bounded, continuous bounded, and non-negative continuous bounded functions

respectively and define |f |∞ = supx∈E |f(x)|. It follows that Kf ∈ B(E)+ if f ∈ B(E)+. We

also let M(E) (P(E)) denote the finite (probability) measures on E with weak convergence

topology, defined for {µn}, µ ∈M(E) by µn ⇒ µ if and only if µn(f) → µ(f) for all C(E). It

follows from Blount and Kouritzin [3] that there is countable collection {fi}∞i=1 ⊂ C(E)+ that

is closed under multiplication and satisfies the property that µn(fi) → µ(fi) for all i implies

that µn(f) → µ(f) for all C(E) and, thereby, that µn ⇒ µ. For the sake of completeness,

one such possible collection is given by

{fi}∞i=1 =


l∏

j=1

(1− ρ(·, xj)) ∨ 0 : l ∈ {0, 1, 2, ...}, xj ∈ {yk}∞k=1

 , (8)

for some dense collection {yk}∞k=1 ⊂ E. Here, the product over zero functions is taken to be

the constant function 1. These {fi}∞i=1 are actually Lipschitz continuous as well.

Now, σ0 = π0 and, using (1,6), we have the following recursion for σn:

σn (f) = EQ
[
Lnf (Xn)

∣∣∣FY
n

]
(9)

= EQ
[
WnLn−1E

Q
[
f (Xn)

∣∣∣FY
n ∨ FX

n−1

] ∣∣∣FY
n

]
by the tower property
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= EQ
[
WnLn−1Kf (Xn−1)

∣∣∣FY
n

]
by Q− independence of X, Y

= EQ
[
Ln−1Anf (Xn−1)

∣∣∣FY
n−1

]
since {Yn} is iid, independent of X

= σn−1 (Anf) ∀n = 1, 2, ...,

where the (random) operator An is defined as

Anf (x) =


g(Yn−h(x))

g(Yn)
Kf (x) = αn(x)Kf (x) n = 1, 2, ...

f(x) n = 0

. (10)

Applying this recursion (9) repeatedly, we have that

σn (f) = π0 (A1,nf) , where Ai,nf (x) =


Ai (Ai+1 · · · (Anf)) (x) ∀i ≤ n

f(x) i = n + 1

. (11)

This immediately implies (see (7)) that

πn(f) =
σn−1 (Anf)

σn−1 (An1)
=

π0 (A1,nf)

π0 (A1,n1)
.

Now, it will be helpful in computing variances in the sequel to define the following.

Definition 1 The observation co-variability and variability functions are

λ(x, ξ) =
∫ g(y − h(x))g(y − h(ξ))

g(y)
dy and λ(x) = λ(x, x).

Example 1 Suppose that g is N (m, σ). Then, it follows easily that

λ(x, ξ) =
1√
2πσ

∫
exp

(
(y −m)2 − (y − h(x)−m)2 − (y − h(ξ)−m)2

2σ2

)
dy (12)

= exp

(
h(x)h(ξ)

σ2

)

so λ(x) = exp
(

h2(x)
σ2

)
.
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Example 2 Suppose that g is Laplace with g(x) = 1
2
e−|x| and the sensor function h is non-

negative. Then, when h (x) ≤ h (ξ) we have that

λ (x, ξ) =
e−h(x)−h(ξ)

2

 0∫
−∞

eydy +

h(x)∫
0

e3ydy

+
eh(x)−h(ξ)

2

h(ξ)∫
h(x)

eydy +
eh(x)+h(ξ)

2

∞∫
h(ξ)

e−ydy (13)

=
e−h(x)−h(ξ)

2

[
2

3
+

1

3
e3h(x)

]
+

eh(x)−h(ξ)

2

[
eh(ξ) − eh(x)

]
+

eh(x)+h(ξ)

2
e−h(ξ)

=
1

3
e−h(x)−h(ξ) − 1

3
e2h(x)−h(ξ) + eh(x).

Hence, we have by symmetry that

λ (x, ξ) =

[
e−h(x)−h(ξ) − e2h(x)∧h(ξ)−h(x)∨h(ξ)

]
3

+ eh(x)∧h(ξ) and λ (x) =
e−2h(x) − eh(x)

3
+ eh(x).

Notwithstanding the previous calculations, the observation variability function is often diffi-

cult to find in closed form. Fortunately, we only use the closed form in our example of Section

4. Our one and two variable filter kernels involve the observation variability function and

the the Markov kernel K:

Kλ(x, dz) = λ(x)K(x, dz), (14)

Kλ(x, ξ, dz, dζ) = λ(x, ξ)K(x, dz)K(ξ, dζ). (15)

To ease notation, we define the nth step filter kernels

K
n
λ(x, dz) =

∫
E

K
n−1
λ (y, dz)Kλ(x, dy) (16)

Kn
λ (x, ξ, dz, dζ) =

∫
E

∫
E

Kn−1
λ (y, θ, dz, dζ)Kλ(x, ξ, dy, dθ) (17)

for n = 2, 3, .... The next lemma establishes that the variance of the unnormalized filter is:

EQ[(σn(f)− EQ(σn(f)))2] = π0 × π0 (Kn
λ (f × f))− (π0(K

nf))2. (18)

Lemma 2 Suppose f ∈ B(E)+. Then, EQ [σn (f)] = EQ [Lnf (Xn)] = π0(K
nf), EQ[(Lnf(Xn))2] =

π0

(
K

n
λ(f 2)

)
and EQ [σ2

n (f)] = π0 × π0 (Kn
λ (f × f)).
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Remark 1 If λ is bounded by B say, then π0

(
K

n
λ(f 2)

)
≤ |f |2∞Bn and EQ[(Lnf(Xn))2] <

∞. Moreover, it follows by Example 1 that λ is bounded if the observation noise is Gaussian

and the observation function h is bounded. Similarly, it follows by Example 2 that λ is

bounded if the observation noise is Laplace and the observation function h is bounded.

Proof. Taking expectations over Y , we have that

EQ

[
g (Yj − h (x))

g (Yj)

]
=
∫

g (y − h (x)) dy = 1, EQ

[
(g (Yj − h (x)))(g (Yj − h (ξ)))

g2 (Yj)

]
= λ(x, ξ).

Hence, we find by (11) and (10) that

EQ [σn (f)] =
∫

EQ

[
g (Y1 − h (x))

g (Y1)
KA2,nf (x)

]
π0 (dx) by Fubini’s theorem (19)

=
∫

EQ[A2,nf (z)]Kπ0(dz) by Fubini, fact {Yn} is i.i.d.

=
∫

f (y) (Knπ0) (dy) by recursion.

Therefore, the required first moments are finite since f is bounded. Next, one has by fact

{Yi} is i.i.d. and independent of X that

EQ[(Lnf(Xn))2] = EQ

[
n∏

l=1

λ(Xl−1)f
2(Xn)

]
= EQ

[
n−1∏
l=1

λ(Xl−1)Kλf
2(Xn−1)

]
= π0K

n
λf

2. (20)

Finally, one has by fact {Yi} is i.i.d. and independent of X, (11) and (10) again that

EQ
[
σ2

n (f)
]
=
∫ ∫

EQ[A1,nf(x)A1,nf(ξ)] π0(dx)π0(dξ) (21)

and

EQ[Ai,nf(x)Ai,nf(ξ)] =
∫ ∫

EQ[Ai+1,nf(z)Ai+1,nf(ζ)]Kλ(x, ξ, dz, dζ) (22)

= Kn+1−i
λ (f × f)(x, ξ) by recursion

for i = 1, 2, ..., n. Therefore, we have by substitution of (22) into (21) that EQ [σ2
n (f)] =

π0 × π0 (Kn
λ (f × f)) , which completes the proof. 2
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Notice that the variance of the optimal filter propagates using kernal Kλ. We will show that

the classical weighted particle filter is propagated using Kλ.

The following result follows by bilinearity and symmetry.

Corollary 3 Suppose f, g ∈ B(E)+ and π0 × π0 (Kn
λ (f × f)) , π0 × π0 (Kn

λ (g × g)) < ∞.

Then, EQ [σn (f) σn (g)] = π0 × π0 (Kn
λ (f × g)).

3 Weighted Particle System

In the sequel, we will fix an observation path, set QY (·) = Q(·|FY
∞) and let EY [Z] denote

expectation with respect to QY .

The weighted particle systems does not resample. In this case, the conditional expectation

σn(f) = EQ[Lnf(Xn)|FY
n ] with respect to fictitious probability Q is replaced with indepen-

dent sample average to arrive at

σN
n (f) =

1

N

N∑
k=1

Lk
nf
(
Xk

n

)
, (23)

where the particles
{
Xk
}∞

k=1
are independent (π0, K)-Markov processes that are indepen-

dent of Y and the weights Lk
n =

n∏
j=1

W k
j with W k

j = αj(X
k
j−1) =

g(Yj−h(Xk
j−1))

g(Yj)
. Then,

σN
0 (f) = 1

N

N∑
k=1

f
(
Xk

0

)
. By enlarging the space, we can take the particles {Xk} on the same

space (Ω,F , Q) as the signal and observations. Note that (Xk, Y )
D
= (X, Y ) for all k. For

convenience, we define the single particle measures

βk
n = Lk

nδXk
n
∀n = 0, 1, ... and βk

−1 = π0 ∀ k = 1, 2, ..., N.

Then, using (11) and (10), one has the following measure-valued evolution
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βk
n (f) = Lk

n−1

g
(
Yn − h

(
Xk

n−1

))
g (Yn)

Kf(Xk
n−1) + Lk

n

(
f
(
Xk

n)− EY
[
f(Xk

n)
∣∣∣FX

n−1

]))
(24)

= βk
n−1 (Anf) + Lk

n

(
f
(
Xk

n

)
− EY

[
f
(
Xk

n

) ∣∣∣FX
n−1

]))
= βk

0 (A1,nf) +
n∑

l=1

Lk
l

(
Al+1,nf

(
Xk

l

)
− EY

[
Al+1,nf

(
Xk

l

) ∣∣∣FX
l−1

])
by recursion

= π0 (A1,nf) + Mβk

n (f)

= σn (f) + Mβk

n (f) ,

where it follows by the fourth and second equalities in (24) that

Mβk

n (f) =
n∑

l=0

[
Lk

l

(
Al+1,nf

(
Xk

l

)
− EY

[
Al+1,nf

(
Xk

l

) ∣∣∣FX
l−1

])]
(25)

=
n∑

l=0

[βk
l (Al+1,nf)− βk

l−1(Al,nf)].

It follows from the fact that Lk
l ∈ FY

∞ ∨ FXk

l−1 that Mβk
is a {FY

∞ ∨ FX
n }n≥−1-martingale and

EY [βk
n (f)] = EY [σn (f)] + EY [Mβk

n (f)] = σn (f) = π0(A1,nf). (26)

Averaging (24) and (25) over the particles, one has that

σN
n (f) = σn (f) + MN

n (f) , (27)

where

MN
n (f) =

n∑
l=0

[σN
l (Al+1,nf)− σN

l−1(Al,nf)].

{MN
n (f) , n = 0, 1, ...} is a zero-mean {FY

∞∨FX
n }n≥−1-martingale in n as well as the average

1

N

N∑
k=1

Mβk

n (f) of i.i.d. zero-mean random variables both with respect to QY .

Now, for each n ∈ N, we define the FY
∞-measurable random variance

γW
n (f) = EY [|Mβk

n (f) |2] (28)
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when it exists. For comparison purposes, we are also interested in the expectation EQ[γW
n (f)]

of γW
n (f). Let

A
(2)
j f(x) =


α2

j(x)Kf(x) j = 1, 2, ...

f(x) j = 0

and A
(2)
i,nf =


A

(2)
i

(
A

(2)
i+1 · · ·

(
A(2)

n f
))
∀i ≤ n

f i = n + 1

. (29)

Lemma 4 Suppose Kλg(x)
.
=
∫ ∫

g(z, z)λ(x)K(x, dz) for g ∈ B(E × E). Then,

γW
n (f) = π0((A1,nf)2)− (π0(A1,nf))2 (30)

+
n∑

l=1

π0A
(2)
1,l−1

[
A

(2)
l (Al+1,nf)2 − (Al,nf)2

]
∀f ∈ B(E)+.

and

EQ[γW
n (f)] = π0K

n
λ (f × f)− π0 × π0K

n
λ (f × f) (31)

+
n∑

l=1

π0K
l−1
λ [Kλ −Kλ]K

n−l
λ (f × f) ∀f ∈ B(E)+.

Remark 2 Under our conditions, Al,nf are bounded functions for each fixed Y1, ..., Yn and

f ∈ B(E)+. Therefore, (30) is an R-valued random variable. (31) should be interpretted as

‘when it makes sense’. In particular, there is potential for ∞−∞ situations. The point of

the first sentence in the lemma is to explain how we interpret a single variable kernel applied

to a two variable function in (31).

Proof. Since (Xk, Y )
D
= (X, Y ) we can just work with (X, Y ) and βl

.
= LlδXl

. Let Mβ be

defined as (25) but with β instead of βk. By the martingale property

EY [|Mβ
n (f) |2] =

n∑
l=0

EY [|βl(Al+1,nf)− βl−1(Al,nf)|2]. (32)

However, by the second equality in (24) and fact βl−1(Al,nf) is FX
l−1-measurable

EY
[
|βl(Al+1,nf)− βl−1(Al,nf)|2

]
(33)
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= EY
[
|βl(Al+1,nf)|2

]
− EY

[
|βl−1(Al,nf)|2

]
= EY

[
L2

l (Al+1,nf)2(Xl)
]
− EY

[
L2

l−1(Al,nf)2(Xl−1)
]

= EY
[
L2

l−1{A
(2)
l (Al+1,nf)2(Xl−1)− (Al,nf)2(Xl−1)}

]
= π0A

(2)
1,l−1

[
A

(2)
l (Al+1,nf)2 − (Al,nf)2

]

in the case l ≥ 1. When l = 0 the above equation becomes

EY
[
|βl(Al+1,nf)− βl−1(Al,nf)|2

]
= π0((A1,nf)2)− (π0(A1,nf))2, (34)

which completes (30). Now, taking expectations of (33) with respect to i.i.d. {Yl} and using

(22) as well as Fubini’s theorem, one finds that

EQ
[
|βl(Al+1,nf)− βl−1(Al,nf)|2

]
= π0K

l−1
λ [KλE

Q[(Al+1,nf)2 − EQ[(Al,nf)2]] (35)

= π0K
l−1
λ [Kλ −Kλ]K

n−l
λ (f × f).

in the case l ≥ 1. The case l = 0 is a simple calculation. 2

This leads us to our first main results of this section, which are a strong law of large numbers,

a rate of L2-convergence and a quenched central limit theorem.

Theorem 5 For Q-almost all Y , the weighted particle system satisfies:

SLLN σN
n ⇒ σn (i.e. weak convergence) a.s. [QY ]

L2-rates EY
∣∣∣σN

n (f)− σn (f)
∣∣∣2 = γW

n (f)
N

for Q-almost all Y for all f ∈ C(E)+

CLT
√

N
(
σN

n (f)− σn (f)
)
⇒ N

(
0,
√

γW
n (f)

)
for Q-almost all Y for all f ∈ C(E)+.

Proof. The theorem follows by the fact σN
n (f)− σn (f) = 1

N

N∑
k=1

Mβk

n (f), (30), the classical

strong law of large numbers and the classical central limit theorem. Note that Mβk

n (f) has

bounded second moment by the remark following (30). Also recall the {fi} ⊂ B(E)+ defined

in (8) and note σN
n (fi) → σn (fi) a.s. [QY ] for all i implies σN

n ⇒ σn a.s. [QY ]. 2

Since N(σN
n (f)−σn (f)) is a sum of i.i.d. random variables with finite second moment (with
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respect to QY ), we can use the classical probability results on this weighted particle filter,

which will characterize how the filter improves as we increase the number of particles. To do

this, we assign the C([0, 1])-valued random variables:

σ̃N
n (f, t) =

bNtc∑
k=1

(βk
n(f)− σn(f)) +

(
t− bNtc

N

)
(βbNtc+1

n (f)− σn(f)) ∀t ∈ [0, 1] (36)

for f ∈ B(E)+, let W denote a standard Brownian motion and define compact subset of

C([0, 1])

S =

g : g(t) =

t∫
0

φ(u)du ∀t ∈ [0, 1],

t∫
0

φ2(u)du ≤ 1

 . (37)

We also define the cummulant generating and rate functions:

Λ(λ) $ log EY
[
exp(λβ1

n(f))
]

and I(x) $ sup
λ∈R

{λx− Λ(λ)}. (38)

Theorem 6 For Q-almost all Y and all f ∈ C(E)+, the weighted particle system satisfies:

Donsker’s CLT:
1√

NγW
n (f)

σ̃N
n (f, ·) ⇒ W in C([0, 1]).

Strassen’s LIL:
1√

NγW
n (f) log log(N)

σ̃N
n (f, ·) →→ S a.s. [QY ].

Cramer’s LDP: lim sup
N→∞

1

N
log QY (σN

n (f) ∈ F ) ≤ − inf
x∈F

I(x) for all closed F and

lim inf
N→∞

1

N
log QY (σN

n (f) ∈ G) ≥ − inf
x∈G

I(x) for all open G.

Remark 3 We used the notation →→ S to mean that the set of cluster points as N →∞

is equal to S.

It appears from these (quenched) results that weighted particle filter works perfectly and

one need only supply enough particles to acheive the desired performance. However, there is

a catch, which is explained in the following section.
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4 Weighted Particle Filter Failure

The weighted particle filter can basically fail due to particle spread. We show in this section

that this problem can be so bad that adding more particles still can not solve it. This

failure is best explained by comparing Kλ and Kλ in a setting where explicit calculations

are manageable.

Example 3 Suppose h (x) = x and g (x) = 1√
2π

e−
x2

2 so λ (x, ξ) = exp (xξ) by Example 1.

Moreover, let K (x, dz) = 1√
π
e−(x−z)2dz so Kλ (x, dz) =

1√
π

e2xz−z2

dz and we have

Xk = Xk−1 + Wk (39)

Yk = Xk−1 + Vk (40)

with {(Wk, Vk)}∞k=1 being i.i.d. N

0,


1√
2

0

0 1



, so the filter could be solved by the Kalman

filter if X0 is independent and Gaussian. However, one might still use a particle filter if one

wants to do model selection or if the initial condition is not Gaussian.

Using K
l+1
λ (x, dz) =

∫
K

l
λ (ζ, dz) Kλ (x, dζ), we find that

K
2
λ (x, dz) =

1

π

[∫
exp

(
2ζz − z2 + 2xζ − ζ2

)
dζ
]
dz

=
1

π

∫
exp

(
− (ζ − x− z)2

)
dζ exp

(
(x + z)2 − z2

)
dz

=
1√
π

exp
(
x2 + 2xz

)
dz for any x, z ∈ R

and

K
3
λ (x, dz) =

1

π

[∫
exp

(
ζ2 + 2ζz + 2xζ − ζ2

)
dζ
]
dz = ∞ for any x, z ∈ R. (41)

On the other hand,
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Kλ (x, ξ, dz, dζ) =
1

π
exξ−x2−z2−ξ2−ζ2+2xz+2ξζdzdζ. (42)

Hence, using K l+1
λ (x, ξ, dz, dζ) =

∫ ∫
K l

λ (y, θ, dz, dζ) Kλ (x, ξ, dy, dθ) , we find that

K2
λ (x, ξ, dz, dζ)

dzdζ
(43)

=
exp

(
xξ − x2 − ξ2 − z2 − ζ2

)
π2

×
∫ ∫

exp
(
yθ + 2

[
xy + ξθ + yz + θζ − y2 − θ2

])
dydθ

=
1

π2
exp

(
19xξ + 16xz + 16ξζ + 4xζ + 4zξ + 4zζ − 7x2 − 7ξ2 − 7z2 − 7ζ2

15

)

×
∫ ∫

exp

−
[
y − 8z + 8x + 2ζ + 2ξ

15
θ − 8ζ + 8ξ + 2z + 2x

15

]


2 −1
2

−1
2

2




y − 8z+8x+2ζ+2ξ

15

θ − 8ζ+8ξ+2z+2x
15



 dydθ

=

√
15

π
exp

(
19xξ + 16xz + 16ξζ + 4xζ + 4zξ + 4zζ − 7x2 − 7ξ2 − 7z2 − 7ζ2

15

)
.

Moreover, letting

a =
44 (16z + 4ζ+ 30x) + 19 (16ζ+ 4z + 30ξ)

442 − 192
, b =

19 (16z + 4ζ+ 30x) + 44 (16ζ+ 4z + 30ξ)

442 − 192
,

we find

K3
λ (x, ξ, dz, dζ)

dzdζ
=
∫

K2
λ (y, θ, dz, dζ) Kλ (x, ξ, dy, dθ) (44)

=
2
√

7

π2
exp

(
4zζ − 7z2 − 7ζ2

15
+ xξ − x2 − ξ2

)

×
∫

exp

(
19yθ + 16yz + 16θζ + 4yζ + 4zθ − 22y2 − 22θ2

15
+ 2xy + 2ξθ

)
dydθ

=

√
15

π2
exp

(
22a2 + 22b2 − 19ab + 4zζ − 7z2 − 7ζ2

15
+ xξ − x2 − ξ2

)

×
∫

exp

− [y − a θ − b]


22
15

−19
30

−19
30

22
15




y − a

θ − b



 dydθ
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=

√
105

π
exp

(
22a2 + 22b2 − 19ab + 4zζ − 7z2 − 7ζ2

15
+ xξ − x2 − ξ2

)
.

Substituting n = 3 as well as the values for K1
λ, K

2
λ, K

3
λ and K

1
λ, K

2
λ, K

3
λ into (31), we see

the expected weighted particle filter variance EQ[γW
3 (f)] = ∞ (since K

3
λ = ∞) for any non-

trivial non-negative f . Therefore, taking expectations in the L2-rates of Theorem 5, one finds

EQ[(σN
3 (1) − σ3(1))2] = ∞ for all N so the weighted particle filter can not really work as a

model selection nor a tracking device.

Notice the variance of the unnormalized filter itself σ3(f), given in (18), is finite as it only

involves the kernals K1
λ, K

2
λ, K

3
λ.

This example also illustrates the importance of the observation variability function. The

unbounded nature of the observation variability function adversely affects expected variances.
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