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Abstract

Urodynamics is a primary diagnostic study in the evaluation of lower urinary tract
function. As an essential component of urodynamic studies, cysrometrv is performed to
assess the storage and voiding functions of urinary bladder. A graphic record of pressure
changes and flow rate, obtained during cystometry, is called ¢ stometrogram (CMG).
Cystometry is interpreted by observation of various evenrs. Invariably, the recognition
of these events is rendered difficult by arrifacts, which arise as a result of frequent
mechanical malfunction in the catheters and pressure lines. Since artifacts represent
erroneous data, their elimination is of paramount importance for valid interpretation of
cystometry. The research work described in this thesis represents an original coniribution
towards on-line recognition of events and artifacts by means of a pattern rccognition

program called CART (Cystometric Artifact Recognition 7oc!).

Cystometric data from patients were recorded on a video-urodynamic system and stored
in a computer. Based on thorough analyses of existing CMGs, the commonly
encountered patterns were grouped into 13 pattern classes — 5 of events and 8 of
artifacts. A set of ten discriminatory fearures, characterizing these classes, was chosen
empirically. Two methods of pattern classification were adopted: counters to classify the
relatively simple patterns; a trainable pattern classifier, based on perceptron approach,
to classify the complex ones. An algorithm, operating on-line in the time domain, was

designed to perform the tasks of data acquisition, pattern demarcation, feature extraction,



classification, plotting and alert actuation. CART was implemented on an 80386-based

PC.

The performance of the trainable classifier was evaluated on 43 patient files. These files
were divided into two sets of 21 and 22 files. The evaluation was done in two stages:
for the first stage, the first set was used for training and tiie second set was used for
testing; for the second stage, the two sets were interchanged. The results from the two
stages were coinbined to obtain the final results. Accordingly, the total number of
patterns tested was 1833 (1082 from first stage and 751 from second stage). The final
results were expressed in terms of four indices of performance: sensitivity 99%; false

positiviry 3% concurrence 89%; misclassification 11%.

The results indicate that CART had high sensitivity and moderately low false positivity.
Some of the misclassifications could be attributed to inadequate number of testing patterns
and to deficiencies in training. Future efforts could focus on: refinements in pattern
demarcation, feature selection and training; enhancements, in the form of automated
report generation and decision-support; integration with existing software in urodynamic

systeins.
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Chapter 1

INTRODUCTION

In recent years, our society has been confronted with the problem of "information
explosion”, resulting from rapid advancements in scientific research. We are made to
cope with ever-increasing amounts of information in our day-to-day lives. Fortunately,
the advent of computers seems to have ameliorated the problem. One of the central
issues in information handling is automated pattern recognition and classification. In
general, the situations in the real world cannot be evaluated in terms of isolated
observations. Instead, they are described in terms of patterns, which are aggregates of
closely related observations. The recognition of these patterns by human beings depends
on the nature of the observations and the information-processing abilities of the brain.
In other words, recognition of abstract relationships depends on our cognitive abilities,
while recognition of concrete relationships depends on our perceptual abilities. In order
to build "intelligent” machines that can interact with humans in an intuitive way, it is
necessary to implement these cognition and perception capabilities in the computers. The
research work described in this thesis is related to the application of pattern recognition
techniques in solving a commonly encountered problem in the field of urodynamics. The

following section provides an overview of the research work.
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1.1 An Overview of the Research Work
Before proceeding further with the rest of the thesis, it is advantageous to provide an
overall picture of the research work. Accordingly, this section is devoted to a discussion

of the problem, a proposed solution and objectives of the research project.

1.1.1 The Problem

Urodynamics constitutes a basic diagnostic study in the evaluation of lower urinary tract
abnormalities such as urinary incontinence, lower urinary tract obstruction, etc. Although
urodynamics is a collective term for a wide range of tests, one of the niost frequently
quoted tests is cystomerry [Blaivas 1988; Torrens 1987; Torrens 1984; Abrams et al.
1983; Blaivas et al. 1982]. The topics of urodynanics and cystometry will be discussed
at length in Chapter 2, but they are touched upon briefly in the following lines to facilitate

definition of the problem.

Essentially, cystometry, as referred to in this thesis, involves catheterizing a patient and
observing the behaviour of urinary bladder. The observations are made in two phases,
the filling phase, in which the bladder is filled with a fluid, and the voiding phase, in
which the patient empties the bladder. Although various parameters are measured during
the test, the two most commonly measured are pressure variations in the bladder, and
voiding flow rate. The graphic record of pressure and flow rate with respect to time is
referred to as cystometrogram (CMG). In state-of-the-art urodynamic systems, the data

are processed by a computer and the resulting graphs are displayed on a monitor. This
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test is generally performed by a trained nurse or technician, and interpreted by the
clinician. The amount of time required for the actual performance of the test is quite

variable, and is usually not less than 20 minutes.

The diagnostic interpretation of a CMG depends on the observation of several physiologic
events, and their relationship to voiding and to changes in external sphincter tone.
Unfortunately, on many occasions, the CMG traces are found to be obscured by
undesirable artifacts. In such cases, the recorded data generally turn out to be invalid and
potentially misleading, often necessitating repetition of the test on a different occasion.
This problem of misinterpretation, caused by artifacts, has long been recognized [Abrams

1984; Griffiths 1984; Stephenson and Wein 1984].

1.1.2 A Proposed Solution
A solution to the problem outlined above can be approached in at least two different
ways:

(1) recognizing artifacts at the time of interpretation of CMG (i.e., after the
cystometric test has been completed), and exercising caution in drawing
conclusions from such traces

(2) recognizing artifacts during cystometric testing itself, and taking appropriate
measures to eliminate them in order to obtain a valid set of data

If cystometry is conducted by a person inexperienced in recognizing aitifacts, the chances

of recording erroneous data are high, and the clinician who interprets such a test is left
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with only the first approach in solving the problem. On the other hand, if an experienced
person performs the test, a recourse to the second approach would be possible. Even
here, some artifacts can escape detection if the CMG traces on the monitor are not
followed with undivided attention. In the light of the above discussion, the reasons for
persistence of artifacts, during cystometry and in CMGs, can be summarized as being due
to two factors: lack of knowledge about artifacts; failure to follow the traces diligently

on the monitor.

Comparing the two approaches, it is readily apparent that the second is superior to the
first.  This is because, the first approach, although good in taking care of
misinterpretations, does not necessarily preclude test repetition; the second approach, on
the other hand, provides a solution to both factors. On further examination, it becomes
clear that practical implementation of the second approach entails on-line recognirion of
artifacts. That is, artifacts have to be detected in real time during the performance of the
test. This implies the use of a high-speed computer, and the development of a fast
algorithm. Since artifacts appear as waveforms in the time domain, the task of their

detection can be viewed as a pattern recognition and classification problem.

There have been many reports of computer applications in clinical urodynamic practice.
These are reviewed in [Kramer and Jonas 1988; Woodside 1988; Regnier 1986].
Specifically, computers have been used in data acquisition, storage and retrieval [Shank

et al. 1990; Eadie et al. 1986; Saini and Thiede 1986; Crawford and Walker 1985;



5
Abrams et al. 1984; Woodside and Morris 1982), research and analysis [Best et al. 1986;

Griffiths and Van Mastrigt 1985; Jacobs et al. 1984; Kramer and Jonas 1984; Van
Mastrigt 1984; Jonas et al. 1978], database management [O'Donnell 1990], and decision-
support [Hatano et al. 1989; Riss and Koelbl 1988]. However, there are no reports of
using computers in automated recognition of artifacts. This apparent lack of a suitable
solution prompted the current research work, which can therefore be viewed as a first

step towards automated recognition of artifacts.

The abundance of literature on pattern recognition techniques [Fukunaga 1990; Pao 1989;
Tou and Gonzalez 1974; Duda and Hart 1973; Andrews 1972; Becker 1972], and their
successful applications in many waveform-recognition tasks in the medical domain [Miller
et al. 1992; Bessette and Nguyen 1989; Chang et al. 1989; Revow et al. 1986; Schemann
et al. 1985; Ripley 1984; Fusfeld 1982; Van Bemmel and Willems 1977; Chik et al.
1975; McFarlane and Lawrie 1974; Serafini 1973; Wariak 1970] provided the rationale

for adopting these techniques in solving the CMG artifact recognition problem.

1.1.3 Objectives of the Project
Influenced by the nature of the problem, the proposed solution, the availability of
resources and the inevitability of constraints, the following objectives were defined:
e identify the events and artifacts that are commonly seen, and that need to be
recognized

o define objective criteria to differentiate the various events and artifacts



e develop an algorithm to automate the process of recognition
e implement the algorithm as software for a real-time recognition task
e evaluate the software's periormance for its potential usefulness in clinical
urodynamic practice
It may be noted that, although the major thrust was directec at detection of artifacts, an

attempt was made to detect the events as well in the hope of possible future applications.

1.2 Organization of the Thesis

This thesis is organized into six chapters and two appendices. This chapter, Introduction,
has provided an overview of the research work. The second chapter, Background,
provides introductory material on urodynamics and pattern recognition principles. The
third chapter, Pattern Recognition System for Cystometry, describes CART, the computer
program develcped in this research work in terms of its architecture, design principles,
implementation and evaluation. The fourth chapter, Results, presents the results of
evaluation of performance of CART. The fifth chapter, Discussion, focusses on
interpretation of the results. The sixth chapter, Conclusions and Future Directions,
provides the conclusions and outlines some suggestions for future work. Appendix 1,
Hlustration of Events and Artifacts, provides graphical illustrations of the examples of
various events and artifacts as seen on the screen during clinical use. Appendix 2, Using
CART, describes the general functions and the modes of operation of CART as a guide

to using it.



Chapter 2

BACKGROUND

This chapter provides inroductory material on urodynamics and pattern recognition
principles. The topics on cystometry and perceptron approach are discussed in some
detail as they are relevant to the understanding of the research problem addressed in this
thesis. As noted in the previous chapter, since there are no critical references on
automated pattern recognition in cystometry, no attempt is made to review any literature

on that subject.

2.1 Urodynamics

The human urinary system consists of the kidneys, ureters, urinary bladder and urethra.
Two kidneys are connected to the urinary bladder by means of a pair of ureters. The
urinary bladder opens to the exterior via the urethra. The urinary bladder and the
urethra, together, constitute the lower urinary tract. The wall of urinary bladder (or,
simply, bladder) consists of a smooth muscle, called detrusor, whose main function is to
pump the urine into the urethra during micturition (or voiding). A short segment of the
urethra is surrounded by striated muscles forming the external sphincter, which plays an

important part in the maintenance of urinary continence.
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The evaluation of patients with symptoms related to dysfunction of the lower urinary tract
involves a variety of procedures [Diokno 1988; Shah 1984; Turner-Warwick and
Whiteside 1982], one of them being urodynamics. The term, urodynamics, was
introduced in 1954, as a parallel to cardiovascular dynamics [Perez and Webster 1992,
Torrens 1984]. Now, urodynamics has a range of meanings, all related to the observation
of the changing function of the urinary tract over a period of time, encompassing the
morphological, physiological, biochemical and hydrodynamic aspects of urine transport

and storage [Abrams et al. 1988].

2.1.1 Clinical Significance

The role of urodynamics in objective clinical assessment of lower urinary tract function
has been firmly established in the past two decades [Perez and Webster 1992]. This has
been due, largely, to an improved understanding of the physiology of lower urinary tract,
and the availability of reliable measuring systems [Abrams et al. 1983]. From a clinical
perspective, the purpose of urodynamic testing is to measure and record various
physiologic variables while the patient is experiencing those symptoms that constitute
his/her usual complaints. In this context, urodynamic studies may be considered to be
provocative tests of vesicourethral function. Thus, it is the responsibility of the examiner
to ensure that the patient's symptoms are, in fact, reproduced during the study [Blaivas

1988].
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Urodynamics aims at assessment of the three basic aspects of the physiology of lower
urinary tract: storage function of the bladder; voiding function of the bladder; urine
transport functions of bladder and urethra. The assessment of the above functions is
helpful in diagnostic decision-making, treatment planning and basic physiological research

[Torrens 1984].

Based on a consideration of various factors, three main indications for performing
urodynamic studies have been put forward [Torrens 1984]: persistent lower urinary tract
symptoms that defy simpler modalities of investigation; before and after any operation or
procedure designed to alter the function of the lower urinary tract; failure of response to

initial treatment.

2.1.2 Sequence of Tests

A full urodynamic study involves performance of a number of tests. From a practical
point of view, these tests can be grouped into five categories [Blaivas 1988]: cystometry;
uroflowmetry, electromyography, wurethral pressure profilometry; fluoroscopic

visualization of lower urinary tract.

Technically, cystometry is defined as a study of the pressure/volume relationship of the
bladder. For many years, cystometry was performed by filling the bladder with a fluid
in increments of 50 ml, and drawing a graph by joining the points marked for the

pressures recorded after each increment [Abrams et al. 1983]. Since the test basically
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involved observing the behaviour of the bladder by filling it with a fluid, it was also
known as "filling cystometry” [Abrams et al. 1983]. Cystometry is principally a test of
detrusor muscle function; therefore, there is a requirement for supplemental testing to
define the other aspect of detrusor function, namely, voiding [Hald and Bradley 1982].
The voiding function has been traditionally assessed by continuous simultancous
measurement of the pressure inside the bladder and the urine flow rate during micturition.
This type of assessment, which measures the pressure/flow relationship, has been reterred
to as the "pressure-flow study of voiding" [Abrams et al. 1983]. Fortunately, with the
advent of computer-based urodynamic systems, it has been possible to obtain continuous
measurements of several variables including bladder pressure and flow rate. In modcern
state-of-the-art urodynamic systems, the different variables — pressures, flow rate,
volumes and EMG — are represented graphically as a function o. time in @ multi-channel
polygraph. Usually, a fluoroscopic image of the bladder is also presented along with the
graphic traces, and facilities are provided for recording the image and the traces on a
video tape. This type of comprehensive urodynamic study has been referred to as video-

cystourethrography (VCUG).

In our unit, urodynamic assessment of all the patients is done by VCUG. Details about
the various tests may be found in [Blaivas 1988; Torrens 1987; Abrams 1984; Abrams
et al. 1983]. Since this research project is concerned with cystometry, the latter is

discussed in detail in the next section.
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2.2 Cystometry and Cystometrogram
T car unit, cystometry is performed as part of VCUG. It is important to note that the
ctescription that follows relates to the manner in which cystometry is performed and
interpreted in our unit. Accordingly, the material presented below may not be completely

on par with similar descriptions found elsewhere.

2.2.% Technique
For the sake of convenience, the technique of cystometry is considered under the
following four headings: intravesical pressure measuremert; abdominal pressure

measurement; bladder filling; flow rate measurement [Abrams 1984]. A brief description

of the technique is given in the following lines.

Intravesical pressure (denoted by Pves) refers to the pressure measured from within the
bladder. The pressure is measured by means of a transurethral catheter, which is
connected to the pressure transducer by means of a fluid-filled tube. The pressure
transducer is mounted externally on a stand, and its height is adjusted to coincide with the
level of the upper border of pubic symphysis; at this height, the transducer is set to read

zZero pressure.

During cystometry, it doesn't suffice if only the intravesical pressure 1s measured. This
is because changes in intravesical pressure can be due to two factors: pressure generated

by the blarder wall due to detrusor activity (denoted by Pder) and changes in pressure
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around the bladder, most frequently due to abdominal straining (denoted by Pabd). Thus,
the intravesical pressure is actually givea by: Pves = Pdet + Pabd. Since Pdet is the
pressure that is of interest, it can bo calculated if Pabd is known. Pabd is usually

obtained as an approximation in terms of intrarectal pressure, which is measured by

inserting a fluid-filled catheter in the rectum.

Bladder filling forms the initial part of cystometry. However, befcre starting to fill, the
patient is asked to empty the bladder normally. Upon catheterization, the post-void
residual urine, if any, is collected, and the amount measured. The bladder is then filled
with a solution, at room temperature, containing a radiological contrast material. A
medium rate of filling (i.e., 10-100 ml/min) is generally followed. A peristaltic pump
is used to regulate the rate of filling, and also to prevent reflux of urine along the tube
should the bladder pressure increase at any time. The test is initially carried out with the
patient in the supine position; testing at sitting and standing postures may be done
subsequently, if required. Periodically, during filling, the patient is asked to cough in
order to check that the catheters and their connections are working properly, and also to
provoke involuntary detrusor contractions. The bladder pressure and volume are noted
at the instant when the patient feels the urge to void. The occurrence of involuntary
detrusor contractions, if any, are noted. The maximum cystometric capacity is recorded
as the volume at which the patient has a strong desire to void, or voids either voluntarily

or involuntarily.
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The voiding phase forms the latter part of cystometry. When the patient develops a
strong urge to void, an accompanying detrusor contraction may or may not be seen. If
the urge is accompanied by a detrusor contraction, the filling is stopped, and the patient
is asked to try to suppress voiding as far as possible. If he/she is unable to do so, the
detrusor contraction is considered to be involuntary. In such cases, bladder filling may
be repeated to confirm the presence of involuntary contractions. On the other hand, if
the strong urge to void is not accompanied by a detrusor contraction, the patient is asked
to void in a normal manner. In these cases, voiding is initiated by a voluntary detrusor
contraction. Some patients may become inhibited by the unnatural environment, and may
be unable to generate a detrusor contraction. Some may initiate voiding with abdominal
straining, and in them, the detrusor contraction and straining will be superimposed. In
any case, when the patient voids, the urine is directed by means of a funnel into a
Aowmeter. The voided stream is made to fall on a weight transducer which calculates
the flow rate by differentiating the weight of the voided urine with respect to time. In
addition, pressure at maximum flow, which is the pressure recorded at the time of
maximum flow rate, and maximum voiding pressure, which i, the maximum value of the

measured pressure, are noted.

As mentioned earlier, Cystometrogram (CMG) refers to the graphic representation of the
measurements recorded during cystometry. Essentially, CMG consists of traces of
several variables with respect to time. These traces are displayed in differrent channels

on a monitor during cystometry, and can be printed on paper after the completion of the
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test. A typical CMG printed at the end of a test is shown in Figure 2.1. Since the trace

is obtained as part of VCUG, it contains EMG data as well. The different channels, and

the corresponding variables are shown in Table 2.1.

2.2.2 Interpretation

In general, the interpretation of a urodynamic study depends on several factors: accurate
history; knowledge of the physiology of the lower urinary tract; understanding of the
working of the equipment; experience in radiological evaluation of the detrusor and
sphincter functions; selection of appropriate tests for the individual patient; collection of
valid data free of artifact; presence of an experienced clinician. Out of these factors, the
first five may be adequately taken care of by proper training of the personnel involved
in urodynamics. Although the ability to detect artifacts comes with experience, it is not
always possible to prevenr their occurrence. Lastly, the presence of an experienced
clinician during the performance of urodynamic tests cannot always be assured. It may

be noted that the last two statements reiterate the problem outlined in subsection 1.1.1.

Cystometry is interpreted in terms of its two phases: filling phase; voiding phase. These

are described below.

The interpretation of filling phase of cystometry involves consideration of four parameters
— capacity, compliance, contractility and sensation [Blaivas 1988; Torrens 1987; Abrams

et al. 1983]). The maximum cystometric capacity is defined as the volume at which the
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Channel Variable measured Unit
Pves Intravesical pressure cm H,O
Pabd Abdominal pressure cm H,0O
Pdet Detrusor pressure cm H,O
Flowl Urine flow rate ml/sec
InVol Volume infused into bladder | ml
OutVol [ Volume output from bladder | ml

Table 2.1 CMG channels
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patient has a normal strong desire to void. The normal range for maximum cystometric
capacity is 400-600 ml. Compliance is defined as the change in volume for a given
change in pressure. It is given by C = AV/AP, where AV is the volume increment, and
AP is the pressure increment. Most bladders are compliant even when filled fast; the
pressure increase is less than 10 cm H,O at 300 ml, and less than 15 cm H,0 at capacity.
In normal subjects, the bladder should not contract during filling under any
circumstances. An involuntary detrusor contraction that occurs spontaneously or on
provocation, during the filling phase while the patient is attempting to inhibit micturition,
is usually considered abnormal, and described as an unstable contraction. Description
of the sensory phenomena during bladder filling, obtained from the patient, may not be
particularly useful or accurate until the point is reached when the patient is uncomfortably
full or wishes to void. The volume at which this sensation occurs is significant; a normal

person can tolerate at least 300 ml.

The voiding phase of cystometry is usually interpreted by taking into account the
maximum flow rate and the corresponding detrusor pressure. A normal flow rate is
inherently that produced by a normal detrusor contraction emptying the bladder through
a normal urethra. However, normal flow may also occur when a powertul detrusor
contracts against an obstructed urethra. Also, especially in women, normal flow may
occur in the apparent absence of a detrusor contraction. A low flow rate, especially when
associated with a high or normal detrusor contraction, most commonly indicates bladder

outflow obstruction in males, though not necessarily in females. On the other hand, a
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low flow rate associated with a low detrusor voiding pressure indicates an abnormality
of detrusor contractility. Irregular or interrupted voiding may be due to three conditions:
abdominal straining; fluctuating detrusor contraction; dissociation between detrusor
contraction and urethral sphincter mechanism. The relationship between pressure and
flow rate has been formalized by defining various urerhral resistance fuctors, as described

in [Griffiths 1980].

2.2.3 Events

The pressure and flow data obtained during cystometry are represented graphically in a
CMG. In the previous subsection, the interpretation of these data was considered from
a clinical standpoint. In the following paragraphs, the basic observations that are required

for making those interpretations are examined.

2.2.3.1 Definition
As described earlier, the interpretation of a CMG depends on observing certain
phenomena and measuring several variables. In most cases, these observations and
measurements are made at points that bear a specific time relationship to the occurrence
of certain well-defined events. The following two examples serve to clarify this point.
(1) The occurrence of an unstable bladder contraction is anticipated following a
cough; here, the unstable bladder contraction is an observation, and the

cough is an event.
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(2) The measurement of maximum voiding pressure is taken at the height of a
bladder contraction associated with voiding; here, the maximum voiding

pressure is a measurement, and the bladder contraction is an event.

These events can be further qualified by the following statements:
¢ they are "physiologic” in the sense that they are the result of voluntary or
involuntary actions on the part of the patient
e they may be sought deliberately as part of the cystometric procedure
¢ they may not necessarily be "normal” in the usual sense of the word
e their origin cannot be attributed to improper technique or equipment

malfunction

2.2.3.2 Types

Based on the above definition, the commonly encountered events in a CMG can be listed
as follows: cough; abdominal strain; bladder contraction; rectal contraction; minor
baseline change. 1t is worth mentioning here that the above events have been named and
defined on the basis of pressure changes in the Pves, Pabd and Pdet channels. Even
though the CMG, as obtained in our unit, consists of three other channels, namely, flow,
inflow volume and outflow volume, the changes in these channels are not taken into
account in defining these events. These events are explored in greater detail in subsection

3.2.1.
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2.2.4 Artifacts

The technique of cystometry involves extensive use of eclectrical and mechanical
components. In particu'ar, the measurement of intravesical and abdominal pressures
entails the use of three principal components: transducers; catheters; connecting tubes.
The quality of data acquired during the procedure depends very largely on the proper
functioning of these components. Furthermore, reliable interpretation of CMG depends,

in turn, on the quality of acquired data.

2.2.4.1 Definition
Unfortunately, the malfunction of one or more of the components mentioned above is
extremely common during cystometry. Transducers pose few problems, but catheters and
connecting tubes "go out of order” relatively frequently during clinical tests. When this
happens, erroneous pressure readings are recorded, making the resulting traces difficult
to interpret. Such traces contain a variety of anomalies, referred to as artifacts, that
manifest in three principal ways:

e as new entities distinct from events

e as distortions of events

e as partial or total failure of registration of events

2.2.4.2 Types

Some of the commonly encountered artifacts in CMG are described in [Griffiths 1984].

Based on the above description, and on further work that was undertaken as part of the
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current research project, three main types of artifacts have been identified. These are as
follows: steps; under-registrations; flat traces. These artifacts can occur in one or both
of Pves and Pabd channels. Since the Pdet channel only reflects the changes in Pves and
Pabd channels, it is sufficient to define artifacts in the latter two channels. Further details

about the nature and characterization of these artifacts are provided in subsection 3.2.2.

2.2.4.3 Causes

The origin of these pressure artifacts can be attributed to a variety of causes [Abrams

1984], which are described in the following paragraphs.

Inappropriate catheter positioning

During cystometry, it is important to ensure that the tips of the catheters are well within
the bladder and the rectum. If they are not, invalid data will be recorded. Generally,

loosely secured catheters may get displaced when the patient coughs or strains forcefully.

Blockage of catheters and pressure lines

Catheters and pressure lines can get blocked when there are air bubbles inside, or when
they are kinked or curled up. The tip of the bladder catheter can get entangled within the
mucosal folds such that the hole becomes covered by mucosal tissue, and thereby blocked.
The rectal catheter, on the other hand, can get clogged by fecal matter or it can get

compressed under a buttock.
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Fluid leaks from pressure lines
Catheters are connected to the pressure transducers by means of fluid-filled tubes with

stop-cocks interposed. This arrangement can cause fluid leaks from the connection sites.

Improper zeroing of transducers

When external transducers are used, they should be set to read zero pressure at the level
of the upper border of the pubic symphysis. This is generally done by adjusting the level
of fixation of transducers on the stand so as to coincide with the upper border of the pubic
symphysis, and making them read zero pressure at that level by means of a keyboard

command. If the zeroes are not set properly, falsely high or low pressures are recorded.

Improper calibration of transducers
Transducers should be calibrated using a 100-cm water column connected to the pressure
lines. The calibration is done by the manufacturer, and usually there is no need to

recalibrate unless there is significant drift (see below).

Transducer drift

The clinician should be aware of the physical properties of each transducer. It is
important to know whether any alteration occurs with changes in temperature, or whether
there is any inherent instability of the transducer. If such changes are noted, the defective

transducer/s may have to be recalibrated or replaced.
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2.2.4.4 Precautions and Remedies

In order to avoid artifacts, certain precautions have to be taken before starting the test.
Once the test is underway, if artifacts are encountered, appropriate remedial measures are

called for, as summarized in the following paragraphs.

Proper zeroing of transducers
Before starting the cystometric procedure, it is important to adjust the position of
transducers on the stand such that they register zero pressure at the level of the upper

border of pubic symphysis. This position needs to be altered appropriately if the patient's

posture changes appreciably during the test.

Checking for calibration
This is done by alternately opening and closing the stop-cock so that the maximum

pressure registered corresponds to the maximum level set during calibration. Transducer

drift, if any, should become apparent at this point.

Secure fixation of tubes
Catheters and connecting tubes should be fixed securely by means of adhesive tapes to
ensure that they do not fall off during the test. Also, it is important tc ensure that they

are not unduly at risk of compression or kinking.



Removal of air bubbles
This is done before starting the test. Fluid is run down the pressure lines so that all the

air bubbles are expelled, and a free flow is established.

Repositioning of catheters

If the observed pressures appear improper at any time during the procedure, it is a good
idea to slide the catheter/s in or out a little. This manoeuvre might help in positioning
the catheters properly inside the cavity rather than abutting against the wall (the catheter
holes can get blocked by mucosal tissue if they are in close contact with the walls of the

viscus).

Flushing of catheters
If Pabd channel fails to register the pressure properly, the rectal catheter may be flushed

with fluid to overcome any blockage caused by fecal matter.

Thus, it is indeed possible to collect artifact-free data during cystometry if the above basic
techniques are followed. The successful application of these techniques depends, of
course, on one's awareness of the existence of artifacts, and the ability to recognize them

during clinical testing.
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2.3 Pattern Recognition and Classification
The majority of human decision-making processes depend on perception of the
environment. The perceptual task, in essence, involves recognition of physical objects
or events, and assigning them to one of several predefined categories. Although human
beings perform their perceptual tasks with apparent ease, the duplication of such
performance with a computer has been anything but simple. This section explores, in
brief, the central issue in machine perception — the theory of pattern recognition and

classification,

2.3.1 Some Definitions
In this section, some of the basic definitions pertaining to the study of pattern recognition
are provided. These definitions are considered in the three principal spaces: pattern

space; feature space; classification space [Andrews 1972].

The term pattern space refers to the domain which is defined by the data observed from
the real world. Its dimensionality is denoted by r. The term partern refers to the
physical object or event in the real world that needs to be recognized. The process of
assignment of the object or event to one of several predefined categories is known as
partern recognition and classification. Each pattern is described by an r-dimensiona:
vector, P = (p,, p.,.... Pi..., P,)', called the partern vector. The component p; of the

pattern vector might be any measurable quantity, such as amplitude at a discrete point in
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time, brightness or color. Thus, the pattern vector is comprised of scalar values,

descriptive of a set of » measurements that define the pattern space.

Each pattern in the pattern space can be described by a set of common properties or
attributes called fearures. All the patterns possessing similar values for a set of common
features can be grouped together into a single category called parrern class. Now, the
term feature space can be defined as the domain that contains these features. Thus,
feature space forms a domain that is intermediate between the data gathering space and
the classification process; the r-dimensional pattern vector P is reduced to an n-
dimensional feature vector, X = (x,, x5,..., X;,..., X,)', where n is much smaller than r.
If the pattern space consists of amplitude measurements for example, the components x;
of the feature vector could be such features as maximum amplitude, minimum amplitude,
etc. Clearly, the essential objective in defining feature space and the feature vector is to
reduce the dimensionality of pattern space while maintaining the discriminatory power of

the data.

Classification space refers to the domain that encloses the decisions arising out of the
pattern classification process. In other words, it is an M-dimensional space, where M is
the number of pattern classes (for example, in an alphabet-recognition task, the
classification space is typically 26-dimensional). During the classification process, this
space is partitioned into M different regions, and the identity of the pattern is determined

by observing its location in the partitioned space. This process can be accomplished by
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a device which is either purely hardware-based or software-directed. For the sake of

convenience, such a device is referred to as a pattern recognition system in this thesis.

2.3.2 Basic Steps in Pattern Recognition
The process of pattern recognition involves three basic steps: sensing; feature extraction;

classification [Tou and Gonzalez 1974]. These are described in the following paragraphs.

Sensing involves representation of data that are input to the pattern recognition system.
These data are measured from the patterns that are to be recognized, and each measured

quantity describes a characteristic of the pattern.

As the name implies, feature extraction is concerned with extraction of characteristic
features from the input data. This process is often referred to as preprocessing. Here,
the extracted features are represented in the form of a feature vector, X = (x;, x;)',

where x, and x, could be, for example, height and weight of an individual.

Classification is concerned with determination of optimum decision procedures that are
needed to classify the various observed patterns into different pattern classes. Suppose
that there are M pattern classes, denoted by w,, ,,..., ®,,. Then the feature space can be
considered as consisting of M different regions, each corresponding to one pattern class.
Now, the classification problem consists of generating decision boundaries which separate

the M pattern classes on the basis of the values of observed features. Let the decision
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boundaries be defined by the functions, d,(X), d,(X),..., d,(X). These functions, called

discriminant functions, are scalar single-valued functions of pattern X. Based on these
discriminant functions, the pattern can be classified as follows: if d(X) > d(X) for i, j
= 1,2,...,M, and for all j # i, then the pattern X belongs to pattern class w,. The
generation of discriminant functions depends on the knowledge available about the pattern
to be recognized. When complete a priori knowledge about the patterns is available, the
discriminant functions may be determined with precision. On the other hand, when only
qualitative knowledge about the patterns is available, at best only a reasonable guess of
the form of the discriminant function can be made; in this case, the decision boundaries
may be incorrect, necessitating a sequence of adjustments to achieve satisfactory
performance. In the more general situation where little, if any, a priori knowledge
exists about the patterns, the pattern recognition system is best designed by using a
training or learning procedure. Arbitrary discriminant functions are assumed initially,
and through a sequence of iterative training steps, these discriminant functions are made

to approach optimum forms.

2.3.3 Design Concepts for Pattern Recognition Systems

The design concepts for automated pattern recognition systems are motivated by the
manner in which pattern classes are characterized and defined. There are two main ways
of designing a pattern recognition system: membership-roster concept and common-
property concept [Tou and Gonzalez 1974]. These are described in the following

paragraphs.



29
When a pattern class is characterized by a roster of its members, pattern recognition may
be done on the basis of membership-roster concept. All the patterns belonging to each
pattern class are stored in the pattern recognition system. When an unknown pattern is
shown to the system, it is compared with the stored patterns one by one. If it matches
one of the stored patterns, it is classified likewise to that pattern class. Clearly, this
approach is simple and economical in its demands on resources if the pattern roster is of
modest size. However, it works satisfactorily only under the condition of nearly perfect
pattern samples, and has no means for classifying a combination of observations not in

the roster.

When a pattern class is characterized by common properties or features shared by all of
its members, pattern recognition may be done on the basis of common-property concept.
The features, characterizing the various classes, are stored in the pattern recognition
system. When an unknown pattern is observed by the system, its features are extracted,
coded, and compared with the stored features. The new pattern will be classified as
belonging to the pattern class with which it shares its features. Here, the main design
effort lies in determining the common properties from a finite set of sample patterns
known to belong to the pattern classes to be recognized. This approach has two main
advantages over the membership-roster concept: the storage requirement for the features
of a pattern class is much less than that for all the patterns in the class; since the features
of a pattern class are invariant, comparison of features allows variation in individual

patterns. As mentioned earlier, it is often extremely difficult, if not impossible, to
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determine the complete set of discriminatory features for a pattern class. Therefore,

utilization of this concept necessitates careful selection of optimum features.

2.3.4 Implementation of Pattern Recognition Systems

The design concepts for pattern recognition systems, described above, may be
implemented by three principal approaches: heuristic; statistical; deterministic. These are
outlined briefly in the following paragraphs. Details of these methods can be found in
[Fukunaga 1990; Pao 1989; Tou and Gonzalez 1974; Duda and Hart 1973; Andrews

1972].

2.3.4.1 Houristic Approach

Heuristics are "rules of thumb", derived from human intuition and experience, but not
guaranteed to be accurate all the time. The heuristic approach can be applied to
membership-roster and common-property concepts. A pattern recognition system
designed using this approach generally consists of a set of specifically tailored ad hoc
procedures. This approach is essentially qualitative and subjective, its structure and

performance depending largely on the experience and insight of the system designers.

2.3.4.2 Statistical Approach

Statistical approach to pattern recognition involves formulation and derivation of
classification rules in a statistical framework. The statistical methods can be further

subdivided into two types: parametric methods; nonparametric methods.
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In parametric methods, the conditional probability densities are assumed. The
discriminant functions are generally derived on the basis of Bayes' decision theory, which
is a fundamental statistical approach to the problem of pattern classification. Bayes'
theory is based on the assumption that the decision problem is posed in probabilistic
terms, and that all of the relevant probability values are known. The discriminant
functions can be linear, quadratic or piecewise linear; generally, linear discriminant
functions are chosen for the sake of simplicity. Although conditional probability densities
can have various distributions, the normal density distribution is usually assumed because
of its analytical tractability. In a two-class classification, the normal density distribution
is completely specified by the mean and variance parameters, whereas, in a multi-class
case, it is specified by the mean vector and covariance matrix parameters. The design

of the classifier involves estimation of these parameters from a set of sample patterns.

In nonparametric methods, no assumptions are made regarding the distribution of
probability densities. This situation may become necessary when there is a severe
limitation on the number of samples that can be obtained, making the assumption of
underlying densities difficult.  In such cases, density estimates are obtained
nonparametrically from a small number of neighbouring samples. There are three main
types of nonparametric methods that are of interest in pattern recognition. The first one
consists of procedures for estimating the conditional density functions p(X | ;) from the
sample patterns; if these estimates are satisfactory, they can be substituted for the true

densities in designing the optimal classifier. The second type involves procedures for
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directly estimating the a posteriori probabilities P(w, | X); these procedures bypass
probability estimation, going directly to discriminant functions. The third type involves
procedures that transform Jeature space so as to allow employment of parametric methods

in the transformed space.

2.3.4.3 Deterministic Approach

Determiristic approach focuses on the design of a trainable classifier. None of the
deterministic methods requires knowledge of the forms of underlying probability
distributions, and in this sense, all of them can be said to be nonparametric. A trainable
classifier is designed by generating discriminant functions from the training patterns by
means of iterative "learning” or "training" algorithms. This process involves specifying
the form of the discriminant function and then determining its coefficients. Deterministic
algorithms are capable of learning the solution coefficients whenever the patterns in the
training set are linearly separable (i.e., the decision boundary is a hyperplane) by the
specified discriminant functions. The algorithms are deterministic in the sense that they
are developed without making any assumptions regarding the statistical properties of the
pattern classes. In the next section, the perceptron approach is discussed in detail since

it is employed in solving the CMG pattern recognition problem.

2.4 Perceptron Approach

The word perceptron was coined in the early 1960s [Rosenblatt 1962] to describe a

reinforcement learning scheme. The original perceptron model consisted of a network
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of multiplying and summing functions. It was envisaged to be a natural and powerful

model of machine learning.

The basic model of a perceptron capable of classifying a pattern into one of two classes
is shown in Figure 2.2. It consists of an array S of sensory units, which are randomly
connected to a second array A of associative units. Each of these associative units
produces an output only if enough of the sensory units that are connected to it are
activated. The sensory units may be viewed as the means by which the machine receives
stimuli from its external environment, that is, its measurement devices, and the
associative units as the first stage or input to the machine. The total response of the
machine is proportional to the weighted sum of the associative array responses; that is,
if x; denotes the response of the i/ associative unit, and w, is the corresponding weight,

then the total response is given by

n+1
R=Ywx =WX e.n

i=1

where W and X are the weight and feature vectors respectively.

If R > 0, the pattern belongs to ,; if R < 0, it belongs to w,; if R = 0, the class
membership is indeterminable. Thus, subsequent to the sensory array, the basic
perceptron model can be visualized as an implementation of a linear decision function.
The model shown in Figure 2.2 can be easily extended to the general multi-class case by

increasing the number of units in the R array to M, where M is the number of classes.



Figure 2.2 Perceptron model
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In such a case, responses R,, R,,..., R, are observed, and the pattern is assigned to class

w, if R, > R, for all j #i.

The original perceptron model was unable to perform certain trivial tasks [Minsky and
Papert 1969]. The failure of perceptron in such tasks was attributed to its being single-
layered, i.e., having only one layer of processing units (in Figure 2.2, R array is the
actual processing layer; S and A4 arrays merely serve to distribute the input). It was
concluded that the inadequacies of perceptron could not be overcome even by having
multiple layers of processing units between the input and output layers [Minsky and
Papert 1969]. Unfortunately, the capabilities of such multi-layered perceptrons could not
be tested since algorithms for training them did not exist during the 1960s. Recently,
perceptron research received fresh impetus with the introduction of a training algorithm
for multi-layered perceptrons [Rumelhart et al. 1986]. In spite of some serious criticisms
[Minsky and Papert 1988], muiti-layered perceptrons have found several applications
[Lippmann et al. 1991; Touretzky 1990; Touretzky 1989]; their applications in the

biomedical field are reviewed in [Miller et al. 1992].

Although the recent trend in pattern recognition, as evident from the volume of literature
published, is focussed on implementation of multi-layered perceptrons, the original single-
layered perceptron still remains a simple and valuable tool for solving certain types of
pattern recognition problems [Pao 1989]; a couple of recent applications of single-layered

perceptron may be found in [Knerr et al. 1992; Chang et al. 1989].
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Various algorithms for training single-layered perceptrons have been described from the
perspectives of linear discriminant functions [Tou and Gonzalez 1974; Duda and Hart

1973] and neural networks [Aleksander and Morton 1990; Pao 1989; Wasserman 1989;

Lippmann 1987]; the discussion that follows reflects the former perspective.

2.4.1 Perceptron Algorithm
The training algorithm for a single-layered perceptron consists of iterative determination
of the weight vector W. This algorithm, for a two-class case, which is often called the

perceptron algorithm [Tou and Gonzalez 1974}, is stated as follows.

Suppose that the training set of samples consists of patterns belonging to two pattern
classes, ®;, and ®,. Let W(1) represent the initial weight vector, which is arbitrarily
chosen, and let o be the correction increment (discussed further below). Then, at the k"
training step:
if X(k) € o, and W'(k)X(k) < 0, then
Wk+1) = W) + aX(k) (2.2)

if X(k) € o, and W'(k)X(k) = 0, then

Wk+1) = Wk) - aX(k) 2.3)

otherwise

Wk+1) = W(k) 2.9
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The training procedure is carried out in several cycles in which all the patterns contained
in the training set are presented to the algorithm repeatedly. Each of these cycles is
called an iteration. The algorithm makes a change in W if and only if the pattern being

considered at the k* training step is misclassified by the weight vector at that step.

The perceptron algorithm can be expressed in an equivalent form by multiplying the
augmented patterns of one class by -1. Thus, arbitrarily multiplying the patterns of ,

by -1, the perceptron algorithm can be written as

WK  if WkXK >0
Wk+1) = { 2.5
W) + aX(k) if W)Xk <0

Convergence of the algorithm occurs when a weight vector classifies all the patterns
correctly. It can be shown that the algorithm converges in a finite number of iterations
if the classes under consideration are linearly separable [Tou and Gonzalez 1974; Duda

and Hart 1973].

Several variations of the perceptron algorithm have been formulated, depending on how
the value of the correction increment is selected [Tou and Gonzalez 1974; Duda and Hart
1973). In fixed-increment algorithm, o is chosen as some arbitrary positive number, and
kept constant. In absolure-correction algorithm, a is chosen at each iteration to be just

large enough to guarantee that the pattern is correctly classified after a weight adjustment.
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In fractional-correction algorithm, a is chosen at each iteration such that the weight vector

moves closer to the solution vector by some preset positive fraction.

If there are M pattern classes, it can be assumed that there exist M discriminant functions

with the property that, if X € w,, then

dX) > d(X) forallj=i (2.6)
In such a case, the algorithm used to determine these M decision functions may be
described as follows. Let there be M pattern classes, ®,, w,,...,o,,. Suppose that at the
k" training step, a pattern X(k) belonging to class @, is presented to the machine. The M

discriminant functions, d[Xk)] = W' (bX(k), j = 1,2,....,M, are evaluated. Then, if

diXk)] > diX@®l Jj=12,.M; =i 2.7)

the weight vectors are not adjusted, that is,
Wik+1) = W@, Jj=12,..M 2.8)

On the other hand, suppose that for some s

diX@®)] < dIX(K)] s=12,. M s+i 2.9

Under this condition, the following weight adjustments are made:

Wk+1) = WK + aX(k)

W k+1) = W (k) - aX(k) (2.10)

Wik+1) = WA, j = 12,..M; j#, jos
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where a is the correction increment. If the classes are linearly separable, it can be shown
that the algorithm converges in a finite number of iterations for arbitrary initial weight

vectors, W(1), i = 1,2,....M.

2.4.2 Nonseparable Behaviour

The fixed-increment algorithm, described above, provides a simple method for finding
a separating weight vector when the samples are linearly separable. It is an error-
correction algorithm because the weight vector is modified when and only when an error
is encountered. The success of this algorithm on separable problems is largely due to its

relentless search for an error-free solution [Duda and Hart 1973].

Of course, even if a separating vector is found for the training samples, it does not follow
that the resulting classifier wili perform well on independent test data to which it has not
beer exposed. This leads to the important question of determining the number of patterns
required to achieve good generalization properties. The intuitive answer is to choose as
many patterns as possible. However, in practice, the question of economics will usually
place a constraint on the number of samples that can be gathered, and the computer time
that will be available for the training phase. Very few analytical results exist that can be
used as a guide in pattern selection. However, in the absence of any probabilistic
information, it has been shown that the 1otal number of training patterns chosen for a two-
class problem must be at least equal to twice the dimensionality of the feature vector in

order to yield meaningful generalization properties [Tou and Gonzalez 1974]. In practice,
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it is customary to use several times that many training patterns to overdetermine the
classifier, thereby ensuring that the performance on the test patterns approaches that on
the training patterns. Unfortunately, the larger the training set the less likely its members
are linearly separable [Duda and Hart 1973]). Thus, it is obvious that a suitable

compromise between generalization and nonseparability has to be obtained.

Suppose that the designer aims at achieving good generalization by overcoming the
economic constraints mentioned above. In such a case, the problem of nonseparability
arises, so it is important to know how the error-correction procedure will behave when
the samples are nonseparable. Since no weight vector can correctly classify every sample
in a nonseparable set, it is clear that the corrections in an error-correction procedure can
never cease. The fixed-increment algorithm produces an infinite sequence of weight
vectors, any member of which may or may not yield a useful solution. The exact
nonseparable brhaviour of these algorithms has been studied thoroughly in only a few
special cases. It has been shown, for example, that the length of the weight vectors
produced by the fixed-increment algorithm is bounded [Duda and Hart 1973]. Empirical
rules for terminating the correction procedure are often based on this tendency of the
length of the weight vector to fluctuate near some limiting value. From a theoretical
point of view, if the components of the samples are integer-valued, the fixed-increment
procedure produces a finite-state process. If the correction is terminated at some arbitrary
point, the weight vector may or may not be in a good state, making the resulting solution

questionable.
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In order toc overcome the problem of nonseparabil:ty, several heuristic modifications of
the error-correction procedures have been suggested, and studied empirically. The goal
of these modifications is to obtain acceptable performance on nonseparable problems
while preserving the ability to find a separating vector on separable problems. Some of

the suggested heuristics are given below.

The average weight vector heuristic involves averaging the weight vectors produced by
the error-correction procedure in the hope of reducing the risk of obtaining a "bad"
solution by accidentally choosing an unfortunate termination time [Duda and Hart 1973].
The variable increment heuristic involves the use of a variable increment, o, with o
approaching zero as the number of iterations, k, approaches infinity. The rate at which
o approaches zero is quite important: if it is too slow, the results will still be sensitive to
those samples that render the set nonseparable; if it is too fast, the weight vector may
converge prematurely with suboptimal results. Two methods of choosing o have been
suggested [Duda and Hart 1973]: one is to make o a function of recent performance,
decreasing it as performance improves; the second is to set o such that a(k) = ou(k-1)/k.
Using the heuristic of number of correct classifications involves determination of the
maximum number of training patterns that are correctly classified by a given weight
vector [Tou and Gonzalez 1974]. Since the length of the weight vector fluctuates with
each iteration, the one that correctly classifies the majority of the training samples can be
retained as the final solution vector. One way to determine such a weight vector is to

keep track of the percentage of the correct classifications during the training process.



Chapter 3

PATTERN RECOGNITION SYSTEM FOR CYSTOMETRY

In this chapter, the specific aspects of the research project are considered. The outcome
of the project is CART (Cystometric Artifact Recognition 7ool), a software-based pattern
recognition system. CART employs a trainable classifier based on perceptron approach
for recognition of patterns in cystometry. The architecture, design principles,

implementation and evaluation of CART are discussed in detail in this chapter.

3.1 An Overview of CART

CART is a set of computer program modules, designed to recognize, on-line, the events
and artifacts that occur during the clinical procedure of cystometry. In the description
of CART
o the term "on-line" refers to real time processing of data during the course of
clinical testing
e the term "event" refers to any physiologic change associated with cystometry,
as described in subsections 2.2.3 and 3.2.1
e the term "artifact" refers to any non-physiologic change associated with
cystometry that arises as a result of error in data acquisition, as described in

subsections 2.2.4 and 3.2.2
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It is worth noting here that, while cystometry involves obtaining several parameters
besides pressures, CART analyzes only the pressure data to recognize the various events

and artifacts.

3.1.1 Architecture

The architecture of CART is shown in Figure 3.1. The figure shows that CART consists
of three modules. The input to CART is obtained from the urodynamic equipment
(UDE), and the output is displayed on a monitor. While the UDE is itself
microcomputer-based, CART as developed in this project runs on its own separate

microcomputer. The functions of the various modules are described in the following

paragraphs.

3.1.1.1 UDE-CART Interface Module

CART receives cystometric data from the UDE via a serial port after processing by the
UDE software. The functions of the interface module include: storage of original data
on the hard disk of the CART computer; extraction of the required pressure data from
the entire data train; conversion of the extracted data into a suitable format for analysis.
The formatted data are then fed into the pattern recognition module for further

processing. The interfacing aspects are discussed in greater detail in subsection 3.3.2.



Urodynamic
Equipment
(UDE)
CART UDE-CART
Interface Module
Pattern Recognition
Maodule Thresholds
Pat}e{n Feature M Classifier Alert
Delimiter Extractor Manager
Graph Display
Module
> Monitor

Figure 3.1 Architecture of CART
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3.1.1.2 Pattern Recognition Module

This module is concerned with the task of recognition of the patterns in CMG. The task
is accomplished by five coordinated submodules: thresholds; pattern delimiter; feature

extractor; classifier; alert manager. These submodules are described below.

Thresholds submodule stores the various threshold values of CART. Thresholds are
empirically obtained numerical values that serve to partition a set of values into two or
more subsets. The thresholds govern almost all aspects of functioning of CART,
including demarcation of waveforms, extraction of features, classification of patterns and
actuation of alerts. These thresholds are constants relative to the functioning of CART,

but depend, to a certain extent, on the hardware characteristics of the UDE.

Pattern delimiter submodule keeps a close track of the pressure parameters, and looks
independently at each for the onser of any significant waveform suggestive of an event
or artifact. If an onset is found, the subsequent data streams are continuously searched
to determine the end of the waveform. The term waveform refers to a segment of the
trace in a given channel between the onset and end, and is considered significant if it
satisfies certain thresholds. The individual tracings in the three channels — Pves, Pabd
and Pdet — together constitute a pattern. Thus, the basic function of this submodule is
to break down the CMG traces into meaningful segments to facilitate further analysis.
This initial step of pattern recognition is known as pattern demarcation, and is discussed

more fully in subsection 3.2.9.
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Feature extractor submodule performs the second step of pattern recognition, namely,
Jeature extraction. This step involves scanning the demarcated waveforms in the three
channels to obtain the values of the features. As mentioned earlier, the term feature
refers to a characteristic that is used to describe a pattern. The feature values obtained
in this step form the feature vector, which is input to the classifier submodule. The
features that describe the CMG patterns are discussed in greater detail in subsection

3.2.6.

Classifier submodule performs the third step of pattern recognition, namely,
classification. The feature vector, as derived from the previous step, is subjected to
mathematical manipulation in order to determine the identity of the observed pattern.
Details about the pattern classes and the classification schemes are discussed in

subsections 3.2.5 and 3.2.7.

Alert manager submodule issues a message whenever artifacts are detected, so that the
person conducting the clinical procedure can take appropriate remedial measures. The
process of issuing alerts constitutes the final step of pattern recognition. Essentially, the
function of this submodule involves deciding whether an alert should be issued, and if so,

the type of alert. Management of alert actuation is discussed in detail in subsection 3.2.8.
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From the foregoing discussion, it is clear that the pattern delimiter, feature extractor,
classifier and alert manager submodules are activated in a sequential marnner in
accomplishing the task of pattern recognition. Furthermore, the entire process is

governed and fine-tuned throughout, by the appropriate thresholds.

3.1.1.3 Graph Display Module
The output of CART consists of a graphic display of CMG, and a display of messages

indicating the identity of detected events and artifacts. The graph displa' module is
concerned with presenting this output to the user. Its main functions include: displaying
the intravesical, abdominal and detrusor pressure traces in a scrolling fashion; displaying
the identity of detected events and artifacts in the form of visual alerts; issuing auditory
alerts if artifacts have been detected. The topics of graphic display and alert actuation

are considered in greater detail in subsection 3.2.8.

3.2 Design Principles of CART

This section addresses the major issues involved in the design of CART. The first two
subsections provide objective definitions of the commonly encountered events and artifacts
in CMG, while the third subsection outlines an expert clinician's approach towards their
characterization. From the fourth subsection onwards, the specific design aspects of
CART are discussed. In the last subsection, CART's overall logic for recognition and

classification of CMG patterns is presented.
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3.2.1 Objective Definition of Events

As mentioned earlier, events denote physiologic alterations in pressure inside the bladder
and the rectum that are observed during cystometry. They represent observations that are
of interest to the clinician in the interpretation of CMG. In general, events are positive
deflections of the baseline, characterized by an onset point, a rising phase, a peak or
plateau, a falling phase and an end point. Events can be bichannel (registered in both
Pves and Pabd) or unichannel (registered in either Pves or Pabd). The commonly
encountered events are of five types: cough; abdominal strain; bladder contraction; rectal

contraction; minor baseline change.

Examples of the commonly encountered events are illustrated in the form of screen print-
outs in Figures Al.1 through A1.S in Appendix 1. The individual events are described
objectively in this section. In the following descriptions, the numerical ranges of
amplitude and duration are arbitrary, and are provided only to facilitate easier
visualization and differentiation of the individual events in a CMG. Furthermore, it is
assumed that all these events start and terminate at the baseline reference point of 0 cm
H,0. It should be noted that the ranges are influenced by two factors: resolution of the
urodynamic equipment; calibration of the transducers. The numerical values that are
provided correspond roughly to those encountered by CART in the urodynamic equipment

in our unit.
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3.2.1.1 Cough

This is an event resulting from sudden changes in pressure associated with coughing.
Although the event is termed cough for the sake of simplicity, similar changes may be
observed with such other manoeuvres as sneezing, blowing nose, etc. Typically, a cough
is a positive deflection, and appears "spiky" with a few steep upstrokes and downstrokes.
It is a bichannel event, and is registered equally in Pves and Pabd channels, with minimal
changes in Pdet. It has an amplitude of at least 10 cm H,0, and a duration of 1-2 sec.
This event is recorded deliberately, several times in each patient, because it helps in:
assessing the patency of catheters; demonstrating stress incontinence; demonstrating

detrusor instability by provoking an unstable bladder contraction.

3.2.1.2 Abdominal Strain

This occurs as a result of straining, i.e., voluntary contraction of the abdominal muscles.
It is due to sudden or gradual changes in pressure, extending over a period of time. It
is observed in association with changing posture, speaking, straining to void, etc. Strain
is a positive deflection, and extends for a duration longer than a cough. It is a bichannel
event, consisting of several upstrokes and downstrokes that are registered equally in Pves
and Pabd channels, with minimal changes in Pdet. It has an amplitude of at least 10 cm
H,0, and a duration, greater than 2 sec.  Although the clinician usually makes no
deliberate attempts to record this event, the presence of abdominal straining during

voiding, however, may provide some supportive evidence in favor of voiding dysfunction.
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3.2.1.3 Bladder Contraction

This is an event resulting from contraction of the smooth muscle, detrusor, present in the
bladder wall. The contraction may occur voluntarily (just before the beginning of void),
or involuntarily (as in unstable detrusor contraction). It is a unichannel event that is
recorded as a positive deflection in Pves (and hence in Pdet) channel. Typically, the
bladder contraction consists of a slow rising phase, a peak, a plateau and a slow falling
phase. It has a peak amplitude of at least 15 cm H,0, and a duration of at least 3 sec in
the Pdet channel. This classical description fits many bladder contractions seen in
practice. However, it is not unusual to come across bladder contractions associated with
some amount of abdominal straining. The timing and morphological characteristics of the
bladder contraction provide important clues to the diagnosis of various types of

incontinence and urethral obstruction.

3.2.1.4 Roctal Contraction

This is an event resulting from contraction of the rectal wall musculature. It is generally
involuntary in nature, and is seen in occasional patients. Since it is a unichannel cvent
that is recorded as a positive deflection in the Pabd channel, the corresponding part of the
trace in Pdet shows a negative deflection. The rectal contraction consists of a slow rising
phase, a peak and a slow falling phase, stretching for a period of at least 2 sec, with a
peak amplitude of at least -5 cm H,0 in the Pdet channel. Although physiological in a

strict sense, the rectal contractions do not play any significant role whatsoever, in the
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interpretation of CMG. In fact, they might be misleading because of the occurrence of

negative traces in Pdet.

3.2.1.5 Minor Baseline Change

On many occasions, pressure changes in the three channels are so small that they cannot
be easily categorized into any one of the four events described above. This kind of a
situation may arise, for instance, when

¢ normal respiratory movements are recorded

¢ a cough has very low amplitude

e an abdominal strain has very low amplitude and short duration

e a rectal contraction has low amplitude and short duration

These examples illustrate only a few situations out of several other similar ones. In all
these cases, it is probabiy more sensible to categorize the observed event into a separate
group, indicating the occurrence of a larger than normal excursion of the baseline. Such
events (or, more appropriately, "the pressure changes") are termed minor baseline
changes to signify that they are indeed noticeable changes but not quite convincing enough
to be categorized into one of the other types. Theoretically, it may be possible sometimes
to characterize these changes more definitively on the basis of the appearance of the trace
before and after the occurrence of the pressure changes in question. However, in
practice, such an effort is not considered worthwhile because the information provided

by these minor baseline changes is generally limited and insignificant.
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3.2.2 Objective Definition of Artifacts

As described earlier, artifacts are non-physiologic changes that result from malfunction
of components in the urodynamic equipment. The commonly occurring mechanical
artifacts in CMG can be divided into three main types: step; under-registration; flat trace.
Examples of these artifacts are illustrated in the form of screen print-outs in Figures A1.6
through Al1.12 in Appendix 1. In the following paragraphs, an attempt is made to
provide objective definitions for the various types of artifacts. The comment made in the
previous subsection, regarding the numerical ranges of amplitude and duration, applics

to the following descriptions as well.

3.2.2.1 Step

A step refers to a jump in the pressure level. It can occur as a result of sudden blockage
or relief of blockage in a catheter, or leakage of fluid from the pressure lines. It is
recorded in Pves, Pabd or both channel/s as a positive or negative deflection. The
changes in Pdet, of course, depend on the extent of registration in the other two channels.
Typically, a step consists of a steep rise or fall that plateaus for a long period of time
without returning to the baseline. The step artifacts result in baseline shifts that make the
subsequent pressure measurements falsely high or low. Thus, whenever steps are
observed, it is necessary to flush the catheter/s, or stop the leakage, before proceeding

further with the investigation.
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3.2.2.2 Under-registration

This refers to partial registration of a bichannel event in one of the channels. It results
from partial blockage (for example, from air bubbles) or dislodgement of one of the
catheters, or from improper calibration of one of the transducers. Since a bichannel event
is supposed to be registered equally in both Pves and Pabd, any of the causes mentioned
above results in under-registration of that event in the corresponding channel.
Consequently, there is unequal registration in Pves and Pabd, with an abnormally large
change in Pdet. Thus, the occurrence of under-registration artifacts calls for appropriate
remedial measures such as flushing the catheter, repositioning the catheter or recalibrating

the transducer.

3.2.2.3 Flat trace

This refers to total absence of registration in a channel. It is generally due to significant
fluid leakage out of the pressure line/s, or to total blockage or dislodgement of the
catheter/s. Transmission of pressure from a pressure-generating viscus to a transducer
depends on the presence of a fluid column, a patent catheter, and proper placement of the
catheter within the viscus. A total compromise in any one of the above factors leads to
total failure of registration, so a flat line in the corresponding channel/s. Apart from
those due to improper pressure transmission, flat lines may still be traced out under two
hardware-related circumstances: (1) when the resolution of the analog-to-digital converter
is too coarse to resolve the minute pressure changes; (2) the vertical resolution of the

monitor is too poor to display minute pressure changes. The hardware design of our
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urodynamic equipment is such that the smallest "jiggle" in the baseline corresponds to a
pressure change of approximately 1 cm H,0. Accordingly, for practical purposes, a flat
trace is considered to be present whenever the pressure change remains less than 1 cm
H,O0 (i.e., "absolutely” flat without any "jiggles") for a sufficiently long duration of time.
The presence of a flat trace calls for appropriate remedial measures along the lines

described in the previous paragraph.

3.2.3 Recognition of Events and Artifacts: Clinician's Approach

Given the complexities, the process of automated pattern recognition of CMG might seem
like an almost impossible task at first glance. However, like most other decision-making
processes, this process too can be broken down into simple logical steps. In this section,
the rationale behind the decision-making process, the problems encountered, and the

criteria for recognition, are discussed.

3.2.3.1 Rationale

From the human perspective, the task of deciding about the identity of a time-varying
pattern in CMG (i.e., an event or artifact) can be viewed as a two-step process:

recognition of the presence of a pattern; classification of the recogrized pattern.

The initial step of recognition implies that a pattern has to be positively identified before
it can be further characterized. In most cases, the human recognition act depends more

on the morphological appearance of the pattern than on anything else. Objectively, this
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act of recognition consists of three basic steps: determination of onset of the pattern;
determination of end of the pattern; observation of morphological characteristics of the
pattern which is delimited by the onset and end points. In short, the process of

recognition consists of defining the onset of a pattern, and following the pattern until it

reaches the end point.

Once the presence of a pattern has been confirmed, the second step of classification can
be undertaken, based on an analysis of its characteristic features. The process of
classification can be further broken down into three sequential steps: formulation of a set
of discriminatory features; extraction of feature values from the demarcated pattern;
categorization of the pattern by means of a classification scheme. Thus, it may be seen
that the intuitive task of characterizing a pattern can be accomplished by a series of steps

occurring in a natural sequence.

3.2.3.2 Some Problems

The natural approach of human beings towards pattern recognition, as outlined above,
sounds simple and straightforward. However, adoption of the approach for automated
pattern recognition is always fraught with some problems. In relation to CMG
specifically, these problems may be summarized as follows:

¢ the presence of channel multiplicity in CMG entails consideration of all the

three channels simultaneously, making the recognition process rather tedious
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o considering the amount of data generated per cystometric test, and the number
of events and artifacts that may be present, it can be seen that the dis, ~~<ions
of pattern and classification spaces are indeed quite high

e the high dimensionality of pattern space necessitates formulation of a multi-
dimensional feature vector to simplify the process of classification; this in turn
brings up the problems associated with feature selection

o there is inherent extreme variability in the morphology of the recorded events
and artifacts such that it is difficult to define truly objective criteria to

characterize them

3.2.3.3 Criteria

Keeping the above problems in mind, and based on the human reasoning process, four
major criteria — amplitude, duration, slope and registration — have been defined for
recognition and classification of the patterns in CMG. Each of these criteria is discussed
below. Although the descriptions are applicable to all CMGs in general, some pieces of
information such as bit resolution, sampling rate, etc. relate specifically to the

urodynamic equipment in our unit.

Amplitude denotes the height of a waveform with respect to a reference line (sometimes
referred to as "baseline"), as shown in Figure 3.2. It is expressed in terms of cm H,0,
rounded off to the nearest integer. The value of amplitude varies within the 8-bit range.

The interpretation of a waveform is often subjective, especially when there is some
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amount of uncertainty involved. In such cases, amplitude forms an important visual
criterion in determining whether a waveform is significant (i.e., forming a part of an

event or artifact), or is merely an insignificant undulation of the baseline.

Duration refers to the time interval between the onset and end points of a waveform
(Figure 3.2). It is measured in terms of data interval, which is the interval between two
consecutive data points. The sampling rate of the urodynamic equipment is 10 Hz, giving
a resolution of 0.1 sec for data intervals. The importance of the duration criterion is
somewhat similar to the amplitude criterion in determining the significance of a

waveform,

Slope refers to rate of change of amplitude with respect to time. The change in amplitude
between two consecutive data points is called first difference (see Figure 3.3), and is

given by the formula

Ay, = Yy ~ Wi
where y,,, is the amplitude of the (i+1)" data point, and y, is the amplitude of the ™ data
point. Since the sampling rate is uniform, the first difference is equivalent to slope, and
these two terms have been used interchangeably in this thesis. Although slope is an
important criterion in visually distinguishing "fast and spiky" waveforms from "slow and
smooth" waveforms, it is also useful in the objective assessment of a waveform in terms
of defining its onset point, determining its directionality and identifying its different

component frequencies.
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YA
/ Slope = Ay/At
First difference = Ay

Figure 3.3 Slope and first difference
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Registration refers to the extent of manifestation of a waveform in the different channels.
From the discussion in subsections 3.2.1 and 3.2.2, it is clear that events and artifacts are
channel-specific, i.e., they are registered in either Pves or Pabd channel (unichannel), or
in both channels (bichannel). Apart from the mere presence of waveforms, the
magnitudes of waveform amplitudes in the two channels are also important in determining
registration. The changes in Pdet channel reflect the registration of waveforms in Pves
and Pabd channels. Accordingly, Pdet may show minimal variation, or it may show a
large waveform with net positivity or negativity, depending on the registration of
waveforms in Pves and Pabd channels. In the former situation, waveforms are said to
register equally, whereas in the latter case, they are said to register unequally, in the Pves
and Pabd channels. In other words, the equality of registration can be inferred by looking
at the magnitude and the direction of the waveform in the Pdet channel. In practice, the
registration criterion is assessed by taking into account the amplitudes of the waveforms
in Pves, Pabd and Pdet channels in conjunction. The concept of registration is illustrated

in Figure 3.4.

So far, the discussion has focussed on the description of various events and artifacts that
are commonly seen on a CMG, and their identification by certain empirically-derived
criteria. The key issue in this discussion has been pattern recognition and classification
from the human perspective. The following paragraphs examine how these general ideas
are translated into the design of CART, in which the process of pattern recognition

and classification is automated. Furthermore, an attempt is madc to capture the meanings
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of certain generalized and often loosely-coined terms, discussed above, into the more

familiar and well-established jargon of pattern recognition.

3.2.4 Waveforms and Patterns

The distinction between a waveform and a pattern is crucial, so the definitions of the two
terms are reiterated here. The term waveform refers to a distinctive segment of the CMG
trace in a single channel between two points that are separated by a finite interval of time.
The first point can be considered as the onset point, and the second point as the end
point. Since CMG consists of three pressure channels, there can be three waveforms

present at any given interval of time.

In the context of CART, the term patrern refers to the composite of the waveforms in the
three channels. This definition might immediately bring up the question of whether a
pattern has three separate onset points and three separate end points corresponding to
different time instants. The answer to this question is no. A pattern has only one onset
point and one end point: the onset point corresponds to the onset point of the earliest-
occurring waveform suggestive of an event or artifact; and the end point corresponds to
the end point of the above waveform. The method of determination of the onset and end

points of a pattern is discussed further in subsection 3.2.9.



63
3.2.5 Pattern Classes
In the light of the definition of pattern class given in subsection 2.3.1, each type of event
and artifact can be viewed as a pattern class without loss of generality. In order to
achieve a higher degree of accuracy, the classes constituting the artifact group were
resolved into seven classes instead of three, based on channel specificity of the observed
patterns. Finally, a separate class characterizing the presence of flat traces in both Pves
and Pabd was also defined. By combining all these classes together, a total of 13 pattern
classes (5 of events plus 8 of artifacts) were formulated. Thus, the patterns encountered
by CART can belong to one of these 13 classes. The various pattern classes in CART

are shown in Table 3.1.

3.2.6 Features

As defined earlier, a feature is as an attribute or property that characterizes a pattern.
Conversely, a pattern can be viewed as being characterized by a set of features. In order
to accomplish the task of classification, it is important to find a set of discriminatory
features that classifies the observed patterns into various classes. In practice, it is often
difficult to derive, even with sound empirical judgement, an adequate number of features
with sufficient discriminatory power for accurate classification. This fact is especially
true when the number of pattern classes is large. Given the 13 pattern classes in CART,
it is not surprising that the task of selecting the discriminatory features was indeed a
challenging one. The rest of this section addresses the issue of feature selection in

CART.



Class number | Character code* Pattern class
1 C Cough
2 ) Abdominal strain
3 B Bladder contraction
4 R Rectal contraction
5 M Minor baseline change
6 1 Step in both Pves and Pabd
7 2 Step in Pves
8 3 Step in Pabd
9 4 Under-registration in Pves
10 5 Under-registration in Pabd
11 6 Flat trace in Pves
12 7 Flat trace in Pabd
13 8 Flat trace in both Pves and Pabd

Table 3.1 Pattern classes in CART

* Letters indicate events and numbers indicate artifacts
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The task of selecting the suitable features for classification depends on the system
designer's thorough knowledge of various patterns and pattern classes. In the design of
CART, the feature selection task involved in-depth study of several CMGs, and detailed
discussions with an expert clinician. Based on these, some broad conclusions were made
regarding the nature of waveforms and patterns. Further refinement of these conclusions
was done until a well-defined set of features with sufficient discriminatory power was
obtained. Thus, the method of feature selection was heuristic, being based on an
expert's intuition, "rules of thumb" and empiric judgement. This process involved
experimentation with several features. As a result, considerable time was spent before

the final feature set was determined.

Using the heuristic approach as described above, ten features were identified. These
features were found to be satisfactory in distinguishing the various events and artifacts.
The features defined in CART are shown in Table 3.2. The values of the features were
obtained by some kind of arithmetic calculation, and were therefore real numbers. These
numbers were rounded off to the nearest integer and the absolute values were taken to
avoid the negative sign. The positive whole numbers, thus obtained, represented the
actual values of the features. Since the range of these actual values was quite large,
it was rather complicated and imprudent to use them as such in further analysis. In order
to overcome this problem, the entire range of actual values was grouped into several
continuous subranges or "bins". The number of such "bins" varied from feature to

feature, ranging from two to seven. Thus, the entire range of the actual values of the



Number Feature Actual value range Scaled value range
1 Pves height -20t0 + 235 cm H20 | -2t0o + 3
2 Pabd height -20t0o +235cm H20 | -2to + 3
3 Pdet height -127t0 + 128cm H20 | -2to + 3
4 Width 0toe Oto3
5 Slope index 0 toeo Oto3
6 Registration index | O to Oto?2
7 Virtual end flag Oto3 Oto3
8 Flat Pves flag Otol Oto |
9 Flat Pabd flag Oto 1 Oto 1
10 Height index 0 to oo 3to+ 3

Table 3.2 Features in CART

66
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features was represented on a 7-point "bin" scale, ranging from -3 to +3. Furthermore,
for each actual value of the feature, there was a corresponding value on the "bin" scale,
k:iown as the scaled value. To summarize, for the entire range of actual values, there
could only be a maximum of seven scaled values, rang:ng from -3 to +3. The scaled
values of all the features constituted a 10-dimensional feature vector, which was used in
classifying the observed pattern. The various features are described below. Again, it
should be noted that some of the information provided below is specific to the urodynamic

equipment used in our unit.

3.2.6.1 Heights

The height feature is similar to the amplitude criterion discussed in subsection 3.2.3.3.
The height in a given channel is, in fact, the maximum amplitude of the waveform
between its onset and end points. The actual value of height can vary from -20 to +235
cm H,O in Pves and Fabd channels, and from -127 to +128 cm H,O in Pdet channel.
This range is represented in terms of six possible scaled values. The waveform heights

are useful, for example, in distinguishing a "minor baseline change" from cough or

abdominal strain.

3.2.6.2 Width

This feature is similar to the duration criterion discussed in subsection 3.2.3.3. Itisa
quantitative measure of the duration of a pattern in terms cf the number of data intervals

it occupies. /s mentioned earlier, a data interval refers to the interval between two
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consecutive data points (i.e., 0.1 sec). The actual value of the width of a pattern is quite
variable, ranging from under 1 sec to more than 90 sec. This range is represented in
terms of four scaled values. Width is an important feature in distinguishing, for example,

a cough from an abdominal strain.

3.2.6.3 Slope Index

As discussed in subsection 3.2.3.3, the slope criterion is uscful in identifying the
component frequencies in a waveform. In other words, the first differences, which
represent slope, give a rough approximation of the component frequencies in a pattern.
Because of uriform sampling, each waveform can be viewed as being composed of
several deflections or strokes, each of which occupies one data interval. The individual
strokes are labelled "fast" or "slow" on the basis of some slope thresholds. Extending
the concept of component frequencies to patterns, it can be readily seen that there are two
types of patterns: "fast" patterns (characterized by a predominance of "fast" strokes) and
"slow" patterns (characterized by a predominance of "slow" strokes). Although this kind
of differentiation sounds artificial at best, it is nevertheless useful in drawing a boundary
between some of the patterns at least. The slope index plays a significant role in

differentiating a "fast" pattern from a "slow" pattern.

The actual value of the slope index is obtained by multiplying the ratio of the number of
"fast" strokes to the number of "slow" strokes with an arbitrary constant. It has four

possible scaled values. This feature indicates whether a given pattern is "fast", "slow"
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or a mixture of the two. It is useful, for example, in distinguishing a cough (a "fast"

pattern) from a bladder contraction (a "slow" pattern).

3.2.6.4 Registration Index

This feature is based on the concept of registration discussed in subsection 3.2.3.3. If
the waveforms constituting a "fast" bichannel pattern are registered equally in Pves and
Pabd channels, then, by definition, the Pdet channel should not manifest any "fast"
waveform. Conversely, if the waveforms constituting such a pattern are registered
unequally in Pves and Pabd channels, then the Pdet channel does manifest a "fast"
waveform. Thus, by considering the component frequencies of waveforms in Pves and
Pabd in relation to those in Pdet, it is possible to infer about registration. That is, it is
possible to determine the number of "fast" equal strokes ("fast" strokes with equal
registration) and "fast" unequal strokes ("fast" strokes with unequal registration). In
practice, this type of inference about waveform registration has been found to be more

useful with respect to "fast" patterns than "slow" patterns.

The actual value of the registration index is obtained by multiplying the ratio of "fast”
equal strokes to "fast" unequal strokes with an arbitrary constant. The registration index
has three possible scaled values. This feature is useful, for example, in differentiating

an under-registration artifact from a cough.
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3.2.6.5 Virtual End Flag

This feature is based on the notion that patterns can have a virrual end point as opposed
to a real end point (determination of end points will be discussed in greater detail in
subsection 3.2.9). Depending on the onset point/s, the end point/s can be marked in
Pves, Pabd or both channel/s. If the end point of a pattern happens to be virtual, the
virtual end flag is set. In setting the flag, the slope, amplitude and duration criteria are
taken into account. This feature has four scaled values, since the flag can take one of
four values depending on whether the virtual end was noted in Pves, Pahd, both or none
of the channel/s. If the flag is set in one or both channel/s, it provides a strong evidence

for step artifacts, since, by definition, step artifacts are supposed to have a virtual end.

3.2.6.6 Flat Trace Flags

The two features — Flat Pves Flag and Flat Pabd Flag — are derived from a record of
the first differences characterizing a pattern. A first difference of zero indicates a tlat
segment. By counting the number of zero first differences, and comparing it with the
number of non-zero first differences, it is possible to determine the occurrence of flat
traces. Each of these features can take one of two possible scaled values, indicating the
presence or absence of a flat trace in the respective channel. These features are
helpful in distinguishing a flat trace from under-registration whenever a bichannel pattern

fails to register properly in one of the channels.
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3.2.6.7 Height Index

This is mainly a supportive feature, helpful in substantiating the information provided by
the three heights and the registration index. The actual value of this feature is obtained
by multiplying the ratio of Pves height to Pabd height with an arbitrary constant. The
actual value of this feature ranges from O to infinity, but there are only seven possible
scaled values. In general, a large value of the height index indicates a bladder contraction
or under-registration in Pabd, while a small value indicates a rectal contraction or under-

registration in Pves.

3.2.7 Classification

Following extraction of features, the pattern is classified on the basis of a decision rule.
The decision rule is derived from a discriminant function, which in turn is determined
from a suitable classification scheme. In this section, the methods of pattern classification

in CART are discussed.

As mentioned in subsection 3.2.5, the pattern: encountered by CART can belong to one
of the 13 pattern classes. Furthermore, from the discussions in subsections 3.2.1, 3.2.2
and 3.2.3, it is clear that patterns belonging to some of these classes may be identified
easily without recourse to scphisticated pattern recognition techniques. Unfortunately,
only a few patterns lend themselves to a simpler classification technique, necessitating the
adoption of a more flexible technique. In CART, there are two approaches for

classification: classification by counters and classification by feature extraction. These
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two approaches will be described below. Before proceeding further, it is important to
make one brief comment. It may be recalled that 13 pattern classes were shown in Table
3.1. Out of these 13 pattern classes, patterns belonging to the last class, "Flat trace in
Pves and Pabd" are always classified by counters, while patterns belonging to the first ten
classes (Cough through "Under-registration in Pabd" in Table ?.1) are always classified
by the feature extraction method. However, patterns belonging to the 11™ and 12* classes
(i.e., "Flat trace in Pves" and "Flat trace in Pabd") can be classified by either method.
Accordingly, it should be understood that whenever a reference is made to classification
by counters, it implies that the last 3 pattern classes (i.e., the 3 flat trace artifacts) are
considered; and a reference to classification by feature extraction implies a consideration
of the first 12 pattern classes (i.e., all pattern classes listed in Table 3.1 with the

exception of "Flat trace in Pves and Pabd").

3.2.7.1 By Counters
This is a simple intuitive approach towards pattern recognition and classification. This
method involves setting up a counter to count the number of times a feattire, characteristic

of a given pattern class, is observed. Then the decision rule can be defined as

Xeow, if CX) 26,
where X is a pattern (or equivalently, a 1-dimensicnal feature vector since only one

feature is being considered), w, is the i pattern class, C(X) is the vaiue of the counter

for the /™ pattern class, and 9, is the threshold for the i* counter.
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This procedure is implemented by incrementing the counter for each successive
occurrence of the single feature characterizing a particular pattern. When the counter
reaches its threshold value, the pattern designated by it is inferred, and the counter is
reset to zero. Furthermore, if the feature being observed changes its value so as to
enote a different pattern, then also the counter is reset to zero. As mentioned earlier,
this method of classification by counters is particularly useful in the recognition and
classification of flat trace artifacts. In recognizing these patterns, counters are set up to
monitor the first differences with a value equal to zero. The occurrence of flat trace is

determined based on which counter exceeds the threshold value.

3.2.7.2 By Feature Extraction

This method of classification, as opposed to classification by counters, is fairly
sophisticated in terms of its basic theory and the form of decision rule. The
implementation of this method involves two main steps: determination of weight vectors
during training and determination of class membership during recall. These two steps are

discussed below.

From the discussion in section 2.4, it is evident that determination of the weight vectors
is of utmost importance in implementing a trainabie pattern classifier based on perceptron
algorithm. The weight vectors are determined during training by making an attempt to
classify all known patterns in the training set. In CART, the training pattern set consists

of several feature vectors, cach being a combination of ten features. The process of
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training is carried out based on the fixed-increment algorithm as described in section 2.4,
The final weight vectors are then stored in a file for use during subsequent recalls

(described below).

During recall, CART is required to classify the unknown new patterns by using the stored
weight vectors. Whenever the CART program is executed, the stored weight vectors will
be read into memory right at the beginning, and will be used for all classification task.
in that session. The program then attempts to detect the presence of a pattern, i.e., it
demarcates the pattern by determining its onset and end points. If a pattern has been
detected, CART scans that pattern to extract the various features, and combines the
extracted features to form the feature vector. The feature vector is then multiplied by
each of the weight vectors to form the discriminant furictions. Finally, the observed
pattern is assigned to the class specified by the discriminant function having the maximum
value. It is easily seen that the actual mathematical calculations involved in classification
during recall is restricted to a small number of additions and multiplications that are
hardly constrained by time in the modern hardware. This fact is important since the

process of recall has to be carried out on-line in CART.

3.2.8 Alert Actuation
The main purpose of CART is on-line detection of events and artifacts in CMG. Once
detection is done, the examiner has to be alerted so that appropriate measures could bc

taken. If artifacts have been detected, such measures include flushing the catheter,
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repositioning the catheter, etc., as discussed in subsection 2.2.4.4. On the other hand,
if events have been detected, no specific measures are necessary, except to notify the
clinician that such events have indeed occurred, and that the clinical procedure is
progressing as expected. In order to accomplish this task of notifying the clinician,
specific alerts have to be issued whenever significant patterns indicative of events or

artifacts are detected. The actuation and management of alerts forms the subject of this

section.

The types of alerts in CART are based on the two most commonly used modalities of
perception — vision and hearing. Accordingly, visual alerts and auditory alerts are
incorporated in CART. The actuation and significance of these alerts will be described
below. But before proceeding further with a discussion of alerts, it is helpful to
understand what exactly constitutes the output of CART. This topic is discussed more
fully in Appendix 2, but the following brief summary should suffice at this point. When
CART is executed, the output consists of a graphic display of pressure traces in the three
chanrels — Pves, Pabd and Pdet. These traces are displayed in 3 separate windows
called rrace windows. The traces appear at the right edges, scroll across, and disappear
at the left edges of the trace windows. As a consequence of this scrolling, a given point
on a trace stays on the monitor screen for a fixed time interval depending on the trace
window width. The trace window widths are chosen such that the above time interval

ranges from 20 to 30 sec.
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3.2.8.1 Visual Alerts

The visual alert essentially consists of messages displayed on the monitor whenever an
event or artifact is detected. There are two types of these messages. The first message
consists of a letter or number, displayed in the character window, which is a small
rectangular window located on top of the trace windows, and has the same width as the
trace windows. The letters and numbers are unique, with the former encoding the events,
and the latter, the artifacts. The main advantage of this message is that, the characters
are displayed right at the time of detection of events and artifacts, and are scrolled in
synchronization with the traces, so that the t.me rclation, between the message and the
corresponding event or artifact, is always maintained. The second message consists of
the descriptive name of the detected event or artifact, and is displayed in the description
window located adjacent to the trace windows. This message appears at the time of
detection and disappears along with the disappearance of the character in the character
window. Thus, the two messages constituting visual alert form a simple yet powerful
way of alerting the examiner. However, visual alerts have the disadvantage that the
clinician is required to check for messages periodically, which may not always be
possible. The various windows, and the visual alert messages in CART are shown in the

screen layout of Figure A2.1 in Appendix 2.

3.2.8.2 Auditory Alerts
Auditory alerts have been incorporated to overcome the disadvantage of visual alerts. The

auditory alerts are actuated in the form of beeps from the computer's speaker. These
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beeps are issued only when artifacts are detected, in order to keep unnecessary arousal
in the investigation room to a minimum. Furthermore, the option of completely turning

off the auditory alerts is also provided.

3.2.9 Overall Logic for Pattern Recognition and Classification

So far, the discussion in this chapter has focussed on the individual steps involved in the
process of pattern recognition and classification by CART. This section provides the
overall logic of CART based on the various concepts developed in the preceding

subsections.

The flow chart of the process is shown in Figure 3.5. For the sake of simplicity in
description, the process has been broken down into 9 major steps. However, it is
important to point out that, in some cases, the distinction between the steps is not as clear

as brought out in the following account.

(1) Initialization
This step involves initialization of variables, initialization of screen for graphic output and

reading of the weight vectors from the disk file into memory.

(2) Data input
This step involves reading the pressure, flow, infused volume, outflow volume and EMG

data, from the various channels, as output from the urodynamic equipment. These data
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are input to CART via a serial port. Since only the pressure data are required for
analysis, they are isolated from the original data string, and converted into a format
suitable for further processing. These functions are handled by a routine that is bound

to differ depending on the hardware and software characteristics of the urodynamic

equipment used.

(3) Data storage
In this step, the original data, as output from the urodynamic equipment, are stored on
the hard disk to facilitate analysis at a later time. The data are stored in a file bearing

the patient's name.

(4) Determination of onset
In order to detgct the presence of a pattern, its onset and end points have to be marked.
The onset and end points of a pattern are determined from the onset and end points of its
constituent waveforms. In the context of a waveform, the term onset refers to the very
beginning of the waveform, which is distinct from the preceding part of the trace. Onset
is said to occur if the first difference between any two consecutive data points exceeds
a threshold. The first of the above two points is referred to as the onser point. The onset
points are marked in Pves, Pabd or both channel/s. Basically, there are two ways of
marking the waveform onset points:

(1) If the onset occurs in both Pves and Pabd channels simultaneously, the onset

points are marked in both chanrnels. In this case, it is important to note that
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the two onset points correspond to a single instant in time since they arc
simultaneous.

(2) If the onset occurs in e¢ither Pves or Pabd channel cxclusively, the onset point
is marked in the channel showing onset. After an onset point has alrcady
been marked in one of the channels, if the second channel shows an onset
before the end of the Grst waveform (see below for the discussion on
determining the end of a waveform), then the onset in the second channel is

ignored.

The single instant in time that corresponds to the marking of the waveform onsct point/s
is taken as the onser of the pattern. Once the waveform onset points have been
determined, the amplitudes at these points, the onser amplirudes, are calculated and

stored for subsequent analysis.

{5) Determination o, end
After marking the onset of a pattern, the program continuously searches the subscquent
data points to determine whether or not the termination of the pattern has occurred. In
the context of waveforms, depending on the channel/s showing the onset/s, the end is
determined as follows:
(1) If the onset had been marked in either Pves or Pabd channel, the wavctorn
" said to end when the amplitude in that channcl at any given instant Crosses

the onset amplitude.
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(2) If the onsets had been marked in both Pves and Pabd channels, then both the
waveforms are said to end when the amplitude in either of the twe channels

at any given instant crosses the onset amplitude in that channel.

The instant in time at which the waveform ends is known as the end point, and the
amplitude at this end point is known as the end amplitude. Like pattern onset, the single
instant in time that corresponds to the waveform end point is taken as the end of the

pattern.

If the pattern terminates in one of the two ways described above, it is said to have a real
end. However, in some situations, the pattern continues to be active for a prolonged
period of time without reaching a real end. When the pattern "levels off" in this manner,
and the duration of the pattern from the onset point exceeds a threshold, the pattern is
said to terminate with a virrual end. Depending on the channel/s in which the onsct was
marked, the virtual end may be seen in Pves, Pabd or both channel/s. The occurrence
of virtual end forms the basis for determining the virtua! end flag, a feature that was
discussed in subsection 3.2.6.5. Obviously, this step of determining the end of a pattern

will be skipped if the onset was not marked at all.

(6) Extraction of features
This step is executed only after the onset of a pattern, and its corresponding end, have

been identified. The pattern between the onset and end points is scanned to determine the
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scaled values of the ten features. The ten feature values together constitute the feature

vector that is passed on to the next step.

(7) Classification

This step is executed only after a pattern has been detected, and its feature vector has
been determined. Here, the discriminant functions for all the classes are calculated, and
the maximum value is selected. Depending on the decision function with the maximum

value, the class membership of the detected pattern is decided.

(8) Actuation of alerts

In this step, a flag is set to issue appropriate alerts to the examiner. The classified pattern
is considered to be significant if its maximum amplitude and duration exceed the
corresponding thresholds. The basic idea behind this is that, when a pattern is significant,
it gives a visual impression of "seeing something" rather than a mere fluctuation of the
baseline. Since it is desirable to have as few distractions as possible during the course
of the clinical procedure, the flags to issue alerts are set only when the detected patterns

turn out to be significant.

(9) Graphic display
This step involves display of the pressure traces, and the visual alert messages, if any,
on a graphic screen. Furthermore, if the auditory alerts are enabled, they are actuated

as well. This step is executed with every data point regardless of the occurrence of onset
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of a pattern. In other words, it forms the final common path for the output of CART.
The details of screen layout were described in section 3.2.8 and will be considered again

in Appendix 2.

3.3 Impiementation of CART

The implementation of CART involves 3 main steps: developing the computer program;
establishing the interface with the urodynamic equipment; iraining the system under
supervision. The first two steps are discussed in this section; the training aspects of the

system are considered along with evaluation in the next section.

3.3.1 Hardware and Software

CART is implemented as a program on an IBM-compatible PC with a 20 MHz 80386
microprocessor having a memory of 2 MB. A hard disk with sufficient space is required
for storing data files. A VGA color monitor with a resolution of 640x480 is used for
graphic display. These requirements are recommended for a reasonable on-line

performance.

CART is a standalone program, the size of the executable code being about 200 KB. It
runs under DOS (of Microsoft Corporation). The entire program was written in Turbo
Pascal version 6.0 (of Borland International). Pascal was chosen for various reasons such
as familiarity with the compiler, structured nature of the language, and powerful

debugging facilities. Ta addition, Turbo Pascal provides a built-in graphic environment,
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the Borland Graphic Interface, which is adequate for performing most of the graphics-

related functions in CART.

3.3.2 interface

CART is intended as an application program for enhancing the quality oi data collection
and interpretation in clinical urodynamic practice. Ideally, CART should form an integral
part of the existing software in the urodynamic equipment that performs the tasks of
recording, viewing and printing the CMG traces. Since this is not the case at the present
time, CART has to be interfaced with the urodynamic equipment. This interface between

CART and the urodynamic equipment uses a standard serial port and a custom software.

The urodynamic equipment that is currently used in our unit consists of a device called
UDS-120, manufactured by Laborie Medical Technologies. UDS-120 uses a 80486-based
CPU and a built-in software for data acquisition and processing. Essentially, it samples
the analog signals from the various channels at the rate of 10 Hz per channel, digitizes
them and displays them graphically on a monitor. Besides data acquisition and display,
it also performs such other functions as storage of data, retrieval of data, calculation of
certain parameters and printing of results. In addition, the software has the special ability

to output the original data on one of its RS-232 ports.

The data output from UDS-120's serial port form the input to CART. The data transfer

is achieved by means of a cable between the serial ports of Laborie computer and
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CART's computer. The acquisition of these data, and their subsequent processing {or
pattern recognition, are carried out by the UDE-CART interface module, as described in

Chapter 4.

3.4 Evaluation of CART

CART uses a trainable pattern classifier to classify the majority of patterns that it
encounters. Accordingly, the ultimate performance of the system depends, to a large
extent, on the adequacy of its training. The process of training the system with known
patterns is referred to as the rraining phase. Once the system has been trained with an
adequate number of patterns, the subsequent stage involves assessment of the performance
of the system by presenting it with unknown patterns. This stage is referred to as the
testing phase.  The alternating processes of training and testing may be undertaken
several times until the system attains an acceptable level of performance. In this context,
the training and testing phases are considered together as the two important aspccts
constituting the evaluation of system performance, although, in a stricter sense, the
training phase is actually a part of system implementation. With the understanding that
the term evaluation denotes a combination of training phase followed by testing phase,

the method of evaluation is described in the following paragraph.

3.4.1 Method
The evaluation of CART is based on the patterns contained in patient data files. These

data were obtained from 43 patients who were investigated at the Urodynamics Unit of



86
the Edmonton General Hospital over a period of 5 months (July to November 1992). Out
of these 43 patients, 7 were males and 36 were females, and a majority of these patients
had some type of urinary incontinence. These 43 files were divided into 2 sets, set #1

consisting of 21 files, and ser #2 consisting of 22 files. There were about 2000 patterns

in all the 43 files put together.

The actual process of evaluation was carried out in 2 stages. In stage [ evaluation, set
#1 was used as the training set (i.e., the patterns in this set were used for training
CART), and set #2 was used as the resting set (i.e., the patterns in this set were used
only for testing the performance of CART). In stage 1l evaluation, the sets were
interchanged such that set #2 served as the training set and set #1 served as the testing
set. The results obtained from the two stages were then combined to express the final
results of evaluation of CART. This method of evaluation was adopted to offset the
problem uf inadequacy in the number of testing patterns that would have resulted had
either set #1 or set #2 been used alone. In the following paragraphs, some of the issues

pertaining to the training and testing phases are explored.

3.4.1.1 Training Phase

For stage 1 evaluation, 134 patterns were selected for training from set #1, which
contained about 800 patterns from 21 data files. Similarly, for stage Il evaluation, 158
patterns were selected for training from set #2, which contained about 1200 patterns from

22 data files. Both sets contained patterns belonging to the first 12 pattern classes (other



87

than the pattern class "Flat trace in Pves and Pabd") in Table 3.1. The training patterns
were selected empirically by off-line play-back of the previously recorded CMGs. After
selecting the training patterns for each stage of evaluation, the actual training procedure

was carried out by using the perceptron algorithm as described in subsection 3.2.7.

3.4.1.2 Testing Phase

For stage I evaluation, 1082 patterns were selected for testing from set #2 of 22 data
files, while for stage II evaluation, 751 patterns were selected for testing from set #1 of
21 data files. Thus, on the whole, CART was tested on 1833 (1082-+751) patterns. It
should be noted that the patterns in the testing sets were not equally distributed among the
12 pattern classes because of the great variation in the frequency of occurrence of these

patterns.

Before proceeding with the testing process, certain crireria were set regarding the nature
of patterns selected for use in testing. All patterns that conformed to these criteria were
selected. These criteria are listed below.

o the patterns belonging to the class "Flat trace in Pves and Pabd" were excluded
from the testing set because all of them were classified entirely on the basis
of counters

¢ the patterns belonging to the classes "Flat trace in Pves" and "Flat trace in
Pabd" that were found to be classified entirely on the basis of counters, were

also excluded
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e the patterns that unequivocally resulted from calibration of the transducers,
which is normally done prior to starting the bladder infusion, were excluded
e the patterns that appeared ambiguous, or otherwise confused the clinician to

a considerable extent, were excluded

This pattern selection scheme explains the reduction in the number of patterns that couid
be used ultimately for testing as compared with the actual number of patterns in the

testing sets.

Based on the above criteria, the testing process was performed. It was undertaken at
several sittings by an expert clinician at the EGH/Urodynamics Unit. The method of

testing consisted of the following four steps.

(1) Identification of false negatives
In this step, the patterns missed by CART but considered significant by the clinician were
labelled as false negatives. They were identifi=d with respect to the approximate time of

the end points, assigned appropriate classif. »tions, and stored.

(2) Identification of true positives
Here, if CART's classification of a pattern matched the clinician's impression, then the

pattern was identified as a true positive, and stored as such.
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(3) Hdentification of false positives
This step is similar to step 2. If a pattern was detected by CART, but the clinician found
it to be superfluous, then the pattesr: was considered to be a false positive, and stored

with its classification.

(4) Identification of misclassified patterns

This step is similar to step 2. If there was no agreement between CART and the clinician
with respect to the classification of a pattern, then the pattern was labelled as a
misclassification. In this case, the wrong classification of the pattern as well as its correct

classification, were stored.

It may be noted that no specific attempt was made tc identify the rrue negatives, since it
was felt that the actual number of true negatives was not required in the derivation of

indices of performance (described below).

3.4.2 Indices of Performance

On the basis of the identity of patterns, established during the testing phase, several
indices, reflecting the performance of CART, were derived. These indices of
performance are useful in three ways: expressing the performance of CART objectively;
guiding the selection of optimum thresholds; establishing the standards for future
development. At present, four indices of performance have been defined: sensitivity;

false positivity; concurrence; misclassification. These are described in the following paragraphs.
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(1) Sensitivity

This index is a measure of the ability of CART to detect the occurrence of a pattern. It
is defined as the ratio of the number of patterns detected by CART to the number of
patterns it is supposed to have detected. It is expressed as a percentage, and is given by

the following formula:

Total number of patterns according to CART < 100
7otal number of patterns according to clinician

Sensitivity =

(2y False positivity
This index is a measure of superfluous detection of patterns by CART. It is defined as
the ratio of the number of false positives to the total number of patterns detected by

CART. It is expressed as a percentage, and is given by the following formula:

Number of false positives
Total number of patterns detected by CART

x 100

False positivity =

(3) Concurrence

This index is a measure of the degree of agreement between CART's classification and
the clinician's impression regarding the identity of patterns belonging to a given pattern
class. Since 12 pattern classes are considered for evaluation (the pattern class, "Flat trace
in Pves and Pabd", being excluded), there are 12 distinct measures of concurrence.
Concurrence is defined as the ratio of the number of patterns classified as belonging to

a given class by both CART and the clinician to the number of patterns classified as
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belonging to that class by the clinician alone (after excluding the number of falsc
negatives). It is expressed as a percentage, and for a given pattern class ¢, it can be

obtained from the following formula:

Concurrence (w)

_ Number of patterns classified as » by both CART & clinic.an 100

(Total number of patterns classified as w by clinician) -
(Number of faise negatives belonging to w)

(4) Misclassification

This index is a measure of CART's inability to correctly classify the detected patterns.
In other words, it reflects the degree of nonconcurrence between CART and the clinician.
If there are two pattern classes, ®; and ; where (i, j = 1,2,...,12 and i # j), a pattern
belonging to class w is said to be misclassifed as belonging to w;, if CART classifies the
pattern as @, but the clinician classifies it as w;. This situation is notationally expressed
as (w,—w;) misclassification. In principle, since there are 12 classes, a pattern belonging
to a given class can be misclassified in 11 different ways. A (w,—,) misclassification can

be obtained by the following formula:

Misclassification (@~ J.)

Number of patterns classified as w; by CART, but as w; by clinician
= X

(Total number of patterns classified as w; by clinician) -
(Number of false negatives belonging to w,)

100

The results of performance of CART, derived from the above indices, are presented in

the next chapter.



Chapter 4

RESULTS

In this chaptei, the results of evaluation of CART's performance are npresented. It may
be recalled from the discussion in subsection 3.4.1.2 that the essence of testing phase
involved identification of false negative, true positive, false positive and misclassified
patterns. Once these patterns had been identified, they were saved on the disk as a .RES
file bearing the name of the patient. Each pattern was stored as a record with two fields:
the end position (in terms of data points) and the classification. Furthermore, the false
negatives, the false positives and the misclassified patterns were assigned appropriate flags
to facilitate easy identificat.on. The results of testing were obtained and stored in the
above manner for each individual patient. The individual .RES files were then merged

into a single composite file.

The information in the composite file was processed in order to obtain a concurrence-
nonconcurrence matrix, which reflects the extent of agreement and disagreement between
CART and the clinician. The concurrence-nonconcurrence matrices obtained for stage
I, stage 1I and the final stage (stages I and II put together) of testing are shown in Figures

4.1, 4.2 and 4.3 respectively.
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C = Cough i = Step in Pves & Pabd * = No pattern detected
S = Abdominal strain 2 = Step in Pves
M = Minor baselinc change 3 = Step in Pabd
R = Rectal contraction 4 = Under-registration in Pves
B = Bladder contraction 5 = TUinder-registration in Pabd
6 = Flat Pves
7 = Flat Pabd
Clinician
C S M R B ! 2 3 4 5 6 7 -
c 155 0 6 0 0 ] 0 0 0 0 0 C 0 161
S (4] 148 0 4 1 0 0 0 4 1 0 0 2 160
M 0 0 368 7 i 0 0 0 2 5 0 0 0 383
R 0 0 0 25 0 0 0 0 2 0 0 0 5 32
B 0 2 2 0 35 1 6 0 4] 4 0 0 14 04
C 1 0 0 0 0 2 27 1 1 0 0 o 0 3 34
ll: 2 0 1 (] 0 0 0 14 0 0 2 o 0 2 19
T 3 ] 0 0 0 1 0 0 8 ] 0 0 0 2 1
4 0 1 2 i (o] 1 0 2 53 1 0 0 8 69
s 0 1 i 0 0 0 2 0 1 82 0 0 0 87
6 0 0 0 ] 0 0 0 0 0 0 29 0 0 29
7 0 0 1 0 0 ¢} 0 0 4] 0 0 16 1 18
* 1 2 1 1 5 2 1 1 0 1 0 0 0 15
156 155 381 38 45 31 24 12 62 96 29 16 37 1082

Figure 4.1 Concurrence-nonconcurrence matrix (Stage I)
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Cough 1 = Step in Pves & Pabd * = No pattern detected
Abdominal strain 2 = Step in Pves
Minor bascline change 3 = Step in Pabd
Rectal contraction 4 = Under-registration in Pves
Bladder contraction 5 = Under-registration in Pabd
6 = Flat Pves
7 = Flat Pabd
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Clinician

C S M R B 1 2 3 4 5 € 7 *
C 94 0 0 0 ] 0 0 i 0 0 ( 0 0 94
S 0 99 0 2 0 4 0 ] 0 0 0 0 4 109
M 0 0 198 8 3 0 1 0 0 3 0 0 1 214
R 0 ] 1 40 0 0 0 0 1 0 1 0 s 48
B 0 0 0 0 35 3 2 0 0 1 0 0 2 43
c 1 0 0 0 0 1 32 0 1 0 ] 0 0 s 39
Q 2 0 ] 0 0 0 0 6 0 0 0 0 0 1 7
T3 0 0 0 0] 0 2 0 17 0 0 0 0 1 20
4 2 3 0 0 0 0 0 0 19 1 0 o 1 26
S 1 2 2 0 0 1 0 0 ] 93 0 0 4 103
6 0 0 1 0 0 0 0 0 0 0 27 0 0 28
7 0 0 0 0 0 0 0 c 0 ] 0 11 0 11
- o 1 0 2 1 i 1 1 0 1 1 0 0 9
97 105 202 52 40 43 10 19 20 9 29 11 24 751

Figure 4.2 Concurrence-nonconcurrence matrix (Stage II)



C = Cough 1 = Step in Pves & Pabd * = No pattern detected
S = Abdominal strain 2 = Step in Pves
M = Minor bascline change 3 = Step in Pabd
R = Rectal contraction 4 = Under-registration in Pves
B = Bladder contraction S§ = Under-registration in Pabd
6 = Flat Pves
7 = Flat Pabd
Clinician
(o S M R B 1 2 3 4 5 6 7 *
C 249 0 6 0 0 0 0 (v} 1] 0 0 0 0 255
S 0 247 0 6 1 4 0 0 4 1 0 o 6 269
M 0 0 566 15 4 0 1 0 2 8 0 0 1 597
R (V] 0 1 65 0 0 0 0 3 0 1 0 10 80
B (V] 2 2 0 70 4 8 0 0 5 (] 0 16 107
C 1 0 0 0 0 3 59 1 2 0 0 0 0 8 73
: 2 1] 1 0 0 0 0 20 0 0 2 0 0 3 26
T] 3 0 0 0 0 1 2 0 25 0 ] 0 0 3 31
4 2 4 2 1 0 1 0 2 72 2 (1] 0 9 95
5 1 3 3 0 0 1 2 0 1 175 0 0 4 190
6 0 0 1 0 0 0 0 0 0 (] 56 0 0 57
7 0 0 1 0 0 0 0 0 0 0 0 27 ! 29
* 1 3 1 3 6 3 2 2 0 2 1 0 0 24
253 260 583 90 85 74 34 31 82 195 58 27 61 i833 |

Figure 4.3 Concurrence-nonconcurrence matrix (Final)
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Clinician
Events Artifacts Nothing
Events 1197 78 33 1308
CART Artifacts 39 434 28 501
Nothing 14 10 0 24
1250 522 61 1833
Figure 4.4 3x3 Concurrence-nonconcurrence matrix (Final)
Clinician
Events & Artifacts Nothing
Events & Artifacts 1748 61 1809
CART
Nothing 24 0 24
1772 61 1833

Figure 4.5 2x2 Concurrence-nonconcurrence matrix (Final)
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In these figures, the rectangular region bounded by the double lines represents the
concurrence-nonconcurrence matrix. In the matrix, the first twelve columns and rows
indicate clinician's and CART's classification respectively; the 13" column and row
indicate false positives and false negatives respectively. The column of numbers outside
the matrix represents the row totals, while the row of numbers outside the matrix
represents the column totals. The first 12 elements along the principal diagonal of the
matrix indicate the number of instances of correct classification or concurrence between
CART and the clinician with regard to the 12 pattern classes, while the 13" element,
which represents the number of true negatives, is always zero, since no attempt was made
to record them. The off-diagonal elements, on the other hand, represent the number of
instances of misclassification or nonconcurrence between CART and the clinician. The
information in Figure 4.3 is simplified, and expressed in the form of a 3x3 table in Figure

4.4, and as a 2x2 table in Figure 4.5.

The concurrence-nonconcurrence matrices were analyzed to obtain the results of CART's
performance, which were then expressed in terms of the four indices — sensitivity, false
positivity, concurrence and misclassification. The results were obtained individually for
stage I and stage II evaluations, and were then combined to obtain the final resuits.

These results are shown in Tables 4.1, 4.2 and 4.3.



Index % Index %

Sensitivity Misclassification®
Events 99 RS 11
Artifacts 98 B—H>M 19
Overall 99 B—1 S
False positivity 2-B 26
Events 3 235 9
Artifacts 6 31 9
Overall 3 34 18
Concurrence 458 6
Cough 100 5-M 5
Abdominal strain 97 Overall 13
Minor baseline change 97
Rectal contraction 68
Bladder contraction 88
Step in Pves & Pabd 93
Step in Pves 61
Step in Pabd 73
Under-registration in Pves 85

Under-registration in Pabd 86

Flat trace in Pves 100
Flat trace in Pabd 100
Events 90
Artifacts 85
Overall 87

Table 4.1 Results (Stage I)

*The characters represent the following: S=Abdominal strain; M=Minor baseline change;
R=Rectal contraction; B=Bladder contraction; 1=Step in Pves and Pabd; 2=Step in Pves;
3=Step in Pabd; 4="Under-registration in Pves; 5=Under-registration in Pabd



Index % Index %
Sensitiviry Misclassification*
Events 99 R-HM 16
Artifacts 98 B—>M 8
Overall 99 158 10
False positivity 1-B 7
Events 2 153 5
Artifacts S 2-5M 11
Overall 3 2-B 22
Concurrence 31 6
Cough 97 4R 5
Abdominal strain 95 Overall 10
Minor baseline change 98
Rectal contraction 80
Bladder contraction 90
Step in Pves & Pabd 76
Step in Pves 67
Step in Pabd 94
Under-registration in Pves 95
Under-registration in Pabd 95
Flat trace in Pves 96
Flat trace in Pabd 100
Events 92
Artifacts 89
Overall 90

99

Table 4.2 Results (Stage IT)

*The characters represent the following: S=Abdominal strain; M =Minor baseline change;
R=Rectal contraction; B=Bladder contraction; 1=Step in Pves and Pabd; 2=Step in Pves;
3=Step in Pabd; 4=Under-registration in Pves



Index % Index %

Sensitivity Misclassification*
Events 99 RS 7
Artifacts 98 R-H>M 17
Overall 99 B—->M 5
False positivity 158§ 6
Events 3 1-B 6
Artifacts 6 2-B 25
Overall 3 255 6
Concurrence 3-»1 7
Cough 99 34 7
Abdominal strain 926 458 S
Minor baseline change 97 Overall 11
Rectal contraction 75
Bladder contraction 89
Step in Pves & Pabd 83
Step in Pves 63
Step in Pabd 86
Under-registration in Pves 88

Under-registration in Pabd 91

Flat trace in Pves 98
Flat trace in Pabd 100
Events 91
Artifacts 87
Overall 89

Table 4.3 Results (Final)

*The characters represent the following: S=Abdominal strain; M =Minor baseline change;
R=Rectal contraction; B=Bladder contraction; 1=Step in Pves and Pabd; 2=Step in Pves;
3=Step in Pabd; 4=Under-registration in Pves; 5=Under-registration in Pabd
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The calculation of some of the indices of performance are illustrated by the following

examples.

From Figure 4.5,

1748

Sensitivi _ 1748 -
ensitivity (Overall) 772 x 100 = 99%
and
L. 61
False ti Overall) = 100 = 3%
alse positivity (Overall) 1806 X
From Figure 4.3,
Concurrence (Cough) = __249 x 100 = 9%
253 - 1
and
Misclassification (R ~ M) = —> 3 % 100 = 17%

The interpretation of the above results of performance of CART are discussed in the next

chapter.



Chapter §

DISCUSSION

In this chapter, the results of evaluation of CART's performance are discussed. The

following interpretations are based on the final results presented in Table 4.3.

CART had an overall sensitivity of 99%. The lowest rate of sensitivity of 93% was
found with respect to the class of bladder contractions. CART failed to recognize 6 out
of 85 bladder contractions. These bladder contractions were missed mainly because the
amplitudes in Pves and Pdet channels failed to reach the threshold levels. A sensitivity
index of 94% was observed with step artifacts in the Pves and Pabd channels. This lower
index could be due to the fact that the number of testing patterns observed in each of the

these two classes was small compared with that observed in the other classes.

CART had an overall false positivity of 3%. The major contributors to false positivity
were bladder contractions (15%) and rectal contractions (12.5%). Many times, the
bladder contractions and rectal contractions had such low amplitudes that it was hard to
distinguish them from normal baseline wander. Furthermore, in such cases, it was not
possible to classify the patterns as "minor baseline changes" because they usually had
longer durations, violating the definition of a "minor baseline change". Such bladder

contractions and rectal contractions were missed altogether, resulting in a diminished

102
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sensitivity. A possible solution to deal with this problem included lowering of amplitude
thresholds. Unfortunately, such threshold-lowering efforts resulted in more false
positives. Like other pattern recognition systems, CART was not immune to the effects

of this inherent inverse relationship between sensitivity and false positivity.

CART had an overall concurrence rate of 91% with respect to events. It showed high
concurrence rates for coughs (99%), abdominal strains (96%) and "minor baseline
changes" (97%). In the light of concurrence for these events, the concurrence rates for
rectal contractions (75 %) and bladder contractions (89%) may be viewed as low. These
low rates of concurrence were mainly due to the rectal contractions and bladder
contractions being misciassified as "minor baseline changes" because of their extremely

low amplitudes (see the discussion on misclassifications below).

The overall concurrence rate for artifacts was 87 %, with step artifacts showing the lowest
rates of concurrence. This rather modest result may be explained by the following
reasons without sounding overly defensive. Firstly, as mentioned earlier, the number of
step artifacts (especially, "Step in Pves" and "Step in Pabd") in the testing set of patterns
was low. This might have been a significant factor in distorting the concurrence.
Therefore, it is natural to expect that the concurrence rates for the step artifacts, and
hence the overall concurrence rate for artifacts, might have been higher had the testing
set consisted of more of such patterns. Secondly, it is important to note that a quarter

of the "Step in Pves" artifacts were misclassified as bladder contractions. This disturbing
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result is not entirely surprising, and is in fact, readily explainable; it is brought out more

fully in the following discussion on misclassifications.

Actually, the concurrence and misclassification rates should be discussed together as a
single entity since they assess the same aspect of the performance of CART — the ability
to accurately classify the observed patterns. But the two topics are split up and discussed
separately mainly for the sake of convenience. Some of the misclassification rates
depicted in Table 4.3 that are predictable and explainable are discussed below. It doesn't
mean that the ones that are not discussed are unimportant; it only implies that they are

either insignificant, or that there are no solid grounds to draw valid conclusions.

The (R—S) and (R—M) misclassifications were 7% and 17 % respectively. In many cases
of rectal contractions misclassified as abdominal straining, there was unmistakable
evidence of the rectal contractions being superimposed on straining. In these cases, the
rectal contractions were clearly visible in the Pdet channel since the straining component
had subtracted out. Unfortunately, CART was not trained to recognize such "mixed"
patterns. The majority of the rectal contractions that were misclassified as "miuor
baseline change" had very lew amplitudes, making their distinction rather hazy. In these
cases, no attempt was made to rectify the problem by lowering the amplitude thresholds,

mainly to avoid increasing the number of false positives.



105

The 5% of (B—M) misclassifications were again mainly due to the bladder contractions
failing to reach sufficiently high amplitudes. This is similar to (R—M) misclassification,

and, for the reason cited earlier, no attempt was made to rectify this problem.

The (I-S) misclassification accounted for 6%. On many occasions, a "Step in Pves and
Pabd" artifact and an abdominal strain appear quite similar, the only differentiating
feature being that the former has a virtual end, and the latter has a real end. Since the
definition of a virtual end is somewhat arbitrary, it is not surprising that some "Step in

Pves and Pabd" artifacts tend to get misclassified as abdomina! strains.

The (2—B) misclassification of 25%, which is by far the highest misclassification rate,
certainly deserves special attention. This type of misclassification is predictable because
of the striking similarity in the definition of the two pattern classes. In general, the "Step
in Pves" patterns are composed of "fast" upstrokes and downstrokes, while the bladder
contractions are almost exclusively composed of "slow" upstrokes and downstrokes.
Under these general conditions, the distinction is fairly easy, and poses no serious
problems. On the other hand, when the "Step in Pves" patterns are predominantly
composed of "siow" upstrokes and downstrokes, their distinction from bladder
contractions becomes highly superficial; this is more so because the step patterns have a
virtual end (which is also consistent with the definition of a bladder contraction). Such
"Step in Pves" patterns are frequently encountered during cystometry when the 3-way tap

is opened to start the infusion after it had been closed for a while. Here, the pressure
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trace in Pves, which had fallen off to a lower value due to closure of the tap and
consequent draining away of the fluid, merely "steps up” to its original level. Therefore,
these situations do not imply the presence of an artifact (the causes of which were
outlined clsewhere), but only serve to indicate the normal response to resumption of
filling. Nevertheless, it was indeed very difficult to distinguish objectively such "Step in
Pves" patterns from bladder contractions. Accordingly, CART did not reliably learn to
classify correctly the "Step in Pves" patterns with a predominance of "slow” upstrokes
and downstrokes. In addition, this problem was further compounded by the insufficiency
of the number of testing patterns belonging to the "Step in Pves" ciass. Consequently,
the (2—B) misclassification rate soared to 25%. In spite of this lengthy and seemingly
overdefensive justification, it is still felt that CART ought to recognize the step artifacts

correctly, and not just "throw in" bladder contractions at inappropriate times.

To the author's best knowledge, there are no published reports of automated CMG pattern
recognition systems such as CART. As a result, there is no "gold standard" against
which the performance of CART can be compared. Nevertheless, based on empirical
judgement, certain objective criteria were set, and the performance of the system
evaluated. From the results of evaluation, it is clear that CART was not perfect in its
function. The imperfections were probably inevitable under certain circumstances, as
discussed in the previous paragraphs. In the following paragraphs, some general

comments on these imperfections, and their practical implications, are noted.
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With any machine-based pattern recognition system, it is unrcasonable to expect a 100%
accuracy in its performance. This statement, by itself, provides some degree of
consolation when one takes a look at some of the frustrating results of performance. The

preceding remarks can be made about CART too.

The sensitivity and false positivity indices of performance are fairly general in that they
are used in the evaluation of almost all pattern recognition systems. On the other hand,
the concurrence and misclassification indices are particularly useful in systems such as
CART that deal with multiple pattern classes. When there are four indices, the question
of which index/indices need/s to be optimized, in order to obtain a true representation of
the performance of the system, becomes debatable. In a two-class problem such as
recognition of ventricular premature beats as opposed to normal beats in an
electrocardiogram, optimization of sensitivity over false positivity may be justified in the
light of the life-threatening nature of ventricular premature beats. In CART, however,
neither the events nor the artifacts are life-threatening to the patient; the main purpose of
the system is to assist the examiner in obtaining valid error-free data. Consequently, it
may not matter much if some events and artifacts are missed. Based on this argument,
it is probably reasonable to give highest priority to misclassification (and hence to
concurrence). However, it is also important to keep in mind the amount of annoyance
that might be caused by frequent false positives, and its probable influence on the user
acceptability of the system. A consideration of these various factors influenced the

selection of thresholds during the testing stages. Accordingly, it is important to view the
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results as reflecting an attempt to restore some degree of balance among the various

indices.

This point relates to the implication of certain types of misclassifications as exemplified
by the following situation. Consider a situation in which there are 4 under-registration
: rtifacts occurring successively as a "group" without any appreciable stretch of baseline
separating them. Suppose that one of the under-registrations is misclassified as cough.
in this situation, cough will certainly count as a misclassification for testing purposes.
However, from a practical standpoint, the misclassification is not very significant because
the basic problem of under-registration has already been signalled. Such
misclassifications that occur within a "group" of patterns could be considered less
important than the misclassifications associated with isolated patterns. Nevertheless, such

misclassifications were included in the calculation of the indices.

Finally, CART represenis an initial attempt at solving an apparently hitherto untouched
problem. Accordingly, the emphasis was entirely on conceptualization of an approach
than on improvement of an existing system. So, the current performance should be
construed as a benchmark for evaluation of future versions of CAKRT or of other similar

systems.



Chapter 6

CONCLUSIOMS AND FUTURE DIRECTIONS

On the basis of the results and discussion presented in the preceding two chapters, the

following conclusions about CART, and its performance, can be made.

M

)]

©))
O]

&)

(6)

It has high sensitivity and moderately low false positivity for recognition of
patterns

CART is quite reliable in recognizing coughs, abdominal strains and "Minor
baseline changes”

It has a tendency to miss low-amplitude bladder contractions

It has a tendency to misclassify low-amplitude rectal contraction as "Minor
baseline change"”

It has a tendency to misclassify "Step in Pves" with predominant "slow"
strokes as bladder contraction

Irrespective of the numerical values of the indices of performance, CART
has been found to be useful clinically, at least in our unit. At the present
time, it has not been possible to demonstrate its usefulness in other centers
owing to time constraints. However, judging from the amount of positive
interest that CART has generated among the urodynamics professionals, it

appears that CART has a bigger role to play in clinical urodyanamic practice.
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The current status of CART is certainly not the end point of its evolution. CART

represents an architecture that is not only currently viable but also has great potential for

further growth and development. Future efforts could focus on five broad areas of

development: refinement, enhancement; integration; innovation, commercialization.

These are described below.

Refinement

This involves improvement of the existing program in order to achieve a better

performance. The improvement could be directed at

Partern demarcation algorithm

This involves a better definition of the onset and end points in order to obtain
clearly demarcated patterns before proceeding with the classification process.
Selection of features

This involves an attempt at selecting features that are more discriminatory in
separating the individual patterns.

Selection of thresholds

With more extensive testing and analysis, it is possible to identify the key
thresholds that play a major role in the classification process. This effort
could guide in the selection of proper values for such thresholds.

System training

By a careful review of the patterns, a list of patterns truly representative of the

various classes could be obtained. Training the system with such
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representative patterns might result in a reduction of the misclassification rates.
Graph display algorithm

In the current version, the relatively slow execution of the graph display
algorithm results in loss of some data. Although this not a serious problem
at the present time, the data loss could certainly be reduced by a better

algorithm.

Enhancement

This involves addition of new capabilities to the program, or using the program in new

but related applications. At least two novel ideas are worth pursuing:

Automated report generation and printing

This involves enhancing the existing automation of the system such that the
detected artifacts are eliminated, and only the error-free data are retained in
the patient files. With a clear delineation of the events, it is possible to
automate the calculation of some of the routinely reported parameters.
Furthermore, the final print-out of the study could be made compact and more
meaningful by including only the events of significance, and leaving out the
artifacts.

Decision-support in urodynamics

The removal of artifacts coupled with proper identification of events could help
in automating the process of interpretation of CMGs. This could be achieved

by building appropriate knowledge bases and inference techniques.



112
Integration
This involves incorporation of the pattern recognition algorithm of CART into the
software of the urodynamic equipment. Conceivably, such an arrangement would
eliminate the interfacing and graphic display functions of CART. This could solve the
problem of data loss experienced with the present system, and possibly result in a better

performance.

Innovation

This involves application of different approaches in solving the artifact problem. Based
on the concepts regarding the nature of events and artifacts that originated from this
research, different types of pattern demarcation algorithms and classification schemes
could be tried to achieve the same goals. Such innovations could result in production of

robust and reliable urodynamic systems in the future.

Commercialization

The desirable end point of an application-oriented computer program such as CART
should be immediate implementation on a wide scale. With this, constructive ideas could
be obtained quickly to enable a healthy growth of the software to take place. The key
to such an effort lies in commercialization of the product. At present, efforts are

underway to promote CART through the commercial route.
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Appendix 1

ILLUSTRATION OF EVENTS AND ARTIFACTS

Figures Al.1 through A1.12 in this appendix show the various events and artifacts that
are defined in CART. The diagrams represent enlarged print-outs of the tracings of the
examples of actual events and artifacts as seen on the monitor during cystometry. In each
figure, the three channels — Pves, Pabd and Pdet — are shown. The x-axis in each
channel represents time in seconds, and the y-axis represents amplitude in cm H,O. The
highlighted part of the trace in each channel represents the corresponding event or

artifact as seen in that channel. The complete screen layout is shown in Figure A2.1 of

Appendix 2.
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Appendix 2

USING CART

The primary objective of CART is on-line detection of events and artifacts in CMG. This
is achieve . by displaying the CMG traces, and pointing out the events and artifacts as and
when they occur. Apart from the on-line function, several other related functions are
incorporated in CART. In this appendix, the various modes of operation of CART, and
their associated functions, are described along with a diagrammatic illustration of the
screen layout. Since a separate "user's guide" is not included in this thesis, the following

description is intended to serve as a guide for using CART.

The main functions of CART can be listed as follows:
e display of pressure traces
o display of visual alerts
e actuation of auditory alerts
e provision of on-line help
e facility for simulation of events and artifacts

e facility for displaying pressure traces from disk files

CART operates in 3 modes: on-line mode; simulation mode; disk mode. The following

general features of CART are common to all modes of operation.
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the screen is laid out in the form of windows

a menu bar is provided at the top of the screen for accessing the various
functions in the pull-down menus

a status line is included at the bottom of the screen for displaying short help
messages

"hot keys" are provided for quick and easy access to the menu items

there is provision for switching from one mode to another without exiting the

program

A screen layout of CART operating in on-line mode is shown in Figure A2.1. In the

figure, the following windows are shown:

Title window

It is at the top, displaying the message CART.

Menu bar

It shows the menu items - A (System), File, Options, Help, Simulate and
Graph; the Graph item is active

Character window

It displays the character C, indicating the presence of the event, cough.

Description window

It displays the message C Cough, indicating the presence of the event, cough.
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Figure A2.1 Screen layout in CART
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o Trace windows

These are the 3 windows that display the pressure traces in the 3 channels:
Pves, Pabd and Pder.

o  Status line

It displays the "hot keys", namely, F1 Help, F8 Disk mode and F9 Menu, and

the current mode of operation, the on-line mode.

The modes of operation of CART are described in the following paragraphs.

On-line Mode

In the on-line mode of operation, CART is used along with UDS-120 during the actual
cystometric procedure. Before selecting this mede, it is important to ensure that the
connection between UDS-120 and CART is established, and that UDS-120 is running and
transmitting the data. On selecting this mode, the user is prompted for the name of the
patient. Once the patient's name has been entered, the program begins to plot the
pressure traces from Pves, Pabd and Pdet channels. These traces are displayed in the
trace windows as described earlier. The heights of these trace windows are large enough
to represent the Pves and Pabd pressures in the range of -20 to +235 ¢cm H,0O, and the
Pder pressure, in the range of -127 to +128 cm H;0. The traces are made to scroll from
right to left in order to conform to the natural human tendency of reading the traces from
left to right. As a consequence, the traces appear initially at the right edges, move

across, and disappear at the left edges of the trace windows. Although the window width
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is not adjustable, it is ensured that the traces remain visible for a sufficient length of time

before their disappearance at the left edge.

Whenever events or artifacts are detected, visual aleri messages are displayed in the
character and description windows. Furthermore, auditory alerts in the form of beeps,

are actuated when artifacts are detected.

The other important function in CART is provision of on-line help. In addition to the
basic help messages displayed on the status line, more elaborate help texts are
incorporated in the program. These help texts are accessible in a context-sensitive
manner, and are displayed in the special help windows. Help is available on a wide range

of topics, such as modes of operation, description of events and artifacts, etc.

Simulation Mode

In the simulation mode, the generation of intravesical and abdominal pressures is
simulated by squeezing saline bags connected to the transducers. The methods for
simulating the various events and artifacts are defined, and they can be accessed whenever
required. However, it should be noted that the results obtained with simulation might be
considerably different from those obtained from a patient in an actual clinical setting, due
to the highly artificial nature of simulation. Hence simulation does not carry much

significance; it is useful for demonstration purposes, particularly since it is real-time.
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Disk Mode
The disk mode of operation consists of reading the actual patient data stored in disk files,
and displaying them in the same manner as the on-line mode. Essentially, this involves
a play-back of the previously recorded data. Thus, it is important to note that the disk
mode is off-line unlike the other two modes; it is mainly useful for demonstrating the

program's capabilities and for reviewing a case.



