L

National Library
of Canada du Canada
Canadian Theses Service

Ottawa, Canada
K1A ON4

CANADIAN THESES

&Y

NOTICE

The quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfilming. Every
effort has been made to ensure the highest quality of reproduc-

tion possible.

!f pages are missmg contact the umversnry which granted the
degree.

Some pages may have indistinct prinf especially if the original
pages were typed with a poor typewriter ribbon or if the univer-

‘sitx,) sent us an inferior photocopy. _ .

t

Pre‘viously copyrighted materials (journal articles, published
tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the
Canadian Copyright Act, R.S.C. 1970, ¢. C-30. :

o

" THIS DISSERTATION
" HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

A .
NL-3359(r.86/06)

Bibliothéque nationale

- Services des théses canadiennes

THESES CANADIENNES

AVIS.

La qualité de cette microfiche dépend grandement de la quame
de la thése soumise au mlcroﬁlmage Nous avons tout fait pour |
assurer une qualité supérieure de reproduction.

3

S'it manque des pages, veuillez communiquer avec Ium(er-
sité qui a confére le grade: .

La qualité d’iimpression de certaines pages peut laissef &
désirer, surtout si les pages originales ont été dactylographiées
a I'aide d'un ruban usé ou si 'université nous a fait papvenir

" une photocople de qualité mténeure

/

YA
Les documents qui font déja I'objet d’'un droit d’auteur (articles
de revue. examens publiés, etc.) ne sont pas microfilméj.

La reproduction, méme partielle, de ce microfiim est squmise.
ala Loa canadtenne sur le droit d’auteur, SRC 1970, c. C-30.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS. RECUE

. Canadi®

N

}

&
i,

¢

The l'nivefsity of Alberta

THE USE OF RECURSIVE TRANSITION NETWORKS FOR
DIALOGUE DESIGN IN USER INTERFACES

© : <
» »
by . b
(”p Sai Choi LAU

P a
- £

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
’ of Master of Science a
v

L

Department of Computing Science

Edmonton,’Alberta .
Spring, 1986

"

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies Qf the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from
may be printed or otherwise
reproduced without his/her
written permission.

it”

i
|
b

L'autorisation a 2t& accordé&e
a la Biblioth&que nationale
du Canada de microfilmer
cette th&se et de préter ou
de vendre des exemplaires du

film.

L'auteur (titulaire du droit
d'auteur) se r&serve les
autres droits ‘de publication;
ni la th&se ni de 1longs
extraits de celle-ci ne
doivent @tre 1imprim&s ou

autrement reproduits sans son
autorisation &crite.

’

Vi

|

'ISBN ©-315-30276-3

- '

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Sai Choi LAU

TITLE OF THESIS: The Use of Recursive Transition Net

for Dlaloéue Design in User lnt,erfaces
DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

* YEAR THIS DEGREE (}RANTED: 1986

Permission is hereby granted to The University of Alberta Library to
reproduce single copies of this thesis and to lend or sell such copies for private,
scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the

author's written permission.
(Signed) jé(I

Permanent Address:
217, Azalea House,
So Uk EState,
Kowloon,

Hong Kong.

baed ¢ gf, (/750

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersig‘x;ed certii‘y that they have read, and recommend to the
Fachulty of Graduate Studies and ci—'ﬁesem"‘ch, for acceptance, a thesis entitled The Use
of Recursive Transition Networks for Dialogue Design m User Interfaces.
subn&itéed by Sai Choi LAU in partial fulfillment of the requirements for ‘the"}dcgrce

of Master of Science.

Date 06410 , /ﬂfz)’

o ' STRACT
. ~~ - \

" There is Icurrenily great’ interest in the ;ﬁtomatic generation of user interfaces to
software systems. These generators are called User Interface Management Sy.ste'ms
| (VIMS). At the University of A.lberta; a UIMS is being built based on the user inter-
face model developed at the“Seeh‘eim Workshop on User Interfaces. This model divides
the User Interface Management System into a presentatién component, a dialogue con-
trol component and an applicat;on interféce model. The dialogue'bcontfol component

- [
is the control module of the S)stem Reéurswe Transmop Networks (RTNs), context

free grammars aod event languages are the three main notatlons for descnbmg the
dialogue. An RTN describes the resp_onse of a system by means of state transition

diagrams.

o

In this thesis, a graphical editor is described. This editor is used to ent.er the.
RTNs into the, %)stem mteractlvely 'I\‘he user interface designer enters the diagrams

(RTNs) into the system in a graphxcal way and the data is stored in a database.

In order to provide a system that accommodates all three dnaloghe control nota-

tions and to facilitate . lmplementatlon all three notations are converted into a com-

a9

‘mon format. Since an event- based model has greater descriptive power, a specnal

-
ix
2 g

event format the "Event Based Internal 'Form is designated as this common format

oy

T he second part of the Lhesns descrlbes some conversion algom,hms used to convert the

“ RTNs (whlch ‘have been entered by | the edltor) into thls special format.

ACKNOWLEDGEMENTS

-

N

I wish to express my sincere gratitude to my supervisor, Dr. M. Green. for his gui-
dance, assistance, criticisms and encouragement during the course of this project and

’

the preparation of the thesis.

I am grateful for the careful reading and comments provided by the members of

my examination committee, Drs. W.W. Armstrong, M.T. Ozsu and K_A. Strfomsmoe.

Also, financial support of the'»computing Science Department in the form of teach- -

ing and rescarch assistantships are gratefully acknowledged.

Lastly, special thanks to all my friends for their encouragements during my two

years stay hHere.

Table of Contents

a,
Chapter
Chapter 1: Introduction '
" 1.1. Descriptions of the UIMS ..., .. ' T I SRR R
72. Purposes of the project ... s SO
1.3. Organization of the Thesiﬂs\..'. .. s
‘Chapter 2: ackground : B
) 2.1 _Doscrijmx of the Dialc;gue Control Component ‘ ST 6
2.2. The Recursive Transition Network e | 8
2.3. The Event Model TR U R SSURRI e 10
2.4. Review of‘Previous‘\}Vork e U PSR UUUS RN 12
2.4.1. Newman's System e U 12
2.5, Summaryrof Existing Systems features SRR .16
2.6. The University ofl‘A.l‘berta UIMS Requirements e e 18)
* " Chapter 3: Designing the Graphical Editor S I I SR 1.
'3.1. I‘nt.roduction‘ e 18
3.2. Basic Aims e, vl8.
3.3, Designing the User Interface e e e 19
\ 3.3.'1. PotentiakUsers poeriveeeeenrenaans e e 20
_- '_3.3.2. Minimal Memory Required -........ e presiermrienenaas S, - 21
3.3.3. Immé;iiate Feeciback S SOV 22
3.3.4. User Model v et 23
3.‘12§?Designing the Editor C.pmm;inds ' 24

’

3.4.1. Basic Commands e 24
ot
3.4.2. Auxiliary Commands 3 .. 25
3.5. Dxsign of Manipulated Objects ’ .. 26
3.5.1. Bixsic Objects ... ‘ 26
3.5.2. Auxiliary Objects ST o
3.6.‘%he Data Strygcture IR & “ 20
3.7. Menu Layout e e R J ;'SO
3.8 Error Handler ... NN OUTTRPI: 3
3.8.1. Operati’on ELTOTS o ooovoooeoo oo .. 31
3.8.2. Inconsistent Errors ... B PP 31
3.9. sqpponing Facilities :....... e e 32
(jh?’P‘” 4: lmplementation of tbe Graphical Editor e e 33
4.1. Introduction PSP el | 33
1.2, 'i‘he Environment ... S SUTUUR 33
o 1
4.3. Implementation of the User Interface e 34
4.3.1: The-Menus ... 34
- | o <)
4.3.2. Window Layout OO e e, Seprrrren e 36
4.4. 'fhe Commands /(/(........... 37
) 4.5. Rep};}ag’entat_ion ¢4f Primiti-ves | 38
4.6. Dz;t.a.-"gtructure , e R reread | ' . '39
4.7. Progralln Flow oeeeeeeeeeeeeeeio S e JU 42
,4.8."Ex“"a:m;‘)~lg e tanveeaadas = ~ g 44
. ChaptéfS;,”i‘he Event'Handler Generation Algorithmsiv ".....:./r‘ 47
. : /
vii ¢

e

5.1. Introduction e, B RS TSR 47

5.2, l)cscriptilbq of Event Based Inteinal };qrm e, ceeeees L. 48
‘)'3 The Leading Relation U e U TURR | 49
5.3.1. Deﬁniiic;h'of the Leading Relation e 49
5.3.2. ('Slculat.ing and (;hecki;mg of the Lreading‘ Relationooveeooeee o " 50
5 3.3. Examples e e e e 52
5.3.3.1 Ex;mple 1. / ... 52
5.3.3.2. Example 2 53
5.4. Error Handling ool e IS 55
5.-1.].Ty'rpes of Errors S 55
5.4.2, A‘!gorithms _ e 57
| 5.4.3. Example U beenn ‘ e . : 58
"5.5. Principles ovf code Gemerationc...coooevereereoeo 55
'5.5.1. General Design Principle;; s .. 89
5.6.2. Generating the C Procea;xre SROUPURUTURIRUR e, o e, 61
5521 (:;enerziting the Tables61
5.5.2.2. Examples e, e 85
: : ' : -
5.5.3. Gcherating nbe Event Handler TAa'bLe:'; 'G 67 ' ’
5.5.4. Exa-mp_les ’ } 67
Chapter 6: Il;nblemenqation of the Code Generator B eeeeeerate e e eenen 89
6.1. The Envirénm;nt"....'............ e e | 89 '
6.2.>St..r“ep'gths_ and Weaknesses e ieeeen ~69
6.3. Data Structurec......00. 0 Teveeenanes S U e: 7‘.0
- | Fo " ~

6.1. Program Flow OSSO SS UV T2

. Chapter 7: C‘o'nclusi:ons' U ‘ TS '{'4
7.1 Merits of the RTN Editor 74
7.2, Special ‘Fe.atu;'es.’f the Code Generator e 76
/3. Further Ex{e;lsions s e 77
References OO ;.__'. e 79
Al: Example cf Des.igning Dialogue Control 5 ... FECITET 82
L1 Problem ... ?'82
1.2. Recursi\"e Transition,Network\ Solution ... 82
71.3. Code Generation 84
A.Q:\ User Manual ST SUUOUR e, TP S RSTRPNTR 88
2.1: Introduction e, JUTUTTTTTT e e 80
2.2. O\'ervi'.ew i IRNRRE 90
"2.3. System ’,c’(linﬁ.guration el e ' | 91
2.4‘thraphifal Editor e e et 91

‘. 2‘.4.1.4Using Ll{xe Edito'r' USRI e, o e 91
_2.4,2’[/ Wiﬁhoys — ‘ e, 92

./‘7./43 Selectic;n of Commands and Primitives — -1.)3 o
.'2.4.4. Error Handling Ferreen ceeean 93 |
2.5. Editor Primitives e O S 9 3
_2.5;1. SLALE oo e Trrrrreeeenees 93

2.5.2. State Name ... e s 94

. . 7 s
2.50.3. Arc ... USROS v iereenenss 94

ix , .

2.06.2. D(‘léte R ST 97
2.6.3.-Move I 08
2..6.4..Rename‘ e R —— e, S 100

 2.6.5. Nglxt Netwéfk A SO s R TR 100
2.6.6. Add Group et ... 101
2.6:7. Merge Groups....... N et e, ... 101

" 2.6.8. List Group@ ' 101
2.6.9. Renax-ne Group > ~“' 102 -
2.6.10. Des\troy G)roup IR e, e] i 102
2801 HElp oo _— 102

-2.7. Associated Facilities

2.7:1 Merge Databases.

- 2.7.2. Copy Database teerenetir eeerereerereinaa et ——————
2.7.3. Destx;Oy"Détabase
2.8. Code GeDErationco.iieewrsrmsemnrreeeeeneeseesmsios s S
. . g
- o
SR
.7

- \"- N
List of Figures \r ‘ -
‘Figure -) | . ‘ | ' . Page
1.1 Overview of the Usage of the UIMS oo, :.: Mt e 2
1.2 The Logical Model of a UIMS ... - e e 3
1.3 Summary of the Project Requirements * FESR 4
2.1 External Control UIMS Configuration ORI RO ‘7
2.2 loternal Control UIMS Configuration ...:............c........ 7
2.3 An Example of a State Transition Diagram ... 9
2.4 Anexample of an Event Based Model ... e] 11
2.5$-;\Jn Example of NeWmau's S&stem et e ﬁ13
26 Exaymple of Figure 2.5 cod;*d into Netwo_rk De,ﬁhitionmLan'éuége fee .15
V2.7 The U of A UIMS Dialogue Control Component C‘onﬁguranon\.; ’ ' 17
;3 1 Example showing the lmportance of wnldcard' -28‘
.4.] The _Layout of the Editor’s Menus e, s SR '.....x....:_l...,‘ .3.5
4.2 The Menus Hierarchyccooovvveeeiiviiiiie Srrreernnanns e ey 36
& vRE +
4 3 The Wmdow Layout of the Editor Gt 37
4.4 The Data Strﬂ‘cture of Group usea in Che E;ltor ... 41
4 5 The Data Structure to @ore the RTN in the Database , 42
4.6 Inmal Layout of the Screen ... ST SRR 44
4.7 The_..Suxjeen Layout After a Dlagram 18 Createdcccoovmviviiviiiinininion i, 44
5.1 Code‘qé\e'neration Process .l......cccoceennnnns LT NS P T U 47
5.2 Exan;ple of EBIF Event Handlerw. A ' 48 =
5.3 Example Shovung the lmportance of the Lead;ng Fl:nctlon _ ' 50 |
s - ?

Cxi

5.4 Example of Infinite Scarchi.ng in the Leading Relation U ,
5.5 Example Showing How The Leading Relation Files are Formed 52
5.6 Example showing Recursive Calls of the Leadihg Relationscc.............. '53
5.7 Tables of Contents of Conversion Program .. 58
. ' <

5 & 4The State and Ending State Table of Diagram 1 ... 58
5.9 The State and Ending State Table of Diagram 2 e, 58
5.10. Token and Diagram Table TP RO e 61
5.11 Tokep fx_nd ,Diagrafn Table of Diagraml TS 82

& - - .
.- Token and Diagram Table of Diagram® 62

T . :
5.13 Th(f;ﬂ(*éuh_ ‘of Combining Token and Diagram Tables for Diagram1 63
.14 Generating (Tode‘Algoiithm With Arc For Diagram Call............. e 64
5.15 The 'C’ Language ‘procedure of the EBIF for Diagraml [T e 66

n N ° . ~ ! ’ N) , ‘ .
5.16 .The 'C" Language procedure of the EBIF for Diagram? ORI 67

- R ’ »
5.17 The Event Handler Table for Diagram 1 SR 88
5118 The Event Handler Table for Diagram?:'...0.loopooe ... 68
6.1 Token Rocord Structure n"’o 71
7 o A s T) i
;6.2 [Token Information Record Structure e SRR 71
o ‘ .) . .
+ 6.3 Diagram Record Strutture........... e reeeeae e raas eeeeand G e, Y
e R AR : | o : : : '

6.4 Diagtém Information Record Structure | NS SO k v 71
D ALLMain Control RTN .ooiioveeiniioeeoeoceoeoeee oo TR 83 .
e Sy . s ‘ .) .
AL.2 ’_I“wd sub’d‘ihgr;gmfs called by ’Maitz Control' e et 83
'A2.1 Window Layout w.ooeoteieiieein et e e 92

< . L " . ”' . ' ! ‘ k ‘
. ~§"°i'0 Te 8w g E ' '
. S . { .
. (s ANy @ , [N
S . ‘ °
-, A ‘ { \l ’ s
T "“:; u“ - a e ° °
;g; .zi}"' " 1‘0" P Y [N
N #) o of . A
s .) .‘i . . Xll © LIS .
S ' o v 2 °

9

\\ ‘ "+ Chapter 1
\

Introduction

-~ '

; .\\I'n4*cent years, software engineers have realized the benefit of splitting a software
system into user interface and application program modules. Many studies have been
done on the problem of automatically generating the first cpmponc;lt
[Bux(on»BB,KaiskBQ,Olsed Jr.é3b]. This refers to the task of specifying the user inter-

- N
faces of a system in a high level notation, either textually or graphically, and automat-
Ically generatmg ‘the corresponding user mterface module. This generator is an |mpor‘
tant part of a l ser Interface Management System (UIMS). There is a strong analogy
between a UIMS and a Database Management \System since they both prdvide func-
tions wblose detailed implementeti_on are transparent to the user. Moreover, they are
both built up of a few separate modules and have a number ‘of notations to describe

each module. This thesis,descdribes the construction of a UIMS at the University of

Alberta. -

1.1. Descriptions of the UIMS

Before UIMSs were dgveloj)ed, software engineers noticed that specification tech-

%

niques for iser interfaces were useful in the development of user interaction modulés

.. [Gree‘n8l,Parn3569]. The §peciﬁcation could be used as a tool for expressing the user

‘ 'mteH’ace deslgners ideas, for communlcatmg with other des:gners and checking for.

cons:stency and des:gn eld'Ors In other, words, lt could” provide a general des;gn

4

-\
venvnronment for the user mte‘rface module. Later they realized that many user inter-
face modules (subroutmes) were commonly used in many applications. Specification

Ianguages were developed to descnbe the user interface modules and later many uscr
. f ” N
interface generators were built to produce the user interface modules automatlcally

., -
ot

Figure 1.1 shows a g‘eneraq ovenview pf a UIMS. Its main purpose is to help the

|

. user interface designer to design, implement and maintain the user interface module of

2
LD

o

‘ 4
~asystem. The user interface designer only needs to specify the required user interfaces
and the UIMS will generate the code automatically. This simplifies the user interface
' o 2F s
design since only a high level description of the requirements is necessary and-the tedi-

ous’job of coding can be eliminated. Detailed descriptions of a general-UIMS format

can be found in [Green8r4b,Green84c].

User
User . Interface
Interface UIMS Module
Specification of a
System

’

Figure 1.1 ‘Overview of the Usage of the UIMS

Tbere has been a great deal of interest in modeling the UIM§ and many different

_ systems have alre;dy been built. ‘Nevertheless most of them follow a common model
' proposed in the Seehelm Workshop! [Green84c] This model divides the whole system
into a presentation component, a dialogue control component and'an application inter-
face model (Figure 1.2). The peesentation component defines the nppearance of an
int»eraclive systemrul) the end user. It includes the mappling of logical to physical dev-
ices, and deals with the information flows to and from the user. The application inter-
face model describes the set of procedures/modules that can be-called from inside the
user interface and tnei\r required parameters. It forms the interface between the appli-
eation program and tne user interface. The dialogue control component describes the

dialogue sequence between the end users and the interactive system and is the main

control of the user interface.

The dialogue control component is the most developed component of thc‘UlM’S

model and can be based on omne of three dlﬂ’erent notations,which are context free

Uln the Seeheim Workshop, the UIMS is clearly partitioned in presentation component, dialo-
gue control component and application interface model. [Seeheim84]

3
grammars [Olsen Jr.83b], events [Buxton®&3] and transition diagrams [Newman68).
. Application
USER <«————» Presentation | Dialogue Interface
Control
Model

-

Figure 1.2 Tl‘le Log;cal Model of a UIMS
These notations have different -descriptive power, but ‘as stated in
[Green84e,Gréen853]; the event-based modelz‘ has a greater expressive power. TraAnsi-
tion diagrams make use of directed graphs in whic.h each node represents a distinct
state*of the user interaction. A Recursive Transition Ne:work (RTN) is a directed
graph that can refer to itself. ,'wo methods can be used for specifying the RTNs,
either textual[Rogers81] or graphical. The latter method lhas the advantage of allowing
’ the user intverfalce designer to enter the specifications interactively and avoids doing
the conversion from textual into .graphical represcntatiohn. Also problems are often
easjer to specify in a graphical way. The graphical approach of specifying the RTNs is
u:;ed in this project to specify th‘e dialogue sequence.

“ ‘1.2. Purposes of the project
&

At the University of AlBen}, a User Interface Management System is being built. |
In "this thesis, a component of the system (the -dialogue control component) is

described. The des®ription is divided into two, pérts:

» (1) A graphical editor for creating and editing the recursive transition networks.
grap g and editing \ns

]

2 The event-based mode! uses an event based language to describe the user interfaces (i.e. user
interactions) of a'system. A detailed discussion is given in Chapter$.

(2) Some conversion algorithms to change the stored RTNs into a special event for-

-

mat. o
~

e ~ . \

.

In other wvords}, a system to support the tramsition dia%i‘am notation of the dialogue
control component is built. To provide a system to accommodate all three dialogue
control notations, they are all converted into a common format. Since the event-based
model has a greater descriptive power, a special event format, "Event Based Internal

Form™ (EBIF)3, is designed as the common end.

The system built in this project provides a graphical editor for entering the

!

specification of the dialogue control component and for storing the ou(tput in a data-

base. Then a conversion program is used to convert the data into the EBIF. Figure 1.3

summarizes all these requirements.

User Graphical

Interface P Database |}

.) Editor ,

Designer)

input transform result '
EBIF anversnon Y
.. 'rogram
result o transform

Figure 1.3 Summary of the Project Requirements

‘
3 The EBIF was designed: by M. Green to describe user interactions by .means of an event
¥

2

language. A detailed explanation is given in section 5.2.

1.3. Organisation of the Thesis

This thesis is divided into two parts. The first part discusses the graphical editor
ﬁmd the second part describesrthe EBIF code genera'tor. In the firgt part, background.
Jinformation on the dialogue control component is presented in Chvapter 2. In Chapter
3 and 4, the design ptinciples, the implementation of the user mtcrfat‘c the data struc-
tures and the operations of the graphical editor are described. “Chapter 5 and 6 of the
“second part discuss the algorithms and coding of the code geqeraunglprogram In

. Appendix Al. an example of the use - of this system is presented. A user manual for the

system (i.e. the graphical editor and the conversion program) is given in Appendix A2.

.z
S .

Chapter 2. |
Backgropn:d_ .‘

In program design, the user interface modnlfe{‘ is -nsuslly separated from the appli-
callion program. This allows for the automatic gc;h'erntion ‘of the user interface
module. An/example of using a UIMS to generaf;e‘;the"\iser interfayce module can be
found in [Rogers81). The UIMS being devclo.pe a_t. th‘e:‘.ll’ni_versity of Alberta is based
on the model developed at the Seeheim Work op (Frg‘ure 1.2)\[Green84ej. In this
model, the dialogue control component is the main contro] module and many d‘lﬁerent
notations have already been estabhshed for it/In th’ls chapter a general descrlpuon of

the dialogue control_component and two of its nota;};ons, recursive transition net-

works and the event model, are presented.

(v

2.1. Description of the Dialogue Control Component)
In a system that consists of application programs and user interface modx{xles, con-
trol can be either external or internal4.. In the external c‘_ofn'tr\ol tonfiguration, the user

interface is in charge of the information flows and it will fnvo‘ke appl(cation modules in

response to user inputs. The application programs (procedpres) are programmed as
..—-e'

discrete functional modules tKat are avaxlable to the user mterface when required. On

the other hand, the application program is in charge of the control flows when internal
T
" control is used. In the internal control configurations, the ap u:atlon calls the uder

»

interface modules when it neéeds to conunumcate with the uSer. Flgure 2.1 and 2.2

show both structures.

As Rogers said [Rogers&l] the external control conﬁguxatlon is well-suited to
applications that are deslgned ‘from scratch or at least heavxly rebuxlt since this

scheme cntalls the executxoxyof modules and individual, sets of funct:onal components

' lf the system needs to be changed these changes are hmned to mdnndual modules

‘4 There are some systems whnch don’t fall into this classification scheme

rather than scattered over the whole program. For this reason, most existing UIMSs

employ the external control structure. This configuration i1s assumed in the discussion

below 5. .
.) | .
User Interface Manager
Appl. Appl. Appl.
Module Module Module
Graphical System v

Figure 2.1 External Control UIMS Configuration®

Application Program

:';;‘.. _ | Abstract Abstract Abstract
R Device Device Device

Graphical System

Figure 2.2 Internal Control UIMS Configuration

Two-different types of systems have been used for :axternal covlvltrol' configurations, -
namely glue systems and modulle builders {Tanner84]. In glue sysfems all the user
interface subroutines are available in librgries and the user interface designer does not
need to define the details of these subroutines. The designer only needs to know how to
" call the subroutines. A special grammar or language is used iﬁ the module builders to
actually define the interface modules. The designer needs to learn the grammar or the
lagguage in order to create his/her own subroutines. and library routines are usually
néﬁ;‘availa'-ble. The glué system is easy to learn and use vb‘ut is less ﬂéxii:le dug to l\.y_‘beA
iimitapions of the évailab'le programs, which may not meet the user’s requircme;ls. :

2 ‘ :

-The module builder is more general in application but mere trainfng is needed by the

designer to learn how to write the suwbroutit_xés;' The U of A UIMS uses the module

& The University of Alberta UIMS uses-the exter‘riai' control configuration since the system is
mainly used as a test-bed for user interface design. Nevertheless, the system can also support the

internal control configuration.

[PANN

builder approach to provide a more general design epvironment.

“

The dialogue control component defines tkge syntax of the dialogue sequence. It

.
“has the following roles: First, it defines a translation between a time sequence of primi-
tive inputs and a sequencé of semanticn actions. In other words', it defines the time ord-
ering of inputs and maps a small set of interactive resourcés into a possibly much
larger set of semantic actions. Second, it determines the legal sequences of inputs.
Third, it provides spcciaj features to handle exceptional cases. For example, when the

user entvcrg an illegal input, an error message and a prompt for the user 'to reenter the
data are diéplayed. '

The dialogue control component has a set gf legal actions that can be used and a
5et~of object types for manipulétion, jie. to comln.unicatg with the application "i.ntérfzr:ce
module and the presentatio‘n component.- Also the legal actions are arranged in time
order.

In summary, the functions of the dialogue control component are:
{1) Generate the control sequence from the user specifications.

(2) Provide a high level description of dispjayed objects to make the program more
V4

device independent.

2.2. The Recursive Transition Network

The re:\ﬁrswe transition network is a convenient way of representing thqa»top level
desxgn of an mteractxve computer system An early example of this approach is the
work of Parnas [Parnas69]® in which he treated the user as a tgrmmal that was con-
vuccted to the system. At any instant of time, the termmal was in some specnﬁc state
that was charactenzed by the current legal set of inputs and their mterpretatxons

Although the user can type a varlety of lnput messages t6 the system, all meaningless.

'8 Another - xmpottant system that made use of Recursive Transition Networks was the system
proposed by Newmnn in 1968 [Newman68). . -

=

9

a

3

messages are rejected and the remaining commands cause the terminal to switch to
. , ’ !
new states and some actions are performed during these transitions.

Pl

State trapsition diagrams can be used to represent the above idea. These
diagrams are an\alogous to the state transition diaérams for finite state machine
" state transition diagram is a directed graph which consists of podes (states aﬁd
branches (arcs) States represent polling loops or dynamic stops in the program where
they wait for acgtlons from the user. The arc is a directed curve that connects a start-

ing state to an ending state (1.e. from a tail to a head state). Associated with each arc

- . - . "‘;:)1
is an input message that must be matched with user’s input in order for the s stem -
p g p y

traverse that particular arc. Also included are an optlonal output mesqage a\n;d a pro-

L

cedure name?. The former contains feedback information or prompts for the user, and
the latter procedure will be executed if the corresponding arc is traversed. Figure 2.3

4 .
shows a logon example for an external control UIMS configuration (simplified from

-~

{Parnas69]) where the user cap-logon to a computer system, inquire information about
N ' . ' .

-

the load or read the news before logon.

-~

59 !ogon/welcomt? msg /S?Z

Yoo —4 load/description of load =
o Roge © ¥ g
S , B
ews!/news & \,} .
. [. A
. : ' R % 4
N ° l . v
%
. T & A
- o 'z
Figure 2.3 An Example of a State Transition Diagram . e

‘o this example, the initial state is "S1”. In this state, the user can type "news?" to

-read the news before logon. The system will generate the command to display the news

1

and return to state "SIT. If the user types "load”, the ‘workload of the system is

7 The arc parameters are arranged in the format “input message/output mesiage/procedure
hame”. ~ ")
.

10

shown. Once the user types "logon”, the gystem switches to state "S2” and prompts

’ h >

with a welcome message. Further actions can start from-"S2", although it is not showf
in Figure 2.3.° . . ‘ i
Two methods can be used to represent the state transition diagrams, either
graphically (as shown in the example) or textually. In the graphical representation,
states, arcs, inpul messaged), output messages and application procedures narm?s are
~used together to represent the transitions of the dialogue(i.e. to control the dialogue
sequence). The user only needs to specify these parameters, as in the example,
through the use of a graphical ed;tor (e.g. [Newman68]). In the textual format, the
:)
graphs ari* cogverted into textual 'statements before entering them into the system.

L

Free format data files are often used for this purpose.

Becau'se o}' limited screen area, the whole dialogue sequence cannot fit in a single
screen. So the fiTNs are usually partitioned into a number of levels. In most existing
systen* the textua.l representation has a number associated with each,stateﬁ]ent indi-
catlng the level at which the statement resides. For graphél representations, a
number of state transition diagrams are created and linked together to form a hierar-

cly. Ly

The advantage of using a graphical representatlon 13 its ease of xmplementauon as

B

no conversion is required and direct interaction is possible.

2.3. ":‘I‘he‘Event Model

-

-

In the event model, the interactive dialogue is seen by the system as sequence of

events, each of them represents either an input from the user or an output from the.

;oo
4

application program Lhat .influences the ﬂow\\of the dialogue. Each event is assocnated
with several event handlers \Xhen ar event is generated, it .is sent to one or more
. event handlers that have mcluded the event in their event hsts In each event handler,

dlﬂ‘erent sets of statements will be executed;-d;ep\&tdﬁlg on the generated event. These
- O

t

11

procedures may be used to update the screen, create another event handler, destrqy

existing event handlers, call appllcatlon programs, do calculatlons and so on.

The event model is more procedure-like and has a greater expressive power than
the other notations since it is equivalent *to l'l?ﬁring machines, while the other two

notations have the power of push-down automata [Green85b). The event handler for

~

the logon example above is shown in Figure 2.4. Since the U of A UIMS is imple-
mented on a VAX® running the UNIX9 operation system, the event language is similar
to the “C” programming langilage. This sa:ve:; the designer tirlxg,in learning and under-
standing a new language.

Eventhandler Jogon 1s
Token
, keyboardstringl logon,
) kc,vboardslrlng’.‘ pews?, -
keyboardstring3 load,
Event logon {
paint_mess{ welcome_msg).
state = S2,
}
Event news” {
print_news, : . '
}
Event load {
procers_Joad(),
} e
End login,

" Figure 2.4 An example of an Event Based Model

The first line of the event handler is its name "logon". Following are three strings

that can be entered from the keyboard and their equivalent event names. The rest of

the event handler are the names of the events@nd the actions that they wnll performed 7

" when the events are generated. For example when kcyboardstnngl is cntered from

4

the keyboard an event called "logon” is generated This event calls the procedure

"print_mess" to print the welcome message and changes the system state to "S2"'.

¢

~

8 VAX is a trademark of Digital Eqmpmenb Corporation.
9 UND(ls atrademark of AT & T Bell Laboratories, Inc.

L -

12

2.4. Review of Pravious Worlr

During the past decade, marly systems have been built Whicb‘alnomate the gen-
eration of the user interf-ace module from aih[i)gh level speciﬁ;ation. Most of these sys-
tems are based on either context free grax;zmars or recursive transition networks.
Examples of the first notation are "SYNGRAPH" [Olsen Jr.83a), "FLAIR" [Wong82]
and "ICAN ICUE" [Waervagen83], while the RTNs based systems include "S%NICS"
[EdmoadSBI] and Newman's system based on the Network Definition Language [New-
man68). Although the event model is another major notat,ion, it is not well devéloped
and few systems have been built aro‘und it. Since this project is based on R.TNs, an
example using Newman's system10, is described below tc; give some insight into what

has been done in the past and what is required now. .) 2

2.4.1. Newman’s System 7

The system that was introduced by Newman for specifyihg user interfaces mote
than ten years ago uses a gra/phical way of describing dialogue sequences. Besides hav_-
ing states and arcs as other aystems do, it includes features such as "program block",
“instruction for execution”, "test routine” and "response” to en:ha‘nce the specification
power. Normally, when the user inbut mvat.ches the actiorz defined in the arc, bragch-
ing will take place. However, this can be over-ridden by making use of the test routine
included in the branch definition. Branchmg can also be started by system actlons(ie.
the result of a procedure may determine which of several states the program will
branch to). This type of procedure is called a program block. The user interface
deslgner can also specnfy the response of a system whenever-a particular state is

entered. This is done by makmg use of a. "response” facility attached to that particu-

lar s{ate A message is included in the response that will be dlsplayed when the state

10 The RTN system pr;sented in'this thesis is based on the idea of Newman’s-sy:stem.r This is
the reason why it is described in detill ,' . ’

13

is entered. The reaction of the system when a particular arc is traversed is represented

by an Tinstruction for execution”. An example of these features is shown in Figure

92511 !
| PBGO | -
'
...... o , point ~ ':

> : - at line to,

B R '
F-o==-=- 1 R s U e R
£~ press press 1
ibutton to - button - <button when:
)]]]
L_draw ycomplete

‘ STORPT D},‘E\IE
pen movement pen movement
Fos=== -z al
L |
‘ "
]]
l: : : 4
y rogram ' test - o
)’ ‘ pblgck II::X . routine response
Figlre 2.5 An Example of Newxﬁan’s-System
/) . .

In this example, ‘aSSUmingc the 'initial state is "1", the user can enter the com-

mands "'bu't.ton" restart or "delete to change the system state to "2", q" or. 5"

A\

respectwely It response is assoclated with a state, the particular response s

displayed when the state is reached. For example when. the user enters the command

I Extracted from the paper called "A System for Interactive Graphical Prognmmmg [New-
man68] v - ' ST

% - N
;{Q N o e 1 4 oo . ¢ ,
;-g : - ‘ﬂ(- [‘ s -) ' 14

. . .
.Y . - a

o " .)]
bu‘tgon to ch‘nge the system stqte to ."2", the response "press‘ buttonﬁ{o draw” 13
- .

@
'illO D on the%creen W%en the system swnt‘ches from state 2 to state 3, the mstructlon

. Q- Cos o -~ \
< T@RPT" is ;xecuted A program block PBGO" is assocnated with state 4, so when
thie system switches to this state, the procedure |n PBGO- is exe,guted.)

) ’ - ¥ , i ' \ s

At the time when Newman's system -was developed comiputers were ‘ot very
[e » >
2 commOn amd most jobs were running in a batch mode with data entered offzline, The
A 3 - 4

v
ere | usually prepared bfl-line so a_special language called

"Network Definitfon Language™ was developed to describe the networks. Each state

%‘&le transntlon dnagrams

‘was givell.a numbér and the branching instructjon was bgsed on this numbering sys-
P X . . . - .
tem. Actually this”laq'g‘ua_ifge is ju's_t a direct translation of the diagrams. Figur; 2.6
shows the'_tqulvalentv.l\lvtwolkp’l“)eﬁnition Langua'ge for tlle above dialogue "The left
vband column shows<’the cbmmand;/mputa and the right hand column contams com-
' .t 6 . N

-mcntﬂ The ﬁrqt lme of each block°of statements is the name of the state. "RESR", .

lE.\"’ *PB" and v"TEST represent the " response the lnstructlon for execution”, the . -

"program ock" and the "t_e;ét routine” respectl\'ely. ,
‘. . ‘ - }

" ‘ v , .

r.

INPUT COMMENT
STAT 1 State defioition State 1
RESP PRESS BUTTON TO TRACK State 1 response “Press button to track” .
ACT 0 . Bradch definition, action of category 0 (command)
MES RESTART Message “restant”
SE 1 State eatry, t ¢ branch leads to state 4
ACT | 0 Branch definitiop command “delete” leads to state 5
MES, DELETE . ~
SE 5
ACT 10 Branch dvcﬁnihon, category 10 (buttpa)
SE 2. Pressing button leads to state 2
STAT 2 State 2 definition .)
RESP PRESS BUTTON TO DRAW State 2 response
ACT 7 i Branch definition, category 7 (pen movemeant)
ACT 10 o Branch deﬁni!.lox;' pressing button leads to state 3
1IEX STORPT o STORPT stores pen positién as ﬁaiamng point when button ts preased
SE . 3
STAT 3 State 3 definition
RESP PRESS BUTTON WHEN COMPLETE
ACT 1o) Branch definition press button leads tp state 1
SE 1
ACT 7 Brapch definition, pen movement
1IEX DLINE Dline computes and displays fresh line at every pes movement
STAT 4 State 4 definition i ‘
INIT) Initial state, program starts here
PB PBGO s ’ Program block PBGO executed on entering state 4
ACT 5 - F Branch definition, category 5 {system)
SE 1 Completion of PBGO leads to state)

~ . ? . —Fr
STAT 5 - State 5 definition . .
RESP POINT AT LINE TO DELETE
ACT o . Ve Buﬁ;h definition command “draw” leads to state 1
MES DRAW
SE 1
ACT 6 Branch definition category 6 (pen bit)
TEST DLAST Test routine DLAST deletes indicated hine
SE 1 If last line, branch to state 1
END N ' -

Figure 2.6 Example of Figu

&

v

re 2.5 coded into Network Definition Language

16

2.5. Summary of Existing Systems features

The example above shows a typical RTN system and it is easy to see that tex-
tual descriptions usually make use of a numbering system to define the nodes. This
method is efficient if the diagrgm is complicated and the number of hierarchical levels
is large, however there is no immediate system feedback. The user cannot make sure
that the entered diagram is the same as expected. What remains to be done is to have
a graphical editor to enter the state transition diagrams inter:;ctivel)' for easy debug-

-

ging and modification.

2.8. The University of Alberta UIMS Requirements

In the University of Alberta UIMS, all three notations, recursive transition net-
works, context free grammars and the evenlt’language, are suplported for describing the
dialogue control component. The user can choose hi; favourite method for specifying
the dialogue. 4n order 'to allow this, a special event based language, "Event Based
Internal Form” '(EBIF), was designed that serves as a common format and all three
not:ations are converted into it. Figure 2.7 shows the configuration that is uséd in-the
, ‘ ’ ‘

University of Alberta UIMS. This thesis is using RTNs to describe the dia!ogue
sequence so two steps are needed. First, a graphical editor is used to create the transi-
tion diagrams and store tixe RTNs in a database. Second, the data is converted from

the database into the EBIF. Detailed descriptions of the EBfF, and _lt,he dialogue con-

trol component requirements can be found in [Green84e].

Event
Language

Context
Free
Grammer

Recursive
Transition
Network

Event
Based
Internal

. Form

Dialogue
Control
Component
Implemenation

Figure 2.7 The U of A UIMS Dialogue Control Component Configuration

Chapter 3

Des\xgning the Graphical Editor

3.1. In t_r,od uction

An interactive approach is used for specifying the recursive transition networks in
the University of Alberta UIMS. A graphical editor has been designed and imple-'
mented in this project in order to pro'vide a design environﬁ;ent,for the user interface
designer to do this job. The editor is divided into user interface ‘modl.lle, co‘mman‘ds
:;nd primitives modules, and modules to upda;e the database and screen. This chapter
describes the basic aims and the design principles of the editor as well as how the vari-
ous modules are designed. In the next chapter, a detailed description of the implemen-
tation is given. Basically, the RTNs bave a s:mllar format to Newman s state

‘dlagramq as shown in Chapter 2, Figure 2.5. +

3.2. Basic Aims » o .

The graphical editor 1s designed to create and edit the 'recursive‘ transition net-
works interactiveljﬁ It obtains the input data from a keyboard and a tablet/mouse
and the output is sent to a database for storing the created diagrams. A monitor is
used to show the system s feedback and the transition dxagrams Hardcopies of the
edned diagrams can also be produced. The basnc requirements of the editor are the
provision of commands to enter and modlfy the networks. ‘The editor is used interac-

’
tive sQ user friendliness is an important requirement and a large portion of the desxgn

and mplementatnon is devoted .to providing such a environment. The editor is
- designed to be used by both novices and experts.
‘The design of the editor commands and primitives (objects) is a difficult task.

The commands and objects should cover all the general edmng requirements of the

RTNs however, only minimal overlappmg should exist’ between them. That i is, each

' ‘ | 19
command perform 32inct function. The other main co‘bsideration ts the design of
an eflicient dataé_::cture to provide a short >access time i‘or interactive use. The
menu layout, the functions Jof'dle kgys on keyboard, the use of the buttons on the
tablet/mouse, and the editor’s response to the user's inpl;ts are important as well
because they help the user to develop a model of the editor.’ Lastly, the common
errors found in the editor and the editor’s error handling algorithm a;e discussed. In
addition to all these requirements for the editor, other supporiing facilities for the
manipulation of the RTN database are also discussed in this chapter. As a summary,

’

the basic design of the editor includes:

(1) Designing the user environment.

(2) Dcsignihg the editor’s commands and objects (primitives).
(3) Designing the data structures.

(4) D\esigning 'bg menu layout.

(5) Discussion of the error handler and the error types.

- (8) Designing Lht; supporting facilities. |

Each of these points is discussed sepﬂarately in the following sections.

3.3. Designing the User Interface

When the user interface module of the editor was designed, emphasis was put on

the following points:
(1) Both novices and experts can use the system, i.e. they are both potential users.

(2) The editor users should not need to remember a lot of commands.
(3) Immediate feedback to the user's inputs.

N I3

. {4) Developmént of a user model so the designer can learn the editor commands
: e -

easily. - ‘ : @

20

Since the user interface is the most important component in the graphical editor, it is

the first module to be designed and each of the above points is discussed in Lhe: Tollow-

ing sections.

3.3.1. Potential Users '

Both novices and experts are ;;otential users of the editor and they are 'L-réated
diffcrontly by the system. For the first type of us;:r, more guidance and promp‘ting is
required to teach them how to ;nteract with the editor. Prompting messages is one
approach in human-computer interaction. Whenever the editor expects the user to
enter data or accomm;xnd, a prompting message is displayed. Ip this case, the novice

users can depend on these messages and need not refer to the manual for information
on the operation of the editor.

o

The trade-off in the above.method is a decrease of execution speed due to display-
ing the long prompting messages every time the user interacts with the editor. The
expert use‘rs.h;dve models of the editor in their mind and know the required sequencé
of interactions. For them, this de_crease of execution speed is undesirable and the mes-
sages can be ignored. They want the system to operate as fast as pos:';ib'lle‘a\ The editor
uses a flag which can be :?ét by the user to specify whether promp'ti.ng mes‘sages are

required. In this way, thegsys‘tem can fit both types of users.

w

The ednor provndes the basic commands which are suﬂiclent for editing any RTNa
Some aﬁlvanced features are also avallalﬂe They perform the same funct,lons as the -
basic commands, but in a more eﬁiclent way. However these commands are ﬁore com-
plicated.to use and a longer learning tlme is requlred The ROVice users are unaware of

- ! - 0'
their existence and are restncted to the basnc commands wluch are enou’gh for ndrmal |
usage vnth lower operauon speed In this way, the editor is working at a basic level

for novices, but at an advanced level for experts, Havmg the advanced features over-

lapping with the basic’ commands,‘ the novlc,es. do not need to sgend a long time

Io?rning the editor commands and their syntax before they can start creating RTNs.

3.3.2. Minimal Memory Required ,
In tr‘a.dition‘al editors, the end users n‘eedvto remémber all the commonly used
editing commands and their syntax. For a compllcated editor, a long learnmg time is "
.requnred The graphical editor makes use of the stationary-menu/moving-cursor
approach to reduce the burden on the user's memory. The commands as well as the
manipulated objects are all shown on menus so the end user only needs to remember
the contents of thé\various_menus, but not the syntax of the commands for execution.
Both statiopary ah pop-up menus were considered for commands and object selection,
" but the latter method was discarded due to the long redraw time whenever menus are

\
erased.

Another facillit_v provided by the editor to reduce the burden on the user memory
1s a "help” command Every command and object on the menu can be called for hclp"
to give an detailed e\(planatlon of its action and meaning. So whenever there is some
- .
confusion on the use of commands and 6bjects, either in their meaning or their syntax,

hen the edi‘it.or reports an error that is not undex;stood, the user interface designér
can refer to thes§ "help" messages. The on-line "help” system can be used while the

>

diagrams are being entered or edited. = J\

By making use of "help” and menus, the ngvice editor users can start to create the

RTN almost without any knowledge of the editor's commands.

3

3.3.3. Immediate Feedback

In+user interface design, an importan‘t aspect is to Iet the users see wbnt they have

.entered, and have immediate feedback from their actjons. The graphical -editor

responds to the user whenever somethins is entered, either frem phe tablet or the key-

board. This feedback is especially importnnt for computer systems under heavy work-
/

load. It notifies the user that the editor has accepted the command and is processing

it. If no indication is shown, the user may suspect the command entered is being
/

1gnored by the editor, and may reenter the command again. This is undesirable
because the command is executed twice.

Users are the most unpredictable component of the editor and they can enter any
command into the editor, both valid and invalid. For legal inputs, the action is shonn
as a response on the screen. If the command is a complete operation or the last corn-
mand to comnlete a sequence of operations, the result is drawn on screen, e.g. a com-
mand to draw a state will display a circle on screen, or when the last point of a Bezier
curve is entered, the curve is shown. For an action which needs several commands for
completeness, int.ermedia%e acknowledgen]ent,s are shown before the final result is
displayed. In the editor, four Vpoints are required to draw an arc a%d when“the‘ first
three'points are entered, they arre pnsitio'ned ae crosses on the screen. For an illegal
input, an error message isvdisplayed explaining what r,he editor is expecting and
requesting the user to reenter the command. In this way, the user can have conﬁdence “
that the input comgands are in the correct format and need not worry that the editor

will complain after a long sequence of commands has been entered.

Error detection is performed mteractlvely with the user's input. The main reason
for this is to provrde an lmmedlate chance to correct the errors or to call, for more
explanatlon Detectmg and ﬁxxng the bugs lnstantaneously provides a better design

Ny

environment because the user. knows exactly where the bugs are and can fix them

N 4

23

.'(. . .
easily. If an error is detected later by the assembler or the code generator, reloading of

the diagram from the database is required.

Highlighting the command and primitive (object) the user has selected is used to
~ remind him §f his selections. In some systems, this can be done by highlighting the
selected options on the menus directly: Howev@-r, multiple menus are used in this edig-
tor, but only- one menu is displayed at any time. So menus need to be redrawn and
erased very often. Since options are chosen from diﬂerent menus this method cannot
be used in this graphical editor. The other method, which is used in this editor, is to
create a separate window to display the command and primitive options as well as the |
diagram name that 'ig in use. Whenever the user selects a new command or primitive;
this window is updated immediately 36 the designgr can be sure of the command he is

.

uding.

3.3.4. User Model

A Ipow.,erf:ul tdea in user interface design is to help the user create a model of the
system himself/herself. Once this model is formed, the user can use the editor in his
own‘way based on the:modfsl. This developinent can only be done when the user under-
stands what the editor is doing, the input scqhencés it is expecting, and the usage of
“the functio‘ﬁ keys. \Vhen the novice starts to use a- r;é‘w system,. a model of the editor
‘is formed in which the f:unctilons of the keys and buttons as well as the use of com-
mands and primitives are included. By deéignih‘g the commands to perform unique
functions, aud by the ass;ignment of function keys to distinct functions, a clear model
of howv the editor is operating is easy to develop. This can greatly'énhanc“e thé develop-

P

xﬁe,nt of the user model.

The tablet/mouse has a,lot of buttons that could be used by the system, but the

editor only uses two of them By mxmmlzmg the number of keys used and the assign-

2

ment of unique functions to them, the user can easily remember thc functions of the

24

keys. If the keys are used for different functions in different situations, the user needs

to remember a lot of combinations and can easily be confused.

3.4. Designing the Editor Commands

3.4.1. Basic Commands

The requirements of the basic editor commands are non-overlapping and unifor-
mity. Non-overlapping means every command: performs a distinct function and no two
commands can do the same thing. Uniformity means that commands are ysed in the
same way and have the same meanings ::ﬂnder all circumstances and applications. For
example, "rename” can be used to rename a state or a diagram.’ The.last basic require-
ment is that the command set be complete, i.e. all basic editing functions can be per-

formed by a unique command and a sequence of commands is pot required to achieve a

t

"

single goal. -

'\I‘he’basic commands are addition, deletion, removing and renaming of objects
(primitives). Their m~anings are self explapatory. They cover all the commonly used
.editing >functions that the user expects. The commands can app.ly' to all types of
objects except some "meaningless combinations, for example, adding an arc parameter

to a diagram before the arc is created. \ , .

7 -

For all opération; w'rhich; will destroy a great deal of information that cannot be
restored easily, the editor vjvilll'ask for conﬁrma;iox} before it is executed. For éxauiple, '
the commanvd to rémove a diagrz.xm (i.e. to delete théi diagram from the database) will
ask (orv:co_nﬁrmation before actually executing. This double checking fac?lity is espe-

cially useful for novice users.

3.4.2. Auxiliary Commands N

Some speci‘z‘sl commands are also available, including "Next Network™ and "Exit".
"Exit” allows the user to quit from the editor. Two oﬁtions are available, either quit
"the editor with the cuﬁr'ren\.‘ session’s modifications’ save{i or not. This is useful for
users if they change their mind later and want to reotore an old version without saving

the current session’s work.
' J

A/nother commandr 1s "Next network”™ which is used to edit a new diagram. If the
diagram exists in the database alréady, the d.iagram is loaded; otherwise a new entry
is created in the database. All the diagrams edi‘ed in the same session are stored in
oneldatabase with the name of the root dbiagram as the database anme, i.e. the name of
the database is the diagram name passed to the graphical editor as an argument when

the editor is called.

"Grouping” is a se of advanced commands designed for expert users. Their func-
tions can be accomplished by the 4 basi¢ commands as stated above, but with less

efficiency. Thisiset of commands collect objects together to form groups and then the

Y Js.-

other editor commands can use these groups in the same way as the mdnvndugl objects ‘

1

This is an advanced feature whlch reduees the number of commands the user must use.
For example when the user wants to copy a group - of obJects from ope dlagram to
another dlagram this can be done very, easily with the " groupmg command. First,
the objects to be copied are grouped togcthef Then when the mserted" diagram is
loaded into the edltor an "add” command can be used to add the group- of objects in a

single command Another feature of this groupmg command is that once a group is

defined. it is remembered for later use, even in another session. So patterns which are

used very often in the RTNs can be stored as groups in the database and added t_oht.he

desired diagrams whenever necessary. This reduces the time to create them every time

.

t‘hey are used.

-

3.6. Design of Manip.nlated Objects

3.6.1. Basic Objec;e : :,

’I‘hece are four basic objects used by the edi‘tor. States and arcs are t.he two most
obvious ones.. They are represented by ci-rcles and curves with arrows. State name is
another basic object. All states have narm®s associated wnth them and these Dames can
be added, deleted, moved or, renamed in the same way as the states, so they are
treated as another primitive. The other main object is the arc parameter whicn
specifies the input to‘kens ‘and the output tokens to be processed as well as the applica-
tion procedure tokens to be called nvhen the arc is traversed. In existing RTN. 8ys-
tems, the arc parameters are associated either with the arc.“i'tself or the head state of
the arc. In this design, the &s(alternative is chosen because it is easier to implement
| and also the diagram display is less cluttered. If parameters are linked with the states,
then two pieces of lnfoxmatlon (the arc parameter and the state name) need to be

shown for each state and the diagram layout is more confused. #

Input tokens are the tokens sent from. the presentation component to activate the
transition of states. When the user enters an input-from elther the tablet/mouse or
".1he keyboard, the presentation component will send a corresponding token to the
dialogue control component The output token is used to send 1nformauon to the
presentauon component for example “the dialogue control component can send a
token to-the presentation component ;o update the screen. If the user wants to call a

procedure in the application program an ' appllcauon procedure token is sent to the

apphcauon lnterface model to do thisjob. . - -] ‘

Besndes these four basnc objects, the input token, the output token and the appli-

cation procedure token can be manlpulated mdmdually The main advantage this

feature is allowing the user to change individual tokens without re-enterlng all the arc

lnformatlon The editor does not aljow the user to create one of the components of the

™~

2?

arc parameter by using the "ADD" command. The same function can be achieved by
using the basic object "arc parameter” with the two unused token fields left blank.

This is a result of the non-overlapping nature of commands.

3.5.2. Auxiliary Objects

- . -) ‘ - ' - -*
Transition diagrams are the next object that needs to be manipulated. All mean-
T

ingful commands can be applied to them of which "delete” and "rename” are the two

most useful ones. A separate set of commands could be designed for the diagrams .
which treats the diagrams as a different type of primitive. .However. for the con-

. \d . .
sistency of the editor’s commands, the same command set is used. This reduces the .

burden on the user's memory because only one set of commands needs to be remem-
N4

 " beréd. ,
As an example- of the uniformitj' of editor commands, "ADD" is one of‘the editor
commands that i is frequently used. All primitives except "network"!2 can use thls com-
“mand. The exception is due to the fact that "add” means inserting an object into a
-dnagram When a "network” is’added, the editor can elther load an e,xlstlng dlagram
and dlsplay it on the Screegyor create (l e.insert) a new entry in the database Thatsls
the reason why another command "Next network” is desréned to do this job because“

——

ADD "does not include the Jloading of prlmmve;’frqn the database

~ 5"

A "wildcard” token name can be used as the input token ﬁeld of an arc parameter
If the event handler finds no matchmg mput token in the current state, the statements

correspondmg to the wﬂdcard" token are executed ‘This token is very useful in many

: sntuatlons for example if. the designer wants the user lnterface to pass program control o

t,o an error bandl&ng subroutlne when there is no matchlng input token in the current' ,
B state The de51gner only needs to add another arc wnh the waldcard a3 thc lnput.'

token field and use the specnal error handhng subroutlne as'the application procedure" '

I

-
12 "Network" is t‘m name used in‘the edxtor to represent a transitidn dlagram ,

.;;;

B

28

token. Figure 3.1 shows such an situation in which "token3" is entered by the user. If

the arc with the wildcard did pot exist, the system error handler would be used. How-

-

ever, since the wildeard can match any token which is not found on the other arcs with

the same tail, the special error_handling subroutine "err_handler” will be used.

N
“

- s

;\
err_handler

Figure 3.1 Example showing the importance of 'wildcard’

>

Th(; last objec.tlto be deSigned i¥ "group". Groﬁps rsre treated in exactly \the same
way as the.other objects. .Objerfs can-be collected by specifying tHe lower left and
upper right cqzpers of a rectangle or by selecting objects o‘ne by one to' form a group.
Both methods are useful, fér exarr]ple it the user wants to move a section of the -
dnagnm s Obj(‘(‘ts to another diagram, the ﬁrst groupmg method is used When
selected objects are moved the second choice is used. After the group is formed usmg
the -above methods, it is assngned a name and thls name can be used in exactly" the
sanre way as the othef primitives. ’ ‘ g"’ (9@& ‘

Three decisions have been made in grouping elements:

(1] Whenevcr a state is selected the state name is selected automatically.
. (=
(2) When t-hc arc is:selected, the arc parameter is selected as well.

.

(3) - If objects are selected by specifying the corners, all the objects t.hat, are not com-

;ﬁtcl inside the rectapgle are ignored. - | N
¥ /usl g , B

'

29

3.6. The Data Structure)

One of the important activities in the design phase is to design a data structure
which is easy to mani.pulate and fast to access especially for real time applications.
The four basic p;imit,iw'es, states, state names, arcs and-arc barameters, are the essen-
tial parameters of a diagrau; which must be saved. they‘ should be stored in a way
“that retrieval and modification can be done quickly and related information is linked
together. Since the state and the stat;: name are closely related, they are grou%edhin
the same record. The arc and the arc parameters cax; be put in a record in a similar
way as the state and the state name, but this method is not used in the editor. The
main reason is that both records are big avnd in the graphical editor some operations
only need to access one type of record. If they are grouped together, almost twice the
amﬁount of data needs to be accessed before the selected record is located. The system
overhead in paging and swapping for accessing data will slow down the operation. So

the editor uses two separate record types for them.

Pointers are used in the editor's data structure to link all related data together.

A linked list of diagram records is created to form a network of diagraﬁxs. Within
each diaéram, there are linked lists for the state$ (:;nd the state names), the arcs, and
%&the. arc baram}ters in order to make ii possible to access individual ﬁclds diirectly

without going through a lot of sea;ching. No record contains duplicate information,

this ensures consistency of data and all updating can.be done in one search.

3

Another main data structuse is used to store the groups and their elements. Each
type of element within the same group is collected together. So three linked lists are
“used, one to.link all the groups together, the second linked list is used to link all the

header records of the elements and the last one is for grouping all elements of the same

type.

3.7. Menu Layoult

Both pop-up and stationary menus could have been used as the menu type. The
first method is not used because the time to redraw the screen when the menu is erased
is quite long especially when the computer system ‘is working under heavy load. For
statiouafy-menu/moving-cursor menu, it is not possible to put all available options on‘
one menu so'the selections are grouped into several menus. A hierarchy of menus (1e. 8
tree structure of menus) is a possible arrangement, but it has a serious disadvantage
that whenever the user wants to switch from ove menu to another, he needs to go back
to the parent menl‘1 before a new menu can be chosen. Somt;times, he m.ay need to go
several levels upward before b_e reaches the desired menu. This is not a good environ-
ment for sclection. The other alternative is to construct menus at the same level jn
which each menu can directly call the other menus. This can greatly‘ improve the
operation speed but occupies more menu scréen space since all the othe.r menus' names
are on each menu. This editor uses a combinatioh of the two method.;s in which a two
level menu arrangcmen{.is used and enjoys the advantages of both methods. This
menu structure contéins a number of branches but all have a tree height of two. In
the worst case, the user only need to go up one level before menus in other branch can
be selected, also only the parent menus’ names are on the other menus. |

‘ The options (qi.e. cominands and brimitives) ard grouped into a few menus types
with each type doing a speéial function. For example, one of the menus types is u§’ed
solely for cpmmands and the other is used only for primitives. Within each menu
type, i.e. within eacil branch, a few sub-menus may be required for holding all the

options and one of them is selected to be the master,

]

31

3.8. Error Handler .

The graphical editor is an interactive program and the user is prone to make

errors so the error handler is a very important module in the design. It is designed to

’

detect all errors that are caused by the user and report to the user immediately. Errors

can be classified into two types and they are discussed in the following two sections.

\

3.8.1. Operation Errors

The first type of error are the errors in using the editor. These errors are mainly
caused by the user 7)m is not very familiar with the operation of the editor or the

sequence of gntering data, Possible causes of t'hese errors are:

(1) Press wr‘c‘mg key in operations.»

(2) Incorrect sequence, for example assign a state name to a state before it is created.
(3) Ililegal inpu‘.‘t format, for examplc; use letter ipstcad of number for state name.

(4) "Meaningless opération such as move a diagram.

All these errors are detected by the editor and an error message is prmted saymg

what is wrong with Lhe command and asks the user to reenter the command or choose

‘\.

another operation.

N

3.8.2. Inconsistent El\'\r:ors C o
A

The other main error type is eirors which eause the diagram to go into some

inconsistent state. The posé\ible errors are: .

§

(1) The arc parameters do ‘not include an input token field. In this case, there is no

[
i
\

way to invoke this arc. |

: ; . |

(2) Assigning two names to the same state. . : ' ‘
. \ .

(3) Assigning two arc para‘mete}? to the same arc.
‘ ' ' 1 .
. | v X

This is a first level of checking for syntax errors. The final checking is done at code

\ N ~
\ +
- \

32

éeneration time. o .

A sp‘ccial butten on the tablet is available for the user to undo an incomplete
operation. Once tbi.s key is pressed; the cugrent dperation will stop and the editor
restores to the state just before thé olperatioanhis is an important function provided
by the editor to restore it to some known state when.the user finds errors in operation,

-or he wants to change his mind and restore to the previous state.

3.9. Supporting Facilities
A few support tools are available to manipulate the resulting database. They

treat the database as an ordinary datafilé. The basic facilities provided are:

(1) A program to destroy an existing database. The editor can do the same job but
all the diagrams in the database are destroyed one by one. This program will des-

troy all the diagrams stored in the same database at the same time.
(2) A program to merge two databases together.

(3) A program to copy one database to another.

Chapter 4

Implen{entation of the Graphical Editor

4.1. Introduction

The implementation of the graphical editor is divided into three separate parts.

P -

They are responsible for separate functions and can be classified as:
(1) user interface.

L
(2) editor’s commands, the system responses and the error handler.
(3) updating of the data structure and the screen.

Fach of these modules is disgussed in the following sections.

. b
4.2. The Environment :
'E
The graphical editor is written in the "C" language and runs on a VAX!3 11/780

under the UNIX14 operating system. The editor needs a graphics terminal for display,
a tablet /mouse with at least two buttons for input and an ASCII keyboard. Two sup-
port.ing‘packageS are required by the editor. A graphics package "WINDLIB" is used

for handling all¢he graphical interactions and displays and a database called "FDB"is
Q .
used to store all the data.

Windlib is an event driven window based graphics package in which a numBe’rvof

windows can be created with their locations and sizes fixed by the user. The windows

a

are arranged in an hierarchical structure and an event handler s associated with each -

window. Each event handler handles the interactions with the user and controls all

)

the operations within its window. The implementation of the editor is based on these

event handlers.

¢

13 VAX is a trademark of Digital Equipment Corporation
n UNI/X is a trademark of AT & T Bell Liborataries, Inc.

33

34

.

FDB i1s a Frame DataBase which is similar in structure to a pointer type of data
structure. Thc; database is made up of frames and each frame can hold various
numbers of data items and pointers called slots. This structure is basically. the same:
as the "r'ecbrd" type in P\ascal. The data st.ructure that has been designed for the edi-
tor can be used directly with FDB without modification. Detailed descriptions of

Windlib and FDB can be found,in [Gréen84a,Green84d].

4.3. Implementation of the User Interface

The most important considerations in the implementation of the user interface
are the use of the screen and the layout of the various windows. This determines the

external appearance of the editor. The layout of the menus and how to call one menu

s
'

from another is the second main consideration. This includes the methods of choosing
- ‘Q -
commands and primitives from menus.

-

4.3.1. The Menus

The editor collects commands and-primitives Wlth snmllar usage and function into
the same group. A master menu m each group contalns the mo;t commonly used alter-
natives. Several sub-menus may be required to hold the remammg opuons‘ of the
group. Whenever the user calls another group, the master menu is the one called and

it is the first menu to be invoked within that group. This arrangement of menus has

two advantages:
® . ¢

(1) . A two level menu structure is formed in which callings within the same type or

between different types is easy.

(2) It dec'reases_ Lheﬁscreen space 6ccupi’ed bj' the mehu names on‘each menu. If eéch
menu name is on all the other menus in order to call.it dlrectly, a large portlon of
the area:is used solely for this pyrpose ‘More menus are required to hold all the

v;wallable options because of this waste of screen space.

~.

£

35

Basically four types of menus exist with two important ones, which are the com-
mand and the object menus. o addition to these two types, there is a menu to exit
from the editor and a menu for the " grouping” commands. The layout of the menus is

qhown in Figure 4.1 with Figure 4.2 showmg the calling hlerarchy of the menus.

COMMAND MENU OTHER | EXIT MENU
_ COMMAND MENU
Return to Return to Return to
Object Menu Main Menu Main Menu
Add . Next Network Quit and
‘ . " Save
Move | Dump Database 1 Quit without
Modification
Delete Groupiug Help
Rename Help
Other Commard . Exit
Help '
Exit
OBJECT MENU OTHER | GROUP MENU
: OBJECT MENU
Return to Return to Return to
‘Main Menu Object Menu Main Menu
State Group Add Group
. ‘ by Location
_|" State Name ' Input Token "~ Add Group
P by Pointing
Arc Output Token | Merge Group
Arc Parameters Application - List Group
Procedure Name _
Other Objects Network ID Rename Group
' Help . Help Destroy Group
Exit. ’ Exit : Help

.—.

Figure 4.1 The Layout of the Editor’s Menus

v

36

. Command ~_ Object

Menu ~ Menu

Grou Other . Exit Other

OUP o Command <—s <« _» Object
Menu Menu

Menu Menu

Figure 4.2 The Menus Hierarchy

Selection in the menu is done by pointing at the menu item and pressing a button
on the tablet. Tbe user can choose another option by selecting from the menu again.
The chosen command and primifive are shown on a separate small window to remind
the user what has been selected. “Whenever a new option is chosen, this window is
updated imtmediat‘ely.

Anotﬂsr facility provided by the editqr is the availability of a "help” cosnmand on
every menu. The user can call for help to get an explanation of all the o&tions on the_
current ‘menu. This seems to be a limitation of the eaitor since only the information
for the 6ptions on the current menu are available for kelp. However,:-t-,h‘is]imitation is
inténded because "help” is desiéned to be an on-line facility vso it s xﬁyoreslikely to be

useful on the current menu.

4.3.2. Window La.yout .-

Due to the hmlted screen space, not-all information can be displayed on the“
'screen. ‘As a result only one of the six available menus is shown on the screen and a
window is used to. display it. Basxcally three other pieces of information and hence
‘t,hree-m'ore vizi_ndows are required. First, a work area is used to show ihe current RTN '

"‘vthat is being edited. Second an error/prompt message window is used for dlsplaymg~

“the error messages or prompting the user for mput The thlrd wmdow shows the

a

37

selected command and primitive as well as the current diagram name. The layout of
Ty
(-

the various windows on the sgfeen is shown in Figure 4.3.

Current
» Selection

/
- \ Work Area

Menu

Error/Prompt Message

4

Figure 4.3 The Window Layout of the Editor

4.4. The Commands

The basic commands are addition, delftion, removing and renaming. They can be
‘used for all meaningful primiti?es, including*states, state names, arcs, arc parameters, ,
diagrams and groups. VVhenevear the user presses the select button in the work area (in
this case, select a position), the command is executed and the same comma.nd is held
until the user selects another option. The user can choose pnmmves and commands in

any order. The currently selected commands and objects can be changed by selecting

)

again!®. So the editor ¢ommand can be said to have no syntax at all. -
. - ,

There are some special commands which are useful. The first one is "grouping”
. - 1

»

which is used to collect objects together to form a group and-assign a name to it. A

database is created to store all the group elements and their names so they can be used

in a later.session. This database uses the same name as the RTN diagram with ".g"

’)
appended at the end. Whenever the user trys to add a new group to the database, the
l'
existing groups names are ﬁrst checked to ensure no duplicate names are used. The

15 Only the commands or objects to be changgd are selected again.

~ e 38

I3

two methods as stated in the last chapter (section 3.5.2) are used to collect objects.

“ Another command is "exit” which is used to exit the editor with or without the
current session’s modifications saved. When the editor i3 called, a new database can
be created by calling the graphical editor with a new diagram name as itsYarameter.

If the user changes his mind and quits the editor without saving the modifications, this
(o]

database is destroyed. Otherwise, the database having the same name as the root
-

diagram is saved.

"Next Netwerk" is another 'special command tohjump to or load another diagram.
When this option is ehosen, the editor will prompt the user to ent.er the next diagram’s
name. If the name exists in the database already, the diagram is loaded and dlsplayed
on screen; otherwnse a new diagram is formed and a new database entry is linked with

-

the exlsting diagrams. The screen is cleared to indicate that a new diagram has been

PEET
formed. - m‘p

4.5. Representation of Primitives

Four basic primitives are used in the editor and they are represented in unique
ways within the editor. Circles are used to represent states. For arcs, the easiest
method is to use straight lines goiqg_beu;veen the centers of the states with an arro'w
head at one end. However, it cannot handle theﬂcases of more than one arc going
between two states because the two arcs will overlap. Sometlmes the user may want
vthe arc to be a curve in order to go around some states in between the two énd pomts
Two approaches can be used towlfy the locus of the arc. The ﬁrst, method is to let
the user draw the arc on the screen and the edltor traces and samples all these points.
The other method is to use a Bezler curve in which only 4 points including two points
on the two endmg states are used to specnfy the Iocus The latter method is used in

the editor due to the smaller amount.of memory required to store all the points,

although the locus may pot be exactly as expected

39

Before the state names and the arc parameters are entered into the diagrams from
the keyboard, their po:;i_tious need to be specified. Statelnames are assoéiatcd with
states so their positions are specified by just placing the tracking cross inside the
corresponding circles before the names are entered. The state names will be‘ centered
inside the circles automatically. For the arc parameters, they can be placed at any
point on the diagram. The editor can assume the ard with the minimum distance from
the parameter is the associat.,ed arc. The user just needs to place the tracking cross on
the intended position and enter the parameter. However, this method has two draw-
backs. First, finding tixe minimum distance is not trivial because only four points are

. X .
stored for each arc. Second, the arc’ with the minimum distance may not be the
- desired arc. So the graphical editor requires the user to specify the two end states for
the arc by using the tracking cross. Another advantage of this method.is the situation
where more than one arc goes from one state to another. If the first method is used, an
incorrect assignment mz;y occur very easily ldue to the small diﬂérence in dinstances
between various arcs. In this editor, the arcs are hi‘ghligbted invtl"_x‘r‘n and the user is

© .

asked to choose the désired one.

For the arc parametelrs, both input tokens and dia'gr:am names can be used in the
inpﬁt stoken field. In order to diﬁergqtiate between them, the diagram name-s are
quoted with brackets. For example; a call to subdiagram "diagraml" i;; répresented as
-"(diagram1)” in the arc parameter.

4.8. Data Structure , | v '

. .

The data structures used in the editor are shown in Figufes4.4 and 4.5. In the
group data structure (Figure 4.4), each primitive in a group is i-epresented by ;: frame
humber pointing to the RTN database. »A pointer instead of dﬁplicate coby’ of the
pri‘m‘itive record is usedbto reduce memory requirement. The basic structufe of each |

element consists of two fields, one is a pointer to the RTN database and the other is a

[}

40

pointer to the next e};em{&‘{,:@ All primitives of the same type are grouped together and
a header record is sed"to\\iréérfiresent this grotip of primitives. Fqur types of primitives
(state, state name, ’;\rc and arc parameter) are used in "grouping”, so at most four
linked lists of elements are form'eud and their header records are linked tqgether. These
_header records have three ﬁeldg, eilement type (Frame type)!8, pointers to next header
record (Next) and the elements (Element). A group re-cord.is used to represent each
group. Each record holds the name of“t.be groap (Group Name), a pointer to another
group (Next) and a pointer to the first head record (Element). This data structure has
the advantage of decreasing execution time. Whenever a group is inserted into a
diagram, the “state” type is searched ﬁr‘a% and disp]ayeﬂ followed by "arc” and "arc

parameter” types. If all the records are s‘lg:ply Iink\ed together, it. is necessary to
\ .

search through the whole database to sort out al| the elements of a particular type.
\,

\
For the diagram data structure shown in Flgure 4.5, a'linked list is used in a simi-.
$ar way to jOlIl all the dlagrams Within each dlagx;am headér record, a name ﬁeld

Network Name) is used to hold the diagram name and\pomters ai\e used to lmk state

%\ .

list (State), arc list {Arc), arc parameter list (Para) an\‘?oint t.'o the pext diagram
(Next). The state pointer points Lo«a list of stateh'recordvs.\:%ch record‘eontains the
name of the state (State Name), the x, y coordmates of the séate (Cen?erx Centery)
’ and a pointer to the next st’éte (Next). For the arc record, the\head st\ate (From
State), the tail state (To State), the four coordlnates of the Bezler‘c;rve (Xpds Ypos),
‘a pointer to the assocnated arc parameter (Para) and a pomter to the next record i
(Next) are used. The arc parameter records hold the starting x, y coordmates and the.

names of the input tokcw(lnput Natne, Inx'»'_‘J_ ,

inypos), the output token (Output :

Name, Outxpos Outypos) and the apphcatlon procedure token (Appl Name Appxpos '

s

. App) pos). A pomter to the next record (Next) is lncluded as well.

18 For the discussion in this section, the names quoted inside the blankets "()™ are names used
in the data'structure dlagrams : . :

\

.

a1

Pointer structures are used for all the data siructures in the editor. This struc-

: : o
ture facilitates the insertion and deletion of records ah&f;fs flexible in size.

D)

&

Figure 4.4 The Data Structure of Group used in the Editor

kS

Group . .
Name Element) Next —4 — 5
4
[
Ftype Ftype
Next Next .
Element Element
(
3
Frame no Frame no
Next Next

42

Npame State . Arc Para Next S
4
it 4
Sname From Inpame
Centerx * To . Inxpos .)
Centery .| Xposl l‘nypos
R) Nexi Yposl butname
’ . Xpos?2 Outxpos
Ypos2 " . Outypos
XposS' Appname .
Ypos3 ‘ Appxpos
. Xpos4 Appypos .
.7 Y pos4 Next
. - .P'aral
. M@W ey Next-

" i‘ig’urei4.5 The Data Structure to Store the RTN in the Database

» .-

4. .P»i-ogram'Flow‘

- The ofganization of the'program uses the basic‘structure of Windlib and is

.. divided-into several procedures whlch act as event handlers for the wmdoyzs The edi--

?

tor is divided into 4 wmdows 80 four event handlers are used The use of the hhndlers. :

. N

 for " message and current selectlon windows is very limited. They send an event.to

“the work window when the user enters data into these wmdows17 The handler for the

-

" The only situation in whxch mput w to the "message™ and ~ current selection” window is

43

"menu” window is used to select commands and primitives and highlight the options
that have been chosen. The actual execution of the editor is from the work area event
handler and it is the main control of the editor. The logic flow of the program is as

 shown below.

(1) The work area event handler receives an event from the input source or from
X

another handler.

(2) Depending on the current command the editor is using, the work area passes the

event to the appropriate procedures, such as
(a) Add command procedures.
(b): Move command procedures.

(¢} Delete command procédures.

(d) R®name command procedures.

(e) Next network procedures.

(f) Exit command procedures.

(g) Group command procedures.

(3) Each of these procedures gets the event and processes it according to the current

object selected and updates the screen and database.
(4) Control is then passed back to the work area event handler to wait for next event.

(5) If during the Lpfocessing‘of an event, an error is detected, the error handler is
invoked to print an error message, the editor then waits for the user to reenter .-

the correct input or enter a new command.
. - ‘ -

L
*

- when the user enters the state name or arc parameter while the tracking cross is in these windows. .
This explains why the input is sent to this window. ot -

'

4.8. Example

) 4) . | NETWORK ID

Eller The cenler ol stale To be added))7

Figure 4.6 Initial Layout of the Screen

NETWORK ID
EXAMPLE

ARC PARALT
MAIN MENU

STATE

STATE NAME !

ARC PARAMETERS

HELP

T ebdlng Fale poelon Then Tl o T iddd 5SS
. EXIT

Kigure 4.7 'IX?Screen Layout After a Diagram is Created

In this section” an example of how to create an RTN using the graphical editor is

shown. Although the diagram is very simple, it shows the usage of various commands

in the editor. The following is a step. by step illustration of how the diagram is
created. Figure 4.6 shiows the initial layout of the editor and Figure 4.7 shows the final

<

appearance of the screen after the diagram is created. The sequence is:

(1] The user puts the tracking cross on the "OBJECT MENU" menu item and presses

the left button on the tublet!8 1o select the object menu as shown in figure 4.7.

[2] The tracking cross is then placed in the work area and the user presses the same
. . .
button again. A circle is drawn on the screen with the tracking cross positioncd

at the center!9,
[3] Three circles are drawn in this way.

[1] The user then selects the "STATE NAME" menuloption to enter the state names
and another prom;t message "Place the cross inside the state then enter the
name > > >" s displayed.

[5] The state pame can then be entered by putting the tracking cross inside the
corresponding circles (without pressing any button) and entering "1", "2" or "3"

with a carriage return. The names will then be placed at the centers of the circles

(the states). ‘ (\

6] The "AF‘{C"‘ option is selected to enter the arcs and the editor requires the user to
first specify the tail and the head'states and then two points on the path i)y press-

ing the button when the cross is in the appropriate places.

[7] Three directed curves are created in this way by; specifying state 1, 2 and 1 as the

tail states and state 2, 3, and 3 as the corresponding head states.~ .

(8] The "ARC PARAMETERS" option is then chosen and the editor responds with

the message "Enter tail,’ head state, starting position t\hei text to" be added

"{f- //(K 1
18 The left button is used to g/e\fferat an event of type 1. Any tablet or mouse can be used pro- e,

vided that they are capable of generatinfg events of type 1 and 3. ‘
19 The default command of the editors "ADD" and the default primitive is "STATE"

7/

:
' 0

¢
46
>>>". The user is required first to specify the tail state, the head state of the

corresponding arc and then put the tracking cross on the position for the arc

parameter.

.

MO—"‘—I—, the user places the tracking cross inside

[9] To enter the arc parameter App]

state 1 and presses the left button on the Lal;let: (to specify Yhe tail state) then
repeats the samf operation for state 2 (to spec:ify the head state). The tracking
. cross is l,l\len placed in the position which will b;come the lower left corner 6f the
first character for the input token field (no pressing of button is required). The~

arc parameter is then entered from the keyboard in the format "In1/Outl/Appl”~

followed by a carriage return.
[10] The same procedure is repeated for the other two arc parameters.

[11] The user can then choose the option to exit the editor or create/edit another

diagram.

Chapter &

. -
The Event Handler Generation Algorithms o

5.1. Introduction
[}

When recursive transition networks are entered with the graphical editor, all the
data is stored in a database. A code‘generator extracts the necessary information from
the database for assembling the event handlers. The generated code then goes
through an assembler andl a "C" language compiler result’ing in object modules that are
linked with other modules (i.e. the presentation component and the application inter-
face model) to form a complete UIMS. The whole process is shown in Figure 5.1.

Application

. Interface

Model

UIMS

Scheduler f——'p

USER |Graphical| database Code Assembler
Editor Generator + Compiler

| - 1

Presentation
- Component

‘Figure 5.1 Code Generation Process

2 . , o
The run time execution. of the UIMS is controlled by the schéd_uler. Its main functions

‘are processing the events and organizing the event handlers’ activities. Thi’s:chap‘ter
describes the desngn of the code generator, its requlrements and the algorithms used.
The reqmrements of the generator bemdes generatmg code, are detectmg and report-‘
ing both logical and syntactxcal errors. %code to be generated is in an Event Based
Internal Form (EBIF) Before any code is produced the Leading] Relatnons for all the
recursive transntnon networks must be calculated ‘The format and meaning -of the

EBIF as well as the definition and the calculation of the Leading Relation are

47

48

N
#

described in this chapter.

6.2. Description of Event Based Internal Form

.

The EBIF, designed by Green [Green84e}, consists of a "C" programming
language procédure representing the event handler and‘vérious tables cont'aining infor-
mation used by the UIMS scheduler at run time. Thi.s data is extracted by the assem-
bler to build the scheduler’s tables. Figure 5.2 outlines the structure of an event
handler. Basically it is separated into two components, the first part contains the

tables. and the second part, quoted between "%?", is the "C" programming language

'

representation of the event handler.

The EBIF language is an event driven languageZ® and every operation is based on

events. The event handlers communicate with each other by events. Tokens, on the

—

other hand, are used to communicate (with the application interface model and the

presentation component.

event_handler
a, b,c
. event]l, event2, event3, eventd

Q . tokenl eventl

N token2 event2
token3 event4]
% .)
event_handler(d, e, f, g)
intd, e, I, g ;
{ . v

)

- %

Figure 5.2 Example of EBIF Event Handler

e
‘

The EBIF event handler looks like an ordinary procedure with the ﬁrst line ha{r-

ing its name. The second line contains three numbers corresponding to the number of

20 An Event driven language is a language which describes its operations by means of events
and event handlers. When an event is generated, it is sent to an event handler, where the state-
ments that process the event are executed, - . : ¢

- 49
e .

variables, tokens and events used by each instance?! of the event handler. The third
line is a list of cvents declared in the event handler. Following it is a token table used
by the scheduler, each line holds a token name and its equivalent event name. These

few lines form the first part of the event handler description and provide sufficient

information for the assembler to build the scheduler tables.

The second part of the ‘event handler is the "C” programming language routine
which is extracted by theé assembler and compiled to form an object module. The
name of this procedure is the same as the event handler ﬁame. It has four parameters
representing the instance number.of""the handler, the e?cnt‘(Which 15 an integer), the

.event value, and a pointer to the local variables of the event handler. The main body
of the procedure consists of a case statement with each évent represented by a
separate case. If the event handler is active and an event which matches one of its

cases arrives, the UIMS scheduler will execute the statements indicated by that event.

5.3. The Leading Relation

The meanings of the Leading Relation for RTNs and c:onte‘xt free grammars are

s

similar and the procedures used to calculate them are basically the same. Below is a

general description of its meaning and how it is calculated.

5.3.1. Definition of the Leading Relation

The formal definition of the Leading Relation for the subdiagrams can be found in'

[Green85b] which states:

3

Let Z be the set of all the possible input symbols for the subdiagram and S
be a string of symbols from Z.’ . : :
For a subdiagram, d, let L(d) stand for the set of strings in Z that are recog-
nized by d. That is, every string in L(d) labels a path from the initial node to
the final node of d. The relation Leading is defined in the following way

’ LEADING(d) = {a|a € Z and aS € L(d) } o

The relation LEADING for a given subdiagram is the set of input symbols
. ’ Y .

2! When an event handler is created during execution, a new instance of the event handler is
created. - .

, -

50

that subdiagram is expecting when it is invoked.
T

This relation ensures that a subdiagram is called only when a proper set of input
tokens s entered. Figure 5.3 shows a situation tn which "tokenl” is entered into the
system. If the arc labeled by "subdiagram” (no€ having tokenl in its Leading Relation)

is invoked first, no match will be found in its token list and the error handling pro-,

cedure will be called to handle this unmatched token. This behavior is undegirable.

+

Flgure 5.3 Example Showing the Importance of the Leading Function
1 . i (/

5.3.2. Calculating and Checking of the Leading. Reia.fion

" The method used'.to calculate the Léad_ing Rela;,ion is relatively straightforward.
l Ex'er)" arc in the subdiagram is scanned in turn and all the arcs having the initial Qtate :
at their tails aré marked. Thé Leading Rela;ion is&hé; set of all tbe‘input tokens on .
these marked arcs. This result is stored in a separate file for each su,bdi:.;gram. The
only bre-requisite in this calculation is the existence; of a unique initial state for- each
subdxagram Two types of parameters can be found in thn?telatlon\ﬁle input tokens |
and subdlagrams names. They are stored in the sa‘me Le:;dlng Relation. file but with
' diﬁe‘r'gm formats to differentiate between them. -
"The chec‘kingkof the Léading Relation pa‘n be done either at execution or code gén-

eration time. It is found that doing the job at run time will decrease the execution

51

speed and is less efficient. On the other hand, more time is spent on code generation as
one scparate pass is devoted to scan through all the subdiagrams in order to extract
tnformation for building the Leading Relation file. Since run time execution is a real
time process, the first approach was selected. Hence the Leadir)g Relation necds to be

\
calculated before any code is generated.

If an entry in the Leading Relation of a subdiagram (e.g. subdiagraml) is a token
name, this is a token that can call this subdiagram. On the other hand, if the entry is a
diagram name (e.g. subdiagram?2), the valid token names to call the first subdiagram
(i.e. subdiagraml) are the tokens found in this called subdiagram's (i.-e. subdiagram?)
Leading Relation file. A recursive c;rll may be required to search fdr these token
names. In this case, the input token searching expands to a tree searching problem. A
problem occurs when a subdiagram on an arc is a parent of the current diagram, this is
shown in Fxgure 5.4. In this figure, subdlagram "D1” can jump to "D2" which can in
turn jump to "D4". If the Leading Relation set of "D2" contains "D4", and the Leading
Relation set of "D4" contains "D1", then when the Leading Relation set of "D1" is cal-
. culated, it will check for the Leading Relation set of "D2". Since "D4" is an element in

this file, the Leading Relation set of "D4" is searched An infinite loop will develop in

this situation because the set for "D4" contains a call to "D1".

A way to awond thls is to construct a table containing the Dames of afl the
dlagrams that have already been searched and every time a new diagram's Leadmg
Relation is requlred this table is checked first. If the name is in the table already,

{

then the particular subdiagram does not need to be searched.

{

Figure 5.4 Example of Infinite Searching in the Leading Relation

5.3.3. Examples ' ,
,Two examples are shown in this section to illustrate how the Leading Relation
- files are formed and how to calculate the valid tokens that can.invoke particular

diagrams.

5.3.3.1. Example 1

.
.

token?2

diagram1 L diagram? .

Figure 5.5:‘Example Showing How The Leading Relétion Files are Formed

* <

o

o

53

In this example,.the LeadingmRelation set for diagraml is tokenl, token? and
diagram?2; while the Leading Relation set for diagram? is token3 and token4. In order
to differentiate between tokens and diagrams in the Leading Relation files, diagram
names are all quoted with brackets. So the Leading Relation files for diagrams 1 and 2

3

are:

diagram]1 ‘diagram’
tokenl token3
token? tokend
dragram?2)

The tokens that can call diagram?2 are token3 and tokend4; on the other hand,
tokenl, token?2 and the tokens in Leading Relatgon set of diagram?2 are the tokens that

can invoke diagraml. Hence. its tokens are tokenl, token2, token3 and tokend.

5.3.3.2. Example 2

diagraml © diagram?2 ~ diagram3

Figure 5.6 Example showing Recursive Calls of the Leading Relations
. : T. .
W"".},}‘ Similar to example 1, the Leading Relation files of the th;ee diagraiﬁs are:

W o7
Lot g ,

diagraml diagram2 diagram3
tokenl token?2 token3
diagram2) | (diagram3) ‘(diagraml)

54

, /
The legal set of tokens for diagraml are tokenl and the legal set of tokens in
d'iagrah:?. Similarly, the set of tokens for diagram?2 and diagram3 are token2 and
token3 with the tokens sets in diagram3 and diagram! respectively. /As a result, a .
recursive dependency occurs. The table bolding all the diagram names that have been
searched already (as descr‘ibedhin section 5.3.2) is a great help in solving this problem.
The steps used for calcixlatiﬁg the le‘gal set of tokens for diagraml are shown below.

Basically a table is used which holds the set of all the tokens calculated and all the -

diagrams that have been searched alréady.

Step 1:
When the code generator starts to prod'uc’e code for diagraml, the only token is tokenl
and it needs’to search the Leading Relation file of diagram2. So a table, as shown

below, is formed in' which "tokenl” is the token to invoke diagraml directly, and the

diagram that has already been-searched is "diagram1”.

token. | diagram searched
e =
tokenl | diagraml

Step 2: '

o . |
After searching the Leading Relation ﬁlé of diagrani?, token2 becomes 1 legal ‘token'as
well. So the table has two entries for tokens. Since the Leading Relation file of

<

diagram? contains diagram3, the geperator starts searching the Leading Relation set of

diagram3.

token diva ram searched |,
tokenl diaggaml I
token?2 | diagram?2 ‘

55

Step 3: ' ' - o

“token | diagram searched

tokenl |.diagraml
token? | diagram?2 _
token3 dnagram3 -]

Aftér daagraml 3 1s searched, the legal tokens to call dlagraml are tokenl token?
and token3. ‘At ths point, thésystem should go and search for tokens in: the Leading
Relauon file of diagraml; however, it has searched this table already so the process
stops here: Hence, the lega} tokens for calling glagral;ll are tokenl, token2 and
token3. The legal sets of tokens for diagram?2 and diagram3 are calculated in-the same

way.

5.4. Error Handling 7 ' i “ , _ . ’

v

Error handling is the. firag Aask which must be consndered when code is generated

. .

The fundamental requirement for the error handler 18 to detect as many errors as pos-
g V

sible before they are found by the assembler, the compller or the schedulcr A serious

i

problem may occur if the errors are undetected at creation time. They may cause the

&2
program to run into an infinite loop or an executnon error., The followmg is a hst of all '

- the common errors, both at creation and run time, and how they can be detected

5.4.1. Types querr; S) S o oo
Thé -cdﬁ]m;n typesl of_errors tha.t can iieafo_und while éenérating cod.e are:
W(1) No unique initial state fora' subd-iagram- If theredns no |nmal state lnn a subdn-, :
agram, the scheduler cannot start the executlon of the @ubdlagram when itis

mvoked If more than one mmal statr exxsts, the schedulcr does not know whnch

state to start execution ll]

(2) No termma.l state-exists in a subdlagram, Whlch lmphes the program cannot ﬁmsh' '

‘executing the subd:agram and’ ends up developlng an 1nﬁnlte Ioop msnde that

-

56

diagram. ’

(3) The input parameter ficld of an arc connecting two states is empty. The event-

‘handler generator cannot generate code for this arc since code production is based

on this token name and type.

-

(1) The-state names are not unique within each subdiagram. This may result in the
wro'ng intérpretation of the data by the code generation program. The generator

treats the t.wodist.inct states with.the same name as one state.

(5) Twe or more subdiagrams have the same name within a user interface. This gives
‘rise to an ambiguity when this name is called by another subdiagram. The

scheduler cannot determineswhich subdiagram is the correct one. This error can
- : ’ Q B
be detécted by the "C" compiler later in the process because two procedures are

usiog the same nanie within a pro

’
[

(6) A subdiagram called by an other si agram does not exist in the system. Same

as (5), the loader will report the error of non-existin procedyre being found when
! _ p r g » lng o

all ih‘e subdiagrams' object modules are linked together.

®

One of the prmuples for error handlmg used in the generation program is to find the

errors as early as possxble The. generator will then stop generating code. However

some uerrors,'such as,(5) ‘or’(O) above are |mposs|ble’ to detect until the whole user

" interface is: assembled unless some dedicated and time consummg procedures are used.

i
Por example the error of pop-existing dnagram name (error. #5 above) can be detected

' 1‘

if a separate me used to scan ‘through and record all the dlagram names.

However, th;s ls a time consummg process because the whole database needs to be

Coa-

scanned through once ln order to get a.ll the dlagrams names and build : a table to hold

~
o . . . »

' all the names '

¥
ca AL

3

5.4.2. Algorithms

s
Tle algorithms discussed below are aimned at solving problems (1) to (4) stated

above.‘In order to facilitate the detéction of errors anc‘i the generation of code, two
main tables are built. The first table, called the state table is form#d by scanning '
through individual subdiagrams i the database. It contains the names of all the states
in each subdiagra‘m. The arc table is another table built by scanning Lhr(;ugh all the
arcs in the subdiagram and contains the input token name, the output tokgg name, thc
procedure name, and the head and the tail state names of the arc. It also holds a
. unique event number for each token. This number is produced by the code generator

7

and i1s used 1o code generation.

’I‘Be checking of ur’x.ique initial state is done by going thro(xgh L‘he state table. If
the state name called ."0".‘ which is assuméd to be the starting stateﬂnaq;e, is not found
the diagram has a syﬁlax error. Dﬁplicate state hame chec](ipg is done when the state -
table is built. Whenever a new state is added to the table, the whale table is scanned
througlt.] once. l.thhe name already eXists, a duplicate name is béing used within a sub-
diagram. When the arc table is \guilt, the third error can be detected. Whenever the
| code gent;l;atrbr detects a tﬁisging input token in the arc parameter, the ;!rror s imﬁledi-
ate reported. To detect the error of non-exlstmg ending state, more work needs to be
done.- Another table the ending state table, containing all the endmg state naxﬁes is
built. Ev ery state in the state table is compated with the arc table, if the state 'never
appears at the head of am arc, it is an endmg state and should enter the endlng state
‘table. After processing all phe states in the spate t‘.able, if t,he"endi,ng state table is still,

empty, then an error of non-existing ending state should be report,ed Figure 5.7 sum-

marizes the contents.of all these tables

58

Snamel Inamel, Onamel, Pnamel, Taill, Headd— Snamel
. Sname?2 Iname2, Oname?2, Pname?2, Tail?,‘Head2 Sname?2
. ~ ‘
State Table Arc Table ' ‘ Ending State Table

Figure 5.7 Tables of Contents of Conversion Program
5.4.3. Example
Using the examplel in section 5.3.3, the following tables are created for diagrams
1 and 2 respectively. Since the arc table needs further.modification as described below

only the state tables and the ending state tables Whown.

State Table | Ending State Table ‘

0 1
1! 2
9" 3
3

a

Figure 5.8 The State and Ending State Table of Diagram 1

State Table | Ending State Table]
0 1 '
1 2

Figure 5.9 The State and Ending State Table of Diagram 2

L

59

5.5. Principles of code Generation

The format of the EBIF event handler has alrecady been described in section 5.2
The algorithms for code generation are divided into two._parts. The second part of the
event handler is gencrated first because it produces results which are used in the con-

struction of the first part of the event handler.

Since the EBIF event handl(‘r‘is an ev(;x;t driven system,’it will e‘xecut;‘ different
sets c;f'commands depending on the input event. Also the set of arcs that can be
traversed at any time depends on the current state of the RTN. When the ev.on(
handler is produced these two control variables (i.e. the current state and the gen-
erated event) are used to select the statements for execution. Two switch statements
arc used to control the execution of ‘tb.e event handler. The control variable "e{cnt"

“sélects the commands that are executed when an event arrives. An event that resides
on scveral arcs can call different sets of commands depending on the current state of
the RT.\" (and hence the event handler) so a switch statement is coﬁstructe’d within
each "event” case. The following three sub-sections glve the gcneralodemgn principles

. for code generation and how the second and first parts of the EBIF event bandlcr code

conversion program are designed.

3

5.5.1. General Design Principles

' : -

. Although a complete user interface consists of a number of event handlers they
" can be entered into the system with the graphncal editor at the same or at different
times. The code generator is designed to create aeparate files for individual event
handlers. " This gives the nser interface designer the capability to >Abuild' and“us‘e"
libraries of event handlers. Another advantage of considering each event handler as a J
*separate unit is to easev‘ the quiﬁcatiovn and debugging of the event handlers. The
scheduler needs to link all the event handlers together to form a comi)lete unit. These

handlers can be in two formats, either in the RTN format that must be processed by

60

the code generator, or in the EBIF. This makes it possible to use a library of the com-

monly used event bandlers in both RTN and EBIF formats.

Whenever an event arrives, the event handler compares it with all the events
- that it can process. If a match is found, the corresponding set of statements is exe:
cuted. In the case of no match, the system prints an error message and asks the user
to recnter the token until a match is found. This error handling method is the simpli- .
est and the easiest approach Further extensions. of the system may lead to more

sophisticated error bandhng procedures.

'
’

The sequence of execution for the parameters on an arc is first the application
procedure then the output token. By fixing the sequence of execution for the parame-

ters on the.arcs, the conversian step is easier. Different results may be obtained if the

.

two operations are processed in different .orders. The user interface designer can now
_ be sure that the code generator interprets the RTNs in the same way as they are

designed by the user interface designer. The application procedure or the output

L]

token field or both can also be left empty, in which case the event handier assumes

they are ot sed. i . ' _ .

7.
S

<.

The input token field of any arc can be the name of an input token or a subdi-
agram ln the case of a subdiagram name on the are, control will pass to the Sllbdl-
agram. The program wnll continue execution there until the end of the dlagram The
name of the caller and the bead of the current arc must bg passed to the calling subdi-

agram in order to restore the return address. . L.

61

5.5.2. Generating.the C Procedure

-

The basic approach to generating the "C” procedure is to generate the two switch
statements described above. The name of this procedure is very simple, it uses the
. . . . ‘
same name as the event handler, but in order to differentiate it from other system p}'o-

cedures, "eh” is added at the front.

5.5.2.1. Generating the Tables

.

Three tables, the state table, the ending state table, and the arc table, as
< . ,

described in section 5.4.2, are required for code generation. lb.fact, the arc table is

‘divided into two parts, a token table and a diagram table. If the input token field of

the arc parameter is a token nz;me, it is put into the token table. On the other hand,

lf a'diagram name is found there, the arc parat;]eter 1s put ih the diagram table. The

respective fields of the tables are shown in Figure 5.10. Tw.o‘ tables insteas of one are
) , ‘)

used in ‘ge'ncraling code because all the entries in the di'é’xgram tablg willl be prepro-

cessed to form entries for the token table before the code is generated. A detailed

description of this process is presented in the following sections.

0

+

token table diagram table

input token ' » . .
‘diagram naine- diagram name N

output token output token ‘

procedure name procedure name

tail = - tail i

head - -head

event# - event# !

Figure 5.10 Token and Diagram Table

A

For the diagrams shows in example 1 above, the 'token and diagram tables are a3 = .

shown below: -

62

: I_écen Table

Input Diagram | Output | Procedure | Tail | Head | Event#
Token | Name Token Name

tokenl : 0 1 event0
token?2 ' 0 2 eventl

Diagram Table

Diagram | Output | Procedure | Tail | Head | Event#
Name Token Name v
diagram?2 0 3 event?2

e

Figure 5.11 Token and Diagram Table of Diagraml

Token Table

Input | Diagram | Output | Procedure | Tail | Head | Event#

Token | Name Token | Name . .
token3 0 1 . | eventO

token4 0 2 . eventl

Figure 5.12 Token and Diagram Table of Diagram?2

In generating the "C" code for the event hgm‘dler, all fgur tables are used and the
diagi’am table is the first to be considered. The diagram table contains the names of'
all the dlagramﬂ found on the arcs. The recurs;ive search aléorithm of the Leadiﬁg
Rclatlon as descnbed before is used to find all the valid tokpns on which calls of subdl-.
agrams are possible. Each token that is found is put into the token table along with
the o‘utput token, the procedure name, the tail and the head states copied from the

’ ~diagram table. So-all the tokens found from the same Leadmg Relatlon file will be put
hnto the token table wnth the same procedure name output token name, tail and head
/ states as in the diagram table; In addition, they will include the diagram names in
- their records. Figure 5.13 shows the resulting arc table after the preprocessing has
nished?? | * | "

———
22 Since dngram" docs not call ot,her subdiagrams the dlzgram t.ab]e is not formed and no

conversion is required.

N

Figure 5.13 The Result of Combining Token and Diagram Tables for Diagram]

token table
input diagram output | procedure | tail | head | event#
token name’ token name
tokenl , 0 1 event(
token?2 0 2 eventl
token3 diiagramQ 0 3 event?2
tokend | diagram? 0 3 event3

63

The code is actually generated from the input token table. Each entry is con-

sidered in turn and each input token is considered to be separate case. A token can

invoke different sets of statements depending on the current state of the event handler,

so another set of case statements is used. The format of the generated code is:

'

case (event) : switch (state)

Two special conditions need particular attention in generating code. They are:

(1) the head of an arc is the-ending state of the'subdiagram.

case :

(2) the input token field of an arc is a’subdiagram name.

Three diflerent situations’atise from the above combinations and they need to be con-
" . 7N -

sidered individually.vThese cases are:

(1) the arc ié.not a subdiagram call and the head state is not an ending state.

./

(2) the arc is not a subdiagram call but its head state is"an ending state.
- +

-(3) thearcisa subd'iagram- call. . -

Q

-

The conversion algorithm in the first case is quite simple. The statements

include:

64

(1) If the application procedure field is not empty, a "send-token” command is

created to send the procedure name as a token to the application interface model.

(2) If the output token field is not empty, the output token is sent to the presenta-

tion component.
(3) Command to change the event handler state to the head of the arc.

In the second czfse., in addition to all the statements discussed above, some
methods must be used to return control to the calling subdiagram. The technique used
13.to send a special event called "continue” back to the calling program to indicate the
termination of the sﬁbdiagram's execution. Besides the diagram name, the tail state of
the arc which called the subdiagram is sent back as well to restore its state. The last

operation is to signal the scheduler to kill the event handler instance that has just

exited from the terminal state. - \
5 . \

For the last case, the problem is divided into two parts as shown in Figure 5.14.

" diagram/oname
gram/ -B
prociame

-

. diagram @contmue/oname B

procname

0

Figure 5.14 Generating Code Algorithm With Arc For Diagram Call -

The main reason for doing this splitting is that the tokens (a.pplication procedure

and output token), are not sent to the application interface module and the presenta-

tion component until after the subdiagram is processed. If the returned state is the

’

' headif the arc already, these two tokens will not be Lpi-ocesse'd“becavusedthe arc holding

-, ~

them has already been traversed. A temporary state?? is created for this purpose which
serves as the return state of the subdiagram. Tb(? application procedure and the out-
put token are assumed to be on the arc from the temporary state to the head state.
This handles the calling of the subdiagram and processing the procedure and output
token. \’Vhen' the. called subdiagram exits, an event called "continue” is generated.

This will activate the second arc, aid the output token and the application procedurc

i .

name are sent to their destinations.

O t

The algorithm for doing the conversion is to first consider the callihg of the subdi-
agram by creating an‘-in"stanc.c' of thevvsubdiagram and send an event to that instance
with the temporary state and the caller instance name as two variables. The second

@ep is to add. the head state (vstatc '"Q"), the tail state (state ”temp") and the arc's

parameters to the token table with the event name "continue”.
~ .

5.5.2.2. Examples

»

' By using the algorithms as described above and the two arc tables in the previous.
section, the following two "C" procedures are generated.

ehdiagl (iname, ename, va{he, variables)
int iname;) . .o
int ename; ’
int value;

&t variables| |;

switch { ename }

case { event0) :
switch (state)

case {0):

state = 2; .
send_event(variable[0], continue, variable[1 1)
send_event(variable| 0'}, ename, 0);
destroy(iname);
return(’); -

}

case { eventl):
switch { state) . ®

case (0): ‘ :) SR v : g -
- o . N *
23 The temporary states have the names "temp” + 0,1,2... t6 handle more th4n one subdiagram

_call within a subdiagram. & .

state = 3;
send_event{ variable[0
send_event({ variable| O
destroy{ iname);
return{ J:

{) ’

, continue, variable[1] };
, ename, 0 });

}
case (event2):
switch { state)

-

case {0):
create_jnstance(diag2, 2, this_jnstance, temp0 };
send_event(new_instance, ename, value)
state = temp0;
return();
}

case (continue) :
switch (state)

case (temp0):

state = |];

send_event(variable[0 |, continue, variable[1]); , ‘

send_event{ variable[0 |, ename, 0 };

destroy(iname)

return{); , ’ ’ ‘
}

case (event3) :
switch (state)
(. o
case (0) . .
create_instance{ diag2, 2, this_instance, témp0);
send_event(new_instance, ename, value)i
state = temp0; .
return();) .

“Figure 5115 The 'C’ Language procedure of the EBIF for Diagram1

ehdiag? (inaine, ename, value, variables)
int iname;
int ename;
_int value; i
int variables{ J; e -

* switch {ename) .

case (event0): B . . a
switch (state) |

case (0): : : ‘ o L .
state = I; . o ; ‘ P
.+ send_event(variable] 0 |, continue, variable[1 Ik . i .
sendgvent| variable.l 0 |, ename, 0); '
destroy{ iname });
return{ };

case { eventl }: . ; :
switch (state) o e ' .
! - .

case (0): .)
state = 2; : . T .

67

send_event{ variable
send_event(variable
destroy{ iname },
return(J;

0]. continue, \'anabl’e[1])
0§, ename, 0);

Figure 5.16 The 'C" Language procedure of the EBIF for Diagram?

&
5.5.3. Generating'the Event Handler Tables

The token and event tables in the EBIF event handler are generated by going
through the input token table once. When this table is created, every time a token is

added, a corresponding event is created and inserted into the table, so the token and
. .’ ’

event tables can be extracted from the inpil‘bt\oken table. The event list is created in a

similar way with the exception that another event called "continue” is included in the

list as well. This event is used to pass §ystem control to and from subdiagrams.

,

- -~ - ’
The three numbers for the event handler which represent the number of local

variables, events and tokens are relatively straightforward to generate. The number of ,

local variables should be three corresponding to the instance and the state number of
. - “) - . " » " . Y
the calling event handler and also a variable called "state” which represents the
i

current state of the RTN. The total number of tokéns equals the nu@r @input‘
« R . \ . . .

tokens. R ‘ K ' _ . A

5.5.4. Examples \"\/ \ RN

The event handlﬁables for the_exaxﬁplé 1 are shown in Figure 5.17 and 5.18

respectively.

ehdiagl - . - e

2595

event0 event] cvent2 continue eventd
token] event0Q '

token?2 event]

token3 event?2

con?:]nue continue

tokend event3

Figure 5.17 The Event Handler Table for Diagram 1

'

ehdiag?

222

event0 event]

token3 event0 '
token4 event] - 2

Figure 5.18 The Event Handler Table for Diagram?2
. . ‘ .

.' changed

“r- ‘ ' “
- [

Chapter 8 ‘

-

Implementation of the Code Generator

8.1. The Environment

The gene"rator is programmed in the "C" language under the UNIX24 operating.
. . . <«

system and runs on a VAX2 11/780. A large portion of the code is machine indepen- .-

dent due to the portability of the "C" language and the use of commonly available

¥

‘UNIX system commands only. In order to make the generated code easier to read, it is

formatted. The system command "indent” which automotically for@ts a "C" pro-
s ’

gram is not used in the generator since it.'is not commoply available on all UNIX-like

, operating systems which support "C". The generated code is written onto a standard

ASCII file, and a database called "FDB as descnbed in Chapter 4, is used as mput
% r

8.2. Strengths and Weaknesses

; The generotor 18 madetup of two diﬂ'erent modules which are:

v

(1) A procedure to generate tables by extractmg d ia from tbe databaset Leadmg :

-Relation ﬁles are built i in this stage and all posslble errors are. checked

(2) - A procedure, which can assume ‘perfect' input data, t ;

t

- handler code. ,l

~There are two Ig\ain advahtages of 'sol—itting' the program ixi‘tdtwo seoa}ate xﬁodules s

First, when the EBIF format is mod:ﬁed or extended in the future, only the procedurc |

/

used to genérate code needs - to be modlﬁed On the other hand, when a new or .

v ‘-modlﬁed vl&:snon of the database i8 used only the ﬁrst part ueede to be rewntten On

the whole jt‘he program is easy to modnfy when any part of the early desngn "-,

4 UNXisa trademark of AT & T Bell La.boratones, lnc

s 2 VAX lsatrademark of Dlgltal Equ/tpment Corporatxon R o ~

' o . | 70

~There are some weak points in this generator, soldtions are available te solve
‘ ‘ ' B)

" these problems but they wgfe, not used in order fo simplify coding or decrease the com- -

!

. . . . N - i
putation time required. The event handler uses nested switch statements to select the

statements to execute when an event arrives. Each entry in the input token table will
generate a case statement based on "event” and each record associated with the input
A)

token will generate a "state” case. The first switch statement is unavoiaable but tél'
second ome is not required and an "if" "then statement may do a better job if the

_token appears ohly on one arc. The other major weakness is the redl.ndancy of code
Q¢ . . .
within each event handler. The same output ‘token and application procedure name
o . « :

may be ysed on many arcs within a transition diagram, i.e. different combinations Of, _
:',cvcnls and states may ix;clude the same proceduresité han‘ale the output token apd

*

" . . - ¢ .
-application procedure. The program should be able to detect .thi redundancy. and

combine them (ogm/b'('r to decrease the size of the object module.
s ' / '." B :. v

6.3. Data Struc{;‘qfe') e . .
4 N . _r-. I a .

The data structure used by the gfneratorxonslsts of a number of- tables They "

el
- 3o “

are lmplcmented by linked llsts in order to phgvlde varlable table snzes and faclhtate
o { '
delcuons and addmons Two main lmk‘ed llsts ar¢ nsed for.the mput token and the

A hd

dlagram tables oThe structures and arrangements ‘of the hnked liats are sﬁo.wn‘ln Fxg-

~ure 6.148.4. Two other ta‘bl‘es are used to hold tﬁe state names and the names of the

cnd‘states in each dlagram Co

EE Y S R

. 71
9.
Token
Token Name Event # Down Info 4—" & Info
| Record
/ Y
Token '
e Record
Figure 6.1 Token Record Structure
. Output Diagram : : Token
roc. Namel Token ° oTatl | Head Next —4—» Info
. Name .
Name (Table
L ; B}
> Figure 6.2 Token Information Record Structure
Diagram
Diagram Down Info —f—» Info
' , Record
Diagram
Record
v ‘ %_
© . Figure 6.3 Diagram Record Structure .
- . S ‘ . ’) L ’ / , -
-1 Output : _ . Diagram
Proc. Name | Token Tail Head Next 4—— Info
* | Name N : ‘ Record

Figure 8.4 Diagram Information. Record Structure |
Each input token record holds a token name and an event number given by the gen-

r

erator .to represent the token. The naming of these events js very simple. All of them

v Y

cE
LA e
<

-

|) ,

72

have the format "event” followed by a number which is incremented by one every time

a new event s generated (The name of the first event is "event0” followed by "eventl”,

“event2” .). The diagram table is created in a similar way but without the event

4

name. Each diagram record is divided into two input token records, as discussed in
Chapter 5, when“code is generated. The names of these tokens are the toked hame in
the diagram record and a dummy name. This dummy pame i3 not used in generating'
code except to signal the generator to produce an event called "continue” instead of
an ordinary cvent numbcr All mformat:on records hold the application procedure and
the output tol\on names as well as the tail and the head states of the arc. A pointer is
also available to pomt to the next information record if required, ie. pointing to the

next arc which has the same input token.

6.4. Program Flow

: Two separate files are created for generating the code. They are used to store the
code for :the first and the second parts of the event handletr. As described before, the

- second part is created first and some of the generated information is used to produce

o

the first part. The sequenye for generating code is:

(1) Oped the database which contains the data.

. . .
L3

(2) ‘ Use tbe data from the dat:ﬂ)ase to form' the ta'bles shown in Fxgure 6.1-6.4 and

also the two state tables . !

Bl

- (3) Check. for pdssnbie syntax errors If an error is found, report to the°user interface

Y -

desngner and ex!t from the generator o e

(4) ;Procedure to generate the procedure name which i is eh" 4+ name of the dlagran.l.

and also its parameter declaratlons‘ “This generated procedure is used by the .

* assembler later.. - .

N ,

.

(5) Process the diagram table ‘ by ‘gener’atih‘g two tokens for each diagram name.

(6)

73

Insert these two token names and their records into the token table.

Assemble the code fram the token table by generating a case statement for every

event used.

Within each event case statement, another switch statemem/is generated for

states. Every information record will be treated as a separate case.

The above 7 steps generate the code for the "C" procedure of the-event handler.

Thke following fwo steps will produce the EBIF event haqd-ler's event list and the

(1)

(2)

-

’

token-cvent fable. A complete event handler is formed by combining these two parts.

The first statement. gengrated is the event handler's name which is the same as
- 4 : B

" the procedure’s name generated in first stage.

The three variables in the event handler are calculated during code gem;ration in

the previous stage. The number of variables used is always 3, corresponding to

the caller's name and its head state when a subrputine call is initialized. The last

vag’aBle/ﬁs\the internal state of‘the event hén’dler. The second number, &hc

number of events processed, is the nymber of elements in.t.he event list. The
-

total Atmber of tokens send 'f_'rom‘the presentation component to the event

handler is the number of tokens used.

i . e

\

Chapter 7 \

Conclusions

’I‘bis‘ study has shown that building an automatic generator for the dialogue con-
trol component is both feasible and desirable. The following is a description of the

merits of the RTN graphical editor and the conversion program as well as some further

I

extensions to the system.

K4

7.1. Merits of the RTN Editor

The software development cycle for any piece of software consrsts of 7 requnre— .

ments . "specification”, "design”, "implementation”, -testlng and mamtenance
[(xreen8l] The implemented generator takes care of the last 4 phases. One approach
to desngmng the dlalogue sequence between the user and the computer, is to represent

thexr luteractlous with state transition mgrams With the help of the RTN editor,

the state transition dnagrams can be\dlrect entered into the computer and the system

B
. automaucalh ‘gencrates the requlred user interface code.” The deSIgn ‘and lmplementa-

tion phases are combmed together and -the user interfate designer need -not bother

about unplementatnon Slnce he only needs t concentrate on desngn ;tases the total

- 7

~time spent on these two phases wnll be reduced :

o . . (

The system also makes the tasks of testiny and maintenance easier because if

4
there xg a bug or the dnalogue produced does not (reeet the requ:rements, it is easier-to

Y, [4

make changes. on dlagrams than on textual statements. If program maintenance is

Qdone by people other than the deslgner, tben more i

0y

e is needed to understand the

program before modnﬁcatlons can be made. Thls ‘can be re uced 1f the program is

]

represented graphncally mstead of: textually As a conclusxon, the lmplemented system

slﬁBhﬁes the Job of the user mterface desngner and lowers the cost and time spent on. -

' destgmg tbe usér mterface Actually the system provndes a software develbpment

en@nment for user interface deslgn

»

14

75

lﬁ representing the recursive trausition networks, a hierarchical structure is used,
ibié.‘ forces the user interface designer (cither v;illingly or unwillingly) to split a com-
plicated problem into levels. A direct consequence is the ease of understa:nding.
designing, and maintaining the dialogue sequence prlogram. \A complicated design task
can be vdecomposed into smaller modules. This allows different user interface
designcrs?to_ design separate parts, the ouly‘ requirement is a tight interface bef,ween
different laycr:; and modules. This splitling' has the same advantages as dividing a

computer program into a hierarchical\st‘nucture in design. 'As Smith stated [Smith82]:

Creating qome{;ng out of nothmg' ig a difficult task. Everyone has observed
" that it is easie} to modify an existing document or program than to write it
originally.)

Al

Since many basic uger inteérface madules are common in many applications,a&h‘ey}bﬁn

’

be reused and merged together (with or without modification) when a_new user inter-
. w3 . ..'j . Y .

face module is designed and hence the development cost is reduced.

¢
»~

The user interface is an important component whenever a piece of software is

designed. As Slmpson said [Slmpson82] / g o

If you faxl to take, [S'eople iato account during desngn then.your 'machine (or *-
system or program) may be difficult or impossible for _people to operate. .

e

\’\'hcn t-he RTN graphical editor was‘«des'rgned human factors v;rere the first cdnsidcra- - :
txon J.e. the ease of usage by, the user is the ﬁrst mam objectlve of the whole design.
‘.The users of the edn,or range from experts to novices, for example qxperts can disable |
_ some features of the edltor that aim at teachmg or prompting novice users how’ to
" interact with the system The user mterface in the edltor helps both types of users to
develop a good user model for themselves to work with By havmg a self-deveioped.'
_model‘, the RTN edltor s nser can mteract work faster and less error prone in ent.enngb B
. r -, Sl . _ oo s

transition network dnagrams into the database

User t.ai!‘oragility, is 'anp;}iér main cotisideratidﬁjn the design bhase, ;althoug_lz,.t.his_

S

76

is not provided at the ‘user level, all input errors-made by the user are recorded in a
“logging file. It is hoped that by analyzing the feedback from the ysers and the logﬁg
files, the user interface designer can have a better understandtng of the user’s requirc-
ments and better user interfaces can be designed in the future. Another facility pro-
vided by the editor is allowing the user to define his/her own object types by making
use of the "grouping” commnnd. The main purpose of user tailorability is to avoid
common errors made by users and to spe‘ed up the operations because'no matter how
general or powerful the editor is, it will never satiefy all its users. |
As Smith said [Smith82], "Keep the program simple” is a main consideration in
dmlgn eo. when the editor’s operators were desngned a few papers
| [Browmﬁ Pa\hd138~1 ,Singh83] were aralysed and the edltor commands are % neces-
sary .and useful ones thhout any obvious overlapplng between them. By keeping the
. o . .
casier and _;fast.er for the user t.o ereete his own model. The user can then 'l‘ise the edi-

tor in his/her own way. More important, it minimizes the human memory demands.
. . .)

- . . s " R

’

1.2, Spe_dial FeatuTes of the Code Generator ° o

t

Nowadays, the user interface is an important component in applicati‘on:prog_ranls'__

and some of its functions are common in many. ap;ilications’ Libraries ean be built to

‘provlde some standard modules for the user lnterface desngner The code generator

| allowa llbranes’ln both RTNs format, and EBIF to be hnked Wlth the system. Thls

Y

_provxdes greater ﬂexnbx’hty and freedom in using. hbrary rout;nes The user nnterface

' deslgner can easnly modlfy a dlagram in. RTﬂ to fit hls own requxrements a’nd at the L

- same ume use the event handlers provxded by other dlalogue control component nota-

v

’ uons For example, some lnteractlons are easner to represent Jn the event language' ,

: o
: ,and conye_rsxo_n to the RTN is not requlred before it is linked wnh the-ot,her subrou- -

-t:ines'_v L o -"_ - . o< 7 -

commands to a minimum,. universal and non-overlapping as this editor does, it is .°

. T . ‘-

-

Since this is the first stage in the design of the EBIF event handler, the conver-
ston program is designed to be ﬂemble and modular to accommodate further extensions
of the EBIF. When the EBIF format is modified, onh small changes are required in the

cony (‘TSIOD program

A lot of error checking routines have already been built. They cover most of the

il '

errors that Fe usually found Moreover, more checklng is possnble and easy to fit into

the system |f requlred as described in Chapter 6.

7.3. Further Extensions . P

o f

A few extensions are possible for making Lh‘e implemented system a more sophisti-
cat.é’d? development »tool. First, some mechanism allowing the users to define their own
6pera.t,ions;, ‘é.\g. to deﬁne an~ oneration fox: searéhing through the whole database for a°
particular stnng Also, although ‘the " grouplng ,operauon is a powerful extension of
the cdltor it only supports "addition” and "deletion”, further developmcnt Df the edi-
tor’should support other commands such as. movmg as well. The menu is now on the

¥

a8
rlght hand side of the screen, this wnll cause no trouble for right handed users, but for

»

left handed users, it is more convenient to have it on the left hand snde and actually,

users should be able to deﬁne the locatlons of all wmdowa/menus themselves.

Since the whole'dialogue sgquencqis made up of a number _of’diagrams,' it may be

. n.m;essary to flip through the diagrams in order to examine them for debugging and

béhanging.. A r.fvurther extension -of the editor is to display several diagrams, with

reduced size, on the screen at the same time. N

.A. possnble further extens:on for the code generator s to prov:de a better algo-
. nt:hm for handhng unmatched lnputs The algonthm that is used now is a,very snmple

"fp_me;hﬁd |n Whlch t,he system will sit there waiting, for the u.ber to enter one of the';_'

expected 1nputs--6 Thns shoul’d be aJt least modlﬁed to the case where all legal 1npnts_._

20 Althcugh wnld cards isa poss:ble soluhon this needs to be speclﬁcd explicitly cVery time it

.
P

are displayed for the user to selett from in case an error occurs.
|

A logging file may also be used to record the time response and errors made by
the user. This file is useful for two reasons. First, it indicates how well the recursive
transition networks were designed by counting the number of errors the user has made.

Second, this file can be used as a basis for comparing the descriptive power of all three
dialogue control component notations.) .
2 9 : A

1?‘ . “ . age . - .
Another extension to the generator is to provide some facilities similar to
. . .
= Ty e .
"makefile” of UNIX. Whenever some event handlers of the whole user interface are

changed, the chianges should be detected and the related files reassembled and recom-

*

piled. A difﬁcultv oecurs because the Leading Relation of a modified event handler

Py '
will gffect a number'of other event handlers that depend on this relation. An extensivese .

search of all the event handlers can be done to chec‘k if a file depends on this Leading
.Relation. If an event handler depends on a modified Leading Relation, recompnlatno‘n

is required. However “this is a tlme consuiing process since all handlers need to be

checked. Better algorithms néed to be designed to do this-job eﬁiciently.

¢ . oy

References L8

[Brown76]M. D. Brown and S. W. Smoliar, " A graphics Editor for Labanotation",
Compuler G"raphica, Summer, 1976, pp.60-65.

[Buxton83]W. Buxton, M. R. La*mb’,-‘D. Sherﬁlon and K. C. Smith, - 'l‘owa-rdﬁ a
Comprehensive Use\r Interface Mdnagement Sys:tem', Computer Grapﬂn'a,
July, 1983, pp.35-42: ’

[Ed‘monds-8ll]

E. Edmonds, " Adaptive Man-(?om’;iuier. Interfaces”, in Coombs and Alty

‘ o
. (ed.) Computer Skills and the User Interface, Academic Press, 1981, pp.389-
. ' ' .
426. J° .
. . [l
o) fe) »

[Gfee‘n8l]M Green, " A Methodology for LBe Spec1ﬁcat|on of Graphlcal User

Interf'a.ce (om&zuter Graph:ca 15, 3 (August 1981) pp.99-108.

[Green84a]M, Green, .FDB:. A Frame Based Dala‘baac'Syatcm, Department of

\ Computing Science, University of Alberta, Edmonton, Alberta, September,

1984. - '
S 4 ' T ‘ . : .
[Green84b]M. Green, " Design Notations and User Interface Management Systems”, in
[Seeheim84 1, 1984. T, D
. [Green84c]M. Green, " Report on Dialogue Specification Tools", Computer Graphics
. u A g ' omp _ _

’

Forum's, 4 (1984), pp.303. =~ . ~
s . . . _

[Gre‘en84d]M.' Green , and" ‘N érigdgma’n, WINDLIB Proymc Manual

v

Department of Computmg Scxenc,e Unlversny of . Albena Edmouton

Alberta September, 1984. ¥

.\'(_/ ‘
s
®

e

80

B

[Green84e]M. Green, The Univérsity of Alberta User Interface Mahagement System

Dcéig'n f’rinciplcs;’, Human-Computer interaction Project Report #1, Dépt.

~of Computing Science, University of Alberta, Edmonton, Alberta, 1984,

[Grécq85a]'MA~Grcen, " The Unive_rsity of Alberta User Interface Management

System”, Siggraph’85 Proceedings, 1985.

[Green85b]JM. Green, User Interface Models”, Human Computer Interaction Project

Repq,rt #2, Dept. of Computing Science, University of Alberta, Edmonidp, :

Alberta, 1985.

‘\\X[Kaisk82] D. J. Kaisk, " A User Interface Management System”, Computer Graphics,

4

. July, 1982,"pp.99-108.

[Newman(}R] : _ . C o
N v ?

et W, M I\ewman 0 System for lnteractne GrapIhlcal Programmmg Proc.

1968 Spring Joing Computcr Conferencc Washmgton D.C., 1968, pp.47.
'

[Olsen Jr.83a]

D. R. ‘Olsen Jr. ayd E. P. Dempsers, " SYNGRAPH: A Graphcial Usér
Interface Generator”, Computcr Graphics, July, 1983, pp 43 50.
[Olsen Jr:83b)

D. R. Olsen Jr., 7 Automatic Generatlon of lnteracuve Systems”, Computer

G‘raphc:\;;\{y, 1983 pp. 53-57. oL

{ParnasBQ]D L. Parnas On the Use of Transition Diagrams in thé Design of A User ..~

- Interface: for an lnteractlve Computer System ACM Natwnal Confcrence'

a

1969, pp.379-385. . . . : .

[Pa.wlld1584] ’ Do o ' | .

N

T Pa\‘lldls PED A 'Dlstnbuted’ Graphlcs Edltor Grap’nca 4nt¢r/ace

1984 pp 75-‘9

&
81
(. ‘ . s
, O) : ;
. P
[Rogers®1]G. T. Rogers and M. B. ®eldman, An Intermediate language and an

: ﬁ]terpret(’r for Style-Independent Interactive System™, Report GWU'-]IST-

-

4. 81-21, lnstitute for lnformatlon Science and Technology, Dept. of Electrical
"Englneermg and Applled Science, The George Washmgton Umvernt)

Au“usiq 1981
T s ' i

[Slmpson82] ,

P - ‘ _ B
' ‘g" 8’ &-l Snnpson_, "A Humz_l__l_x;P\Jp/ors Style.({&uide for Program Design”, Byte 7, 4

. J -
s ~* (April, 1982), pp.108-132.
e . . - .
[Singh&3] B. Singh,-J. C. Beatt.y’and R. Rymann, " A Graphics Editor for Benesh.

LI

s

Movement notation”; Compuler Graphics, July, 1983 pp 51-62.

[%nmh82]D C Smlth C. Inby, R Klmbaﬂ and B Verplank," Desnmng the Star User

¥ Interface”, Byte 7,4(Apnl,‘1982), pp.242-282.

.

< L . '
{Tanncr84]P P. Tanner apd W. A. S. Buxton, " Some lssues lg Future User lntcx:facc |

P Management S)stcm (UIMS) Devclopment tn /Scchetmé’{/ 1984

N .
- A . . e

[Waerv agen83] - - ,“ . o ,
v T Waen agen /g Llllehagen and J. Losenedahl " ICAN lCUE ICAN‘s l'ser

Interface Management System”, UIM Workahop, November, 1983,

-

[Wong82]P.'C. S. Wong and E. R. Rexd " F‘LAIR User lnterface Dlalog Desngn 'I‘ool"

RN Computer Gtaph:cm]b‘ 3{1982) PP 83 y o '. : V;\) K
)g{‘ . - - st - ’:’\‘,
e . ’
: : £
£ S Y

:
"

Appendix Al

. Example of Designing Dialogue Control
G . . B .
In this appendix an example of the use of our system to produce the dialogue con-

trol component of a user interface is presented.) -

1.1. Problem

[y

The problem to be solved is a simple application in which two types of ijects

(circles and squares) cuan-be edited on the screen. .A menu is used to select the objects

)

to be mampulated By movmg the tracking oross to the worklng window and pressmg

-

» a button on the tablet, the program will dlsplay the object with the trackmg cross_

pmwsitioned at the center of the object. An "EXIT command is avallable"in the menu

- ~
.

.to exit from the program e ' p

Fy . o - . " v .
1.2. Recursive _Transition thWork Solution

. The main RTI\ for this problem consrsts of four states as‘ shown in Figure Al.1.
Three mput tokens can be sent from the presentatxon component. They represent the
!hree ltemsl in Lhe m.enu Whenever ‘the user chooses one of them, the correspondlng-
token will be sent to the dlalogue control component whlch causes it .to change state:
The E,\lT token caﬂuse« the program to terminate (because it will go to an ‘ending

state) the other two tol\ens cause the program to call another sdbdxagram (either

drawc or draws) to add the appropriate obJects to t,he screen . \.‘-

82

square ~

(draws)
circle .
-
\ " f/\
o)
L3 o
. A ‘~ —
i
. main control ’) ' R
x Figure A‘l.l Main Control RTN 7
= C e

These two subdiagrams are shown in Figure A1.2 below. They are used to draw

circles and squares respectively. Pomt" is the input token that is sent from tﬁe‘ﬁ .

) 'f
presentatxon component when thé user presses. the button in the work area. Dc?endmg

g

" on the current state of the system.(l e. dependlng on whether squarc or "circle" has

>

been chosen prevxouqu) enher of thém Wl” be called when pomt is entered and the

appropnate object is drawn Tt) o BN H

S pbint/érz;vciré(intoke ‘

-

drvawcvix"-c(‘intokeh) | drav.qs‘q('i'nitoke'l}l)‘t .

P L
N -
Ly

Figure A1.2 Two subdiagrams called by. "Main C otrol'. "
T e N _‘ i 1 ’ ¢ P

. ‘ P
.

"These subdjagrams send_tokens to the presentation component and the applica-

P
BEURNE SN . A

'1.3. Code‘Generation

-
- .

tion interface module. The token sent to the presentatipn component is used to add

the object to the screen;'while the token for the application interface module hpdate;\‘

the database.

‘ - ‘ . . -
Based on the three subdiagrams as shown in tjhe previous section, three event

I

handlers will be formed along with the three Leading Relation files. The contents of

these files are: - \}
Main control | Drawe | Draws
mmm\
square point point
circle exit | exit
exit

" The generated code for the three diagrams is:

Main Control Diagram:

ehmain
266 .
event0 event] eventl continue event4
circle event0d
square eventl v
exit event?
continue continye
. point event4

ehmain (iname, ename, value, variables))
~ " int Mame; - .
int ename; :
int value; . t
int variables] |; : '
Al

switch (ename)

case (event0):
switch (state)

case (0)
state = 1|,
return(),
case(2) - .
state = 1.) - hd
retarn();

case (eventl): ; . .
switch (state) :
Ccase (0)

state = 2.

return(),
case (1)

state = 2,

)
return(), \

cave (event) ’ R
switch { state)
{ .
case (0)
state = 3, .
send_event{ variable[0

. continue, vanable] 1]),

sead_cevent{ variable| O |, ename, O),
destroy(iname), '
retqrn().
casgl(1) - ’ . ’ .
state = 3, . L

aend_rvent(varrable] 0 . continue, vanable| l).

send_event{ variable{ O |, ename, 0)

destroy{ 1name },

retorn(), .
case (2) *

state = 3,

send_gvent{ variable; 0
send_event(.vanable/ 0
destroy(1name)
“return(),
}
case { contipue)
switch (state)
{
case (templ))
state = | :
returo{), £
case { temp?2)
state = 2,
return(),

, continue, vanable[1]);
,epame, 0),

care {eventd)
switch (state) .

case (1)
create_snstance(drawc, 2, this_jnstance, templ),
send_svent(new_instance, ename, value),
state = templ,
return(),
case{2) o
createnstance(draws, 2, this_instance, temp2);.
send_event(new_spstance, ename, value J;
state = temp2;
returp(); -~

switch { state)

cne(1)
. create_nstance(drawe, 2, this_jnstance, templ),
send_event(new_instance, ename, value),
state = templ,
retura();
case(2)
create_instance(draws, 2, this_instance, temp2)
.sepd_event(new_instance, ename, value);
state = temp2;
return();

Ei g

85

Drawc Sypdiagram:
o

I
Y

ehdrawc
\ 223 S
_ eventl
point event]
%
chdrawce (iname, ename, valde, variables)
gt 1name,
tnt ename, '
1ot value,
int variables{ |,
(.
switch (epame) -
{
case (eventl)
switch (state)
{ :
care (0)
state = O,
"send_token(APPLICATION, 1. drawcirc, 1otoken),
send_token{ PRESENTATION, 1, drawcirc, intoken),
. return(), .

}
}
switch (state)
{
case (0)
state = 1, | -
“send_event(variable! 0 |, continue, variable! 1]},
send_event(vanablc! ,‘ename, 0);
¢ destroy(iname),
return(),

S it

<

Dl)inws Subdiagram: - . .

ebdraws)

223 : : : .

eventl) o R ,

Y point eventl . . R

%

cbdraws (iname, ename, value, variables)
int ipame, .
10t ename, - b
int value, .

int vanables| |,

switch (epame)

case (event™
switch (state)

- i
' case(0) .

state = 0, . .
send_token(APPLICATION, 1, drawsq, intoken), '

send_token(PRESENTATION, 1, drawsq, intoken };

- return(),

} : .
} . .
. swmtch (state)

.
case(0)
state = 1, .
send_event(vanable| 0 |, continue, variable[1]);
send_svent(variable[0 |, ename, 0 };
destroy(iname), - ¢
return().

n~

.‘ Y ,
Based on fhese generated code, the assembler and the compiléer of the UIMS will form

the tables and the "C" language event handlers. o

4

Appendix A2

User Manual

88 .

Tools for Recursive Transition Networks

User’s Manual

Version 1.0

Written by

Sas Chos Lau

)
Spring, 1985 .

;

Department of Cdmputing‘- Science
University of Alberta
Edmonton Alberta
~ o

- © Capada ; .

89

2.1. Introduction

. AN
v

& Thns document describes one\of the tools used to specify the dialogue control

component of the Unlversny of AlBerta User Interface Managment System. lt

_describes all the available comm‘ands and how to use them.

j’/""‘ } -

2.2 /O“;'on;'iew
) »""{_\he t-ooln available i‘ny.phis system are aimed at helping the user interface designer
(tho edii_or user) to create, and modifyft'};e dialogue control component of the U of A
UIMS. Rocursi\'e Transition Nétworks (RTNS) are entered' into the system in a graph-
ical way and tb,e outp‘ut 1s an EBIF file describing the RTNs. This file is processed by
an assembler and a"Cr languagé’compller resulting in an object module‘that is linked

wnh other modules {l e. the presentatiofi component and the application |nterface

module) to form a complete user mterface. The three tools available are:

(}) Graphical Editor.

An editor used to enter and modify the RTNs interactively and ptoduces a data-
. _ : & :

base déscribing the diagrams. A datafile can also be generated by this editor to
produce a hardcopy of the RTNs.:

(2) -Associated Facilities. o T
Procedures to manipulate the databases created by the graphical editor. The
main operations are merginé; destx"oying- and copying the databases. '

- (3) Code Generator.

Program to convert the dotibase of the RTNs into EBIF.

9]

2.3. System configuration . .
| | A \

" * The basic hardware requirements of the system are a colour monitor, a tablet

!
4
with at lea* two buttons for selectxon a VAXt cemputer or a snmllar machine. that

;, can run the UNIX$ 4.2 BSD operatmg system and a laser inter (optional).

2.4. Graphical Editor

2.4.1. Using the Editor
' N

The grop\i‘c/al editor canQbe called to create or edit the RTNs by:
. ge network-name [-p] [-t] |
thwork-’]c is the name of the database to be called. If.‘this,database has previ-
ously been created, the first diagram on th.is database is loaded and displeyed on the
monitor. Otherwise, a new database is created wit‘h "network-name" as fts.name. The
"-p" option is used to specify whether the user is an expert or novice. If this flag is set,
the editor will not display any prompting messages and treats the user as an expert.
" o'pt,ion,tells the editor to prodoce a file for the text-format.ter "trofl” in order to get

a ﬁardcopy of the RTN_. .

The primitives of the RTNs are the objects in the tranoition Siagrams wlgi,ch are
linked toget‘he'r“tq represent the dialogue. The four basic primiti:'es are 's;tete, state
_Dame, arc and arc ;Sarameter 'I“heuare parameter is divided into‘three different fields:
input token, output token and apphcatlon procedure Each of these can be manipu-

lated separately Two ocher pnmmves group and network are used in this editor,

They represent a2 group of ,primitives and the transition dlagram that is being edlted

The editor commands are nsed to mampu[ate these prlmxtlves ‘The common

‘ commands are addmou,~ deletion, removing, rehammg,-and "exit":’ Auxiliary com-

.

* VAX is a trademark of Digital Equ.ipjment Cofporation.
$;UNI.\' is a tradematk of AT & T Bell Laboratories, Inc.

0

" mands include "grouping”, "next network”™ and "help”. The meaning of these com-

. ' : ’ ‘ 92

A 3

mands and their syntax is explained in-the following sections.

Yoo

N » *
P

2.4.2. Windows

.

" The editor makes use of the screen to display all the necessary information and

‘-
7

* guide the user in entering and creating the recursive transition networks. Four win:

| dows are being u'i_ and their layout is shown in figure A2.1 below.

a { ‘ . .
, Current
Selection | '
R Work Area . R
. .] ,
Menu -
Error/Prompt Message

" Figure A2.1 Window Layout ,

The work area is‘used to display the diagram b:aing edited. This gives immediate feed-

‘baek of wh‘at" the user has entered.. The error and/or prompt meg_sa.gbs are shown in

another window. Tt explains the error that the user has created and/or prompts the
: o ‘ .)

user to igtg;act with the editor. Besides showing these messages, helg’ messages for all

thgé'OHiméndS and primitives are a‘lso‘ disp!ay#d fin this window. The menu window

"shows the C.OmII.lan.dS and primitiveﬁ-.avéifable for 'seiectién’{yhile the "Current Selec-

. o .) : . . - . .
tion” window displays the ¢hoices the éditor is using. The name of the transition
oo e . b) . . = . .

B
&

diagram is shown.on this window ‘as well.

~a.

2.4.3. Selection of{SCommq,ndp and Primitives

Since the editor is menu driven all the commands and primitives are selected by

. . &) - .
putting the tracking cross on the desired menu item and pressing the PF1 key on the
~ tablet t. Tbé\;ser can change the chosen options by selecting again and no ordering

of primitive and command selection is required.

2.4.4. Error Ha.ndli;)g - — ’) N
Whénever the editor detects that the user has entered an incorrett command, the
error handling routine will be invoked. This procedure displays an error message
explaining wEat is wrong with the input data and rings ar bell to notify ihe user. Com-
mands can then be re-entered or the user can ignore the curre.ntvco.mmand by brcssing
the PF3 kely and starﬁngr a new one.
2.5. Editor Primitives ‘ , ,
’i‘he prlmitives are the objects on th; recursivé transition networksv. that are
l‘inkcdr together td represent the dialogue sequence. The objects that are used.in the
editor ixicllpdé the ,:;taté, the .state name, the arc, the ~arc param‘eter, the inrput‘ntoken,

the output token, the dpplicatiron procedure,to'k'en, the network id and the group.

Each of these is described in the following sections. . . ,

' 4 , - : - | '
2.5.1. State _ » “

, . ,
~State is used to represent a state of the recursive transition networks. I the

diagram, it is represented by a fixed size circle. Stateslcan overlap each other but
complete oveﬂapping is not‘desired because in this (:ése, there is no way to access the

cbvered circle' This pnmmve can be chosen froNhe menu by puttmg the trackmg

cross in the nem STATE and pressmg Lhe PF1 key.
'+ Any key that can '_'5e‘ner'ate evgnt type,l accordipg to the WINDU!B specification can be used.

.
.

? » : . . e~ e

73

2.5.2. State Name ;

The purpose of assigning a state name to each state is to make it possible to refer
to it textually. In the menu, it is represented by "STATE NAME". An integer is used

asthe state name and it is put at the center of the state.

. 2.5.3. Arc ‘
An arc is Used to connect two- states together. This is used to Tepresent a transi-
“tion from one state to another. Four points are speciﬁed. by tge user for every.arc and

the resulting curve is a Bezier c [the points It is represented as "ARC" in the

-menu.- The Iength curv ature and direftion of the . arc is fixed b) the uqer and the '

curve can go through ot her pnmltlves if required.

;

v L
2.5.4. Arc Parameter

« This p‘arameter is associated with an arc. Whenever the’ arc is traversed, the arc
parameter is. processed The user cai choose this primitive by presslng the PFl key at

the option ARC PARAMETEH" +Three ﬁelds are grouped together in this parameter

they are the lnput token ﬁeld the output token ﬁeld and the apphcatlon procedure

ﬁehd The lnput token ﬁeld bolds the token sent from the presentatlon component or

aupother,subdragram name. If the user enters a token whlch matches the mput token‘

it wnn causef the arc to be traversed Iy thls ﬁeld holds a dlagram name, the

| - corfespondlng dlagram' w1ll be called and program control is passcd ‘to the called subdl- .
/ el

agram if the token entered by the user satlsﬁ’es the Leadmg Re]‘atlon st of the called’

/ subdlagram The output token is the token sent to the presentauon component as a

. '_ result of thls arc. traversa.l The appllcatlon procedure is the name of the token whlch

-

is sent to the apphcatron mterface model of the UIMS to call the appllcatlon pro-

" 14
“cedure. :

.) . - , e

o Any of these three fields can be left blank and their names can be it any combina- |

v

L } . B P

te

tions of” characters and letters, underline is allowed as well. In the diagram, it is

input token/oulpul token
application procedure name

rcprescntcd as . If the output token or the procedure

name 1S not specify,' the representation changes to #nput token/outputtoken or

__inpul token respectively. o
application procedure name o

, &
2.5.5. Input Token, Output Token and Applica'tion Procedure -

—

. The input token, the output token ‘and the application procedure can be. edited
'lndnldual and are treated as other primitives. They are shown as "INTOKEN

TOKEN", "OUTTOI\EN TOI\EN" and "PROCNAME" in the menu.

2.6.8. Networle i R ‘ .

The network id lS the name of the RTN bemg edited.” Any. combinations of

letters, digits and underlines are allowed as the name. In the menu, it is shown as

"NETWORK ID".

L)

2.6.7. Group
Primitives can be collectéd together to form a group and a name is assigned to it.
The nam of a group can be of any comblnatlon of letters, dxgns and ‘underlines. Once

a group.is formed it can be used in the same way as other prlmltlves Groups sﬁould

have dlﬂ'erent names in order to dlﬂ'erentlate between them. The user can choose

groups by selectmg 'GROUP" from the menu then the edltor wxll prompt the user to.* .

‘enter tbe name . of the group The advantage of usmg groups ls to speed up the opera-

tion s;nce commands‘are_lapplled to severgl objects at the same tlme_t Mstead of smgle

- _primitives.

95- -

-~

a

~ .

\

*

2.8. ‘Editor Cemmands

2.6.1."Add ‘ co

d

e 3 . . N LN
The "Add” command is used to add a primitive to the transition glagram and

updates both the database and the display. The primitives that can be used with this
(N

command include the state, the state name, the arc, the arc parameter, the input

token, the output token, the application procedure and the group.

"ADD STATE" will cause a circle representing the state to draw on the diagratfx.,

‘The user needs to specify the center of this circle on the work area by pres;sing' the PF1

o

key when the trackmg ¢ross is at the desired Iocauon After a state is created, a state
name can be added by choosmg the primitive "STATE NAME The state which holds
this name is specified by putting the tracking cross inside phe'desired state and then

entering the state name from the keyboard.

Before the "ADD ARC" command is used, the states at. the ends of the arc must
“exist. The user needs to enter 4 positions to fix the locus of the arc. The first two

positions are inside the tail andsthe head states. The two other points are used to fix .

the locus. These poiﬁt,s are joined,together by a Bezier curve. *

ra o

When the afc parameter is added two states representmg the tall and ‘the head

. states of the arc must be specnﬁed This i is done. by pre;\s‘mg the PF1 kcy on the tablet

when the trackmg cross is msnde the states Then the trackmg cross is placed at the .

posmon at which. the parametems dlsplayed t. The parameter is then entered in the

¢

format mput token/outpg-token/ procedure-name There may be cases in whlch more
than one .arc has the same tail and head qtates In thns sltuatlon the arcs are bhnked

in turn agd a prompg, message is dlsplayed aslung the user to select the are. Typlng

3

y wllbs'elect the bhnkmg arc, other keys wxll SW\tCh to blink another arc

b4 o
v . : R N v VR
+ No pressing of key is required. .

97

~

"INTOKENT, "OUTTOKEN" and "APPL. PROCEDURE NAME" are the prlml-
tives used to add the input token, the output token and the application procedure
name individually to an existing arc parameter with the respective field empty. In

order to select the desired arc parameter, the user needs to place the tracking cross in

E

the parameter (which is assumed to be a rectangle) and then enters the name. After

the carriage return is hit, the name is inserted into the appropriate position.

. A~group of objects can be added by choosing "GROUP" as the primitive. The

user specifies the name of the group to be added, this name is displayed on the screen
? *
automal'ically;-

2.6.2. Delete
This cofnmanld ;5 u\sed to (niele‘le a primitive from both the monitor é.nd the. data-
('gasfn The pri'mit,i:\'oslihat can be used with this command are the state, th‘e state
- C
namc the arc, the arc pdrameter the input token, the output token, Lhe application

)

. prorcdure and the networl\ id. T .

/

e

.
-

t

The primitive "STATE" is'used to delete "3, state from ‘the trausition dlagram

K

a

This* wnll cause thé‘state récord to ‘be removed from the database ‘and the screen to be

updaled If a state name? has alreaBy been asszgned to a state, it is deleted as well.

1

&

Thc user Just places the trackmg cross inside a state'and presses the PF1 key to exe-
.)

vcute this commandl. . “ /

lq order ‘to. delete a state name from the transition diagram, the prlmmve

o

"QTATE NAME" is chosen The tracking cross is placed inside the state for whlch its

)

name is deleted and the RFI key 18 pressed The state itself'is unaﬂ'ected by this com-

* , ,“?"‘ ; . '

mand ‘-g .u‘,.’% 'A . . . T

. “An arc Jommg two state‘s tan be de-leted by he prlmltnve"’ARC The taxl and

%ﬁthe H:ad st,atey ay: specnﬁed by P‘uttmg the trackmsc cross inside the cnrcles and press-

- f
ng the PF*l‘l\e) lf’an arc parameter is assoclated wnth the arc, it is deletbd as well.
'2‘)
1 N . .. ; ~ . o . [
. : . ‘u °

.. . : - “ o et . o | .. \‘

o ey . . > - -~

98

When there are two or more arcs connécting the same set of tail and head states, the

LAV
2

Jcs will blink alternative and a message will prompt the user to choose the appropri-
ate arc. The user can type "y" to delete the blinking arc. If an other key is pressed,
i

the next arc is blinked.

The arc parameter itself can also be deleted by selecting "ARC PARAMETER".
This command is executed when the tracking cross is placed on the parameter and the

PF1 key is pressed.

~“The input token, the output token and the application procedure name can also
be detected by choosing the respective primitive. Their operation is the same as the

"DELETE ARC PARAMETER".)

A group of objects,is deleted by using the "GROUP" primitive. The onfy opera-

tion requiced is to enter the name of the group when the editor prompts l‘{sterﬂ

"NETWQRK ID" is used to delete the curf'ent transition network from the data-

base and the previous diagram is displayed. When this command is executed, the edi-
[

tor will ask for confirdation and "y" needs to be entered to confirm. Pressing any. °

?

other key will ignofe the command.
: v

2.8.'3. Move

» ' : .

The purpose 6f this command is to move a primitive from one part of the

o 4 ‘ ! Ve .

~ ‘diagram to-anpther pa:t/;/This command can bnly be applied to primitives within the

same diagram. The .on pri.xﬁi&ive;;_ that can use this command are the state, the state

5 L - .) ,
dame, the arc, the-arc parameter, the input token, the output token and the applica-
f . o .. ‘ .)
- tion i)roc-edufe.

% .

v . \
-

When the primitive "STATE" is chosen, a state can be moved from one location

L

to another. The user c!;oos'és_the sta;e\\ by pressing the PF1 key when the tracking

cross is 'ikn'side the desired state. The intended iocation is selected by pressing the kgy

o

g ' . ' 99

again to fix the, new center. When the state is moved, the state namre #ill "move as

3

well.
‘

"STATE NAME" is the primitive used to move a state name from one state to
another. The user first chooses the state name to be moved by pressing PFI key inside
the state. Thé intended state is selected by pressing the key again‘when the cross is
inside the state.

An arc can be moved by selecting the tail and the head states and then the new
set of states. The two intermediate points cannot be relocatea. If there are two or
more arcs connect.ing the same‘tavi! a'nd. Head s‘tateés, the arcs are blinking in turn to ask

the user to cboose‘tbre_‘in’/tended o'{lel. Pressing anj key except "y" will cause the next
arc to be displayed. When "y" is pressed, the editor will stop blinking and the blinked
arc is ﬁscd as the desired arc.

The primitive "ARC PARAMETER" is used to move the ar;c parameter from one
location f,o another. The pérameter to be moved is first selected by pressing the PF1
key when the tracking cross is on the parameter. The new,trackiné cross position is
the new slt‘artinlg position of the input token field of the arc parameter.

"l&'TOKEN", "OUTTOKEN" AND "APPL. PROCEDURE NAME" are the primi-
tives used to move the inp,ut. token, the output token and the application procedure
name‘from the original to a new position. The sequence for exec'uption is the same as

" "Move Arc Parameter™ with the new location specified for the input token, the output

token and the application procedure name respectively.
‘ ‘ .

.

k : ‘ 100

2.6.4. Rename

"Rename” is used to rename a primitive on the current transition diagram. These
primitives include the state name, the arc parameter, the input token, the output

>

token, the application procedure and the network id.

The "STATE NAME" is the primitive used to rename the state. The user
‘ - 2

specifies the state by placing the tracking cross inside the state and then enters a new

state name. The new name will replace the old one.

The. parameters "ARC PARAMETER", "INTOKEN", "OUTTOKEN" AND
"APPL. PROCEDURE NAME?" are used to rename the arc parameter, the input token,
the output token and the application procedure name. The user places the tracking -

i .
cross over the intended parameter and enters the new name.

The diagram name being edited can also be changed by,entering the primitive

"NETWORK ID" and then entering the new name from the keyboard.

2.8.5. Next Network

The "NEXT NETWORK" command is used to finish editiag the current diagram
and load or create another diagra;h for editing. No primi‘tive is needed for this com-
.- mand and once the co'mm;snd is selected, the e_c_lit‘di" will ask the user for the new
.dialgram pame. Iffthis n;tqe is in th'e‘database,.rtkhe diégrﬁtm 13 loaded and displaygd on
gcreen; otherwise‘a new entry is created in database and the Qc;‘eep is cleared to indi-

" cate a new database entry.

101

s

2.6.6. Add Group

Two commands arle available to form groups. "ADD GROUP BY LOCATION"
and "ADD GROUP BY POINTING" are uéed to collect objects together. The_only
difference b'etween them is the way in which the objects are grouped. Both commands
necd to specify the name of the group first, but the first command collects objects by
specifying the lower left and upper right co.rner of a rectangle. All objects which are
completely inside the rectangle are included in the group. The second command

. i

selects the objects by using the tracking cross for selection. The selectic;n method for

various objects are the same as the "DELETE" command and the group list is ter-

minated by pressing carriage return.

S

2.8.7. Merge Groups

This command is used to merge tvy groups. When this command is issued, the -
editor will ask the user to enter the two group names. The two names are separated
by spaées and the first name is the group to be merged and the resulting group"is

stored in the second name. The first group is unaffected by this command.

2.6.8. List Group

‘When "LIST GROUP" is selected, the editor will ask the user t(; enter the group

name to be listed. If this name exists in the database, the collected objects are

L4

displayed. If thé{user enters "all”, all the groups in t’,he database -will be displayed: If

"all" is used, all the objects in the first group are ‘diSpléye& and the editor asks th
’ , : "o + .
user to press the PF1 key to continue displaying the second group and so on. Pressing

“any other key will quit this command.

102

@

2.8.9. Rename Group

A At

The "RENAME GROUP" command is used to rename an existing group. The

user is asked to enter the old and new group names separated by spaces and ter-
N f . ™
f

[

minated with a carriage return.

c

2.8.10. Destroy Group

r

The "DESTROY GROUP" command is used to destroj'a' gro’up from the group

database. A group name is entered by the user for this command.

2.6.11. Help v , e

The "HELP" command is used to provide on-line help ‘messages for the editor
. : .

. o« . . ’ - - d f

commands and primitives. This command is on all the menus and once it is selected,

the user needs to enter the command for help. Only the c'omm‘Ands‘ or primitives that

are shown on the current menu can call for explanation.
2.7. Associated Facilities

2.7.1. Merge Databases it

This command is used to merge two databases created by the editor together.
The syntax of the command is

m’érge from-db to-db

If e:ther or both of the databases do not exist, an error message is printed and the
command is not executed "from- db" is the name of the database xhat is merged wnth

the other database. "to-db™is the hame of the resulting database The data in "from-

. .
¢

db” is unafi¢cted by this command_t

103

2.7.2. Copy Database

A database can be c‘&&ied to create another duplicate database by using the com-

mand .
: \k copy from-db to-db

3 . *

, "from-db” is the name of the database to be copied and "to-db" is the name of the

duplicated version.

2.7.3. Destroy Database

The command used to destroy an existing RTN database is

destroy db-name —

"db-pame” is the name of the database to be destroyed. If this database does not

exist, an error message is printed. No confirmation is used in this command.

2.8. Code Generation ‘
After a RTN database is produced by the graphical editor, the code generator can

be used to generate the EBIF of the dialogue. The command is:

‘convert db-name [db-name.. |

L3

‘Two types of files are created by this command, the Leading Relation files of all the /
diagrams in the databases and their FBIF files. The later ones are the essential files to j
form a complete user interface. : C S

The name of the event handler is the same name as the RTN with "eh” appended ‘
at the beginning. The Leading Relation files F/use the same name as the event handle_r \
files with ".L" added at t.he“end. Each database contains a number of diagrams and

each of them will create a separate set of files.
"db-name” is the name of the database that is converted to event based form.

Any number of databases can

+

be converted at the same time. If any of these databases

do not exist, the command is exited with an error message. No event based format

1
.

104

files is created but Leading Relation files for all the diagrams in the existing databases

up to the place where the error is detected are created.

‘L

