
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

University o f Alberta

TRAJECTORY SPLITTING MODELS FOR EFFICIENT SPATIOTEMPORAL

INDEXING

by

Slobodan Rasetic (0)

A thesis submitted to the Faculty o f Graduate Studies and Research in partial
fulfillment o f the requirements for the degree o f Master o f Science.

Department o f Computing Science

Edmonton, Alberta, Canada

Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
A rchives C an ad a

Published H eritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
C anada

Bibliotheque e t
A rchives C an ad a

Direction du
Patrim oine d e I’edition

395, rue Wellington
Ottawa ON K1A 0N4
C anada

0-494-08140-6

Your file Votre reference
ISBN:
Our file Notre rererence
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1*1

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Alberta

Library Release Form

N am e o f Author: Slobodan Rasetic

Title o f Thesis: Trajectory Splitting Models for Efficient Spatiotemporal Data

Indexing

Degree: Master o f Science

Year this Degree Granted: 2005

Permission is hereby granted to the University o f Alberta Library to reproduce
single copies if this thesis and to lend or sell such copies for private, scholarly or
scientific purposes only.

The author reserves all other publication and other rights in association with the
copyrights in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty o f
Graduate Studies for acceptance, a thesis entitled Trajectory Splitting Models
for Efficient Spatiotemporal Data Indexing submitted by Slobodan Rasetic in
partial fulfillment o f the requirements for the degree o f Master o f Science.

Dr. Joerg Sander

Dr. Davood Rafiei

Dr. Arturo Sanchez-Azofeifa

Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To 94.y Wife

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In this work we address the problem o f splitting trajectories optimally for the

purpose o f efficiently supporting spatiotemporal range queries using an R-tree

framework. In particular, we minimize the expected number o f disk I/Os required

to answer a query. Previous works have addressed this problem by concentrating

on methods that use novel access structures or methods that reduce the volume o f

trajectory approximations (e.g. MBRs). We show that splitting trajectories with

the goal o f minimizing volume does not necessarily lead to the best query

performance. We derive a model for estimating the number o f expected I/Os with

respect to a given query size for an arbitrary split o f a trajectory. Based on the

proposed model, we also introduce a dynamic programming based algorithm for

splitting a set o f trajectories that minimizes the number o f expected disk I/Os with

respect to an average query size. In addition, we develop a linear time, near

optimal solution for this problem which can be used in a more realistic dynamic

case where trajectory points are continuously arriving. Our experimental

evaluation confirms the effectiveness o f the proposed trajectory splitting policies

when embedded into an R-tree structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

Special thanks to Dr. Joerg Sander, my fellow college James Elding and

Mario Nascimento for all the support and contribution to this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Chapter 1 Introduction... 1

Chapter 2 Background and M otivation... 8

2.1 The R-Tree.. 8

2.1.1 The R-Tree and Spatial D ata... 9

2.1.2 The R-Tree and Spatiotemporal D ata.. 13

2.2 The Spatiotemporal Indexing Structures...15

2.2.1 Time as Additional Spatial Dimension.. 18

2.2.2 Decoupling Spatial and Temporal Dimensions..22

2.2.3 Tighter Trajectory Approximations..27

2.3 Trajectory Splitting and the Query Size..32

Chapter 3 Optimal Trajectory Splitting... 35

3.1 A Cost Model for Splitting Trajectories..35

3.2 Dynamic Programming A lgorithm ... 40

3.3 Directory Level Node Splitting... 43

Chapter 4 Heuristic Trajectory Splitting ...44

4.1 A Cost Model for Optimal Segment Size... 45

4.2 Linear Time Trajectory Splitting... 51

Chapter 5 Experimental Results.. 56

5.1 Robustness with Respect to Query Size..58

5.2 Number o f Disk I/O s.. 61

5.2.1 Varying Query S ize ...61

5.2.2 Varying Database Size..66

5.3 Index S ize... 68

5.3.1 Varying Query S ize ...68

5.3.2 Varying Database Size..70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Index Building T im e...72

5.4.1 Varying Query S ize ..72

5.4.2 Varying Database Size... 74

Chapter 6 Conclusion...76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1. A reconstructed object trajectory composed o f its segments [1 4]............2

Figure 2. The R-Tree [6]...10

Figure 3. A bad (a) and good (b) split o f the spatial objects [6]............................... 12

Figure 4. Trajectories o f spatiotemporal objects [14]...18

Figure 5. Different Split Strategies [14]... 20

Figure 6. The TB tree structure [1 4]... 21

Figure 7. Movement o f a front-line structure [5].. 24

Figure 8. Splitting Segments during Insert [5]...25

Figure 9. Logical representation o f the MBOP [21]...28

Figure 10. An example o f splitting a trajectory using one and three MBRs [7]... 29

Figure 11. Different trajectory splits and its approximations.................................... 30

Figure 12. Relation between query size and trajectory splits.................................... 33

Figure 13. A Query Extended MBR.. 38

Figure 14. Volume o f query extended MBRs using 0 ,1 , or 2 splits......................39

Figure 15. Illustration o f a constant-slope trajectory in 2 dimensions...................46

Figure 16. I/O Performance using multiple trees (Network D ata)......................... 63

Figure 17. I/O Performance using multiple trees (GSTD D ata).............................64

Figure 18. I/O Performance using a single tree (Network D ata)..............................64

Figure 19. I/O Performance using a single tree (GSTD Data).................................. 65

Figure 20. I/O Performance (Network Data)..67

Figure 21. I/O Performance (GSTD D ata)... 67

Figure 22. Number o f MBRs for each query type (Network D ata).........................69

Figure 23. Number o f MBRs for each query type (GSTD Data)..............................70

Figure 24. Number o f MBRs (Network Data)..71

Figure 25. Number o f MBRs (GSTD D ata)... 71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 26. Preprocessing time in seconds for each query type (Network Data)... 73

Figure 27. Preprocessing time in seconds for each query type (GSTD D ata)........73

Figure 28. Preprocessing tim e in seconds (Network D ata)....................................... 74

Figure 29. Preprocessing time in seconds (GSTD Data)..75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1. Robustness o f OptimalSplit for Network Data...59

Table 2. Robustness o f LinearSplit for Network D ata... 59

Table 3. Robustness o f OptimalSplit for GSTD D ata.. 60

Table 4. Robustness o f LinearSplit for GSTD Data..60

Table 5. Snapshot query sizes... 61

Table 6. Range query sizes.. 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Producing and collecting large volumes o f spatiotemporal data has become more

practical in recent years, leading to increased availability and the need for

efficient management o f this type o f data. Therefore, there has been an increasing

demand to develop database solutions, which can manage large volumes of

spatiotemporal data. For many industries, it is important to be able to track, store,

and query information about moving objects over time, for instance, to deliver

real time services to clients based on spatial and temporal context. New

technologies such as GPS and telecommunication technologies allow us to

pinpoint the location o f objects in space at a certain time. Examples o f such

domains include wireless communication networks such as Global Positioning

Systems (GPS) and cellular telephones, wildlife tracking experiments, traffic

routing problems, fleet control, and mobile computing.

For many industries, it is becoming increasingly important and often critical to

track and record the positions o f their clientele. An example o f such is for the

delivery o f real time emergency services, such as ON STAR and E911. Within

this domain it is imperative to frequently update the last known position o f an

object as well as continue to maintain all o f its historical localities. Object

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

movements, however, tend to be continuous, and from a storage perspective it is

not feasible to capture and record all o f the positions o f its lifetime. Sampling

methods can therefore be applied to reduce storage overhead. Sampling the

locations o f continuously moving objects involves recording their positions at

discrete points in time. Therefore, spatiotemporal data in its most general form

consists o f observations with their timestamps and spatial location. The position

o f an object can be sampled and recorded as a single point p in ^-dimensional

space, i.e. p={xi, x?,..., x„). For simplicity we assume that an object’s spatial

movements occur over the 2-dimensional plane. Apart from simply recording an

object’s position it is often equally important to reconstruct the path that an object

followed over a given interval o f time, which is called a trajectory.

Figure 1. A reconstructed object trajectory composed of its segments [14]

Trajectories o f moving objects are sequences o f positions recorded at discrete

points in time. A linear interpolation between two successive locations is typically

o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assumed. A trajectory T is represented as a sequence o f 3-dimensional points

((xp y , , tx) ,(x2, y 2, (x k , yk, tk)) , where (x„>•,) is a spatial location, and v, is a

time instant as illustrated in Figure 1. A consecutive sequence o f points o f a given

trajectory T is called a segment o f T. A segment o f length 1, i.e., consisting o f

only 2 consecutive points, is called an elementary segment.

The rate at which an object’s motion is sampled will often guide the quality o f

reconstructed trajectories. Reconstructing an object’s trajectory can be

accomplished by applying an interpolation function between successive pairs o f

sampled points. This operation allows for an objects position to be approximated

when its exact location has not been recorded. This method will often lead to

some degree o f imprecision; however, the amount o f data used to represent a

trajectory will be dramatically reduced. In our work we assume this model and

apply a linear interpolation function between successive pairs o f points for the

purpose o f trajectory reconstruction. For instance, one may have to track the

movements o f all vehicles in a fleet, sampling their location at regular time

intervals. Within each o f these domains it is important to store the positions o f

objects effectively for fast and efficient query support.

Several different types o f queries can be expressed over spatiotemporal data.

Range-based queries [5] [7] can be posed to answer questions about object

positions in the past, present, and future. Topological queries [14] can be posed to

answer, for instance, questions regarding the traveled distance, heading and

average speed o f an object during an interval o f time. Nearest neighbor queries

[20] can be posed to answer questions regarding the similarity based on spatial

->

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proximity o f moving objects. More complex queries can be constructed by

combining the basic query types [14]. Our work concentrates on historical

spatiotemporal queries (i.e., we are not concerned about predicting future

movements o f objects stored in the database). The authors in [14] distinguish two

main types o f spatiotemporal queries: coordinate-based queries and trajectory-

based queries. Coordinate-based queries return only the ids o f objects or the count

o f objects, for instance, the ids o f objects whose trajectories intersect a given

spatial region during a given tim e interval. Trajectory-based queries require the

exact information about (partial) trajectories, in order to determine possibly

complex topological relationships (e.g., whether they cross or bypass a certain

area) or navigational information (e.g., what was their top speed and direction

within a certain area during a given time interval). To process those queries,

usually, one or more range queries are used to extract the relevant trajectory

segments from an index.

In order to process spatiotemporal queries efficiently, specialized index

structures are needed. It is well understood within the spatiotemporal domain that

the type o f query, which needs to be supported, will have a direct effect on the

make up o f the access structure used to index the data. Virtually all

spatiotemporal index structures proposed in the literature are derived from spatial

index structures such as R-trees. This approach is based on the intuition that

spatiotemporal data can be viewed as spatial objects in an extended spatial

domain, where time is treated as an additional dimension. In this context,

trajectories or trajectory segments are typically represented by minimum

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bounding rectangles (MBRs). R-Tree based access structures have proven to be

effective for supporting range based queries over multi-dimensional spatial data

sets [2][6]. Most attempts to efficiently support historical range based queries

have focused on modifying the way that trajectories are represented within R-Tree

based structures. A primary goal o f all approaches is to reduce the expected

number o f disk accesses required to answer a user query.

One straightforward solution within an R-tree is to approximate each

trajectory by a single MBR. This approach, however, yields poor approximations,

leading to low query performance in general (except possibly for queries with

very large spatial and temporal extent). Another straightforward solution is to

approximate each line segment o f a trajectory individually by an MBR. Since

each line segment can be oriented in only four different ways within an MBR

[14], the orientation information and an MBR can be stored within each leaf node

entry. In this case, information about each trajectory is completely stored within

the R-tree and can be reconstructed without any additional disk I/Os to a separate

data level. This type o f index is particularly effective for coordinate based queries.

However, the size o f such an R-tree is, in general, much larger than in the first

approach, and the disk I/Os at the directory level are more significant. A more

effective alternative is to split trajectories and approximate the resulting sub

trajectories independently by MBRs using a method that tries to overcome the

drawbacks o f both o f the aforementioned solutions. This approach would provide

us with a proper balance between the size o f the index and the approximation

quality, and, as a consequence, should lead to better overall performance.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The problem o f splitting trajectories optimally with the goal o f minimizing the

expected number o f I/Os with respect to spatiotemporal queries has not yet been

treated rigorously. To our best knowledge, the only work that addresses the

problem o f splitting a set o f trajectories to improve query performance is

presented in [7]. The authors assume a predetermined total number o f allowed

splits for a static set o f trajectories, and propose a solution that distributes the

splits among the given trajectories so that the total volume o f the resulting MBRs

is minimized. We argue, and our experiments confirm, that such an optimization

goal does not necessarily lead to the best query performance. Our main

contributions in this work are the following:

• We derive an analytical cost model for evaluating the split o f a trajectory

into segments. Given a spatiotemporal range query, this model estimates

the expected number o f I/Os due to the MBR approximations o f the

resulting segments.

• Based on the proposed cost model for evaluating trajectory splits, we

introduce a dynamic programming algorithm for splitting a set o f

trajectories so that the number o f expected disk I/Os is globally minimized

with respect to a given spatiotemporal range query. This method assumes

that complete trajectories are available when constructing the index.

• In order to deal with cases where trajectories are incomplete and updated

incrementally, we develop another cost model that estimates an optimal

length for segments when “incrementally” splitting a trajectory with

respect to a given query.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Combining the two above cost models, we derive a linear time algorithm

for splitting trajectories that leads to a query performance which is close to

the performance o f the optimal algorithm in practice, and can be used in

dynamic cases where individual trajectories are incrementally extended.

• Finally, we demonstrate through an extensive experimental evaluation that

our algorithms are both efficient in practical situations and significantly

outperform previous approaches.

The rest o f the thesis is organized as follows. Chapter 2 presents the

background and motivation. In Chapter 3, we derive a formal cost model for

evaluating the quality o f trajectory splits and propose an algorithm for finding the

optimal split with respect to this cost model. In Chapter 4, a linear time algorithm

for splitting trajectories heuristically is formally derived. An extensive

experimental performance evaluation and comparison is presented in Chapter 5

and Chapter 6 concludes the thesis.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background and Motivation

The R-tree [6] is typically used to organize multi-dimensional spatial objects

using minimum bounding hyper-rectangles (MBRs) as approximations. In this

section we discuss the R-Tree indexing structure with respect to spatial and

spatiotemporal data in more detail. In addition, we discuss various spatiotemporal

indexing structures that have been developed over the past few years. We also

motivate trajectory splitting using a spatiotemporal query as a driving parameter

with the goal o f minimizing the expected number o f disk I/Os.

2.1 The R-Tree

The R-tree leaf nodes store the MBRs o f data objects and a pointer to the exact

object’s geometry. Internal nodes store a sequence o f pairs consisting o f an M BR

and a pointer to a child node. To answer a range query, starting from the root, the

set o f MBRs intersecting the query range is determined, and then the

corresponding child nodes are searched recursively until the data pages are

reached.

The key issue for efficient query performance is reducing the amount o f

overlap between MBRs in the tree and the empty space covered by MBRs. The

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

amount o f overlap influences the number o f sub-trees that have to be traversed at

query time. Empty space in MBRs can lead to unnecessary page accesses if the

query intersects only the M BRs’ empty space but not any part o f the objects

approximated by those MBRs. In the following, we discuss the R-Tree indexing

structure in more detail.

2.1.1 The R-Tree and Spatial Data

The R-Tree is an efficient height balanced access structure capable o f storing

spatial data objects. The R-Tree was initially intended to support spatial search

queries in applications such as computer aided design (CAD). It is well

understood that classical one-dimensional database indexing structures cannot

efficiently support spatial search over multi-dimensional datasets [6]. One o f the

difficulties in representing spatial objects directly in a database is that their

geometry might be too complex to index. As a result an object's convex hull

might be better represented using a simpler approximating polygon. Using less

coarse approximations to represent complex spatial objects will have the obvious

benefit o f reducing the amount o f storage space required for the index. A major

drawback is that the approximation might not be too accurate; this can lead to

discordance between the approximation and the exact object itself. The R-Tree

utilizes bounding boxes, recursively throughout the tree, to approximate spatial

objects. An R-Tree index used on 2-D spatial objects is illustrated in Figure 2.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R3 [R4 R5 |R6 [R7

R I4 |R8 R9 R l lRIO R12 R13 R15 R16 RIB R l9

To Dula Tuples

(a)

' R5|

RIO

R2

R8

R9

R15

R12

R18

RU

RIB

(b)

Figure 2. The R-Tree [6]

The R-Tree is designed to index spatial objects by approximating their exact

geometry using a minimum bounding rectangle (MBR). The nodes o f the R-Tree

contain the spatial coordinates pertaining to each MBR. All the nodes within the

R-Tree correspond to a disk page o f fixed size, if the index is disk resident. The

number o f MBRs that are contained in a node depends on the size o f the disk

page. The leaf nodes o f the R-Tree contain MBRs and a pointer to the data tuples,

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which maintain the exact geometry o f the object. Non-leaf nodes are composed o f

an M BR and a pointer to its child nodes.. In Figure 2 the MBR R8 approximates

an object whose geometry is contained within the data tuples that are pointed to

from a leaf node. The approximating M BR for R8, R9, and RIO is R3. This

approximation scheme continues up the tree until the entire data space is indexed.

By observing Figure 2 it should be apparent that the quality o f the approximation

degrades in the higher levels o f the tree. MBRs can be inserted into or deleted

from the leaf nodes o f the R-Tree. Because disk pages might grow too large or

become too small the R-Tree must often reorganize its structure when objects are

inserted or deleted. For brevity, we do not discuss insert and delete operations in

this work, however they can be found in [2] [6]. The primary goal o f R-Tree

insertion and delete operations is to minimize the total area, covered by all o f the

resulting MBRs, i.e. a partitioning o f MBRs within nodes such that there is

minimal dead space. This idea is illustrated in Figure 3 that shows two different

ways o f splitting a node containing four MBRs. The original node itself is

described as an MBR. In Figure 3a, after splitting a node into two MBRs, the sum

o f the areas o f the resulting MBRs is significantly larger than in the case depicted

in Figure 3b. Therefore, if the data space is partitioned poorly, the resulting MBRs

will cover large fractions o f empty space. Both Linear-Cost and Quadratic-Cost

R-Tree's node splitting heuristics [6] rely on calculating the areas o f the MBRs

participating in the splitting as well as the areas o f the resulting nodes. The R*-

Tree node splitting policy [2] goes a step further in order to find a better split. It

takes into account the area-value, margin-value, and overlap-value that can be

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determined using the extents o f MBRs in each dimension. It is worth noting that

the insert and delete operations used to maintain the R-Tree are heuristics and are

not guaranteed to reduce the dead space optimally. Reducing the dead space is

important for efficiently supporting spatial range queries.

Good split

(b)

Figure 3. A bad (a) and good (b) split o f the spatial objects [6]

For our work, reading a page from a disk is synonymous to making a disk I/O.

To process a range query using an R-Tree index, we start from the root node and

check all the MBRs contained in the root node for the intersection with the range

query. For each o f the intersecting MBRs, the search continues recursively down

the corresponding sub-tree until there are no longer any intersecting MBRs to

check. If a range query intersects an MBR in the leaf node then the data tuples

must be examined to determine whether the range query intersects the exact

geometry o f the corresponding object. In addition to disk I/Os, this operation is

12

Bad split

(a)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

often the most expensive process o f a range query search since it invokes

expensive computational geometry algorithms. Therefore, it is important to

approximate the data in a way that reduces the probability that a data tuple must

be examined when it is not necessary. In the next section, we show how

spatiotemporal data has been incorporated into the R-Tree framework.

2.1.2 The R-Tree and Spatiotemporal Data

Spatiotemporal data can be considered as a general instance o f multi-dimensional

data. The R-Tree is effective for indexing multi-dimensional spatial datasets

[2] [6]. While the use o f R-Trees and MBRs has proven successful for query

support in spatial domains, it remains to be an open question whether these

solutions should be directly applied to spatiotemporal datasets. Spatiotemporal

data possesses the interesting peculiarity that its spatial boundaries are generally

well defined and closed while its temporal domain is strictly increasing and

generally unbounded. This property often results in large volumes o f dead space

when trajectories are approximated by MBRs. Copious amounts o f dead space are

generally not observed when using MBRs to approximate spatial data because a

spatial object’s extents are often well defined, closed, and static. Generally,

trajectories are modeled as sequences o f moving objects positions recorded at

discrete points in time. A trajectory is then approximated by an MBR. Therefore,

almost all o f the space used to approximate a trajectory will be empty. This might

lead to a condition where a user query will often only intersect the dead space

contained in an MBR and not the trajectory itself resulting in a so-called false hit.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By reducing the dead space o f a trajectory approximating M BR fewer false hits

should be observed. Analytically and empirically determining the probability o f a

false hit is beyond the scope o f this work. This probability is dependent on the

amount o f dead space used to approximate the trajectory and the size o f the user

query. However, a trajectory can be approximated in such a way that minimizes

the probability that a user query intersects an MBR. When a user query intersects

an M BR the sub-trees o f an R-Tree must be examined. In the worst case, the

number o f disk I/Os will be high at the leaf nodes because the data tuples must

then be examined. An ideal goal is to reduce the probability o f a query

intersecting an MBR at the highest levels o f the R-Tree. Consequently, smaller

number o f sub-trees would have to be inspected thus reducing the number o f disk

I/Os required to answer the user query.

Many different approaches have been proposed for reducing the number o f

disk I/Os required to answer a user query. In many works this involves tightly

approximating the trajectories themselves, i.e. MBRs o f the leaf nodes. The

quality o f the approximation at the leaf nodes will often dictate the quality o f the

approximation at the higher levels o f the R-Tree. Another approach towards the

goal o f minimizing the probability o f an MBR intersecting a user query is to

decouple the temporal and spatial dimensions o f the index. In this approach

several indexes are maintained. Each index might then contain fewer trajectory

approximations; as a result there should be less probability in intersecting an

MBR. All o f the solutions are oriented towards reducing the number o f disk I/Os

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

required to answer a user query. None o f the approaches, however, is designed to

solve this problem with respect to the size or distribution o f the user queries.

2.2 The Spatiotemporal Indexing Structures

Spatiotemporal indexing structures proposed in the literature are virtually all

based in one way or another on R-trees [9] and can be classified into three main

approaches. In the first approach, time is simply treated as an additional spatial

dimension [17]. For trajectories, however, this approach results in inefficient

indices since the MBRs tend to be very large, cover large portions o f empty space

and lead to a high degree o f overlap among the MBRs. Another structure that falls

under this type o f approach is the TB-tree [14]. Its insertion split strategy is

oriented towards trajectory preservation such that a leaf node only contains

segments that belong to the same trajectory. The main disadvantage o f this

approach is that “concessions to the most important R-tree property, node

overlap” must be made. Indeed, experimental results in [14] show that it is

outperformed by a regular R-tree for spatiotemporal range queries, in particular

for small queries.

In the second approach, time and space are treated differently within a

combined indexing scheme [5]. A two level index is proposed. On the upper level

the space is partitioned into non-overlapping cells. Additionally, for each o f these

cells, a separate R-Tree is used to index the trajectory segments o f objects in time

dimension. The main drawback o f this approach is that it is unclear how to

partition the space for practical applications. I f the partition is too coarse, the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

temporal index in each cell is not very selective, whereas if it is too fine, a large

number o f temporal indices have to be accessed for each query.

The third approach also treats time differently from space. The idea is to have

virtual and incrementally maintained 2-dimensional R-trees for each point in time

[11]. However, this approach suffers from a prohibitively large overhead when

indexing very dynamic scenarios, and is not suited for trajectory data.

Most o f the recently published work for indexing trajectories has been aiming

at improving the first approach. Two orthogonal strategies have been investigated:

replacing MBRs by different geometric approximations, and splitting trajectories.

As mentioned earlier, approximating a trajectory using a single MBR typically

results in an M BR covering a large portion o f empty space. This may lead to a

large degree o f overlap between the trajectory MBRs, which in turn degrades the

R-tree performance. In order to alleviate this problem, a possible approach is to

use tighter approximations other than MBRs. This line o f reasoning has been

investigated for indexing spatiotemporal trajectories in [21]. In that paper the

authors propose to trim the comers o f the trajectories’ M BRs in order to obtain a

bounding octagon prism, instead o f a box. The experimental results however, do

not provide clear evidence that a considerable gain is obtained for spatiotemporal

range queries, when compared to the R*-tree. Another strategy to improve

approximations o f trajectories is via a splitting process. A trajectory is split into

trajectory segments by choosing one or more split points. We assume split points

to be only at one o f the observed (discrete) time points. In this way, a complete

trajectory is no longer approximated by a single MBR, but rather by several

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MBRs, each approximating one trajectory segment. The advantage o f doing that

is that one is likely to obtain a large decrease in the amount o f indexed empty

space, and consequently better query performance. An important question within

this approach is the one o f how to split a given trajectory. The work presented in

[7] addresses this problem by proposing several algorithms to fmd split points for

trajectories, with the goal o f reducing the amount o f the approximations’ empty

space, given a number o f split points. The paper does not present a formal model

for minimizing the number o f 1/Os per query, instead it only focus on minimizing

the amount o f indexed empty space. In fact the presented techniques use as a

driving parameter the total number o f splits one can use. An open question that

the paper does not explore is the one o f finding the optimal number o f splits given

a set o f trajectories.

Apart from the problem o f indexing spatiotemporal trajectories, several other

types o f spatiotemporal data and queries have been investigated. There has been

some work on answering queries with respect to the future. The work presented in

[15], [16] and [8] fall into this category. Nearest neighbor queries have also

received attention in the spatiotemporal domain, [20] and [3] are examples o f this

line o f work; the problem o f reverse nearest neighbor queries in the

spatiotemporal setting has also been addressed in [3]. In [19] the authors use an

approach based on linear quad-trees to index a sequence o f images as

spatiotemporal data. An index for supporting OLAP operation over

spatiotemporal data has been proposed in [13]. In the following, we discuss some

o f the previously mentioned approaches in more detail.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 Time as Additional Spatial Dimension

In many o f the current spatiotemporal indexing approaches a trajectory is usually

treated as 3D spatial data where the 3rd dimension is a temporal dimension. The

queries that are imposed on this kind o f structure typically involve range

(window) queries. A number o f other types o f queries are also possible in this

domain. In order to answer these types o f queries efficiently the information o f

the neighboring segments o f the same trajectory need to be preserved. Therefore,

the authors o f [14] introduce two novel indexing approaches that solve the

problem o f preservation o f trajectories. The first one is called spatiotemporal R-

tree or STR-tree for short. It attempts to group line segments not only based on

spatial proximity but also tries to group segments that belong to the same

trajectory together. The other approach, trajectory-bundle tree or TB-tree for

short, does not take the spatial proximity into account at all. Its leaves contain the

line segments that belong to the same trajectory.

• j s ! reci; rdcrl s ta le

;m ?ai a re

Figure 4. Trajectories of spatiotemporal objects [14]

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Representing the movement o f objects is illustrated in Figure 4. Each object is

represented by a trajectory that grows in time. Each o f the objects is sampled at

discrete points in time giving us the number o f successive positions. Those

positions are linearly interpolated to form a trajectory.

As we can see, each trajectory contains both spatial and temporal information

o f each object. Using this information it is possible to derive additional

information such as speed, traveled distance, heading etc. Based on this, all kinds

o f different types o f queries could be imposed. These queries can be divided into

the following main types:

• Coordinate based queries: The typical examples include range, point,

time-slice and nearest-neighbor queries.

• Trajectory based queries: Those queries are o f topological and

navigational character and involve derived information such as speed and

heading.

• Combined queries: The queries that combine coordinate and trajectory

based queries.

To support various query types the authors o f [14] introduce a novel indexing

structure called the STR-tree which is the extended version o f the classical R-tree.

It takes into account not only spatial closeness but also trajectory preservation.

The difference between the two is the insertion and split strategy. The insertion

algorithm for the STR-tree uses a preservation parameter p that represents a

number o f levels that should be reserved for the trajectory preservation. Using this

parameter the line segments that belong to the same trajectory are kept together

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sacrificing the spatial discrimination. The split algorithm considers four types o f

different segments:

• Disconnected segments: Segments not connected to any other segments

• Forward (respectively backward) segments: Segments that are forward,

respectively backward connected to other segments belonging to the same

trajectory

• Bi-connected segments: Segments that are both forwards and backward

connected to other segments belonging to the same trajectory.

STR split strategies are illustrated in Figure 5. As we can see from the figure,

if the node contains consecutive segments that belong to the same trajectory they

are placed in the same node after splitting.

Figure 5. Different Split Strategies [14]

In Figure 5a, all o f the segments are disconnected. Since none o f the segments

are connected to any other segment, they are split based on spatial closeness only.

In Figure 5b and Figure 5c, some o f the segments are connected to other segments

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and after splitting they are placed into the same node consequently sacrificing

spatial closeness for trajectory preservation.

The TB-tree is another indexing structure that takes a more extreme step to

preserve trajectories. In this new indexing structure spatial discrimination is

sacrificed for trajectory preservation. Each o f the leaves o f the TB-tree contains

only segments that belong to the same trajectory. I f the trajectory segments span

multiple leaves, the leaves belonging to the same trajectory are additionally linked

through backward and forward pointers. This structure is illustrated in Figure 6.

/ \ 7 \
d d2 c9 |c4 t£ tfl|c7 00 cO clljcltrf;

Figure 6. The TB tree structure [14]

Figure 6 shows an example where a whole trajectory that is stored in leaves

(C l, C3, C7, C8, CIO, C12) is linked through backward and forward pointers.

Although the spatial discrimination is sacrificed, the TB-tree structure performs

reasonably well even in the case o f pure coordinate-based queries. In the case o f

topological or combined queries, the TB-tree structure allows us to follow the

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

links to extract the additional segments surrounding the segment that was

originally returned as a result. In the classical R-tree case we would have to

perform additional searches to extract those additional segments.

To evaluate the performance o f the STR-tree and TB-tree, they were

compared to a regular R-tree structure [14]. The first experiment was conducted

using range queries o f varying sizes. As expected, the R-tree shows better

performance than the other two methods especially with larger numbers o f

objects. Similar results were obtained in the second experiment involving time

slice queries. In the third experiment that involved combined queries, the TB-tree

performed one order o f magnitude better than the other two.

2.2.2 Decoupling Spatial and Temporal Dimensions

It has been argued that modeling trajectories using an R-Tree will often result in

large amounts o f dead space in the approximating MBRs. W hen many trajectories

are introduced into the index, the result will often be an increase in the amount o f

overlapping dead space between MBRs. From a querying perspective, when the

number o f trajectories in the data space becomes too large, there might be a high

probability o f intersecting an MBR, but not necessarily a trajectory, which results

in unnecessary disk 1/Os. One way that this problem has been dealt with is by

decoupling the spatial dimensions from the temporal dimension. In the HR-Tree a

spatial index is created for every time stamp [11], i.e. a 2-D R-Tree is created for

every time stamp.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In SETI [5] several static spatial partitions (cells) are created over the total

data space and for each spatial partition a sparse temporal index is maintained

using an R-Tree. This technique separates the space and time dimensions and

indexes them separately. It partitions the spatial dimensions into a set o f separate

partitions that do not overlap. The following is the list o f key advantages

(augmented by our comments) over the existing indexing structures that the

authors o f [5] identified:

• The objects are indexed in time dimension only. This prevents the

indexing structure performance to decrease rapidly as the number o f

dimensions grows. This is commonly known as “curse o f dimensionality”

and it is present in some other indexing structures. However, this is not

likely to happen in case o f spatiotemporal data indexing since the number

o f spatial dimensions under normal circumstances should not be greater

than three.

• In the experiments it is shown that SETI outperforms the 3D R-tree

approach. However, the authors o f SETI do not clearly indicate whether

they compare SETI to the full split 3D R-tree approach where the

complete information about each trajectory is stored within the R-tree.

• In the experiments it is also shown that SETI outperforms the TB-tree.

• SETI allows fast additions o f new segments through a front-line structure.

• SETI is scalable and performs well with large numbers o f objects and

trajectory sizes.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Implementing SETI is easy because it is built using existing indexing

structures like R-tree. However, the space partitioning into hexagonal cells

requires an implementation o f a specialized index structure. In addition, a

custom query processing technique needs to be implemented as well.

The insertion procedure in SETI uses an in memory structure called front-line

structure that keeps the last locations o f all moving objects. Figure 7 illustrates a

number o f moving objects and the movement o f the front line.

Figure 7. Movement o f a front-line structure [5]

W henever an object location update arrives, its previous location is retrieved

and a new segment is formed and inserted into SETI. The space is partitioned into

Freni l ino ni

T im e T

I-r--lit Line a I

T im e T - J T

M*. a cm on l

From Line

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

equally sized hexagonal cells. A trajectory segment that is formed needs to be

allocated to one o f those cells. I f the segment spans over multiple partitions, it has

to be split into multiple pieces at the border between the cells it spans over. Once

split, each piece is inserted in the appropriate cell. Figure 8 illustrates this and

shows an original segment A A ’ on the left side and two pieces that are formed

after splitting on the right side AX and X A \ It is important to understand that the

splitting is performed in three dimensions even though the splitting in two

dimensional spaces is illustrated in Figure 8.

Figure 8. Splitting Segments during Insert [5]

Once the access structure is constructed, search can be performed. The search

algorithm is performed in several steps:

• Spatial Filtering: Each spatial cell intersecting a query is retrieved and a

set o f candidates consisting o f segments that belong to that cell is formed.

• Temporal Filtering: For each o f the candidates a temporal component is

checked to see whether or not it intersects the query’s temporal range.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Refinement Step: Each o f the remaining segment in the candidate set is

now checked whether it actually intersects the query and the final

candidate list is formed

• Duplicate Elimination: The final list o f segments is checked for segments

that belong to the same trajectory (the same moving object) and the

duplicates are removed. The produced result set represents actual objects

intersecting a given query.

It is evident that by varying the number o f cells used to partition the space, the

performance o f the indexing structure varies as well. I f the cells are too big, the

spatial discrimination o f the index is reduced and the performance suffers. On the

contrary, if the cells are too small the number o f segments used to represent each

trajectory can be large due to the splitting during insertion. There are two main

approaches when choosing the number o f cells: static and dynamic. In the static

approach, the cells are chosen beforehand and are fixed during the lifetime o f the

indexing structure. In the dynamic approach, the cells are readjusted dynamically

based on the trajectory distribution o f the dynamic dataset. The ideal cell

distribution would make a number o f segments belonging to each cell equal for all

the cells.

In the experiments, SETI is compared to two other common trajectory

indexing methods: R-tree and TB-tree. Two different types o f data generators are

used: GSTD and the Network Data Generator. A number o f experiments are

conducted comparing the three indexing techniques using data from both data

generators. One o f the experiments measures absolute execution time o f all three

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indexing structures with respect to the number o f cells used. This experiment is

repeated for query sizes o f 0.01%, 0.1% and 1% o f the total query space. Other

experiments include comparing the index sizes and insertion performance o f

SETI, 3D R-tree, and TB-tree. The experiments show that SETI outperforms these

indexing approaches.

Decoupling the spatial and temporal indices has the distinct advantage o f

making the index structure sparse, i.e. fewer trajectories or trajectory segments are

maintained within each index. In such approaches a trajectory is no longer

logically approximated by a 3-D MBR. The effect o f this solution is that there

should be less probability o f a query intersecting an MBR. However, this will be

dependent on the distribution o f the data contained in each index. The main

drawbacks o f such approaches are that more indexing structures need to be

maintained and specialized space partitioning and query processing techniques

need to be adopted.

2.2.3 Tighter Trajectory Approximations

In the R-Tree, it is important to determine whether a query intersects a trajectory

or its segments without searching the data tuples. The probability o f a query

intersecting a trajectory is related to the size o f the query and the size o f the

approximating MBR. Hence, it is reasonable that one might model a trajectory by

using tighter approximations or by using several MBRs to approximate pieces o f a

trajectory (split accordingly in the time dimension). This should have the effect o f

reducing the amount o f dead space o f an MBR.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In [21] a new approximation structure for trajectories, the M inimum Bounding

Octagon Prism (MBOP), and a new index structure, the Octagon Prism Tree

(OPT) are introduced. An MBOP is generated by cutting o ff the comers o f an

MBR. The reduction in volume o f an MBOP appears to be substantial; the

number o f false hits for a region search is about 50% less than using MBRs as

approximation structure. A trajectory-splitting heuristic is also explored in an

attempt to further reduce the amount o f volume utilized by a single trajectory, i.e.

splitting trajectories into variable or fixed sized segments.

Approximating a trajectory using an MBOP is only a slight departure from

using an MBR. This can be observed in Figure 9. MBOPs can be inserted

directly into any existing R-Tree structure as the comers o f an MBOP are still

contained within the boundaries o f an MBR. One drawback o f the author’s work

is that their approach does not consider how an OPT will be queried. An

interesting extension to the author’s work might be to use optimal rotated

time 130 170 12-40.40 >

Figure 9. Logical representation of the MBOP [21]

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

polygons to approximate a trajectory. In spatial domains this approach has been

observed, however the algorithms to achieve this goal are complex and

computationally expensive [1].

In order to use spatial access methods such as R-trees to index trajectories,

each trajectory (or each o f its segments if the trajectory is split) is approximated

by a 3-dimensional MBR. In this context it is easy to see that splitting trajectories

offers a great potential for improving the performance o f spatiotemporal range

queries. The intuitive reason is that when splitting a trajectory, the total volume o f

the approximating M BRs decreases. As a consequence, the approximations cover

less empty space and may have less overlap with approximations o f nearby

trajectories. This may in turn lead to a reduction o f the number o f MBRs that

intersect a given range query, thus reducing the number o f pages that have to be

retrieved in order to access the corresponding trajectory segments.

X

“ m e

Figure 10. An example of splitting a trajectory using one and three MBRs [7]

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To reduce the amount o f dead space we could approximate the trajectory o f an

object using more then one MBR as illustrated on a two-dimensional example in

Figure 10. The actual amount o f volume reduction when splitting a trajectory

depends not only on the number o f splits but also on the chosen split points for a

given number o f splits. Figure 11 illustrates the effect o f volume reduction, for

different split choices for the depicted trajectory.

Figure 11. Different trajectory splits and its approximations.

Based on this observation, Hadjieleftheriou et al. [7] proposed several

algorithms for minimizing the total volume o f trajectory approximations given a

user-specified number o f splits 5. First, a dynamic programming algorithm

DPSplit is proposed that splits a single trajectory T using / splits so that the total

volume o f T s approximations is minimized. The complexity o f this algorithm is

0 (rl), where t is the number o f trajectory points in T. For the same problem, they

also described an <9(7log/) greedy heuristic called MergeSplit. To split a set o f

trajectories {7>, ..., T„). the authors proposed three algorithms that try to allocate

i

V _ A 7

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to each trajectory T-, a number o f splits /,■ (out o f the total number 5 o f allowed

splits), so that the overall volume o f the trajectory approximations is reduced as

much as possible. The first algorithm uses a dynamic programming approach,

with a time complexity o f 0{ns2), to allocate the user-specified number o f splits s

to the n trajectories. This algorithm produces the optimal solution with respect to

volume reduction when combined with DPSplit. They also introduce two

heuristics, with time complexity 0 (s log n + n log ri) , that show satisfactory

performance in terms o f volume reduction. All algorithms assume that the best

splits o f each trajectory into all possible number o f splits are pre-computed and

stored, adding the overhead o f DPSplit or MergeSplit (with /=/-2) for each

trajectory. The main problem with this approach is determining the total number

o f splits s that is used as an input parameter for the splitting algorithms.

In the experiments, the authors o f [7] generate two spatiotemporal datasets.

The trajectories are split using different numbers o f splits and the resulting MBRs

are indexed using the partially persistent R-Tree or PPR-Tree [24] and the regular

R*-Tree [2], The queries are run against the two indexing structures and the

average number o f disk accesses is recorded when varying the total number o f

splits parameter and when varying the database size. The experiments show that

the PPR-Tree consistently outperforms the regular R*-Tree in both cases.

In the following section, we argue that minimizing the total volume o f

trajectory approximations does not necessarily lead to the best query performance

and motivate the trajectory splitting with respect to the given average query size.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Trajectory Splitting and the Query Size

The trajectory splitting approaches with the goal o f minimizing the total

volume o f trajectory approximations given a user-specified number o f splits, in

general, have several drawbacks:

• Minimizing the total volume o f trajectory approximations without

considering actual query sizes does not necessarily minimize the number

o f expected I/Os when processing range queries. Obviously, introducing

more splits for a trajectory necessarily reduces the total volume o f the

trajectory approximations. However, introducing more splits also

increases the number o f segments for the same trajectory that may

simultaneously intersect a query range, resulting in unnecessary disk I/Os.

Figure 12 illustrates two possible cases. Figure 12(a) depicts a scenario

where the given trajectory has an unnecessarily large number o f splits for

the given query size. The query intersects, in this extreme case, all

approximating MBRs that may be located on different disk pages, and thus

result in a larger number o f I/Os. On the other hand, the situation in Figure

12(b) shows a case where the same splits are appropriate for a smaller

query size.

• The methods require as input parameter the total number o f allowed splits

for the whole set o f trajectories. This parameter is difficult to determine

even for a static set o f trajectories. For the important dynamic case, where

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trajectories can grow continuously and new trajectories are added over

time, a fixed overall number o f splits is not meaningful.

• Even knowing a good number o f possible splits, the proposed algorithms

are very time consuming and have a large storage overhead: all possible

splits o f all trajectories are pre-computed and stored for re-use in the

search algorithms that distributes the given total number o f splits, which

typically is itself quite large.

(a)

t

x Spatiotemporal

Query Range
(b)

V 1/

Figure 12. Relation between query size and trajectory splits.

We conclude that minimizing the volume o f trajectory approximations is not

enough to minimize the expected number o f I/Os for spatiotemporal range

queries. We claim that in order to optimize query performance, we also need to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

take into account actual query sizes. Our solution to this problem provides an

algorithm for optimally splitting a set o f trajectories based on a given query size,

which in most practical cases can be determined as the average query size. An

average query size is also a more natural and robust parameter than a user-

specified total number o f splits and it is not restricted to static data sets.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Optimal Trajectory Splitting

In this section, we derive an analytical cost model that estimates the expected

number o f I/Os, yielded by a given split o f a trajectory and a given query size.

Based on this model, we introduce an algorithm for splitting all trajectories in a

set o f trajectories so that the total number o f expected disk I/Os is minimized with

respect to the query size.

3.1 A Cost Model for Splitting Trajectories

A trajectory T is given by a sequence o f points T=(pl, p 2, . . . , p l), where each

point pi is a tuple o f spatial and temporal coordinates. We denote a segment o f a

trajectory T that starts at point p u and ends at point p v by T[u,v] (note that

consequently T = 7f 1,?]).

A trajectory can be split along its discrete temporal dimension into m

segments (1 < m < t - 1). For a given m, there are
f t -

\ m ~ b
possible ways o f

splitting T into m segments. Each decomposition o f T into m segments involves

choosing m- 1 split points from T, excluding the endpoints p\ and p,. A given

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decomposition o f T into m segments, T={T[\,i\], ..., /]) for a sequence o f

split positions /'i, i, will be approximated by a sequence o f MBRs

B T={MBR{T[\,i{\), ..., MBR(T[im.\. t])), where MBR(T[u,v]) denotes the MBR for

a segment T[u,v], We denote the set o f the MBR approximations o f all possible

decompositions o f T into m segments by Decomp(T, m), i.e.

Decomp(T , m) = {(£,) 13/, :

B,=MBR{T[\,i,}),

B2 = MBR(T[ix,i1}),

=MBR(T[im_],t])}

For our cost model, we assume that segments and their respective MBRs are

stored independently, e.g., under an R-tree. That means that the MBRs o f a

trajectory may be stored on different disk pages, and each segment’s MBR that is

intersected by a query may thus require an independent disk I/O, ignoring

possible effects o f an index directory and caching. The objective o f a trajectory

splitting algorithm is therefore to minimize the number o f expected disk I/Os

required to answer a given query q. In the following let B r = (B\, ..., Bm) be the

MBR approximation o f a specific decomposition o f T into m segments.

As discussed before, the number o f expected disk I/Os required to answer a

query q is related not only to the total volume o f the MBRs in BJ but also to the

size o f q. The size o f a query determines the probability that q intersects some B,

e B t, which in turn determines the expected number o f I/Os that B r contributes to

the total I/O cost o f processing q.

Given a range query q the expected number o f disk I/Os due to B T can be

derived as follows. If q intersects Br, then it intersects exactly k segments

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simultaneously, where 1 < k < m, accordingly we would have exactly k I/Os. The

event that q intersects exactly k segments o f Br (thus resulting in k I/Os) occurs

with a probability P(q r\ B T\k) . Since these events are mutually exclusive, the

overall expected number o f I/Os for query q, E bT (q) , is consequently the sum o f

the number o f I/Os due to each event, weighted by the probability o f the event:

m
E ^ ^ k - P ^ n B ^ k) (2)

;=i

The following lemma can be used to simplify this expectation expression.

Lemma 1. Let P(q n Bt) be the probability that a query q intersects the zth

segment in B r. Then it holds that

m

E Br(q) = Z P (q ^ B i) (3)
/=I

m ' m
Proof. A proof o f ^ k ■ P(q n B r ;k) = ^ P (q n 5 ;) for the general case o f

A-l i=l

MBRs for spatial data can be found in [12]. ■

Lemma 1 states that the expected number o f I/Os can be computed by simply

summing up the probabilities o f the query q intersecting the MBRs for the

trajectory segments independently o f each other.

To determine the p ro b a b il i ty /^ n 5 t) , we consider the area where a query q

can fall and at the same time intersect B This area is given by extending B, by

half o f the query extension in each dimension, as illustrated in a 2-dimensional

example in Figure 13. The rationale for this query extended MBR is that the query

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intersects an MBR if and only if the query center is within the query extended

MBR. We denote the query extended MBR for an MBR B, by Extq(Bi).

Extq(Bj) Query

" it .<?y

Figure 13. A Query Extended MBR.

Assuming a uniform distribution o f queries, and ignoring boundary effects,

the probability o f a query q intersecting a segment MBR B, is proportional to the

normalized volume o f the query extended MBR Extq(Bi), i.e.:

P(q n B,) = VoI(Exiq (B,)) / Vol{S) (4)

where Vol(S) is the volume o f the whole data space S.

By substituting Equation (4) into (3), we obtain the expected num ber o f I/Os

due to the approximations in B T given the size o f a query q as:

m
E S (?) = £ VoKExtq (Bi)) / Vol(S) (5)

/=1

In order to minimize this performance measure for a single trajectory T, T

must be split so that the sum o f the volumes o f the resulting query extended

MBRs is minimized, which means finding the minimum expected num ber o f I/Os

among o f all possible decompositions o f T into all possible numbers o f segments

in, i.e., finding min {EBr{q)}-
\£ m < t- \ ,B 7 G Decomp(T ,m)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W hile splitting a trajectory always reduces the total volume o f the MBRs

approximating the segments, this is not true for the query extended MBRs. Figure

14 illustrates a 2-dimensional case where the sum o f the volumes o f the query

extended MBRs is minimized when splitting the trajectory only once. Introducing

a third (or more) split(s) will increase the sum o f the volumes o f the query

extended MBRs, and therefore increase the expected number o f I/Os for this

trajectory and the given query size. Note that only minimizing the volume o f the

MBRs would be a misleading measure in this case depicted in Figure 14.

Figure 14. Volume of query extended MBRs using 0 ,1 , or 2 splits

So far, we have only considered how to split a single trajectory optimally.

Optimally splitting a set o f trajectories 0 , theoretically depends on a number o f

varying parameters such as the distribution o f the trajectories in space, the page

size, as well as the directory structure and the split algorithm o f the particular

spatial index used to store the MBRs. To simplify our model and to be

independent o f the used index structure, we ignore the possible effect o f an index

directory and the distribution o f the trajectories in space. In this case, each

trajectory T in 0 contributes independently towards the total number o f expected

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I/Os for accessing data pages, given a query q, which means that the expected

number o f I/Os can simply be expressed as the sum o f the individual expectations:

07) = E M ?) (6)
Tz@

Equation 6 tells us that, given a query q, we can find the optimal splits needed for

a set o f trajectories, by minimizing the splits for each trajectory individually.

In general, a trajectory T can be split into m segments in different ways, where

each such split may result in a different number o f I/Os when processing a given

query q. Let E arp,m (q) be the minimum expected number o f I/Os for T that can be

obtained by splitting T into m segments, i.e.

E j p'm{ q) = min {E Br { q) } (7)
B T€ Dccump{T jn)

(In the special case where m=1, i.e., if there is only one segment, we can drop the

superscript “opt”, since there is only one choice, which is trivially optimal.)

A trajectory can be split into different numbers o f segments, ranging from 1 to

/ - l . Consequently, the minimal number o f I/Os for T over all possible splits,

expressed using the notation E°!" (q) , is given by the best possible split o f T for m

ranging from 1 to / - l , i.e.,

£ ? " (*)= min { £ £ (*)} (8)
I <m<t-\

3.2 Dynamic Programming Algorithm

To solve Equation 8, we propose a dynamic programming solution, which

basically finds the best possible split o f T for each value o f m. Using our notation

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T[u,v] to denote a subsequence o f T from point p„ to point p v, we can re-write

Ejp'm (q) as m (q) . In order to apply dynamic programming to our problem,

we have to show that the following property holds.

Theorem 1. Given a trajectory T=(pi, p 2, . . . , p l) and a query q, it holds that

E T[\.t].m (#) = (#) + ^T[uj],\(?) / (9)

Proof. Using equation 5, equation 7 can be re-written as

n«*r Vol{Extq{Bj))^
Enuimi-q)- nun <2_, v , ,~ f-

B €Dt'Comp(T[l,t],m) ;̂=I V0l\O) J

Expanding the sum in this equation gives us

™, , . f c HW (£ta,(g,)) . Vol(Ext'(B .))l
™ ”W l'ol(S) Vo/(S) J

Assuming that the start position o f the last segment o f an optimal

decomposition o f T is a, and using the notation B f = MBR(T[u,t]) to denote the

M BR o f this last segment, we could re-write this equation as

„ „ . VoKExi^ B T))
Bt€DecumfiT[\,u],m-\) Vol{S) J + Vol(S)

= E r U . ^) + E nuA.M)

This equation holds where the start position it o f the last segment o f an

optimal decomposition is known since then, the last segment is fixed, and the

remaining prefix o f T, i.e., T[\,u\ must consequently be split into m - 1 segments

so that the sum o f volumes o f the extended MBRs for the first m - 1 segments is

minimal, in order for the whole sum to be minimal. In order to find the optimal

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decomposition o f T in general, we just have to consider all possible values o f start

positions u in the range 1 < u < t for the last segment o f T, as originally stated in

the theorem:

E to) = to) + E t[uj].\ to)} ■

Theorem 1 is the important property that allows us to use a dynamic

programming approach to optimize the expected number o f I/Os for a trajectory.

It states that in order to find the optimal solution for a trajectory T using m

segments, it is sufficient to consider all the optimal sub-solutions using m- 1

segments for the prefixes 7[l,w], 1 < u < t, (which can be found by recursively

applying Equation 12), and combine them with the solution for the remaining

segment T\u,f\.

The running time o f the dynamic programming algorithm to determine the

split o f one trajectory T into m segments (i.e., m- 1 splits) is 0 (r (w - l)) where t is

the number o f points in T. Consequently, to find the best possible split for T

among all possible values o f m, we have to apply the algorithm for the maximum

possible value o f m, i.e., for m = / - l . To split a set o f n trajectories optimally, we

have to apply this algorithm n times. This time complexity is the same as the time

complexity for the DPSplit pre-computation step used in Hadjieleftheriou et al.’s

algorithms [7]. Note, however, that, in contrast to these algorithms, we don 't

need to execute an additional time consuming and storage intensive search

algorithm to obtain a globally optimal solution with respect to our cost model.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Directory Level Node Splitting

So far, we have only considered access to data pages. The cost model

estimates, given a query size, the expected number o f accesses to a set o f MBRs,

which correspond to disk accesses if these MBRs are stored on different disk

pages. For this estimation, it is not essential that the MBRs enclose trajectory

segments. Trajectories only determine the possible points that can be considered

when splitting them, resulting in different sets o f MBRs.

For R-tree based indices, MBRs for directory pages must be split during index

construction and update. Different heuristics have been proposed for that purpose,

such as the quadratic and the linear split [6], or the R*-tree split [2], These

algorithms generate a certain subset o f all possible splits o f an M BR and

minimize evaluation functions, which are typically based on area and overlap o f

the resulting MBRs as already mentioned in Section 2.1.1. The goal o f these

heuristics is essentially to minimize the probability that queries will intersect both

resulting MBRs thus reducing the number o f sub-trees that have to be traversed.

The rationale behind our cost model can be applied to directory level splits as

well. In our approach, given an average query size, instead if using the MBRs in

calculating area, overlap and margin values we propose to use the query extended

MBRs and keep the original node splitting algorithms.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Heuristic Trajectory Splitting

For large datasets containing long trajectories our dynamic programming solution

may be inefficient due to the time complexity o f the algorithm. Another problem

is that the dynamic programming solution requires the complete trajectory to be

available in order to find the optimal splits. For many applications, however,

trajectories are updated continuously. In order to deal with such applications, we

need a more efficient and at the same time incremental method, which can still

produce good (ideally close to optimal) results.

In this section, we formally derive an approximation o f the optimal

decomposition o f a trajectory that can be incrementally computed. For this

purpose, we first consider special cases o f trajectories for which we introduce an

I/O cost function that can be minimized by finding an optimal segment size for

the whole trajectory. We can then apply this model to pieces o f arbitrary

trajectories in order to approximate their optimal decomposition using a linear

time algorithm.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 A Cost Model for Optimal Segment Size

In this section we want to deal with long trajectories where points are added

continuously over a long period o f time. Consider first the special case o f

trajectories with a constant slope, i.e., trajectories for objects moving with

constant speed in a constant direction that are sampled at constant time intervals.

Sampling at constant time intervals does not really constitute a restriction here

since we assume a linear interpolation between sampling points so that constant

time intervals can always be achieved by a suitable re-sampling. We will show

that for those trajectories the optimal split according to our previous cost model

will result in segments o f equal size.

Assume a trajectory T consisting o f t points, or equivalently, consisting o f / - I

consecutive elementary segments $i, ..., j,.i as well as a decomposition o f T,

Bt={B i, ...,B„,}. We can express the sum in Equation 5,

m

E jjT(q) = \IV o l{S)- '^ i Vol(Extlj(Bi)), differently by thinking o f the volume o f
i=i

each Extq(Bi) as being “generated” by the elementary segments contained in B„ in

the following way. W e can define a function/ that expresses an equal contribution

o f each elementary segment to the volume o f the query extended MBR it belongs

to as:

Vol(Ext(B , containing s))
f (s) = — ---------- ------^ --------------— ----------- (13)

elementary segments in Bj containing s

Lemma 2. Let Br={B\, ...,B„,} be a decomposition o f a trajectory T, and let

function /be defined as in Equation 13. Then the following equation holds,

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ '= !

Vol(Extq (Bt)) = 2 £ / (*) = ! / (* ,)
;=1 \ s contained in Bj J / = !

/-!
(14)

P roof . Obvious, because by the definition o f f since for each B-, in B r it holds that

Z / W = ^ / (£ x ^ (5 ,)) B
s condoned inB,

Lemma 2 tells us that a decomposition that minimizes the left hand side also

minimizes the right hand side, and vice versa. Finding an optimal decomposition

using the right hand side is, in general, not an easier problem than using the left

hand side, since the / values for elementary segments depend on where the actual

split points in a decomposition o f T are. However, it is easy to see that for the

special case o f trajectories with a constant slope the f values depend only on the

number o f elementary segments in an enclosing MBR B-,. In this case, we can

compute the volume o f a query extended MBR £,■ using only the increments in

each dimension (Ax, Ay, A t) that define the slope o f the trajectory, as illustrated in

Figure 15, and the number c o f elementary segments in Bj as following:

Vol (Extq (Bi) = (c • Ax + q x) ■ (c ■ Ay + qy)-(c- At + qt) (15)

t

Ax
x

Figure 15. Illustration o f a constant-slope trajectory in 2 dimensions.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore, we can now look at the values o f f for MBRs o f arbitrary size by

looking at its definition as a function g o f c,

(c-Ax + qx)-(c-Ay + q v)-(c-A t + q,)
g(c) = -------------------------------=------------------- (16)

c

The significance o f this function is that we can show that g(c) has a real

minimum, which has several important consequences. It means that there is an

optimal segment size cop, in the sense that if a trajectory T with a constant slope is

decomposed into segments o f this size, the value f{s) will be minimal for each

elementary segment s. This in turn means that this decomposition o f T minimizes

the right hand side o f Equation 14, giving us an optimal decomposition according

to our cost model in Section 3. In this optimal decomposition, all the segments

have the same size coph and this size is independent o f the length o f T, and cop,

determines where the split point have to be. The value cop, is only dependent on

the slope o f T and the query size, which also means that we can optimally split

trajectories with a constant slope in an incremental manner, i.e., we can already

split into optimally sized segments after some points o f T have been added. We

use this fact later to derive a incremental splitting heuristic for arbitrary

trajectories which we approximate by several “constant-slope” sub-trajectories.

Theorem 2. Given a query q, and increments (A x,A y,A t) (that define the slope o f

a constant-slope trajectory), the function g (Equation 16) has a global, real

minimum cop, with respect to c.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Function g can be re-written as

k.c* + k^c~ + k,c + k.
g(C) = -!-------- =-------- 2 i

C

where A, = Ax Ay A/

k2 = AcAyq, + AyAtqx + AxA tqv

k:, = Axqyq, + Ayqxqt + A tqxqy

k4 ~ Qxtf ytf l

Dividing by c gives us the following equation for g(c)

g(c) = (A,c2 + k 2c + A, + A4 ~)

Applying the first derivative to find the extreme values, we get

= (2k]C + k 2 + (-A4 —■)) = 0

which is equivalent to finding the solutions to

(2A,c3 + k2c2 + (-A4)) = 0

Function g(c) has a solution c= cop, in the domain o f positive real numbers that

can be determined analytically. To show that the function g(c) reaches a minimum

at c= cop, we can find second derivative ofg(c) with respect to c as following

4 ^ = (2A,+2A4 l -)) > 0
dc~

Since k \, k4, and c are always greater than 0, it is obvious that the second

derivative o f is g(c) is greater than 0 for all values o f c, which means that the

function g (c) reaches a global minimum at c = copt. ■

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can use the value cop, that minimizes g(c) to construct a decomposition o f

a constant-slope trajectory T = (/ ? , , / ? , , by trying to divide it into equally

sized segments o f length cop!. In the following theorem, we assume that t is

divisible by cop,. This is justified by the fact that we assume long trajectories

where points are continuously added (short trajectories can be split efficiently

using our dynamic programming approach). Since cop, does not depend on the

number o f trajectory points and can be computed using only the slope o f T (and

the query size), in practice, we would split T into segments o f length cop,

continuously as points are added to the given trajectory over time.

Theorem 3. Given a query q, and a trajectory T = (p l, p 2, . . . , p t 'j with constant

slope defined by increments (Ax,Ay,A /), we can find cop, that minimizes g(c)

(according to Theorem 2). Assuming that t is divisible by coph the decomposition

o f T (possibly after suitable re-sampling) into equal sized segments determined by

cop, is a solution to Equation 8, i.e., a decomposition that minimizes the expected

number o f I/Os.

Proof Without loss o f generality, we assume that cop, is an integer (if cop, is not an

integer, we can re-sample T appropriately so that cop, can be expressed as an

integer with respect to the new elementary segment size). Let = (Bl ,...,Bm)

be the decomposition o f T where each B, contains the same number cop, o f

elementary segments s. The resulting values f[s) according to Equation 13 for

each elementary segment s is by Theorem 2 minimal, i.e., no other MBR size can

result in smaller values J{s) for the segments contained in that MBR.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/-I
Consequently, the sum]£]/(.?,.) is minimal for the given decomposition B T,rl

/=I

among all possible decompositions. Using Equation 14 in Lemma 2, it follows

that this decomposition must also be a solution to Equation 8. ■

So far, in this section, we have assumed trajectories o f constant slope that are

sampled at constant time intervals. This assumption is not true for most

trajectories in practical applications. However, we can still apply our model to an

arbitrary trajectory T by approximating it with constant-slope trajectory T1 in the

following way. We can compute the increments Ax, Ay, At that define the slope o f

 j t - \

T* as the average o f the corresponding increments o f T, e.g.. Ax = ------^ Ax; ,
t - 1 i=i

where Ax. represents the difference in x direction between two consecutive points

o f T. Obviously, the smaller the variance in the increments T is, the better is the

approximation TA. Although the error o f the approximation is typically large for

long trajectories, this is not true for smaller pieces o f a trajectory in case o f most

real world applications since objects usually do not move erratically but keep

moving in a similar direction with a similar speed for a certain period o f time.

The fact that we can generally approximate a long trajectory well, using

several constant-slope sub-trajectories, allows us to design an incremental

algorithm for splitting trajectories that shows near optimal performance in

practice (unless the objects move extremely erratically).

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Linear Time Trajectory Splitting

For a linear time trajectory splitting algorithm, ideally, the split decisions should

be made incrementally as the data points o f the trajectories are added. We can

incrementally buffer a certain number o f incoming points o f a trajectory T, say

from point p u to point p v, and compute the average increments Ax, Ay, At for the

points in the buffer to obtain a constant-slope approximation T1\u,v\ for the

trajectory segment T[u,v] in the buffer. Using the proof o f Theorem 2, we can

then determine the optimal number copt o f elementary segments that should be

grouped together in an optimal decomposition o f 7^[w,v], and then use this

number to decompose 7[z/,v] accordingly.

To apply this method, we have to determine a suitable number o f points that

should be buffered for a trajectory before applying the split policy. This number

may depend on several interacting factors including the average query size, the

speed, the direction changes, and the sampling rate o f the moving object. For

different trajectories, and even for different segments o f the same trajectory, a

different buffer size may be optimal.

We propose to use our cost model for optimally splitting a trajectory, derived

in Section 3, to estimate when to apply our linear splitting method. The intuition

is that we can determine when an MBR around the points o f a trajectory segment

7T>,v+l] is not optimal, according to the following condition.

^ V [« . I M - I] . I (#) > ^ T [u . v } . \ (?) + ^ Y [v . v + I] . l (#) (1 8)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I f the condition is true, it means that the expected number o f I/Os using one

M BR around the segment o f 7[w,v+l] is larger (i.e., worse w.r.t. performance)

than the number o f expected I/Os when introducing a split before the last

elementary segment o f Therefore, it makes sense to consider splitting

7[z/,v-rl], The fact that the condition is true tells us that there is at least one

possible split, i.e., before the last elementary segment, that will result in a better

I/O expectation. This split is, however, in general not the best possible way o f

splitting the current segment T[u,v]. Iteratively collecting points until Equation 17

becomes true, then introducing a split at exactly that position, and repeating this

until the trajectory ends, will, in general, create segments that are consistently

larger than the segments obtained by an optimal split. Condition 17 is good at

detecting significant changes in speed and direction o f a trajectory. For close to

constant-slope segments o f a trajectory, the condition tends to become true only

after several times the optimal segments size has been accumulated. We have

confirmed this behavior experimentally, but we can also understand it more

formally. Consider the difference between the left hand side and the right hand

side o f Equation 18.

^Y[a .v+I] .l (#) ~ i^ T [u . 1-J.I (#) + ^ V [i \ i '+ I] . l (#)) 0 9)

I f this expression is smaller than or equal to 0, condition 18 is false, if it is

greater than 0, condition 18 true. For the case o f constant-slope trajectories, we

can compute the expected I/O values in this expression as the volumes o f the

query extended MBRs around 7[w,v+7], T[u,v], and J[v ,v+ /] respectively, using

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Equation 15. The number o f elementary segments c, in T[u,v] is given by the

equation c = v - u . After simple arithmetic transformations, we obtain:

E t[u.-+\].\ + 2 k 1c + 3 k l - k A, where k u h , b are

defined as in the proof o f Theorem 2. Consequently, condition 18 holds i f

3fyr+2t,c+3£; —L > 0 or, equivalently if

3/t1c2+2U'+3A- > k , (20)

On the other hand, we know from the proof o f Theorem 2 that the function g

(Equation 16) has a global minimum cop, for the optimal number o f elementary

segments at 2 /^ c ^ + k f^ -k = 0 or, equivalently if

^'i C +bclpl =K (21)

Substituting Equation 21 in Equation 20, tell us when the condition in

Equation 18 is true in terms o f the number o f elementary segments for a constant-

slope trajectory, i.e., it is true if

3k ^ ' + 2 k 2c + 3 k l > 2 k xclp, + k 2c;pl (22)

Considering that both c and cop, have to be greater than or equal to 1 since we

never collect less than one elementary segment, and we never split less than one

segment in practice, it is easy to see that for this inequality to hold, the value o f c

must be larger than the value o f cop, for c > 2 (i.e., if the buffer contains at least

two elementary segments). For c = 1, the condition is true for c opt < 1.5. However,

since we consider only splits at sample points o f a trajectory, we will round c„pt to

the closest positive integer value c*;„ (in the case c = 1, c'ip, = 1). In summary, this

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

means that the number o f elementary segments c, collected up to the point where

condition 18 becomes true, is always a multiple o f the optimal segment size.

With a dynamically determined buffer size according to these considerations,

we propose the following linear time splitting algorithm for trajectories which we

call LinearSplit. The algorithm collects points o f a trajectory consecutively. For

each new point /vn> it determines whether the new point should be merged into

the current buffer T[u,v] or whether a split at this point should be introduced,

using Equation 18. I f the condition is true, we compute the optimal segment size

Copt according to Theorem 2 (with a constant-slope approximation o f the current

trajectory segment 7[y,v]), and we round it to the nearest positive integer c r We

split as many segments o f size cU!>, as possible from T[it,v] and insert the

corresponding MBRs into the index. This procedure is repeated as long as new

points are added. When a trajectory is completed, the last segment is still in the

buffer and has to be inserted as well.

Obviously, this algorithm splits a trajectory in 0 (/) time where t is the number

o f points o f the trajectory. The pseudo code for the algorithm, LinearSplit, is

presented on the next page.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm LinearSplit

u : = 1 , v : = 2 ; / / a f t e r t h e f i r s t t w o p o i n t s o f T

w h i l e (t h e r e i s a n e x t p o i n t p v<i i n t r a j e c t o r y T)

i f (?) > ^Y[u.v],l 0 ?) + £ t[v.v+1].1 (?)

f i n d c opt f o r T [u , v] u s i n g T h e o r e m 2 ;

c * = r o u n d (c 0pt) ;

e x t r a c t t h e f i r s t (v - u) / c * s e g m e n t s f r o m

T [u , v] a n d i n s e r t t h e i r M B R s i n t o t h e i n d e x ;

u : = u + k * c * ;

v + + ;

/ / e n d o f T i s r e a c h e d

i n s e r t l a s t M B R (T [u , v]) i n t o t h e i n d e x ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Experimental Results

In order to evaluate the proposed approaches for splitting spatiotemporal range

queries we used two types o f datasets, one produced by the Network Data

Generator [22] and another one produced by GSTD [18]. The network data

generator simulates different classes o f objects, e.g., vehicles and people, moving

through the streets o f a real city. Therefore, different objects have different speeds

and lifetimes, producing a very rich and realistic dataset. GSTD, on the other

hand, allows generating more random patterns, allowing us to investigate how

well the proposed algorithms perform under more extreme situations.

For each generator, we produced datasets containing 10,000, 20,000, and

50,000 trajectories, respectively. For each trajectory in the network datasets using

the map o f the city o f Oldenburg, a varying number o f observations ranging

between 50 and 345 were recorded, resulting in 97 observations on average per

trajectory. We set GSTD’s parameters so that trajectories were formed by objects,

uniformly distributed in the data space, changing speed and direction randomly at

any point in time (the maximum speed was limited though, so that an object could

not cross more than 20% o f the total space from one time stamp to the next). This

scenario, when objects are moving extremely erratically, is particularly

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

challenging for our LinearSplit algorithm. Unlike for the network dataset, exactly

100 observations were recorded for each trajectory. Therefore, all our datasets had

between 1,000,000 and 5,000,000 observations in total. All experiments were

performed on a 1900+ AMD Athlon PC with 512 Mb o f RAM.

In our experiments we used the quadratic R-tree implementation provided by

the XXL library [23], using a page size o f 4Kb for all algorithms which resulted

in a capacity o f 70 entries per node. For our algorithms, we replaced the split

evaluation function by our cost model as described in Section 3.3.

We evaluate the quality o f the proposed algorithms by measuring the

performance o f the generated indices using different trajectory split policies. We

measure the number o f disk I/Os on the index’s directory and data level per query,

averaged over 10,000 uniformly distributed queries, without considering

buffering. We also measure the time required to pre-process a dataset, i.e., the

time required to split the trajectories, create the MBRs and create the index tree.

In all forthcoming figures we refer to our dynamic programming-based

algorithm as “OptimalSplit” . The linear time algorithm is referred to as

“LinearSplit”. We also use “HKTG-A-%” to refer to the volume oriented split

policy proposed in [7] (using the DPSplit algorithm for splitting trajectories

individually), where k is defined according to [7], i.e., k% means that N ■ A/100

total number o f splits are used for splitting a dataset with TV trajectories. Similar to

[7], we used k equal to 50, 100 and 150. We also used two baseline algorithms.

First, an R-tree where each trajectory is approximated by a single MBR, i.e.,

trajectories were not split at all. This algorithm is referred to as “N oSplit”.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Second, an R-tree where each elementary segment o f a trajectory is approximated

by an MBR, i.e., trajectories were split at each observation point. This algorithm

is referred to as “FullSplit”.

5.1 Robustness with Respect to Query Size

In the first experiment, we used datasets o f 50,000 trajectories to investigate the

robustness o f our algorithms with respect to the proposed cost models. Since the

cost models aim primarily at minimizing disk accesses to data pages, we

measured the average number o f disk I/Os at the data level for both datasets. For

each test we built trees that are optimized for a particular query size o f S% o f each

spatial dimension and T time points. In particular, we used S = 1%, 2%, ..., 16%

and T = 1, 2, ..., 16. Note that while the spatial dimension o f the query is given as

percentage o f the total 2d space, the temporal dimension is given in absolute time

points since time is unbounded. We use I,-.,- to denote the index that is optimized

for the query size with spatial extensions given by S=i% and temporal extension

T =j. Similarly, Q,.y denotes the size o f the queries that were executed against the

different indices. The numbers in Tables 1 through 4 represent the average

performance for different indices and different query sizes. Each row in the tables

represents the performance o f a particular query Q,.y using all the constructed

indices (given by the columns). Ideally, given a query size, the best performance

should be when using the index built for that query size, i.e., in the diagonal o f the

tables. Note that in this experiment, we compare in the rows the performance o f

different trees for a given query. Comparing different queries for the same tree

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

here (i.e., looking at columns) is not very meaningful since the columns only

show the obvious fact that smaller queries result in smaller numbers o f I/Os than

larger queries, simply because they intersect less MBRs. Tables 1 and 2 show

results for the network dataset. Tables 3 and 4 show results for the GSTD dataset.

Table 1. Robustness o f OptimalSplit for Network Data

I/Os
Tree - optimized for S(%) and T

(duration)
I u I2.2 I4.4 Is.s 116.16

Q1.1 0.56 0.64 1.01 2.11 5.59
V5O Q22 2.37 2.18 2.52 3.95 8.22

CJ Q 4,4 13.02 9.97 8.73 10.1 15.9
O' Qs.s 83.85 56.76 39.32 34.62 40.13

Q16.16 572.9 358.5 212.4 150.1 131.9

Table 2. Robustness of LinearSplit for Network Data

I/Os
Tree - optimized for S(%) and T

(duration)
Iu I2.2 I4.4 Is.s 116.16

Q ... 0.57 0.63 1.01 2.14 5.44

C / 5
O

Q2.2 2.65 2.23 2.57 3.99 7.97

5 Q4.4 15.65 10.61 8.88 10.32 15.63
a Qs.s 105.27 62.15 40.28 0 — n 39.95

Q16.16 738.6 400 218.9 155.1 135.3

The performance o f both algorithms on both datasets is qualitatively very

similar. The best performance (shaded cells) occurs exactly where expected, in

the diagonal o f the tables, except for one case when using the LinearSplit heuristic

and GSTD data (see O2.2 in Table 4), due to the erratic movement in that dataset.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Even in this single case, the value in the diagonal is very close to the minimal

value in that row.

Table 3. Robustness o f OptimalSplit for GSTD Data

#I/O s
Tree - optimized for S(%) and T

(duration)
I u I2.2 I4.4 Is.s I 16.16

Q
ue

ri
es

Qi.i 1.01 1.02 1.39 3.89 10.39

Q2.2 2.96 2.95 6.27 13.71

Q4.4 11.65 11.46 10.90 13.50 22.25

Qs.s 59.63 57.9 48.59 40.60 47.56

Q 16.I6 355.5 342.4 264.8 162.9 137.3

Table 4. Robustness o f LinearSplit for GSTD Data

I/Os
Tree - optimized for S(%) and T

(duration)
Il.l I2.2 I4.4 Is.s I16.16

Q1.1 1.07 1.11 1.93 3.40 6.91

O Q2.2 3.24 3.25 4.14 5.91 10.00
u*a Q4.4 13.59 13.24 12.88 13.90 18.50
c / Qs.s 74.57 70.87 55.86 45.86 46.84

Q 16.16 469.6 439.7 304.3 200.6 161.8

Looking at the rows o f all tables, we can also observe that the query

performance degrades on average only by 13% when queries were run against

indices optimized for queries two times smaller or larger than the used query size.

This indicates that the algorithms are very robust with respect to the assumed

average query size. This is an important property for the case where the query

load contains queries o f significantly varying sizes, which we will explore in the

following experiments. Note also that the LinearSplit algorithm in all cases

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performs very similarly to the OptimalSplit algorithm, at a much lower

computational cost.

5.2 Number of Disk I/Os

5.2.1 Varying Query Size

In our second set o f experiments we used the same databases as above, containing

50,000 trajectories, to study the performance o f different query types: snapshot

queries and range queries. While all queries are assumed to have varying spatial

areas, snapshot queries have a temporal duration o f one time interval, whereas

range queries have durations o f varying time intervals. Table 5 and Table 6 define

the sizes o f both types o f queries, similarly to those used in [7].

Table 5. Snapshot query sizes

Spatial extent in
each dim. (S%)

Duration
(T)

Small (SS) 1 - 3 1

Medium (SM) 3 - 9 1

Large (SL) 9 - 2 7 1

Table 6. Range query sizes

Spatial extent in
each dim. (S%)

Duration
(T)

Small (RS) 3 - 9 1 - 3

Medium (RM) 3 - 9 3 - 9

Large (RL) 3 - 9 9 - 2 7

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this set o f experiments we measure the number o f I/Os at both the directory

level and the data level, in order to provide a thorough analysis o f the

performance o f the indices. Two different approaches are considered with respect

to our algorithms: multiple index trees and a single index tree. In the multiple tree

approach, we built an index tree for each query type separately (for each o f our

two algorithms). The trajectories are split for each index, considering the average

size o f the query type associated with the index, e.g., in case o f the RS query type,

the average query size is S=6% and T=2. In total, we built six different index trees

for each o f our algorithms in the multiple tree approach. A query was then run

against the index tree that was optimized for the corresponding query type. In the

single tree approach, we built only one index for all query types (for each o f our

two algorithms), i.e., we determine the average query size over all given query

types (i.e., S=7.3% and T=4.83), and use this query size when splitting

trajectories according to our cost models. The resulting index is then used to

answer all types o f queries.

The results o f our experiments in this and the following section are presented

using bar graphs. Figure 16 and Figure 17 show the average number o f I/Os per

query for the network data and the GSTD data, respectively, using the multiple

tree approach. Figure 18 and Figure 19 show the average number o f I/Os per

query for the network data and the GSTD data, respectively, using the single tree

approach. Note that using multiple trees or just a single tree affects only our

algorithms OptimalSplit and LinearSplit, and that the values for the other

algorithms are consequently the same for the same dataset.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each bar in the figures represents the average number o f I/Os per query and

consists o f two parts: the bottom (shaded) part corresponds to the average number

o f hits on the data level while the top (blank) part corresponds to the average

number o f hits on the directory levels o f the indices (except for the FullSplit

algorithm where the trajectory information is completely stored in the directory

and consequently all hits are directory level hits).

I/O Performance - Multiple Trees (Network Data)
400 --

300

200 n "I - -i

SS SM SL RS RM RL

Query Types

□ No Split ■ HKTG-5 0 % □ HKTG-10 0 %

H HKTG-15 0 % ■ OptimalSplit H LinearSplit

□ FullSplit_______□ On top of bars: Directory I/Os

Figure 16. I/O Performance using multiple trees (Network Data)

In all scenarios, our approaches consistently outperform all others, and

LinearSplit shows performance close to OptimalSplit, confirming again the

suitability o f the linear split heuristic. For SS and RL queries on the Network data,

the FullSplit algorithm performs competitively to our approaches, however for

other query types the performance can be much worse.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

300

200

100

I/O Performance - Multiple Trees (GSTD Data)

SS SM SL RS

Query Types

RM RL

□ NoSplit ■ HKTG-50% [3 HKTG-100%

H H K TG -150% ■O ptim alSplit H LinearSplit

□ FullSplit_______ □ On top o f bars: Directory I/Os

Figure 17. I/O Performance using multiple trees (GSTD Data)

I/O Performance - Single Tree (Network Data)
400 --

300

200

100

0
SS SM SL RS RM RL

Query Types

□ NoSplit H HKTG-50% □ HKTG-100%

m HKTG-150% ■ OptimalSplit □LinearSplit

□ FullSplit_______ D On top o f bars; Directory I/Os

Figure 18. I/O Performance using a single tree (Network Data)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ NoSplit

B HKTG-15 0 % ■ OptimalSplit

□ FullSplit

HKTG-5 0 % El HKTG-10 0 %

LinearSplit

□ On top of bars: Directory I/Os

3 00

200

I/O Performance - Single Tree (GSTD Data)

SM SL

Query Types

727

RS RM RL

Figure 19. I/O Performance using a single tree (GSTD Data)

As we can see from the figures, our approaches have a significantly lower

number o f I/Os on the data level than the other algorithms (except again FullSplit

since there is no separate data level) thus reducing the number o f false hits. In

addition to the unnecessary I/Os, false hits also add CPU time since

computationally intensive algorithms have to be invoked to determine whether a

trajectory segment approximated by the retrieved MBRs actually intersects the

given query. Note also that our algorithms in general result in less directory I/Os

than the NoSplit and the HKTG-/c% algorithms even though our trees are typically

larger since we introduce more splits, showing the effectiveness o f our proposed

split evaluation function for internal nodes. The FullSplit algorithm always has

the largest possible tree since it introduces the maximum number o f splits.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When comparing the performance o f our algorithms using multiple trees with

the performance using only a single tree for all query types, we can again confirm

the robustness o f our approach. The performance o f a single tree is very close to

the performance o f multiple trees, which means that for the given datasets and

query types, we can safely use only a single tree instead o f six trees to efficiently

support all given query types. In some cases, however, e.g., if the range o f query

sizes varies more dramatically, or if we have a multi-modal distribution o f query

sizes, or if certain types o f queries should run as fast as possible (e.g. because o f

organizational reasons), it may be desirable to generate different trees for different

query' types. Note that in these cases the trajectory data does not have to be

replicated; only different index directory structures have to be created.

5.2.2 Varying Database Size

In our third set o f experiments we created indices for different database sizes,

ranging from 10,000 to 50,000 trajectories. We ran medium sized range queries

(query type RM) against all indices, where our indices where built for the average

RM query size. The results are shown in Figure 20 and Figure 21.

The I/O performance or our algorithms is always significantly better than the

NoSplit and the HKTG-k% algorithms. Although for the smaller datasets

FullSplit performs competitively when compared to our approaches, it is clear that

its performance degrades faster with increasing database size. The reason for this

degradation is that FullSplit index is much larger than other approaches and at a

certain database size a new directory level is introduced within the index.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

160

120

80

40

0

□ NoSplit H HKTG-50% □ HKTG-100%

H HKTG-150% ■ OptimalSplit □ LinearSplit

□ FullSplit □ On top o f bars: Directory I/Os

Figure 20. I/O Performance (Network Data)

I/O Performance (GSTD Data)
160 --

120 _

10K 2 0 K 50K

DB Size

□ NoSplit H HKTG-50% □ HKTG-100%

H HKTG-150% ■ OptimalSplit □ LinearSplit

□ FullSplit □ On top o f bars: Directory I/Os

Figure 21. I/O Performance (GSTD Data)

67

I/O Performance (Network Data)

10K 2 0 K 50K

DB Size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that, even though in all experiments the OptimalSplit results, by design,

in the smallest number o f data level I/Os, this does not guarantee the best overall

performance. In some cases LinearSplit exhibits the best performance due to a

smaller number o f directory level I/Os, which is due to the heuristic nature o f our

node splitting policy.

5.3 Index Size

In addition to I/O Performance presented in the previous section in case o f both

varying query and the database size, in this section we compare the index sizes o f

all o f the approaches in both cases. Since the index size is directly proportional to

the total number o f MBRs that is inserted into the index, we use this number as a

measure o f index sizes o f all o f the approaches.

5.3.1 Varying Query Size

Figure 22 and Figure 23 show the number o f MBRs o f all o f the approaches when

varying query sizes for Network and GSTD data respectively. In case o f our

approaches, OptimalSplit and LinearSplit, we show the results obtained by the

multiple tree approach. As we can see from the figures, the number o f MBRs for

our approaches is different for each query type since different indexes are created

for each query type. The number or MBRs obtained by other approaches is the

same for each query type since they do not take average query size into account.

NoSplit creates only one M BR per object so it always results in a smallest index

size. The HKTG-A-% algorithms introduce a smaller number o f splits than our

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approaches for each query type thus resulting in a smaller number o f MBRs.

FullSplit, however, uses a trivial splitting algorithm that creates an M BR around

every two consecutive trajectory points resulting in a maximum possible number

o f MBRs. Therefore, the number o f MBRs obtained by FullSplit approaches

5,000,000 for both Network and GSTD datasets. Although, the FullSplit splitting

algorithm is fast and simple, the running time o f the preprocessing step in this

case is greatly influenced by the number o f MBRs since each MBR has to be

inserted into an index as shown in Section 5.4.

Number o f MBRs - Mutiple Trees
(Network Data)

5 .0 0 0 .0 0 0 --------- —

4. 0 0 0 .0 0 0

Query Types

□ NoSplit B HKTG-50% E3 HKTG-100%

Hi HKTG-150 % ■ OptimalSplit iH LinearSplit

□ FullSplit

Figure 22. Number o f MBRs for each query type (Network Data)

In case o f the single tree approach, however, the number o f MBRs for our

approach is fixed as well since a single average query size is used for all o f the

query types resulting in a number o f MBRs similar to the results for the RM query

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

type. This behavior is expected since an average query size used in a single tree

approach is close to the average query size used for RM query type. Therefore, in

addition to a good I/O performance obtained by using the single tree approach, the

resulting number o f MBRs is relatively low reducing both storage requirements

and insertion time.

Number of MBRs - Mutiple Trees
(GSTD Data)

5 .0 0 0 .0 0 0 r p, ^ --------- —

4 . 0 0 0 . 0 0 0

3 . 0 0 0 . 0 0 0

Query Types

S NoSplit H HKTG-50% S HKTG-100%

H HKTG-150% ■ OptimalSplit 3 LinearSplit

□ FullSplit

Figure 23. Number of MBRs for each query type (GSTD Data)

5.3.2 Varying Database Size

To measure the scalability o f the index size with respect to database size, we used

again our indices for the databases containing 10,000, 20,000, and 50,000

trajectories, where our indices where built for the average RM query size. The

results in Figure 24 and Figure 25 show that all the algorithms scale linearly with

respect to the number o f MBRs when increasing database size.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of MBRs (Network Data)

5 .0 0 0 .0 0 0

4 .0 0 0 .0 0 0

3 .0 0 0 .0 0 0

2.000.000

1,000,000

10K 20K 5 0K
Query Types

□ No Split ■ HKTG-5 0 % □ HKTG-100%

m HKTG-15 0 % ■ OptimalSplit Hi LinearSplit

□ FullSplit

Figure 24. Number of MBRs (Network Data)

Number o f MBRs (GSTD Data)

5 .0 0 0 .0 0 0 --

4 .0 0 0 .0 0 0

3 .0 0 0 .0 0 0

2.000.000

10K 20K
Query Types

5 0K

□ NoSplit H HKTG-50% □ HKTG-100%

l i HKTG-150% E OptimalSplit l i LinearSplit

□ FullSplit

Figure 25. Number of MBRs (GSTD Data)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Index Building Time

In this section we compare the index building times o f all o f the approaches for

both varying query and the database size.

5.4.1 Varying Query Size

The index building times for all algorithms, and using the average size o f each

query type for our approaches, are shown in Figure 26 and Figure 27. The NoSplit

algorithm is clearly the fastest since it has to insert only one MBR per trajectory

into the index. For the HKTG-A-% algorithms, most o f the time is spent splitting

the trajectories due to the expensive splitting algorithm. The FullSplit has to insert

one M BR per elementary segment o f each trajectory consuming a significant

amount o f time. Our algorithms show a good balance between trajectory splitting

time and insertion time, outperformed only by the trivial NoSplit algorithm. Also,

as the query size used in our algorithms increases, our index building times

decrease since trajectories are split less and therefore less MBRs are inserted.

N ote that, in principle, we could provide the optimal number o f splits found

by our optimal split algorithm as an input parameter value to the HKTG-/c%

algorithm (setting k appropriately). However, when using our datasets we could

not finish building these trees even after a few days. We did test the HKTG-A%

with the optimal number o f splits for very small data sets, up to 5,000 trajectories.

On those dataset, the number o f data level I/Os o f the HKTG-A-% algorithm is

very close to ours, however, the overall I/O performance for queries is much

worse than ours due to a larger overhead for directory level I/Os.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60 00 0

4 0 0 0 0

200 00

0

Query Types

□ NoSplit H HKTG-50% □ HKTG-100%

m HKTG-150% ■ OptimalSplit Hi LinearSplit

□ FullSplit

Figure 26. Preprocessing time in seconds for each query type (Network Data)

Preprocessing Running Time (seconds)
Multiple Trees (GSTD Data)

40 000

3 00 0 0

20 000

10000

0
SS SM SL RS RM RL

Query Types

□ NoSplit H HKTG-50% □H K T G -100%

■ HKTG-15 0 % ■ OptimalSplit H LinearSplit

□ FullSplit

Figure 27. Preprocessing time in seconds for each query type (GSTD Data)

73

Preprocessing Running Time (seconds)
Mutiple Trees (Network Data)

SS SM SL RS RM RL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.2 Varying Database Size

In this experiment, we measure the scalability o f the index building time with

respect to database size. We again use the same datasets with number o f

trajectories varying from 10,000 to 50,000, and build our indices for the average

RM query size. The results are shown in Figure 28 and Figure 29 for Network and

GSTD datasets respectively. As expected the index building time for all

algorithms increases as the database size increases. Our algorithms scale linearly

at a much slower rate than all other ones (again with the exception o f the trivial

NoSplit algorithm).

60000

40000

20000

Preprocessing Running Time (seconds)
(Network Data)

0 m r m — r-i

DB Size

□ NoSplit 1 HKTG-50% □ HKTG-100%

H HKTG-150% ■ OptimalSplit H LinearSplit

□ FullSplit

Figure 28. Preprocessing time in seconds (Network Data)

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Preprocessing Running Time (seconds)
(GSTD Data)

40000 ---

30000

u -------— —"----
10K 2 0 K

DB Size

5 0 K

□ NoSplit H H K TG -50% □ HKTG-10 0 %

H H K TG -15 0 % ■ Optim alSplit □ LinearSplit

□ FullSplit

F igure 29. Preprocessing tim e in seconds (GSTD Data)

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

In this work we investigated the problem o f splitting spatiotemporal trajectories in

order to improve the performance o f spatiotemporal queries. To index the

trajectories, MBR-based access structures are typically used. We argued that

splitting trajectories with the goal o f minimizing the volume o f the resulting

MBRs alone is not the best strategy. A better solution is obtained when taking

into account average query sizes. We presented a cost model for predicting the

number o f data page accesses, and an optimal trajectory splitting algorithm based

on this model, which minimizes the expected data page accesses, given an

average query size. However, the optimal splitting algorithm may not be suitable

for splitting long trajectories due to its time complexity. In addition, the optimal

splitting algorithm requires that the complete trajectories are known in advance.

Therefore, it is not applicable in a dynamic case where the trajectories are

continuously growing. Using our cost model and approximating trajectories by

constant-slope segments, we formally derived a linear time splitting algorithm,

which can be applied in a dynamic environment.

Using the R-tree as the underlying access structure, our experimental results

show that, overall, our proposed trajectory split policies consistently outperform

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other previously proposed policies, up to 6 times less disk I/Os than FullSplit and

up to 5 times less disk I/Os than the approaches proposed in [7]. Although our

indices are built assuming a pre-determined query size, our algorithms are robust

in the sense that the built indices efficiently support a much wider range o f query

sizes. Our algorithms scale well with respect to database size for both query

performance and index building time. Finally, we also confirmed in our

experiments that the LinearSplit algorithm performs similarly to the OptimalSplit

algorithm, at a much lower cost.

Directions for future research include extending our cost model to better

understand the effect o f directory level page accesses and designing optimized

split policies for directory pages o f spatiotemporal indices. For this, we also will

explore the effect o f different distributions o f trajectories in space and time.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-

volume bounding box o f a point set in three dimensions. In ACM Symp. on

Discrete Algorithms, pp.829, 1999.

[2] Beckmann, N. , Kriegel, P. , Schneider, R., Seeger, B. The R*-Tree: An

Efficient and Robust Access Method for Points and Rectangles. In Proc. o f

the A CM SIGMOD Conf, pp. 322-331, 1990.

[3] Benetis, R. Jensen, C.S. Karciauskas, G. and Saltenis, S: Nearest Neighbor

and Reverse Nearest Neighbor Queries for M oving Objects. In Proc. O f the

IDEAS 2002, pp. 44-53, 2002.

[4] Brinkhoff, T., Kriegel, H.P., Schneider, R.: Comparison o f Approximations

o f Complex Objects Used for Approximation-based Query Processing in

Spatial Database Systems, In Proc. o f the IEEE 9th Data Engineering Conf,

pp. 40-49, 1993.

[5] Chakka, V., Everpaugh, A., Patel, J.: Indexing Large Trajectory Sets with

SETI. In Proc. o f the Conf. on Management o f Data, 2003.

[6] Guttman, A. R-Trees: A Dynamic Index Structure for Spatial Searching. In

Proc. o f the Intl. Conf. on Management o f Data SIGMOD, pp. 47-57, 1984.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[7] Hadjieleftheriou, M., Kollios, G., Tsotras, V., Gunopulos, D.: Efficient

indexing o f Spatiotemporal Objects. In Proc. O f the Intl. Conf. On

Extending Database Technology, pp. 251-268,2002.

[8] Kollios, G., Gunopulos, D., Tsotras, V.: On Indexing Mobile Objects. In

Proc. O f the 18th ACM Symposium. On Principles o f Database Systems, pp.

261-272,1999.

[9] Mokbel, M., Ghanenm, G., Aref, W.: Spatio-Temporal Access Methods. In

Bull, o f the Technical Committee on Data Engineering,26(1), pp. 40-49,

2003.

[10] Nascimento, M., Silva, J., Theodoridis, Y.: Evaluation o f Access Structures

for Discretely Moving Points. In Proc. o f the Inti Workshop on Spatio

Temporal Data Management, pp. 177-188, 1999.

[11] Nascimento, M., Silva, J.: Towards Historical R-trees. In Proc. o f the ACM

Symp on Applied Computing, pp. 235-240, 1998.

[12] Pagel, B., Six, H., Toben, T., Widmayer, P.: Towards an Analysis o f Range

Query Performance in Spatial Data Structures. In Proc. o f A C M On

Principles o f Database Systems, pp. 214-221, 1993.

[13] Papadias, D., Tao, Y., Kalnis, P. and Zhang, J.: Indexing Spatio-Temporal

Data Warehouses. In Proc. o f the International Conference on Data

Engineering, pp. 166-175, 2002.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] Pfoser, D., Jensen, C., Theodoridis, Y Novel Approaches to the Indexing

o f M oving Object Trajectories. In Proc. o f the 26th International

Conference on very Large Databases, VLTB, pp. 395-406, 2000.

[15] Saltenis, S. , Jensen, C. , Leutenegger, S. , Lopex, M.: Indexing the

Positions o f Continuously Moving Objects. In Proc. O f the AC M Intl. Conf.

O f Data, SIGMOD, pp.331-342, 2000.

[16] Tao, Y., Papadias, D. and Sun, J. The TPR*-Tree: An Optimized Spatio-

Temporal Access Method for Predictive Queries. In Proc. o f the Conf on

Veiy Large Databases, pp. 790-801, 2003.

[17] Theodoridis, Y., Vazirgiannis, M., Sellis, T.: Spatio-Temporal Indexing for

Large M ultimedia Applications. In Proc. o f the 3rd IEEE Conf. on

Multimedia Computing and Systems, pp. 441 -448, 1996.

[18] Theodoridis, Y., Silva, R., Nascimento, M.: On the Generation o f

Spatiotemporal Datasets. In Proc. o f the 6th Intl. Symposium on Spatial

Databases, pp. 147-164, 1999.

[19] Tzouramanis, T., Vassilakopoulos, M .:and Manolopoulos Y.: Overlapping

Linear Quadtrees and Spatio-Temporal Query Processing. The Computer

Journal 43(4), pp. 325-343, 2000.

[20] Vlachos, M., Kollios, G., Gunopulos, D.: Discovering Similar

Multidimensional Trajectories. In Proc. o f the 18th International

Conference on Data Engineering, pp. 673-684, 2002.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[21] Zhu, H., Su, J., Ibarra, O.: Trajectory Queries and Octagons in Moving

Object Databases. In Proc. o f the ACM Conference on Information and

Knowledge Management, pp. 413-421, 2002.

[22] Brinkhoff, T.: Generating Network-Based Moving Object, In Proc. o f the

12th International Conference on Scientific and Statistical Database

Management, pp. 253-255, 2000.

[23] van der Bercken, J., Blohsfeld, B., Dittrich, J.-P., Kramer, J., Schafer, T.,

Schneider, M., Seeger B.: XXL - A Library Approach to Supporting Efficient

Implementations o f Advanced Database Queries. VLDB 2001, pp. 39-48.

[24] Tao, Y., Papadias, D.: Mv3r-tree: a spatio-temporal access method for

timestamp and interval queries. In Proc. o f the VLDB, 2001.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

