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Abstract 

Additive Manufacturing (AM) is a transformative method in industrial manufacturing, 

facilitating the creation of lighter, stronger, and smarter parts and systems. Both plastic and 

metal AM technologies are extensively employed in various fields, including medical, 

automotive, and aeronautical industries. 

As AM provides new design opportunities, topology optimization is ideal for AM since it 

can be deployed to design high-performance structures and fully exploit the fabrication 

freedom provided by AM. However, there are still some challenges of printing 

topologically designed parts in AM, such as multi-material design, porous infill design, 

residual stress, and residual distortion, which impede its widespread use in industrial 

applications. These challenges can be controlled by better understanding the influence of 

the process or material properties used in the AM process. Nevertheless, relying 

exclusively on experimental efforts is expensive and time-consuming. Therefore, it is very 

important to consider the AM issues (such as the AM material properties, AM process 

model and so forth) into topology optimization. 

This research proposes a coupled topology optimization and AM process constraints 

system to deal with the challenges and utilize the opportunities of the AM process. Based 

on this system, the issues of topology optimization for AM are solved from two 

perspectives: improvement and prevention.  

The main objective in the perspective of ‘improvement’ is to utilize the advantages offered 

by AM technologies for designing high-performance parts using topology optimization 

algorithms. This perspective comprises two crucial contributions: one involving topology 

optimization methods for designing stress-based multi-material structures, and the other 

focusing on multi-scale porous infill structure design. In the stress-based design fabricated 
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with multiple materials, a novel optimization algorithm that constrains the maximum stress 

is introduced. This new interpolation avoids the numerical issues of the extended SIMP 

interpolation for multi-phase stress measures. Additionally, a stress scaling method is 

proposed to impose the material-dependent yield stress limits. The STM based P-norm 

stress correction has been adopted to close the gap between the maximum local stress and 

the P-norm global approximation. Results of the numerical examples demonstrated that 

the proposed method can efficiently solve the stress constrained multi-material topology 

optimization problems with different material combinations. For multi-scale porous infill 

structure design, an innovative two-scale concurrent optimization algorithm is presented. 

The introduction of solid interface layers addresses the connectivity issue and thus 

improves the robustness of the multiscale structures. The effect of adding the interface 

layers has been validated through experiments and the design without interior interface 

layers has demonstrated an evidently degraded stiffness and strength performance. Due to 

the generality, the proposed methodology can reliably create optimized porous infill 

structures suitable for fabrication through Stereolithography (SLA) or Laser Powder Bed 

Fusion (LPBF). 

The perspective of ‘prevention’ is dedicated to tackling issues related to AM process 

defects from a preventative standpoint, specifically within the LPBF metal AM process 

context. These efforts primarily concentrate on mitigating defects in parts resulting from 

the LPBF fabrication process, such as the residual stress and distortion. Firstly, an 

accelerated LPBF process simulation solver is proposed based on inherent strain theory. 

The results are validated with a commercial software Simufact Additive 2022®, and show 

an average of less 5% error. Building upon this solver, a series of design methods are 

proposed, including a topology optimization method with constraints related to residual 

stress for self-supporting LPBF-fabricated parts, laser printing path optimization to 
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minimize residual deformation in LPBF parts, support structure design that takes into 

account various LPBF processing constraints, and a large-scale concurrent optimization 

method accelerated by the PETSc framework is proposed. One featured optimization 

model is implemented on multiple computational cores and shows a computational 

advantage of almost 4.6 times over a reference case. It indicates that it is possible to reduce 

the residual distortion of a part by designing the part geometry, support structure, and 

printing path. Last but not least, the optimized structure obtained from the concurrent 

printing path and structure optimization has demonstrated the best structural performance 

(both the least residual warpage and the best stiffness). 
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Chapter 1. Introduction 

Additive Manufacturing (AM), also known as 3D printing, rapid prototyping, and rapid 

manufacturing [1], is a class of advanced manufacturing. In the last four decades, AM 

technology has revolutionized the manufacturing industry. Along with the technological 

advancements in AM, topology optimization methods [2] have also made significant 

progress. Today, products designed through topology optimization and manufactured using 

AM technology have gained widespread recognition among the public.  

1.1. Research motivation 

Topology optimization for AM is a design methodology aiming at optimizing the structural 

configuration of a component to minimize material usage while maintaining its 

performance. It considers the specific requirements of AM, such as manufacturing 

constraints and build direction, and utilizes multi-objective optimization techniques to 

obtain trade-off solutions by balancing various design goals. This approach enables the 

generation of highly optimized and lightweight component designs for AM, utilizing the 

advantages of materials and manufacturing processes. 

However, because of the expanded design space, the gained topological design has often 

been criticized for being too organic, which poses challenges during the construction and 

postediting of the associated CAD model. It is difficult to guarantee that a topologically 

optimized design to be manufacturable and aesthetically acceptable (deviates from what 

conventionally a mechanical part would look like) [3]. Generally, engineers will perform 

an ‘interpretation’ step in which the organic shape is simplified into standard geometries 

and rebuilt from typical CAD primitives. Unfortunately, sizable optimality is often lost in 

this step. To address these issues, significant research has been carried out on 

manufacturability-oriented topology optimization, but not all of them are mature enough 
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for industrial applications [4].  

Despite the numerous advantages associated with AM, this manufacturing method does 

possess certain limitations that need to be considered when developing suitable topology 

optimization algorithms. For some AM techniques, such as LPBF, DED, WAAM, and 

other metal fabrication methods, inherent defects may be presented in the manufactured 

components due to their unique material forming processes [5][6][7]. These defects can 

ultimately impact the geometry and performance of the resulting products. Traditionally, 

topology optimization algorithms assume an ideal manufacturing scenario [8], which often 

leads to discrepancies between components successfully manufactured through AM and 

the originally designed parts. Eliminating these discrepancies can significantly enhance 

the practical application of topology optimization in engineering. In summary, currently, 

many components designed and optimized using topology optimization algorithms often 

neglect real-world manufacturing processes. This can potentially lead to a disconnect 

between product design and practical manufacturing considerations. Therefore, it becomes 

crucial to consider actual AM process requirements into the topology optimization 

algorithms. 

1.2. Research gaps 

As highlighted a decade ago by Brackett et al. [3], the lack of topology optimization 

solutions compatible with AM was a significant impediment (like the low mesh resolution 

limit, less manufacturing constraint consideration, difficulty in post-optimization topology 

handling, and so forth), and there were also some opportunities for topology optimization 

for AM (lattice infilled structure design, multiple material design, and processing 

parameter considered optimization). Over the years, efforts have been made to meet some 

of these challenges [9][10][11][12]. Based on the aforementioned discussions, new issues 
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have been arisen which are still under investigations and could be listed as follows:  

1. There is still a lack of a robust and efficient topology optimization framework for AM. 

Much of the existing work is only applicable to simple structural designs with specific 

boundary conditions and cannot be applicable to real practices. In addition, too many 

tunable parameters exist in the algorithms, making the work difficult to reproduce [15];  

2. New rules and restrictions emerge due to the diverse and intricate AM processes, which 

requires further explorations. For example, in multiple material structure design, the stress 

constrained problem has not been fully solved [16]. While in multi-scale lattice infilled 

topology optimization, the problem of microstructural connectivity is still being explored 

[17]. In addition, as in the design for fiber reinforced composites, the obtained structure is 

difficult to match with the actual processing technology [18];  

3. There is still a lack of efficient and robust topology optimization algorithms for metal 

AM. Topology optimization combined with metal AM processes is time-consuming and 

unstable since metal AM processes involve multiple complex physical coupling 

phenomena. Meanwhile, balancing accuracy and efficiency properly remains a huge 

challenge for metal AM solvers [9][19];  

4. Most algorithms are only suitable for coarse or low-resolution meshes, which greatly 

limits the improvement of structural performance and real-world applications. Although 

there are several open-source computing frameworks for large-scale topology optimization 

problems [20][21][22][23][24][25], it is still difficult to integrate them with metal AM 

oriented topology optimization [26]. 

1.3. Research objectives 

The thesis, titled 'Topology Optimization Considering Additive Manufacturing Process 
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Constraints,' aims to establish a foundational framework for design and optimization in 

AM. This framework assists structural designers take full advantage of AM by offering 

insights into material properties, residual stresses/deformations, and structural topology 

optimization. The work can be categorized into two distinct aspects based on research 

objectives: 'improvement' and 'avoidance.' 

Firstly, regarding the aspect of ‘improvement’, it refers to the endeavor to enhance the 

performance of the manufactured structure by utilizing the distinctive characteristics of 

the AM process. For instance, in the case of conventional fabrication methods such as 

FDM, the resulting material exhibits significant anisotropy [13]. Taking this factor into 

account at the component design phase, the reliability of the part can be significantly 

improved. 

Moreover, in the context of ‘prevention’, the aim is to design a manufacturable part while 

considering process constraints and ensuring structural performance. For example, in 

metal AM, the presence of residual stresses can lead to processing failures [14]. The 

generation of these residual stresses is highly influenced by the geometry of the part. By 

employing topology optimization techniques to modify the part's geometry, the generation 

of residual stresses can be significantly reduced, thereby enhancing the manufacturability 

of the component. 

1.4. Research contributions 

At the beginning of this chapter, an overview of the current state of integration between 

topology optimization and AM is provided.  The main contributions of this work are 

demonstrated in Figure 1. 
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Figure 1. Main contributions and logical relationship between them 

The main contributions can be summarized into two parts: topology optimization for parts 

design in advanced AM technology and topology optimization considering the AM process 

constraints.  

The primary objective related to topology optimization for advanced AM parts is to 

leverage the advantages of AM technology to design high-performance components using 

topology optimization algorithms from the ‘improvement’ view, encompassing two key 

contributions: topology optimization methods for stress-based multi-material structures 

design and multi-scale porous infill structures design. In terms of stress-based structures 

fabricated by multi-material, a maximum stress constrained optimization algorithm is 

proposed, which involves the development of a novel stress scaling ordered SIMP 

interpolation. Multi-scale porous infill structures design, an innovative two-scale 

concurrent optimization algorithm is introduced. This algorithm incorporates the shell 
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extraction algorithm and the energy-based homogenization method, while also considering 

structural connectivity. Using this approach, it is possible to create a reliable and optimized 

porous infill structure fabricated through SLA or LPBF.  

In the next part, several studies (Papers 2 to 6) have been conducted to address the issue 

of AM process defects from the ‘prevention’ view, particularly in the context of the LPBF 

metal AM process. These works primarily focus on mitigating part defects induced by the 

LPBF fabrication process, such as residual stress and distortion. Firstly, a fast LPBF 

process simulation solver is developed based on the inherent strain method (ISM). 

Building upon this solver, a series of works have been proposed, including a topology 

optimization method with residual stress constraints for self-support LPBF fabricated parts, 

laser printing path optimization to reduce residual deformation in LPBF parts, support 

structure design considering various LPBF processing constraints, and large-scale 

concurrent optimization method (based on the PETSc framework) of laser printing path 

and structure geometry for LPBF metal AM. 

It is noted that this thesis incorporates both existing technical methods and novel 

approaches. The integration of these methods offers a robust and dependable solution to 

address the challenges at hand. In the subsequent chapters, each of these technical methods 

will be individually introduced, according to their relevance to the research objectives. 

1.5. Structure of the thesis  

The thesis is organized into seven chapters, as depicted in Figure 2. First, Chapter 2 

presents the literature review closely related to the research topic. In this chapter, a brief 

overview of topology optimization methods and some typical applications of topology 

optimization are provided. Subsequently, the works regarding topology optimization for 

AM has been introduced, specifically addressing the material, geometry, support, and 
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fabrication process aspects. These perspectives are summarized and reviewed in 

conjunction with topology optimization algorithms. It is worth noting that, in terms of the 

fabrication process aspect, the thesis primarily focuses on metal AM, and therefore, only 

introduces LPBF as a typical metal processing method along with relevant topology 

optimization works. 

 
Figure 2. Structure of thesis. 



8 

 

Chapter 3 presents the basic framework concerning topology optimization for AM. A 

system comprises topology optimization, post-processing, performance simulation, and 

mechanical testing, serving as an integrated solution for achieving high-performance 

products, expediting product enhancements, and curbing design expenses. Chapter 4 

delves into topology optimization for advanced AM parts. This chapter is divided into two 

main aspects. The first (Section 4.1), focuses on introducing topology optimization 

methods for stress constrained design in the context of multi-material FDM. The second 

(Section 4.2) covers the design of porous infill structures using topology optimization 

techniques.  

The works about topology optimization for the AM process constraint is covered in 

Chapters 5 to 7. Chapter 5 introduces a rapid solver for LPBF process simulation and its 

integration with topology optimization algorithm. Chapter 6 mainly discusses several 

approaches to address defect control issues in the LPBF manufacturing process, which 

includes three aspects, including the residual stress control design method for LPBF metal 

manufacturing (Section 6.1), the LPBF laser printing path optimization (Section 6.2), and 

the support structure design for LPBF parts (Section 6.3). Chapter 7 proposes a concurrent 

optimization framework for printing path/structure for the large-scale part design. 

Finally, Chapter 8 provides a summary of the works conducted in this thesis and offers an 

analysis and outlook on the limitations and future directions of the research. 
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Chapter 2. Literature Review 

2.1. Brief introduction to topology optimization methods and their applications 

Compared with traditional structural optimization methods, topology optimization enables 

the creation, merging and splitting of the interior solids and voids during the structural 

evolution via three optimization methods (Figure 3), and therefore a much larger design 

space can be explored, and the superior structural performance can be expected. 

 

Figure 3. Three different structure optimization methods: (a) size optimization, (b) 

shape optimization, and (c) topology optimization [27]. 

Topology optimization gives answers to the fundamental engineering question: how to 

place material within a prescribed design domain to obtain the best structural performance? 

The concept was initiated for mechanical design problems but has spread to a wide range 

of other physical disciplines, including fluids [28], acoustics [29], electromagnetics [30], 

optics [31] and combinations thereof [32]. 

A number of prior developments within homogenization theory and numerical 

optimization methods provided the foundation for the seminal paper on numerical 

topology optimization by Bendsøe and Kikuchi [33]. Since the original ‘homogenization 

approach to topology optimization’, the concept has developed in a number of different 

directions Figure 4, including the density-based approach [34][35][36], the level-set 

method [37][38][39][40], the topology derivative method [41], the phase field method [42], 

the evolutionary approaches [43], the geometry expression [44], and some others.  
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Figure 4. Four different topology optimization methods: (a) density-based method 

[27]; (b) level-set method [39]; (c) BESO method [43]; (d) MMC method [44].  

For a comparative and critical review of topology optimization approaches, some excellent 

papers can be found in [45][46][47][48][49], among which the density-based approach 

uses simple element or nodal-based design variables without complex topological 

derivatives, and thus they could better combine with various numerical analyses or 

optimization approaches. Therefore, all the research mentioned in this research is based on 

the density-based approach.  

2.1.1. Multi-material topology optimization 

The utilization of multi-material structures has garnered significant attention thanks to the 

rapid advancements in manufacturing technologies. Multi-material structures have been 

found to possess superior structural properties compared to single-material structures [50]. 

Therefore, one of works in this research aims to incorporate the multi-material model into 

algorithms as a means of enhancing the performance of manufacturable structures. 

To solve the MMTO problems, a typical extension was to include one more density 

variable in the SIMP interpolation model to distinguish the different solid material phases 

[50]. Alternatively, a peak function interpolation scheme was developed with the SIMP 

method to deal with the MMTO [51] which has the advantage of not increasing the amount 

of design variables. The multi-material extension of phase field and level-set methods 

[52][53] and its integration with other disciplines [54] have also been successfully 

conducted. Generally, more phase field or level-set functions are involved to realize the 
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multi-phase interpolation [55][56].  

Recently, the ordered SIMP interpolation method was proposed by Zuo and Saitou [57]. 

This method employs a continuous function to interpolate the elastic properties of the 

multi-phase materials with respect to a single density variable. 

2.1.2. Multi-scale topology optimization 

To enhance the macroscale structural performance, research attention has been drawn to 

the field of multi-scale topology optimization, i.e., to concurrently optimize both macro- 

and micro-structural details through the homogenization method [58][59]. Different 

categories of microstructures will co-exist inside the design domain 

[60][61][62][63][64][65][66][67]. However, this method has several limitations. First is 

the prohibitive computational cost, since both topology optimization and homogenization 

need to be conducted on a large number of local microstructural unit cells for each iteration; 

second is the manufacturable difficulty, due to the dis-connectivity issue between adjacent 

microstructures and the computing intensive post-processing of the numerous lattice 

microstructures. Hence, to simplify the situation, we have seen many optimization works 

only dealing with an identical lattice microstructure to periodically infill the entire 

structural interior [68][69][70][71][72]. In this approach, all elements in macroscale will 

be characterized with the same effective properties. Thus, the computational cost is greatly 

saved, and the dis-connectivity issue can be easily addressed. This method, however, is 

incapable of fully utilizing the design space, leading to severely compromised structural 

performance.  

Efforts have been made to address the research issues mentioned above. To deal with the 

connectivity issue, a heuristic treatment was used to predefine the connecting passive space 

between adjacent microstructures [64][73]. The shape interpolation method was developed 
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to build interpolation functions of the mechanical properties of a series of graded 

microstructures having similar shape and topological features [74][75]. Du et al. [76] 

introduced a connectivity functional into multi-scale topology optimization model to 

ensure all the microstructures being well connected. In addition, a novel projection scheme 

was presented by Groen and Sigmund [77] and used in homogenization based topology 

optimization to efficiently obtain high-resolution macro topologies with connectable 

microstructures. Based on the MMC method, Deng et al. [78] devised an effective linkage 

scheme to guarantee smooth transitions between neighboring material microstructures. 

To save the computational cost, Zhao et al. [79] proposed an efficient decoupled sensitivity 

analysis method for concurrent topology optimization of frequency response problems to 

reduce the computational burden. Kato et al. [80] introduced a decoupling multiscale 

analysis strategy and applied it to three-dimensional structure optimization undergoing 

large deformation. A trial-and-error criterion was presented by Sivapuram et al. [81] to 

divide the geometrical domain into subdomains and have each subdomain composed of a 

unique microstructure. Principal stress distribution [82] or VTS method [83] were also 

employed to classify the subdomains. Xia and Breitkopf [67] constructed an approximate 

constitutive model with a reduced database to approximate the local material properties, 

which effectively circumvented the massive computational burden related to the local 

material optimization.  

In conclusion, multi-scale design has the potential to expand the design space and improve 

structural performance compared to single design. Therefore, this research proposes 

solutions to the multi-scale design problem based on AM. 

2.1.3. Stress constrained topology optimization 

Stress-related topology optimization is challenging given the numerous underlying 
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numerical and optimization issues. Since the pioneering work by Bendsoe and Duysinx, 

considerable research efforts have been dedicated to this subject. Notably, mainstream 

topology optimization methods such as SIMP and BESO have effectively addressed stress-

related problems. 

Le et al. [84] summarized three main challenges of stress constrained topology 

optimization: the singularity problem [85][86], the local nature of stress [87], and the 

highly nonlinear behavior of stress distribution [88]. The singularity problem only arises 

with the density-based method. It refers to the fact that some elements with low densities 

still present high stress values, making the optimization algorithm incapable of eliminating 

materials entirely at the local spot. For this problem, relaxation techniques (such as the ε-

relaxed method, q-p approach and so forth) have been proposed [87][89][90][91][92][93], 

and some of the technical details will be introduced in the following chapter. Regarding 

the second problem, the local property of the stress evaluation leads to a large number of 

local stress constraints included in the optimization formulation that induces the enormous 

computational burden.  

One common strategy to solve this dilemma is to build a global evaluation to quantify the 

peak stresses through adopting aggregation functions, such as the p-norm function and the 

K-S function [87][94][95]. Then, a large number of local constraints are transformed into 

one global stress constraint that simplifies the solution of the optimization problem. 

Moreover, clustering technology also works well to reduce the number of local stress 

constraints [84][96][97]. As for the third challenge, the stress constraints are highly 

nonlinear and sensitive to local material changes, which brings up difficulties in deriving 

a smooth convergence. For this reason, density filter is adopted instead of sensitivity filter 

for stabilization consideration [84], and a conservative move limit setting of the optimizer 
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is also useful [98].  

Furthermore, stress constrained topology optimization methods have been developed to 

address different kinds of failure criteria other than the von-Mises stress [99][100][101], 

to consider geometrical nonlinearity [102], and to consider the thermal stress [103]. Here, 

the yield stress constraint issue in AM fabricated parts will be targeted, and the solutions 

will be proposed from different perspectives (the mechanical performance and 

manufacturing performance). 

2.2. Additive manufacturing 

AM is a technology that fabricates solid components by gradually adding material based 

on three-dimensional design data. In contrast to subtractive manufacturing, which involves 

material removal, AM follows a bottom-up approach of material accumulation. This 

technology is based on the principles of discrete/layered fabrication, utilizing powder or 

filament materials, and employing high-energy beams such as lasers or electron beams for 

metal melting/solidification. The material is stacked and fused to create the desired 

component layer by layer. This enables the production of sophisticated structures that were 

previously unattainable due to constraints imposed by traditional manufacturing methods 

such as machining and casting. 

AM can reduce the manufacturing cost of enterprises and improve production efficiency 

by reducing mold costs, materials, assembly, and research period [104]. Based on the type 

of processed material and the manufacturing method, AM can be categorized into metal 

forming, non-metal forming, and biomaterial forming [105]. Moreover, depending on the 

state of the raw material, AM systems can be classified into three major categories: liquid-

based AM, solid-based AM, and powder-based AM systems [106]. 

AM technologies utilize various energy sources, including lasers, electron beams, and 
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ultraviolet light. The employed materials encompass resins, plastics, metals, ceramics, 

waxes, among others [106]. Due to the diverse range of forming methods, materials, and 

heat sources involved, AM encompasses multiple process techniques [107]. Widely used 

AM techniques range from FDM and SLA for plastic printing to LPBF and EBM for metal 

printing. Figure 5 illustrates the schematic diagrams of FDM and LPBF. 

   

 (a)                                            (b)  

Figure 5. Schematic diagrams of (a) FDM and (b) LPBF. 

It can be concluded that AM processes rely on layer-by-layer material deposition or 

solidification, which removes the geometric complexity restriction to a large extent. 

Besides, in AM, manufacturing efficiency and fabrication cost are not sensitive to 

geometric complexity. Therefore, AM can easily create freeform design from topology 

optimization, and many of the manufacturability related issues (for conventional 

manufacturing method) are eliminated. 

2.2.1. Laser powder bed fusion 

This system typically comprises several essential components, including a fabrication 

platform, a laser system, and a powder delivery platform. During LPBF manufacturing, a 

high-power laser selectively scans over metal powder to facilitate the formation of 

successive solidified metal layers that are integrated with the pre-existing layers. This 

process will be repeated until the final product, in its desired configuration, is obtained. 
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Figure 6 provides several representative parts made by LPBF. 

 

Figure 6. Several sophisticated parts made by LPBF. 

LPBF boasts a plethora of advantages. Foremost, it offers exceptional design freedom, 

empowering the creation of intricate geometries that traditional manufacturing methods 

would struggle to achieve. Additionally, LPBF yields parts with outstanding mechanical 

properties due to the thorough melting and solidification of metal, resulting in a dense and 

robust final product. Moreover, LPBF excels in material efficiency, adding material only 

where necessary, unlike subtractive manufacturing methods. Lastly, LPBF proves to be 

highly suitable for rapid prototyping, facilitating swift iteration and efficient design 

validation. 

Despite its numerous benefits, LPBF does come with certain limitations, including 

elevated equipment costs, restricted build size, challenges related to specific materials, and 

the presence of printing-induced defects. The primary focus of this research centers on 

addressing the issues concerning its printing defects. 

2.2.2. LPBF manufacturing process simulation 

For addressing this challenge, process parameter optimization is necessary, but relying 

exclusively on experimental efforts to investigate melt-pool behaviors is expensive and 

time-consuming. Therefore, LPBF process modeling has been used to investigate the 

LPBF process. It can be significantly helpful not only in optimizing process parameters 
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but also in predicting the residual stresses and deformation.  

 

Figure 7. Multiscale computational framework for estimating thermal and mechanical 

responses in LPBF AM of metal powder [107]. 

Overall, as shown in Figure 7, according to different time and space discrete standards, 

LPBF simulation mainly involves models of three scales: single track model (particle 

scale), mesoscopic scale model, and part scale model. 

2.2.2.1. Particle-level modeling  

The modeling of LPBF is a complex task, as it involves various physical phenomena. 

These include photon absorption [108], heat transfer, hydrodynamics [109], dynamics of 

particles [110], phase change dynamics [111], solid mechanics [112], and so forth. 

Therefore, several researchers have employed particle-level models to investigate heat 

flow and mass flow within melt pools [113][114][115][116]. These models incorporate 

various details, including CFD models, randomly distributed particles, and the simulation 

of laser-ray transmission through particles, in order to accurately simulate the behavior of 

melt pools. 

Korner et al. [117][118] initially investigated a 2D randomly packed powder bed to 
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examinate the stochastic effects of particles, the influence of relative density, wetting, and 

capillary phenomena in LPBF. Khairallah et al. [119] developed a comprehensive multi-

physics code for simulating the 3D LPBF process. Their approach involved the coupling 

of thermal analysis and hydrodynamics to investigate the Plateau-Rayleigh instability 

phenomenon. Xia et al. [120] investigated the porosity evolution during LPBF by 

considering a randomly packed powder bed, thermodynamics, phase transition, and 

interfacial force. Recently, Panwisawas et al. [112] established a model including almost 

all interfacial phenomena and derived the temperature distribution of single-track molten 

zones. Furthermore, a CFD model was built to investigate the influence of the shield gas 

on the microstructures of the LPBF parts [121]. For calculating the absorption of a laser 

beam by powders, Boley et al. [122] used ray-trace simulations. The relationships between 

absorption and powder content (material, size, distribution, and geometry) have been 

investigated. 

Additionally, the substantial computational requirements associated with these methods 

hinder their direct applicability to thermo-mechanical simulation models for calculating 

residual stresses and deformations. Moreover, the intricate characteristics of particle-level 

models have restricted their usage in multi-layer simulations, and the computational cost 

for such simulations is exceptionally high [116][117][118]. 

2.2.2.2. Meso-level modeling  

Efficient and accurate prediction of melt pool dimensions, such as melt pool width and 

depth, in meso-level models often relies on effective approximations and assumptions. 

These models can be validated by comparing their results against particle-level modeling 

or experimental data. To simplify the modeling process, volumetric heat source models are 

commonly employed instead of laser-ray tracing methods using randomly distributed 
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particles. Additionally, key considerations for effective modeling include heat source 

models, model dimensions, material addition techniques, thermal-mechanical coupling 

techniques, and boundary conditions, as summarized in a valuable study [123]. Heat 

source models play a fundamental role in predicting microstructures in LPBF since they 

provide the thermal history that directly influences microstructure formation [124][125]. 

A one-way coupled thermo-mechanical model was developed to examine the residual 

stresses [126]. In addition to residual stresses, other properties have been incorporated into 

thermo-mechanical modeling. Li et al. [127] accounted for the shrinkage of the powder 

layer following melting in a model, aiming at predicting the temperature and residual stress 

fields in LPBF. Importantly, studies have shown that scanning strategies influence the 

residual stresses in the LPBF parts [128][129]. Therefore, many researchers have paid 

attention to studying scanning strategies for the sake of reducing residual stresses 

[130][131][132][133].  

Advanced computing techniques have employed in the LPBF process modeling. Denlinger 

et al. [134] proposed a three-dimensional non-linear thermo-elastic-plastic finite element 

model for LPBF, where adaptive mesh was employed. The model has been validated by 

comparing with the experimental deformations. Neiva et al. [135] developed a parallel 

finite element framework for metal additive manufacturing at the part scale. The adaptive 

mesh was also incorporated into the framework where a maximum of 19 times speedup 

was achieved. 

2.2.2.3. Part-level modeling 

Even though comprehending the physics within melt pools is crucial, it is worth noting 

that the dimensions of the models employed in the aforementioned studies are relatively 

small compared to the actual size of an AM part. To achieve a comprehensive 
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understanding, part-level simulations should encompass the deposition process across 

multiple layers. However, applying the aforementioned methods to handle part-level 

simulations can become challenging and impractical. Therefore, the development of fast 

computation methods for part-level analysis remains critical, particularly for topology 

optimization, given its iterative nature. 

Mercelis et al. [136] proposed an analytical model to investigate residual stresses in LPBF, 

demonstrating a favorable qualitative coherence with experimental data. To accelerate 

simulations, researchers have explored the use of larger heat sources, known as the 

equivalent heat flux domain method. Alternatively, an equivalent mechanical method has 

been introduced, wherein an entire layer of material with predefined inherent strains is 

added at each iteration. This method eliminates the need for heat transfer simulations, 

enabling further acceleration of the simulation process. Additionally, various techniques 

and methods, such as the birth and death method and the adaptive mesh technique, have 

been employed in pursuit of faster simulations or less memory usage. 

For the equivalent heat flux domain method, the technique of birth and death is suitable 

for describing AM’s material adding procedure, in which new elements are activated at the 

desired time. Matsumoto et al. [137][138] calculated the distribution of temperature and 

stress in one single layer in LPBF. Robert et al. [139] proposed a multi-layer simulation 

model of LPBF using the element birth and death method. Zhao et al. [141] investigated 

the thermal behavior of a single-pass multi-layer rapid prototyping by FEM and 

experiments. Kolossov et al. [142] developed a thermal model of selective laser sintering, 

which was comparable with experimental results. Zhang et al. [143] investigated the 

influence of the different dimensions of the activated domains in a domain-by-domain 

activation method. Computational efficiency may be improved by using the adaptive-mesh 
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technique, in which mesh is automatically adjusted during the simulation process. Keller 

et al. [144] built a part-level simulation for LPBF by implementing the heat flux on a slice 

of a part at once instead of the actual-scan process, which could decrease the calculation 

time. In Seidel et al.’s work [145], four heat-input models for calculation temperature 

distribution in the LPBF process have been explained separately. Chiumenti et al. [146] 

employed the element birth-and-death technique to simulate the temperature distributions 

in LPBF. Three different sizes of the domain for activating are used, and they are hatch-

by-hatch, layer-by-layer, and reduced hatch-by-hatch. Thermal couples were embedded in 

the printed part when the printing was stopped halfway in order to validate the temperature 

distribution. The temperatures from simulated results and experiments have a good 

agreement. However, the residual stress distribution should be further validated. 

Similar to the equivalent heat flux domain method, researchers used an equivalent 

mechanical layer method – inherent strain method (ISM) to achieve the part level 

simulation of LPBF, in which a whole layer of material with some specified inherent 

strains are added at each time. ISM can accelerate part-level modeling because only elastic 

modeling is needed to estimate the deformation and residual stresses given the initial 

inherent strain.  

 

Figure 8. Results of experimental investigation and simulation of thermal distortion 

for a cantilever specimen [148]. 

Their similar ideology is that mechanical results of a mesoscale analysis are imported into 
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a macro-scale part due to the comparable mechanical history in melt pools. Li et al. [147] 

built a multiscale model with the idea of the initial residual stress, in order to rapidly 

predict the part deformation in LPBF, which included microscale, mesoscale, and 

macroscale simulations. Keller et al. [148] used the concept of inherent strain to build a 

fast simulation model for predicting deformation and residual stresses of AM parts. A part-

level simulation proved a similar trend of deformation as the experiments did. Comparison 

of the deformation of a cantilever specimen between the results of simulation and those of 

experiments (Figure 8). Most recently, Siewert et al. [149] did a comprehensive validation 

for the inherent strain method, in which both the residual stresses and deformation are 

validated by experiments. They found that even though the inherent strain method has 

some simplifications, reliable predictions of residual stresses and deformations can still be 

achieved. 

2.3. Topology optimization for additive manufacturing 

Although AM significantly expands the design space, it is not a completely free-form 

manufacturing technique [150]. At the design stage, several basic issues arise, including 

material, geometry, support, and manufacturing process issues [151]. This research will 

take all of these previously identified issues into full consideration and incorporate them 

as basic manufacturing constraints in the proposed algorithm. A brief overview of the 

relevant literature concerning these problems is provided in this section. 

2.3.1. Material issues 

AM-induced material anisotropy is widely known [152][153]. Although efforts have been 

made to reduce the anisotropy [154], it generally cannot be totally avoided, and therefore 

should be carefully addressed. A systematic study of this topic can be found in [155], while 

we briefly revisit the problems and present some updated perspectives. AM-induced 
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anisotropy manifests itself in two ways: (1) anisotropic constitutive properties related to 

stress and strain, and (2) directional strengths. In [156], the latter was addressed by 

replacing conventional von Mises stress criterion [157] with the Tsai-Wu stress criterion.  

Regarding the anisotropic constitutive properties, it can be either build direction or raster 

direction dependent where the former is more evident for most AM processes. Therefore, 

optimizing the build direction has attracted the early attention, and effective improvement 

of mechanical performance [158][159][160] has been observed. In addition, concurrent 

build direction and topology optimization problem is trivial to solve, for example, through 

continuous orientation optimization [161][162]. A major challenge lies in multi-build 

direction AM, where the part is printed in multiple directions [163][164][165][166], and 

material properties in each building area would be different. Even though multi-material 

topology optimization [55][56] can readily solve this problem, how to customize the 

algorithm to facilitate the AM process planning remains a tough problem.  

Investigation on the raster direction optimization is less focused since the raster direction-

dependent material anisotropy is mainly for the filament extrusion-based process. Smith 

and Hoglund [167] explored the raster direction optimization and realized the optimized 

printing paths into real parts. However, a limitation is that the raster directions are treated 

as discrete orientation variables without considering the tool path continuity. Liu and Yu 

[168] performed the concurrent raster direction and topology optimization by building 

continuous contour-offset tool paths. In the same work, continuous tool path design for 

fixed geometry problems was also addressed, and the limitations of treating the raster 

directions as discrete variables were revealed, i.e., the sharp path turnings reduce both the 

printing efficiency and quality. Recently, Dapogny et al. [169] performed an even more 

thorough study on the tool path-integrated topology optimization where a couple of tool 
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path patterns were comparatively evaluated, and the full sensitivity result is given other 

than the simplified version in [170]. In this research, the material antistrophic feature in 

different AM methods will be further explored, and several new AM oriented algorithms 

will be proposed. 

2.3.2. Geometry issues 

2.3.2.1. Feature length scale control 

The length scale control has been a long-lasting issue in topology optimization [171], 

because constraining sizes of the structural members in topology designs is meaningful to 

improve the design manufacturability [172]. Under the density-based topology 

optimization framework, the early method was developed by constraining monotonic 

density variations, where minimum length scale requirements on both the component and 

void phases had been addressed [173]. Then, density filtering plus Heaviside projection 

emerged as a popular approach [174] in achieving the minimum component length scale 

control, and in a following work [175], the length scale control of both the component and 

void phases had been realized through a modified double Heaviside projection. 

Morphology based density filters were developed by Sigmund [176], and through flexible 

combinations of these filters, both single-phase and double-phase minimum length scale 

control effects have been realized. Later, a robust topology optimization algorithm 

[177][178][179] was developed based on these morphology-based filters, wherein the 

worst case scenario was optimized by simultaneously evaluating multiple design 

realizations. Zhou et al. [180] developed the explicit constraint formulations for the 

minimum length scale control of both material and void phases to reduce the computational 

cost of the robust formulation. Other than the minimum length scale control, Guest et al. 

[181] realized the maximum component length scale control by restricting any circular 
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areas that have the diameters of the maximum length scale target not fully filled. Zhang et 

al. [182] developed a structural skeleton-based approach to simultaneously constrain the 

maximum and minimum component length scales. The method proposed in [175] was 

further developed to concurrently constrain the maximum and minimum length scales of 

both phases. Very recently, an interesting idea was explored in [183] to relieve the stress 

concentrations through length scale control. 

2.3.2.2. Non-enclosed voids 

Another important constraint is enclosed voids, since the existence of enclosed voids 

implies that there is no way to get the unmelted powders and inner supports out of these 

voids after the part is completed [184][185][186][187][188][189][190] by the AM 

techniques, e.g., SLM, SLA, laser and electron-beam powder bed fusion, binder jetting, 

etc. Establishing void connectivity is an approach to resolving enclosed voids. Succinctly 

expressed, imposing the connectivity of voids is akin to treating the outside of the structure 

as a ‘void’ and ensuring all internal voids are connected to it. Imposing a constraint on 

enclosed voids can be done through the Virtual Temperature Method (VTM) described by 

Liu et al. [192] and Li et al. [193]. The VTM is inspired by heat transfer concepts and treats 

all enclosed cavities as heat sources, while the solid parts around the cavities are treated 

as insulators. They applied the enclosed void constraint in the optimization of torsional 

cantilevers. They also optimized and printed the cantilever without the constraint, resulting 

in the retention of internal support structures and powder as revealed in the sectioned 

cantilever. However, with the inclusion of the enclosed void constraint, the optimized 

structure ensured that the internal void was connected to the ‘outer void’ guaranteeing the 

removal of internal support structures and powder. Moreover, the elimination of enclosed 

voids in a structure is also required in casting, cutting, and some other manufacturing 
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processes. Xia et al. [194] proposed a novel level-set method to forcibly reduce the 

appearance of inner voids. Gersborg and Andreasen [195] implicitly involved a 

connectivity constraint by using a Heaviside design parameterization. Currently, the 

enclosed void issue could be successfully solved by aforementioned works. 

2.3.3. Support issues 

For many AM processes, supports are needed to ensure the successful fabrication of the 

large overhang areas. Printing the support will greatly increase the manufacturing time and 

requires extra post-processing to remove the support. The support material may be 

inaccessible, and extra weight will be added to the final AM part in an undesirable manner. 

Although using dissolvable materials for support structures can somewhat solve the 

problem [196], it is still a challenging issue in many cases, especially for those 

manufacturing processes that can only handle single material, such as metal AM. Therefore, 

it is important to design slimmed support or structure that without support requirement 

[151]. 

2.3.3.1. Support structure design 

Currently, several structural patterns have been adopted to realize the support slimming, 

including the sloping wall structure [197], tree-like structure [198][199], bridge-like 

scaffold [200], and repetitive cellular structures [201][202], which form lightweight 

support subjected to the well-defined part geometry and build direction. In contrast to these 

fixed geometry support patterns, methods that deal with the support structure as the target 

structure for optimization where the performance of the part is maintained are also found 

[203][204][205]. Hu et al. [206] developed a shape optimization-based support slimming 

method, which slimmed the support by varying the part shape. Optimization of the build 

direction would also effectively reduce the support material consumption [207]. An 
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orientation optimization framework that considers multiple factors in optimization was 

investigated in [208][209], where the optimizer is constructed by a training and learning 

approach. For topology optimization, work was conducted by [210], which transformed 

the part design into a multi-objective topology optimization problem. A balanced objective 

function was proposed by concurrently considering the support material volume and 

structural compliance.  

2.3.3.2. Optimal build orientation 

The build orientation in AM has a significant influence on both the final printed 

components and the corresponding support structures [211][212][213]. The spatial 

orientation of a part plays a crucial role in determining the resulting overhang areas located 

above the substrate. Consequently, the fabrication process necessitates varying volumes of 

support structures to accommodate these distinct overhang areas.  

Zhang et al. [214] developed a perceptual model to identify the optimal printing directions 

that effectively preserve crucial visual features. Similarly, Hu et al. [215] proposed a 

method to enhance self-support ability by optimizing both the orientation of an original 

model and the model itself. Additionally, Zhang et al. [216] presented a multi-part 

orientation optimization approach utilizing a genetic algorithm, which strives to achieve 

minimal total build time and cost on a global scale. 
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Figure 9. Top line: Optimal results for bear bracket with different weight factors. Bot 

line: Normalized residual stress results for bear bracket with different weight factors. 

[218]. 

Furthermore, the optimization of support structures holds significance as it serves to 

minimize both material consumption and printing time [217]. Cheng and To [218] 

proposed a method to minimize the residual stress and support volume by optimizing the 

build orientation as shown in Figure 9. More information on the build orientation 

optimization is referred to [212], which provided a comprehensive review of the optimal 

build direction in AM and how the orientation influences part quality, surface quality, 

support structure, build time, manufacturing cost, and mechanical properties.  

2.3.3.3. Self-support structure design 

A more appealing topic is developing the overhang-free topology optimization, i.e., the 

complete removal of support structures. Here, the overhang-free indicates that all overhang 

angles are larger than the minimum self-supporting angle (usually choosing as 45°). A 

variety of solutions have been developed to design self-support and topologically 

optimized structures [219][220][221][222]. The AM filter proposed by Langelaar 

[223][224] and the front propagation-based overhang filter proposed by van de Ven et al. 

[225] are used to achieve self-supporting structures. Gaynor et al. used an overhang 

projection scheme to design a structure with the minimum allowable self-supporting angle 

[226][227]. Qian [228] proposed a constraint by a Heaviside projection based integral of 
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density gradient to control the undercut or the overhang angle for the optimized structure. 

Wu et al. used rhombic structures to design self-support infill structure [229], and Liu et 

al. developed an overhang constraint based on the AM filter to design infill structures 

without the use of support material [230]. Leary et al. developed a post-processing method 

by adding extra structure members to a topology optimized design such that the final 

structure is self-supporting [231]. 

2.3.4. Manufacturing process issues 

Since LPBF has better manufacturing accuracy which makes it suitable for the fine-scale 

structures from topology optimization. Hence, LPBF is majorly focused on the current 

study. With LPBF, a high-power beam (either laser beam or electron beam) selectively 

melts and fuses the metal powders to form the 3D geometric object. However, during the 

manufacturing process of LPBF, metal powders are rapidly heated and cooled down, 

leading to sharp thermal gradients and thus residual stresses. Consequently, severe defects 

such as cracks and distortion may reduce the manufacturing process stability and the part 

quality [232][233]. Therefore, it is important to consider the manufacturing process during 

topology optimization. 

2.3.4.1. Part geometry 

Currently, topology optimization addressing residual stress-induced defects is less focused 

due to the lack of efficient solvers to simulate the manufacturing process. For the few 

works addressing the residual stress or distortion constraint, Wildman et al. [234] proposed 

a SIMP-based topology optimization method to minimize the mean compliance and the 

part distortion, wherein a thermo-elastic element-birth model is adopted to simulate the 

AM process. Allaire and Lukas [235] developed a layer-by-layer thermo-elastic model for 

the process simulation and incorporated it with LSTO to constrain the structural thermal 
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residual stress. Reasonable results have been achieved using the above approaches. 

However, when extended to practical 3D problems, the above methods will involve 

computationally intensive transient thermo-mechanical analysis with a very fine mesh 

(related to the laser spot size) and a large number of load steps (related to the 

manufacturing time), which make the iterative finite element analysis for topology 

optimization computationally unaffordable. Hence, ISM, as a simplified AM process 

simulation solver, has been highly concentrated in topology optimization recently. Yasin 

et al. [236] investigated the minimization of process-induced warpage in a protector cover 

using topology optimization. Their results demonstrated a significant reduction in warpage 

for the printed product, indicating the effectiveness of their approach. Miki and Yamada 

[237] developed an analytical solution that accounts for distortion in the topology 

optimization process. They utilized a two-dimensional design model to validate their 

methodology, providing further insights into incorporating deformation considerations. 

Takezawa et al. [238][239] further explored the integration of ISM into a homogenization-

based topology optimization model, enabling the design of variable density lattice 

structures that effectively limit process-induced deformation. 

2.3.4.2. Support geometry 

It was observed that the support structures for LPBF parts could dissipate the heat and thus 

could prevent severe defects by the thermal effect of laser irradiation. Therefore, a 

reasonable support material distribution is of great help to improve the fabrication quality 

of parts. From the viewpoint of design for AM, it is an excellent solution to consider the 

LPBF process characteristics during topology optimization of the support structure. 

Cheng et al. [218][240] proposed a multi-scale lattice optimization method to design 

support structures for LPBF part, which could restrict the maximum residual stress below 
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the yield strength. Zhou et al. [citation here] presented a topology optimization approach 

to design support structures with the efficient thermal conduction capability for LPBF. 

Zhang et al. [26] proposed a support structure design method using parallel computing 

topology optimization based on the ISM, as illustrated in Figure 10. Their findings 

indicated that the deflection of printed cantilevers could be reduced by more than 60% 

compared to the support structures provided by the conventional design. Pellens et al. [241] 

adopted an adapted stiffness tensor formulation based on a surrogate model to control the 

residual distortions of LPBF printed parts by adding extra lattice type support structures. 

Several studies have specifically focused on incorporating in-process residual stresses 

and/or deformations into topology optimization, considering both the support structure and 

the entire part geometry. In the context of designing process-tailored self-supported 

structures, Xu et al. [242] proposed an ISM-based residual stress-constrained self-support 

topology optimization approach. Misiun et al. [243] addressed recoater collision and part 

deformation constraints in their optimization approach for the cantilever geometry. By 

considering these constraints, they aimed to optimize the design while mitigating issues 

related to recoater collision and part deformation. 
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Figure 10. Support topology optimization results designed by Zhang et al. [26] 

considering the LPBF process to reduce part deflection. The Coordinate Measuring 

Machine results of the printed cantilevers for the distortion in the z-direction, (a) before 

cutting, (b) after cutting. 

2.3.4.3. Laser scanning path 

In addition to the consideration of process-induced residual stresses in topology 

optimization using ISM or its variants, researchers have also explored the impact of laser 

scanning patterns. The thermal stress distribution around the molten pool is found 

anisotropic, and a larger thermal stress component is produced along the laser scanning 

direction [244][245][246][247][248][249]. Based on this characteristic, Chen et al. [250] 

and Xu et al. [251] investigated the optimization of hatching orientation and the utilization 

of an island scanning strategy, respectively. They combined these approaches with ISM 

for the residual stress prediction to mitigate both in-situ and ex-situ deformations.  

More recently, to account for the synergistic effect of these two optimizations (part 
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geometry and processing parameters), Takizawa et al. [252] developed a method to 

simultaneously optimize the hatching orientation and lattice density distribution to reduce 

the residual warpage of the metal AM component after cutting-off from the platen. This 

simultaneous optimization further reduced the residual warpage in comparison with single-

factor optimization. 
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Chapter 3. Basic topology optimization framework for AM  

3.1. Topology optimization model formulation 

Generally, the Topology optimization problem involves the division of a domain Ω into 

two distinct regions: the ‘design domain’ (Ωd), subject to modifications throughout the 

optimization process, and the ‘passive domain’ (Ωp ), which remains unchanged. The 

inclusion of the passive domain ensures the compliance of specific regions in the final 

design with geometrical or process specifications, thereby preserving their solid or void 

characteristics. The primary objective of topology optimization is to determine the optimal 

distribution of one or more materials, given their limited availability, within the design 

domain Ωd. In essence, the aim is to identify the domain Ωs ⊆ Ωd occupied by the solid 

material. This objective can be formulated as a non-linear programming problem: 

{
 
 
 

 
 
 

minimize
𝛒(𝛍), 𝐮(𝛍)

: g0(𝛒, 𝐮)

subject to: 

{
 
 

 
 

R(𝛒, 𝐮) = 0

gi(𝛒, 𝐮) = 0     i ∈ Neq
gj(𝛒, 𝐮) ≤ 0     j ∈ NNoneq

𝛒(𝛍) ∈ [0,1]

𝐮(𝛍) ∈ U

(3.1) 

In this problem, the optimization variables are represented by 𝛍, and we consider two 

fields within the domain Ω for 𝛍 ∈ Ω: (1) The control field 𝛒 = 𝛒(𝛍) is utilized to define 

the structure, specifically the domain Ωs . In structural applications, 𝛒  is commonly 

interpreted as a ‘relative density’. It should be noted that this relative density might not 

necessarily correspond to the physical density of the solid material, as the latter may 

depend on 𝛒 itself when considering factors such as inertial forces and self-weight. (2) 

The field of state variables 𝐮 = 𝐮(𝛍) represents the variables that satisfy the governing 

and coupling equations associated with different systems. These equations dictate the 

behavior and interrelationship of the state variables within the given system. For example, 
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𝐮  can represent the temperature, displacements, or the velocity field for a thermal, 

mechanical, or fluid system, respectively. For multi-physics applications, we clearly have 

the state variables from each physics, satisfying the corresponding governing and coupling 

equations. 

The two fields mentioned above are generally coupled through a generally nonlinear 

relationship R(𝛒, 𝐮) = 0, which arises from the set of PDEs governing the equilibrium of 

the system. This set of equations is typically discretized and solved using FEM or other 

numerical methods. The objective g0(𝛒, 𝐮) is the index used to measure the performance 

of the current design, and the equality/inequality constraints gi(𝛒, 𝐮) = 0 and gj(𝛒, 𝐮) ≤

0 prescribe behavioural requirements on the design. 

3.1.1. Material interpolation 

The parameterization of R(𝛒, 𝐮) makes Eq. (3.1) to be an integer optimization problem. 

In each point within the design domain Ωd , two possibilities arise: either there exists 

material (ρ(μ) = 1), or there is an absence of material (ρ(μ) = 0). Earlier research works 

conducted by Beckers et al. [253][254], as well as more recent contributions 

[255][256][257], have successfully solved basic instances of Eq. (3.1) through the integer 

programming. However, this approach becomes impractical as the count of design 

variables increases and considered nonlinear constraints. Consequently, Eq. (3.1) has been 

transformed into a continuous optimization problem. This is achieved by allowing the 

relative density to assume any value within the range of ρ(μ) ∈ [0,1]  for μ ∈ Ω , and 

utilizing this range to interpolate the material properties that govern the physical response. 

As an illustrative method, the SIMP method [258][259] employs interpolation for Young’s 

modulus as expressed by 

Ee(ρ(μ) )  =  Emin + (E0 − Emin)ρ(μ) 
p (3.2) 
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where E0  is the value on the solid (ρ(μ) = 1 ), and Emin ≪ E0  that of the material 

mimicking void (ρ(μ) = 0). The penalization factor p > 1 promotes discrete solutions to 

the optimization problem, as intermediate values ρ ∈  (0, 1) become uneconomical when 

p is raised, due to the linear increase of the mass, and the sublinear increase of the stiffness. 

The SIMP-interpolated elasticity tensor can find practical application as the effective 

tensor for an isotropic porous material. In fact, Bendsøe and Sigmund [260] demonstrated 

that, when the Poisson ratio (ν) equals 0.3, the bulk and shear moduli associated with a 

SIMP interpolation with p ≥ 3 fall within the Hashin-Strickman bounds [261], both in 

2D and 3D scenarios. The SIMP method stands out as the most widely adopted 

interpolation technique for compliance minimization. Furthermore, SIMP-like stress 

interpolations, rooted in physical principles from a homogenization perspective, have been 

devised by Duysinx and Bendsøe [262] and by Lipton [263].  

    

   (a)                                     (b) 

Figure 11. SIMP and RAMP interpolation functions: (a) Curves of RAMP [266] and 

(b) Curves of SIMP [260]. 

However, there are alternative approaches that might demonstrate superior performance in 

specific applications [264][265]. Among these, it is worth noting the Rational 

Approximation of Material Properties (RAMP) [266], which was designed to retain the 

concave characteristics of the problem while providing a non-zero derivative at/near 
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ρ(μ) = 0: 

Ee(ρ(μ) )  = Emin +
(E0 − Emin)ρ(μ) 

1 + K(1 − ρ(μ) )
(3.3) 

where K are RAMP penalization parameters. This interpolation strategy yields remarkable 

results in design-dependent problems. The interpolation curves for RAMP and SIMP are 

shown in Figure 11. Interpolation methods based on other available bounds for effective 

properties of mixtures, such as the Reuss-Voigt bounds, have been proposed in [267][268]. 

Using the SIMP relaxation, the problem described in Eq. (3.1) transforms into a continuous 

optimization problem, amenable to gradient-based optimization techniques. These 

methods will be introduced in the subsequent chapter. 

3.1.2. Problem regularization 

Without the incorporation of any regularization, the fundamental topology optimization 

problem remains unsolvable even within the continuous framework, as evidenced by Lurie 

[269]. Also, the mesh dependency of the discretized solutions is also an important issue. 

The optimized design obtained from without regularization qualitatively changes when 

refining the mesh, which first acknowledged by KenoTung, Olhoff and Cheng [270][271]. 

A survey on numerical instabilities appearing in topology optimization can be found in 

Sigmund and Peterson [272], whereas Diaz and Sigmund [273] explained another spurious 

effect: the formation of checkerboard patterns in the optimized design. This originates 

from the use of low order finite elements and can be cured by choosing higher orders for 

the discretization of the state and control fields (u and ρ), as discussed by Jog and Haber 

[274]. Alternative approaches, using node-based discretization of the ρ field also fall in the 

framework of Jog and Haber, as they cure the phenomenon only for some choices of the 

discretization orders [275][276]. To avoid mesh-dependency of solutions, first methods 
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were based on explicitly constraining the oscillations of the density field [277][278], thus 

avoiding designs with infinitely many, infinitely small holes [277]. The existence of 

solutions to the topology optimization problem with total variation regularization was 

proven by Ambrosio et al. [279] and Petersson [280], as well as their mesh-independency 

by Sigmund and Petersson [281].  

Nowadays, the most used regularization approach, not requiring additional constraints or 

penalization terms, is based on domain filters. First introduced by Sigmund in the context 

of compliance minimization problems [282], sensitivity filtering of the objective function. 

This has proven to avoid checkerboards and mesh-dependency in several applications, and 

Sigmund and Maute [283] have interpreted the sensitivity filtered minimum compliance 

problem, as the minimization of a non-local elasticity problem. Another method, 

commonly named ‘density filter’ [282][284] relies on introducing an additional field which 

has the form: 

μ̃e =
1

∑ Heii∈Ne

∑Hei
i∈Ne

μi (3.4) 

where Ne is the set of elements i for which the center-to-center distance ∆(e, i) to element 

e is smaller than the filter radius rmin, and Hei is a weighting factor defined as:  

Hei = max (0, rmin − ∆(e, i)) (3.5) 

such that μ ∈ [0, 1] becomes the field interpolating the material properties, whereas μ is 

just the auxiliary variable updated by the optimizer. The existence of solutions to the 

compliance minimization problem, regularized by the density filtering was proven by 

Bourdin [285]. A similar regularization effect given by Eq. (3.4) can be obtained by 

applying a PDE-based smoothing [286][287] such that the regularized field ρ(μ) is the 

solution to the Helmholtz problem, equipped with Neumann-like boundary conditions. 
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Linear filtering methods naturally promote grayscales (i.e., transition regions between 

solid and voids), which is a drawback from the manufacturing point of view. Such 

grayscales can be eliminated in a post-processing phase, by projecting the design to a 

discrete 0/1 material distribution. The most popular method is to adopt the density 

projection. This consists of applying a smooth approximation of the Heaviside function to 

the filtered field μ̃e, to obtain a more discrete density field μ̅e. Projection was first applied 

to topology optimization by Guest et al. [288], referring to an idea first introduced in [289], 

obtaining the relative density as: 

μ̅̃e = 1 − 𝑒
−βμ̃e + μ̃e𝑒

−β (3.6) 

where β is a parameter governing the curvature of the approximation at ρ = 0. When Eq. 

(3.6) is applied on top of density filtering, and β is large enough, the minimum length 

scale rmin  is implicitly imposed on the solid regions. However, this kind of 

implementation sometimes does not work well in some problems. A more general 

expression, called tanh-projection, is thus introduced [290]: 

μ̅̃e =
tanh(βη) + tanh (β(μ̃e − η))

tanh(βη) + tanh (β(1 − η))
(3.7) 

where a threshold η ∈ [0, 1] defines the saddle point of the Heaviside approximation.  

3.1.3. Aggregation method for maximum inequality constraints 

Another noteworthy aspect is that, in many optimization problems, there are various types 

of maximum constraints, such as maximum stress, maximum displacement, maximum 

volume fraction, and so forth. Ideally, when utilizing Finite Element Method (FEM), each 

design unit should be subject to its corresponding stress constraint, leading to a substantial 

number of constraints. As a result, the computation of sensitivities, whether through direct 

or adjoint methods, becomes prohibitively expensive. This significant number of 
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constraints can be reformulated in the context of a single maximum constraint, as 

demonstrated by: 

ψmax = max(∀ψe) ≤ ψY (3.8) 

where ψY is the maximum value limit. However, the maximum function max (∗) is not 

differentiable. A preferred approach is to use clustering functions to build a single global 

function that effectively quantifies the maximum value, for example, the P-norm function: 

ψPN = (∑(ψe)
P

Nel

e=1

)

1
P

≤ ψY
(3.9) 

where ψPN is the global P-norm measure, P is the aggregation parameter, and Nel is the 

total number of elements. Note that the P-norm approaches the maximum value ψmax 

when P → ∞. However, a large P value tends to make the stress constrained problem ill-

conditioned. Relatively small P  value is preferred in practice given the convergence 

stability which, however, leads to the gap between the exact and approximated maximum 

values. Consequently, the maximum value constrained optimization result is conservative. 

Therefore, to better approximate the maximum value without overly increasing the P 

value, the global P-norm value measure is iteratively corrected through: 

ψ̅PN = c ∙ ψPN ≤ ψY (3.10) 

where c is the correction parameter at the Ith iteration (I > 1) that reflects the ratio of the 

real maximum value to the P-norm measured value from the current iteration. Note that 

the change of c would be jumping if only taking the history-independent ratio to make the 

correction, causing oscillations and instabilities of the convergence. To address this issue, 

a parameter αI  (αI ∈ (0,1] ) is added to restrict the variation between cI  and cI−1 , as 

demonstrated by: 
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cI = αI ∙
max(∀ψe)

ψPN
I + (1 − αI) ∙ cI−1 (3.11) 

In this work, αI = 0.5 is adopted for all iterations and c0  =  1 is used. Note that the set 

of local value constraints in Eq. (3.8) is equivalent to a constraint on the maximum local 

value by: 

ψ̂PN =
ψ̅PN
ψY

≤ 1 (3.12) 

where 

ψ̂PN = c ∙ (∑(
ψe
ψY
)
PNel

e=1

)

1
P

≤ 1 (3.13) 

3.2. Optimization model solution 

By observing Eq. (3.1), it can be seen that the topology optimization problem is essentially 

a mathematical programming problem. Therefore, some well-established solution methods 

are used in mathematical programming to solve topology optimization problems. It is 

necessary to introduce a famous and widely used optimization algorithm –Give full name 

here (MMA) [291]. The objective and constraint functions may usually be implicit 

functions, so MMA uses the information of the current kth iteration (k = 0, 1, 2, … ) to 

rebuild explicit functions for approximating original functions, which is expressed in Eq. 

(3.14). The information includes sublimit of the variable xi , which are Li
(k)

  and Ui
(k)

 , 

point position x(k) , function values fi(x (k)) , and gradients 
∂gj

(k)

∂xi
  at x =  x(k) . In 

addition, k is the iteration number, and when it is equal to zero, it means that one uses the 

initial point to build explicit functions. The value of k depends on how many iterations are 

needed to yield the optimal solution. Li
(k)

  and Ui
(k)

  are known as moving asymptotes, 

which are normally changed between iterations. 
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Write something here to mention the following equation. 

gj
(k)(𝐱) = rj

(k) +∑(
pij
(k)

Ui
(k) − xi

+
qij
(k)

xi − Li
(k)
)

n

i=1

,       j ∈ I (3.14) 

where 

pij
(k) =

{
 
 

 
 (Ui

(k) − xi
(k))

2 ∂gj
(k)

∂xi
,                        if 

∂gj
(k)

∂xi
> 0

0,                                                             if 
∂gj

(k)

∂xi
≤ 0

(3.15) 

qij
(k) =

{
 
 

 
 0,                                                             if 

∂gj
(k)

∂xi
≥ 0

−(xi
(k) − Li

(k))
2 ∂gj

(k)

∂xi
,                     if 

∂gj
(k)

∂xi
< 0

(3.16) 

rj
(k) = gj

(k)(𝐱) −∑(
pij
(k)

Ui
(k) − xi

+
qij
(k)

xi − Li
(k)
)

n

i=1

,       j ∈ I (3.17) 

The whole MMA optimization process is illustrated in Figure 12. 
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Figure 12. MMA optimization process. 

3.3. Adjoint sensitivity analysis 

Since the MMA approach will be employed to address the optimization problem, which 

necessitates access to first-order sensitivity information for both the constraints and 

objective function. It is important to note that sensitivity analysis does not have to be a 

complex and custom process for each problem type. In general, the adjoint method is 

commonly used for conducting sensitivity analysis. The derivation process is rather 

straightforward, achieved by representing the system of equations, whether they are 

uncoupled, weakly coupled, or strongly coupled, as a common residual: 

𝐑 = 𝐀𝐮 − 𝐛 = 0 (3.18) 
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where 𝐀 is the system coefficient matrix, 𝐮 is the vector of all state variables and 𝐛 is 

the forcing vector. To find the derivatives of a given functional g0, the Lagrangian L is 

defined as: 

L = g0 + 𝛌
T𝐑 (3.19) 

where 𝛌 is the vector of adjoint variables. The total derivative with respect to a design 

variable ρe is then taken of the Lagrangian: 

dL

dρe 
=
dg0
dρe 

+ 𝛌T
d𝐑

dρe 
(3.20) 

where the total derivative is given by: 

dg0
dρe 

=
∂g0
∂ρe

+
∂g0
∂𝐮

∂𝐮

∂ρe
(3.21) 

due to the implicit dependence of g0 on the state field. Expanding the total derivative of 

the Lagrangian gives: 

dL

dρe 
=
∂g0
∂ρe

+
∂g0
∂𝐮

∂𝐮

∂ρe
+ 𝛌T (

∂𝐑

∂ρe
+
∂𝐑

∂𝐮

∂𝐮

∂ρe
) (3.22) 

which can be rewritten to: 

dL

dρe 
=
∂g0
∂ρe

+ 𝛌T
∂𝐑

∂ρe
+ (

∂g0
∂𝐮

+ 𝛌T
∂𝐑

∂𝐮
)
∂𝐮

∂ρe
(3.23) 

by collecting the terms multiplied by the derivative of the state field. The adjoint problem 

is then defined as what is inside the brackets: 

∂g0
∂𝐮

= −𝛌T
∂𝐑

∂𝐮
(3.24) 

When 𝛌 is the solution to the adjoint problem, the terms inside the brackets become zero, 

and it is avoided to compute the design sensitivities of the state field: 

dL

dρe 
=
∂g0
∂ρe

+ 𝛌T
∂𝐑

∂ρe
(3.25) 
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Since the state solution will be updated after a design change to make the residual equal to 

zero, the total derivative of the residual with respect to the design variable is equal to zero. 

Thus, the total derivative of the Lagrangian will be equal to that of the functional and Eq. 

(3.21) gives: 

dL

dρe 
=
dg0
dρe 

(3.26) 

Thus, final sensitivities of the given functional can be calculated by 

dg0
dρe 

=
∂g0
∂ρe

+ 𝛌T
∂𝐑

∂ρe
(3.27) 

The above result is valid for almost all the systems of equations. 

As discussed above, through step-by-step iterations, the optimal solution may be found; 

however, this process may need many repetitions. This inherently iterative character of the 

topology optimization process should require fast simulation at each iteration; otherwise, 

the total computational time could be unacceptable. Therefore, if the AM process is taken 

into consideration during topology optimization, the computational time of the AM-

process simulation should be fast enough. 

3.4. Solutions to some important additive manufacturing issues  

3.4.1. Minimum length size control 

It is desirable that a topologically optimized design can be fabricated reliably by a certain 

manufacturing process. To fulfill the requirement for manufacturing, one recent trend is to 

directly consider the manufacturing characteristics in the optimization process, i.e. to 

achieve the minimum length scale on the optimized design and thus ensure prototype 

manufacturability. In AM, if this condition is not satisfied, holes or disconnected parts may 

appear in the prototype. Another example is the design of compliant mechanisms, for 
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which achieving minimum length scale is crucial to avoid the tiny-hinges at structural 

joints. 

To prevent this phenomenon, the simplified robust formulation is used to ensure a 

minimum length scale of the structure, which is to consider both the erosion projection 

(ηero > 0.5) and the intermediate projection (η = 0.5) by a robust formulation. In the case 

of compliance minimization, the density field associated with erosion projection uses the 

least number of materials and has a higher compliance value compared with the 

intermediate projection. Therefore, including both the intermediate and eroded projections 

into the objective function indeed takes the effect of the minimum length scale control. In 

addition to the base region 𝛍 , the filtered field �̃�  is further projected to the so-called 

eroded fields of the base region �̅̃�ero:  

�̅̃�ero =
tanh(βηero) + tanh(β(�̃� − ηero))

tanh(βηero) + tanh(β(1 − ηero))
(3.28) 

where ηero  is the erosion threshold. Then, both the erosion projection field �̅̃�ero  and 

intermediate projection field �̅̃� will be projected by the AM filter introduced in subsection 

3.2.2. Based on the SIMP scheme, the elastic module of the eth element for these two 

fields is interpolated by 

Ee(ρ(μ̅̃e))  =  Emin + (E0 − Emin)ρ(μ̅̃e) 
p

Eero,e(ρ(μ̅̃ero,e))  =  Emin + (E0 − Emin)ρ(μ̅̃ero,e) 
p (3.29) 

Specifically, the simplified robust formulation is expressed as: 

gr = ωg(𝐊, 𝐮) + (1 − ω)g(𝐊ero, 𝐮ero) (3.30) 

where ω is a weighting factor, and the superscript ero in the second term indicates the 

density field obtained from the erosion projection. T denotes the transpose operator, 𝐮 and 

𝐮ero are the response fields, 𝐊 and 𝐊ero are the stiffness matrices for the intermediate 
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and erosion projected structures. The stiffness matrices 𝐊 and 𝐊ero are assembled from 

element stiffness matrices defined by 𝐤e = Ee(ρ(μ̅̃e)) 𝐤0  and 𝐤ero,e =

 Eero,e(ρ(μ̅̃ero,e)) 𝐤0, where 𝐤0 is the stiffness matrix of a solid element with unit Young’s 

modulus/conductivity. In the context of the compliance minimization problem, the density 

field associated with erosion projection uses the least amount of material and has a higher 

compliance value compared with the intermediate projection. Therefore, considering the 

intermediate projection case into the objective function indeed ensures a length scale. Then, 

the formulation of the optimization problem could be modified as: 

minimize
𝐮(𝛍), 𝐮ero(𝛍), 𝛒(𝛍) 

: gr(𝛒(𝛍), 𝐮, 𝐮ero)

subject to: 

{
 
 

 
 
R(𝛒(𝛍), 𝐮, 𝐮ero) = 0

gi(𝛒(𝛍), 𝐮) = 0     i ∈ E

gj(𝛒(𝛍), 𝐮) ≤ 0     j ∈ I

𝛒(𝛍) ∈ [0,1]

𝐮ero(𝛍), 𝐮(𝛍) ∈ U 

(3.31) 

The erosion version density field only acts on the objective function, while for other 

considered constraints, only the intermediate version density field is considered. Under 

this formulation, the computation cost has not increased dramatically.  

The combined objective function involves a weighting factor ω  is an approximate 

approach to ensure length scale. According to our experience, a fixed small ω value may 

lead to a worse design, while a large ω value may lead to a structure violating the length 

scale. A continuation is thus applied in our test where ω is gradually decreased from 0.8 

to 0.3, by a decrement of 0.1 every 50 iterations. 

3.4.2. Self-support design by AM filter 

As described in the previous chapter, addressing the issue of support structures has 

consistently been a focal point when designing for AM. To minimize the material usage 

via reducing the need for support structures, it is crucial to carefully regulate the inclination 
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angles of overhangs during the fabrication process. A practical approach towards achieving 

this goal involves the utilization of the AM filter to ensure that the final structure is self-

supported. 

 

Figure 13. Schematic diagram of AM filter for 2D case. 

Figure 13 shows the 2D schematic diagram for method in the AM filter, and the model is 

defined on a regular mesh. The elements that locate in a lower layer along the building 

direction with indices (i−1,j−1) (i,j−1) and (i+1,j−1) are defined as the support region of 

the element (i,j). If the support region has no material, the AM filter will remove the 

material in element (i,j). Otherwise, it will appear the material in the element (i,j). Finally, 

it could achieve the self-supporting structure with 45◦ overhang angle. The mathematical 

form of the AM filter is defined as follows: 

𝜉i,j = {
min (μ̅̃i,j, max(μ̅̃i−1,j−1, μ̅̃i,j−1, μ̅̃i+1,j−1))   (i, j) ∈ Ωu

μ̅̃i,j                                                                       (i, j) ∈ Ωb
 (3.32) 

where �̅̃� is the projected field. The corresponding differentiable form is written by 

𝜉i,j = smin (μ̅̃i,j, smax(μ̅̃i−1,j−1, μ̅̃i,j−1, x̅̃i+1,j−1))   (i, j) ∈ Ωu (3.33) 

where smin is defined as:  

smin(a, b) =
1

2
(a + b − √((a − b)2 + ϵs) + ϵs

2)   (i, j) ∈ Ωu (3.34) 
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Moreover, smax is the softmax function used to calculate the maximum value of the 

elements in the supporting region instead of the P-Q max function in the origianl AM filter 

[223][224]: 

smax(a, b, c) = √(aP + bP + cP)
Q

   (i, j) ∈ Ωu (3.35) 

where ϵs = 1e − 4 is the parameter that controls the accuracy of the approximation, P =

40, Q = P +
log(3)

log(
1

2
)
 are used as suggested in [223][224]. 

3.5. Post-processing: Converting optimized results into actual production objects. 

During topology optimization, optimization algorithms decide the distribution of solid and 

void material. Since the design domain has been discretized into finite elements, the 

boundary between material and non-material may become toothed. Thus, such a result of 

topology optimization with rough surfaces could not be manufactured or simulated easily. 

The result needs to be expressed in a more practicable CAD model. 

The final elemental design variables are projected on nodes and then filtered with a radius 

of the element length. A threshold value that preserves the same material volume is 

determined for the level-set function constructed from nodal numbers. With the threshold 

value, smoothed representation of the topology is obtained from the contour cut of the 

level-set function. The structure is then reconstructed in Autodesk CAD. During this 

process, some detailed features could be adjusted artificially, which makes the structure 

more reasonable. After that, a 3D specimen model corresponding to the design in Autodesk 

CAD is generated by extruding the smoothed 2D representation normal to the sketch plane, 

and meanwhile, the detailed geometry feature will be constructed by Autodesk Inventor. 

Figure 14 shows the procedure of generating the part model. 
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Figure 14. STL model generation procedure. 

After obtaining the structure reconstructed by post-processing, the performance of the 

results needs to be further validated. Similarly, two methods can deal with this issue. One 

is to import the results into well-established commercial software to verify their structural 

properties, namely, numerical validation. The other method is to fabricate this structure by 

3D printers, and then some mechanical tests are used to investigate its structural 

performance (i.e., experimental validation). Certainly, the later method is the most 

effective way. However, for some specific problems, the cost of conducting experiments 

can be very high, and it is a time-consuming process. This work therefore adopts both the 

numerical and experimental validations. The detailed implementation could refer to the 

following chapter. 

3.6. Summery 

This chapter introduces a comprehensive system involving design, optimization, 

simulation, and experimentation. The system comprises topology optimization, post-

processing, performance simulation, and mechanical testing, serving as an integrated 
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solution for achieving high-performance products, expediting product enhancements, and 

curbing design expenses. Topology optimization emerges as a key technique for fortifying 

structures while minimizing the material usage, and we delve into its underlying 

mathematical model to enhance comprehension. Furthermore, the post-processing stage 

aids in bridging the gap between numerical outcomes and tangible products. Performance 

simulation, facilitated through FEM, empowers designers to refine their creations and gain 

insights into design performance prior to physical experimentation. Subsequently, 

experiments were conducted to validate the simulations and ascertain the efficacy of 

topology optimization in structural design. Notably, the structural failures predicted by 

simulations closely align with experimental findings. 
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Chapter 4. Topology optimization for advanced AM parts design 

With the emergence of various AM technologies, the field of structural design has reached 

new heights. From the perspective of structural optimization, the introduction of these new 

technologies has expanded the feasible design space while reducing constraints. This 

implies that we can design components with superior structural performance while 

ensuring manufacturability. Therefore, the effective utilization of these emerging AM 

technologies to design high-performance components has become a prominent research 

focus in the academic community. In this chapter, I will delve into the aforementioned 

subject matter. Taking ‘improvement’ as a starting point, a series of structural design 

methods utilizing the design freedom provided by topology optimization will be proposed. 

These methods will specifically target multi-material structure AM and porous infill 

structure AM, with the goal of maximizing the enhancement of structural performance in 

the designed components. 

4.1. Stress constrained multi-material topology optimization 

In this subsection, I will introduce the topology optimization method for stress-based 

structures design in multi-material FDM. So far, both the stress-related problem and 

MMTO have been extensively studied. However, there are few works addressing the 

SMMTO. In this subsection, a novel solution of the SMMTO problem is therefore 

proposed based on the ordered SIMP method. Description of the multi-material elastic 

model is achieved with the ordered SIMP interpolation. A novel order SIMP-like 

interpolation function has been proposed to realize the relaxed stress measure interpolation. 

At the same time, the stress measure is properly scaled to reflect the different yield limits. 

4.1.1. Ordered SIMP interpolation for stress-based problem 

Recalling the method proposed by Le et al. [84], the standard SIMP interpolation was 



53 

 

adopted to interpolate the elastic modulus and a SIMP-like relaxed stress definition was 

introduced to build the stress constraint. The specific interpolations could be expressed as 

follows. ηE is used to interpolate elastic modulus E0 of the solid material: 

E = ηE(μ) ∙ E0 (4.1) 

Similarly, ηS  is introduced to interpolate the stress state 𝛔0 ≡ 𝐃0𝐁𝐮 , where 𝐃0  is the 

elasticity tensor of the solid material, 𝐁 is the strain-displacement matrix, and 𝐮 is the 

global displacement vector corresponding to the solid element. 

𝛔 = ηS(μ) ∙ 𝛔0 (4.2) 

Note that ηE(μ) < ηS(μ) < 1 for 0 < μ < 1. In the standard SIMP interpolation, ηE and 

ηS could be expressed in a unified form: 

ηx = μPx (4.3) 

wherein the superscript x  indicates the stiffness interpolation ( x = E ) or stress 

interpolation (x = S ) and Px  represents the interpolation penalty factor for stiffness or 

stress. With the standard SIMP interpolation, the discrete topology optimization problem, 

i.e. where μ ∈ {0, 1}, is transformed to a continuous optimization problem, i.e. where μ ∈

[0, 1], that finalizes at a discrete design through the appropriate stiffness penalization. Note 

that this interpolation scheme makes no attempt to accurately represent the material 

behavior for intermediate density values and the ultimate goal is to achieve a white and 

black design through the artificial interpolation. This method has been approved as 

reasonable among a wide variety of studies [84][96][97]. 

In the present work, MMTO is focused and therefore, both the stiffness and stress 

interpolations need to be altered. For the elasticity tensor, the ordered SIMP like 

interpolation is adopted. The pseudo homogenous materials are sorted in the ascending 
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order of the material density ρi
T  (as depicted in Figure 15) and each material density 

corresponds to one type of solid material. Then, the material densities are normalized as: 

ρi =
ρi
T

ρmax
, (i = 1,2,3, … ,Mat) (4.4) 

where ρmax is the maximum density among the involved materials and Mat is the total 

number of material phases. The ordered SIMP interpolation of the elastic modulus for the 

multi-material scheme is formulated as: 

Ee = η
E̅̅ ̅(μe) ∙ Emax (4.5) 

where μe is the element density for the eth element; Emax is the Young’s modulus of the 

material with the highest stiffness. ηE̅̅ ̅(μe) is the extended power function with respect to 

the elemental density as shown in Figure 15, and ηE̅̅ ̅(∗) for μe ∈ [ρi, ρi+1] is given as: 

ηE̅̅ ̅ = (
μe − ρi
ρi+1 − ρi

)
PEi

∙ (
Ei+1 − Ei
Emax

) +
Ei
Emax

(4.6) 

where Ei is the elastic modulus of the ith material and PEi is the penalty value of ηE̅̅ ̅(∗) 

for μe ∈ [ρi , ρi+1 ].  

 

Figure 15. Illustration of the density-based material sorting. 

For the ith material phase, the local stress constraint could be expressed as: 

〈ηi
S(μe) ∙ 𝛔0〉 ≤ σY,i, (i = 1,2,3, … ,Mat; e = 1,2,3, … , Nel) (4.7) 

where σY,i is the yield stress of the ith material and ηi
S is the stress interpolation term of 

the ith material. 〈∗〉 is the von Mises stress calculation operator. 𝛔0 is the stress vector 
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evaluated with Emax. The bounds of ηi
S is shown in Eq. (4.7):  

ηi
S(ρi) =

Ei
Emax

, ηi
S(0) = 0, (4.8) 

which is consistent to the description in [84]. ηi
S(0) = 0  indicates the stress in void 

regions being zero and ηi
S(ρi) =

Ei

Emax
 guarantees the stress level being evaluated with the 

proper properties. For the sake of simplicity, in the remaining content of this subsection, 

we take a SMMTO problem with three material phases (i.e., material 1, material 2 and 

void, respectively) for example to demonstrate the relaxed and scaled stress evaluation. 

Then, we have the local stress constraints of the two solid material phases as: 

{
〈η1
S(μe) ∙ 𝛔0〉 ≤ σY,1

〈η2
S(μe) ∙ 𝛔0〉 ≤ σY,2

(4.9) 

wherein ρ1 < ρ2, E1 < E2, σY,1 ≤ σY,2. The above equation can be trivially adapted into: 

{
〈
σY,2
σY,1

∙ η1
S(μe) ∙ 𝛔0〉 ≤ σY,2

〈η2
S(μe) ∙ 𝛔0〉 ≤ σY,2

(4.10) 

Then, a new interpolation function (ηS̅̅ ̅) for stress is constructed and a unified expression 

of Eq. (4.9) could be derived as: 

〈ηS̅̅ ̅(μe) ∙ 𝛔0〉 ≤ σY,2 (4.11) 

where ηS̅̅ ̅  needs to satisfy the following conditions: when μe = 0  (void), ηS̅̅ ̅(ρ1) = 0 ; 

when μe = ρ1  (material 1), ηS̅̅ ̅(ρ1) =
σY,2

σY,1
∙ η1

S(ρ1) =
σY,2

σY,1
∙
E1

E2
 ; when μe = ρ2  (material 

2), ηS̅̅ ̅(ρ2) = η2
S(ρ2) = 1. Therefore, similar to the elastic interpolation, an ordered SIMP-

like interpolation for stress is developed that transforms the above discrete definitions into 

a continuous function: 

ηS̅̅ ̅ = (
μe − ρi
ρi+1 − ρi

)
PSi

∙ (Si+1 − Si) + Si  (4.12) 
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where Si is defined as the normalized and scaled stress factor for the ith material: 

Si =
σY
σY,i

∙
Ei
Emax

, σY = max(σY,i) (4.13) 

where σY,i  is the yield stress corresponding to the ith  material, and 
σY

σY,i
  is the stress 

scaling coefficient for the ith  material. We assume that ηE̅̅ ̅  and ηS̅̅ ̅  are monotonically 

increasing functions and ηE̅̅ ̅(μ) < ηS̅̅ ̅(μ) < 1 for 0 < μ < 1. Similar to [84], we define 

μ <  ηS̅̅ ̅(μ)  so that intermediate densities could be further penalized by the stress 

interpolation. Figure 16 shows a graph describing the ordered SIMP-like interpolation 

functions for the normalized elastic moduli and stress factor given the three-material 

scenario (material 1, material 2, and material 3). 

  

Figure 16. Ordered SIMP-like interpolations. 

One more point to mention is that the interpolations of the normalized elastic moduli and 

stress factorare not physically precise. We are not particularly concerned with the fact that 

these ordered materials exist for intermediate density values. The ultimate goal is to have 

clear-cut μe = ρi (i = 1,2, … ,Mat) designs. 
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4.1.2. The maximum relaxed von-Mises stress measure 

The relaxed stress measure with penalization could be written as: 

�̅�e = η
S̅̅ ̅
e
∙ 𝛔0 (4.14) 

Then, the von Mises effective stress of the element centroid could be expressed as: 

σVm,e = (�̅�e
T𝐕�̅�e)

1
2 (4.15) 

with 𝐕 being the stress coefficient matrix: 

𝐕 =

[
 
 
 
 1 −

1

2
0

−
1

2
1 0

0 0 3]
 
 
 
 

(4.16) 

Then, adopted the P-norm aggregation method introduced in subsection 3.1.2, the 

equivalent maximum relaxed von-Mises stress could be expressed as: 

σ̂PN = c ∙ (∑(
σVm,e
σY

)
P

Nel

e=1

)

1
P

≤ 1 (4.17) 

Where σY is the yield stress for the strongest material. 

4.1.3. Optimization problem formulation 

For the optimization problem, the objective function is to minimize structure weight 

subject to the maximum von Mises stress constraint. The optimization problem can be 

mathematically formulated as follows: 

{
  
 

  
 

find: 𝛍

minimize:M(𝛍) =∑(μ̃e ∙ m0)

Nel

e=1

subject to: {
𝐊𝐔 = 𝐅
σ̂PN ≤ 1

μmin ≤ ∀μ̃e ≤ 1

(4.18) 

Where 𝛍 is the design variable, m0 is the unit mass of the eth element in case of being 
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filled with the heaviest material. M denotes the design domain mass containing the solid 

material. 𝐊 , 𝐔 , and 𝐅  are the global stiffness matrix, displacement vector, and force 

vector, respectively. σ̂PN  is the aggregated maximum von-mises stress value obtained 

from Eq. (4.17). In this research, local stresses are evaluated at the element centroids. μmin 

is set as 1e − 9, which could be used to avoid matrix singularity. 

4.1.4. Numerical examples 

Table 1. The properties of 3 involved materials. 

Fictitious material name Density 𝛒 Elastic modulus 𝐄 Color 

Material 1 1.00 100  

Material 2 0.70 60  

Material 3 0.40 20  

Three fictitious isotropic materials are investigated (see Table 1), and 3 different 

combinations of the three materials are considered in this subsection (see Table 2), and 

note that, the materials keep their density and elastic properties unchanged in different 

combinations, but their yield stress limits may vary across the combinations for the 

purpose of a robustness test of the proposed algorithm. 

Table 2. The properties of the 3 involved cases. 

Case name Material name Density points Elastic points Stress points Yield stress �̅� 

SMTO Material 1 1.00 1.00 1.00 1.750 

 

TMTO1 

Material 1 1.00 1.00 1.00 1.750 

Material 2 0.70 0.60 0.76 1.375 
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Material 3 0.40 0.20 0.50 0.700 

 

TMTO2 

Material 1 1.00 1.00 1.00 2.000 

Material 2 0.70 0.60 0.76 1.570 

Material 3 0.40 0.20 0.50 0.800 

The interpolation curves of the normalized elastic modulus and the normalized and scaled 

stress modulus with respect to the density variable are shown in Figure 17. 

     

Figure 17. Interpolation curves of the normalized elastic modulus and the normalized 

and scaled stress modulus in different cases: (left) SMTO, (middle) TMTO1, and (right) 

TMTO2. 

4.1.4.1. The L-bracket structure 

The L-bracket structure is optimized. The initial design domain and boundary conditions 

are shown in Figure 18 with the characteristic dimensions. The design domain is 

discretized by 25584 square elements with uniform size of 0.005 by 0.005. The top edge 

of the L-bracket is clamped and a vertical load F = 1 is exerted to the right-side upper 

corner. Note that the load is distributed over 6 nodes to avoid stress concentration.  
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Figure 18. Design domain of L-shape beam. 

Firstly, in order to investigate the influence of different maximum stress values, we 

compare the results obtained with SMTO, TMTO1, and TMTO2. The interpolation curves 

of the normalized elastic modulus and the normalized and scaled stress modulus with 

respect to the normalized density for these cases are shown in Figure 17. The other 

parameters hold the same values as those used in previous cases. 

    

(a) 
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(b) 

    

(c) 

Figure 19. The optimized results, (a) SMTO2: the optimized topology (left) and 

scaled stress distribution (right); (b) TMTO1: the optimized topology (left) and scaled 

stress distribution (right); (c) TMTO2: the optimized topology (left) and scaled stress 

distribution (right). 

 

(a) 
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(b) 

Figure 20. The real von Mises stress distribution, (a) TMTO1: material 3 (left), 

material 2 (middle), and material 1 (right); (b) TMTO2: material 3 (left), material 2 

(middle), and material 1 (right). 

 

Figure 21. The three material mass percentages in each domain. 

Figure 19 shows the optimized designs from SMTO, TMTO1, and TMTO2, respectively. 

The real von Mises distributions for different materials are shown in Figure 20, and the 

material mass percentage in each case could be found in Figure 21. The stress evaluation 

and the convergence history could be observed in Figure 22 and Figure 23. 
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Figure 22. The real stress evaluation histories for the TMTO1 (left) and the TMTO2 

(right). 

For TMTO1, the optimization terminates after the maximum iteration, the final mass ratio 

is 0.2308, and the maximum von Mises stress in material 1, 2, and 3 are 1.5996, 1.3526 

and 0.6547, respectively. In the optimization result, material 2 occupies the critical load 

bearing areas owing to its high strength-to-density ratio and material 3 occupies the 

majority of other areas for being lightweight. 

For TMTO2, the optimization also stops at the maximum iteration. The final mass ratio is 

only 0.2073, and the maximum von Mises stress in material 2 and 3 are 1.2967 and 0.8749, 

respectively. Note that the optimization result from TMTO2 is majorly occupied by 

material 3 (85.63%), the lightest material phase simultaneously with the highest strength-

to-density ratio. Material 2 takes 14.37% of the total mass, majorly distributing around the 

reentrant corner to relieve the local stress concentration. Material 1 does not appear in the 

final design due to the highest density and the smallest strength-to-density ratio. 
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Figure 23. The iteration histories of objective values obtained with SMTO, TMTO1, 

and TMTO2. 

4.1.4.2. The influence of 𝛈𝐄̅̅ ̅ and 𝛈𝐒̅̅ ̅ interpolation strategy 

In this subsection, we investigate the effect of different interpolation strategies on the 

TMTO1 optimization result. The curves of the different interpolation strategies (with 

varying Pi
E and Pi

S) are plotted in Figure 24. Other parameters hold the same values as 

those used in previous cases. From strategy 1 to strategy 4, the curvatures of the stress and 

elastic modulus interpolation curves keep reducing. 

   

(a)                                              (b) 
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(c)                                              (d) 

Figure 24. Illustrations of the different interpolation strategies, (a) strategy 1 (P1
E =

4, P2
E = 4, P3

E = 4; P1
S = 0.35, P2

S = 0.35, P3
S = 0.35); (b) strategy 2 (P1

E = 3, P2
E =

3, P3
E = 3; P1

S = 0.5, P2
S = 0.5, P3

S = 0.5); (c) strategy 3 (P1
E = 2, P2

E = 2, P3
E = 2; P1

S =

0.6, P2
S = 0.6, P3

S = 0.6); (d) strategy 4 (P1
E = 1.5, P2

E = 1.5, P3
E = 1.5; P1

S = 0.75, P2
S =

0.75, P3
S = 0.75). 

The optimized results and material mass percentages are shown in Figure 25 and Figure 

260. The final mass ratios are 0.2918, 0.2308, 0.2050, and 0.1933, respectively. 

    

         (a)                     (b)                      (c)                     (d) 

Figure 25. The optimized topological designs obtained with different interpolation 

strategies: (a) strategy 1; (b) strategy 2; (c) strategy 3; (d) strategy 4. 
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Figure 26. The three material mass percentages in each interpolation strategy. 

The conditions of stress constraint violation (defined as max(max(σVm − σ̅), 0)) during 

the structure evolution process are plotted in Figure 27. It is clearly demonstrated that only 

interpolation strategy 1 and strategy 2 (with higher Pi
E and lower Pi

S) have the capability 

of accurately constraining the local stress level of all material phases. Hence, deriving a 

well-suited setting of Pi
x  is extremely important. The experience of the authors shows 

that:1) a combination of Pi
E larger than 3 and Pi

S smaller than 0.5 could always stratify 

the stress constraint and get acceptable results; 2) for the ith material who’s final maximum 

stress is far from the limit value, a proper lower Pi
E and higher Pi

S could be adopted to 

further achieve the lighter-weight effect. 

 

   (a) 
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   (b) 

 

   (c) 

 

   (d) 

Figure 27. Variation of the real maximum von Mises stress with the yield stress of 

different materials under different interpolation strategy: (a) strategy 1; (b) strategy 2; (c) 

strategy 3; (d) strategy 4. 

4.1.4.3. The Double L-bracket structure 

The proposed method is applied to the double L-bracket design with multiple load cases 

and stress constraints. The initial design domain and boundary conditions of the double L-

bracket benchmark are illustrated in Figure 28 (a) with the characteristic dimensions.  
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          (a)                                          (b) 

Figure 28. Design domain of double L-bracket beam and its results. 

In this case, TMTO2 and TMTO1 are separately applied to the left and right sub-regions. 

Correspondingly, the optimization results are shown in Figure 28 (b). The structural 

topology of Figure 28 (b) is asymmetric due to the different stress criteria. The final mass 

ratio (0.2365) with TMTO2 is less than the result with TMTO1 (0.2460). This is 

reasonable given the fact that the stress criteria in the left sub-region are relaxed. The real 

von Mises stress distribution for different materials is given in Figure 29, the maximum 

von Mises stress in each material is less than its corresponding yield stress, and the 

objective value and the real stress evaluation histories are plotted in Figure 30. The real 

stress evaluation histories are demonstrated in Figure 30: (a) for TMTO1 and (b) for 

TMTO2. The corresponding material mass percentages in each sub-domain are provided 

in Figure 29 left. 

 

(a) 
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(b) 

Figure 29. The real von Mises stress distribution for material 3 (left), material 2 

(middle), and material 1 (right) under the TMTO2 in left domain (a) and TMTO1 in right 

domain (b). 

  

Figure 30. The objective value and real stress evaluation history. 

4.1.4.4. The initial design condition independence 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 31. The optimized double L-bracket result of the TMTO1 with different initial 

design guesses: (a) μ = 0.4; (b) μ = 0.5; (c) μ = 0.6; (d) μ = 0.7. 
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In the end, the influence of different initial design guesses under the scheme of TMTO1 is 

investigated. The same optimization parameters of former subsection are adopted and the 

optimizations with different initial densities of 0.4, 0.5, 0.6, and 0.7 are performed. The 

optimization results are shown in Figure 31. Their optimized mass ratios are 0.2487, 

0.2411, 0.2440, and 0.2466, respectively. The final topological structures and material 

distributions are analogous for the results with the initial guess of μ = 0.4. The results 

indicate that the optimization result would be perturbed by the initial element densities, 

but the perturbation is random since the influence is non-monotonic. 

4.1.5. Conclusion for this work 

This paper proposed a stress-constrained multi-material topology optimization algorithm 

with the ordered SIMP interpolation. Innovatively, an ordered SIMP-like relaxed stress 

interpolation function is developed to realize the multi-phase stress interpolation subject 

to a single set of density variables. This new interpolation avoids the numerical issues of 

the extended SIMP interpolation for multi-phase stress measures. Additionally, a stress 

scaling method is proposed to impose the material-dependent yield stress limits. The STM 

based P-norm stress correction has been adopted to close the gap between the maximum 

local stress and the P-norm global approximation. Results of the numerical examples 

demonstrated that the proposed method can efficiently solve the stress constrained multi-

material topology optimization problems with different material combinations. 

4.2. Multi-scale porous infill structure topology optimization 

Even though widely studied, there is still a large room for further investigations on multi-

scale topology optimization. A new multi-scale topology optimization method for porous 

infill structure is developed in this research (Figure 32), which balances the design 

requirements on structural mechanical performance, computational efficiency, and 



72 

 

manufacturability. 

 

Figure 32. The methodology of the proposed work. 

Specifically, multiple patches of microstructures will be involved, and each patch consists 

of a unique periodic microstructure. Hence, the number of microstructures is restricted to 

reduce the computational burden of repetitive homogenization of the microstructures. A 

solid interface layer will be built between adjacent patches of lattice microstructures to 

ensure connectivity. Additionally, a solid shell layer is added to the structural boundary to 

avoid the rough surfaces of the cut lattice microstructures. In summary of the proposed 

method, the macro structure, multiple microstructures, interface, and shell layers will all 

be optimized to simultaneously enhance the structural aesthetical, mechanical, and 

manufacturability properties. Figure 32 schematically illustrates the idea of this proposed 

method. It is worth noticing that the interface layer is similar to the coating structure 

mentioned in [292][293][294], while being different in functionality.  

4.2.1. Explicit shell extraction based on DSP method. 

The topological density variables could explicitly represent the boundary shell through a 

series of filtering, projection, and gradient norm approach. In the following subsection, the 
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numerical details of this approach will be introduced. 

 

Figure 33. Illustration of the procedures of boundary shell identification. 

Figure 33 shows the procedures of modeling the boundary shell contents. Firstly, the 

density design field 𝛍  is smoothed by PDE filter with  rmin1  to have �̃�  so that 

checkerboard patterns can be avoided. This process could be achieved by solving the 

following PDE equation [295]: 

−r2∇2�̃� + �̃� = 𝛍 , (4.19) 

where r is the length control parameter, and its relationship with the filter radius R1 is: 

r =
rmin1

2√3
 . (4.20) 

The smoothed density field �̃�  is projected with Heaviside function with the sharpness 

factor β1  and threshold factor η1  to obtain a clear phase �̅̃� = 𝛗 . In this study, the 

following continuous Heaviside function is used: 

𝛗 = �̅̃� =
tanh(β1α1) + tanh(β1(𝛍 − α1))

tanh(β1α1) + tanh(β1(1 − α1))
 . (4.21) 

Then, the PDE filter (with radius rmin2) is applied again, resulting in the density field �̃� 

with a fuzzy boundary. The boundary layer for fiber content modeling can be tracked with 

the Euclidean norm of the spatial gradient ‖∇�̃�‖ . ‖∇�̃�‖  is normalized with the 

normalization factor α which should be chosen as the inverse of the maximum possible 

value of ‖∇�̃�‖. It is intuitive that the maximum value of ‖∇�̃�‖ will appear at the place 
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that the first projected field 𝛗 has a step edge, and it is a fixed value which can be pre-

defined before optimization. To obtain normalization factor, a simplified 1D (only having 

x-direction) case is considered. In this case, the field 𝛗 could be expressed by: 

𝛗 = H(x) , (4.22) 

where H(x)  represents the continuous Heaviside function. Solving the following 1D 

Helmholtz PDE with boundary conditions at infinity: 

{−
rmin2

2

12
∇2�̃� + �̃� = 𝛗

�̃�(x ± ∞) = 0

 . (4.23) 

Then, the second smoothed field �̃� can be theoretically solved as: 

�̃� = H(x) +
e
x
2√3
rmin2

2
(1 − H(x)) −

e
−x

2√3
rmin2

2
H(x),

(4.24) 

the spatial gradient could be expressed by the following equation: 

‖∇�̃�‖ =
dH(x)

dx
(1 −

e
x
2√3
rmin2

2
−
e
−x

2√3
rmin2

2
) +

√3e
x
2√3
rmin2

rmin2
(1 − H(x)) +

√3e
−x

2√3
rmin2

rmin2
H(x) . (4.25) 

The maximum gradient norm could be calculated by: 

‖∇�̃�‖max = lim
𝑥→0

‖∇�̃�‖ =
√3

rmin2
 . (4.26) 

So, the normalization factor α is obtained as: 

α =
1

‖∇�̃�‖max
=
rmin2

√3
 . (4.27) 

The normalized gradient norm ‖∇�̃�‖α = α ∙ ‖∇�̃�‖  is subsequently projected using β2 

and η2 to define clearly the boundary layer ‖∇�̃�‖α̅̅ ̅̅ ̅̅ ̅̅ ̅ with controlled thickness. 
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4.2.2. Energy based homogenization method 

Homogenization theory has been widely used in evaluating effective properties of a 

heterogeneous materials. From the macroscopic perspective, the whole structure can be 

treated as a homogenous material, and displacements are continuous and change slowly 

over the whole design domain. From the microscopic perspective, the displacements will 

vary over single cell. According to the asymptotic homogenization [297][298], the 

displacement can be represented in the following expression: 

uε(x) = u0(x, y) + εu0(x, y) + ε
2u0(x, y)… (4.28) 

The above component functions are dependent on the aspect ratio ε of the global variable 

x and the local variable y. When only the first order terms of the asymptotic expansion in 

Eq. (4.28) are considered, the homogenized stiffness tensor Kijkl
H  is given by averaging 

the integral over the base cell: 

Kijkl
H =

1

|Y|
∫Kijpq(εpq

0(kl) − εpq
∗(kl))dY

Y

(4.29) 

Where Y indicates the whole domain of the unit cell, εpq
0(kl)

 denotes the three (2-D) or six 

(3-D) linearly unit test strain fields, and εpq
∗(kl)

 is the Y-periodic solution of 

∫Kijpqεpq
∗(kl) ∂ui

∂xj
dY

Y

= ∫Kijpqεpq
0(kl) ∂ui

∂xj
dY

Y

(4.30) 

Where ui is the domain admissible displacement in the base cell field. Recalling that the 

homogenized stiffness tensor could be rewritten in an equivalent form in terms of the 

microscale element mutual energies, the effective properties of the periodic lattice can be 

evaluated with the energy-based homogenization method [299]: 



76 

 

𝐃ζ(ijkl)
H =

1

Ω0
∙∑ [(𝐮e

A(ij)
)
T

𝐤e𝐮e
A(ij)

]

Ne

e=1

(4.31) 

where 𝐮e
A(ij)

 are the microscale element displacement solutions corresponding to the unit 

test strain fields (the details could refer to [300]). 𝐤e is the element stiffness matrix in 

microscale. Ω0 is the volume of the solid homogeneous medium. With the homogenized 

elastic tensor, the stiffness matrix of the ζth representative material microstructure could 

be derived through: 

𝐊𝐞ζ = δ(𝐃ζ
H) (4.32) 

where δ(∗) is the element stiffness matrix assembly operator. 

4.2.3. Method Statement and problem formulation 

4.2.3.1. Method Statement 

The whole procedure of the proposed method could be divided into two steps: the 

preprocess and the optimization process. The preprocessing is conducted to optimize the 

free material distribution, to recognize the interface and shell layers, and then to assemble 

them to create the initial guess for the following multi-scale optimization. To realize the 

free material optimization, the VTS method will be applied to generate the optimized 

element density field. The VTS method will create continuously varying element densities 

with many intermediate values. Then, a projection-based regularization mechanism will 

be introduced to discretize the density field into several clusters. Elements with the same 

or close densities will be projected to the same cluster, so that the design domain will be 

divided into sub-domains corresponding to the clusters. Note that each sub-domain is 

characterized by one microstructure and its representative density value (which is also the 

maximum volume fraction for the corresponding microstructure) is calculated by 
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averaging the element densities within the cluster. In the next stage, two well-established 

filtering and projection operators will be adopted to identify the interface layers between 

adjacent sub-domains with controllable layer thickness. In summary, the preprocessing 

derives the overall distribution of the multiple representative microstructures and identifies 

the interface layers between distinct microstructures, which provides the initial guess for 

the next-stage multi-scale topology optimization. The numerical implementation 

workflow for preprocess is illustrated in Figure 34. 

 

Figure 34. Flowchart of the preprocessing. 

In the optimization process, the macroscale structural topology with a shell layer and the 

microscale structural details will be concurrently optimized subject to their corresponding 

volume constraints. At the macroscale, the DSP approach [56] will be applied to 

distinguish the interior porous infill and the exterior solid shell layer, and the macro-
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structural topology will be optimized with the gradient-based optimizer. Meanwhile, at the 

microscale, the topologies of the representative microstructures will be simultaneously 

optimized based on the SIMP interpolation [61]. The energy-based homogenization 

method [21] will be adopted to bridge the macroscale and microscale computations. Finally, 

the optimized macrostructure and a few representative microstructures with well-

established interface and shell layers will be derived as the optimization result. The 

numerical implementation workflow for optimization process is illustrated in Figure 35. 

 

Figure 35. Flowchart of the multiscale optimization process. 

4.2.3.2. Two-scale optimization problem formulation 

In this work, a standard compliance minimization problem subject to volume constraints 

on both macro- and micro-scale is studied. The two-scale optimization problem is 
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formulated as: 

{
 
 
 
 
 

 
 
 
 
 
Find: μE

M, μe,ξ
m  (E = 1,2, … , NE;  e = 1,2, … , Ne;  ξ = 1,2, … , Nξ)

Min: C = 𝐔T𝐊𝐔 =∑𝐔E
T𝐊E𝐔E

NE

E=1

Subject to:

{
 
 

 
 

𝐊𝐔 = 𝐅
GM ≤ Vd
gm

ξ
≤ vd,ξ

0 < μM
min

≤ μE
M ≤ 1,   

0 < μm
min

≤ μe,ξ
m ≤ 1,   

(4.33) 

where μE
M is the macro design variable, also the macro elemental density. μe,ξ

m  is the micro 

design variable for the microstructure ξ. μmin
M  and μmin

m  are two small number to avoid 

calculation singularity in two scale. GM is the macroscale volume fraction constrained by 

the maximum volume fraction Vd; gm
ξ
 is the volume fraction of the ξth representative 

porous material region, which is subject to the maximum volume fraction of the 

corresponding representative microstructure (vd,ξ ) defined during the preprocess. The 

expression of GM  and gm
ξ
  can be found in the later content. Ne  indicates the total 

number of elements within the ξth microstructure. 

4.2.3.2.1. Material Interpolation Strategy 

The macroscale interpolation in this work is slightly different from [292]. The element 

stiffness matrix interpolation of element E could be expressed as: 

𝐊𝐄E =∑(𝐊E,ζ ∙ ϑE,ζ)

Nζ

ζ=1

𝐊E,ζ = (φE)
p ∙ 𝐊𝐞ζ + (‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

p
∙ 𝐊𝐞1 − (φE)

p ∙ (‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
p
∙ 𝐊𝐞ζ

(4.34) 

𝐊𝐞1  is the element stiffness matrix of the interface solid material, 𝐊𝐞ζ(ζ ≠ 1)  is the 

homogenized element stiffness matrix (refer to the next subsection) of the (ζ − 1) th 
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infilled microstructure. p  is employed to penalize the intermediate densities, so that to 

derive the black and white solution to distinguish the infill microstructure domain and void. 

While for the elemental density ρE
M in macroscale, it could be expressed as: 

ρE
M =∑(ρE,ζ

M ∙ ϑE,ζ)

Nζ

ζ=1

ρE,ζ
M = φE ∙ ϱζ + (ϱ1 − φE ∙ ϱζ) ∙ (‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

(4.35) 

As the macroscale design region 𝛗 converges to a discrete 0/1 solution, Eq. (4.34) and 

Eq. (4.35) will export a mixed physical field. Recalling that when the element E belongs 

to subdomain Ωζ, and the term ‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅  approaches zero, i.e. far away from the interface 

while within the non-void field of Ωζ (φE = 1), Eq. (4.34) and Eq. (4.35) reduce to: 

𝐊𝐄E = 𝐊𝐞ζ  , ζ ≠ 1,

ρE
M = ϱζ  , ζ ≠ 1; 

(4.36) 

At the other extreme where the ‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅   approaches 1, i.e. at the interface region Ω1 

(φE = 0), the Eq. (4.34) and Eq. (4.35) reduce to: 

𝐊𝐄E = 𝐊𝐞1,

ρE
M = ϱ1; 

(4.37) 

Note that, in the microscale, the SIMP interposition strategy is adopted to define the 

physical density and stiffness.  

4.2.3.2.2. Objective function 

The structural compliance is equal to the sum of element strain energies, which could be 

expressed as: 

C = ∑QE

NE

E=1

(4.38) 

where QE is the strain energy of the element E: 
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QE = 𝐔E
T𝐊𝐄E𝐔E (4.39) 

Substituting the element stiffness matrix interpolation Eq. (4.34) into Eq. (4.39) will yield: 

QE =∑{[𝐔E
T(φE)

p𝐊𝐞ζ𝐔E] ∙ ϑE,ζ}

Nζ

ζ=1

+∑{[𝐔E
T(‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

p
𝐊𝐞1𝐔E] ∙ ϑE,ζ}

Nζ

ζ=1

−∑{[𝐔E
T(φE)

p(‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
p
𝐊𝐞ζ𝐔E] ∙ ϑE,ζ}

Nζ

ζ=1

(4.40) 

For brevity, the following notation is introduced: 

QE = εE
S ∙ Q2E + εE

G ∙ Q1E − εE
SG ∙ Q2E (4.41) 

where εE
S , εE

G, and εE
SG have the expressions of: 

{

εE
S = (φE)

p

εE
G = (‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

p

εE
SG = (φE)

p ∙ (‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
p

(4.42) 

Q1E and Q2E could be treated as the corresponding element strain energy and defined as: 

{
  
 

  
 
Q1E =∑(𝐔E

T𝐊𝐞1𝐔E) ∙ ϑE,ζ

Nζ

ζ=1

Q2E =∑(𝐔E
T𝐊𝐞ζ𝐔E) ∙ ϑE,ζ

Nζ

ζ=1

(4.43) 

4.2.3.2.3. Constraints for Microscale and Macroscale Volumes 

In this paper, the volume constraints are separately built on the macro- and micro-scale 

structures. In macroscale, the global volume constraint function could be written as: 

GM =
∑ GE
NE
E=1

V0
(4.44) 

where GE is the volume of the element E: 

GE = Vele ∙ ρE
M = Vele ∙∑((φE ∙ ϱζ + (ϱ1 − φE ∙ ϱζ) ∙ (‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )) ∙ ϑE,ζ)

Nζ

ζ=1

(4.45) 
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In microscale, it arrives: 

gm
ξ
=
∑ ge,ξ
Ne
e=1

Ω0
(4.46) 

where ge,ξ indicates the local volume of element e in the ξth representative microstructure, 

giving: 

ge,ξ = vele ∙ φe,ξ (4.47) 

vele is the solid element volume in microscale. 

4.2.4. Numerical examples 

An MBB structure will be optimized in this subsection. Note that, only three 

microstructures with the volume fraction of 80%, 60% and 30% are used to compose 

the macrostructure. Unless otherwise specified, the boundary in all cases is made of solid 

materials and the material type is the same with those microstructures.  

 

Figure 36. The MBB beam. 

The first numerical example is the MBB benchmark example, whose structural sizes are 

defined with L = 30 and H = 10. Because of the symmetry condition, only one half of 

the structure will be optimized, which is shown in Figure 36. The MBB structure is loaded 

with a concentrated vertical force (F = 1) at the up-left corner; the bottom-right corner is 

supported on a roller; and the asymmetrical boundary condition is applied to the left edge. 
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A mesh with 300 ×  100 square elements of size 0.1 ×  0.1 is employed to discretize the 

design space in macroscale, and all the micro base cells are discretized with 30 ×  30 

square elements. The objective function is to minimize the macrostructure compliance 

under a volume constraint of 42%. 

4.2.4.1. The MBB Beam Structure Optimization 

The interface has the thickness of T = 4 . The topologies of the macrostructure, the 

exterior boundary, and three representative microstructures are concurrently optimized 

subject to the overall microstructure and interior boundary distribution. Figure 37 gives 

the optimized topologies of the macrostructure and boundary, respectively. 

 

(a) 

 

(b) 

Figure 37. The optimized topology of the MBB beam: (a) microstructure area and (b) 

interface and shell layers. 

Figure 38 gives the final multiscale design of the MBB beam. The different sub domains 

are plotted by yellow, green, and blue, separately. The interface and shell layers are plotted 

in red. Each sub domain is periodically configured by the corresponding representative 

microstructure shown at the bottom of Figure 38.  
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Figure 38. The multiscale design of the MBB beam. 

The optimized maro-structural topology matches well with the widely accepted design 

results for the MBB beam [82][83]. Figure 39 shows the geometric details of the three 

microstructures, the 4 × 4 repetitions of the microstructures, as well as the corresponding 

homogenized elastic tensors. It is obvious that the microstructures do not match well if 

directly connected, while the interface layer addresses the connectivity issue that greatly 

enhances structural stability.  
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Figure 39. The optimized results of the three material microstructures. 

The convergence history is plotted in Figure 40. Moreover, the intermediate results of the 

macrostructure and the intermediate distributions of the interface and shell layers are 

plotted in Figure 40, as well. To better perform a visual result, in the post-processing, we 

discretize the structures by following rules: φE ≥ 0.95  indicates the clearly-identified 

material domain, and ‖∇φÊ‖α̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≥ 0.5 represents the clearly-formed boundary layer. The 

structural compliance and the two-scale material distributions do not change much from 

the 250th step, therefore, the optimization process stopped at the 300th step. The objective 

value of the final MBB beam design is 231.9582. 
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Figure 40. The convergence history and the macro-structure evolution. 

The evolution histories of the three microstructures are given in Figure 41. 

 

Figure 41. The evolutions for three representative microstructures. 

4.2.4.2. The Interface Thickness Control 

In general, if the thickness of the shell layer is extremely thin, the sloping interfaces and 

shells will be one-node connected that does not physically make sense. Therefore, the 

boundary features should at least have the width of two elements. In this work, to ensure 
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the consistency of the thicknesses of the interior and exterior boundaries, the following 

equation could arrive by recalling Eq. (4.20) and Eq. (4.27): 

Tex =

    
ln(2)

√3
∙ R3 ≈ 2 ∙ R1 = Tin

R3 ≈ 5 ∙ R1

(4.44) 

Figure 42 shows the optimized macro topology results and the boundary distributions 

using three different boundary thicknesses of approximately T = 2 , T = 4  and T = 6 , 

respectively. The resolutions of the three cases are all 300 × 100.  

 

(a) 

 

(b) 
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(c) 

Figure 42. Optimization results with different thicknesses of the interface and shell 

layers: (a) T = 2 (R3 = 5, R1 = 1, C = 265.6539); (b) T = 4 (R3 = 10, R1 = 2, C =

231.9582); (c) T = 6 (R3 = 15, R1 = 3, C = 210.1825). 

It could be shown that the thicknesses of the interface and shell layers are identical within 

each scheme, but the optimized structural topologies are evidently distinctive given the 

different boundary thicknesses. The boundary thickness can be accurately controlled by 

the corresponding filter radius. To maintain the structural physical meaning, R2 should be 

greater than or equal to R3 , and R2 = 2 ∙ R3  is adopted in this work. Therefore, the 

increase of the boundary thickness T  will cause the increase of R2 . Recalling that the 

smoothing filter with R2  and projection filter with β3  and σ3  have the length control 

effect, small geometric features will be eliminated with an increasing boundary thickness 

T. Hence, the derived structural topology will be altered as well.  
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4.2.5. Mechanical Testing 

 

Figure 43. The short MBB beam. 

To perform experimental validation of the effect of the interface layers, a short MBB beam 

(Figure 43) will be optimized and manufactured for mechanical testing. Its structural sizes 

are defined with L = 20 and H = 10. All the parameters except the structural sizes hold 

the same values as those used in the previous cases. Two optimized designs with the same 

mass ratio (Vd = 0.4) have been obtained. The first contains both interior and exterior 

interfaces under the same boundary thickness of T = 4. The optimized macro- and micro-

scale results are illustrated in Figure 44, and the final compliance was found to be 

109.5102. 

 

Figure 44. The optimized short MBB beam with both interior and exterior interfaces 

(T = 4). 
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The second is a structure which only contains exterior interface (shell layer) with the 

thickness of T = 2. The optimized macro- and micro-scale results are illustrated in Figure 

45. The final compliance was found to be 137.3501. 

 

Figure 45. The optimized short MBB beam with only the exterior interface (T = 2). 

Before generating 3D specimens for fabrication and test, post-processing is required for 

the numerical 2D designs in Figure 44 and Figure 45. Theoretically, in homogenization 

theory, the microstructure unit cells are assumed to be infinitely small compared with the 

macroscale structures. However, due to the limits of the 3D printer’s resolution, the size 

of the microstructure needs to be appropriately configured. Then the structure is smoothed 

and reconstructed in CAD software.  

Figure 46 presents the reconstructed CAD models and the manufactured samples for 

testing, which makes some appropriate simplification compared with the numerical results 

in Figure 44 and Figure 45. The size of the microstructure is configured to be 4 × 4 mm. 

The samples are printed with Formlab Form 3 which has the overall size of 

140mm × 35.5mm × 12.5mm. 
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Figure 46. The reconstructed CAD models and manufactured samples of the multi-

scale designs 

Three samples have been printed for each design. The experiments are performed with a 

universal mechanical testing machine with the loading speed of 5mm/min. The testing 

setup is shown in Figure 47 and the testing result is demonstrated in Figure 48. The testing 

data show that the average structural compliance of the designs with only the shell layer is 

around 1.5 times of the average structural compliance of the designs with both shell and 

interface layers, while the rate of the numerical results is only 1.25. It clearly indicates that 

the poor connectivity between microstructures severely degrades the structural mechanical 

performance, and it is necessary to fix the connectivity issue, e.g., by adding a solid 

interface layer.  
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Figure 47. Mechanical testing setup 

 

Figure 48. Mechanical testing result 

4.2.6. Conclusion for this work 

The current study presents a novel approach that effectively optimizes both the 
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macrostructure and multiple microstructures, while also considering the interior and 

exterior solid interfaces. Through various numerical examples, we have demonstrated the 

effectiveness of this method and validated its capability to achieve flexible control over 

interface thickness. In summary, the incorporation of solid interface layers successfully 

addresses the connectivity challenge, enhancing the overall robustness of the multiscale 

structures. Experimental validation confirms the positive impact of adding interface layers, 

as the designs lacking interior interface layers exhibit noticeably reduced stiffness and 

strength performance. 

4.3. Summary 

In this chapter, a series of topology optimization methods are proposed to address the 

challenges in the design of multi-material structures, and multi-scale porous infill 

structures. The pursuit of lightweight design is combined with the utilization of the 

distinctive AM process to maximize the structural performance of the designed 

components. 

The research in this chapter primarily focuses on the perspective of ‘improvement’ and 

introduces various innovative equivalent material models and geometric control methods. 

These methods are utilized to describe the process characteristics of novel AM 

technologies and translate them into implicit/explicit constraints integrated with topology 

optimization algorithms. In comparison to traditional topology optimization algorithms, 

the proposed algorithms pay greater attention to the practical aspects of AM processes. 

Through numerical analysis and experimental validation, the feasibility and effectiveness 

of these methods have been demonstrated. 

In the subsequent chapters, building upon the works presented in this chapter, further 

consideration will be given to the process defects in AM, with a specific emphasis on LPBF 
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metal AM. By means of geometric design approaches, efforts will be made to minimize 

residual deformations and residual stresses caused by the LPBF process while ensuring the 

performance of the components. 
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Chapter 5. Numerical modeling for LPBF process and its integration with 

topology optimization 

As LPBF provides new design opportunities, topology optimization is ideal for LPBF 

because it can be used to design high-performance structures and can fully exploit the 

fabrication freedom provided by AM. Moreover, topology optimization can reversely help 

to mitigate the limitations of the AM process by considering manufacturing issues in the 

structural-design stage. The mechanical response and thermal response induced by the 

LPBF process must be simulated before fabrication.  

However, as reviewed in Chapter 2, numerical modeling of LPBF is a difficult and 

complex task. According to the different type of results that are sought, it often needs to 

be analyzed on different scales. It is unfeasible to include all relevant factors in a single 

simulation, as there is always a trade-off between accuracy and computational efficiency. 

In the context of topology optimization, an iterative algorithm is employed, where new 

solutions are derived based on the current and previous iterations. This process can require 

many iterations to reach a satisfactory solution, resulting in the need for hundreds of 

simulations. Thus, it is important to employ numerical techniques that can reduce 

computational time without sacrificing accuracy. 

The present study employs a numerical model to calculate the mechanical response at the 

part scale level for topology optimization. This chapter introduces an in-house fast process 

simulation solver that serves predicting deformation and residual stresses in LPBF to 

model the mechanical response. The procedure of the implementation of proposed fast 

solver is shown in Figure 49. 
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Figure 49. The procedure of the LPBF solver proposed in this research. 

The ISM-based LPBF process modeling will be introduced first. Then, the finite element 

solver for this method will be introduced, along with its corresponding result verification. 

Finally, it introduces the combination of the solver and the topology optimization 

framework. 

5.1. Numerical modelling of LPBF process in part level by ISM 

In this subsection, the finite modelling of LPBF process will be introduced. Firstly, the 

simplified process simulation model for metal LPBF manufacturing process is discussed. 

The layer-by-layer building process is simulated based on ISM, which enables for a fast 

prediction of the residual stresses and distortions of the LPBF fabricated components. 

5.1.1. Anisotropic inherent strain 

The presence of incompatible strains, such as thermal strains and plastic strains, has been 

identified as a major contributor to distortions and residual stresses in welding-like 

manufacturing processes. These inherent strains arise due to an uneven distribution of 

temperature during the heating process and are considered to be process-dependent in 

nature. In particular, three primary sources of inherent strains have been identified: plastic 

strain (𝛜p
ihs), thermal strain (𝛜t

ihs), and other strains that are not classified as elastic strain 

(𝛜o
ihs). The inherent strain could thus be written as: 
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 𝛜ihs = 𝛜p
ihs + 𝛜t

ihs + 𝛜o
ihs (5.1) 

The unique elliptical shape of the melt pool in the x-y plane during laser scanning has been 

observed to result in anisotropic residual stress. The inherent strain should be therefore 

modeled as anisotropic with respect to the laser scanning direction. The present assumes 

that a constant strain is generated with each layer addition, and that the strain components 

within the x-y plane are dependent on the scanning orientation. The original inherent strain 

(𝛜ihs0 ) is defined as the principal strain based on the local coordinate system and is 

typically obtained through experimental calibration or high-fidelity numerical simulation 

techniques. By rotating the direction of the original inherent strain 𝛜ihs0, the anisotropic 

inherent strain 𝛜ihs  in each scanned island (Figure 50) for an arbitrary scanning 

orientation θ within the global coordinate system could be expressed as: 

 𝛜ihs(θ) = 𝐑(θ)𝛜ihs0𝐑(θ)T (5.2) 

          

          (a)                                            (b) 

Figure 50. Outline of the anisotropic residual stress of the molten pool (a) and the 

relationship between the global coordinate system and the local coordinate system of the 

hatching line (b). 

where 𝐑(θ) is the xy-plane rotation matrix, which could be expressed as a function of the 

scanning orientation angle θ: 

 𝐑(θ) = [
cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

] (5.3) 
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5.1.2. Inherent strain obtains and validation 

The accuracy of part-scale simulation results depends on the accuracy of the inherent strain. 

Two methods can be used to calibrate the derived inherent strains: (a) the reduced-order 

method and (b) the empirical method. The reduced-order method uses a hierarchical 

procedure to predetermine inherent strains through high-fidelity finite element models. A 

coupled thermo-mechanical analysis is carried out, considering the actual scanning 

strategy sequence with a moving heat source representing the power input. This allows for 

the accurate computation of both thermal and elastic-plastic deformations, enabling the 

identification of corresponding inherent strains. On the other hand, the empirical method 

obtains the characteristic inherent strains of each single layer through experimental tests 

and iterative fitting. The equivalent inherent strain is then calculated based on the layer 

thickness used in the simulation. 

An iterative calibration process based on the empirical results is employed in this work. 

The whole process is shown in Figure 51. The residual stresses are proportional to the 

inherent strains applied to the structure. Therefore, an indirect measurement of this residual 

stress state enables to calculate the inherent strain field through inverse analysis.  

In our specific case, the utilization of the twin-cantilever beam geometry is proposed due 

to its ability to enable a straightforward indirect assessment of residual stresses. This 

assessment is based on the beam's bending deformation following the cutting phase. 

According to our hypothesis, only two inherent strain components need to be determined, 

necessitating a minimum of two experiments. To capitalize on the orthogonal nature of 

hatches, two scanning strategies are employed for the same twin-cantilever beam: 

longitudinal and transversal hatching. This approach yields two distinct residual stress 

states and, consequently, two different final bending deformations. Additionally, a 
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scanning strategy with an orientation of 45° is implemented to validate the model. The 

connection between inherent strains and distortion is established through an optimization 

loop, wherein the objective function is defined as the discrepancy between the numerical 

results and the experimental measurements. 

 

Figure 51. The flowchart for the inherent strain calibration process 

The optimization problem is addressed through the Hooke-Jeeves direct penalty method. 

Consequently, the resulting inherent strain tensor at the layer level is acquired, serving as 

a reference dataset for comparable scanning strategies. It is important to emphasize that 

the obtained inherent strain tensor relies on the specific process parameters employed 

during the fabrication of the twin-cantilever beam. Furthermore, a straightforward 

validation of the calibrated outcomes is performed by employing the acquired inherent 

strain tensor in a 45° scanning strategy and subsequently comparing the numerical results 

with the experimental data. 
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5.1.3. Mechanical simulation based on ISM. 

 

Figure 52. A linear elastic solid with volume V and surface S. A sub-volume V0 and 

surface S0 undergoes a permanent (inelastic) deformation. The material inside V0 is 

called an inclusion and the material outside is called the matrix. 

In LPBF, the material is gradually melted and added to a solidified part that is defined as 

a matrix. The newly deposited materials can be regarded as an inclusion in the matrix. The 

problem is to solve the stress, strain, and displacement both in the matrix and the inclusion, 

whose procedure is similar to that of the classic Eshelby’s inclusion problem (Figure 52) 

[301]. The known and constant permanent strain (inherent strain) arising within the domain 

of the inclusion due to some inelastic process, while remaining absent throughout other 

regions. The corresponding elastic strain and the total strain are, on the other hand, 

unknown, and need to be determined everywhere.  

Figure 53 shows the process. First, the inclusion is removed from the matrix, during which 

it will change shape to a zero-stress state because of the interior inherent strain. Then, one 

should apply surface traction T on the surface S0 of the inclusion, changing it back to its 

original shape. Lastly, putting the inclusion back to the matrix and adding a traction 𝐅 =

−𝐓 on the boundary between the inclusion and the matrix to resume the original inclusion. 

Therefore, the stress, strain, and displacement in this two-body system can be solved by 

elastic analysis based on the superposition principle of linear elasticity. In the LPBF 

process, when more materials are added, the above process will be repeated until the part 

is completely manufactured. 
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Figure 53. Virtual experiment for explaining the inherent strain method. 

5.2. Finite element analysis of LPBF process 

5.2.1. Mechanical simulation of LPBF by finite element method 

 

Figure 54. Outline of the sequential layer-by-layer process of the AM inherent strain 

method representing a warping deformation. 

Considering the linear elastic problem discretized using the FEM, the equilibrium equation 

at the nth step is as follows: 

𝐊n𝐔n = 𝐅n (5.4) 

where K, U, and F are the stiffness matrix, the displacement vector, and the force vector. 

The increment on both sides is represented as follows: 

∆(𝐊n𝐔n) = ∆𝐅n (5.5) 

𝐊n+1𝐔n+1 − 𝐊n𝐔n = ∆𝐅n (5.6) 

∆𝐅n can be divided as ∆𝐅n
act + ∆𝐅n

ihs, ∆𝐅n
act represents the strain to cancel the stress state 

indicated by red arrow (the so-called traction 𝐅 = −𝐓 mentioned in last subsection): 
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∆𝐅n
act = ∆𝐊n𝐔n = (𝐊n+1 − 𝐊n)𝐔n (5.7) 

and ∆𝐅n
ihs represents the inherent strain applied in the nth step indicated by blue arrow 

(Figure 54): 

∆𝐅n
ihs = ∆𝐊n𝐔ihs (5.8) 

Then substitute the expressions ∆𝐅n
act and ∆𝐅n

ihs into Eq. (5.6): 

𝐊n+1𝐔n+1 − 𝐊n𝐔n = (𝐊n+1 − 𝐊n)𝐔n + ∆𝐊n𝐔ihs (5.9) 

Then the nth independent equation could be arrived: 

𝐊n+1∆𝐔n = ∆𝐊n𝐔ihs (5.10) 

After activating the inherent strains of all layers, the part-scale distortion 𝐔 is calculated 

by summing up the layer-wise distortion ∆𝐔n as: 

𝐔 =∑∆𝐔n

m

n=1

 (5.11) 

Consequently, according to Eq. (5.10), all layer printing steps during the building stage 

can be treated as independent linear problems, which can be solved in parallel. In this work, 

as shown in Figure 55, the number of layers in domain Ω is divided into m lumped layers 

more than an actual material layer thickness in terms of computational effort and each 

layer domain is represented by Ωn . The generation of the structure is represented by 

changing Young's modulus from a small value (like 1E-9) to a great value using a static 

mesh. Therefore, the entire mesh will participate in the analysis of each printing step 

simulation. 
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Figure 55. Domains and boundary during the building process. 

The domain Ω  is composed of three subdomains in each separate time step, where 

represented by ΩIhs, ΩA, and ΩI. ΩIhs is the layer to be printed and to apply the inherent 

strain, ΩA  is the already printed layers, and ΩI  is the inactivated layers. The inherent 

strain 𝛆∗ at the domain Ωihs contributes to the distortion in the rest part of the substrate. 

Within the inactivated domain ΩI, the material with a small elastic modulus is occupied 

by the inactivated domain, which is activated sequentially along the building direction by 

m  steps. Two layer wise flag field variables (𝛅n  and 𝛝n ) are thus provided to better 

indicates this activation process: 

 {
δe
n = 1     when    Ωn ∈ ΩInh
δe
n = 0                   otherwise

      and      {
ϑe
n = 1    when    Ωn ∈ ΩA ∪ ΩInh
ϑe
n = 0                             otherwise

(5.12) 

In each step, the right-hand-side of Eq. (5.10) is equivalent to the nodal force applied to 

each activating domain (ΩInh) through the following expression: 

∆𝐊n𝐔n
ihs =∑(δe

n𝐋e
Tηe

β
∫𝐁T𝐃0𝛜

ihs(θ) dΩe)

Nel

e=1

(5.13) 

where 𝛜ihs  is the inherent strain for solids, ηe
β
  is the inherent strain load coefficient 

interpolation function [242], 𝐁  is the strain-displacement matrix, and 𝐃0  is the 

constitutive matrix for the solid material. The matrix 𝐋e gathers the nodal displacements 

of the eth element (𝐮e) from the global displacement vector (𝐔) satisfying 𝐮e = 𝐋e𝐔. The 

global stiffness matrix 𝐊n  when printing the nth layer is constructed by summing up 
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element stiffness matrices in the ΩA, which could be explicitly expressed as: 

 𝐊n =∑ϑe
n𝐋e

Tηe
E∫𝐁T𝐃0 𝐁dΩe 𝐋e

Nel

e=1

(5.14) 

where ηe
E  is the elastic modulus interpolation function. It is noted that to avoid the 

influence of non-activated elements during the previous printing stage, the final stage part-

scale distortion 𝐔res expression in this work should be modified as: 

𝐔res =∑(∆𝐔n ∙ 𝐇DOF
n )

m

n=1

(5.15) 

where 𝐇DOF
n   is a flag array that indicates the activated nodes in each printed layer. In 

practice, the metal powders are deposited on a large build tray. Therefore, the boundary 

condition is to clamp the bottom surface of the build tray. However, the thick build tray 

forms a strong constraint to the bottom of the metal builds. In order to save computational 

cost, the build plate can be neglected, and the boundary condition can be changed to fix 

the metal components at the bottom surface. 

5.2.2. Distortions after release from the base plate 

For the part deformation, once it is separated from the baseplate, a new stress-free state is 

solved from the following equation: 

𝐊remain𝐔cut = 𝐊cutoff ∑ ∆𝐔n

m

n=cut+1

(5.16) 

where 𝐊cutoff  is the assembled stiffness matrix corresponding to elements that are 

removed in the final separation step, and 𝐊remain is the assembled stiffness matrix for the 

remained elements, as shown in Figure 55. It should be noted that the right-hand side of 

Eq. (5.16) indicates the effective mechanical load for these removed elements, which only 
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depends on the newly deposited powder (above the cutting layer). Then the final 

displacement state is the superposition of the fields 𝐔cut and 𝐔res: 

𝐔final = 𝐔cut + 𝐔res (5.17) 

 

Figure 56. Domains and boundary during the cut-off process. 

For the cut-off simulation, the remain domain ΩR and cut-off domain ΩC are shown in 

Figure 56, and Eq. (5.16) is modified as: 

𝐊remain𝐔cut = 𝐊cutoff ∑ (∆𝐔n ∙ 𝐇DOF
n )

m

n=cut+1

(5.18) 

The detailed expression of the global stiffness matrix for remain structure 𝐊remain is: 

𝐊remain = ∑ 𝐋e
Tηe

E∫𝐁T𝐃0 𝐁dΩe 𝐋e
e∈ΩR

(5.19) 

and the detailed expression of the global stiffness matrix for the removed structure 𝐊cutoff 

is: 

𝐊cutoff = ∑ 𝐋e
Tηe

E∫𝐁T𝐃0 𝐁dΩe 𝐋e
e∈ΩC

(5.20) 

5.2.3. Numerical Verification 

Figure 57displays the comparison of the results obtained from commercial software MSC 

Simufact Additive® and our method using the same inherent strain value. The inherent 

strain model is only valid in the elastic domain, so the strains are overestimated above the 

limit of elasticity. To compare our results with the simulation of Simufact Additive®, we 
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first apply a maximum threshold to the Von Mises criterion obtained with our model. This 

maximum threshold is chosen equal to the maximum value of the Von Mises criterion 

obtained with Simufact Additive®, which uses an elastic model.  

 

Figure 57. The comparison of the results obtained from proposed works and 

commercial software. 

Figure 57 comparatively displays the results obtained from commercial software MSC 

Simufact Additive® and our method using the same inherent strain input and the same 

scanning strategy. Our numerical result shows qualitative good agreement with the one 

from Simufact Additive 2022®, and the detail comparison data is shown in Table 3. 

 Simufact Additive® Proposed Solver Error 

Residual distortion 0.1732 mm 0.1702 mm 1.732 % 

Residual stress 1177.89 MPa 1172.42 MPa 0.464 % 

Cut-off distortion 0.41 mm 0.39 mm 4.878 % 

Voxel Mesh 156323 154323 - 

Table 3. The detail comparison between the proposed solver and Simufact Additive®. 
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5.3. Integration of topology optimization and LPBF fast simulation solver 

As mentioned in chapter 2, limited by the high-power input during LPBF, the fabricated 

structures often face the problem of residual stress accumulation induced by the high 

temperature gradients near the molten pool. Generally, residual stresses result in significant 

plastic deformation, leading to warping and distortion of the object. Parts can exhibit much 

larger deformation after removal from the building platform due to stress relief. Residual 

stresses and warpage severely degrade the mechanical performance, dimensional accuracy, 

and fatigue life of the fabricated part. Hence, reducing the residual stresses and warpage 

is a top priority for promoting the practical applications of LPBF technology. One 

straightforward approach is to reduce the temperature differences between heated and 

cooled down states by preheating the substrate. Adopting residual stress-relief methods 

(such as heat treatment and shot peening), can also reduce the residual stress level. An 

alternative approach to address prone-to-warp features in AM is to use DfAM that 

optimizes both structural geometry and process parameters. Altering the structural 

geometry can modify the heat conduction paths, thereby changing the thermal history and 

residual stress distribution significantly. LPBF oriented topology optimization is a 

promising solution to this issue. 

5.3.1. The optimization problem formulation and solution 

{
 
 
 

 
 
 

minimize
𝛒(𝛍), 𝐮(𝛍)

: g0(𝛒, 𝐮)

subject to: 

{
 
 

 
 

𝐑(𝛒, 𝐮) = 0

gi(𝛒, 𝐮) = 0     i ∈ E

gj(𝛒, 𝐮) ≤ 0     j ∈ I

𝛒(𝛍) ∈ [0,1]

𝐮(𝛍) ∈ U

(5.21) 

Where the response field 𝐮 contains two parts: the physical filed response 𝐮phy and the LPBF simulation 

field 𝐮final, and the residual state equations system could be expressed as: 
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Rphy(𝛒, 𝐮phy) = 0

∑(𝐊n∆𝐔n − ∆𝐊n𝐔n
ihs)

m

n=1

𝐇DOF
n = 0

𝐊remain𝐔cut − 𝐊cutoff ∑ ∆𝐔n

m

n=cut+1

𝐇DOF
n = 0

(5.22) 

By help of the adjoint method, the objective functional is augmented by the product of 

adjoint fields and the residuals, and two adjoint variables 𝛌1 and 𝛌 are proposed: 

L = g0 +∑𝛌n
1T(𝐊n∆𝐔n − ∆𝐊n𝐔n

ihs)

m

n=1

𝐇DOF
n + 𝛌T (𝐊remain𝐔cut − 𝐊cutoff ∑ ∆𝐔n

m

n=cut+1

𝐇DOF
n ) (5.23) 

The gradient of the Lagrangian function is calculated by: 

dL

dρe 
=
∂g0
∂ρe

+
∂g0
∂𝐔res

∑
∂∆𝐔n
∂ρe

𝐇DOF
n

m

n=1

+
∂g0
∂𝐔cut

∂𝐔cut
∂ρe

−∑𝛌n
1 (𝐊n

∂∆𝐔n
∂ρe

+
∂𝐊n
∂ρe

∆𝐔n −
∂∆𝐊n𝐔n

ihs

∂ρe
)𝐇DOF

n

m

n=1

−𝛌T (
∂𝐊remain
∂ρe

𝐔cut + 𝐊remain
∂𝐔cut
∂ρe

− 𝐊cutoff ∑
∂∆𝐔n
∂ρe

m

n=cut+1

𝐇DOF
n −

∂𝐊cutoff
∂ρe

∑ ∆𝐔n

m

i=cut+1

𝐇DOF
n )

(5.24) 

Collecting the 
∂∆𝐔n

∂ρe
 and 

∂𝐔cut

∂ρe
 terms: 

dL

dρe 
=
∂g0
∂ρe

+∑(
∂g0
∂𝐔res

+ 𝐊n𝛌n
1)
∂∆𝐔n
∂ρe

𝐇DOF
n

cut

n=1

+ (
∂g0
∂𝐔cut

+ 𝐊remain𝛌)
∂𝐔cut
∂ρe

+∑(𝛌n
1T
∂𝐊n
∂ρe

∆𝐔n − 𝛌n
1T
∂∆𝐊n𝐔n

ihs

∂ρe
)

m

n=1

+𝛌T
∂𝐊remain
∂ρe

𝐔cut − 𝛌
T
∂𝐊cutoff
∂ρe

∑ ∆𝐔n

m

n=cut+1

𝐇DOF
n + ∑ (

∂g0
∂𝐔res

− 𝛌T𝐊cutoff + 𝛌n
1T𝐊n)

∂∆𝐔n
∂ρe

𝐇DOF
n

m

n=cut+1

(5.25) 

Then solving the following adjoint equations to obtain the 𝛌 and 𝛌n
1  (n = 1:m): 

∂g0
∂𝐔cut

+ 𝐊remain𝛌 = 0

∂g0
∂𝐔res

+ 𝐊n𝛌n
1 = 0    n = 1: cut

∂g0
∂𝐔res

− 𝛌T𝐊cutoff + 𝛌n
1T𝐊n = 0     n = cut + 1:m

(5.26) 

Then, recalling the derivation introduced in former content, the gradient of objective 
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function could be expressed as: 

dg0
dρe 

=
∂g0
∂ρe

+∑(𝛌n
1T
∂𝐊n
∂ρe

∆𝐔n − 𝛌n
1T
∂∆𝐊n𝐔n

ihs

∂ρe
)𝐇DOF

n

m

n=1

+ 𝛌T
∂𝐊remain
∂ρe

𝐔cut − 𝛌
T
∂𝐊cutoff
∂ρe

∑ ∆𝐔n

m

n=cut+1

𝐇DOF
n (5.27) 

5.3.2. Topology optimization for LPBF framework 

In this subsection, the topology optimization for LPBF framework is introduced, and the 

flowchart for the LPBF oriented topology optimization is shown in Figure 58. It can be 

seen from Figure 58 that the LPBF process simulation is considered into the loop of 

topology optimization. 

 

Figure 58. The flowchart for the topology optimization for LPBF framework. 

Although topology optimization for addressing defects caused by residual 

stress/deformation has received some attention, effective solvers to simulate the 

manufacturing process (even though adopting the simplified ISM model) are still lacking. 

For the works addressing the residual stress or distortion constraint, when extended to 
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practical 3D problems, it will make the iterative finite element analysis for topology 

optimization computationally unaffordable. Therefore, the current mainstream-related 

work is still dominated by two-dimensional or three-dimensional coarse grid problems. In 

order to obtain optimized structures with detailed features to meet the industrial needs in 

AM field, a high-resolution design domain is required. 

5.4. Summary 

In this chapter, a fast LPBF process simulation solver based on ISM is proposed. This 

solver is capable of predicting the mechanical response resulting from the LPBF metal AM 

process, eliminating the need for complex multi-physics coupling calculations. By 

ensuring high accuracy while significantly reducing computational costs, this solver 

efficiently integrates with iterative topology optimization algorithms, enabling effective 

control over the manufacturing quality of the designed components. 

In the subsequent chapter, building upon this solver, a series of topology optimization 

algorithms will be proposed to optimize the geometry of the workpiece and laser scanning 

path. This optimization aims to minimize defect responses and other issues associated with 

the LPBF process while ensuring the performance of the components. 
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Chapter 6. Quality control topology optimization for LPBF metal AM 

Recalling the content in chapter 2, each AM process introduces various process defects. In 

the previous chapter, I proposed a fast LPBF process simulation solver to accurately 

predict the mechanical defect response at the part scale. Additionally, I developed a 

mathematical model and algorithm framework that integrates this solver with topology 

optimization techniques. Therefore, in this chapter, I will focus on controlling the defect 

response in LPBF metal AM based on this framework. 

Regarding the quality control of LPBF metal AM, this work primarily addresses residual 

stresses and residual distortion caused by the forming process. It is known that residual 

stresses or distortion in fabricated parts are influenced by factors such as the geometric 

shape of the parts themselves, laser scanning paths, and support structure geometry. 

Therefore, this chapter will consist of three works. 

Firstly, controlling the maximum residual stress in the formed parts will be addressed by 

proposing a topology optimization algorithm that considers multiple manufacturing 

constraints. Secondly, an optimized scanning path algorithm will be introduced to control 

the maximum residual distortion of the formed parts by optimizing the printing direction 

for each laser scanning pattern. Finally, a support structure design perspective will be taken 

to reduce the residual distortion by optimizing the topology geometry of the support 

structures. 

6.1. Maximum residual stress control in self-support structure design 

Based on the fast LPBF process simulation solver and stress control method mentioned in 

former paragraph, a new algorithm coupled with the AM oriented topology optimization 

and the fast simulation solver are proposed to realize the residual stress control, which will 

be introduced in this subsection. This work proposes a topology optimization method to 
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design self-support structures for metal AM. Constraining the process-induced residual 

stresses is considered with this method to avoid part failures of cracking, delamination, or 

warpage. Specifically, the ISM-based FEM model mentioned in former subsections is 

adopted to simulate the mechanical behavior during the LPBF process. Then, the residual 

stress constrained self-support topology optimization problem is formulated. Finally, the 

proposed method is applied to a 2D benchmark example to demonstrate the effectiveness 

of residual stress and distortion control. 

6.1.1. Optimization solution 

6.1.1.1. Material state interpolation 

Similar to thermal strain loading, inherent strain is also a type of design-dependent loading. 

The usual SIMP interpolation scheme presents numerical difficulties in the presence of 

design-dependent loading. Both the element stiffness and design-dependent load are 

insensitive to the varying density when the density is close to zero, and the penalizations 

are larger than 1, leading to non-trivialness of totally eliminating the grey elements. This 

phenomenon has been deeply investigated and explained in [242]. The RAMP 

interpolation scheme avoids the above issue and therefore is employed as: 

ηe
E =

ρe
1 + RE(1 − ρe)

(6.1) 

ηe
β
=

ρe
1 + Rβ(1 − ρe)

(6.2) 

After solving Eq. (5.13) to determine the displacements for each printing stage, the residual 

stress tensor for element e could be computed by: 

𝛔e = ηe
S∑[ϑe

n𝐃0(𝐁∆𝐔e
n − δe

n𝛜ihs)]

m

n=1

(6.3) 

Where ηe
S (ηe

S = 𝜉PS) is a SIMP-like interpolation for the stress level to remove the stress 
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singularity phenomena, and PS is the relaxation parameter for stress and is usually set as 

0.5. The von Mises failure criteria is adopted in this work, and the effective stress of the 

element centroid could be expressed as: 

σVm,e = (�̅�e
T𝐕�̅�e)

1
2 (6.4) 

6.1.1.2. Model formulation 

For the optimization problem, the objective function is to minimize the structural 

compliance subject to the maximum residual stress constraint and mass fraction constraint. 

The mathematical formulation of this optimization problem can be expressed as follows: 

{
 
 
 

 
 
 

find: 𝛍

minimize: C = 𝐔c
T𝐊c𝐔c

subject to: 

{
 
 

 
 
𝐊n∆𝐔n = ∆𝐊n𝐔n

ihs (n = 1,2, … ,m) 
M

M̅
≤ Mf

�̂�PN ≤ 1
μmin ≤ ∀μe ≤ 1

(6.5) 

Where 𝐔c is the nodal displacement field due to the external mechanical load, 𝐊c is the 

structure global stiffness matrix, M = ∑ (𝜉e ∙ m0)
Nel
e=1  is the total mass of the structure, m0 

is the solid elemental mass, and Mf is the mass fraction defined by users. μmin is set as 

1E − 9, which could be used to avoid matrix singularity during the layer-by-layer AM 

analysis and static mechanical analysis. �̂�PN indicates the maximum residual distortion 

through the aggregation method. 

6.1.1.3. Sensitivity analysis 

The MMA will be adopted to solve the optimization problem, which requires first-order 

sensitivity information of the constraints and the objective function. Special care should 

be taken to treat the residual stress constraint properly. The gradients of σ̂PN are derived 

following the chain rule, as: 
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∂σ̂PN
∂μj

=
∂σ̂PN
∂𝜉j

∂𝜉j

∂μ̅j

∂μ̅j

∂μ̃j

∂μ̃j

∂μj
(6.6) 

Where 𝜉j  is the physical density field after three layers of filters. 
∂𝜉j

∂μ̅j
 , 
∂μ̅j

∂μ̃j
 , and 

∂μ̃j

∂μj
 

represent the standard modifications to the sensitivity due to AM filter, Heaviside 

projection filter, and PDE smoothing filter, respectively. The detailed expressions could be 

found in [224][296][295]. 

For the term 
∂σ̂PN

∂𝜉j
, we could have: 

∂σ̂PN
∂𝜉j

=∑[
∂σ̂PN
∂σVm,e

(
∂σVm,e
∂𝛔e

)
T ∂𝛔e
∂𝜉j

]

Nel

e=1

(6.7) 

σ̂PN with respect to the element-wise von Mises stress, we arrive: 

∂σ̂PN
∂σVm,e

= c ∙
1

P
∙ [∑(

σVm,e
σY

)
P

Nel

e=1

]

(
1
P
−1)

∙ P ∙ (
σVm,e
σY

)
(P−1)

∙
1

σY
(6.8) 

σY  is the yield stress value. The derivative of the element-wise von Mises stress with 

respect to its stress components can be expressed as: 

∂σVm,e
∂𝛔e

= σVm,e
−1 ∙ 𝛔e

T ∙ 𝐕 (6.9) 

∂𝛔e
∂𝜉j

=
∂[ηe

S∑ ϑe
n𝐃0(𝐁∆𝐔e

n − δe
n𝛜ihs)m

n=1 ]

∂𝜉j
(6.10) 

∂𝛔e
∂𝜉j

=∑(ϑe
n
∂ηe

S

∂𝜉j
𝐃0𝐁∆𝐔e

n + ϑe
nηe

S𝐃0𝐁
∂∆𝐔e

n

∂𝜉j
− δe

nϑe
n
∂ηe

S

∂𝜉j
𝐃0𝛜

ihs)

m

n=1

(6.11) 

and, 

∂σ̂PN
∂𝜉j

=∑[
∂σ̂PN
∂σVm,e

(
∂σVm,e
∂𝛔e

)
T

∑(ϑe
n
∂ηe

S

∂𝜉j
𝐃0𝐁∆𝐔e

n + ϑe
nηe

S𝐃0𝐁
∂∆𝐔e

n

∂𝜉j
− δe

nϑe
n
∂ηe

S

∂𝜉j
𝐃0𝛜

ihs)

m

n=1

]

Nel

e=1

(6.12) 
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Note that the 
∂ηe

S

∂𝜉j
 term is nonzero only for e = j. Thus, the summation for some terms can 

be ignored, and the equation Eq. (6.12) can be reduced as: 

∂σ̂PN
∂𝜉j

=∑[
∂σ̂PN
∂σVm,j

(
∂σVm,j

∂𝛔e
)

T

(ϑj
n
∂ηj

S

∂𝜉j
𝐃0𝐁∆𝐔e

n − δj
nϑj

n
∂ηj

S

∂𝜉j
𝐃0𝛜

ihs)]

m

n=1

+

∑[∑
∂σ̂PN
∂σVm,e

(
∂σVm,e
∂𝛔e

)
T

(ϑe
nηe

S𝐃0𝐁
∂∆𝐔e

n

∂𝜉j
)

Nel

e=1

]

m

n=1

(6.13) 

The adjoint method will be adopted to address the unknown term 
∂∆𝐔e

n

∂𝜉j
  in Eq. (6.13). 

Specifically, for the ith layer in the additive manufacturing process, we have: 𝐊n∆𝐔n =

∆𝐊n𝐔n
ihs. Taking derivatives of both sides of the balance equation yields: 

∂𝐊n
∂𝜉j

∆𝐔n + 𝐊n
∂∆𝐔n
∂𝜉j

=
∂∆𝐊n𝐔n

ihs

∂𝜉j
(6.18) 

Then, we could arrive at the following expression: 

∂∆𝐔e
n

∂𝜉j
= 𝐋e(𝐊n)

−1 (
∂∆𝐊n𝐔n

ihs

∂𝜉j
−
∂𝐊n
∂𝜉j

∆𝐔n) (6.19) 

Substituting the preceding relation into Eq. (6.17) and introducing the adjoint variable 𝛌n 

yields: 

∂σ̂PN
∂𝜉j

=∑[
∂σ̂PN
∂σVm,e

(
∂σVm,j

∂𝛔j
)

T

(ϑj
n
∂ηj

S

∂ξj
𝐃0𝐁∆𝐔e

n − δj
nϑj

n
∂ηj

S

∂ξj
𝐃0𝛜

ihs)]

m

n=1

+∑𝛌n
T (
∂∆𝐊n𝐔n

ihs

∂𝜉j
−
∂𝐊n
∂𝜉j

∆𝐔n)

m

n=1

(6.20) 

where the solution of the adjoint problem determines the adjoint variable: 

𝐊n𝛌n =∑[𝛝e
n𝛈e

S
∂σ̂PN
∂σVm,e

(
∂σVm,e
∂σe

)
T

𝐃0𝐁𝐋e]

Nel

e=1

(6.21) 

6.1.2. Numerical example 

6.1.2.1. The MBB beam structure design 

This section validates the proposed method with a classical 2-D benchmark case: the MBB 
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beam. The 'Rule 45 degree', indicating the maximum self-support overhang angle of 45 

degrees, is adopted in this research. For all numerical examples, 4-node quadrilateral 

elements are adopted. The smoothing filter radius for topology variables is twice the 

typical finite element size. The material adopted in this research is Ti6Al4V, Young's 

modulus of 110 GPa, Poisson's ratio of 0.3, and yield strength of σY = 1160 MPa. In this 

research, the inherent strain value is set as ϵx
ihs = ϵy

ihs = −0.002. The objective function 

is to minimize the structure compliance under a mass fraction constraint of 50%.  

 

Figure 59. Illustration of the design domain for the MBB beam. 

The MBB benchmark example, as shown in Figure 59, whose structural sizes are defined 

with L = 240mm  and H = 40mm . The building direction is assumed bottom-up. The 

fixed design domain in Figure 60 is divided into m = 80  layers with a constant layer 

thickness of 0.5mm in the building direction. 

 

Figure 60. The boundary condition for the MBB beam. 

Because of the symmetry condition, only one-half of the structure will be optimized; see 

Figure 59. The MBB structure is loaded with a concentrated vertical force (F = 800N) at 

the up-left corner, the bottom-right corner is supported on a roller, and the symmetry 
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boundary condition is applied to the left edge. A mesh with 240 × 80 first-order square 

elements of size 0.5mm× 0.5mm is employed to discretize the design space. 

 

 

Figure 61. The MBB beam results: (top) with self-support but without residual stress 

constraint; (bellow) with self-support and residual stress constraints. 

Figure 61 displays the topology-optimized solutions found when the build direction is 

‘bottom-up’, and different sets of constraints are applied for these solutions. The final 

objective values of the results in Figure 61 are 1062.235 J and 1081.113 J, respectively. 

 

Figure 62. The residual stress distribution of the MBB results before cut-off from the 

platen. 

Figure 62 presents the simulation results containing the total distortion and residual stress 

distribution for the two as-fabricated parts. The maximum stresses are observed at the 

lower corners for both results. For the design in Figure 61 (a), the maximum stress 

amplitude is 1536.376 MPa, which exceeds the allowable material stress limit. This will 
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cause delamination of the printed beam from the substrate. Then, for the design in Figure 

61 (b), the maximum stress level is reduced to 1154.581 MPa (satisfy the stress constraint) 

through an optimized material distribution. Additionally, as observed from Figure 63, the 

residual stress-constrained design exhibits minor cut-off deformation (i.e., the maximum 

distortion is umax= 0.62 mm) compared to non-constrained design, where umax= 0.87 mm. 

 
Figure 63. The residual distortion distribution of the MBB results after cut-off from 

the platen. 

6.1.2.2. The minimum length control for the results 

Filter radius Eroded version Intermediate (final) version 

 

rmin

= 0.67mm 

  

 

rmin

= 1.33mm 
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rmin

= 2.00mm 

  

 

rmin

= 2.67mm 

  

Table 4. The obtained design with different length control parameters. 

The first MBB benchmark example shown in Figure 61 is investigated again, but a finer 

mesh with 360 × 120  first order square elements of size 0.33mm × 0.33mm  is 

employed to discretize the design space. In this case, four different smoothed filter radii 

are adopted in this case, which are 0.667mm, 1.333mm, 2.000mm, and 2.667mm, 

respectively. The threshold value for the erosion projection is set as 0.65. 

 

Figure 64. The residual stress distribution for the results with different length control 

parameters. 

Table 4 lists the eroded and Intermediate designs with different length control sizes. Their 

residual stress distributions are plotted in Figure 64. As expected, the eroded design 

consists of solid features with small thicknesses and the intermediate design exhibits 
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features with larger thicknesses. In all the cases, the checkerboard pattern and the length 

control could be effectively avoided and achieved. As indicated by the optimization data 

concluded in Figure 65, as the density filter radius (length control size) increases, the 

overall stiffness of the structure gradually decreases under the premise that the maximum 

stress constraint remains unchanged.  

 

Figure 65. The mechanical performance of the results shown in 0. 

6.1.3. Conclusion for this work 

A topology optimization method to design self-support structures with residual stress 

constraint is proposed in this paper. A couple of conclusions can be drawn as follows: (1) 

A compliance-minimization problem considering the maximum volume fraction and 

residual stress constraints is formulated. Besides, to ensure the manufacturability of the 

structures, all overhang boundaries are designed with an inclination angle greater than the 

minimum allowable self-supporting angle (45 degrees); (2) To facilitate the formulation 

of the topology optimization problem involving the inherent strain load, the concept of 

ILC is introduced in this study as an inherent property of the material; (3) Using the RAMP 

interpolation and a corrected aggregation technique for elemental stresses, the proposed 

method is shown to effectively enforce the maximum residual stress and volume fraction 
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limits on benchmark numerical examples; (4) Effect of different RAMP parameters for the 

interpolation of ILC is discussed. To obtain an optimal result with a stable converging 

process, Rβ = RE = 8  is suggested; (5) An interesting finding is that even though no 

direct relationship exists between the maximum residual stress and maximum residual 

distortion; however, constraining the maximum residual stress always leads to a reduced 

maximum residual distortion; (6) The minimum length control for the proposed method is 

investigated by us. Under the same residual stress constraint, as the minimum length size 

increases, the obtained structural performance will become worse. 

In our forthcoming work, the proposed method focused on large-scale 3D case under more 

mature parallel framework will be concentrated, which is challenging since the huge 

computation and RAM cost for the FEM solver limit us for solving larger industrial-level 

problems. Additionally, the adopted parallel based ISM will be further modified to make 

the performance of obtained complex structure more in line with the actual experimental 

results. 

6.2. An island scanning optimization method for given geometry parts. 

It is widely acknowledged that the residual stress distribution for a given part is closely 

related to the laser scanning path pattern and its support structure, as shown by both 

experiments and numerical tests [250][251][252]. In ISM, differently oriented inherent 

strains could be activated by different scanning paths in each layer, and thus affect the 

printing quality of part. The influence on thermal residual stress or distortion of different 

scanning orientations have been widely explored by many researchers. In this research, a 

systemic metal AM oriented island-type scanning pattern optimization method, which 

could reduce the maximum distortion during the manufacturing process, is proposed. A 

non-constraint optimization problem is formulated to find the optimal island scanning path 
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in each print layer. The stability-based aggregation method is adopted to explicitly describe 

the maximum distortion. Figure 66 shows the methodology of this work. 

 

Figure 66. The methodology of the proposed work. 

6.2.1. Non-constraint optimization problem formulation 

6.2.1.1. Local-global mapping 

Note that there is a mapping relationship between the island-wise orientation angle 𝛠 and 

element-wise orientation angle 𝛉: 

𝛠 = 𝐌𝛉 (6.22) 

where the 𝐌  is 0 − 1  mapping matrix with Nel × Nd  dimensions, Nel  is the total 

number of finite elements in this model, and Nd is the total number of design variables 

(the number of scanning island Figure 67).  

 

Figure 67. Illustration of rotated inherent strains in different print layers. 

6.2.1.2. Optimization model formulation 

For the optimization problem, the objective function is formulated to minimize the 



123 

 

maximum structural distortion under the inherent strain load. The mathematical 

formulation of this optimization problem can be expressed as follows: 

{
 

 
find: 𝛠 = {ϱk}  (k = 1,2,3, … , Nd)

minimize: Umax(𝛠)

subject to: {
𝐊n∆𝐔n = ∆𝐊n𝐔n

ihs (n = 1,2, … ,m)
0° ≤ ∀ϱ ≤ 180°

(6.23) 

Umax indicates the maximum residual distortion, which can be restated in terms of a single 

differentiable global quantity through the aggregation method. The P-norm aggregation 

function is adopted in this research, and the maximum displacement could be 

approximately expressed as: 

Umax ≈ U̅PN = c ∙ UPN = c ∙ (∑(Ures,i)
P

Nod

i=1

)

1
P

(6.24) 

U̅PN  is the corrected global P-norm measure, which is the same with the aggregation 

expression mentioned in subsection 3.1.2. Nod is the node number involved in the mesh. 

6.2.1.3. Sensitivity analysis 

The MMA will be adopted to solve the optimization problem, which requires first order 

sensitivity information of the objective function. The corresponding Lagrangian function 

for the objective could be written as: 

L = U̅PN +∑𝛌n
T(𝐊n∆𝐔n − ∆𝐊n𝐔n

ihs)

m

n=1

𝐇DOF
n (6.25) 

The gradient of the L respect to the 𝛠 is: 

𝜕L

𝜕𝛠
=
𝜕L

𝜕𝛉
𝐌 (6.26) 

𝜕L

𝜕𝛉
=
∂U̅PN
∂𝐔res

(∑
𝜕∆𝐔n
𝜕𝛉

𝐇DOF
n

m

n=1

) +∑𝛌n
T (𝐊n

𝜕∆𝐔n
𝜕𝛉

−
𝜕∆𝐊n𝐔n

ihs

𝜕𝛉
)𝐇DOF

n

m

n=1

(6.27) 
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Collecting the 
𝜕∆𝐔n

𝜕𝛉
 term: 

𝜕L

𝜕𝛉
=∑(

∂U̅PN
∂𝐔res

+ 𝛌n
T𝐊n)

𝜕∆𝐔n
𝜕𝛉

m

n=1

𝐇DOF
n −∑𝛌n

T
𝜕∆𝐊n𝐔n

ihs

𝜕𝛉
𝐇DOF
n

m

n=1

(6.28) 

Then solving the following adjoint equations to obtain the 𝛌n (n = 1:m): 

∂U̅PN
∂𝐔res

+ 𝐊n𝛌n = 0 (6.29) 

where 

∂U̅PN
∂Ures,i

= c ∙
1

P
∙ [∑(Ures,i)

P
Nod

i=1

]

(
1
P
−1)

∙ P ∙ (Ures,i)
(P−1) (6.30) 

∂∆𝐊n𝐔n
ihs

∂𝛉
=∑(ϑe

n𝐋e
T∫𝐁T𝐃0

∂𝛜ihs

∂θe
dΩe)

Nel

e=1

(6.31) 

The final expression is: 

𝜕L

𝜕𝛠
= −(∑𝛌n

T
𝜕∆𝐊n𝐔n

ihs

𝜕𝛉
𝐇DOF
n

m

n=1

)𝐌 (6.32) 

6.2.1.4. Numerical implementation 

The flowchart of the proposed optimization approach is illustrated in Figure 68. In the first 

stage, the STL model of the printed part will be constructed by commercial software. In 

the next stage, a voxel-based methodology is employed to generate efficient structured 

hexahedral elements. Then, the initialization of design and optimization parameters will 

be conducted. After initialization, the ISM based layer-by-layer finite element model is 

constructed to simulate the structural physical behavior during the PBF process. The 

sensitivity analysis introduced in section 6.2.1.3 will be performed in the next stage. 

Subsequently, MMA optimizer will be adopted to update the design variables. The 

optimization will terminate when the objective value cannot be further improved. Namely, 
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the difference of the objective values within three successive iterations is less than 0.001, 

and the constraints are satisfied, or the maximum iterative number (400) is exceeded. 

 

Figure 68. The process of the proposed method. 

6.2.2. Numerical example 

The numerical example is a fan blade with complex geometry used in mining machinery 

industry. For the outer section of the model, the length and width are 100 mm. The height 

of the entire component is 60 mm, indicating around 2160 thin layers in the large part. The 

whole model has been meshed by 6e5 first order Hexahedron elements of size 

1 ×  1 × 1 mm, and its voxelized mesh model is shown in Figure 69 (a). The material 

properties are the same with the case shown in [Paper 3] section 3. 

Firstly, this part is simulated by all scanning islands with the same scanning orientation 

180° . Figure 69 (b) presents the simulation result containing the part-scale distortion 
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distribution for the as-fabricated part. Larger distortions are concentrated at the outer edges 

of some blades, and the maximum distortion is 3.15 mm. 

       

       (a)                     (b)                       (c) 

Figure 69. The voxelized model for the fan blade (a); The part-scale distortion 

distribution for the part with default scanning path (b); The part-scale distortion 

distribution for the part with optimized scanning path (c). 

Figure 69 (c) presents the part-scale distortion distribution for the as-fabricated part with 

optimized scanning path and scanning paths for different layers are shown in Figure 70. 

Recalling that in our optimization problem formulation, the objective is to reduce the 

maximum part-scale distortion. Therefore, more even residual distortion distribution could 

be observed in the as-fabricated part, although the higher distortions are still distributed at 

outer edges of blades. Specifically, the part printed by optimized scanning path exhibits 

apparently smaller deformation (i.e., the maximum distortion is  umax = 1.83 mm ) 

compared to the part in Figure 69 (b), umax = 3.15 mm. 
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Figure 70. The distortions for the part and optimized scanning path: layer 20, layer 30, 

layer 40, and layer 50. 

The convergence history curve for the optimization process is proposed in Figure 71. As 

the number of iterations increases, the objective value (blue line) is reduced and finally 

approached to a fixed value. Again, as we mentioned before, this optimization problem is 

non-constrained and the design variables are independent with each other, that is the reason 

why a smooth and sufficient convergence could be obtained within only 24 iterations. 

Additionally, the difference between the aggregated nodal maximum displacement value 

and real nodal maximum displacement is also plotted in Figure 71. The difference value is 

getting smaller and smaller with the number of iterations increasing, and it finally 

stabilized at 1e-8. 

 

Figure 71. The convergence history plot. 

6.2.3. Conclusion for this work 

The proposed method could successfully reduce the distortion induced by the metal AM 

process through optimizing the laser scanning path. A typical AM oriented part is studied 

to examine the performance of this method. We compare the part-scale residual distortion 

distribution between the parts printed by different scanning path strategy. It is found that 
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the scanning path plays an important role for distortion minimization, and the part printed 

by the optimized scanning path exhibits better performances (smaller maximum distortion). 

Besides, a fast and stable convergence curve (Figure 71) also indicates the efficiency of 

the proposed method. Thus, this method is possible to ensure the manufacturability of AM 

builds. 

6.3. Support structure topology optimization for LPBF metal AM 

During the LPBF process, the support structures are manufactured in a consistent manner 

of the part and play a vital role in successfully printing out the component, since it gives 

support to the overhang features and transfer heats to the printing platform. However, the 

manufacturing cost is increased due to the additional printing time and metal powder 

consumption from introducing the extra support structure. Therefore, it is necessary to 

design cost-effective support structures that reduce both the manufacturing time and 

powder waste. In this subsection, a topology optimization method is proposed for the 

support structure design of LPBF metal parts to effectively prevent part failures caused by 

residual distortion.  

A topology optimization model is constructed to design support structures for a given 

functional prototype by adopting a series of density filter [295], projection [296], and AM 

filter [223][224]. Figure 72 shows the procedures of filtering and projection. 

 

Figure 72. Workflow of topology optimization for AM support structures with three 

filters. 

Firstly, the density design field 𝛍 is smoothed by a PDE filter with R1 to have �̃� so that 
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checkerboard patterns can be avoided. Then, the smoothed density field �̃�  is then 

projected with the sharpness factor β1  and threshold factor α1  to obtain a clear phase 

�̅̃� = 𝛗. The second AM filter removes overhang structures and ensures the self-support 

property, obtaining the phase �̂�. The optimized result can be self-supported under a 45◦ 

overhang angle constraint, provided that a mesh with uniform square elements is used. 

Eventually, the non-design domain in �̂� is artificially set as 1 to maintain the prototype 

geometry. 

6.3.1. AM constraint for support structure design 

Multiple AM issues are considered, including the overhang issue, minimum length size 

control, and support structure easy removal. Among them, the application of minimum 

length control uses the same method as the work in subsection xx. Therefore, in this section, 

the minimum length control will not be described much, but the two newly introduced 

manufacturing constraints for the support structure design, the overhang constraint, and 

the support structure easy removal, will be introduced in detail. 

6.3.1.1. Overhang constraint 

The purpose of introducing the overhang constraint is to ensure that all overhang geometric 

features in the part to be supported can be effectively supported by the support structure. 

 

Figure 73. A given part needs a support domain (marked in deep red). 
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At the beginning of the optimization process, the AM filter will be ideally applied to the 

prototype without having any supports; the need-support region Ωsup of the prototype will 

be obtained as shown in Figure 73 in deep red color. Then, a regional volume constraint is 

given as follows: 

Gsup ≤ εr (6.33) 

where εr is a small value to ensure the convergence; and Gsup is an indicator function to 

calculate the material volume of the non-supported overhang regions in Ωsup as: 

Gsup = ∑ (1 − φ̂e) ∙ V0
e∈Ωsup

(6.34) 

where V0 is the volume fraction for the single element. 

6.3.1.2. Easy removal constraint 

To ensure that the support material can be removed easily. The simplest way is herein to 

ensure that the connection region between the support structure and its surroundings 

prototype geometry is porous. For a given prototype geometry Figure 74, a connection 

region Ωcon  around the prototype and the baseplate with the thickness tcon  inside the 

design domain is defined first. Then, a local volume constraint proposed by Wu et al. [45] 

is applied in Ωcon  to restrict the inside material volume fraction, hence resulting in a 

porous structural pattern in the Ωcon. 

 

Figure 74. The connection domain (marked in green) of a given part. 
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For each element e ∈ Ωcon , the local volume fraction Vfe  in the neighborhood is 

calculated by: 

Vfe =
∑ φ̂ii∈Ωe

#(Ωe)
(6.35) 

where Ωe = {i: ∥ xe − xi ∥≤ R2, e ∈ Ωcon} is the set of elements nearby the element e 

within the distance R2 , and #(∗)  means 'the total number of'. Then the differentiable 

maximum local volume constraint could be formulated as follows: 

Geasy = (
1

#(Ωcon)
∑ (Vfe)

P

#(Ωcon)

e∈Ωcon

)

1
P

≤ Ml
(6.36) 

Geasy is the global P-norm measure; P is the aggregation parameter and P =  16; and Ml 

is the local volume fraction. 

6.3.2. Optimization Solution 

6.3.2.1. Model formulation 

For the optimization problem, the objective function is to minimize the structural gravity 

compliance and the maximum residual distortion subject to the volume fraction constraint, 

support constraints, and easy removal constraint. The scale of the structural gravity 

compliance value C  and measured maximum residual distortion value U̅PN  is 

significantly affected by the fixed design domain scale and boundary condition settings. 

Therefore, a normalized objective function is proposed with the following: 

J = γ ∙ U̅PN + (1 − γ) ∙ C (6.37) 

γ is the normalization factor which could make the values of U̅PN and C at the same order 

of magnitude. For U̅PN is the approximation of Umax, which could be expressed as: 
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Umax ≈ UPN = (∑(Um,i)
P

Nod

i=1

)

1
P

(6.38) 

UPN is the global P-norm measure, Um,i is the printed distortion for the ith node, P is the 

aggregation parameter, and Nod  is the total number of nodes. In conclusion, the 

mathematical formulation of this optimization problem can be expressed as follows: 

{
 
 
 
 

 
 
 
 

find: 𝛍

minimize: J(𝛍)

subject to: 

{
 
 

 
 
𝐊n∆𝐔n = ∆𝐊n𝐔n

ihs (n = 1,2,… ,m)
𝐊𝐔 = 𝐓
M ≤ M̅
Gsup ≤ εr
Geasy ≤ Ml

μmin ≤ ∀μe ≤ 1

(6.39) 

where m0 is the unit mass of the eth element in case of being filled with solid material. 

M denotes the design domain mass containing the solid material. 𝐊, 𝐔, and 𝐓 are the 

global stiffness matrix, displacement vector, and gravity force vector, respectively. μmin 

is set as 1e − 9, which could be used to avoid matrix singularity.  

6.3.2.2. Sensitivity analysis 

The MMA will be adopted to solve the optimization problem, which requires first-order 

sensitivity information of the constraints and the objective function. Hence, details of the 

sensitivity analysis will be presented in this sub-section. 

∂Y

∂μ
=
∂Y

∂φ̂
∙
∂φ̂

∂φ
∙
∂φ

∂μ̃
∙
∂μ̃

∂μ
(6.40) 

where Y indicates the objective or constraint functions (J, M, Gsup, or Geasy); 
∂φ̂

∂φ
, 
∂φ

∂μ̃
, and 

∂μ̃

∂μ
  represent the standard modifications to the sensitivity due to AM filter, Heaviside 

projection filter, and PDE filter, respectively. The detailed expressions can be found in 

[223][224][296][295]. 
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For the first objective, its Lagrange multiplier could be written as: 

L1 = C + 𝛌1
T(𝐊𝐔 − 𝐓) (6.41) 

The gradient of the L1 respect to the φ̂e is: 

∂L1
∂φ̂e

=
∂𝐓T

∂φ̂e
𝐔 + (𝐓T + 𝛌1

T𝐊)
∂𝐔

∂φ̂e
+ 𝛌1

T
∂𝐊

∂φ̂e
𝐔 − 𝛌1

T
∂𝐓

∂φ̂e
(6.42) 

collecting the 
∂𝐔

∂φ̂e
 term and solving the adjoint equation 𝐓T + 𝛌1

T𝐊, then we could arrive: 

∂L1
∂φ̂e

= 2
∂𝐓T

∂φ̂e
𝐔 − 𝐔T

∂𝐊

∂φ̂e
𝐔 (6.43) 

The derivation of the terms 
∂𝐓T

∂φ̂e
  and 

∂𝐊

∂φ̂e
  are the same with conventional design-

dependent loading stiffness-based problems and thus omitted in this paper.  

For the second objective, its Lagrange multiplier could be written as: 

L2 = U̅PN +∑𝛌2
nT(𝐊n∆𝐔n ∙ 𝐇DOF

n − ∆𝐊n𝐔n
ihs ∙ 𝐇DOF

n )

m

n=1

(6.44) 

The gradient of the L2 respect to the φ̂e is: 

∂L2
∂φ̂e

=
∂U̅PN
∂φ̂e

+∑(𝛌2
nT (

∂𝐊n
∂φ̂e

∆𝐔n ∙ 𝐇DOF
n ) + 𝛌2

nT (𝐊n
∂∆𝐔n
∂φ̂e

∙ 𝐇DOF
n ) − 𝛌2

nT (
∂∆𝐊n𝐔n

ihs

∂φ̂e
∙ 𝐇DOF

n ))

m

n=1

(6.45) 

For the 
∂U̅PN

∂φ̂e
 term: 

∂U̅PN
∂φ̂e

=
∂U̅PN
∂UPN

∂UPN
∂𝐔m

T
∂𝐔m
∂φ̂e

=
∂U̅PN
∂UPN

(

 [∑(Um,i)
P

Nod

i=1

]

(
1
P
−1)

(𝐔m)
(P−1)

)

 

T

∂𝐔m
∂φ̂e

(6.46) 

For the term 
∂𝐔m

∂φ̂e
, we could arrive: 

∂𝐔m
∂φ̂e

=∑(
∂∆𝐔n
∂φ̂e

∙ 𝐇DOF
n )

m

n=1

(6.47) 
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Then collecting the 
∂∆𝐔n

∂φ̂e
 term: 

∂L2
∂φ̂e

=∑(
∂U̅PN
∂UPN

∂UPN
∂𝐔m

T

+ 𝛌2
nT𝐊n) (

∂∆𝐔n
∂φ̂e

∙ 𝐇DOF
n )

m

n=1

+∑(𝛌2
nT (

∂𝐊n
∂φ̂e

∆𝐔n ∙ 𝐇DOF
n ) − 𝛌2

nT (
∂∆𝐊n𝐔n

ihs

∂φ̂e
∙ 𝐇DOF

n ))

m

n=1

(6.48) 

Solving the following adjoint equation for each layer to obtain the 𝛌2
n: 

∂U̅PN
∂UPN

∂UPN
∂𝐔m

T

+ 𝛌2
nT𝐊n = 0, (6.49) 

then we could arrive: 

∂L2
∂φ̂e

=∑(𝛌2
nT (

∂𝐊n
∂φ̂e

∆𝐔n ∙ 𝐇DOF
n ) − 𝛌2

nT (
∂∆𝐊n𝐔n

ihs

∂φ̂e
∙ 𝐇DOF

n ))

m

n=1

(6.50) 

and for the term 
∂∆𝐊n𝐔n

ihs

∂φ̂e
: 

∂∆𝐊n𝐔n
ihs

∂φ̂e
=∑δe

n𝐋e
T
∂ηe

β

∂φ̂e
∫𝐁T𝐃0𝛆0 dΩe

Nel

e=1

(6.51) 

and 

∂𝐊n
∂φ̂e

=∑ϑe
n𝐋e

T
∂ηe

E

∂φ̂e
∫𝐁T𝐃0 𝐁dΩe 𝐋e

Nel

e=1

(6.52) 

The gradient of the mass constraint function (M) respect to the φ̂e is: 

∂M

∂φ̂e
=∑(

∂(φ̂i ∙ m0)

∂φ̂e
)

Nel

i=1

(6.53) 

The gradient of the support constraint function (Gsup) respect to the φ̂e is: 

∂Gsup

∂φ̂e
= − ∑ (

∂(φ̂i ∙ V0)

∂φ̂e
)

i∈ΩNS

(6.54) 

The gradient of the easy removal constraint function (Geasy) respect to the φ̂e is: 
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∂Gsup

∂φ̂e
=

1

#(Ωcon)
[ ∑ (Vfe)

P

#(Ωcon)

e∈Ωcon

]

(
1
P
−1)

(Vfe)
(P−1)

∂Vfe
∂φ̂e

(6.55) 

Where 
∂Vfe

∂φ̂e
 is the gradient of the elemental local volume fraction Vfe: 

∂Vfe
∂φ̂e

= ∑
1

#(Ωe)

∂φ̂i
∂φ̂e

i∈Ωe

(6.56) 

6.3.2.3. Numerical implementation 

 

Figure 75. The flow chart of the proposed method. 

The workflow of the topology optimization process is given in Figure 75, and the solution 

procedure is listed as follows:  

Step 1: Obtaining the printed structure CAD model, and then voxelizing the model. 

Step 2: Initializing the optimization parameters, the design domain, the non-design domain, 

the easy removal domain, and the metal additive manufacturing solver. 

Step 3: Performing the proposed support structure topology optimization method 

considering the support constraint, mass constraint, minimum length control, and easy 

removal constraint. 
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Step 4: Post-processing and verification. 

6.3.3. Numerical examples 

The proposed method is validated in this section with several 2D and 3D benchmark 

examples. For the 2D numerical examples, four-node first-order quadrilateral elements are 

adopted; for 3D cases, eight-node first-order quadrilateral elements are adopted. Without 

any special statement, the density filter radius for topology variables is set as three element 

sizes (2D) or nine element sizes (3D). The material adopted in this work is Ti6Al4V, which 

has Young's modulus of 110 GPa, and Poisson's ratio of 0.3. The inherent strain value is 

set as ϵx
ihs = −0.02 and ϵy

ihs = −0.02, which is derived based on our experiment results. 

For the MMA optimizer, the default move limit is 0.25. The optimization will terminate 

when the difference of the objective values within three successive iterations is less than 

0.001 or the maximum iterative number is exceeded (300 in 2D cases or 150 in 3D cases).  

6.3.3.1. Support structure design for a 2D wing structure 

 

Figure 76. Fixed design domain and boundary conditions for the wing structure. 

The first numerical example is to design the support structures for the wing structure 

shown in Figure 76, whose sizes are defined with L = 350mm and H = 130mm, and the 
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build direction is still bottom-up. 130  printing layers with a thickness of 1mm  are 

involved along the building direction. A mesh with 350 ×  130 square elements of size 

1 ×  1mm is employed to discretize the design space. The mass fraction constraint for the 

support structure has the upper limit of 40%, and the local volume fraction upper bound 

within Ωcon (Ml) is 60%. In this case, four different minimum length control sizes are 

considered, which are R = 3.0, R = 3.5, R = 4.0, and R = 4.5, respectively. For all the 

cases, the threshold value for the erosion projection is set as 0.65, and the weight 

coefficient 𝛾 is 0.01. 

       

(a)                                   (b) 

       

 (c)                                   (d) 

Figure 77. The optimal material distributions with different length scale control sizes: 

(a) R = 3.0; (b) R = 3.5; (c) R = 4.0; and (d) R = 4.5. 

Figure 77 shows the structures designed from the four different length scale control sizes, 

and their residual distortion distributions are plotted in Figure 78. In all the cases, the one-

node connection pattern/the minimum length control could be effectively 

avoided/achieved. 
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Figure 78. The residual distortion distributions with different length scale control 

sizes: (a) R = 3.0; (b) R = 3.5; (c) R = 4.0; and (d) R = 4.5. 

Figure 79 summarizes the structural compliances and maximum residual distortions 

corresponding to the four optimization results. As indicated by the data, as the density filter 

radius increases, the structural compliance increases while the maximum residual 

distortion decreases. 

 

Figure 79. The summarized mechanical performance data. 
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6.3.3.2. 3D support structure design for the teethed cantilever beam 

 

Figure 80. Fixed design domain and boundary conditions for the teeth cantilever. 

The second numerical example is to design of the 3D support structures for the teeth 

cantilever beam, and its structural sizes are defined in Figure 80. The whole design domain 

is discretized with 360 × 90 × 60  square elements. The build direction is bottom-up 

(along the positive z-axis), and the fixed design domain in Figure 80 is divided into m =

 30 layers. Each printing layer is lumped with three elements along the building direction 

with a thickness of 1 mm. The objective function is to minimize the structural gravity 

compliance and the maximum residual distortion under a mass fraction of 40%, and the 

local volume constraint for the connection domain is 60%. 
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Figure 81. The results for the optimized support structures from Gravity-OPT, 

GravityEasy-OPT, Metal-OPT, and MetalEasy-OPT. 

 

Figure 82. The convergence history for MetalEasy-OPT teeth cantilever beam case. 

Similarly, four optimization cases are considered in this subsection (MetalEasy-OPT, 

GravityEasy-OPT, Metal-OPT, and Gravity-OPT), and their optimized results and 
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convergence history for MetalEasy-OPT are provided in Figure 81 and Figure 82, 

respectively. Figure 83 plots the part-scale residual distortion distributions for these results. 

Observing the results provided in Figure 81 and Figure 83, optimized support structures 

from Metal-based optimization are slightly different from Gravity-based results. The 

support structures tend to form stronger support near the free ends of the cantilevers, and 

this is where the occurrence of maximum deflection is observed during printing. Similar 

to the results obtained from the 2D Cantilever case, MetalEasy-OPT exhibits the lowest 

residual distortion, and the structures with easily removed features show better residual 

distortion reduction. 

 

Figure 83. The residual distortion distribution for the optimized support structures 

from Gravity-OPT, GravityEasy-OPT, Metal-OPT, and MetalEasy-OPT. 

Generally, the specimen will be partially cut with wire electric discharge machines. Figure 

84 shows the top view of the required removal part for MetalEasy-OPT and Metal-OPT. 

The removal material in MetalEasy-OPT is obviously less than in Metal-OPT, which 

means that the support structure from MetalEasy-OPT could be quickly departed from the 

printed part. However, by this cutting, the residual stress is released, leading to large 



142 

 

deformation (residual warpage) of the specimens. Therefore, the residual warpage 

distortion after cutting for the four as-fabricated structures in Figure 81 is also provided in 

Figure 85. 

 

Figure 84. The removal material for the optimized support structure from MetalEasy-

OPT and Metal-OPT. 

Even though we have no specific control over residual warpage, the results obtained from 

metal-based optimization still exhibit better performance. Specifically, the largest 

maximum residual warpage (0.9973mm)  is observed in the structure obtained from 

Gravity-OPT. The presence of easy-to-remove features also helps reduce residual warpage, 

as the GravityEasy-OPT result shows less residual warpage (0.8072mm) than the Gravity-

OPT result. However, compared to the MetalEasy-OPT design and Metal-OPT design, 

their maximum residual warpages are very close (0.6123mm vs. 0.6178mm). 
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Figure 85. The residual warpage for the optimized support structures from Gravity-

OPT, GravityEasy-OPT, Metal-OPT, and MetalEasy-OPT. 

6.3.4. Conclusion 

We have presented a topology optimization method to design manufacturable support 

structures considering the residual distortion induced in the LPBF AM process and various 

AM issues (easy removal support structure, self-support structure, and minimum length 

control). The formulation has been developed as a multi-objective topology optimization 

problem considering gravity compliance and residual distortion objective functions. A 

couple of conclusions can be drawn as follows: (1) introducing easy-to-remove features 

can effectively reduce the residual distortion during the printing stage and residual 

warpage after cutting, but these features will more or less sacrifice the structural stiffness; 

(2) the minimum length control of structures will affect structural performance. When the 

minimum length size is larger, the objective function representing the part residual 

distortion in AM decreases, and the structural gravity compliance increases; (3) even 

though we do not have specific control over the residual warpage, the results obtained by 

the metal-based optimization still show better residual warpage performance; (4) an 

interesting finding is that even though no direct relationship exists between the maximum 

residual distortion and maximum residual warpage; however, constraining the maximum 

residual distortion always leads to a reduced maximum residual warpage. 

 



144 

 

Chapter 7. Large-scale concurrent island scanning pattern and topology 

optimization method for LPBF metal AM parts 

In this subsection, a numerical method for concurrent scanning pattern and topology 

optimization has been proposed to design LPBF processed large-scale parts. The method 

developed in this work could effectively meet the emerging needs in metal LPBF AM-

oriented design: the reduction in the part residual warpage and the high-resolution solution. 

Specifically, an ISM-based FEM model is presented to simulate the part-scale residual 

warpage induced by the LPBF process. Then, according to the fast simulation model, the 

scanning pattern and topology simultaneous optimization problem is formulated and 

accelerated by the PETSc parallel-computing framework. The proposed approach is 

applied to several 3D benchmark examples to demonstrate the effectiveness of stiffness 

improvement and residual warpage reduction.  

7.1. Problem formulation and solution 

DfAM optimizing the structural geometry and process parameters is an effective approach 

to eliminate the prone-to-warp features in LPBF manufacturing. Alternating the structural 

geometry changes the heat conduction paths and thus the thermal history and consequently, 

the residual stress distribution could vary significantly. It is reported that creating voids 

around the stress concentration spots can effectively reduce the maximum stress level. It 

is even more commonly known that the residual stress distribution is closely linked to the 

laser scanning path pattern from both experiments and numerical tests. Hence, conducting 

concurrent scanning pattern and structure optimization is concentrated in this subsection. 

7.1.1. Concurrent optimization model formulation 

For the optimization problem, the objective function is to minimize the structural 

compliance and the maximum residual warpage subject to the volume fraction constraint. 
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The scale of the structural compliance value C and measured maximum residual distortion 

value U̅PN  is significantly affected by the fixed design domain scale and boundary 

condition settings. Therefore, we used a normalized objective function defined by: 

J = γ ∙ U̅PN + (1 − γ) ∙ C (7.1) 

γ is the normalization factor which could make the values of U̅PN and C at the same order 

of magnitude. In conclusion, the mathematical formulation of this optimization problem 

can be expressed as follows: 

{
 
 
 
 
 

 
 
 
 
 

find: 𝛍, 𝛉  

minimize: J(𝛍, 𝛉)

subject to: 

{
 
 
 

 
 
 
𝐊n∆𝐔n = ∆𝐊n𝐔n

ihs (n = 1,2,… ,m)            (7.2.1)

𝐊remain𝐔cut = 𝐊cutoff ∑ ∆𝐔n

m

n=cut+1

            (7.2.2)

𝐊𝐔 = 𝐅            (7.2.3)
M

M̅
≤ Mf            (7.2.4)

μmin ≤ ∀μe ≤ 1            (7.2.5)

(7.2) 

where Eq. (7.2.1) to Eq. (7.2.2) are two control equations to obtain the residual distortion 

and residual warpage after cutting. Eq. (7.2.3) is the mechanical state control equation: 𝐊, 

𝐔 , and 𝐅  are the global stiffness matrix, displacement vector, and force vector, 

respectively. Eq. (7.2.4) is the mass fraction constraint: M = ∑ (φ̂e ∙ m0)
Nel
e=1  is the total 

mass of the structure, m0 is the unit mass of the eth element in case of being filled with 

the solid material; M̅ denotes the design domain mass containing the solid material; Mf is 

the mass fraction. μmin is set as 1E − 9, which could be used to avoid matrix singularity.  

7.1.2. Sensitivity analysis 

The gradient based optimization solver will be adopted to solve the optimization problem, 

which requires first order sensitivity information of the constraints and the objective 

function. Hence, details of the sensitivity analysis will be presented in this sub-section.  
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Special care should be taken to treat the objective function properly. Especially for the 

density design variable 𝛍: 

∂J 

∂𝛍
=
∂J 

∂�̂�
∙
∂�̂�

∂𝛗
∙
∂𝛗

∂�̃�
∙
∂�̃�

∂𝛍
(7.3) 

where 
∂�̂�

∂𝛗
, 
∂𝛗

∂�̃�
, and 

∂�̃�

∂𝛍
 represent the standard modifications to the sensitivity due to AM 

filter, Heaviside projection filter, and smoothing filter, respectively. While for the scanning 

angle variables 𝛉, it only affects the residual warpage, and thus only the sensitivity of the 

first objective term with respect to 𝛉 needs to be considered.  

7.1.2.1. Sensitivity analysis by adjoint method 

For the first objective sensitivity analysis, only the information of 
∂C

∂𝛍
 is considered. The 

corresponding Lagrange function could be written as: 

L1 = C + 𝛌c
T(𝐊𝐔 − 𝐅) (7.4) 

The gradient of the L1 respect to the �̂� is: 

∂L1
∂�̂�

=
∂𝐅T

∂�̂�
𝐔 + (𝐅T + 𝛌c

T𝐊)
∂𝐔

∂�̂�
+ 𝛌c

T
∂𝐊

∂�̂�
𝐔 − 𝛌c

T
∂𝐅

∂�̂�
(7.5) 

collecting the 
∂𝐔

∂�̂�
 term and solving the adjoint equation 𝐅T + 𝛌c

T𝐊, then we could arrive: 

∂L1
∂�̂�

= −𝐔T
∂𝐊

∂�̂�
𝐔 (7.6) 

The derivation of the term 
∂𝐊

∂�̂�
 is the same with conventional stiffness-based problem, and 

thus omitted in this paper. 

For the second objective term, its Lagrange function could be constructed as: 

L2 = U̅PN +∑𝛌n
1T(𝐊n∆𝐔n − ∆𝐊n𝐔n

ihs)

m

n=1

𝐇DOF
n + 𝛌T (𝐊remain𝐔cut − 𝐊cutoff ∑ ∆𝐔n

m

n=cut+1

𝐇DOF
n ) (7.7) 
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The gradient of the L2 respect to the �̂� is: 

∂L2
∂�̂�

=∑
∂U̅PN
∂𝐔res

∂∆𝐔n
∂�̂�

𝐇DOF
n

m

n=1

+
∂U̅PN
∂𝐔cut

∂𝐔cut
∂�̂�

+∑𝛌n
1 (𝐊n

∂∆𝐔n
∂�̂�

+
∂𝐊n
∂�̂�

∆𝐔n −
∂∆𝐊n𝐔n

ihs

∂�̂�
)𝐇DOF

n

m

n=1

+𝛌T (
∂𝐊remain
∂�̂�

𝐔cut + 𝐊remain
∂𝐔cut
∂�̂�

− 𝐊cutoff ∑
∂∆𝐔n
∂�̂�

m

n=cut+1

𝐇DOF
n −

∂𝐊cutoff
∂�̂�

∑ ∆𝐔n

m

i=cut+1

𝐇DOF
n )

(7.8) 

Collecting the 
∂∆𝐔n

∂�̂�
 and 

∂𝐔cut

∂�̂�
 terms: 

∂L2
∂�̂�

= ∑(
∂U̅PN
∂𝐔res

+ 𝐊n𝛌n
1)
∂∆𝐔n
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𝐇DOF
n

cut
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)

m
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𝐔cut − 𝛌
T
∂𝐊cutoff
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∑ ∆𝐔n

m

n=cut+1
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1T𝐊n)

∂∆𝐔n
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𝐇DOF
n

m

n=cut+1

(7.9) 

Then solving the following adjoint equations to obtain the 𝛌 and 𝛌n
1  (n = 1:m): 

∂U̅PN
∂𝐔cut

+ 𝐊remain𝛌 = 0

∂U̅PN
∂𝐔res

+ 𝐊n𝛌n
1 = 0    n = 1: cut

∂U̅PN
∂𝐔res

− 𝛌T𝐊cutoff + 𝛌n
1T𝐊n = 0     n = cut + 1:m

(7.10) 

Then we could arrive: 

∂L2
∂�̂�

=∑(𝛌n
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∆𝐔n − 𝛌n
1T
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n

m
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+ 𝛌T
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𝐔cut − 𝛌
T
∂𝐊cutoff
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∑ ∆𝐔n

m

n=cut+1

𝐇DOF
n (7.11) 

The gradient of the L2 respect to the 𝛉 is: 
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(7.12) 

Collecting the 
𝜕∆𝐔n

𝜕𝛉
 and 

𝜕𝐔cut

𝜕𝛉
 terms: 
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Then solving the following adjoint equations to obtain the 𝛌 and 𝛌n
2 (n = 1:m): 

∂U̅PN
∂𝐔cut

+ 𝐊remain𝛌 = 0

∂U̅PN
∂𝐔res

+ 𝐊n𝛌n
2 = 0    n = 1: cut

∂U̅PN
∂𝐔cut
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1T𝐊n = 0     n = cut + 1:m

(7.14) 

The final expression for the term 
𝜕L2

𝜕𝛉
 is: 

𝜕L2
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𝜕∆𝐊n𝐔n
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𝜕𝛉
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(7.15) 

7.1.2.2. Constraint function sensitivity analysis 

The analytical sensitivity analysis given by Eq. (7.11) and Eq. (7.15) is validated against 

forward finite difference sensitivities (FFDS). A square domain meshed by 4 × 4 × 4 

elements with L = 1mm, H = 1mm and W = 1mm. All the bottom nodes are fixed, and 

the external strain is applied by a layer-by-layer process, as mentioned in Section 2. The 

domain in Figure 86 is divided into 4  layers, with a layer thickness of 0.25mm . The 

FFDS results are presented with a perturbation size of 0.001. The validation of Sensitivity 

analysis is conducted at one specified element, whose location is shown in Figure 86. 
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Figure 86. Verification of the analytical sensitivity through a comparison with the 

finite difference sensitivity for one specific element. 

The sensitivity of the aggregated residual cut-off distortion measures 
∂L2

∂�̂�
 and 

𝜕L2

𝜕𝛉
 with 

respect to the specific element are shown in Figure 86. The analytical sensitivity is shown 

in each plot by the solid lines, and the solid red dots represent the finite-difference 

sensitivities. Good agreements could be observed from the plots. 

7.2. Numerical implementation 

The workflow of the proposed optimization process is given in Figure 87 (a), and the 

detailed numerical implementation is introduced in this section. In this work, the scanning 

island pattern and structures are optimized simultaneously. A high-performance, parallel-

computing platform of topology optimization for LPBF metal AM has been developed in 

this work. Within this framework, a parallel-computing ISM solver has been developed. It 

can be seen from Figure 87 that the parallel-computing ISM solver will be called in each 

optimization loop to obtain the nodal distortion information. With the sensitivity analysis 

and optimization model at hand, the MMA solver is employed to solve the topology 

optimization problem. A step-by-step description of the proposed work is outlined: 

1. Initializing the LPBF fast simulation solver and optimization solver, then obtaining the 

initial scanning pattern of each layer and initial density field (The scanning orientations 

are uniformly set within each island, and the initial density field is set with a fixed value). 
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2. Adopting the LPBF fast simulation solver introduced in section 2 to obtain the part-scale 

distortion information. 

3. Calculating density and path sensitivity according to Eq. (7.11) and Eq. (7.15) with the 

part-scale distortion information obtained from the last step. 

4. Adopting the MMA solver and updating the density and scanning pattern. 

5. Checking for convergence criteria: if not satisfied, return to step 2; if satisfied, the results 

will be post-processed to generate corresponding laser scan paths and structural 

visualizations. 

         

              (a)                                               (b) 

Figure 87. The flow chart of the proposed method. 

Besides, the workflow of the sequential method is also given in Figure 87 (b). The 

sequential method includes two processes: 

1. The first stage only seeks the material density distribution with uniform scanning 

orientation (𝛉 = 0°). Then, there generates the initial guess of the design structure for the 

later scanning orientation optimization. 

2. In the second stage, based on the optimized design structure from the first stage, the 
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scanning orientation optimization (the work introduced in subsection 6.2) is performed to 

reduce the residual warpage further. 

7.3. Large scale optimization model implementation 

The utilization of parallel processing in scientific computing is constantly increasing and 

has made a significant impact on the topology optimization community. This trend has 

been observed as more researchers are utilizing parallel computing to optimize complex 

systems in a shorter amount of time. Furthermore, the parallel processing approach has 

enabled researchers to overcome computational limitations that were previously 

encountered when working on large-scale optimization problems. 

 
Figure 88. The framework of the topology optimization for metal AM solver based on 

PETSc. 

The proposed framework is based on the flexible framework of parallel computing 

topology optimization proposed by Aage et al. [302]. Figure 88 depicts an overview of the 

topology optimization framework from the code scope. The base of the framework is the 

PETSc library and MPI library [303][304], which provides the basic sparse linear algebra 

routines within the field of parallel computing. It should be noted that PETSc supports 

different operating systems (Linux, macOS, Windows, and so on), so the proposed 

framework is also versatile to run on different systems. 
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The yellow blocks represent the existing C++ classes in the original framework of Aage et 

al. [302], while the green blocks are newly added classes. For the yellow blocks’ detailed 

explanations, the reader is referred to the original paper [302]. As mentioned in the 

introduction, the major contributions of this work are the LPBF simulation solver and its 

integration with topology optimization. 

7.4. Numerical examples 

Four optimization cases are provided in this subsection as listed in Table 5. MetalStiff-

PartPath-OPT, which is the simultaneous optimization of the scanning pattern and the 

structure material distribution using the optimization model proposed in this work (the 

weighting factor 𝛾 is 0.01); StiffOnly-PartOnly-OPT, which is a conventional stiffness-

based structure material distribution optimization (the weighting factor 𝛾 is 1.00) with 

uniform scanning orientation (𝛉 = 0° ). MetalStiff-PartOnly-OPT, which is a density 

distribution optimization with uniform scanning orientations (𝛉 = 0°) from the first stage 

of sequential method (the weighting factor 𝛾 is 0.01); MetalOnly-PathOnly-OPT, which 

is a scanning orientation optimization based on the part geometry obtained from 

MetalStiff-PartOnly-OPT. 

Case name Structural 

Compliance 

Residual 

Warpage 

Structure Optimization Printing Path 

Optimization 

MetalStiff-PartPath-OPT √ √ √ √ 

StiffOnly-PartOnly-OPT √ × √ × 

MetalStiff-PartOnly-OPT √ √ √ × 
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MetalOnly-PathOnly-OPT × √ × √ 

Table 5. The two optimization cases in subsection 7.4. 

7.4.1. 3D MBB beam structure design 

 

                      (a)                                      (b) 

Figure 89. Fixed design domain and boundary conditions for the MBB beam. 

The first numerical example is to design the classical MBB beam shown in Figure 89, 

whose structural sizes are defined with L = 200 mm , H = 40 mm,  and W = 20 mm , 

and the build direction is bottom-up (along the positive z-axis). The blue surface is fully 

cramped, and the red surface is applied traction. A mesh with 600 × 120 × 60 square 

elements is employed to discretize the design space. The fixed design domain in Figure 89 

is divided into m =  40 layers (consisting of 39 printing layers and 1 base removal layer), 

with a layer thickness of 0.5 mm and lumped with 3 elements along the building direction. 

For each layer, there are 40 × 4 islands with dimensions of 2.5mm×2.5mm, and the initial 

scanning pattern is the same as in subsection 2.4. The upper limit of the allowable volume 

is set to 35% of the fixed design domain. 

7.4.1.1. Comparison between MetalStiff-PartPath-OPT and StiffOnly-PartOnly-

OPT 

 



154 

 

 

(a) 

 

(b) 

Figure 90. The as-constructed structures: (a) optimal design obtained from the 

proposed method; (b) conventional self-support stiffness-based design. 

Firstly, two optimization cases are provided in this subsection: Case 1, which is the 

simultaneous optimization of the scanning pattern and the structure material distribution 

using the optimization model proposed in this work (the weighting factor 𝛾 is 0.01); Case 

2, which is a conventional stiffness-based structure material distribution optimization (the 

weighting factor 𝛾  is 1.00) with uniform scanning orientation (𝛉 = 0° ). The detailed 

geometries constructed from the optimized results in Case 1 and 2 are presented in Figure 

90, and the compliance value for the structure in Case 1 is 251.8277 KJ, while for the 

design in Case 2, the value is 227.1276 KJ. 

Figure 91 presents the simulation results containing the total distortion distribution for the 

two as-constructed structures. Higher distortions are observed in the result of Case 2. For 
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the design in Case 1, the maximum distortion is 1.3202mm (Figure 91 (b)). However, for 

the design in Case 2, the maximum distortion is reduced to 0.4696mm  through an 

optimized material distribution and scanning orientations (Figure 91 (a)). From the 

perspective of structure, compared with the stiffness-based design in Case 2, more void 

features appear in the proposed design, which means the complexity of the structural 

topology is increased accordingly. The results show that local nucleation of voids could 

reduce the local inherent strain loading sources while not decreasing the structural stiffness 

too much. 

 

      (a)                                     (b) 

            

      (c)                                       (d) 

Figure 91. The residual warpage for the as-constructed structures: (a) optimal design 

obtained from the proposed method; (b) conventional self-support stiffness-based design. 

Plots of vertical deformation of the bottom surface of the as-constructed structures along 

the specified test line (c) optimal design obtained from the proposed method; (d) 

conventional self-support stiffness-based design. 

The optimized layerwise island scanning path for design in Case 1 is presented in Figure 

92. The scanning tracks within each island are determined by the optimized scanning 
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orientation (𝛉), hatch spacing and the interaction between the scanning island and local 

geometry features. 

 

(a) 

 

(b) 

 

(c) 

Figure 92. The corresponding part geometry and island scanning pattern for the 

design in 0 (a) with different printing heights along the z-axis: (a) z =  5mm; (b) z =

 10mm; (c) z =  15mm. 

The convergence history curves for the optimization process in Figure 90 (a) are proposed 

in Figure 93. As the number of iterations increases, the objective function for the part 

warpage after the LPBF process and structural compliance keep reducing and finally 

approaches a fixed value. It is also observed that several sudden oscillations happen after 

the update of Heaviside projection parameters for both the maximum residual distortion 

and structural compliance. This is due to the fact that the structural performance is sensitive 
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to material distribution changes (especially for the design-dependent loading problem). 

 

Figure 93. The convergence history of the objective values for the result in 0 (a). 

7.4.1.2. Comparison between the concurrent method and sequential method 

To further investigate the significance of the proposed concurrent method, the optimized 

structure proposed in Figure 90 (a) is compared with the structure designed by the method 

whose island scanning pattern and structure are optimized sequentially (sequential 

method). 

 

Figure 94. The as-constructed structure obtained from T-OPT. 

Three optimization schemes (MetalStiff-PartPath-OPT, MetalStiff-PartOnly-OPT, and 

MetalOnly-PathOnly-OPT) are provided in this subsection. Figure 94 shows the optimized 

material distribution for the structure designed from the first stage of sequential method 

(MetalStiff-PartOnly-OPT). It shows that its topology is different with the one in 
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MetalStiff-PartPath-OPT. 

 

Figure 95. The residual distortion distribution for the optimization cases: MetalStiff-

PartOnly-OPT, MetalOnly-PathOnly-OPT, and MetalStiff-PartPath-OPT. 

Figure 95 and Figure 96 present the residual distortion distributions and the comparative 

magnitudes of the two objective terms from the three optimization schemes, respectively. 

The largest maximum residual warpage (0.5753mm) is exhibited in the structure obtained 

from MetalStiff-PartOnly-OPT design compared to the MetalOnly-PathOnly-OPT 

(0.4730mm) and MetalStiff-PartPath-OPT design (0.4696mm). In comparison between 

the MetalOnly-PathOnly-OPT design and MetalStiff-PartPath-OPT design, although their 

maximum residual warpages are very close, the structural stiffness of the MetalStiff-

PartPath-OPT design is obviously better than that of the MetalOnly-PathOnly-OPT design 

(improvement around 6%: 251.8277KJ vs. 268.9869KJ). 

       

  (a)                                         (b) 
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Figure 96. The plot of mechanical performances corresponding to the different 

optimization schemes: (a) structural compliance; (b) maximum residual warpage. 

7.4.1.3. Investigation of different island scanning pattern 

The influence of different island scanning patterns is investigated in this subsection. As 

shown in Figure 97, the structures designed from three different scanning pattern strategies 

(Pattern 1, Pattern 2, and Pattern 3) are provided here, and each scanning pattern parameter 

related to Figure 97 is set in Table 6. 

 Island Number for Each Layer Island Dimension 

Pattern 1 2 × 20 5.0mm × 5.0mm 

Pattern 2 4 × 40 2.5mm × 2.5mm 

Pattern 3 10 × 100 1.0mm × 1.0mm 

Table 6. The detail scanning pattern parameters for three cases. 

As shown in Figure 97, The final topological structures and material distributions with 

these three patterns are slightly different. Within these three results, the result from pattern 

2 has the highest structural complexity, while its designed island number for each layer is 

neither the highest nor lowest. This phenomenon indicates that the structural optimization 

result would be perturbed by the designed island number, but the perturbation is random 

since the complexity of the structural topology is non-monotonic. 
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Figure 97. The as-constructed structures for different scanning patterns. 

The total distortion distribution for the optimized shape solutions of these three cases are 

shown in Figure 98, and Figure 99 shows a plot of each structural compliance and residual 

warpage corresponding to the different scanning patterns. As indicated by the optimization 

data shown in Figure 98 and Figure 99, the pattern 3 approach presents a solution with 

better structural stiffness (250.8013KJ) than pattern 1 approach (256.8327KJ) and, 

meanwhile, achieves smaller residual warpage (maximum 0.4491mm vs. 0.5217mm). 

 

Figure 98. The residual distortion distribution for different scanning patterns. 

Observing the optimized structural performance with varying scanning pattern shown in 

Figure 99, there exhibits a monotonically decreasing trend (from pattern 1 to pattern 3). It 

is reasonable since the density distribution and anisotropic residual stress loading owing 

to the scanning pattern are two independent phenomena. Within the case of a certain 

density design variable, the scanning pattern with more island number could greatly 

increase the scope of the design domain and thus makes the solver easier to put more 
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concentration on reducing residual warpage and improving structural stiffness 

simultaneously. 

 

Figure 99. The plot of mechanical performance corresponding to the three different 

scanning patterns. 

Finally, the optimized certain height layer-wise island scanning patterns (z =  15mm) for 

the designs obtained from three different scanning patterns are presented in Figure 100. 

 

(a) 

 

(b) 
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(c) 

Figure 100. The corresponding part geometry, and island scanning pattern for 

different cases (z =  15mm). 

7.4.2. The Cantilever structure design 

 

(a)                                        (b) 

Figure 101. Fixed design domain and boundary conditions for the Cantilever beam. 

The second numerical example is to design the Cantilever beam shown in Figure 101, 

whose structural sizes are defined with L = 80 mm, H = 40 mm, and W = 40 mm, and 

the build direction is bottom-up (along the positive z-axis). The red surface is fully 

clamped, and the dark-blue surface is applied of downward tractions. A mesh with 

240×120×120 square elements is employed to discretize the design space. The fixed design 

domain in Figure 101 is divided into m = 40 layers (consisting of 39 printing layers and 

1 base removal layer), with a layer thickness of 0.33 mm and lumped with 3 elements 

along the building direction. For each layer, there are 16×8 islands with dimensions of 

5mm×5mm, while other parameters keep the same with the MBB case. 

    

(a)                                      (b) 
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Figure 102. As-constructed structures: (a) StiffOnly-PartOnly-OPT design; (b) 

MetalStiff-PartPath-OPT design. 

Similarly, two optimization cases (StiffOnly-PartOnly-OPT and MetalStiff-PartPath-OPT) 

are provided in this subsection. Figure 102 presents the optimization results for these two 

cases, and the compliance value for the structure in MetalStiff-PartPath-OPT is 

335.7526KJ, while for the design in StiffOnly-PartOnly-OPT, the value is 334.6447KJ. 

The stiffness performance for these two designs is very close, even though their material 

distributions are different. The optimized layer-wise island scanning paths at different 

printing heights along z-axis in MetalStiff-PartPath-OPT design are presented in Figure 

103. 

The simulation results on total distortion distribution for the two as-constructed structures 

are given in Figure 104. The result of StiffOnly-PartOnly-OPT exhibits higher distortions, 

which has the maximum distortion of 1.4470mm. For the design in MetalStiff-PartPath-

OPT, the maximum distortion is reduced to 1.1388mm, which achieves a reduction of 23%. 

 

 (a)                       (b)                       (c) 

Figure 103. The part geometry and island scanning patterns for the design in (b) at 

different heights: (a) z = 5mm; (b) z = 10mm; (c) z = 15mm. 
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Figure 104. The residual warpage predictions for the MetalStiff-PartPath-OPT design 

and StiffOnly-PartOnly-OPT design. 

7.4.3. Computational cost analysis 

Firstly, the computational cost analysis for LPBF oriented topology optimization problem 

is concluded in this subsection. A typical MBB case study is performed with 

200 ×  40 ×  20  square elements and 40 simulation layers. Based on the algorithm 

shown in Figure 105, the total computing time is consisting of four parts: (T1) the time for 

solving the state equations by the FEA (the LPBF process FEM solver and Mechanical 

FEM solver); (T2) the time for conducting the sensitivity analysis (the adjoint solver); (T3) 

the time for updating the design variables (MMA solver); (T4) the time for other parts, like 

the pre-process, material interpolation, filter, projection, data saving and so forth. 

 
Figure 105. The computational cost for the proposed method. 

The ratios of these three parts to the total time for different examples are shown in 0, from 

which we can see that for all the examples, nearly 90% of the computing time is consumed 
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for solving the state equations and sensitivity analysis. Specifically, the time for solving 

the state equations by the FEA takes 38.167% the time for conducting the sensitivity 

analysis takes 49.284%, the time for updating the design variables takes 10.840%, and 

other parts take 2.080%. From Figure 105, we can see that for all the examples more than 

85% of the computing time is consumed for solving the physical state equation and 

sensitivity adjoint equation. Namely, the most time consuming part in this workflow lies 

in the solution of the sequence of linear systems of the form 𝐀𝐱 = 𝐛. 

7.4.4. Speedup and efficiency of parallelization 

The parallelization speedup and efficiency of this proposed framework have been briefly 

examined as well. The framework is based on the parallel computing topology 

optimization program [302]. The 3D cantilever that has been mentioned in the previous 

section was executed multiple times with different numbers of cores (8, 16, 32, and 64) to 

study the effectiveness of the proposed framework. The mesh used in the following tests 

is 200 × 40 × 20 (160000 elements). The filter radius, rmin, used here is 5. All cases were 

run for a maximum of 100 iterations. The default solver settings in Aage et al. [302] have 

been used in this section because the default iterative solver is generally more suitable for 

larger-scale 3D problems than direct solvers (e.g., Cholesky solver). However, further 

comparisons of the solvers are out of the scope of this paper and will be left for future 

work. An index, indicating the normalized speedup, is introduced in Eq. (44) to show the 

parallelization acceleration for the proposed method: 

Sn =
Tn
T8
 (45) 

where Sn and Tn are the normalized speedup and computation time for utilizing n cores, 

respectively.  
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Figure 106. The normalized speedup of the parallel computing program when 

increasing the number of cores. 

The computation time with 8 cores (T8) is regarded as the reference. Figure 106 shows the 

normalized speedup achieved with the parallelization. It shows that the normalized 

speedup increases with more cores, but the normalized speedup doesn’t increase linearly 

since the communication cost among the cores has increased at the same time. 

7.5. Conclusion for this work 

In this work, we have presented a concurrent scanning pattern and topology optimization 

method to design manufacturable structures considering the residual warpage induced in 

LPBF process. The formulation has been developed as a multi-objective topology 

optimization problem that considers both a stiffness objective function and a residual 

warpage objective function. A couple of conclusions can be drawn as follows: (1) when 

the weighting coefficient 𝛾 is large, the objective function that represents the part residual 

warpage in AM increases, and the structural compliance decreases. Besides, it also affects 

the structural complexity, thus the users can adjust the weighting factor 𝛾 to control the 

structural performance and complexity; (2) compared with the sequential method, the 

concurrent method can more effectively improve the structural stiffness, even though the 
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two achieve similar reductions in residual warpage; (3) the optimized structure obtained 

from the scanning pattern with higher number of islands lead to better structural 

performance. A proper scanning pattern selection could facilitate the structural 

performance while not obviously increase the manufacturing cost. 

In the future, we plan to incorporate more AM constraints, including the closed cavity 

constraint and AM tool non-collision constraint. Furthermore, we will make further 

modifications to the adopted parallel-based ISM to improve the performance of obtained 

complex structures and align them more closely with actual experimental results. 
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Chapter 8. Conclusions 

This research proposed a topology optimization coupled with AM constraints and process 

simulation system to deal with the challenges and opportunities in the AM-oriented design 

field. The system mainly includes a topology optimization model for printed plastic parts 

and an ISM-based topology optimization model to reduce the deformation or residual 

stress in metal AM parts. In addition, the proposed system also includes several 

supplementary modules, a new material interpolation for multiple material stress 

constraint problem, post-processing techniques, performance simulation, and LPBF 

process simulation. According to the developed system and associated experimental results, 

this chapter would summarize the contributions in detail and propose the future directions. 

8.1. Topology optimization for AM framework (Chapter 3) 

A robust framework for topology optimization in AM has been developed. This framework 

possesses the capability to address various challenges encountered in AM, including the 

minimum feature size control, self-support constraint, and so forth. Moreover, it is 

compatible with diverse physical problems such as elastic deformations, heat conduction, 

and others. This versatile framework provides a powerful tool for optimizing designs in 

the context of AM, addressing a wide range of AM-related issues. 

8.2. Topology optimization method for advanced AM parts (Chapter 4) 

1. A novel solution to the SMMTO problem is proposed in this work based on the ordered 

SIMP method. To be specific, description of the multi-material elastic model is achieved 

with the ordered SIMP interpolation. More importantly, a novel ordered SIMP like 

interpolation function is proposed to realize the relaxed and scaled stress interpolation, so 

that only a unique set of density variables is required for the SMMTO problem.  

2. In the porous infill design, the incorporation of solid interface layers successfully 
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addresses the connectivity challenge, enhancing the overall robustness of the multiscale 

structures. Experimental validation confirms the positive impact of adding interface layers, 

as the designs lacking interior interface layers exhibit noticeably reduced stiffness and 

strength performance. 

8.3. Topology optimization framework for LPBF metal AM (Chapter 5) 

1. The ISM model, which is based on elastic FEM, is one of the most suitable methods for 

part-level simulation. This is primarily due to its remarkable ability to significantly reduce 

computational time, cutting it down from months to mere minutes in comparison to 

alternative models. 

2. The ISM model was also employed in predicting the deflections of the printed part. 

Results show an average of only 5% error between the commercial software and proposed 

solver results. 

3. For the integration of topology optimization and LPBF metal AM, the formulation has 

been developed as a multi-objective topology optimization problem considering structural 

performance and residual distortion objective functions. This kind of formulation could 

effectively solve the issues in LPBF metal AM oriented design problems. 

8.4. Quality control topology optimization for LPBF metal AM (Chapter 6) 

1. To facilitate the formulation of the topology optimization problem involving the inherent 

strain load, the concept of ILC is introduced in this study as an inherent property of the 

material. Using the RAMP interpolation and a corrected aggregation technique for 

elemental stresses, the proposed method is shown to effectively enforce the maximum 

residual stress and volume fraction limits on benchmark numerical examples. 

2. It is found that the scanning path plays an important role for distortion minimization, 
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and the part printed by the optimized scanning path exhibits better performances (smaller 

maximum distortion). In addition, a fast yet stable convergence curve (0) also 

demonstrates the efficiency of the proposed method. Thus, this method is capable of 

improving the manufacturability of AM builds. 

3. A topology optimization method to design manufacturable support structures 

considering the residual distortion induced in the LPBF AM process and various AM issues 

(easy removal support structure, self-support structure, and minimum length control), 

however these features will more or less sacrifice the structural performance. 

8.5. Concurrent path and structure optimization for LPBF metal AM (Chapter 7) 

1. A comparative design framework for LPBF fabricated part has been proposed. This work 

cannot only optimize the laser scanning pattern but structure geometry, and can effectively 

avoid part failures of cracking, delamination, or warpage during the printing process, and 

therefore the printing cost is reduced. 

2. The parallel computing framework for topology optimization considering the metal AM 

has fully been established. This framework is able to solve the high-resolution problem. 

3. Compared with the sequential optimization strategy (methods in Sections 6.2 and 6.3), 

the proposed concurrent optimization strategy could further reduce the residual distortion 

and achieve better structural performance. 

8.6. Limitations and future work 

1. Most of the presented works are still limited to the linear physics. This model will greatly 

restrict the applications of the algorithm to distinct optimization problems. In the future, 

the nonlinear physics will be taken into account. 

2. ISM could be further refined by including the elastic-plastic model, and further 
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experimental validations are needed. 

3. Guidelines for structural optimization for LPBF should be developed. Structural 

optimization for LPBF needs a variety of different knowledge ranging from structural 

design to process optimization. It should be significantly beneficial that one can generate 

guidelines for structural optimization for LPBF via several trial-and-errors based on 

experiments and simulations. 
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