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ABSTRACT

Ground deformations around axisymmetric shafts cannot be
determined with the currently available design approaches which
are mostly based on plasticity methods. The
Convergence/Confinement Method (usually applied to tunnels) with
consideration of gravitational effects and the three-dimensional
conditions near a shaft, is proposed as a tool to predict the
formation pressure on a shaft and the radial ground
displacements. It is shown that the behaviour of a shaft is
governed by: (1) the mode of yield initiation dominated by the
in-situ stress state and the soil strength parameters, and (2)
the extent of the yield zone that develops if wall displacements
are allowed to occur during construction.

Closed-form solutions are presented to approximate the
pressure/displacement relationship for cohesionless and cohesive
soils. Results from this approach compare well with those
obtained by finite element analyses. The conventional methods
provide minimum support pressures that are required to maintain
stability but are generally less than those actually encountered
if ground movements are restricted during construction with good
ground control,



1. INTRODUCTION

The design of a shaft in soil consists of two main steps:
(1) design of the shaft lining to prevent instability of shaft
wall, and (2) estimation of the soil movement associated with
shaft construction. Although these two tasks are interrelated,
they are usually handled separately. Except for simplicity, there
are no practical reasons why one should separate the
determination of lining pressure and ground deformation.

Most of the currently available design approaches are based
on soil plasticity considerations or plasticity eguilibrium
methods (PEM), e.g., Terzaghi (1943) and Berezantzev (1958),
whereby the formation pressures on the shaft lining are
determined by satisfying equilibrium of yielded, plastic ground
behind the support. Alternatively, limit equilibrium methods
(LEM), assuming hypothetical rupture surfaces are used for
design, e.g. Prater (1977). The actually expected and observed
pressures depend, however, on such factors as ground deformation,
in-situ stress, and ground strength/deformation properties. They
differ substantially from those predicted by the methods
mentioned above. Most importantly, the actual pressures are often
greater than those predicted in this manner.

No closed-form solutions are currently available for the
determination of shaft wall displacements and movements of the
surrounding ground. In practice, the displacements are often
controlled or limited by choice of a suitable factor of safety
and excessive yielding is prevented by an appropriate

construction sequence.

The Convergence/Confinement Method (CCM), which accounts for
most relevant design parameters (e.g., in-situ stress field,
ground and support properties, and construction sequence),
provides an analytical framework to predict the formation
pressure and the soil deformation simultaneously. So far, it has



only been applied successfully to circular, horizontal
underground openings where the stress component parallel to the
axis of the opening has little effect on the opening behaviour
and where the three-dimensional conditions near the tunnel face

can be approximated.

Since the analysis of a shaft near the ground surface is a
truly three-dimensional problem, the CCM in its common form is
not adequate to describe the behaviour of a shaft. The effect of
gravity or vertical forces must be considered. This can be
achieved by combination of plasticity or limit equilibrium
techniques with the CCM. In this manner, the ground convergence
curve for the shaft wall can be derived and the required support
pressure can be rationally assessed. The limits of applicability
of conventional methods for shaft design can then be evaluated
properly and field measurements can be interpreted based on a
rational shaft performance model.

The scope of this paper is to establish typical shaft
behavioural modes and to quantify the responses of a shaft to
excavation, by use of the convergence/confinement concept, in
terms of support pressure and radial wall displacement. First,
conventional design methods are briefly and critically reviewed,
and the proposed Convergence/Confinement Method is introduced.
Behaviourial modes ranging from elastic response, through yield
initiation and propagation to ultimate collapse, are discussed.
In the second part, results of the proposed CCM and the
conventional design methods are compared with results from finite
element analyses. Throughout the paper it is assumed that the
magnitude of the horizontal stresses is independent of its

orientation (ah = oH).

The technique proposed in this paper has also been applied
to several case histories reported by Lade et al. (1981),
Muller-Kirchenbauer et al. (1980), and Wong and Kaiser (1984),
and good agreement was observed. The results of this comparison
will be presented in a later publication.



2. REVIEW OF PREVIOUSLY PROPOSED SHAFT DESIGN TECHNIQUES

Two groups of basic shaft design models can be identified:
those considering gravity or the influence of the vertical
principal stress (e.g., Terzaghi (1943); Berezantzev (1958);
Prater (1977)) and those treating a shaft as a two-dimensional,
'hole-in-a-plate' problem (e.g., Abel et al., 1979). As will be
seen, the latter approach is only valid under certain field

stress conditions.

In all cases, support pressures are calculated that
correspond to one specific, often limiting, state of equilibrium
and various design criteria are evoked to ensure acceptable
performance in terms of ground deformation. A factor of safety is
applied to gain a sufficiently large margin against failure or to
control deformations. Alternatively, stability and serviceability
are achieved by provision of sufficient support pressure to avoid
onset of plasticity (allowable stress design). These approximate
methods of controlling deformations provide safety margins of
unknown magnitude. Some conservative designers still support the
concept of design for the virgin state of stress and are willing
to accept high support cost to ensure an unnecessarily high and
unknown safety margin.

These design approaches are not intended to predict the
actual conditions in the field. They provide either a lower limit
of support pressure that is needed to prevent collapse or a
design pressure that should never be exceeded in reality. For
comparison with field measurements, a performance model, such as
the one presented later, is required that predicts the actual
conditions for a given construction sequence. Most of the
conventional methods are design and not performance models.

2.1 Terzaghi's Method

Terzaghi (1943) already recognized that the problem of shaft
design was not as simple as merely rotating a tunnel in a
weightless medium and provided an elegant, approximate solution



for considering the effect of gravity, if it dominates shaft
behaviour. He assumed that stress concentrations near a vertical
hole would cause yielding due to the stress difference between
tangential and radial stresses in an annulus around a shaft
(Mode A: due to (ot - 0_); see Fig.l.a)). Even though the
tangential stresses are generally greater than the vertical,
equalization of vertical and tangential stresses near the shaft
was assumed. Based on this approximate stress distribution, the
limit equilibrium state of a downward sliding, cylindrical
element of yielded ground was assessed. Hence, the support
pressure calculated by Terzaghi (1943) is the minimum pressure
required to prevent this mode of instability.

An example of this critical support pressure distribution is
shown for a cohesionless soil in Fig.2. It is only valid if
vertical plasticity and Mode A-type yielding is possible, i.e.,
at high Ko-values as will be demonstrated later.

Terzaghi noticed that his solution neglected the effect of
principal stress rotation near the shaft due to non-zero shear
stresses (McCreath, 1980) and proposed the use of a reduced
friction angle ¢%*:

¢* = (¢-5°) for 30° < ¢ < 40° and ¢ = 0
for the Mohr-Coulomb failure criterion.

2.2 Berezantzev's Method

Berezantzev (1958) proposed a method of earth pressure
calculation for cylindrical retaining walls whereby the state of
stress around the shaft is described by two differential
equations of equilibrium. He used the Mohr-Coulomb failure
criterion as a condition of plastic equilibrium and also made the

assumption of equal principal stresses (o, = 0_ =90 , 0. =0 ) to
3

t v 17 Tr
render the problem statically determinate. However, only one set
of slip surfaces (Mode B: due to (ov - ar)) is assumed to occur

inside the yielded soil (Fig.1.b).



The earth pressure is determined by Sokolovsky's numerical
'step-by-step' computation technique. An example of the resulting
earth pressure distribution is shown in Fig.2. It is almost
identical to the one predicted by Terzaghi. However,
Berezantzev's approach predicts sliding along a set of nearly
cone-shaped surfaces. With the assumption of equal major
principal stresses, Mode A-type yielding along a set of vertical
planes is also possible to facilitate sliding along the conical
surfaces.

2.3 Prater's Method

Prater (1977) approximated the sliding surface predicted by
Berezantzev by a cone and conducted a limit equilibrium analysis
assuming a Mohr-Coulomb failure criterion for the sliding
surface. At the vertical sides of a pie-shaped element, he
introduced a wedging force T with a radial outward component and
argued that a coefficient A for the determination of T should
fall between the active earth pressure coefficient K, and the
coefficient at rest K, and that it should not be unity as assumed
by Terzaghi or Berezantzev. The resulting earth pressure
distribution, shown in Fig.2 for a cohesionless soil, indicates
that this analysis leads to the unreasonable result of zero
support pressure requirement for stability of a deep shaft (e.g.,
H/a > 9 for ¢ = 30°, ¢ = 0).

This deficiency must be attributed to the fact that the
magnitude of the wedging force T is not limited. At depth, this
force is actually controlled by Mode A-type failure stresses and
cannot, as implicit in Prater's analysis, reach infinity at great
depth. Prater's approach does not predict a critical (minimum)
support pressure, as Terzaghi, but the earth pressure at the
initiation of Mode B-type failure. Lower radial support pressures
are sufficient to maintain stability if stress redistribution due
to Mode A-type yielding is permitted during shaft wall
deformation. This is illustrated by Fig.1.b. For K, less than a
critical value Kcr (to be defined later), radial stresses may



decrease while tangential stresses increase until failure occurs
due to the deviatoric stress difference (0v - ar) in Mode B. At
this point, X = (ot/ovo) is somewhat greater than K, and the
earth pressure can be reasonably well predicted by Prater's
method (A = Ky). However, a further reduction of the radial
pressure will cause arching as illustrated by Fig.3 and the
vertical stress will drop while the tangential stress increases.
Ultimately, vertical and tangential stresses equalize when the
ground yields in both modes, A and B. This ultimate condition is
modelled by Berezantzev and approximated by Terzaghi. Prater's
method does not predict the same minimum pressure required to
maintain stability. It is too conservative at shallow depth and
too unconservative at greater depth.

2.4 'Hole-in-a-Plate' Approach

Many authors have developed analytical procedures to
calculate the extent of yielding, the equilibrium support
pressure and the related deformations for circular openings in a
uniform stress field and in perfectly plastic or strain-weakening
ground (e.g., Brown et al., 1983). These methods provide the
ground convergence curve which can be combined with the support
confinement curve to predict an equilibrium state of
ground/support interaction. Mode A-type failure is tacitly
assumed for this approach.

An early attempt to apply this concept for the
interpretation of field measurements was presented by Abel et al.
(1979) in a back analysis of a well documented deep shaft. In
their calculation of lining pressures, they neglected the rock
displacements before liner installation but considered the effect
of elastic, shrinkage and creep deformations of the liner. In a
re-evaluation of this case history, McCreath (1980) found that
the CCM could be applied successfully to explain without
consideration of gravity the shaft performance of this deep shaft
in yielding rock. Because ground deformations were restricted by
the shaft support, the measured ground pressures exceeded, as



would be expected, the minimum pressures predicted by the methods
proposed by Terzaghi and Berezantzev.

In summary, the existing methods are tied to specific
conditions and thus none of them permits to predict the actual
shaft performance. These methods do not indicate when gravity
effects are relevant or when the limits of applicability of the
'hole-in-a-plate' approach have been reached. These deficiencies
are largely overcome by the proposed design method described in
the following.

PART 1 - NEW SHAFT DESIGN METHOD

3. PROPOSED SHAFT DESIGN AND PERFORMANCE PREDICTION METHOD

The Convergence/Confinement Method (CCM) provides a
conceptual framework that can be analytically formulated to
predict the interrelationship between stresses and displacements
in the soil near an underground opening (e.g., Fenner, 1939; and
Pacher, 1964). The extent of the yield (or plastic) zone can also
be estimated by this method under certain, well-defined
conditions. The CCM is adopted and proposed in the following as a
rational approach to predict shaft behaviour. In this manner most
relevant factors (e.g., in situ stress, soil strength and
deformation properties as well as many construction details) can
be included in the analysis.

The behaviour of a shaft is affected and near the surface
dominated by gravitational forces. It is a truly
three-dimensional problem and all three stress components (ot, o,
and or) must be considered. The mode of yielding, its initiation
and propagation, depends on the relative magnitude of these
stresses and, hence, on the initial in-situ state of stress or
Ko. In order to apply the two-dimensional 'hole-in-a-plate' model
to determine the relationship between support pressure and shaft
wall displacement, it is necessary to understand the mechanisms

of shaft behaviour so that an adjustment can be made to the CCM.



The excavation of a shaft can be simulated by a stress
relief (Aar at the shaft wall) causing the surrounding soil to
deform both horizontally and vertically. Excessive stress relief
will induce yielding near the opening causing permanent plastic
deformations. The magnitude of support pressure, wall
displacement and extent of plastic zone are related. The stress
relief during shaft excavation causes stress redistribution near
the opening, and thus induces vertical and horizontal arching as
illustrated by Fig.3. Furthermore, a horizontal hoop stress
increase is induced in a horizontal plane, i.e., in the
tangential direction. Vertical arching with convex downward
stress trajectories (Handy, 1985) arises when a plastic zone of
limited extent tends to move vertically downward. It develops
one-sided or between the shaft support and the surrounding
unyielded soil mass. Collapse is prevented if stable arches can
be maintained by sufficient support pressure.

In the following, the relationship between the support
pressure, p., the extent of the plastic zone, R, and the wall
displacement, u;, or the ground convergence curve (GCC) is
derived considering horizontal and vertical arching.

It must be stressed that the proposed model is a performance
prediction and not a design model. Adequate safety margins must
be introduced by application of reasonable design criteria to
ensure satisfactory shaft performance.

3.1 Horizontal Arching
3.1.1 Support Pressure

Prior to excavation, a soil element adjacent to the shaft
wall is subjected to in-situ stresses. The excavation of the
shaft may be simulated by progressively reducing the support
pressure (or radial stress). For the axisymmetric case in elastic
soil, the stress distributions are given by Egns.1 to 3
(Terzaghi, 1943). For notations see Appendix A.
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9, = Yh = P, (1)
o, = Kopo—[Kopo-pi](a/r)2 (2)
o, = Kopo+[Kopo—pi](a/r)2. (3)

These equations are derived based on the following

yr 0, and o  are principal stresses, (ii) shear

stresses along the shaft wall are negligible, and (iii) the

assumptions: (i) o

bottom of the shaft is remote.

As p; is reduced, the stress differences increase and the
strength of the soil may be exceeded. The onset of the plasticity
and the mode of yield initiation depends on the value of K, and
the strength parameters of the soil. For simplicity, the
following derivations are for cohesionless materials only. The

formulations for cohesive soils are given in Appendix B.

For a purely frictional, elastic, perfectly plastic material
with a linear Mohr-Coulomb failure criterion, the maximum stress

ratio which may be sustained is:

o0 /o = N = tan*(n/4 + ¢/2). (4)

Three modes of yield initiation can be calculated from Egns.1
to 3, and the corresponding support pressures, p;, are:

A) For (ot—ar): p; = 2Kopo/(N+1) (5)
B) For (o -0 .): p; = po/N (6)
C) For (ot—ov): p; = (ZKO—N)pO. (7)

The largest value of p; will govern which mode of yield
initiation occurs. In terms of Kyo-values, failure is initiated if
for:

Mode A: (N+1)/2N < Ky < (N+1)/2 (8)
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Mode B: K_ < (N+1)/2N (9)

Mode C: K_ > (N+1)/2 ., (10)
For cohesionless soil with ¢ = 30° or N = 3 in:

Mode A for: 0.67 < Ky, < 2.0 (Fig.1.a);

Mode B for: Ko < 0.67 (Fig.1.b); and

Mode C for: K, > 2.0 (Fig.1.c).

Mode A is the mode commonly evaluated for tunnels in
yielding ground. Mode C, although possible, has been neglected in
the following analysis because it is seldom of practical
significance in soft ground.

The boundary between the two remaining modes of yield
initiation is then given by a critical Ko-value: Koy = (N+1) /2N,
For each of these two modes, the relationship of support pressure

and extent of plastic zone can be derived separately.

3.1.1.a) Initiation of Yielding of Mode A at Ko, > K, (Fig.4.a):

r

Fig.4.b shows the sequential stages of stress distribution
for Mode A as the internal support pressure is reduced.

During the first stage (Fig.4.b.(1)), the vertical stress
remains constant, the radial stress decreases while the
tangential stress increases according to Egns.1 to 3. Yield
initiation of Mode A occurs if the condition:

ot/or= N or p;= ZKOpO/(N+1) (11)

is reached. The vertical stress at yield initiation always acts

as an intermediate stress.

Further reduction of the fictitious internal support
pressure causes the propagation of a plastic zone, and the
tangential stress decreases to satisfy the failure criteria
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(Fig.4.b.(2)). The extent of the plastic zone is (Ladanyi, 1974):

R, = al2k p_/(N+1)p, 1/ (N7 1) (12)

and the stresses within the plastic zone (r < Rtr) are:

g

= Py (r/a)N" (13)

o

N-1
¢ = Npy (r/a) . (14)

As the tangential stress decreases during yielding it will
eventually become equal to the vertical stress. At this stage P;
is equal to K Py Substitution of this value into Eqgn.12 provides

the extent Ry . (for o, =0, >0, and Uvo)'

Further reduction of the internal pressure (Stage (3)) will
cause both the tangential and the vertical stress to decrease and
arching will now occur in horizontal and vertical directions.
Near the opening, where o_ = o _ < Py both modes of yielding

t v

(A and B) are evident. The extent of this zone is denoted by R, .-

Between R_ . and Rtr’ yielding is still governed by Mode A only
and R, . can be estimated from Egn.12. The extent of the plastic
zone R (Modes A and B) is found by using the condition

g = 0

. v = P (i.e., Egqn.14 and 1):

N 1/(N-1)
R, = a(po/pi) . (15)

After propagation of yielding, the plastic zone contains a region
where Mode A exists alone (Fig.5.a) and a region, close to the
shaft, where Modes A and B occur simultaneously.

3.1.1.b) Initiation of Yielding by Mode B at K < K. (Fig.6.a):

Fig.6.b shows the stress distributions in a horizontal
section through the shaft at a particular depth in sequential
stages of reducing the internal support pressure.

At Stage (1), yielding initiates at the wall in Mode B. The
stress distributions are given by Egns.1 to 3 and the internal
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pressure is p; = UV/N = Kapo at yield initiation.

As p. is further reduced, o_ still increases due to wedging

and o, decreases due to verticaltarching during downward
displacement of the soil near the wall (Stage (2) in Fig. 6.b).
Yielding propagates outward from the wall. The radial and
tangential stress distributions are given by Egns.2 and 3 until
the stresses at the wall satisfy the failure criteria:

at/ar= N . (16)

The extent of the plastic zone due to the Mode B yielding at
this stage is determined by equating radial stresses at the
elastic/plastic interface for stress continuity. At this
boundary, the radial stress in the elastic region is given by
Egqn.2, and in the plastic zone by:

o, = oV/N and o, = Py - (17)

Equating Egns.2 and 17 yields:

R, = a/[(K p_-p;) /(K ~K_)p T . (18)

At the end of Stage 2, the tangential stress becomes equal
to the vertical stress and the support pressure is given by
Egqn.11, or

p; = 2KOpo/(N+1) . (19)
Mode A is initiated at the wall.

Further relief of p;, Stage (3), causes a simultaneous
decrease of o, and oy (satisfying the failure criteria given by
Eqns.16 and 17). At this stage, the maximum extent of the plastic
zone (er in Fig.6.b) is still governed by Mode B-type yielding,
but the radial stress distribution will differ from that in Egn.2
because of the need to satisfy Egn.16. Hence, in order to
determine the radius of the plastic zone at this stage, the

radial stress distribution needs to be calculated.
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Fig.6.b, Stage (3), shows that inside the plastic zone

(r<Rtr)’ where yielding in Mode A and B occurs (ot=av>or), the
radial and tangential stress distributions are (Ladanyi, 1974):
_ N-1
o, = pi(r/a) (20)
_ N- 1
o, = Np,(r/a) (21)

if the influence of the vertical stress reduction is neglected.

The plastic zone R . is as before (Egqn. 12):

R, = al2kp /(N+1)p, 17/ (N1 (22)

t

For the range R, <r <R, the radial stress distribution

is governed by the stress equilibrium with the tangential stress:

0. = Rp,~(Kp,~ o " )(R  /r)* (23)

A\l

where: or = K
r=R

oPo (N-1)/(N+1)Kopo is the radial stress at

tr*

Substituting r = R and o' into Egn.23 provides the radial

tr
stress distribution in the outer plastic zone (R__. < r < er).

tr
Continuity of radial stresses at the elastic zone boundary

(ar = Kapo) locates the extent of the plastic zone, R, as:

R, = a/?KO[(N-1)/(N+1)][2Kopo/((N+1)pi)12/(N+1)/(K0—Ka)} . (24)

Again, after propagation of yielding, the plastic zone
contains a region where only one mode (Mode B) exists (Fig.5.b)
and a region, close to the shaft, where Mode A and B occur
simultaneously.

Egqns.1 to 24, are valid for conditions where horizontal
arching dominates. The influence of gravity was, so far,
neglected and will, in Section 3.2, be derived separately.
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3.1.2 Wall Displacement (u;)

Once the relationship between the support pressure and the
extent of the plastic zone has been established, the
corresponding wall displacement induced by stress relief can be
determined. Some restrictive assumptions must be made to obtain a
closed-form solution for the ground convergence curve
(pi—ui—relationship). For horizontal arching, it is, as before,
assumed that solutions for plane strain condition constitute a
reasonable approximation, and that the radial wall convergence 1is

due to changes in 0y and 0. only.

For the initial, elastic response, the wall displacements
may be calculated using Lame's equation:

u; = a[(KopO—pi)(1+v)]/E . (25)

After yielding is initiated, the wall displacement depends
on the adopted constitutive model of the soil. Brown et al.
(1983) presented a summary of currently available GCC
formulations for different material models and for the idealistic
case of a circular opening in an isotropic stress field under
plane strain conditions. For simplicity, the displacements may be
approximated by application of the solution proposed by Ladanyi
(1974):

u, = al1-[(1-e, ) /(144 )1"/2) (26)

where: and A, are plastic dilation and deformation

e
av
parameters defined by Ladanyi (1974).

This implies that the entire yield zone is treated as if
Mode A would exist throughout. The extent of the plastic zone,
needed for Eqn.26, is assumed to be given by the maximum extent
described by Egns.12 and 24, respectively.
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3.2 Vertical Arching
3.2.1 Support Pressure

In the previous section, the support pressure was calculated
to satisfy equilibrium in a horizontal plane only and vertical
equilibrium was neglected. It has been shown that different types
of yielding are induced if sufficient deformations due to radial
stress relief are permitted . Three modes, A, B and C, have been
identified for yield initiation and propagation (Figs. 1 and 5).
For each mode, the plastic flow occurs along slip surfaces whose
ultimate shear strength have been reached. The direction and
shape of these failure surfaces differs for each mode as
indicated on Fig.1. Since the shear resistance along these
surfaces has been fully mobilized due to the far-field stresses,
the soil mass tends to slide along these surfaces toward the
shaft under its own weight. Consequently, to prevent instability,
a support pressure, pg, must be applied to the shaft wall in the
area where gravity dominates. This phenomenon is referred to in
this paper as 'gravity effect'. Vertical arching may, however,
develop if sufficient vertical movement is permitted. From the
orientation of the slip surfaces shown in Fig.1, it is evident,
that gravity effects are more dominant in Modes A and B than in
Mode C. In Mode C, sliding occurs in the tangential direction
along spiral-shaped surfaces with no component in the radial
direction.

As illustrated earlier, Fig.5, two zones of yielding
containing one or both of two types of yield modes (A and/or B)
are created if radial stress relief is permitted. Hence, two sets
of slip surfaces exist in the inner zone near the shaft wall and
only one set in the outer zone. Sliding along any set of slip
surfaces could occur due to gravity. However, unstable blocks
tending to slide inward toward the shaft opening must be bounded
by two sets of slip surfaces for a kinematically possible failure
mode. This condition is satisfied when Mode A and B occur
simultaneously. In the outer zone, for Mode A-types yielding,
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only vertical sliding along spiral-shaped surfaces is possible
without overcoming additional resistances. No radial sliding
component exists. For the case of Mode B-type yielding (in the
outer zone), the inclined slip surfaces are formed initially but
blocks are prevented from sliding inward due to wedging action
and because the ultimate strength has not yet been reached for
tangential loading. The gravitational support pressure pg,
required to prevent instability therefore arises only from the
inner zone with two sets of slip surfaces. Nevertheless, because
of the close proximity of the state of stress in the outer zone
to the failure state, the gravitational support pressure 1is
calculated in this paper based on the maximum extent for both
zones.

This support pressure, pg, can be determined by application
of one of two classical approaches: (1) limit state equilibrium
(LEM) and (2) plastic equilibrium (PEM). Prater (1977) adopted
the first approach to calculate the support pressure required to
prevent initiation of sliding along conical failure surfaces
without considering the influence of horizontal arching. The
influence of yield propagation, the effect of the extent of the
yield zone and the related stress redistribution were not
included in this approach. Consequently, the total support
pressure could not be correctly determined.

The second approach has commonly been used to determine the
lateral pressure exerted by a flowing mass, e.g., for horizontal
stress determination in silos (Kendal, 1980). Handy (1984)
applied this approach after some adjustment for soil/wall
interaction to estimate the lateral pressures on retaining walls,
and demonstrated satisfactory agreement with results from model
tests. The conditions near a shaft resemble those near a
retaining wall., Hence, the plastic equilibrium approach is
adopted in the following to calculate the total support pressure,
pg. This pressure is determined by assuming that slip surfaces
were created by horizontal arching. It represents the total
support pressure required to maintain stability.
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Fig. 7 shows the forces acting on a horizontal soil element
within the yield zone. Summation of the vertical stresses,
assumed to be uniform, acting on the element leads to:

ZWOV (KsusR
A sina

do, = [v - + Kwuwa)] dh (27)

]

where: A sectional area of the yield zone (= n(R-a)?);

a = angle to the inclined yield surface (a = 90° for
Mode A; a = 45° + ¢/2 for Mode B);

K, = stress ratio at wall/soil interface (=Ka);

T frictional coefficient at soil/soil interface; and

M, o= frictional coefficient at soil/wall interface.

Integration of Egn.27 provides the vertical stress, O
distribution with depth, and the total horizontal pressure
required to prevent instability is thus given by the plastic

equilibrium condition:
p.=K_o_ . (28)
An example is presented in the following section.

Egns. 27 and 28 show that the support pressure, pg,
increased with increasing extent of yield zone, R. For a given
size of yield zone, this pressure induced by Mode A-type yielding
is higher than that by Mode B because of differences in the
orientation of the shear plane (i.e., a). Hence, if two zones of
different yielding mode occur, pg is governed by the outer yield
zone radius for Mode A yield initiation while the radius of the
inner yield zone dominates design for Mode B yield initiation
because this zone has a steeper boundary (larger a) and thus a

greater gravity effect.

Egns.27 and 28 are applicable only for cohesionless soils.
The gravity effect in cohesive soils differs because the shear
strength of cohesive soils is independent of confining pressure.
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This case is presented in Appendix C.
3.2.2 Displacements near the Shaft Collar

A solution for displacements considering gravity is not
available and it is recommended, as a first approximation, to
neglect gravity for the prediction of wall displacements and to
determine the convergence using the approach given in
Section 3.1.2.

The extent of the yield zone near the ground surface can be
used as an indicator of the width of the surface settlement
trough.

3.4 Summary of Design Procedure Based on Convergence/Confinement
Method

It is suggested that the behaviour of a shaft can be
described and treated by independently considering horizontal and
vertical arching near the shaft. These two arching actions can be
quantified by use of the CCM with inclusion of gravity effects.
In this fashion, it is possible to derive a relationship between
the support pressure and the radial displacement. The CCM for
shaft design consists of the following steps (refer to Fig.8):

1. Identify the mode of yielding near the shaft wall. It depends
on the initial in-situ stress (Ko); it governs the extent of
the plastic zone and the shape of convergence curve.

2. Calculate the ground convergence curves for a specific
elevation hi and determine the extent of the plastic zone,
using the appropriate two-dimensional model (Fig.8.a).
Neglect gravity effects.

3. Select a specific wall displacement, Ugr based on a
serviceability design criteria and establish pressure versus
depth and plastic zone versus depth relationships from
results of Step 2 (Fig.8.b and Fig.8.c; full line).
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4, With the configuration of the plastic zone around the shaft,
determine the gravitational support pressure distribution,
Py with depth (Fig.8.c; dashed line).

5. To the two pressure distributions due to horizontal (full
line) and vertical (dashed line) arching form an envelope of
required support pressure (Fig.8.c; shaded) for the specified
wall displacement Ug-

6. Adjust the pressure envelope at the bottom of the shaft for
the reduced pressure caused by face effects (Panet and
Guenot, 1982).

7. Multiply pressure envelope by appropriate load factor to
arrive at a design envelope. The resulting pressure should be
checked as not to exceed pressure at rest.

It follows from the above calculation steps that the
resulting design pressure distribution envelope depends on an
assessment of acceptable ground movements.

PART 11 - VERIFICATION OF DESIGN METHOD

4. COMPARISON OF PROPOSED SOLUTION WITH NUMERICAL SIMULATION

The numerical examples generated by application of the
finite element method (FEM) are intended to compare results with
the proposed method. They are not designed to simulate any
particular case history but are aimed at illustrating mechanisms
of typical shaft behaviour. For example, the magnitudes of KO

were chosen to represent two extreme conditions (KO < Kc and KO

r
> Kcr) and create two difference modes of yielding.
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4.1 Finite Element Analyses

The finite element program SAFE, developed at the University
of Alberta by Chan (1985), was used for this comparison. The soil
near the shaft was discretized for an axisymmetric shaft by
pie-shaped elements. The configuration of the mesh, consisting of
8-node quadrilateral iso-parametric elements, is shown in Fig.9.
Zero displacement boundary conditions were assumed at three
boundaries (AB, BC, and CD) for the initial stress determination
by 'switch on gravity'. The Boundary AB, representing the wall of
a 2 m diameter shaft, was then allowed to move inward to simulate
shaft construction. The specified displacement profiles is shown
in Fig.9. It enforces a constant wall displacement (u;) along the
shaft except near the base.

Three analyses were performed to investigate the shaft
behaviour in purely cohesionless and cohesive soils. For
cohesionless soil, an elastic, perfectly plastic model and the
Mohr-Coulomb yield criteria with associated flow rule was used
and a set of typical soil parameters were selected (Table 1). Two
Ko~values, 0.409 and 0.980, were chosen to create two typical
modes of vielding.

Because of the assumed associated flow rule for the
cohesionless soil, deformations due to dilation and, hence,
arching effects will be exaggerated as compared to what might be
expected in reality. For cohesive soil, the unconfined
compression strength of the ground was assumed to be constant
with depth and the elastic, perfectly plastic model with the
von-Mises yield criteria with no volume change was employed.

A minimal surcharge (equivalent to 3 or 4 meters of
cohesionless or cohesive soil, respectively) was applied at the
ground surface, to overcome the problem of yielding at zero
confinement near the ground surface. Some numerical convergence
problems were experienced. This is commonly encountered in
FEM-analysis involving non-linearity, plasticity near the limit
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equilibrium state (Borst and Vermer, 1984, and Griffiths and
Koutsabeloulis, 1985). The incremental displacement step after
formation of a plastic zone was selected at u/a=0.01% resulting

in 4 to 10 iterations for reasonable convergence tolerances.
4.2 Results from Finite Element Analysis
4.2.1 Stress Distribution

The radial, tangential and vertical stress distributions
around the shaft after the final displacement step are plotted in
Figs. 10 to 12 for three soil or stress conditions. Yielding has
occurred in all cases. In Case SM1 (Fig.10), yielding was induced
by Mode B, and the tangential stresss is always the intermediate
stress during propagation. In contrast, in Cases SM2 and CM1,
Mode A governs the yield initiation and the vertical stress is
always the intermediate stress. However, the stress distribution
patterns are similar for the three cases, except near the lower
boundary. The radial stress decreases toward the shaft wall
because of stress relief and causes stress redistribution as
horizontal arching develops. The tangential stresses initially
increase in the elastic and plastic regions but decreases during
yield propagation close to the shaft.

The drastic reduction of vertical stresses near the shaft
wall indicates that arching in vertical planes near the
elastic/plastic interface develops in all cases (the shaft wall
friction is zero). As a consequence, a slight increase of the
vertical stress is observed at the interface.

The stress distributions at one horizontal section (depth
h=3.8m) for Case SM 2 is plotted in Fig.13 for comparison with
stresses calculated by the CCM. This particular section is remote
from the ground surface and the shaft bottom. Stress
distributions at two displacement stages are plotted: first, when
vielding at the wall is initiated (at u/a=0.26%) and, second,
after much yielding has occurred. The results in Fig.13 indicate
that yield initiation occurred in Mode A, as expected. The stress
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distributions predictedj by the CCM agrees well with those from
the FEM.

4.2.2 Radial Displacement and Plastic Zone Radius Development

Figs. 14 to 16 present results of the radial support
pressure/wall displacement and support pressure/plastic zone
radius relationships obtained from the FE analyses (designated by
crosses) and by the CCM (full lines). The numbers on the GCC plot
(pi-ui) correspond to the different stress stages described in
Figs. 4 and 6. In Zone 1, the ground responds elastically; Line E
separates elastic from plastic behaviour. Beyond Line E yielding
is induced for SM1 (Fig.14) by Mode B, and this results in a
non-linear response curve. Further stress relief causes a
reduction of the tangential stress near the wall until it becomes
equal to o, This state is represented by Line T.

For Cases SM2 and CM1, the mode of yielding differs, i.e.,
initiation by Mode A. Lines E and T in Case CM1 are parallel and
vertical because yielding in purely cohesive soil is induced at a
constant stress difference equal to the compressive strength of
the soil.

The p; R plots demonstrate outward propagation of the
plastic zone due to support pressure reduction. The results
predicted by the CCM agree reasonably well with those of the FE
analyses.

4.2,.3 Extent of Plastic Zone with Depth

The extent of the plastic zone in a vertical section at two
displacement levels obtained by both methods, FEM and CCM, is
presented in Fig.17. Because of the coarseness of the FE mesh,
the extent varies in a steplike fashion for the FE analysis but
the results of the two methods agree well, considering that
yielding is only indicated at the inegration points of each
element. For the enforced wall displacement profile (Fig. 9), the
radius of the plastic zone decreases with depth for cohesionless
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soils and forms a cone whereas it is constant for a shaft in
cohesive soils, forming a cylinder (above a short cone). In
cohesionless soils, at the same displacement, a larger plastic
zone develops for Case SM1 at lower field stress (Ko=0.41). This
implies that the pressure due to gravity in Case SM! (K0<Kcr) is
more dominant than in Case SM2 (K°>Kcr)’ However, the support
pressure at a fixed deformation level is greater in Case SM2
because of higher in situ stress (see Fig.18).

4,2.4 Pressure Distribution at Wall

From the GCCs (Figs. 14 to 16), the support pressures
required to maintain equilibrium at a given displacement are
plotted on Fig.18 for three displacements levels together with
results from the FE analysis. Both methods give consistent
results except at the bottom boundary. These figures clearly show
that the support pressure is a function of wall displacement and
in situ stress. Pressures predicted by the CCM for u/a=0.8%,
i.e., 8mm wall movement, are shown on Fig.18. The support
pressure determined from the limit equilibrium method proposed by
Beresantzev (1958) is included for comparison. Large
displacements would have to be allowed in order to obtain these

minimum pressures.

The support pressure for a constant wall displacement
increases steadily with depth for all three cases, even at
h/a > 4 where the methods by Terzaghi (1943) and Berezantzev
(1958) predict constant minimum support pressures. The rapid
increase at a depth of more than 6m is an artifact of the
enforced displacement distribution near the shaft bottom.

Gravity effects and vertical arching within the plastic zone
around the shaft was not dominant in these cases because

relatively small displacements (u/a 0.3 to 0.56%) were imposed.
Large movements could not be simulated because of convergence
problems. Nevertheless, the CCM provides an excellent tool to

predict the ground pressure at specified, large displacement
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levels.
4.3 Gravity Effect and Vertical Arching

Because of difficulties in simulating behaviour at large
displacements by FE analysis, several analytical examples have
been generated to illustrate the role of gravity for shaft
design. Results determined by application of Eqns.27, 28 and C.1
for cohesionless and cohesive soils are plotted in Figs. 19 and
20. Dimensions of the shaft and the shape as well as the extent

of the assumed plastic zone are also shown.

Fig.19 indicates that for cohesionless soil, the support
pressure due to gravity effect increases as the yield zone
expands. The distribution of the support pressures depends
heavily on the assumed configuration of the plastic zone. It
reduces to zero at depth for cone shaped plastic zones. For
cylindrical yield zones, as assumed by Terzaghi (1943), a
constant pressure would be approached. Near the surface, the
pressure is close to the active earth pressure.

In cohesive soil (Fig.20), the support pressure to prevent
instability due to gravity also increases for larger yield zones.
However, a distinct difference in vertical arching action exists
between cohesionless and cohesive soils. For cohesive soils,
support pressure applied along the upper portion of the shaft
does not enhance the stability because the shear strength of the
cohesive soil is independent of the confining pressure. The
support pressure to inhibit collapse must be applied where a
collapse mechanism is possible, generally near the bottom (Britto
and Kusakabe, 1983).

Combining Fig. 18 and 19 provides the expected pressure
distribution for Case SM1 (Fig. 21). Near the collar, to about 5m
depth, gravity dominates. Below this level the pressure is
displacement controlled (shown for u/a 2 0.5%). Because this
pressure represents the actually expected pressure, a load
factored pressure should be used for design of the shaft lining.
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The load factor should, however, be selected so that the
resulting design pressure does not exceed the stress at rest.

5. DISCUSSION
5.1 Horizontal versus Vertical Arching

Stress relief due to the shaft excavation causes horizontal
and vertical arching near a shaft. It is of practical importance
to understand under what conditions horizontal or vertical
arching dominates shaft behaviour and becomes relevant for
design. The CCM provides an effective tool to depict the role of
each type of arching quantitatively. Fig. 22 presents a schematic
GCC with the support pressure normalized to initial state of
stress (Kopo). This reduces the GCC for different elevations to
one unique curve, if horizontal arching is considered only and
gravity is neglected. The normalized support pressure due to
gravity, (pg/Kopo), during vertical arching is sketched for two
depths; for a section close to the surface (shallow) and for a
level at greater depth (deep). This diagram illustrates two
features of practical significance: (1) horizontal arching
prevails for small wall displacements, i.e., when good ground
control is exercised, and at greater depths; and (2) vertical
arching and, hence, gravity effects dominate only when
'excessive' yielding is permitted and only at shallow depth.

It follows then, that previously proposed design methods are
seldom in agreement with modern construction procedures and
design requirements enforcing good ground control to minimize
surface settlement and ground disturbance.

5.2 Limitations of the Proposed Approach

Many assumptions had to be made to arrive at closed-form
solutions for the CCM. It is imperative to investigate for
practical applications how these assumptions and approximations
affect the accuracy of the results. For the simulation of
horizontal arching, the 2-D plane stain 'hole-in-plate' model was
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employed. The neglectance of shear stresses between horizontal
layers, whose effect have been investigated in detail by Terzaghi
(1943), could lead to an underestimation of the extent of the
yield zone, and thus a slightly unconservative support pressure.
This was already recognized by Terzaghi who recommended to use a
reduced friction angle for compensation (see Section 2.1). It
must be realized that the assumed 2-D plane strain condition does
not prevail at shallow depth where the gravity effect dominates.
However, horizontal arching normally initiates yielding near the
surface and, hence, correctly reflects the true shaft behaviour
before gravity dominates. At greater depth, the model is a
reasonable approximation for all displacement levels and
distributions.

For the calculation of the support pressure to resist
gravity, the vertical stress distribution is assumed to be
uniform at each depth. This assumption is contradicted by the
results of the finite element analyses which demonstrate that the
vertical stress increases rapidly away from the shaft wall. Thus
the assumption of a constant average o results in a higher
(conservative) support pressure pg due to gravity effects (Egns.
27 and 28). The existance of shear stresses causes a rotation of
the yield plane (i.e., a reduction of the angle a in Egn. 27),
and neglectance of this effect leads to a conservative estimate

f L
o pg

5.3 Effect of vVariation of E and q, with Depth on Shape of
Plastic Zone

For the previously presented analyses, Young's modulus, E
and shear strength, q,r vere assumed to be independent of depth.
This assumption may not be valid in practice. Equations governing
the extent of the plastic zone depend on these parameters.
Consequently, shape and extent of the plastic zone must be
affected by this simplification. This effect has been studied by
Wong (1986) and revealed the following:
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a) Cohesionless Soils

For a constant modulus, the extent of the yield zone can be
determined as a function of depth using Egn.12 and Egns.18 and 24
for Modes A and B, respectively. For Mode A and a constant
imposed shaft wall displacement, yielding occurs on vertical
(spiral) surfaces and its extent decreases rapidly with the
depth. For Mode B, yielding caused by the vertical-radial stress
difference occurs along inclined (conical) surfaces following the
Rankine's slip lines and its configuration looks like the
truncated cone assumed by Prater (1977).

For soils with a linearly increasing modulus with depth, the
profile of the yield zone will look as shown in Fig. 23. With a
constant wall displacement imposed, the magnitude of stress
relief with depth is larger and the extent of the yield zone is
greater at depth.

Fig. 23 shows that cone-shaped yield zones may develop in
cohesionless soils. Hence, the method proposed by Berezartzev
(1958) seems appropriate for the determination of the minimum
support pressure requirement but for conditions of constant soil
stiffness only.

b) Cohesive Soils

Similar reasonings as for cohesionless soils are applicable
to cohesive soils. Equations governing the shape of the yield
zones for Modes A and B are given in Appendix B (Egn. B.12 and
Egns. B.18 to B. 24 respectively). Fig. 23 illustrates possible
configurations of the plastic zones for different cases. The
plastic zone may be cone-shaped or cylindrical depending on the
strength and deformation property variation with depth. The
extent of the plastic zone generally diminishes rapidly at the
bottom of the shaft because of the face effect.

Britto and Kusakabe (1982, 1983) investigated the mechanism
of the collapse modes of unsupported axi-symmetric excavations in



29

soft clays theoretically and experimentally. Their findings agree
well with the shapes shown in Fig. 23.

6. CONCLUSIONS

The behaviour of shafts in cohesionless and cohesive soils,
including the transition from elastic repsonse to yielding and to
collapse, has been explored in detail. It depends on the mode of
yield initiation and propagation and the influence of gravity.
Stability of a shaft is enhanced by two types of arching,
horizontal and vertical, that develop around a shaft opening if
sufficient wall displacements are permitted during construction.
It was found that in cohesionless soils horizontal arching
prevails at small wall displacements and at great depth whereas
vertical arching is only mobilized after large displacements and
near the ground surface. For cohesive soils, when a distinct
collapse mechanism is established, the support pressure required
to prevent the instability arises primarily from gravity effects
but yielding is caused and controlled by horizontal arching.

It is suggested that horizontal and vertical arching can be
approximately quantified by application of the
Convergencement/Confinement Method with consideration of gravity
effects. This method provides a performance prediction model
which predicts required support pressures with respect to
displacement or serviceability design criteria. It differs from
conventional approaches in which the limit state of equilibrium
is considered and, hence, reasonable safety margins must be
selected carefully. The new design method has been verified in
this paper by comparison with results from finite element
simulations. The method provides reliable estimates of support
pressure, wall displacement and extent of plastic zone. It
constitutes a rational design method as well as an approach for
performance prediction and assessment of field measurements. Its
validity was also verified by comparison with measurements from

case histories. This will be published in a future paper.
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The proposed design method provides support pressure
distribution with depth for specified wall displacements. Hence,
it was possible to evaluate the limits of applicability of
conventional design methods. These methods generally provide
minimum support pressures required to prevent collapse. These
values can, however, only be reached if the wall displacements
are large and for most practical purposes excessive and
unacceptable,
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Appendix A

Notation

a = radius of shaft

H = depth of shaft

h = depth measured from ground surface

A = area of cross section

R = radius of plastic zone

R, . = radius of plastic zone induced by tangential/radial
stress difference (Mode A)

R, = radius of plastic zone induced by vertical/radial
stress difference (Mode B)

r = radial distance

uy = radial displacement of shaft wall (at r=a)

0. = radial stress

g, = vertical stress

o = tangential stress

04,03 = major and minor principal stress

T = shear stress

oy = minor horizontal stress

Oy = major horizontal stress

P;= Py = internal or support pressure (radial stress) at wall

P, = vertical initial in-situ stress

pg = stress due to gravity effect

v = unit weight of soil (=pg)

p = density of soil

v = Poisson's ratio

E = Young's modulus

e = average plastic dilation

av



parameter for calculating plastic deformation
angle of internal friction of soil

tan? (45° + ¢/2)

unconfined compression strength of cohesive soil
shear strength of cohesive soil

wall friction coefficient

soil friction coefficient

ratio of horizontal to vertical stress

K at soil/soil boundary

K at soil/wall boundary

K at rest

K in active state ( = tan?(45°-¢/2)

critical K-value distinguishing Mode A from Mode B

36
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APPENDIX B

Mechanism of Shaft Behaviour in Cohesive Soil

This appendix contains the equations governing shaft
behaviour in cohesive soils. Equations are designated in the same
sequence as those for cohesionless soil. Thus, explanations given
in the main text for cohesionless soils are generally applicable
to this appendix. Notations are given in Appendix A.

The stresses in an elastic thick walled hollow cylinder are:

o, = 7h = pg (B.1)
o, = Kopo—[KopOfpi](a/r)2 (B.2)
o, = Kopo+[Kopo—pi](a/r)2 (B.3)

For a cohesive material the strength is assumed to be constant:

(¢ -0 ) = qa, (B.4)

1 3

Hence, the support pressures for the three possible modes of

yield initiation are:

For Mode A: p.= K p_ - qu/2 (B.5)
For Mode B: p.= p_~ q, (B.6)
For Mode C: p,= (2Ko—1)po— q, (B.7)

The largest value of p; will govern the mode of yield initiation.

This can be expressed in terms of required Ko—values:
Mode A: [1- qu/(ZpO)] < K, < [qu/(2po)+1] (B.8)

Mode B: K < [1- qu/(2po)] (B.9)
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Mode C: Ky > [qu/(2p0)+1] (B.10)

As for cohesionless soils, Mode C has been neglected in the
following analysis. A critical K-value, Kcr' is used to
distinguish Mode A from Mode B:

a) Mode A (ot-or) at Ko> Kcr

The yielding initiates at the condition of:
(ot - or) = 2K_p_-2p; = q, (B.11)

A further decrease in the support pressure causes a propagation
of a plastic zone to:

R, = a{exp[(Kopo—pi)/qu—1/2]} (B.12)

Stresses within the plastic zone R . are:

i

o, p; *q, In(r/a) (B.13)

i

o

" p; * g, [1 + 1n(r/a)] (B.14)

Additional stress relief causes yielding in Mode B (together with

Mode A) and the extent of this zone, Ry, v is:

R, = a exp[(pi - po)/qu] (B.15)

b) Mode B (Uv—ar) at K°< K.,

Yielding initiates at:
p; = 0,79, (B.16)

As p; is further reduced, the vertical stress decreases due to
the vertical arching and the tangential stress will increase
until it becomes equal to the vertical stress at the wall. At
this state, the radial stress at the elastic/plastic boundary is
given by:
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o.=0,-q and o = p_. (B.17)

Equating this stress with that in the elastic zone given by
Egn.B.2 provides the radius of the plastic zone:

R, . = a/ﬁ(Kopo-pi)/[(Ko—1)po+qu]}' (B.18)

and the support pressure is:

p; = (K p, - q,/2) (B.19)

Further relief in support pressure causes propagation of the
plastic zone. The mode of yielding is still Mode B. But near the
shaft wall, there exists a zone where the tangential stress is
equal to the vertical stress. Within this zone, the radial and
tangential stresses, governed by the failure criteria, are given
as Ladanyi (1974):

Q
i

- p; * 4, In(r/a) (B.20)

oy p; *+ qu(1+ln(r/a)) (B.21)

and the extent of this zone is:
Ry = a{exp[(KOpo—pi)/qu—T/Z]} (B.22)

The radial stress distribution in the zone of Mode B yielding
must be known for the determination of the extent of the plastic
zone. Between R < r < R_. (shown in Fig.6.b), conditions of
equilibrium provide the radial stress:

0. = Kp,~[(K p -0 ") (R _/r)*] (B.23)

[ ' — -_— =
where: o, 2Kopo d, at r Rtr‘

Substituting r = R, . and o' into Egn.B.23 yields the radial
stress distribution in the plastic zone (Rtr <r < er).

Continuity of radial stresses at the elastic zone boundary (ar =

Kaav) locates the extent of the plastic zone, R,. as:
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R, = a/{(K_p,-qexpl2((K_p_-p;)/qa,~1/2)1/[(1-K )p_+q, 1} (B.24)

The wall displacements are calculated based on the model
proposed by Ladanyi (1974). For elastic ground response, the wall
displacement is:

u; = a[(KOpO—pi)(1+v)]/E (B.25)

If yielding occurs, the displacements are:

u, = a{1—[1/(1+AV)]1/2} (B.26)
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APPENDIX C

Gravity Effect and Vertical Arching in Cohesive Soils

The shear resistance of cohesive materials is independent of
confining pressure. Hence, applying horizontal pressure on the
shaft wall does not enhance the strength of the soil in the
plastic zone. Hence, it is necessary to identify possible
collapse mechanisms and to inhibit these by application of
external forces.

Fig.C.1 shows one possible collapse mechanism. The
cylindrical plastic zone will cave in (slide vertically) and
exert a force, W', on the conical soil mass underneath. A
horizontal pressure must be applied to inhibit failure of this
soil cone. The required total force, Pg' is given by considering
the force equilibrium along the inclined failure surface of the
conical soil mass:

(W'+Wc)s1na - Pg(cosa) - Fc = 0 (c.1)
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Table 1. Input Data for Finite Element Analyses of Shaft.
Figure 1. Modes of Yielding.

Figure 2. Earth Pressure Distribution.

Figure 3. Arching near Shaft.

Figure 4. Mode A Yielding.

Figure 5. Extent and Types of Yield Zones.

Figure 6. Mode B Yielding.

Figure 7. Effect of Gravity during Vertical Arching.

Figure 8. Shaft Design Approach based on Convergence/Confinement
Method with Gravity Effect.

Figure 9. Finite Element Mesh for Shaft Analyses.

i

Figure 10. Stress Contours at u/a 0.3% (SM1): (a)or, (b)at,

(c)av.

Figure 11. Stress Contours at u/a 0.5% (SM2): (a)or, (b)at,

(C)ov.

Figure 12, Stress Contours at u/a 0.56% (CM1): (a)or, (b)ot,

(clo,.
Figure 13, Stress Distribution at h=3.4m (SM2).

Figure 14. Radial Support Pressure-Displacement Relationship and
Extent of Plastic Zone (SM1, cohesionless, R, = 0.41): at (a)
h = 1.8m, (b) h = 3.8m, (¢c) h = 5.8m, and (d) h = 7.8m.

Figure 15, Radial Support Pressure-Displacement Relationship and
Extent of Plastic Zone (SM2, cohesionless, K, = 0.98): at (a)
h = 1.8m, (b) h = 3.8m, (c) h = 5.8m, and (d) h = 7.8m.

Figure 16. Radial Support Pressure-Displacement Relationship and
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Extent of Plastic Zone (CM1, cohesive, K, = 0.98) at: (a) h =
1.8m, (b) h = 3.8m, (¢c) h = 5.8m, and (d) h = 7.8m.

Figure 17. Comparison of Extent of Plastic Zone (SM1, SM2, CM1).

Figure 18. Comparison of Radial Pressure Distributions (SM1, SM2,
CM1).

Figure 19. Gravity Effect due to Vertical Arching; Cohesionless
soils.

Figure 20. Gravity Effect due to Vertical Arching; Cohesive
soils.

Figure 21. Design Pressure Envelope for u/a = 0.8% (SM1).

Figure 22. Normalized Ground Convergence Curve; Horizontal or
Vertical Arching (Cohesionless Soils).

Figure 23. Shapes of Plastic Zones for Cohesionless and Cohesive
Soils.,

Figure C.1 Gravity Effect and Vertical Arching in Cohesive Soil.
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ABSTRACT

Wong and Kaiser (1987; Part I) proposed the use of
Convergence/Confinement Method with the inclusion of gravity
effects as an analytical tool to predict the behaviour of
vertical shafts. In this paper, results from this method are
compared with measurements to evaluate the performance of several
instrumented, full scale and model shafts. This evaluation
confirms that the proposed method provides satisfactory
predictions of shaft behaviour in various soil types (i.e.,
support pressure/radial displacement relationship). It is also
shown that the actual support pressures, monitored in the model
test and in the field, are higher than those predicted by the
conventional design methods. Practical implications are

discussed.
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