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Abstract 

The diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) is a destructive, 

and widely distributed species occurring universally wherever Brassicaceae are grown. Plutella 

xylostella was first reported in western Canada in 1885 and now causes extensive crop yield 

losses, depending on the year, throughout the Canadian prairies. Biological control through its 

major larval endoparasitoid, Diadegma insulare (Hymenoptera: Ichneumonidae), has been an 

important management strategy in North America. In western Canada, the parasitoid is 

responsible for a greater degree of parasitism than other native parasitoid species, providing an 

opportunity for integration of biological control with other management strategies of Plutella 

xylostella. My investigation focused on in-depth understanding of the parasitoid’s ecology, 

bitrophic and tritrophic interactions among the host plant species, P. xylostella and D. insulare. 

My studies on oviposition preferences and developmental performance of P. xylostella and D. 

insulare on host plants with water deficit stress indicated that although P. xylostella females 

preferred to deposit eggs on vigorous plants, not those under water stress, their preimaginal 

development on non-stressed plants was similar to that on stressed plants. However, water stress 

had a strong effect on developmental parameters of D. insulare. 

My studies on the development of D. insulare at various constant temperature regimes 

indicated that most of the fitness parameters and the rate of parasitism by D. insulare increased 

with a decrease in temperature. Investigations on selective floral plant species and their impact 

on the life-history traits of P. xylostella and D. insulare showed that none of the floral plant 

species were favored by the pest or parasitoid. However, floral species had a contrasting effect 

on various life-history traits of a pest-parasitoid system. 
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A four-year field survey of P. xylostella and its associated parasitoid fauna in southern 

Alberta, Canada, indicated the dominance of larval parasitoids, particularly D. insulare, in most 

years.  
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Chapter 1: General Introduction 

A version of this chapter has been published: 

Munir S, Dosdall LM, O’Donovan. 2015. Evolutionary Ecology of Diamondback Moth, Plutella 

xylostella (L.) and Diadegma insulare (Cresson) in North America: A Review. Annual 

Research and Review in Biology 5(3): 189-206. 

 

1.1 The pest - Plutella xylostella 

The diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) is believed to be 

the most widely distributed species of Lepidoptera, occurring universally wherever Brassicaceae 

are grown (Talekar & Shelton 1993; Sarfraz et al. 2005a). The largest number of species (nine 

species) of the genus Plutella (Sch.) has been recorded in the USA. Seven species are known in 

South America while only two species have been recorded in Europe (Kfir 1998). Six species of 

the genus Plutella are economically important worldwide. Most have limited distribution 

including Plutella porrectella (L.) in Ontario, Canada, P. annulatella (Curt.) in Finland, P. 

antiphona (Mey.) in New Zealand, P. balanopis (Mey.) in Southern Africa, P. armoraclae (Bus.) 

in Colorado, USA (Kfir 1998).  In contrast, P. xylostella is found throughout much of the world 

wherever host plants are cultivated.  

The geographical origin of P. xylostella is uncertain. It is generally believed to have 

originated in the Mediterranean region (Harcourt 1954). However, Kfir (1998) speculated that P. 

xylostella might have originated in South Africa due to the richness and diversity of its 

parasitoids (14 species) and host plant species (a total of 175 species of which 32 are exotic). The 

coevolution of P. xylostella and its host plants most probably began in these regions 54 to 90 

million years ago (Kfir 1998).  

North American populations of P. xylostella are most probably of European origin and 

were likely introduced about 150 years ago (Hardy 1938). Plutella xylostella was first reported in 
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western Canada in 1885 (Harcourt 1962), and now occurs almost annually throughout the 

Canadian prairies wherever its host plants are cultivated (Anonymous 1996; Dosdall et al. 2004b, 

2011). In both eastern and western Canada, P. xylostella originates primarily from an annual adult 

population migration from southerly regions. Alberta and Saskatchewan populations of P. 

xylostella are usually seasonal. The Saskatchewan population originates from Texas, whereas the 

origin of the Alberta population has not been identified. The moth is a weak flyer, usually fly 

within 2m of the ground. However, moths are carried by the wind and travel up to 1500 km, and 

densities vary considerably from year to year (Smith & Sears 1982; Dosdall et al. 2004b; 

Hopkinson & Soroka 2010). Plutella xylostella has been reported to survive under mild winter 

conditions in western Canada (Dosdall 1994), but successful overwintering is considered a rare 

phenomenon (Dosdall et al. 2008). 

1.1.2 Host plants and their importance 

Plutella xylostella is an oligophagous pest that feeds exclusively on brassicaceous crops 

(Talekar & Shelton 1993). Brassicaceae represents one of the oldest and most widely distributed 

plant groups; it comprises 338 genera and 3,709 species (Prakash 1980; Warwick et al. 2006) 

providing a great diversity of food products from its 39 species worldwide (Warwick et al. 2006; 

Dixon 2006). Archaeological evidence indicates that Brassicaceae was important to human 

societies as long ago as 5000 BCE (Yan 1990). For centuries Brassicaceae crops have been a 

major source of food (e.g., broccoli, cauliflower, brussel sprouts, cabbage, collard) and 

condiments (e.g., mustard) for humans and fodder (e.g., turnip) for domesticated animals. The 

Brassica oilseed crop (also known as rapeseed) has been cultivated in Europe as a source of lamp 

oil since the Middle Ages (Raymer 2002) and as a lubricant for steam engines till World War II 

(Downey 1990). In North America, early voyagers introduced brassicaceous crops in 1541 
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(Shelton 2001). In the early 1970s, Canadian plant breeders developed rapeseed with low erucic 

acid and low glucosinolates and coined the name “canola.” Most canola currently planted in 

North America comprises hybrid cultivars (a new plant result from cross pollination of two 

distinct plant species) of B. napus, which reach maturity in 95 days. In the United States, canola 

is mainly grown in North Dakota, Minnesota, Montana, and the Pacific Northwest: in Canada, 

principal areas of canola production are Saskatchewan, Alberta, Manitoba, British Columbia, and 

Ontario (Weiss et al. 2009).  

Canada is the world’s largest exporter of canola/rapeseed, accounting for 74% of 

Canadian export trade (Soyatech 2017). The Canadian canola industry adds over $26.7 

billion/year to the Canadian economy (Canola Council of Canada 2017). In western Canada 

(Manitoba, Saskatchewan, Alberta, and British Columbia), canola, Brassica napus L. and 

Brassica rapa L. and mustard, Brassica juncea (L) Czern. and Sinapis alba L., are the primary 

host crops of P. xylostella (Philip & Mengerson 1989). In eastern Canada (Ontario, Quebec, New 

Brunswick, Nova Scotia, Prince Edward Island, Newfoundland, and Labrador), P. xylostella can 

also be pestiferous in the areas of brassica crop production (Madore 2010). Plutella xylostella can 

also feed and develop on many Brassicaceae weeds that are common in agriculture cropland 

across the country (Sarfraz et al. 2011).  

1.1.3 Pest status 

Plutella xylostella is a major economic pest of Brassicaceae crops in more than 100 

countries across the globe and can cause up to 90% crop loss (Alam 1992; Morallo-Rejesus & 

Sayaboc 1992; Talekar 1992; Talekar & Shelton 1993). Before the introduction of synthetic 

insecticides in the late 1940s, P. xylostella was not reported as a major pest of brassicaceous 

crops. However, the pest status of P. xylostella began to increase in the 1950s as important 
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natural enemies were eliminated with the extensive use of synthetic insecticides. In 1953, P. 

xylostella became the first agricultural pest to develop resistance to DDT (Ankersmit 1953; 

Johnson 1953; Talekar & Shelton 1993). Since that time, it has shown resistance to almost every 

known synthetic insecticide class including organophosphate, pyrethroid, and carbamate 

insecticides. Moreover, P. xylostella has also developed resistance to relatively new chemistries 

such as avermectins, macrocyclic lactones, neonicotinoids, oxadiazines, pyrazoles, insect growth 

regulators and nereistoxin analogue insecticides (Shelton & Wyman 1992; Yu & Nguyen 1992; 

Mohan & Gujar 2003; Ninsin 2004; Sayyed et al. 2004; Sarfraz et al. 2005a).  

Plutella xylostella host plants are abundant and widely distributed. Year-round crucifer 

cultivation, combined with the overuse and misuse of insecticides, can result in control failures 

and increased crop damage. More than 500 instances of arthropods have been recorded to develop 

resistance against particular pesticides, and P. xylostella has been observed to develop insecticide 

resistance rapidly (Georghiou & Lagunes-Tejeda 1991).  

One of the main causes of the severe P. xylostella pest status in many parts of the world is 

the absence of potential and effective parasitoids (Lim 1986). Plutella xylostella has the 

capability to migrate long distances via air currents. However, there is no record of migration of 

any of its parasitoids (Curtis 1860; Ormerod 1891; Gray 1915; Miles 1924; French 1967; 

Bretherton 1982; Chapman et al. 2002). Moreover, the destruction of natural enemies by the 

application of broad-spectrum insecticides has contributed to the major pest status of P. 

xylostella.  

Brassicaceae is a very diverse plant family, grown in all Canadian agricultural regions and 

includes many indigenous species as well as invasive weeds (Warwick et al. 2003). The area 

devoted to Brassicaceae crops has increased dramatically in Canada in recent decades. For 
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instance, the total seeded area of canola in western Canada rose from 7.34 to 8.09 million ha 

during the period 2008-2016, and this provides a resource readily exploited by P. xylostella 

(Statcan 2016). Furthermore, pest populations can increase rapidly due to their high reproductive 

potential (Talekar & Shelton 1993). 

In Canada, the pest status of P. xylostella in any given year is dependent primarily on its 

arrival time from southern regions of North America, the size of invading populations, the 

number of population influxes, and environmental and biological conditions in the area of its 

invasion (Dosdall et al. 2008, 2011; Miluch 2010).  

1.1.4 Economic importance 

Plutella xylostella causes significant yield losses wherever brassica crops are grown in the 

world. Its management alone results in a US$4-5 billion annual cost to the global economy 

(Furlong et al. 2013). The cost of controlling P. xylostella during outbreaks in western Canada is 

substantial. For instance, $86 million in 2001, $4 million in 2003 and $3.5 million in 2005 have 

spent on management efforts (Dosdall et al. 2008). 

Damage caused by P. xylostella in Southeast Asia can be very severe; sometimes crop 

losses are more than 90% (Talekar & Shelton 1993; Verkerk & Wright 1996). In Australia, P. 

xylostella is the leading pest of both canola and brassicaceous vegetables. The estimated crop 

losses in canola/rapeseed are $3 million, and control costs are $6 million. Plutella xylostella also 

attacks the 136,000 hectares of major brassica vegetable crops and the crop losses in an average 

year are estimated to be $8 million, and control costs $12 million (Gu et al. 2007; Furlong et al. 

2008a).  

Plutella xylostella damages brassica vegetables and field crops regularly throughout 

Europe. There are no comprehensive data available on yield losses due to P. xylostella feeding, 
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but during hot and dry weather conditions severe infestations and high yield losses can occur, 

while in most years, the damage is below the economic injury level and the pest can easily be 

controlled by applying insecticides (Shelton 2001). 

Mexico is a major producer of broccoli and related crucifers (30,000 ha) with a total farm 

gate value greater than the U.S. $63 million. Plutella xylostella significantly reduces the yield and 

quality of the crop and accounts for the majority of insecticide use in crucifer production (Diaz-

Gomez et al. 2000). 

Plutella xylostella is present throughout the United States and ranks as one of the major 

pests in the Southeast and Pacific Northwest regions (Harcourt 1957; Buntin 1990; Brown et al. 

1999). In the southeastern USA, the moth constitutes 90% of damage inflicted to canola from 

seedling to crop maturity (Buntin 1990; Ramachandran et al. 2000). In California, which is the 

major fresh market broccoli producer of the USA with a farm gate value of $450 million, crop 

losses were estimated to be greater than $6 million due to a severe infestation in 1997 (Shelton & 

Roush 2000). 

In most years, P. xylostella causes minor economic damage in Canada, but in some years, 

populations reach outbreak densities, and extensive crop losses occur (Dosdall et al. 2011).  For 

instance, in 1995, the pest caused substantial crop damage in western Canada and Quebec, with 

the combined economic losses estimated at least $40 to $50 million (Braun et al. 2004).  

Outbreaks responsible for economic damage to canola and mustard in western Canada have 

occurred approximately every two to three years since 1995. However, the frequency of 

economically damaging densities is not correlated with increases in the area devoted to canola 

production (Dosdall et al. 2008).   
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1.1.5 Life history and biology 

The biology of P. xylostella has been studied extensively under both laboratory and 

natural conditions in relation to ecological factors.  Both biological and developmental 

parameters vary due to differences in host plant species, temperature, and population distribution 

(Alizadeh et al. 2011).  Plutella xylostella has a short life cycle, and its population may increase 

up to 60-fold from one generation to the next (De Bortoli et al. 2011). The moth is multivoltine 

and can produce four to 20 generations per year in temperate and tropical regions, respectively 

(Harcourt 1986; Vickers et al. 2004). In Canada, an early arrival time of invading adults under 

favorable environmental conditions could enable completion of more generations of this 

multivoltine species than a later invasion (Dosdall et al. 2008). Usually, three generations per 

year occur in Alberta (Philip & Mengersen 1989), and four to five in Ontario (Harcourt 1960). 

The life cycle of P. xylostella from egg to adult is on average 32 days and ranges from 21 

to 51 days under field conditions (Harcourt 1957). Time to maturity is highly dependent upon 

climatic conditions. At constant temperature, development can occur from 8-32oC and under 

fluctuating temperature from 4 to 38oC (Liu et al. 2002). In a recent study, P. xylostella 

development has been observed at different constant (7, 22, 30oC) and fluctuating (0-14, 15-29, 

and 23-37oC) temperatures. The development was very slow at lowest constant (7oC) and 

fluctuating temperatures (0-14oC) while fast growth of P. xylostella was recorded at highest 

constant (30oC) and fluctuating temperatures (23-37oC) (Bahar et al. 2012). 

The moth species have four life stages: egg, larva, pupa, and adult (Fig. 1-I). Oviposition 

mainly occurs at night in the first 24 to 48 hours after mating and then declines gradually. Egg 

laying reaches zero, 10 days after adult emergence (Alizadeh et al. 2011). Each female can lay 

200-356 eggs either singly or in small clusters (Harcourt 1957; Talekar et al. 1994; Justus et al. 
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2000). Host plant species greatly influence oviposition. For instance, oviposition on the 

brassicaceous host plant (Brassica napus L.) is reported to be higher than non-brassicaceous hosts 

(Cleome hassleriana Chod. and Tropaeolum majus L.) (Sarfraz et al. 2010b).  

Eggs are oval and pale to yellow (Fig. 1-I) (Alizadeh et al. 2011). Egg hatching occurs 

from 4 to 8 days post-oviposition (Harcourt 1957). Larvae are pale yellow with a dark head in 

early instars with the body becoming a light to dark green in later instars (Fig. 1-I). The larva has 

V-shaped anal legs. First-instar larvae are leaf miners, feeding in the spongy mesophyll tissue of 

leaves. Other larval instars feed on all tissues of leaves, buds, flowers, stems, and siliques 

(Anonymous 1996; Alizadeh et al. 2011). Under Canadian field conditions in eastern Ontario, the 

average times for development from first to the fourth instar are 4.0, 3.6, 3.4, and 4.2 days; and 

for pupation 7.8 to 9.8 days (Harcourt 1957). The adult moth is slender and grayish (Fig. 1-I) 

(Ooi & Keldeman 1979, De Bortoli et al. 2013). Adults are more active at dusk and feed on floral 

nectar near agricultural fields. The first generation of P. xylostella usually develops on 

brassicaceous weeds with following generations feeding on cultivated Brassicaceae (Harcourt 

1957; Khan et al. 2005). The mean longevity of females is significantly shorter than males 

(Alizadeh et al. 2011), and also males have longer flight times than females (Goodwin & 

Satyanarayana 1984; Harcourt 1986).  Development and survival vary widely depending on the 

quality of food, the quantity of adult feeding, the difference in host plant cultivar and sources of 

carbohydrate (Winkler et al. 2005; Alizadeh et al. 2011).  

1.1.6 Host-pest relationships /bitrophic interactions between the host plant and P. 

xylostella 

Plutella xylostella has a wide ecological host range. The genetic and phenotypic flexibility 

of P. xylostella enables it to survive throughout the year in areas where environmental conditions 
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are favorable and host plants are readily available (Campos et al. 2004; Campos et al. 2006). The 

moth feeds exclusively on plants of the family Brassicaceae, particularly the genus Brassica, 

which are widely distributed geographically (Table 1-I) (Warwick et al. 2006). However, 

evidence of its occasional occurrence on sugar snap peas (Pisum sativum, Fabaceae) in Kenya 

(Knolhoff & Heckel 2011), Taiwan and the Philippines (Lohr 2001; Shelton 2001), the 

chenopodiaceous vegetable Salsola kali L. (prickly saltwort, Russian thistle) in Russia (Talekar et 

al. 1985), and okra in Ghana (Anonymous 1971) has been recorded. Sarfraz et al. (2010) reported 

development of P. xylostella on non-Brassicaceae host plant species like spider flower, Cleome 

hassleriana Chod. (Capparaceae), and garden nasturtium, Tropaeolum majus L. (Tropaeolaceae). 

However, P. xylostella could be considered as much of a generalist feeder than as a specialist due 

to worldwide availability of wild and cultivated Brassicaceae host plant species (Pichon et al. 

2006; Furlong et al. 2013). 

A wide range of sulfur-containing secondary plant metabolites, the glucosinolates, 

characterizes Brassicaceous plants. More than 100 different glucosinolates have been identified 

(Rask et al. 2000) in 16 families of dicotyledonous angiosperms (Charron & Sams 2004). The 

family Brassicaceae contains a unique defensive system known as the glucosinolate-myrosinase 

system or “mustard oil bomb” or, more recently, as a toxic mine (Ahuja et al. 2011). 

Glucosinolates and myrosinase are triggered by abiotic and biotic stress or come together upon 

plant tissue damage and release toxic hydrolysis products such as isothiocyanates and nitriles 

(Hopkins et al. 2009; Ahuja et al. 2011). Glucosinolates are feeding and oviposition stimulants 

for brassica specialists while feeding deterrents and toxic to generalist herbivores (Li et al. 2000). 

Brassicaceae specialist herbivores have a mechanism to overcome this toxicity (Futuyma & 

Agrawal 2009; Hopkins et al. 2009). For instance, the larvae of P. xylostella have evolved a 
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defensive mechanism to detoxify the toxic hydrolysis products by an enzyme, glucosinolate 

sulfatase, present in the midgut. The enzyme actively prevents the formation of toxic hydrolysis 

products by converting glucosinolates to desulfoglucosinolates rather than more toxic nitrile and 

isothiocyanates. This mechanism enables P. xylostella herbivory on a broad range of brassica 

plants (Ratzka et al. 2002; Hopkins et al. 2009). Saponins are another group of significant defense 

chemical compound present on the leaf surface of some Barbarea spp. They act as feeding 

deterrents but are attractants for oviposition for P. xylostella (Badenes-Perez et al. 2011, 2014). 

For instance, wintercress (Barbarea vulgaris) attracts P. xylostella through glucosinolates, but 

occurrence of triterpenoid saponins in this plant species inhibits larval development (Shinoda et 

al. 2002). Recently, the whole genome of P. xylostella has been sequenced as a means to 

understand the genetic and molecular basis for adaptation to plant defense compounds and for the 

evolutionary success of this pest (You et al. 2013).  

The performance of P. xylostella varies on cultivars of the same plant species with 

different glucosinolate contents and profiles. For example, maximum feeding by P. xylostella 

larvae has been noticed on various cultivars of Brassica rapa (L.) with intermediate glucosinolate 

content in a laboratory experiment (Siemens & Mitchell-Olds 1996) or with little myrosinase 

content (Li et al. 2000).  In contrast, higher densities of P. xylostella larvae are reported to be 

associated with plant cultivars having higher glucosinolate contents (Bidart-Bouzat & 

Kliebenstein 2008). Similarly, glucosinolates like 3-butenyl and 2-phenylethyl are toxic to P. 

xylostella at high concentrations (Nayyer & Thorsteinson 1963). Allyl isothiocyanate stimulates 

egg production in P. xylostella adults (Hillyer & Thorsteinson 1969). However, at sufficient 

concentrations, isothiocyanates are reported to be toxic for larvae and adults and act as feeding 

deterrents to brassica specialists (Li et al. 2000; Mitchell-Olds et al. 1996). Types and 
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concentration level of toxic hydrolysis products depends upon the nature of the glucosinolates, 

the reaction conditions and myrosinase activity (Ahuja et al. 2011). Li et al. (2000) indicated that 

myrosinase activity and the rate of release of glucosinolate hydrolysis product during herbivory 

influencs feeding behavior of P. xylostella more than glucosinolate concentration. 

For host plant location, recognition, oviposition, stimulation and feeding initiation, P. 

xylostella adults not only rely on different types and concentrations of glucosinolates but also on 

additional chemical and physical stimuli, plant volatiles, cardenolides, host plant nutritional 

quality, waxes, plant morphology or a combination of these factors (Badenes- Perez et al. 2004; 

Shelton & Nault 2004; Bukovinszky et al. 2005; Sarfraz et al. 2006; Renwick et al. 2006; 

Hopkins et al. 2009). The presence of unidentified olfactory stimuli that attract P. xylostella to 

brassicaceous plants has also been reported (Palaniswamy et al. 1986; Pivnick et al. 1990a). 

Plutella xylostella adults can also respond differently to different host plant volatiles 

emitted following insect damage. Females rely on these volatile cues to recognize acceptable 

hosts for progeny survival and fitness and to reduce competition for food (Abuzid et al. 2011). 

Reddy & Guerrero (2000) reported three cabbage green leaf volatiles that are highly attractive to 

P. xylostella females. Enhancement of the insect pheromone action by green leaf volatiles could 

have important practical applications in pest management.  

 Host plant genotype and quality significantly affect the survival and development of P. 

xylostella. Among commercial crop species including Brassica napus L., Brassica rapa L., 

Brassica juncea (L.) Czem., Sinapis alba L., Brassica oleracea L., and Brassica carinata Braun, 

P. xylostella preferred to oviposit on S. alba, because of its preference for the rather glossy leaf 

surface of this host plant and its higher concentrations of aromatic glucosinolates. Larval and 

pupal development was usually fastest on B. juncea and S. alba, and slower on B. oleracea and B. 
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carinata than on several other Brassicaceae (Sarfraz et al. 2007).  The preferences and 

performance of P. xylostella vary significantly among wild and cultivated brassicaceous species. 

Sinapis alba is the most preferred host followed by B. rapa, B. juncea, and B. napus among the 

cultivated species (Dosdall et al. 2011), while Sinapis arvensis L. followed by Erysimum 

cheiranthoides L. and Capsella bursa-pastoris (L.) are preferred wild brassicaceous hosts 

(Sarfraz et al. 2011). However, few studies confirm that P. xylostella prefers wild over cultivated 

species despite lower fitness consequences on wild species (Begum et al. 1996; Charleston & Kfir 

2000). Moreover, most wild Brassicaceae plants contain higher levels of glucosinolates than 

cultivated species (Gols & Harvey 2009). Overall, canola and mustard proved to be the most 

suitable hosts for P. xylostella due to a shorter developmental time, and increased survival and 

egg deposition on these plants (Rabia et al. 2010). Furthermore, the strong preference of P. 

xylostella for some Brassicaceae species over others offers valuable dead-end trap cropping 

opportunities (Serizawa et al. 2001). The most commonly proposed potential dead-end trap crop 

for P. xylostella is yellow rocket, Barbarae vulgaris R. Br. var. arcuata. Which stimulate adult 

oviposition but donot support larval survival of P. xylostella (Badenes- Perez et al. 2014). 

Variations in the host plant nutritional quality due to plant stress and plant vigor also 

influence the performance of insect herbivores directly. Plutella xylostella field distributions are 

significantly associated with some nutrients (nitrogen, sulfur, and potassium) in canola leaf 

tissues (Sarfraz et al. 2010a). Plutella xylostella was less attracted for egg laying on sulfur-

deficient plants (Gupta & Thorsteinson 1960; Marazzi et al. 2004). Females select plants for 

oviposition on which pre-imaginal survival of their offspring is greatest, and larval development 

is fastest (Sarfraz et al. 2009a). Intermediate levels of fertility, rather than low or high levels, are 

optimum for survival and development of young individuals, pupal weight, and longevity of 
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adults (Sarfraz et al. 2009a). Plants growing under fertile soil conditions usually support higher 

densities of insect herbivores than plants growing under less fertile soil conditions (Fox et al. 

1990; Price 1991; Meyer & Root 1996; Dosdall et al. 2004a). Plutella xylostella is highly 

migratory and travels long distances without feeding over several days from northern Mexico to 

western Canada; this behavior, selecting the most nutritious plants, is an advantage concerning 

migration and subsequent re-colonization (Chapman et al. 2002; Dosdall et al. 2004b; Sarfraz et 

al. 2005a).  

Accumulating evidence indicates that host plant morphological characteristics like leaf 

color, size, and their position on the plant, epicuticular waxes, trichome density, chemosensory 

stimulation, and abiotic factors affect P. xylostella oviposition, development, and herbivory 

(Sarfraz et al. 2006; Renwick et al. 2006). For instance, P. xylostella females prefer glossy 

cultivars (i.e., low surface wax) over waxy cultivars (normal wax bloom) for oviposition; though 

larval survival is reduced on glossy cultivars (Badenes-Perez et al. 2004). Some studies report 

oviposition preference of P. xylostella on the lower leaf surfaces of host plants (Alizadeh et al. 

2011; Charleston & Kfir 2000; Satpathy et al. 2010), while others report a higher oviposition 

preference on the upper surfaces of crucifer leaves (Harcourt 1957; Talekar & Shelton 1993). 

Similarly, egg numbers laid and trichome density are positively correlated (Agerbirk et al. 2003; 

Talekar et al. 1994). A recent study showed a positive correlation between P. xylostella 

oviposition choice and larval survival on undamaged host plants (Zhang et al. 2012).  

Specific plant characteristics provide antibiosis and antixenosis resistance to P. xylostella. 

Plants responsible for antibiosis cause reduced insect size or weight or have an indirect effect by 

increasing the exposure of the insect to its natural enemies resulting from prolonged 

developmental time. The plants that show antixenotic resistance have reduced initial infestations 
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or a higher emigration rate of the pest than more susceptible plants (Sarfraz et al. 2006). Morallo-

Rejesus (1986) reported that more than 88 plant species, belonging to the families Asteraceae, 

Fabaceae or Euphorbiaceae, possess repellent(s) for P. xylostella oviposition and herbivory.   

1.1.7  Natural enemies of P. xylostella 

Collectively, natural enemies are known to attack all stages of P. xylostella, often keeping 

populations under economic threshold levels (Table 1-II). Amongst all natural enemies, both 

generalists and specialists, parasitoids are the most important biological control agents in natural 

areas and agroecosystems. Over 135 parasitoid species have been documented worldwide that 

utilize different stages of P. xylostella (Delvare 2004). The most common reported in the 

literature include six species of egg parasitoids, 38 larval, and 13 pupal parasitoids (Lim 1986; 

Talekar & Shelton 1993). 

The following species achieve most control of P. xylostella in many parts of the world: 

Cotesia plutellae (Kurdjumov), Diadegma semiclausum (Hellen), Diadromus collaris 

(Gravenhorst), Oomyzus sokolowskii (Kurdjumov), Diadegma insulare (Cresson) and Microplitis 

plutellae (Muesebeck) (Lim 1986; Talekar & Shelton 1993; Talekar 1997; Xu et al. 2001; Sarfraz 

et al. 2005a).  However, in different geographical areas of the world, various parasitoid species 

dominate and are responsible for suppressing P. xylostella populations. For instance, Diadegma 

spp. and Diadromus spp. predominate in Europe (Hardy 1938), New Zealand (Todd 1959) and 

South Africa (Kfir 1997).  Diadegma semiclausum (Hellen), Diadegma rapi (Cameron) and 

Diadromus collaris (Grav.) collectively are responsible for 93% parasitism in Victoria, Australia 

(Goodwin 1979). Diadegma semiclausum also has been reported to keep the P. xylostella 

population below economic threshold levels in some parts of Europe, Africa, Asia (Talekar & 

Shelton 1993), Malaysia, Taiwan, Philippines, Indonesia, Thailand, Zambia, New Zealand and 
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Australia (Lim 1992; Furlong & Zalucki 2007). The most abundant parasitoids in East Africa are 

Diadegma mollipla (Holmgren) and Oomyzus sokolowskii (Kurdjumov) (Lohr & Kfir 2004). In 

Ethiopia, Diadegma spp. and Cotesia plutellae (Kurdj.) are key parasitoid species (Ayalew et al. 

2004). Cotesia plutellae and O. sokolowskii are considered the most promising biological control 

agents in China (Liu et al. 2000). In the relatively hotter lowlands of many Asia-Pacific regions, 

C. plutellae is the dominant and most efficient larval parasitoid of P. xylostella (Talekar & 

Shelton 1993). In the Eastern Cape (South Africa), four species viz., D. mollipla, C. plutellae, D. 

collaris and O. sokolowskii, are recorded as the principal parasitoids of P. xylostella (Smith & 

Villet 2004).  

In general, egg parasitoids contribute little to the biological control of P. xylostella 

because they require frequent mass releases (Talekar & Shelton 1993). As they are not always 

host specific, they pose a threat to non-target species (Goulet & Huber 1993). Larval parasitoids 

are most useful by having greater control potential and belong mainly to three genera, Diadegma, 

Apanteles, and Microplitis (Lim 1986). Lim (1992) noted that the ability to function as biological 

control agents varies among species. It usually depends on the direct relationships of natural 

enemies with their hosts, environment and interspecific interactions. 

In Canada, three hymenopterous parasitoid species, D. insulare (Cresson), M. plutellae 

(Muesebeck) and D. subtilicornis (Gravenhorst) are found to attack larval, pupal and pre-pupal 

stages of P. xylostella (Harcourt 1986; Anonymous 1996; Braun et al. 2004; Dosdall et al. 

2004b).  Microplitis plutellae (Muesebeck) (Hymenoptera: Braconidae) is a primary larval 

endoparasitoid of P. xylostella, especially in North America. It has been recorded from Iowa, 

Colorado, Idaho, California, Utah, South Carolina, New York, Alberta, Saskatchewan, and 

Ontario (Harcourt 1960; Braun et al. 2004), also occurring in Taiwan, Laos, and Cambodia (Kirk 
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et al. 2004). Microplitis plutellae undergoes obligatory diapause as a prepupa or pupa and so is 

consequently cold hardy, which enables it to overwinter in western Canada (Putnam 1978). The 

mature parasitic larva emerges from the final-instar host and spins its own brown, oval cocoon 

that adheres to any available surface such as a stem, leaf, or wall of a cage (Harcourt 1960; 

Putnam 1968; Gharuka et al. 2004). On average, adult M. plutellae lives for 20 days producing 

316 eggs per female, but has a shorter lifetime, resulting in lower overall fecundity compared 

with D. insulare. However, number of eggs produced per day is similar for both parasitoids 

(Bolter & Laing 1983). Microplitis plutellae kills and emerges from fourth instars, while D. 

insulare kills and emerges from the prepupal stage and spins its cocoon inside the loosely woven 

cocoon of its host (Harcourt 1960; Putnam 1968). Xu et al. (2001) reported that M. plutellae 

heavily parasitized P. xylostella and provided higher parasitism rates than D. insulare in the late 

season, but D. insulare may be more suitable for field release to augment biocontrol of P. 

xylostella.   

Diadromus species (Hymenoptera: Ichneumonidae) are prepupal and pupal solitary 

parasitoids of P. xylostella in various parts of the world including England (Hardy 1938), Holland 

(Lloyd 1940), Canada (Harcourt 1960; Anonymous 1996; Braun et al. 2004), Australia (Goodwin 

1979), Moldavia (Mustata 1992), South Africa (Kfir 1997, 1998), China (Liu et al. 2000), India 

(Chauhan & Sharma 2004), France, Turkey, Bulgaria, Georgia and Greece (Kirk et al. 2004). 

Two species of Diadromus have been reported to parasitize P. xylostella to date (Sarfraz et al. 

2005a).  

Although most studies of natural enemies attacking P. xylostella focus on parasitoids, 

mortality caused by invertebrate predators historically has been very much ignored, likely 

underestimated and certainly poorly understood (Lim 1992; Talekar & Shelton 1993; Symondson 
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et al. 2002; Furlong et al. 2004; Ma et al. 2005a, b). The efficient use of predators needs to be 

considered and analyzed (Polis et al. 1989). The most common groups of insect predators 

reported in cabbage fields are the generalist coccinellids, chrysopids, syrphids and staphylinids 

(Alam 1992). Almost 175 genera of spiders in rice fields of Korea are associated with the 

suppression of P. xylostella when densities are high (Lee & Kim 2001). The combined effect and 

interaction of multiple predator species may be non-additive but sometimes this interaction is 

synergistic, and the impact of multiple species is greater than the sum of individual species 

(Simberloff & Holle 1999; Griswold & Lounibos 2006). Some recent publications have added 

valuable information about the role of predators in control of defoliators (Reddy et al. 2004; 

Furlong et al. 2008b; Furlong & Zalucki 2010). For example, the development of specific DNA 

markers of a range of prey species permits their identification from gut samples of predators. 

Given that predators are often described as generalists and difficult to observe in the field, this 

technique may help identify the most important predatory species. With this information, these 

predator species may be augmented in some manner to increase effectiveness (Symondson et al. 

2002; Ma et al. 2005a).  

 

1.2 The principal parasitoid of P. xylostella in Canada: Diadegma insulare 

1.2.1 Origin and distribution 

The genus Diadegma Froster (Hymenoptera: Ichneumonidae: Campopleginae) represents 

a large group of koinobiont endoparasitoids of Lepidoptera with 201 species known to occur 

worldwide (Yu & Horstmann 1997). Several Diadegma species, including D. fenestrale 

(Holmgren), D. insulare (Cresson), D. leontiniae, D. mollipla, D. rapi, and D. semiclausum, are 

reported to attack P. xylostella (Azadah et al. 2000; Wagener et al. 2004). There is a wide 
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geographical variation in the predominance of Diadegma species, with the majority (131 species) 

having a Palearctic and a few (33 species) having a Nearctic distribution (Talekar & Shelton 

1993). 

Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) is one of the key 

parasitoids of P. xylostella in North America (Harcourt 1963; Lee et al. 2003). The parasitoid is 

distributed in North America: Canada, United States, Maxico; South America: Venezuela; 

Caribbean: Cuba, Jamaica, Puerto Rico, West Indies, Dominican Republic (Sourakov & Mitchell 

2000, Furlong et al. 2013). 

The origin of D. insulare in western Canada is unknown, but it likely migrates northward 

in spring along with its hosts rather than overwintering (Dosdall & Mason 2010). 

1.2.2 Host range of Diadegma species  

  Diadegma species were initially assumed to have broad host ranges (Hardy 1938), 

although more recent research indicates that many Diadegma species are relatively host-specific 

(Fitton & Walker 1992). For instance, D. armillata is known to attack numerous species of the 

family Plutellidae (Dijkerman 1990), while the host range of D. semiclausum is restricted to P. 

xylostella (Abbas 1988; Wang & Keller 2002). However, D. insulare is a solitary, host-specific 

larval endoparasitoid of P. xylostella. (Fitton & Walker 1992; Mukenfuss et al. 1992; Idris & 

Grafius 2001). 
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1.2.3 Taxonomy of D. insulare 

The taxonomic position of D. insulare is as follows:  

Kingdom -- Animalia  

Phylum -- Arthropoda  

Class -- Hexapoda 

Order -- Hymenoptera  

Family -- Ichneumonidae  

Subfamily-- Campopleginae  

Genus --Diadegma 

Species --Diadegma insulare 

1.2.4 Developmental biology/ life history 

Unlike its host, the developmental biology of D. insulare has not been studied 

extensively. Diadegma insulare has four distinct stages: egg, larva, pupa, and adult. The egg is 

rounded, clear and lacks projections. The larva of D. insulare is white, segmented and bears a 

short (1/4 of the total length of the larva) narrow abdominal "tail" (Fig.1-II). The larva is very 

active. The adult is a small wasp, approximately 6 mm long, slender and black, with brown and 

yellow striped legs and dark abdomen from the upper side but the underside is yellow (Sourakov 

& Mitchell 2000; Lee et al. 2003). The female has a distinct ovipositor used to penetrate the host 

larva cuticle for egg deposition (Fig.1-IV). After 10 to 15 days, a single parasitoid emerges as a 

mature larva from the host prepupa and spins its cocoon within that of the host where it can easily 

be distinguished (Fig.1-II & III) (Harcourt 1960; Putnum 1968; Sourakov & Mitchell 2000).  

The number of generations per year corresponds to the number of generations of its host 

as one host larva supports only one parasitoid larva (Sourakov & Mitchell 2000). Although it can 
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parasitize all four larval instars, emergence always occurs from the prepupa of P. xylostella 

(Putnam 1968). However, the specific larval instars parasitized by D. insulare usually affect the 

sex ratio of emerging parasitoids.  More males than females are produced from early instar hosts 

while with later instars the progeny consists of a greater proportion of females (Fox et al. 1990; 

Monnerat et al. 2002). Similarly, more female wasps are produced when D. insulare oviposits on 

hosts on highly fertilized plants, suggesting that sex allocation decisions of female parasitoids are 

directly influenced by not only host quality, but food plant quality as well (Fox et al. 1990; Fox et 

al. 1996).  On average, at 23°C adult D. insulare live for 26 days and a female will lay 814 eggs 

during this period (Bolter & Laing 1983). 

Temperature plays a significant role in the survival, development, reproduction, and 

parasitism of D. insulare. The developmental period, from egg to adult, is approximately 58, 13, 

and 11 days, at 7, 22, and 30oC respectively, as reported by Bahar et al. (2012).  Although larvae 

survived the highest temperature, high pupal mortality of D. insulare was observed.  This may 

explain the greater effectiveness of this parasitoid in cooler regions than tropical areas (Bahar et 

al. 2012). Okine et al. (1996) studied the effect of low temperature on the survival of D. insulare 

pupae and the consequences of parasitism on the feeding rate of diamondback moth larvae and 

found that adult emergence decreased with long-term storage at 4oC. No emergence of D. 

insulare was observed after 49 days in storage. The highest emergence of 82% was obtained from 

cocoons stored at 4oC for 14 days compared to 92% of cocoons that were not subjected to cold 

storage. More males than females emerged from cocoons stored at 40C. 

Adults require a continuous nectar source for survival and to increase longevity. As a 

result, they prefer habitats with abundant food resources (Idris & Grafius 2001) that enhance their 

fecundity and longevity (Lee & Hemipel 2008). A good nectar source can increase the longevity 
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of D. insulare females from 2 to 5 days to more than 20 days (Edward & Grafius 1997). 

Similarly, sites with flowering plants like alyssum, Lobularia maritime (L.) Desv. (Brassicaceae) 

(Johanowicz & Mitchell 2000), or with borders of flowering buckwheat, Fagopyrum esculentum 

Moench (Polygonaceae) in cabbage fields enhance D. insulare populations (Lee & Heimpel 

2008). The number of P. xylostella larvae parasitized by a single D. insulare female may vary 

from zero to 150, depending upon the food source (Edward & Grafius 1997).  

1.2.5 Importance of D. insulare as a biological control agent 

Diadegma insulare is one of the most important biocontrol agents attacking diamondback 

moth larvae especially in North America (Harcourt 1960, 1963; Fitton & Walker 1992; Lee et al. 

2003; Sarfraz et al. 2005a). Almost 10 species of Diadegma have been introduced worldwide, due 

to their effectiveness in parasitizing different larval instars of P. xylostella (Lim 1986; Talekar & 

Yang 1993). Compared with other parasitoids, its proficient host-searching skills, ability to avoid 

multiparasitism and superparasitism, and synchronization with its host’s developmental stage, 

make it suitable for use as an auxiliary method for the integrated management of P. xylostella 

(Harcourt 1969; Bolter & Laing 1983; Harcourt 1986; Wang & Keller 2002; Xu et al. 2001). 

Host-specialist parasitoids appear to have greater efficiencies than generalists in locating 

hosts. They have more specialized adaptations to overcome host defenses than generalist species 

that display relatively plastic foraging behavior (Wang & Keller 2002). Diadegma insulare is a 

host specific and efficient host searcher and shows very flexible behavior sitting motionless near 

the silken thread, waiting for P. xylostella larva to climb and then attacks it. Sometimes, it travels 

down to the larva suspended by its silken thread and attempts quickly to parasitize it (Sarfraz et 

al. 2005a). 

http://en.wikipedia.org/wiki/Polygonaceae
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Diadegma insulare not only can decrease the pest populations by parasitizing 70-90% of 

P. xylostella larvae, but it also reduces 30-80% food consumption by the parasitized larvae, 

consequently, decreasing the damage to the crop (Mukenfuss et al. 1992; Mitchell et al. 1997; 

Sourakov & Mitchell 2000; Monnerat et al. 2002). In North America, D. insulare has been 

recorded on average to parasitize over 80% of larvae. They are able to locate hosts within 8-10 

seconds of landing on the damaged leaf surface (Xu et al. 2001; Hutchison et al. 2004). Under 

field conditions, this parasitoid has accounted for 98% parasitism in South Texas on cabbage 

(Brassica oleracea L.) (Legaspi et al. 2000). From 1994 to 2003, 62-82% parasitism of P. 

xylostella by D. insulare was reported on cabbage plants in Minnesota and more than 90% in 

South Carolina (Lee et al. 2003). In 1992, D. insulare accounted for 30% of P. xylostella 

parasitism in Saskatchewan and 45% in Alberta in canola crops (Braun et al. 2004).  

Overall, D. insulare is reported to be a better and more efficient parasitoid by causing 

higher mortality of P. xylostella than other larval parasitoids in relatively cool regions of North 

America (Xu et al. 2001; Bahar et al. 2012). 

1.2.6 Tritrophic interactions among host plant-pest and parasitoid 

To date, only a few studies have focused on tritrophic interactions involving the host 

plant, P. xylostella, and D. insulare. Many biotic and abiotic factors affect the survival, longevity, 

effectiveness, performance, and distribution of insect pests directly and their natural enemies 

indirectly. Understanding these factors and their influence on bitrophic and tritrophic interactions 

involving host plant, pest and parasitoid are critical when designing a long-term and effective 

management strategy to control the pest.  

Parasitoid life history traits are influenced by choices made by their herbivore hosts, 

mediated by host plant quality (Vet & Dicke 1992; Godfray 1994). The nutritional quality of 
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plants consumed by the herbivore host of D. insulare affects the sex ratio of the parasitoid; more 

female parasitoids emerged from P. xylostella larvae on well-fertilized plants (Fox at al. 1990). 

Similarly, the performance of D. insulare is improved when P. xylostella larvae are reared on 

highly fertilized plants (Sarfraz et al. 2009b; Dosdall et al. 2011). Increased soil fertility not only 

enhanced development and survival of D. insulare but also increased infestations of P. xylostella. 

Maintaining relatively high levels of soil fertility is appropriate for the integrated management of 

P. xylostella in canola, because healthy, strong and well-nourished plants can better compensate 

for insect attack than plants under nutrient stress (Dosdall et al. 2004a; Sarfraz et al. 2005b).  

The host plant genotype on which the P. xylostella larvae were reared has major impacts 

on the survival and parasitism success of D. insulare. For instance, egg to the pre-pupal growth of 

the parasitoid was fastest on B. juncea (L.) and slowest on B. oleracea L., whereas pupal 

development was shortest on B. napus cv. Liberty. Parasitoids reared on B. napus cv. Q2 survived 

for a shorter period without food comparative to other host plant genotypes tested, suggesting that 

fewer nutrients are stored during host development on this plant variety. Overall P. xylostella 

larvae parasitized by D. insulare consumed less foliage than non-parasitized larvae (Sarfraz et al. 

2008).  

Habitat manipulation plays a major role in population size, distribution and specific 

dispersal behavior of pest and parasitoid (Kareiva 1987; Hawkins & Shaheen 1994). For instance, 

Idris & Grafius (2001) suggested intercropping tomato and corn with cabbage in a P. xylostella 

management program to enhance the population and activity of D. insulare. Similarly, planting 

Anethum graveolens L. in field margins significantly increased the number of adult Diadegma 

semiclausum Hellén in the crop (Winkler et al. 2010). Diversification of the agroecosystem by 

providing flowering plants is an important tool in conservation biological control to enhance the 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WBP-4WPTXP2-2&_user=1067472&_coverDate=10%2F31%2F2009&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000051251&_version=1&_urlVersion=0&_userid=1067472&md5=e001bf91e61173984b235a493dbcbe32&searchtype=a#bib16
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WBP-4WPTXP2-2&_user=1067472&_coverDate=10%2F31%2F2009&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000051251&_version=1&_urlVersion=0&_userid=1067472&md5=e001bf91e61173984b235a493dbcbe32&searchtype=a#bib50
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survival and effectiveness of parasitoids (Winkler et al. 2009). However, flowering field edges 

may benefit herbivores and inadvertently increase pest density if not selected with caution (Van 

Emden 1964; Zhao et al. 1992; Baggen & Gurr 1998; Romeis et al. 2005). Various field and 

laboratory studies showed that adult parasitoids lived longer and were more fecund when fed on 

floral nectar, honey or other carbohydrate sources (Foster & Ruesink 1984; Idris & Grafius 

1997). For instance, parasitism of P. xylostella was observed to be higher in broccoli (B. oleracea 

var. botrytis L.) adjacent to nectar-producing plants than in broccoli not bordered by nectar-

producing plants (Zhao et al. 1992). Numerous wildflowers, including wild mustard (Sinapis 

arvensis L.), wild carrot (Daucus carota L.), and yellow rocket (Barbarea vulgaris R. Br.), can 

increase longevity and fecundity of D. insulare (Buchholtz et al. 1981; Idris & Grafius 1997). 

Johanowicz & Mitchell (2000) reported that the presence of alyssum, Lobularia maritime L., near 

cultivated crucifers, extended the lifespan of D. insulare.  

Resource variation and spatio-temporal distribution have a significant impact on the 

physiology of herbivore pests, which in turn mediates pest-parasitoid interactions, as well as the 

effectiveness, survival, development, size, longevity, and fecundity of parasitoids (Moon et al. 

2000; Sumerford et al. 2000; Teder & Tammaru 2002). The density and distribution of a 

parasitoid’s population are correlated with the density and distribution of its herbivore’s host 

plant. For instance, field populations of D. insulare are often grouped, with distributions that 

correlate with their herbivore host populations where host plants have high sulfur content (Ulmer 

et al. 2005; Sarfraz et al. 2010b; Dosdall et al. 2011). Spatio-temporal studies conducted by 

Sarfraz et al. (2010a) in commercial fields of canola (B. napus L.) in southern Alberta, Canada 

revealed that P. xylostella populations accumulated at different levels when its host plants were in 

the early flowering stage, while D. insulare adults showed significantly aggregated, but more 
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uniform distribution as the parasitoid moved into the crop later in the season. However, the M. 

plutellae population distribution was aggregated in mid-flowering season. The close spatial 

associations between densities of D. insulare and P. xylostella indicated that host abundance was 

the main determinant of parasitoid distribution patterns. At a finer scale, spatial distributions of 

nutrients in leaf tissue and their correlations with the herbivores and parasitoids showed that 

sulfur has a positive effect on the distributions of D. insulare but not on M. plutellae. However, 

the relationships between nutrients and the distribution of P. xylostella and parasitoids were 

inconsistent and may be complicated by the effects of the spatial associations between parasitoids 

and their hosts. 

 

1.3 Background of research 

Considerable progress has been made in developing integrated management strategies for 

several insect pest species that can infest canola/oilseed rape crops. However, one important area 

of research that requires additional analysis involves identifying strategies to enhance the 

effectiveness of beneficial insects.  Beneficial insects can reduce infestations of insect pests, and 

in some cases, they have been the primary agents responsible for ending outbreaks.  Natural 

enemies hold major advantages as components in the integrated management of insect pests.  

Once established, they can become permanent fixtures of canola agroecosystems and can provide 

control that is very specific and cost-effective.  Also, pest control with beneficial insects avoids or 

minimizes chemical insecticide applications and so enhances the environmental sustainability of 

canola production. 

My research focuses on P. xylostella and the natural enemies that help keep its 

populations regulated.  Diamondback moth can cause considerable reductions in yield of canola 
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depending on the year and location, and insecticide applications are currently the only control 

strategy available to producers (Philip & Mengersen 1989). The importance of P. xylostella as a 

pest of the crop is predicted to increase as the effects of climate change become more manifest 

(Dosdall et al. 2008).  However, sometimes parasitoids are known to terminate outbreaks 

completely.  For instance, P. xylostella outbreaks in Alberta in 2003 and 2005 were terminated 

primarily through the activity of the parasitoid, D. insulare (Dosdall, unpublished data).  

Unfortunately, many farmers needlessly sprayed their crops with insecticide in those outbreaks 

because they lacked appropriate forecasting information on the distribution and abundance of D. 

insulare populations. Two other parasitoid species, M. plutellae and D. subtilicornis, also attack 

P. xylostella in western Canada and sometimes inflict high levels of parasitism (Braun et al. 

2004).  However, despite the importance of D. insulare, D. subtilicornis and M. plutellae in 

managing P. xylostella outbreaks in canola, very little is known about their life histories and 

habitat requirements, and we lack forecasting strategies to assess their abundance levels and 

distributions.  

 

1.4 Objectives of research 

 The primary objective of my study is to explore research areas pertaining to P. xylostella 

and its primary parasitoid D. insulare that have been overlooked or not studied in depth. The 

developmental biology of P. xylostella and bitrophic interactions involving the host plant and pest 

have been studied extensively, but research on many aspects of the biology and tritrophic 

interaction involving the host plant, P. xylostella and D. insulare is lacking. Knowledge and 

understanding of a parasitoid’s bioecology and tritrophic interactions are crucial to the 

development of biological control programs. Moreover, to counter increasing levels of insecticide 
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resistance in P. xylostella and to reduce the reliance on chemical pesticides, emphasis should be 

given to incorporating biocontrol agents in pest management plan. An overall goal of my research 

is to contribute to the elaboration of an efficient management system integrated with biological 

control agents, and consequently, make canola/mustard production more sustainable. It is 

anticipated that, ultimately, this study will provide valuable information and a better 

understanding of the development, life history traits and responses of the parasitoid to ecological 

factors. 

 Overall, this thesis consists of five studies, each with two or more specific objectives. 

Each objective was tested under a specific hypothesis. In Chapters 2 and 3, experiments were 

designed to understand oviposition preferences of P. xylostella, bitrophic and tritrophic 

interactions involving the host plant, P. xylostella and D. insulare, particularly when the host 

plant was under water deficit stress. I tested the hypotheses that: (a) plant water status influences 

the ovipositional preferences of P. xylostella; (b) plant water status affects development and 

fitness parameters of the second and third trophic levels; (c) host plant water status influences 

pest and parasitoid and their interactions differently 

 In Chapter 4, development and fitness attributes of D. insulare were tested under different 

temperature regimes. I tested the hypotheses that: (a) when reared on P. xylostella, developmental 

parameters and percentage parasitism of D. insulare are affected by temperature; (b) and the 

parasitoid life history traits like longevity and survival decline at higher constant temperatures. 

 In Chapter 5, my experiment was designed to understand the selective effects of floral and 

non-floral food sources on the pest-parasitoid system. I tested the hypotheses that: (a) sugar 

feeding enhances the longevity of pest and parasitoid; (b) floral nectar acts selectively on both 

pest and parasitoid; (c) floral nectar has contrasting/different effects on life-history traits such as 
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longevity and body weight. 

 In Chapter 6, the diversity and abundance of the parasitoid fauna associated with P. 

xylostella among commercial canola/mustard fields in southern Alberta was investigated. I tested 

the hypotheses that: (a) the parasitoid fauna associated with P. xylostella is diverse; (b) and 

diversity and abundance vary with particular crop and time. 

Chapter 7 provides a general discussion and summarizes the major findings from a series 

of laboratory experiments examining the various research objectives discussed above. Finally, 

future research needs in understanding the bioecology and relationships between pests and 

parasitoids under climatic factors are summarized. 
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Table 1-I. Host plants of Plutella xylostella 

 

 

 

 

 

 

 

 

 

 

 

  

Cultivated Cruciferous 

Cultivar/Species Common name Plant type Reference 

Brassica carinata L. Ethiopian mustard Vegetable, Oilseed Ayalew et al. 2004; Sarfraz et al. 2007, 2008 

Brassica juncea L. Indian mustard, brown mustard Vegetable, Trap 

crop, Oilseed 

Brown et al. 1999; Srinivasan & Krishna 1991; Sarfraz et al. 2007; 

Soufbaf 2010 

Brassica napus L. Canola, Canadian turnip, rutabaga Vegetable, Oilseed Idris & Grafius 1996; Brown et al. 1999; Sarfraz et al. 2007, 2008; 

Golozadeh 2009; Silva & Furlong 2012 

Brassica nigra L. Black mustard Vegetable, Spice Idris & Grafius 1996 

Brassica oleracea L. var. acephala  Collard, flowering kale Vegetable Idris & Grafius 1996; Badenes-Perez et al. 2004; Gathu et al. 2008 

Brassica oleracea L. var. 

alboglabra  

Kale Vegetable Talekar & Shelton 1993 

Brassica oleracea L. var. botrytis Cauliflower Vegetable Idris & Grafius 1996; Reddy et al. 2004; Golozadeh et al. 2009 

Brassica oleracea L. var. sabauda Savoy cabbage Vegetable Abro et al. 1985 

Brassica oleracea L. var. capitata Cabbage 

 

Vegetable Abro et al. 1994; Idris & Grafius 1996; Golozadeh et al. 2009; Silva & 

Furlong 2012 

Brassica oleracea L. var. 

gemmifera 

Brussels sprouts Vegetable Talekar & Shelton 1993 

Brassica oleracea L. var. 

gongylodes  

Kohlrabi Vegetable Reddy et al. 2004; Golozadeh et al. 2009 

Brassica oleracea L. var. italica  Broccoli Vegetable Idris & Grafius 1996; Reddy et al. 2004 

Brassica rapa L. var. pakchoi  Pak choi Vegetable Talekar & Shelton 1993 

Brassica rapa L. var. pekinensis Chinese cabbage Vegetable Talekar et al. 1994; Liu & Jiang 2003; Silva & Furlong 2012 

Brassica rapa L. Canola Oilseed Sarfraz et al. 2007 

Raphanus sativus L.  Radish, bier radish Vegetable Abro et al. 1994 

Sinapis alba L. (= Brassica hirta 

Moench) 

White mustard, yellow mustard Vegetable, spice Brown et al. 1999; Sarfraz et al. 2007, 2008 
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Table 1-I. Continued 

 

 

  

Wild Cruciferous 

Cultivar/Species Common name Plant type Reference 

Arabidopsis thaliana (L.) Heynh  Thalecress, mouse-earcress  Ratzka et al. 2002 

Barbarea vulgaris (L.) R. Br.  Yellow rocket, rocketcress  Idris & Grafius 1996; Shelton & Nault 2004; Badenes-Perez et al. 

2004 

Berteroa incana (L.) DC. Hoary alyssum  Idris & Grafius 1996 

Capsella bursa-pastoris (L.) 

Medik. 

Shepherd’s purse, mother’s-heart   Idris & Grafius 1996; Sarfraz et al. 2012 

Cardamine flexuosa With.  Flexuous bittercress   Muhamad et al. 1994 

Descurainia sophia L.  Flixweed   Talekar & Shelton 1993 

Erysimum cheiranthoides L.  Wormseed mustard, treacle mustard   Renwick & Radke 1990; Idris & Grafius 1996 

Erysimum cheiranthoides L. Treacle-mustard  Sarfraz et al. 2011, 2012 

Erucastrum arabicum Fisch. & CA. 

Mey. 

-  Ayalew et al. 2006 

Lepidium campestre (L.) R. Br.  Field pepper-grass, pepperweed   Idris & Grafius 1996 

Lepidium virginicum L.  Virginia pepperweed, peppergrass   Begum et al. 1996 

Raphanus raphanistrum L.  Wild radish, wild rape, charlock  Idris & Grafius 1996; Gathu et al. 2008 

Rorippa indica (L.) Hiern  Indian marshcress   Muhamad et al. 1994; Begum et al. 1996 

Rorippa islandica (Oeder) Barbas  Marsh yellowcress  Muhamad et al. 1994 

Rorippa micrantha (Roth.) Jonsell -  Gathu et al. 2008 

Rorippa nudiuscula (E. Mey. ex 

Sond.) Thell. 

-  Gathu et al. 2008 

Sinapis arvensis L. (= Brassica 

kaber (DC) Wheeler) 

Wild mustard, crunchweed   Idris & Grafius 1996; Sarfraz et al. 2011, 2012 

Sisymbrium altissimum L.  Tumbling mustard, tall hedge 

mustard  

 Talekar & Shelton 1993 

 

Thlaspi arvense L.  Stinkweed, pennycress, Frenchweed   Idris & Grafius 1996 
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Table 1-I. Continued 

 

 

 

 

 

 

 

Non-Cruciferous 

Cultivar/Species Common name Plant type Reference 

Tropaeolum majus L. Nasturtium, Indian cress Flowering 

ornamental plant 

Renwick & Radke 1990 

Cleome species Spider plant Flowering plant Sarfraz et al. 2005c 

Pisum sativum L. Peas Pulse Gupta & Thorsteinson 1960; Lohr 2001; Lohr & Gathu 2002; 

Rossbach et al. 2006; Henniges-Janssen 2011ab 

Hibiscus esculentis L. Okra, Lady fingers Vegetable Gupta 1971 
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Table 1-II. Examples of some common natural enemies of Plutella xylostella 

Natural Enemy 

A- Parasitoid 

Host stage 

attacked 

References 

Trichogrammatoidea bactrae (Nagaraja) 

Trichogramma pretiosum Riley 
Trichogrammatidae spp. 

 

Egg Liu et al. 2004 

 

Diadegma insulare (Cresson) 
D. fenestrale (Holmgren) 

D. mollipla (Holmgren) 

D. varuna Gupta 
D. leontiniae (Brèthes) 

D.  rapi (Cameron) 

 

Larva Azidah et al. 2000 
 

 

 

D. semiclausum (Hellen) 

Apanteles ippeus (Nixon) 

 

Larva Furlong & Zalucki 2007 

 

Cotesia plutellae (Kurdjumov) Larva Verkerk & Wright 1996 

Microplitis Plutellae Muesbeck Larva Braun et al. 2004 

Diolcogaster claritibia Larva Fernandez-Triana et al. 2014 

Oomyzus sokolowskii (Kurdjumov) Larva-Pupa Shi et al. 2004 

Tatrastichus ayyari (Rohwen) Pupa Ooi & Lim 1989 

Brachymeria phya (Walker)  
Diadromus collaris (Gravenhorst) 

Pupa 
Pre-pupa, Pupa 

Furlong & Zalucki 2007 
 

D. subtilicornis (Gravenhorst) Pre-pupa, Pupa Braun et al. 2004 

Pteromalus spp. Pupa Chauhan & Sharma 2004 

B- Pathogen   

Bacillus thuringiensis Berliner Larva Bauer 1995 

Zoophthora radicans (Brefeld) Batko 

Beauveria bassiana (Balsamo) Vuillemin 
Metarhizium anisopliae (Metsch.) Sorokin 

Paecilomyces farinosus (Holm ex SF. Gray) 

Nomuraea rileyi (Farlow) Sampson 
Fusarium spp. 

Pandora spp. 

Erynia spp. 
Conidiobolus spp. 

Scopulariopsis spp. 

Larva Cherry et al. 2004a 

Vandenberg et al. 1998 
Kirk et al. 2004 

 

Granuloviruses (GVs) 
Nucleopolyhedrovirus NPVs 

Cypovirus CPVs 

 

Larva Woodward et al. 2004 
Cherry et al. 2004b 

 

Steinernema carpocapsae (Weiser) 

Heterorhabditis sp. 

Nosema bombycis (Negali) 
Vairimorpha sp. 

Larva Baur et al. 1998 

Mason et al. 1999 

Idris et al. 2004 
Anuradha 1997 

C- Predator   

Lycosids  

Linyphiids 
 

Mostly Larva Quan et al. 2011; Ortiz 2011 

 

Syrphids 

Staphylinids 
Reduviids 

Nabids 

Carabids 
 

Egg, Larva Ortiz 2011 

 

Coccinella spp. Egg-Larva Gabriela 2011 

http://digital.library.adelaide.edu.au/dspace/browse?type=author&value=Lankin+Vega%2C+Gabriela
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Figure 1-I. Biology of Diamondback moth; A- Newly laid eggs in cluster; B- Eggs laid 

singly; C- Mature eggs; D- Egg shells; E- 2nd instar larva; F- 3rd instar larva; G- 4th instar 

larva; H- Prepupa; I- Pupa; J- Adult   

Photo credit: Sadia Munir 
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Figure 1-II. Diadegma insulare larva, spinning its cocoon inside the cocoon of P. xylostella 

Photo credit: Andrei Sourakov (From Featured Creatures, 2000) 

 

 

 

Figure 1-III. Diadegma insulare cocoon; mature & empty 

Photo credit: Sadia Munir 

 

 

 



 

35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 
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Figure 1-IV.  Diadegma insulare A- Female B- Male 

Photo credit: Sadia Munir 
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Chapter 2: Oviposition preferences of Plutella xylostella (L.) (Plutellidae: Lepidoptera) on 

water-stressed and non-stressed plants of Brassica napus L.  

A version of this chapter has been published: 

 

Munir S, Dosdall LM, O’Donovan. 2017. Oviposition preferences of Plutella xylostella (L.) 

(Plutellidae: Lepidoptera) on water-stressed and non-stressed plants of Brassica napus L. Journal 

of Entomology and Zoology Studies 5(4): 1143-1147. 

 

2.1 Introduction 

Plants experience several environmental biotic (e.g., imposed by other microorganisms & 

insects) and abiotic (e.g., drought, heat, cold & salinity) stresses that not only impact their growth 

and development (Saranga et al. 2001), but also their fitness and interaction with herbivores 

(Moran & Showler 2005; Sarfraz et al. 2009a). Water deficit stress is perhaps the most important 

abiotic stress to which plants are exposed (Sanghera et al. 2011; Pathak et al. 2014). The 

alteration in host plant quality often influences the response of insect herbivores, including their 

biological and life history traits (Mattson 1980; Koricheva et al. 1998; Daane & Williams 2003; 

Scheirs & De Bruyn 2005). 

The effects of plant water stress on the insect attraction, oviposition and development can 

be very complex, uncertain and variable (Holtzer et al. 1988; Oswald & Brewer 1997; Showler & 

Moran 2003). The overall performance of insect herbivores can be altered on host plants 

experiencing water deficit relative to plants not under stress (White 1974). Oviposition of 

Lepidopteran pests can be enhanced (Wolfson 1980; Rubberson 1996; Showler & Moran 2003), 

reduced (Slosser 1980) or not affected (Badenes-Perez et al. 2005) in plants under water deficit 

stress. In addition to stress patterns, several other factors can determine female oviposition 

behavior, such as quality of the host plant (Craig et al. 1989; Singer 2003, 2004), preference as to 

where on an individual plant to lay eggs, leaf age (Price 1991; Badenes-Perez et al. 2005), leaf 
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size, internode length (Price et al. 1987), leaf and root-damaged plants (Silva & Furlong 2012), 

presence of previously laid eggs on the plant, leaf shape, and secondary plant compounds (Chew 

& Robbins 1984; Thompson & Pellmyr 1991; Freitas & Oliveira 1996; Textor & Gershenzon 

2009). Survival of immature stages in Lepidoptera is greatly influenced by the oviposition 

choices of adult females (Renwick 1989).  

The impact and importance of stressed host plants in mediating plant-herbivore 

interactions are unclear. Stress may induce contrasting patterns in oviposition, development and 

feeding preferences among herbivore species due to a change in plant suitability and 

attractiveness (Schoonhoven et al. 2005; Gutbrodt et al. 2011). The diamondback moth is a 

serious, worldwide pest of brassicaceous crops (Furlong et al. 2013), and its extensive geographic 

distribution encompasses regions and seasons where its host plants may develop under moisture 

deficit stress. So far, only one study has been conducted to determine the responses of P. 

xylostella to water stressed and non-stressed plants of cabbage (Brassica oleracea L.) (Badenes-

Perez et al. 2005). However, the present study is focussed on canola (Brassica napus L.), a major 

economically important oilseed crop in Canada (Canola Council 2016).  

The objective of this research was to investigate if diamondback moth, Plutella xylostella 

L., responds differently to water-stressed and non-stressed plants regarding ovipositional 

preferences. 

 

2.2 Materials and methods 

2.2.1 Experimental plants and insects 

Four and six-week-old Brassica napus L. var. Q2 plants were used in the experiment. The 

plants were grown individually in plastic pots (15 cm diameter) using Metromix-220 (WR Grace 
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& Co, Ajax, ON, Canada) as a potting medium. Three seeds of B. napus were placed in a pot, and 

after emergence, seedlings were thinned to one per pot. Pots were thoroughly watered and placed 

in a growth chamber at a constant temperature of 21 ± 0.5°C, 40-50% r.h., and 16L: 8D 

photoperiod.  

 Plutella xylostella adults originated from a laboratory colony maintained on B. napus 

plants. Plutella xylostella were collected from different commercial fields of B. napus, Brassica 

juncea (L.) Czern. and Sinapis alba L. throughout Alberta, Canada and were periodically added 

to the laboratory colony to maintain the genetic diversity.   

2.2.2 Imposition of water stress  

All pots were watered daily to saturation until they reached the desired age of four or six-

week old plants. Plants were randomly allocated to two alternative treatments: water-stressed or 

non-stressed (control). Plants of the control treatment were watered at 88 ml/day/plant throughout 

the experiment. For the water-stressed plants, irrigation was reduced to 30 mL/d/plant for four 

days and finally withheld for two to three days before the beginning of the experiment. All tests 

were initiated approximately 48 h after these conditions were imposed. 

2.2.3 Assessment of leaf water potential 

At the beginning of the water stress treatment, the leaf water potential (bar) of one 

randomly selected, fully expanded leaf from the center of each plant was measured using a 

Scholander pressure bomb (Model-610; PMS Instrument Co., Corvallis, OR). It is a reliable, 

practical and quick method of measuring water potential of plant tissues developed by Scholander 

(Scholander et al. 1965). 
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2.2.4 Oviposition choice test  

Ovipositional preference of P. xylostella on water-stressed and non-stressed four- and six-

week-old B. napus was determined under greenhouse conditions at 22 ± 0.5ºC, 50-70% r.h., and a 

photoperiod of 16 L: 8 D in the wooden screened cages. Each cage was assembled randomly with 

two plants of B. napus, one water-stressed and other non-stressed plant of the same age. The 

experiment was conducted as a choice test (water-stressed versus non-stressed), and it was 

replicated four times. Six pairs of newly eclosed P. xylostella adults were released in each cage 

and female moths were allowed to oviposit either on stressed or non-stressed plants of same age. 

Moths were also provided with 10% honey water on cotton wicks immersed in 20-mL plastic 

cups as a sugar source. After 48 h exposure to both treatments, adults were removed and plants 

were examined for eggs. Total numbers of eggs deposited on stressed and non-stressed plants 

were counted in the laboratory using a dissecting microscope.  

2.2.5 Plant parameters  

Plant stem height and stem diameter were measured at the end of the oviposition choice 

experiments. Stem diameter was measured using vernier calipers (Electronic Caliper, 

Mastercraft) at 10 cm above the root/shoot junction.  

2.2.6 Statistical analysis  

Variables were tested for normality and homoscedasticity, before subjecting them to the 

analysis. A two-way analysis of variance (ANOVA) (PROC MIXED) was performed to 

determine the effects of water treatments on oviposition preferences of four or six-week-old 

plants. If significant treatment effects were indicated, means were compared at the 5% level of 

significance using Fisher’s Least Significant Difference (LSD) test (SAS Institute 2012). PROC 

TTEST for leaf water potential was performed. Correlations (PROC CORR) were determined 
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between plant height and egg deposition, and plant stem diameter and egg deposition (SAS 

Institute 2012).  

 

2.3 Results 

Leaf water potential of the water-stressed plants was significantly more negative 

(indicating a low leaf water potential) than the leaf water potential of non-stressed B. napus 

(t = 9.64; df = 6; P < 0.0001). Water stress affected the oviposition decisions of P. xylostella 

females. On average, 2.15 times more eggs were laid on non-stressed than the stressed plants (F = 

8.88; df = 1, 12; P = 0.0115) (Fig. 2-I). Plant age also had a significant effect on ovipositional 

preference. The mean number of eggs laid on six-week-old B. napus plants was three times 

greater than on four-week-old non-stressed plants regardless of water treatment (F = 19.43; df = 

1, 12; P = 0.0009) (Fig. 2-II). In general, 2.34 and 1.65 times more eggs were laid on six- and 

four-week-old unstressed B. napus plants than on the stressed plants, respectively (Fig. 2-III). 

There was no significant interaction between water treatment and plant age (F = 4.26; df = 1, 12; 

P = 0.0613). A significant positive correlation was found between oviposition and plant height (r 

= 0.64; P = 0.0069), but no correlation existed between oviposition and plant stem diameter (r = -

0.164; P = 0.54).  

 

2.4  Discussion 

Greater ovipositional preference by insect herbivores for water-stressed host plants has 

been observed in many earlier studies (Wolfson 1980; Showler & Moran 2003; Reay-Jones et al. 

2007; Seagraves et al. 2011). However, the effects of plant water stress on insect attraction can be 

inconstant, unpredictable and complex (Holtzer et al. 1988; Oswald & Brewer 1997). For 
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instance, no significant differences in P. xylostella ovipositional preferences were found between 

the water-stressed and non-stressed cabbage (Brassica oleracea L.) and yellow rocket (Barbarea 

vulgaris R. Br.) plants (Badenes-Perez et al. 2005). 

  In the present study, a clear ovipositional preference for non-stressed plants of B. napus 

was observed for P. xylostella. Significantly more eggs were laid on four- and six-week-old non-

stressed B. napus plants than on water-stressed ones. These contradictory results relative to 

previous studies might reflect differences in host plant species used in different experiments. 

Female P. xylostella might evaluate host plant quality (regarding plant water status and nutritional 

value) and preferred suitable hosts for oviposition by morphological and physical characteristics 

or might prefer to oviposit on plant tissues that are high in water content (Seagraves et al. 2011).   

Furthermore, moths may choose an oviposition host that meets more than just the nutritional 

needs of their offspring. Hence, maximizing the chances of their progeny survival and growth 

(Bonebrake et al. 2010).  

Ovipositional preference can be driven by plant age. A positive correlation between 

oviposition by P. xylostella and plant age has been observed in plant species like cabbage and 

yellow rocket (Badenes-Perez et al. 2005). In this study, a significant positive correlation between 

oviposition and increasing plant height was detected. Female moths may receive more stimulating 

visual and olfactory cues for oviposition as a result of the greater total leaf area in older plants. 

For example, three times more eggs were laid on six-week-old, as compared to four-week-old 

plants. Older plants may also offer more oviposition sites, the potential for shelter from natural 

enemies and more rich resources, for larval development (Badenes-Perez et al. 2005).  

Water stress causes a reduction in shoot/stem growth. Reduced growth is one of the most 

evident and consistent responses of plants to water deficit (Mattson & Haack 1987; Waring & 
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Cobb 1992). The strong significant positive relationship between total number of eggs laid and 

plant stem height, indicated that females select healthier plants on which their offspring can 

develop. In general, the research findings support the preference-performance hypothesis, 

according to that oviposition preference should correspond with host suitability. Thus, female 

phytophagous insects select to oviposit on host plants that optimize the fitness of their progeny 

(Jaenike 1978). The study results confirmed that P. xylostella females preferred to deposit eggs 

on six-week-old vigorous plants, not under water stress to ensure the successful development and 

survival of their offspring.  
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Figure 2-I. Mean (± SE) eggs of Plutella xylostella deposited on water stressed and non-stressed 

plants. 
    

 

 

 

 

 

 

 

 

 

Figure 2-II. Mean (± SE) eggs of Plutella xylostella deposited on 4- and 6-week-old plants. 
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Figure 2-III. Mean (± SE) eggs of Plutella xylostella deposited on 4- and 6-week-old stressed 

and non-stressed Brassica napus. Means followed by the same letter are not significantly 

different at 5% level (Fisher’s PLSD test following ANOVA). 
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Chapter 3: Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) development is 

altered by Plutella xylostella (L.) (Plutellidae: Lepidoptera) reared on water-stressed host 

plants 

A version of this chapter has been published: 

Munir S, Dosdall LM, O’Donovan JT, Keddie BA. 2016. Diadegma insulare (Cresson) 

(Hymenoptera: Ichneumonidae) development is altered by Plutella xylostella (L.) (Plutellidae: 

Lepidoptera) reared on water-stressed host plants. Journal of Applied Entomology 140: 365-375. 

 

3.1 Introduction 

  Climate change can have diverse effects on all living organisms that are linked through 

trophic relationships with plants, herbivores, and natural enemies. The equilibrium, functioning, 

and overall stability of an ecosystem depend on the relative responses of each trophic level and 

species. These reactions are highly diverse and variable when exposed to different climatic 

extremes (Tylianakis et al. 2008; De Sassi & Tylianakis 2012; Romo & Tylianakis 2013). 

Climate changes are likely to have major impacts on the presence, physiology, production, 

abundance and distribution of plants (Rustad et al. 2001; Anwar et al. 2007); population density, 

herbivory (Bale et al. 2002), distribution (Trnka et al. 2007), phenology (Parmesan 2007), 

emergence time (Dewar & Watt 1992; Whittaker & Tribe 1996, 1998) and voltinism (Zvereva & 

Kozlov 2006) of the insect herbivores; and their natural enemies distribution, abundance, activity 

and fitness (Romo & Tylianakis 2013). Many studies have indicated that the effects of climate 

change on plants such as elevated CO2 (Thomson et al. 2010), higher temperature and drought 

(Bale et al. 2002; Aslam et al. 2013; Romo & Tylianakis 2013), altered precipitation patterns 

(Haile 2002) and ozone concentration (Valkama et al. 2007) can impact phytophagous insects.  

  Studies that examine the effect of water deficit stress on lepidopteran insects generally 

indicate inconsistent and variable responses in performance of herbivores. The performance of 
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herbivores under water deficit stress conditions can be neutral (Miles et al. 1982; Moran & 

Showler 2005; Rouault et al. 2006), decrease (Inbar et al. 2001; Badenes-Perez et al. 2005; 

Rouault et al. 2006), or increase (Mattson & Haack 1987; Rouault et al. 2006). For instance, 

Gutbrodt et al. (2011) reported a contrasting developmental response to water stress by two 

lepidopteran species of the same feeding guild. Pieris brassicae (L.) development was faster on 

drought-stressed than on well-irrigated plants, while Spodoptera littoralis (Boisduval) showed 

retarded development on stressed plants. Similarly, the infestation of cabbage aphid, Brevicoryne 

brassicae L., on water-stressed rape, Brassica napus L., was observed to be more severe than on 

non-stressed plants (Burgess et al. 1994; Popov et al. 2006). Water deficit stress can influence 

plant physiological processes by altering plant metabolism and biochemistry that consequently 

changes herbivore performance (Hsiao 1973; Beck et al. 2007; Showler 2012). Moreover, due to 

the inadequate availability of water, host plant suitability and quality for utilization by herbivores 

can decline (Mattson & Haack 1987; Showler 2012). 

   Herbivores and their natural enemies respond differently to temperature and water deficit 

stress and natural enemies are more sensitive to environmental change than their herbivore 

counterparts (Romo & Tylianakis 2013). For example, water stressed cassava host plants 

positively influenced the development of the cassava mealybug, Phenacoccus herreni Cox & 

Williams (Hemiptera: Pseudococcidae), but adversely affected its natural enemies depending on 

parasitoid development and the species concerned (Calatayed et al. 2002). 

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a widely 

distributed and destructive oligophagous pest of brassicaceous crops (Talekar & Shelton 1993; 

Furlong et al. 2013). Plutella xylostella control and yield losses in brassicas are estimated to cost 

the world economy US$ 4–5 billion annually (Furlong et al. 2013). Climate change and an 
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increasing brassicaceous crop production area is predicted to enhance the pest status of P. 

xylostella (Dosdall et al. 2011). With every +2°C increase in average summer temperature and 

drought, 2-5 more generations of P. xylostella can develop (Olfert et al. 2011). More than 135 

parasitoid species have been recognized to attack different life stages of P. xylostella (Delvare 

2004). Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) is a solitary, koinobiont, 

host-specific endoparasitoid of P. xylostella larvae, and is considered one of the most important 

P. xylostella biological control agents in Nearctic and Neotropical regions (Azidah et al. 2000; 

Sarfraz et al. 2005a). As compared to other larval parasitoids, it is a most competitive and 

efficient host searcher (Xu et al. 2001; Wang & Keller 2002) and can parasitize up to 90% of P. 

xylostella larvae (Sourakov & Mitchell 2000). The population dynamics of D. insulare are highly 

synchronized with its host (Harcourt 1960) as the number of generations per year corresponds to 

the number of generations of its host (Putnam 1968; Sourakov & Mitchell 2000). 

Despite being an important, principal, and effective biological control agent, extensive 

research on factors affecting D. insulare developmental biology is lacking. To date, only two 

studies have been evaluated the impact of water-stressed host plants on P. xylostella (Badenes-

Pérez et al. 2005; Wachira et al. 2009), but how this water stress affects its natural enemies is not 

known. The objectives of this study were to address the tritrophic interactions between host 

plants, P. xylostella, and its specialist parasitoid wasp D. insulare and to evaluate the influence of 

water-deficit stressed first trophic level producers (host plant) on the developmental biology of 

third trophic level consumers (parasitoid). 
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3.2 Materials and methods 

3.2.1 Experimental plants and insects  

Two different species of Brassicaceae, Brassica napus L. var. Q2 and Sinapis alba L. var. 

AC Pennant were used in all experiments. The plants were grown individually in plastic pots (13 

cm diameter) using Metromix-220 (WR Grace & Co. Ajax, ON, Canada) as a potting medium. 

Three seeds of each plant species were placed in a pot, and after emergence, seedlings were 

thinned to one per pot. Pots were watered thoroughly and placed in a growth chamber at a 

constant temperature of 21 ± 0.5°C temperature, 40-50% r.h., and 16 L: 8 D photoperiod. Four-

week-old plants were used for all experiments. 

 Plutella xylostella and D. insulare adults originated from a laboratory colony maintained 

on B. napus plants. Moths and wasps were collected from different commercial fields of B. 

napus, Brassica juncea (L.) Czern. and S. alba throughout Alberta, Canada and were periodically 

added to the laboratory colony to maintain genetic diversity.  

 3.2.2 Imposition of water stress 

All pots were watered daily to saturation until they reached the desired age. For both 

experiments (P. xylostella and D. insulare development), plants of each species were allocated 

randomly to two alternative treatments: water-stressed or non-stressed. Non-stressed plants were 

watered at 88 mL/d/plant throughout the experiment, while water-stressed plants were under the 

same irrigation regime until one week before the experiment. Irrigation for the water-stressed 

plants was reduced to 60 mL/d/plant for four days and finally to 30 mL/d/plant, three days before 

the beginning of the experiment, and this irrigation regime was followed throughout the 

experiment.  
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3.2.3 Assessment of leaf water potential and other host-plant parameters 

At the beginning of the water stress treatment, the leaf water potential (bar) of one 

randomly selected, fully expanded leaf from the center of each plant was measured using a 

pressure bomb (Model-610, PMS Instrument Co., Corvallis, OR). The water status (leaf water 

potential) of both host plant species was affected under water-stressed conditions. Therefore, the 

commonly used and most affected physiological parameters of the host plants under water-deficit 

conditions were determined. 

Plant stem height (cm) and stem diameter (mm) were measured at the end of each 

developmental study. Stem diameter was measured using vernier calipers (Electronic Caliper, 

Mastercraft) at 10 cm above the root/shoot junction. The total number of leaves per plant was also 

counted after imposing the water stress conditions. The total leaf surface area (cm2) of one 

randomly selected, fully expanded leaf from the center of the plant was measured for both 

treatments using a leaf area meter (Model 3100, LI-COR, Lincoln, Nebraska, USA). Host plants 

were dried at room temperature for two weeks after the developmental study was completed and 

then oven dried at 60ºC for 48 h. Total dry weights of plants (mg) and dry weights of individual 

plant organs for both stressed and non-stressed S. alba and B. napus were measured on an 

electrical balance (Model XS204, Mettler-Toledo, Greifensee, Switzerland).   

3.2.4 Effect of water-stressed plants on development of P. xylostella 

  The experiment was conducted as a no-choice test (water-stressed vs. non-stressed plants), 

separately for the two different plant species, B. napus, and S. alba. Pest development was 

assessed in wooden screened cages (40 × 40 × 80 cm) arranged on a greenhouse bench at 22 ± 

0.5º C, 50-70% r.h., and 16 L: 8 D photoperiod. Each cage contained a pot with either a stressed 

or non-stressed plant, of either B. napus or S. alba. For each plant species tested under stressed or 
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non-stressed conditions, four such cages were maintained in a completely randomized design. 

Ten to 15 eggs of P. xylostella per plant were attached to leaves by first allowing the females to 

oviposit on tinfoil dipped in cabbage/ B. napus leaf extract. Times for each developmental stage 

(larva, pupa, and adult), adult longevities without food and mortalities were recorded for both 

stressed and non-stressed treatments of each plant species. Pupae were harvested, weighed and 

maintained in their respective cages until adult emergence.  

3.2.5 Effect of water-stressed plants on development of D. insulare 

 The experimental setup, plant species, and water treatments were the same as indicated in 

the P. xylostella development study. Third instar P. xylostella larvae (160-170) were allowed to 

be parasitized by six to eight pairs of one to two-day old D. insulare in a cage with host plant 

material for 24 h, and then 10 larvae per plant were transferred to the experimental cages. Time to 

each developmental stage, adult longevities without food and mortalities of adults were recorded 

for both stressed and non-stressed treatments of each plant species. Diadegma insulare pupae 

were harvested, weighed within 24 h of pupation and maintained in their respective cages until 

adult emergence. After adult eclosion, the silk cocoons were also weighed on an electrical scale 

(Model XS204, Mettler-Toledo, Switzerland). Forewing, hindwing and hind tibia length of adult 

D. insulare were measured with AxioVision 4.8.2 (Carl Zeiss, Jena, Germany). 

3.2.6 Statistical analysis 

  Variables were tested for normality and homoscedasticity before subjecting them to the 

analysis. Data were log transformed for the diamondback moth longevity test, but untransformed 

means are presented for clarity. Analysis of variance (PROC MIXED) for a completely 

randomized design was performed to determine the treatment effects on development, longevity, 

adult body weight, pupa, and silk weight of P. xylostella and D. insulare, and also on the 
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forewing, hindwing and hind tibia length of D. insulare. If significant treatment effects were 

indicated, means were compared at the 5% level of significance using Fisher’s PLSD (Protected 

Least Significant Difference) test (SAS Institute 2012). Correlations (PROC CORR) were 

determined between pupal weight and silk weight, pupal weight and longevity, pupal weight and 

adult weight of P. xylostella; and between pupal weight and silk weight, pupal weight and adult 

weight, adult weight and wing length, adult weight and tibia length, and longevity and body size 

(forewing length, hindwing length and hind tibia length) of D. insulare. The total dry weight and 

mean dry weight of individual plant organs, plant height, plant diameter, the number of leaves 

and leaf surface area of stressed and non-stressed plants were compared using a two-tailed 

Students t-test with PROC TTEST (SAS Institute 2012). All data were analyzed by SAS version 

9.3.  

 

3.3 Results 

3.3.1 Assessment of host-plant parameters under water-stress 

The plant species and water regime used in both P. xylostella and D. insulare 

developmental studies were similar. Therefore, only the results of host plant parameters measured 

in the D. insulare development study are presented. 

Water deficit influenced most of the plant parameters studied. Water-stressed plants had 

visual signs of water deficit such as leaf rolling, wilting, yellowing or discoloration of lower 

leaves. Leaf water potential of the water-stressed plants was significantly more negative 

(indicating a low leaf water potential) than leaf water potential of non-stressed B. napus and S. 

alba plants (B. napus:  t = 8.76; df = 6; P = 0.0001), (S. alba:  t = 7.65; df = 6; P = 0.0003) (Fig. 
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3-I). The absolute values for leaf water potential were 2.23 and 2.80 times higher in the water-

stressed than on non-stressed B. napus and S. alba plants, respectively. 

Non-stressed B. napus and S. alba had significantly increased stem height, greater total 

dry weight, dry weight of individual plant organs and greater leaf surface area than their water-

stressed counterparts. However, no significant differences were detected between the total 

number of leaves of stressed and non-stressed B. napus or S. alba (Table 3-1). 

3.3.2 Effect of water stressed host plant on P. xylostella development 

  Development of P. xylostella from larva to pupa and from pupa to adult was not 

significantly affected by water-stressed and non-stressed treatments (larva to pupa: F = 1.41; df = 

1, 12; P = 0.25); (pupa to adult: F = 0.97; df = 1, 12; P = 0.34), or by host plant species (larva to 

pupa: F = 0.10; df = 1, 12; P= 0.75); (pupa to adult: F = 3.63; df = 1, 12; P = 0.08). Mean 

development time from larva to adult on stressed plants was recorded as 12.50 ± 0.26 (SE) days, 

and on non-stressed plants was 13.03 ± 0.26 (SE) days. Although there were no significant effects 

of water treatment and plant species on development of P. xylostella, a trend of slightly more 

rapid development (1.04 days early) was observed on stressed S. alba plants (Table 3-II). 

Similarly, longevity, pupal and silk weights were similar and not significantly affected by stress 

treatment or host plant species, indicating that these parameters were not influenced by water 

stress and host plant species (Table 3-II). Significant positive correlations were detected only 

between female weight and silk weight (r = 0.65, P = 0.006), but correlations between pupal 

weight and longevity (r = -0.12, P = 0.63), pupal weight and silk weight (r = -0.001, P = 0.99), 

pupal weight and male weight (r = 0.13, P = 0.61), and pupal weight and female weight (r = 0.25, 

P = 0.33) were not significant. 
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 3.3.3 Effect of water-stressed plants on development of D. insulare 

Developmental parameters for time of egg to pupa and egg to adult were significantly 

modified by water stress and plant species (egg to pupa:  F = 5.41; df  = 1, 12; P = 0.0384, F = 

13.91; df = 1, 12; P = 0.0029) (Fig. 3-IIA), and (egg to adult:  F = 6.32; df = 1, 12; P = 0.0272, F 

= 12.22; df = 1, 12; P = 0.0044) (Fig. 3-IIC). However, development from pupa to adult was not 

significantly affected by water treatment and plant species (pupa to adult: F = 2.68; df = 1, 12; P 

= 0.1277, F = 3.09; df = 1, 12; P = 0.1042) (Fig. 3-IIB). Mean development time from egg to 

pupa and egg to adult was shortest on non-stressed B. napus plants (8.35 ± 0.42 and 15.85 ± 0.66) 

and longest on stressed S. alba (10.93 ± 0.42 and 19.83 ± 0.66, respectively), while development 

took place almost at the same rate from pupa to adult. No significant interactions of water 

treatment and plant species were detected for any developmental stage (pupa to adult: F = 0.09; 

df = 1, 12; P = 0.7707, and egg to adult: F = 0.03; df = 1, 12; P = 0.8637, respectively), indicating 

that these parameters were influenced independently by water stress and host plant species. 

Parasitoid longevity was affected significantly by both water treatment (F = 5.44; df = 1, 

12; P = 0.0380) and plant species (F = 50.41; df = 1, 12; P < 0.0001) (Fig. 3-III). In general, 

longevity was 1.5 days longer on B. napus as compared with S. alba regardless of water treatment 

and development required, and 1.15 days more on stressed as compared with non-stressed plants 

regardless of species. The interaction of water treatment and plant species was also significant for 

adult longevity without food (F = 9.08; df = 1, 12; P = 0.0108). Thus, this parameter was 

influenced by water treatment, but varied between the plant species. For instance, the longevity of 

the parasitoids was 1.3 days greater on stressed as compared with non-stressed B. napus, while 

there was no significant difference between stressed and non-stressed S. alba. 
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Diadegma insulare pupa and silk weight were significantly influenced only by plant 

species (F = 95.57; df = 1, 12; P < 0.0001 and F = 4.93; df = 1, 12; P = 0.0464, respectively). In 

general, heavier pupae were produced on B. napus under non-stressed conditions (4.51 ± 

0.12mg), while pupal silk was found to be heavier on S. alba under water-stressed conditions 

(1.05 ± 0.07mg).  

Adult weight was significantly affected by water treatment (F = 99.08; df = 1, 24; P < 

0.0001), plant species (F = 21.75; df = 1, 24; P < 0.0001) and sex of the parasitoid (F = 19.64; df 

= 1, 24; P = 0.0002) (Fig. 3-IV). In general, the adults were heavier, especially in non-stressed 

conditions on both B. napus (0.41± 0.02mg) and S. alba plants (0.62 ± 0.02mg) as compared with 

their stressed counterparts, regardless of parasitoid sex. Similarly, females were heavier than 

males on non-stressed plants regardless of plant genotype. A significant interaction of water 

treatment and plant species (F = 25.11; df = 1, 24; P < 0.0001), water treatment and parasitoid sex 

(F = 27.48; df = 1, 24; P < 0.0001), and water treatment, plant species and parasitoid sex (F = 

23.96; df = 1, 24; P < 0.0001) were also detected for adult weight. Thus, this parameter was 

influenced by water stress, but differed based on host plant species and adult parasitoid sex. 

However, no significant interaction was detected between host plant species and sex of the adult 

parasitoid (F = 1.15; df = 1, 24; P = 0.2945). 

Hindwing length was the only parameter among forewing and hind tibia length influenced 

by plant species (F = 6.46; df = 1, 12; P = 0.0259). Hindwing length was larger on B. napus host 

plants. 

For most of the biological parameter studies, no significant correlations were detected. 

For D. insulare reared on P. xylostella larvae that consumed the host plant, significant negative 

correlations were found between some parameters like pupal and silk weight (r = -0.55, P = 
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0.0246), adult weight and forewing length (r = -0.59, P = 0.0153), adult weight and hind wing 

length (r = -0.66, P = 0.0049), and a positive significant relationship occurred between hind wing 

and hind tibia length (r = 0.79, P = 0.0002), regardless of water treatment. If the host plant was 

non-stressed, significant positive correlations were found between forewing and hind wing length 

(r = 0.95, P = 0.0003), forewing and hind tibia length (r = 0.79, P = 0.0195), and hind wing and 

hind tibia length (r = 0.78, P = 0.0202), but negative correlations existed between adult weight 

and forewing length (r = -0.82, P = 0.0114), and adult weight and hind wing length (r = -0.73, P = 

0.0373). Similarly, if the host plant was under water-stressed conditions, significant positive 

correlations were found only between silk weight and forewing length (r = 0.73, P = 0.0363), and 

hindwing and hind tibia length (r = 0.86, P = 0.0053). No correlations were found between the 

longevity and body size of the parasitoid. 

 

3.4 Discussion 

Any change in plant quality induced by water stress could directly alter life history 

parameters of insect herbivores and indirectly influence parasitoids either in a positive or negative 

way (Godfray 1994; Inbar et al. 2001; Brodeur & Boivin 2004; Pritchard et al. 2007).   Plant 

architecture in terms of branching pattern, the size of different plant parts, shape and position of 

leaves and flower organs, is greatly influenced by environmental factors such as light, 

temperature, humidity and nutrient status (Reinhardt & Kuhlemeier 2002). Reduced water 

availability results in limited cell division due to impaired mitosis and obstructed cell elongation 

due to loss of turgor that ultimately diminishes growth (Farooq et al. 2009). Water deficit 

influences most of the morphological and physiological traits of host plants like plant height, 

diameter, growth, plant total fresh and dry weight, leaf water content, etc. (Zhang et al. 2009; 
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Bolat et al. 2014), depending on the host plant species, and the level, duration and type of stress 

(Mattson & Haack 1987; Grime & Campbell 1991). In the present study, both host plants showed 

reduced leaf water potential under water deficit conditions. Water stress also caused a significant 

reduction in stem growth, which is one of the most obvious, immediate and consistent responses 

of plants to water deficit (Mattson & Haack 1987; Waring & Cobb 1992).  

  In this study, despite clear indications of water deficit stress on the host plant (first trophic 

level), in terms of wilting, yellowing of lower leaves, reduced plant growth, smaller leaf surface 

area and low leaf/xylem water potential of the stress- treated plants, the stress treatment did not 

influence P. xylostella (second trophic level) development. The findings from the present study 

do not support the plant stress hypothesis of White (1969, 1974), who proposed that herbivore 

performance increases on stressed host plants. However, the present results are consistent with 

those of Slansky & Feeny (1977), Miles et al. (1982) and Wachira et al. (2009). For instance, 

Slansky & Feeny (1977) and Miles et al. (1982) reported almost the same rate of P. rapae 

development on different water-stressed and non-stressed Brassicaceae species with different 

levels of nitrogen content. Similarly, Wachira et al. (2009) observed no significant effect of 

water-stressed host plants on larval development of P. xylostella. In the present study, P. 

xylostella appeared to maintain the same rate of development in both stressed and non-stressed 

plants despite differences in plant architecture and possibly plant quality due to water stress. It 

may accomplish this by adjusting its food intake like other lepidopteran pests (e.g., Pieris rapae 

L.) (Miles et al. 1982). Moreover, the similar developmental rates of P. xylostella on water-

stressed and non-stressed plants may reflect the genotypic plasticity of this species that enables it 

to be among the most successful insect pest species worldwide (Talekar & Shelton 1993; Furlong 

et al. 2013). 
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Evaluation of water-stressed plants on the biological parameters of the third trophic level 

(parasitoid) showed that water treatment and plant genotype on which P. xylostella larvae were 

reared, significantly affected the developmental time of D. insulare from egg to pupa and egg to 

adult. In general, development was more rapid on non-stressed B. napus as compared with water-

stressed B. napus and S. alba. Similarly, complete development from egg to adult was one day 

faster on non-stressed plants regardless of plant species and 1.13 days more rapid on B. napus as 

compared with S. alba regardless of water treatment. Sarfraz et al. (2008) evaluated the 

performance of D. insulare when its host larvae were reared on different Brassicaceae species and 

found that D. insulare development varied considerably among different plant species. For 

instance, egg to pre-pupal development of D. insulare was fastest on B. juncea and slowest on B. 

oleracea L., whereas complete development from egg to the adult was most rapid on B. napus cv. 

Liberty as compared to B. napus cv. Q2. Moreover, plant species could differentially affect the 

pest and its natural enemy. For instance, pre-pupal to adult development of P. xylostella was 

fastest on S. alba and slowest on B. oleracea (Sarfraz et al. 2007), while D. insulare pre-pupal to 

adult development was fastest on B. napus and B. oleracea and slowest on B. carinata (Sarfraz et 

al. 2008). In the present study, overall development of D. insulare was fastest on B. napus and 

slowest on S. alba regardless of water treatment, a developmental pattern that was opposite to its 

host P. xylostella. 

Most of the biological parameters of P. xylostella that were evaluated in this study like 

silk weight, adult weight, and longevity without food were not significantly correlated with pupal 

weight. In contrast, D. insulare pupal, and silk weights were affected by host plant genotype, and 

heavier pupae were produced on non-stressed B. napus plants while heavier silk developed on 

stressed S. alba plants. Furthermore, no significant positive correlations were found between 
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pupal weight and other biological parameters. Pupal weight is considered as one of the indicators 

of offspring fitness. Heavier pupae are assumed to produce more silk, and also larger and more 

fecund adults (Barah & Sengupta 1991; Armbruster & Hutchinson 2002). In fact, besides pupal 

weight, there are many other aspects like host plant genotype and environmental factors that can 

influence adult body weight, longevity and wing size of an insect pest (Sarfraz et al. 2007). Thus, 

it is probable that plant species and various environmental factors had greater effects on P. 

xylostella and D. insulare pupal and silk weight than host plant water stress. 

Natural enemies development rate, body weight, size, and adult longevity are some of the 

important factors that determine their fitness, and this fitness is directly linked to host quality and 

either limit or enhance parasitoid fitness (Romo & Tylianakis 2013). Plant phenology and 

physiology indirectly influence natural enemies. The food availability for herbivores and natural 

enemies generally decrease due to lack of synchrony caused by climatic changes (Thomson et al. 

2010). Furthermore, the fitness of natural enemies can decline as the quality of their herbivore 

hosts decreases, and they have to feed on a low quality host, particularly in koinobiont parasitoids 

whose host continues to feed after parasitization (Harvey et al. 1999; Hoover & Newman 2004; 

Wang et al. 2007). For instance, oat aphid, Rhopalosiphum padi L. development was reported to 

be altered by water-stressed host plants, and parasitism by the parasitoid wasp Aphidius ervi was 

reduced significantly on water-stressed plants (Aslam et al. 2013).  Similarly, larval and pupal 

development of P. xylostella was slower on plants growing in nitrogen deficient soil (Sarfraz et 

al. 2009a), while D. insulare developed more rapidly on host larvae that were reared on highly 

fertilized plants (Dosdall et al. 2011). In the present study, the development time of D. insulare 

was prolonged, and lighter pupa and females were produced on P. xylostella that was reared on 

water deficient plants, indicating lower fitness of the parasitoid wasp on the stressed host. 
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Adult longevity is an important characteristic to evaluate the effectiveness of a parasitoid. 

It can be influenced by many biotic (host and its quality, body size, mating, adult feeding, etc.) 

and abiotic (temperature, drought, humidity, photoperiod) factors (Jarvis & Copland 1996; 

Eliopoulos et al. 2005). Research by Sarfraz et al. (2008) demonstrated that D. insulare lived for 

the shortest time on B. napus cv. Q2 and longest on S. alba when no food was supplied. The 

present research, however, showed the longest survival without food on B. napus compared to S. 

alba, regardless of water treatment. Similarly, body size (hind tibia length, forewing and 

hindwing length) can influence many biological parameters including longevity (Sarfraz et al. 

2008). In the present study, hindwing length was the only parameter affected by plant species. 

Parasitoids that developed on a host reared on B. napus had 1.12 mm larger hindwings than on S. 

alba. Similarly, the parasitoid lived significantly longer on stressed B. napus than on stressed S. 

alba. Several previous studies showed a positive correlation between body size and longevity, 

and also showed that large wasps lived significantly longer than small ones (Hardy et al. 1992; 

Harvey et al. 1999), but it is not always true that body size and other biological parameters 

correlate with longevity (Blackburn 1991).  

The practice of releasing natural enemies for biological control requires consistent 

relationships between herbivore and natural enemy performance and host plant stress. However, 

the results of many studies suggest that responses of herbivores and their natural enemy response 

to host plant stress can vary greatly and depend on the particular plant-herbivore and its natural 

enemies system including type and magnitude of host plant stress, and herbivore and parasitoid 

species (Waring & Cobb 1992; Koricheva et al. 1998; Calatayud et al. 2002; Haile 2002). For 

instance, cassava mealybug, P. herreni development was favored by cassava under water deficit 

stress. However, development of its associated parasitoid complex showed variable results 
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depending on parasitoid species (Calatayud et al. 2002). 

Environmental factors, particularly moisture deficit, influence plant quality, which in turn 

may affect herbivore performance positively or negatively (White 1974; Mattson & Haack 1987; 

Hanks & Denno 1993). These factors can either directly affect distribution and abundance and 

development of insect pests or indirectly affect their host plants, competitors and natural enemies 

(Porter et al. 1991). It is evident from the present study that a water deficit stressed first trophic 

level indirectly influences the development of the third trophic level parasitoids. The slow 

development of D. insulare on water stressed plants might have been due to lack of appropriate 

and adequate nourishment by its host P. xylostella, which may have been directly or indirectly 

caused by the reduced plant development when the plants were stressed. Natural enemies are 

more sensitive to climatic changes than their hosts. The fitness of parasitoids declines in response 

to changes in the quality of their herbivore hosts and this may have unpredicted consequences on 

the effectiveness of biocontrol. Because of the diverse influences of climatic changes on natural 

enemies, it is important to have a better understanding of how climatic change impact tritrophic 

interactions (Thomson et al. 2010). Further detailed laboratory and field studies may help to 

understand tritrophic interactions between P. xylostella, its host plants and natural enemies, and 

to make useful predictions considering interactions under different stress conditions and 

ultimately their influence on crop yield. This may eventually result in the design of long-term, 

efficient integrated pest management plans based on regional climatic change scenarios.  
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Table 3-I. Mean (±SE) plant morphological characteristics of water-stressed and non-stressed plants of Brassica napus and Sinapis 

alba including height, diameter, leaf number, leaf surface area, total plant dry weight and dry weights of leaves, petioles, buds, 

flowers and stems. 
 

 

Treatment 

 

Host 

plant 

Plant height 

(cm) 

Plant 

diameter 

(mm) 

Total number 

of leaves 

Leaf surface 

area (cm2) 

Total plant dry 

weight (mg) 

Leaf dry weight 

(mg) 

Petiole dry 

weight (mg) 

Bud & flower 

dry weight 

(mg) 

Stem dry weight 

(mg) 

Stressed S. alba 61.05 ± 3.42a 4.94 ± 0.59a 11.41 ± 1.48a 19.56 ± 4.27a 3837.9 ± 134.1a 1134.7 ± 92.2a 297.9 ± 40.12a 483.1 ± 23.75a 1922.3 ± 80.38a 

Non-

stressed 

80.96 ± 2.85b 4.39 ± 0.83a 11.58 ± 1.60a 40.44 ± 7.27b 6078.3 ± 123.8b 2142.3 ± 238.8b 519.8 ± 62.64b 916.2 ± 57.08b 2500.0 ± 101.1b 

Stressed B. napus 26.35 ± 2.79a 5.13 ± 0.44a 11.37 ± 1.14a 28.00 ± 5.59a 4083.7 ± 537.5a 2070 ± 287.7a 285.6 ± 140.7a 78.72 ± 24.06a 1280.2 ± 161.4a 

Non-

stressed 

 49.69 ± 6.99b 4.78 ± 0.39a 10.50 ± 1.48 a  47.98 ± 2.15b 6464.1 ± 333.5b 3324.2 ± 235.1b 980.9 ± 93.75b 473.1 ± 102.8b 2054.4 ± 218.7b 

Column means followed by the same letter are not significantly different (P = 0.05) (Student’s t-test)  
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Table 3-II. Mean (± SE) development time, silk weight, pupal weight, adult weight and adult longevity without food for Plutella 

xylostella on water-stressed and non-stressed Brassica napus and Sinapis alba host plants. 
 

Variable   Development (days) 

           

 Weight (mg) 

                                      

Longevity 

without food 

(days) 

 Larva to pupa Pupa to adult       Larva to adult  Silk Pupa Adult  

A-Water treatment         

1- Stressed 8.0450 ± 0.25 4.4595 ± 0.21 12.5050 ± 0.26  0.2568 ± 0.02 6.6982 ± 0.24 0.8414 ± 0.04 6.6851 ± 0.51 

2- Non-

stressed 

8.4663 ± 0.25 4.7647 ± 0.21 13.0312 ± 0.26  0.2034 ± 0.02 6.4092 ± 0.24 0.7062 ± 0.04 6.3013 ± 0.51 

B- Genotype         

1- B. napus 8.3125 ± 0.25 4.9073 ± 0.21 13.0163 ± 0.26  0.2183 ± 0.02 6.7636 ± 0.24 0.7984 ± 0.04  6.7031 ± 0.51 

2- S. alba 8.1988 ± 0.25  4.3169 ± 0.21 12.5200 ± 0.26  0.2419 ± 0.02 6.3438 ± 0.24 0.7492 ± 0.04  6.2833 ± 0.51 
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Figure 3-I. Mean (± SE) leaf water potential of water-stressed and non-stressed 

Brassica napus and Sinapis alba. 
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Figure 3-II. Mean (± SE) development time of Diadegma insulare on water-stressed (black bars) 

and non-stressed (gray bars) Brassica napus and Sinapis alba (A) egg to pupa development,  

(B) pupa to adult development, (C) egg to adult development. Means followed by the same letter 

are not significantly different at 5% level (Fisher’s PLSD test following ANOVA) 
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Figure 3-III. Mean (± SE) longevity of Diadegma insulare without food on water-stressed 

(black bars) and unstressed (gray bars) Brassica napus and Sinapis alba. Means followed by 

the same letter are not significantly different at 5% level (Fisher’s PLSD test following 

ANOVA) 
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Figure 3-IV. Mean weight (± SE) of male and female of Diadegma insulare on water-

stressed (black bars) and non-stressed (gray bars) Brassica napus and Sinapis alba. Means 

followed by the same letter are not significantly different at 5% level (Fisher’s PLSD test 

following ANOVA) 
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Chapter 4: Effects of temperature on developmental parameters of Diadegma insulare 

(Cresson) (Hymenoptera: Ichneumonidae) 

 

4.1 Introduction 

Temperature is the most important abiotic factor that directly influences population 

dynamics of insects by affecting their survival, mortality, voltinism, distribution, growth, and 

development (Hallmann & Denlinger 1998; Huffaker et al. 1999; Bommarco 2001; Roy et al. 

2002). Temperature changes can have diverse direct and indirect effects on natural enemies’ 

fitness and effectiveness in controlling pests (Thomson et al. 2010). Therefore, the developmental 

response of insects and their natural enemies to temperature variations are critical to understand 

their biology, ecology, and interactions (Frazer & McGregor 1992; Martínez-Castillo et al. 2002). 

Furlong & Zalucki (2017) reported distinct thermal requirements for parasitoids and their hosts. 

In general, parasitoids are more sensitive to climatic changes and their responses to temperature 

variation are significantly different than their hosts (Thomson et al. 2010, Furlong & Zalucki 

2017). This can lead to decoupling of synchrony between pests and their natural enemies during 

the periods of activity resulting in failure or reduction of biological control and ultimately pest 

outbreak (Read 1962).  

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a major 

destructive pest of brassicaceous crops worldwide (Talekar & Shelton 1993). Development of 

resistance to a broad range of insecticides, diversity and abundance of host plants, disruption of 

natural enemies, high reproductive potential, and plasticity to develop rapidly in new 

environments, are some of the main reasons for the exceptional pest status of P. xylostella and 

control failures in many parts of the world (Talekar & Shelton1993; Mohan & Gujar 2003; 
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Shelton 2004; Vickers et al. 2004). Biological control is an important alternative for keeping the 

pest population under economic threshold levels.  

More than 135 parasitoid species are reported to attack different life stages of P. 

xylostella, but maximum control is achieved only by few hymenopteran parasitoid species 

worldwide (Delvare 2004). Among these, species of the genus Diadegma are considered to be the 

most diverse, efficient and economically important worldwide (Lim 1986; Fitton & Walker 1992; 

Sarfraz et al. 2005a). Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) is a 

significant biocontrol agent in the Nearctic and Neotropical regions (Harcourt 1963; Furlong et 

al. 2013). It is an active host searcher (Harcourt 1969, 1986; Sarfraz et al. 2005a), and can 

parasitize all four larval instars of P. xylostella (Putnam 1968). Temperature plays a significant 

role in the survival, development, reproduction, and parasitism success of D. insulare (Bahar et 

al. 2012). Despite being such an important and useful biological control agent, earlier published 

reports do not provide information regarding effects of temperature on developmental parameters 

of this parasitoid. However, the developmental biology of its host P. xylostella has been well 

studied over a wide range of constant and fluctuating temperatures (Liu et al. 2002; Bahar et al. 

2012). Until now, only one study on the thermal tolerance of D. insulare has been done by Bahar 

et al. (2012). It is essential to collect the data of the climatic responses on natural enemies along 

with their hosts. An understanding of thermal regulated development helps in determining the 

real potential and limitations of koinobiont endoparasitoids as biological control agents and 

ensure better chances of success in suppressing the pest population (Lim 1986; Dosdall et al. 

2012; Saeki & Crowley 2012). The objective of this study was to investigate the developmental 

responses of D. insulare to different constant temperatures when feeding on P. xylostella reared 

on Canola, B. napus L. host plant, an economically important crop grown within the geographical 



 

69 
 

ranges of the pest and parasitoid.  

 

4.2 Materials and methods 

4.2.1 Experimental Plants and Insects  

Brassica napus L. var. Q2 plants were grown in plastic pots (15 cm diameter) using 

Metromix-220 (WR Grace & Co. Ajax, ON, Canada) as a potting medium and placed in a growth 

chamber at a constant temperature of 21 ± 0.5°C, 40-50% r.h., and 16L: 8D photoperiod. Four to 

six-week-old plants were used for the experiment. 

Plutella xylostella and D. insulare adults originated from a laboratory colony maintained 

on B. napus plants. Moths and wasps were collected from different commercial fields of B. 

napus, Brassica juncea (L.) Czern., and Sinapis alba L. throughout Alberta, Canada, and were 

periodically added to the laboratory colony to maintain genetic diversity. The insects were reared 

for many generations in the laboratory before experimental use. 

4.2.2 Source of third-instar larvae 

Third-instar larvae of P. xylostella were used for parasitization by D. insulare. To get 

these larvae, 30-40 mature pupae of P. xylostella were collected from the laboratory colony and 

placed in a wooden screened cage with six-week-old B. napus host plants. After adult eclosion, 

they were allowed to mate, and mated females were allowed to oviposit for 24 h then removed 

from the cage. The host plants were checked daily for egg hatching and larval instars. New plants 

were added when required. Using this method, third-instar larvae of P. xylostella were collected 

for the study.  
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4.2.3 Parasitization 

For parasitization, 30 to 50 third-instar larvae of P. xylostella were carefully transferred to 

a small cage containing the host plant in a growth chamber maintained at each temperature (10, 

15, 20 and 25°C). Six to eight pairs of newly emerged D. insulare were obtained from the 

laboratory colony and released in each of these cages for 48 hrs. Parasitoids were provided with a 

10% honey solution, in 30-ml plastic solo cups (Solo, Urbana, Illinois) with plastic lids. A 1-cm 

hole was placed in the center of the lid, and a cotton wick was inserted to allow the solution to 

saturate and enable the parasitoids to feed.  

After 48 hrs, the parasitoid wasps were removed, and larvae of P. xylostella were placed 

individually in Petri dishes (5-cm-diameter), containing a moistened filter paper, and fresh host 

plant material. Petri dishes containing P. xylostella larvae were incubated at constant 

temperatures of 10, 15, 20 and 25°C throughout the entire experiment until either adult parasitoid 

or host emergence. Fresh, excised leaf tissues of the host plant were added to each Petri dish daily 

until pupation. The host larvae in the Petri dishes were checked daily for development and 

survival. 

4.4.4 Biological parameters measured 

Developmental times of D. insulare from egg to pupa and pupa to adult were recorded at 

four constant temperatures in separate growth chambers for each replicate specimen. Plutella 

xylostella larvae that died within 24 h of each temperature treatment were excluded from the 

calculations.  

Parasitoid pupae were removed after 48 h of pupation, weighed on digital scale (Model 

XS204, Mettler-Toledo, Switzerland) and returned to their respective containers until adult 

emergence. After adult exclusion, the empty silk cocoons were also weighed. Newly emerged 
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adults were maintained in the same way in controlled environment chambers in closed Petri 

dishes with moistened filter paper but without food, and longevity were recorded. Dead 

specimens were allowed to dry, and their dry weights were recorded after 10 days. The sex of 

each adult specimen was also identified before drying. Forewing, hindwing and hind tibia lengths 

of adult D. insulare were measured with AxioVision 4.8.2 (Carl Zeiss, Jena, Germany).  

Percent parasitism was calculated as (total number parasitized or numbers of D. insulare 

pupae that developed /total number of P. xylostella larvae exposed) *100, while percent pupal 

mortality was calculated as (the difference between the total number pupated and total number 

emerged) / total pupated*100.  

4.2.5 Statistical Analysis 

Variables were tested for normality and homoscedasticity before subjecting them to the 

analysis. Development data were log transformed to achieve normality, but untransformed means 

are presented. ANOVA (PROC MIXED) was performed to determine the treatment effects on 

development, parasitism success, pupal mortality, adult longevity, adult dry body weight, pupal 

weight, cocoon weight, and on the forewing, hindwing and hind tibia length of D. insulare. 

Differences between treatments were assessed using LSMEANS statement with a PDIFF option 

in PROC MIXED (SAS Institute 2012). Correlations (PROC CORR) were determined between 

longevity and body size (forewing, hindwing, and hind tibia length), longevity and body weight 

(pupal weight, adult dry weight, and cocoon weight), pupal weight and cocoon weight, pupal 

weight and adult dry weight, pupal weight and forewing length, and also pupal weight and 

hindwing length of D. insulare. All data were analyzed by SAS v. 9.3 (SAS Institute 2012). 
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4.3 Results 

Temperature had a significant effect on D. insulare development from egg to pupa (F = 

41.87, df = 3, 110; P < 0.0001), pupa to adult (F= 89.01, df = 3, 49; P < 0.0001), and egg to adult 

(F = 47.05, df = 3, 49; P < 0.0001) (Table 4-I). Compared to the other temperature regimes, 

significantly more time was required to complete egg to pupal development at 15°C, and pupa to 

adult development at 10°C. Overall, development from egg to adult took longest at 10 and 15°C 

and the shortest at the higher temperatures of 20 and 25°C. Longevity was also influenced by 

temperature (F= 9.58, df = 3, 49; P < 0.0001) (Table 4-I). Maximum longevity was observed at 

10°C. 

Parasitism success did not differ significantly between temperature regimes (P = 0.4339). 

The temperature had a significant effect (P < 0.0001) on pupal mortality. The lowest D. insulare 

pupal mortality (4.5%) was recorded at 10°C and the highest (70 &74.3%) at 20 and 25°C, 

respectively (Fig. 4-I).  

Temperature also significantly affected the length of forewing (F = 10.44, df = 3, 49; P < 

0.0001), length of hindwing (F= 12.04, df = 3, 49; P < 0.0001), and length of hind tibia (F = 

11.78, df = 3, 49; P < 0.0001) (Table 4-II). Both forewing and hindwing length were significantly 

larger at 10°C compared to all other temperatures. Hind tibia lengths were the longest at 10°C 

and the shortest at 25°C. 

Temperature significantly affected D. insulare pupal (F = 9.38, df = 3,61; P < 0.0001) and 

empty cocoon weights (F = 4.31, df = 3,49; P < 0.0089) (Table 4-II). Pupae were significantly 

heavier at 10°C than that any other temperatures. Individuals developed at 25°C had heavier 

cocoon than that developed at other temperatures. However, adult dry weights were not affected 

significantly by temperature (F = 1.10, df = 3, 49; P = 0.3584).  
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Longevity was correlated with forewing length (r = 0.32, P = 0.01), hindwing length (r = 

0.38, P = 0.004), and hind tibia length (r = 0.28, P = 0.04). Similarly, forewing and hindwing 

length were correlated (r = 0.31, P = 0.02), as were forewing length and hind tibia length (r = 

0.38, P = 0.004). Cocoon weight was correlated with pupal weight (r =0 .31, P=0.02) and adult 

weight (r = 0.45, P = 0.0005). Pupal weight was also correlated with longevity (r = 0.36, P = 

0.006), forewing length (r = 0.48, P = 0.0089), and hindwing length (r = 0.37, P = 0.006). 

 

4.4 Discussion 

Although insects are not subjected to constant temperatures in nature, a controlled 

laboratory study can provide a significant understanding of the population dynamics of a 

particular species (Satar et al. 2005). The data clearly showed the effects of temperature on the 

developmental time, body size, body weight, and longevity of D. insulare. 

 The present study revealed that temperature significantly influences the developmental 

duration of the parasitoid wasp. The parasitoid completed its development at all the temperatures 

tested. At low temperatures (10 and 15°C), the rate of development was slower compared to 

higher temperatures (20 and 25°C). It indicates that temperature is inversely related to the rate of 

development. The same trend of development was observed by Bahar et al. (2012) for the same 

species D. insulare, and for other related species like Diadegma arunum (Thomson) and 

Diadegma semiclausum (Hellén) by Golizadeh et al. (2008) and Dosdall et al. (2012), 

respectively. These results are also consistent with the findings of Ebrahimi et al. (2013), who 

showed that development time of D. insulare from egg to adult was similar to that of present 

study at 25°C when its host was reared on Chinese cabbage, (Brassica pekinensis (Lour.) Rupr.). 

The same phenomenon of development was also reported in many other endoparasitoids like 
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Meteorus pulchricornis (Wesmael), Chelonus murakatae Munakata, etc. (Liu et al. 2013; Qureshi 

et al. 2016). Faster development of parasitoids could be explained by the fact that elevated 

temperatures increase metabolic rate that results in rapid growth, or parasitoids may find the 

appropriate environment as the temperature increases and grow faster (Davidowitz & Nijhout 

2004; Qureshi et al. 2016). 

Temperature increase may affect the development and survival of a host and its 

parasitoids differently (Van & lei 2004). For instance, P. xylostella developed successfully from 

egg to adult at a constant temperature as high as 32°C (Liu et al. 2002), while developmental 

duration and survival of its parasitoid Diadegma semiclausum (Hellén) declined significantly at a 

constant temperature near 30°C (Yang et al. 1993). Similarly, in the present study, increasing 

pupal mortality of D. insulare was observed with increasing temperature regimes while Bahar et 

al. (2012) observed that pupal mortality of P. xylostella was unaffected at higher temperatures.   

The body size of an insect changes with temperature variations and it is an important 

indicator of parasitoid fitness (Gates 2003; Sarfraz et al. 2008). Body size, an evaluation of the 

resources available to the developing parasitoid larvae, is measured in terms of length or width of 

wings, hind tibia, and thorax (Jervis 2005; Riddick 2006; Sarfraz et al. 2008; Fathi et al. 2012). 

Smaller wing sizes might also influence fitness by affecting dispersal and host searching 

efficiency of parasitoids (Sarfraz et al. 2008). In the present study, the body size of parasitoids 

increased with decreasing temperature. Larger adults were produced at 10°C, indicating slower 

growth rate, thereby increasing the amount of mass that can accumulate. The results coincide 

with the general statement that adult insects usually are of smaller body size at higher rather than 

lower temperatures (Gates 2003; Davidowitz & Nijhout 2004; Karl & Fischer 2008). 

Body weight is also an important parameter that determines natural enemy fitness (Sarfraz 
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et al. 2008). Heavier pupae usually produce larger and more productive adults than their lighter 

counterparts (Barah & Sengupta 1991). The present results indicated that heavier pupae were 

produced at low temperatures, but the adult dry weight was not influenced by any of the 

temperatures tested. However, heavier empty cocoons were produced at higher temperatures. The 

results for pupal and cocoon weights were consistent with those of Bahar et al. (2012), who 

reported higher D. insulare pupal weight at low temperatures, but higher cocoon weight at higher 

temperatures. This suggests that the heavier pupal case/cocoon may protect the insect from the 

harmful effects of high temperature. In another study by Dosdall et al. (2012), a reduced pupal 

weight of D. semiclausum at a low temperature of 10°C was observed when its host was reared 

on Brassica rapa L. compared to B. napus or Brassica oleracea L.  

Longevity is one of the most important traits of natural enemies for biological control as 

oviposition may be increased in the case of extended survival (Qureshi et al. 2016). In the current 

study, adult longevity was significantly higher at the lower temperature. Earlier studies on D. 

insulare and D. semiclausum also indicated increased longevity at lower temperatures (Bahar et 

al. 2012; Dosdall et al. 2012). This could be due to a decrease in metabolic activity of insects at 

lower temperatures, and as a result, adults may survive for a longer period (Davidowitz & 

Nijhout 2004). The same trend was observed in the case of the egg parasitoid Trichogramma 

cacoeciae (Hymenoptera: Trichogrammatidae) and larval endoparasitoid Venturia canescens 

Gravenhorst (Hymenoptera: Ichneumonidae) adults, which lived for a shorter period at a higher 

temperature (Pizzol et al. 2010; Spanoudis & Andreadis 2012).  

Global temperatures have risen by approximately 0.6°C in the last century and are 

expected to increase by 3 to 5°C over the next century (Rosenzweig et al. 1998; Houghton et al. 

2001). Higher temperatures may allow rapid development, altered timing of egg hatching and 
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additional generations per year in multivoltine insect species (Pollard & Yates 1993; Parmesan et 

al. 1999). For instance, an increase in the cultivated area of brassicaceous crops along with 

climatic warming, is expected to enhance the P. xylostella pest status (Dosdall et al. 2011). With 

every +2°C increase in average summer temperature, 2-5 more generations of P. xylostella and its 

parasitoid D. insulare has been predicted in North America annually (Dosdall et al. 2008; Olfert 

et al. 2011). Plutella xylostella is well adapted and tolerant to wider range of constant 

temperatures. It can develop effectively from egg to adult at temperatures from 8 to 32°C (Liu et 

al., 2002). However, the North American population of P. xylostella has been observed to 

develop successfully from the second instar to adult within constant temperatures ranging from 

4.0-37°C, which is higher than that of its parasitoid D. insulare. Diadegma insulare can complete 

its egg to adult development within a temperature range of 4.0-33°C (Bahar et al., 2014). These 

thermal differences are also reported to occur for a parasitoid like Cotesia marginiventris 

Cresson, of lepidopteran pests in North America (Butler & Trumble 2010). The results of the 

present study showed that despite slower development at the lower temperature, all other 

parameters increased with the decrease in temperature.  This fitness advantage gained by D. 

insulare regarding body size, pupal weight and longevity may be linked to prolonged timing to 

encounter susceptible stages of the host and ultimately increase parasitism success as earlier 

reported by Talekar & Yang (1991). Moreover, development and survival may be enhanced at a 

higher temperature, but those individuals may subsequently have lower fecundity and size (Bale 

et al. 2002). Moreover, decreased longevity at a higher temperature may not contribute to higher 

biocontrol efficiency since D. insulare females maintain a constant level of oviposition rates in 

their lifetime (Ebrahimi et al., 2013). 

In conclusion, the result showed that at lower temperatures developmental duration of D. 
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insulare is long, larger adults are produced with high survival and longevity. The present research 

provides fundamental information within the context of climatic warming to understand the 

effects of temperature on some aspects of the biology of D. insulare. The data presented here 

suggests that D. insulare is less tolerant to high temperatures in comparison to its host. Diadegma 

insulare is an important biocontrol agent of P. xylostella in North America responsible for more 

than 90% parasitism in untreated fields (Muckenfuss et al. 1990). The excellent host searching 

ability of D. insulare and high synchrony with its host development makes it a suitable candidate 

to integrate into P. xylostella management system (Idris & Grafius 1993). Additional research 

with the integration of environmental information is required to anticipate the effects of climate 

change on host-parasitoid interactions, developmental biology, and biocontrol efficiency of D. 

insulare and other parasitoid fauna of P. xylostella in North America. Furthermore, for a more 

precise evaluation of the influence of temperature on host-parasitoid biology, additional work 

on other biological parameters, such as lifelong parasitism, population dynamics, distribution 

and host shifts, is needed, especially under field conditions. Meanwhile, parameters calculated 

in this experiment in association with other ecological data could be valuable in understanding, 

developing and facilitating biological control tactics against the pest under climatic change 

scenarios and predicting the future geographical distribution of D. insulare.  
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Table 4-I. Mean (± SE) development time (days) of Diadegma insulare at various constant 

temperatures 

Temperature Egg to pupa (d) Pupa to adult (d) Egg to adult (d) Adult longevity (d) 

10°C 7.90± 0.29a 

(n = 22) 

13.30 ± 0.28a 

(n = 20) 

20.90 ± 0.44a 

(n = 20) 

4.10 ± 0.19a 

(n = 20) 

15°C 11.34 ± 0.28b 

(n = 23) 

9.85 ± 0.33b 

(n =14) 

21.00 ± 0.52a 

(n = 14) 

3.21 ± 0.23b 

(n = 14) 

20°C 7.90 ± 0.24a 

(n = 30) 

6.88 ± 0.41c 

(n = 09) 

14.44 ± 0.65b 

(n = 09) 

2.55 ± 0.05b 

(n = 09) 

25°C 7.64 ± 0.21a 

(n = 39) 

6.60 ± 0.39c 

(n =10) 

14.00 ± 0.62b 

(n = 10) 

2.70 ± 0.27b 

(n = 10) 

Means in a column followed by the same letter do not differ significantly (P = 0.05). Values in parentheses indicate 

the number of individuals. 
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Table 4-II. Mean (±SE) forewing length, hindwing length, hind tibia length, adult body weight, 

pupal and cocoon weight of Diadegma insulare when parasitized Plutella xylostella host larvae 

were reared on leaf tissue of Brassica napus under four different temperature regimes. 
 

Temperature 
Forewing 

length (mm) 

Hindwing 

length (mm) 

Hind tibia 

length (mm) 

Adult body 

weight (mg) 

Pupal weight 

(mg) 

Cocoon 

weight (mg) 

10°C 3.11 ± 0.06a 2.11 ± 0.05a 0.98 ± 0.02a 0.38 ± 0.03a 4.55 ± 0.18a 0.72 ± 0.06ab 

15°C 2.67 ± 0.07b 1.75 ± 0.06b 0.87 ± 0.03b 0.47 ± 0.04a 3.38 ± 0.18b 0.77 ± 0.07ac 

20°C 2.74 ± 0.08b 1.65 ± 0.08b 0.89 ± 0.03b 0.37 ± 0.05a 3.12 ± 0.27b 0.51 ± 0.09b 

25°C 2.66 ± 0.08b 1.67 ± 0.07b 0.72 ± 0.03c 0.37 ± 0.05a 3.67 ± 0.19b 0.99 ± 0.09c 

Means in a column followed by the same letter do not differ significantly (P = 0.05). 
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Figure 4-I. Mean (± SE) parasitism and mortality of Diadegma insulare at different 

temperatures. Bars with the same letter do not differ significantly at 5% level of significance 
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Chapter 5: Selective effects of floral food sources and honey on life-history traits of a pest-

parasitoid system 

A version of this chapter has been published: 

Munir S, Dosdall LM & Keddie A. 2018. Selective effects of floral food sources and honey on 

life-history traits of a pest-parasitoid system. Entomologia Experimentalis et Applicata.166: 500-

507. 

 

5.1 Introduction 

The successful growth and development of an insect depend on the fulfillment of its 

qualitative and quantitative nutritional requirements (Barbehenn et al. 1999). Studies have shown 

that carbohydrate-rich food is a vital source of energy for many parasitoids and their hosts during 

the adult stage (Wäckers 2004; Winkler et al. 2005). Planting and maintaining carbohydrate 

resources as nectar-producing flowering plants near cropping areas are often recommended for 

the fitness of parasitoids (Gourdine et al. 2003). The provision of floral food sources can be a 

crucial part in biological control. Feeding on floral resources substantially affects the life-history 

traits of parasitoids, such as survival, longevity, development, fecundity, and parasitism (Lee et 

al. 2004; Lee & Heimpel 2008; Tunçbilek et al. 2012). Nectar feeding has been reported to 

increase the longevity of several hymenopteran parasitoids up to 20-fold under laboratory 

conditions (Jervis et al. 1996; Fadamiro & Heimpel 2001; Wäckers 2001).  

Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) is a dominant, solitary, 

synovigenic, larval parasitoid of diamondback moth, Plutella xylostella (L.) (Lepidoptera: 

Plutellidae), a destructive cosmopolitan pest of brassicaceous crops (Harcourt 1986; Sarfraz et al. 

2005a; Lee & Heimpel 2008). Diadegma insulare is one of the primary P. xylostella biocontrol 

agents in Canada and the USA (Harcourt 1986; Sarfraz et al. 2005a; Wold-Burkness et al. 2005; 

Young 2013). In North America, parasitism by this wasp varies from 50 to 98% in the field, 
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depending on host instars (Legaspi et al. 2000; Hutchison et al. 2004). Earlier studies had 

reported higher parasitism rates and longevity of D. insulare when the crop was adjacent to 

nectar-producing plants (Zhao et al. 1992; Fitton & Walker 1992). 

Parasitoids emerge with a limited amount of energy reserves and need sugar solutions as 

their key source of energy. The importance of sugar feeding for survival has been described for 

many hymenopteran parasitoid species (Jervis et al. 1996; Wäckers 2001; Wanner et al. 2006). 

Diadegma insulare is not known to feed on pollen or host fluid as an adult but is strongly 

stimulated to feed on carbohydrate-rich food to satisfy its energy requirements (Idris et al. 1997; 

Lee et al. 2004). Several studies have demonstrated that feeding on floral nectar of several 

species like Brassica oleracea L., Barbarea vulgaris R. Br., Brassica napus L., Lobularia 

maritima (L.) (all Brassicaceae), Daucus carota L. (Apiaceae), Fagopyrum esculentum (Moench) 

(Polygonaceae), and others, and also on non-floral food such as honey and honeydew, 

considerably increase the lifespan of D. insulare both under laboratory and field conditions (Idris 

& Grafius 1995,1996ab; Johanowicz & Mitchell 2000; Gourdine et al. 2003; Lee at al. 2004). 

In an agroecosystem, the majority of lepidopteran hosts and their hymenopteran 

parasitoids in their adult stage forage on shared floral resources, and hence increase their fitness 

and survival (Wäckers 2004; Romeis et al. 2005; Kehrli & Bacher 2008). However, flower 

species may act selectively and favour one trophic level over the other based on insect 

morphology, physiology, behaviour, nutritional requirement, preference, floral architecture, and 

floral nectar composition (Idris & Grafius 1995; Baggen et al. 1999; Winkler 2005; Kehrli & 

Bacher 2008). For instance, a parasitoid complex of the leafminer Cameraria ohridella Deschka 

& Dimić benefited 8 times more when fed on flowers of Anthriscus sylvestris (L.) Hoffm. 

(Apiaceae) than their host (Kehrli & Bacher 2008). Similarly, two plant species, Anethum 
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graveolens L. (Apiaceae) and Centaurea cyanus L. (Asteraceae), were selectively visited in 

higher numbers by Diadegma semiclausum (Hellén) than its herbivore host P. xylostella, which 

was observed in small numbers on both plant species (Winkler et al. 2005).  

To date, studies focusing on the impact of floral selectiveness on the pest-parasitoid 

system are rare. No previous studies on selective floral diets exist for the P. xylostella and D. 

insulare system. An understanding of the relative importance of floral nectar selectivity to D. 

insulare is crucial for conservation biological control and to improve its role in long-term P. 

xylostella management. In the present study, we investigated the selective effects of floral diet 

and honey on life-history traits such as longevity and body weight of a host-parasitoid system 

consisting of P. xylostella and its principal parasitoid D. insulare.  

 

5.2 Materials and methods 

5.2.1 Insect colonies 

Plutella xylostella and D. insulare adults originated from a laboratory colony maintained 

on B. napus plants. Moths and wasps were collected from different commercial fields of B. 

napus, Brassica juncea (L.) Czern. and Sinapis alba L. throughout Alberta, Canada, and were 

periodically added to the laboratory colony to maintain genetic diversity. Mature pupae of P. 

xylostella and D. insulare were used in the experiment. 

5.2.2 Source of floral nectar  

Flowering plants of sweet alyssum (Lobularia maritima L. cv. Carpet of Snow), volunteer 

canola (B. napus cv. Q2), stinkweed (Thlaspi arvense L.), and wild mustard (Sinapis arvensis L. 

cv. AC Pennant; all Brassicaceae) were used as sources of nectar. Brassica napus, T. arvense, 

and S. arvensis were chosen because these are important and common weeds of field crops in the 
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Canadian prairies. Despite providing nectar for adult pest and parasitoid, they are also potential 

host plants for P. xylostella larvae. Lobularia maritima is an annual and non-weedy plant. It was 

selected because natural enemies are attracted to this flowering plant. It flowers within three-

weeks of planting and has a long flowering period. Moreover, the nectarines are accessible to 

parasitoids and may be helpful in enhancing parasitoid longevity at times when few wildflowers 

are in bloom (Chaney 1998; Johanowicz & Mitchell 2000; Keller & Baker 2002; Hogg et al. 

2011; Sivinski et al. 2011).  

Plants were grown individually from seeds in plastic pots (15 cm diameter) using 

Metromix-220 (WR Grace & Co, Ajax, ON, Canada) as a potting medium. Pots were thoroughly 

watered and placed in a greenhouse at 22°C, 40-50% r.h., and 16 L: 8 D photoperiod. All plants 

were used for the experiment when they reached the flowering stage. Plants were sown at one-

week intervals to ensure synchronous blooming during the experiment.  

5.2.3 Source of non-floral food  

Distilled water and 10% honey solution were used as a non-floral food source. The honey 

solution and water were placed in 30-ml plastic solo cups (Solo, Urbana, IL, USA) with plastic 

lids. A 1-cm hole was placed in the center of the top of the lid, and a cotton wick was inserted to 

allow the solution to saturate and enable the pest and parasitoid to feed. Cups were replaced every 

second day to ensure a continuous supply of water and honey solution to pest and parasitoid. 

5.2.4 Research Methodology 

5.2.4.1 Experiment 1: Effects of floral nectar and honey on Diadegma insulare  

The effects of the nectar of each of four flowering plant species, a 10% honey solution, 

and water on the longevity and body weight of adult D. insulare were determined in the 

laboratory at 22 ± 2°C with 16 L: 8 D photoperiod. All treatments (pots of each plant species 
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when half the plants were flowering, 10% honey solution, and water) were individually placed in 

wooden screened cages (40 × 40 × 80 cm), arranged on the laboratory bench in a completely 

randomized design with each cage considered as one replicate. For each treatment, five replicates 

was conducted. Mature D. insulare pupae from the laboratory colony were carefully harvested, 

and 5-10 pupae were placed in each cage with a food source. This enabled the introduction of 

adult parasitoids to a potential food source immediately after emergence. Flowering plants were 

replaced twice a week to ensure a continuous and adequate supply of floral nectar to parasitoids. 

Diadegma insulare pupae were checked daily for adult emergence. After adult exclusion, 

parasitoid survival was observed and recorded daily until the mortality of the last parasitoid. 

Longevity was measured in days and individuals that died on the first day were excluded from 

analysis. Ten days after wasps had died and dried at room temperature, adults were weighed on 

an electrical balance (Model XS204, Mettler-Toledo, Greifensee, Switzerland). 

5.2.4.2 Experiment 2: Effects of floral nectar and honey on Plutella xylostella  

The same flowering plant species, honey solution and water treatments as described in 

experiment 1 were used. Food sources were offered in the same way as described in experiment 1 

and each P. xylostella individual was reared on a single type of food source over its whole 

lifetime. Longevity data were measured in days, analyzed, and compared to each flowering plant 

species, honey solution, and water. 

5.2.5 Statistical analysis 

Diadegma species have complementary sex determination, which often causes a highly 

male-biased population in the laboratory colonies (Butcher et al. 2000; Khatri et al. 2008). In this 

study, comparatively small numbers of D. insulare females were obtained. Therefore, only data 

from male D. insulare were used in the analysis. Data from both male and female P. xylostella 
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were used. Variables were tested for normality and homoscedasticity before subjecting them to 

the analysis. Analysis of variance (PROC MIXED) for a completely randomized design was 

performed to determine the treatment effects on longevity and adult weight of D. insulare and P. 

xylostella. If significant treatment effects were indicated, means were compared at the 5% level 

of significance using the LSMEANS statement with the PDIFF option in PROC MIXED (SAS 

Institute 2012). Correlation coefficients were determined between longevity and weight of both 

pest and parasitoid. 

 

5.3 Results 

The longevity of D. insulare was significantly affected by the diet consumed (F = 107.09, 

df = 5,24; P <0.0001) (Fig 5-I). Longevity was shortest (2.8 ± 0.88 days) when fed with water 

and longest (25.7 ± 0.88 days) when fed on T. arvense flowers. Floral nectars of B. napus, L. 

maritima, and S. arvensis had a similar effect on D. insulare longevity. 

The weight of D. insulare was also affected by the food consumed (F = 7.14, df=5,24; 

P=0.0003) (Fig 5-II).  Weight was highest with S. arvensis followed by T. arvense and B. napus, 

and lowest with water. Although not significantly different, there was a trend towards greater 

weight with L. maritima and honey compared to water. Longevity of the parasitoid was positively 

and significantly correlated with the weight gain only when fed with T. arvense floral nectar (r = 

0.84; P = 0.0357). 

The longevity of P. xylostella was also affected by the diet consumed (F = 33.21, df = 

5,24; P <0.0001) (Fig 5-I). All sugar sources (floral nectar and 10% honey) significantly 

increased longevity compared to the water treatment. Sinapis arvensis and T. arvense resulted in 

the highest average longevity. Brassica napus resulted in similar longevity as T. arvense, but 



 

87 
 

higher longevity than both L. maritima and honey, although longevity was not significantly 

different when fed on L. maritima and 10% honey solution. The sex did not have any effect on 

the longevity of P. xylostella (F= 2.09, df= 1,37; P = 0.16) 

Diet consumed by P. xylostella adults had an effect on body weight (F = 12.63, df = 5,24; 

P <0.0001) (Fig. 5-II). The adults tended to be heaviest when fed 10% honey solution (1.24 ± 

0.072mg) and lightest on T. arvense (0.48 ± 0.072 mg). A significant positive correlation was 

found between pest longevity and weight only when fed with S. arvensis floral nectar (r = 0.83; P 

= 0.0381). Moreover, the sex did not have any effect on the adult dry weight of P. xylostella (F = 

1.68, df = 1,37, P = 0.20). 

 

5.4 Discussion 

The results revealed that floral and non-floral food act differently on life-history traits of 

the host-parasitoid system. The biological, ecological, and physiological means by which food 

resources influence life histories of insects are not entirely known (Casas et al. 2005). In this 

study, both pest and parasitoid displayed extended longevity on all floral nectars as compared to 

water, emphasizing the significance of sugar feeding by adult insects as reported by many earlier 

studies (Idris & Grafius 1995,1996a, b; Gourdine et al. 2003; Winkler 2005; Kehrli & Bacher 

2008). Moreover, the longevity of the female moth responded similarly to that of the male. Other 

studies comparing male and female parasitoid responses to sugar provision showed similar 

results. For instance, the lifespan of male and female D. insulare was not significantly different 

when fed buckwheat nectar and soybean aphid honeydew (Lee et al. 2004). Similarly, no 

significant effect of diet (buckwheat flower and 10% honey solution) was recorded on the 

longevity of male and female D. semiclausum (Wratten et al. 2003).  
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Both the pest and its parasitoid exploited all the floral species tested. However, D. 

insulare survived 7.6 days longer on L. maritima than P. xylostella. Hence, the floral nectar that 

is useful for both D. insulare and P. xylostella may selectively favour the parasitoid’s longevity 

more than that of its host. If the longevity of the female parasitoid responds similarly to that of 

the male, this selectivity may have important implications for exploitation of the host population. 

As synovigenic parasitoids can increase fitness by maturing and laying more eggs in their 

extended lifetime (Jervis et al. 2005; Winkler et al. 2006), this can indirectly promote higher 

parasitism rates as the time to encounter and parasitize hosts is extended (Thompson & Hagen 

1999; Witting-Bissinger et al. 2008). However, the extended longevity of P. xylostella may not 

substantially affect its abundance (Winkler 2005) since it lays 75% of the total number of eggs 

within the first eight days after emergence (Pivnick et al. 1990). In contrast, D. insulare has an 

average of 13.4 days total pre-oviposition period, followed by a relatively constant oviposition 

rate (Ebrahimi et al. 2013).  

Although 10% honey solution enhanced D. insulare longevity compared to the control 

treatment, it was significantly inferior to all floral nectar resources. However, P. xylostella 

survived better on all floral nectars and honey solution compared to the water control. As in other 

studies (Johanowicz & Mitchell 2000; Gourdine et al. 2003), D. insulare survived only a few 

days when deprived of any carbohydrate-rich food and consistent with the findings of Gourdine 

et al. (2003). However, Johanowicz & Mitchell (2000) observed prolonged longevity (27 days) of 

D. insulare on 10% honey solution that may relate to differences in honey composition. When 

provided with an appropriate concentration, honey may be a good substitute for insect rearing in 

the laboratory in the absence of floral nectar (Idris & Grafius 1995; Siekmann et al. 2001). 

Results indicated that all the flower species tested were fed upon and provided accessible 
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nectar. However, P. xylostella and D. insulare differ in their exploitation of floral nectars, mainly 

depending on flower morphology and their mouthparts (Idris & Grafius 1996b; Wäckers 2004; 

Vattala et al. 2006). Adult P. xylostella have a long proboscis suited for suctorial food intake 

(Proctor & Yeo 1973). The parasitoids have less specialized mouthparts that restrict their feeding 

to more exposed carbohydrate sources (Wäckers 2004), as found for D. semiclausum (Winkler et 

al. 2006) and D. insulare (Idris & Grafius 1996b). Idris & Grafius (1996b) reported that the 

parasitoid displayed behavioural flexibility in collecting floral nectar and the longevity differs 

with the morphological characteristics of the flowering plant species. For instance, D. insulare 

was observed to enter the T. arvense corolla either through its opening or by kicking soft petals, 

whereas it accessed B. napus and S. arvensis floral nectar by entering the corolla tube and 

chewing or sucking at the base of the corolla (Idris & Grafius, 1996b). The results suggested that 

the flower species that are fed upon and accessible may not be the most suitable and rewarding 

food and might not impact on fitness in the same way. For instance, in this study, the weight of 

D. insulare was highest but not the longevity when fed on S. arvensis. 

Body weight is an important indicator of parasitoid fitness (Sarfraz et al. 2008). In the 

present study, D. insulare were heavier at death when kept on various floral nectars compared to 

water alone. Maximum weight was recorded when the parasitoid fed on S. arvensis indicating the 

ability of the parasitoid to access nectar without spending extra effort and energy. In another 

study, Winkler (2005) found significant weight loss and gains in D. semiclausum when exposed 

to different floral nectars depending on accessibility to nectar. In contrast, P. xylostella 

individuals were heavier when fed on 10% honey, and weight was minimal on T. arvense 

compared to other floral nectars. Moreover, no correlation existed between longevity and weight, 

suggesting that food sources have an opposing impact on life-history traits of both the herbivore 
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and its parasitoid. 

This study showed that not all the effects of floral nectar feeding on various life-history 

traits of an insect point in the same direction. For instance, S. arvensis additionally enhanced the 

longevity, but not the weight of P. xylostella compared to other floral resources. Idris & Grafius 

(1995, 1997) reported that S. arvensis increased the survival of D. insulare in the field. Moreover, 

parasitism was also significantly higher when P. xylostella larvae fed on S. arvensis compared to 

other wild Brassicaceae like T. arvense (Idris & Grafius 1996a). 

We conclude that floral species have a contrasting effect on various life-history traits. 

None of the flowering plant species found in the experiment benefitted only the parasitoid. 

Hence, the nectar-producing plants that are beneficial to both pest and parasitoid may be able to 

act selectively by favouring the parasitoid more than its host (Winkler et al. 2005; Wäckers et al. 

2007). For instance, D. insulare benefited considerably more when fed on the floral nectar of L. 

maritima than its host, indicating that L. maritima floral nectar may be good food for adult 

parasitoids. A study by de Groot et al. (2005) also reported the potential of L. maritima plant 

species as a ‘trap crop’ for P. xylostella. These findings emphasize the importance of 

understanding and studying the selective effects of nectar-producing plants to improve the role 

and effectiveness of D. insulare in P. xylostella management (Idris & Grafius 1996b). Choosing 

particular food plants, which only promote the natural enemy without supporting their host, is 

harder for P. xylostella than for other lepidopteran pests due to its worldwide distribution and 

exploitation of a broad range of floral nectars (Winkler 2005).  

Improvement of biological control has not been reported from the use of floral resources 

in the field. The influence of floral feeding on the extended longevity and parasitism rates of 

parasitoids are inconsistent and vague. For instance, parasitism of P. xylostella by D. insulare 
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was reported to be higher in broccoli adjacent to floral nectar resources (Zhao et al. 1992), 

whereas parasitism by D. insulare was not affected by the floral borders of buckwheat adjacent to 

cabbage plots (Lee & Heimpel 2008). However, provision of floral resources in the field is a 

simple practice to ensure that parasitoids are getting enough food and are likely to be efficient 

bio-control agents (Heimpel & Jervis 2005; Russell 2015). This study highlights the need to 

better understand flower architecture and the pest and the parasitoid’s phenology for selective 

food plants that mainly enhance the performance of natural enemies. Further investigation with 

similar and different flowering species is needed to understand the influence of floral nutrients on 

female parasitoid life-history traits. The selectivity of floral nectar species has direct implications 

for conservation biological control. However, for effective biological control of P. xylostella, a 

selective nectar-producing plant for D. insulare remains to be recognized. Additional studies with 

other flowering plant species in the laboratory and the field are warranted to explore compatible, 

beneficial, and nutritionally selective floral species for parasitoids that should be integrated into 

management programs for more efficient control of P. xylostella. 
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Figure 5-1. Mean (± SE) Longevity (days) of D. insulare and P. xylostella on various floral food 

sources, honey and water (control) in the laboratory. Means capped with the same letter are not 

significantly different at the 0.05 level. 
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Figure 5-2. Mean (± SE) weight (mg) of D. insulare and P. xylostella on various floral food 

sources, honey and water (control) in the laboratory. Means capped with the same letter are not 

significantly different at the 0.05 level. 
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Chapter 6: A survey of insect parasitoids of Plutella xylostella (L.) (Plutellidae: 

Lepidoptera) in southern Alberta, Canada 

 

6.1 Introduction 

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a globally 

distributed and destructive oligophagous pest of Brassicaceae crops that causes significant losses 

in harvest yield and quality in many regions of the world (Talekar & Shelton 1993; Zalucki et al. 

2012). Although P. xylostella is believed to have evolved in the Mediterranean area (Harcourt 

1954), North American populations are most probably of European origin and were likely 

introduced about 150 years ago (Hardy 1938).  

Plutella xylostella was first reported from western Canada in 1885 (Harcourt 1962), and it 

now occurs almost annually throughout the Canadian prairies wherever its host plants are 

cultivated (Anonymous 1996; Dosdall et al. 2004b, 2011). In both eastern and western Canada, 

P. xylostella re-establishes each year from annual immigration of adults borne on northward 

trajectory winds from the southern USA and Mexico (Dosdall et al. 2004b, 2008; Hopkinson & 

Soroka 2010). The population densities of P. xylostella in any given year are dependent primarily 

on its arrival time from southern regions of North America, the size of invading populations, the 

number of population influxes, and environmental and biological conditions in the region of its 

invasion (Dosdall et al. 2008, 2011; Miluch 2010). Plutella xylostella has been reported to 

survive under mild winter conditions in western Canada (Dosdall 1994), but successful 

overwintering is considered to be a rare phenomenon (Dosdall et al. 2008).  

In western Canada, canola, Brassica napus L. and Brassica rapa L., and mustard, 

Brassica juncea (L.) Czern. and Sinapis alba L. are the primary host crops of P. xylostella (Philip 
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& Mengersen 1989). In most years, P. xylostella causes minor economic damage, but in some 

years, populations reach outbreak densities, and extensive crop losses occur (Dosdall et al. 2011). 

Outbreaks responsible for economic damage to canola and mustard in western Canada have 

occurred approximately every two to three years since 1995 (Dosdall et al. 2008). 

Once established, P. xylostella populations are difficult to manage because of their high 

reproductive potential, rapid development of resistance to insecticides, diversity and abundance 

of host plants, tolerance to a broad range of temperatures and a lack of effective natural enemies 

(Talekar & Shelton 1993; Mohan & Gujar 2003; Sarfraz et al. 2005a). A recent analysis reported 

a global estimate of total annual costs associated with P. xylostella management at US$4 billion 

(Zalucki et al. 2012). Consequently, this situation has prompted a demand for biological control 

as an important alternative to keep the pest population under economic threshold levels. 

Therefore, improved efforts have been undertaken worldwide to develop integrated pest 

management strategies, primarily based on management, augmentation or preservation of natural 

enemies of P. xylostella (Sarfraz et al. 2005a). More than 135 species of natural enemies are 

reported to attack different life stages of P. xylostella, but maximum control worldwide is 

achieved only by a few hymenopteran species belonging to the ichneumonid genera Diadegma 

and Diadromus, the braconid genera Microplitis and Cotesia, and the eulophid genus Oomyzus 

(Delvare 2004; Sarfraz et al. 2005a).  

In Canada, three hymenopterous parasitoid species, D. insulare (Cresson), M. plutellae 

(Muesebeck) and D. subtilicornis (Gravenhorst) are known to attack larval, pupal and pre-pupal 

stages of P. xylostella respectively (Harcourt 1986; Anonymous 1996; Braun et al. 2004). 

Overall, little is known about the effect of these parasitoids on the population dynamics of P. 

xylostella in western Canada.  Surveys conducted in this region in the early 1990's and 2012 
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indicated potential roles of D. insulare and M. plutellae and a lesser impact of D. subtilicornis for 

reducing populations of P. xylostella (Braun et al. 2004; Bahar et al. 2013). 

No detailed multiyear studies have been conducted in southern regions of Alberta to 

determine the parasitoid communities associated with P. xylostella. The main objective of this 

study was to catalog the parasitoid species associated with P. xylostella in canola and mustard.  

 

6.2 Materials and Methods 

Species composition and abundance of important parasitoid species of P. xylostella in 

commercial fields of canola and mustard in southern Alberta, Canada from 2010 to 2013 were 

investigated. Surveys were conducted each year by collecting potential hosts, P. xylostella larvae 

and pupae, from late August in 2010, or from early July to late August while in 2011 to 2013. 

Canola and mustard fields close to major highways were chosen on the basis of accessibility 

(unfenced/ungated). Global positioning system (Garmin GPSMAP 64st) coordinates were used to 

record the locations. Insect samples were taken in a 180° arc by using a standard 38cm diameter 

insect sweep net while walking from the edge of the fields towards the center. Populations of 

hosts were not uniformly distributed, so once selected, several locations within each field were 

sampled by taking fifty sweeps per location for larvae while pupal samples were carefully hand-

picked from host plants when available. In the field, all larval and pupal samples were placed in 

small plastic containers with lids with screened aeration holes, then brought to the laboratory and 

enumerated. Pupal samples were collected at only a few locations, so they were kept singly in 

Petri dishes. Fifteen P. xylostella larvae per Petri dish were placed with moistened filter paper 

and host plant material until pupation. Plutella xylostella pupae and parasitoid pupae were then 

kept singly in Petri dishes until adult emergence. Adult parasitoids were identified by visual 
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examination. However, some parasitoids from each site were preserved in 70% alcohol and a few 

were mounted on pins in boxes and kept for future species identification confirmation by 

specialists. 

 

6.3 Results and Discussion 

During the four years (2010-2013) of this study, a total of 59 localities consisting of 116 

fields of canola (B. napus) and 22 fields of mustard (including four of B. juncea and 18 of S. 

alba) were surveyed (Fig. 6-I).  Plutella xylostella was widespread in canola/mustard growing 

areas of southern Alberta. However, fewer larval samples were collected from fewer locations in 

2012, despite collection efforts, due to adverse weather conditions.  

Overall, 3288 larval and 370 pupal P. xylostella samples were field-collected and reared 

in the laboratory (Table 6-I). Parasitoids were not obtained from all the locations sampled (Table 

6-I). The reason might be that too few samples were collected due to lower pest densities in 2012 

and 2013 due to weather conditions, or sampling before parasitism occurred, or uneven 

distribution of parasitoids at a location. Moreover, several factors other than parasitoids may have 

affected P. xylostella abundance, such as heavy rain, high temperature, the suppressive effect of 

predators, size of the immigrant population and host plant quality (Talekar & Lee 1985; Campos 

et al. 2006, Mauduit 2012).  

6.3.1 Species of parasitoids  

Primary parasitoids 

At least five species of hymenopteran larval parasitoids belonging to three genera 

(Diadegma, Cotesia, and Microplitis) and one of prepupal /pupal species (Diadromus) were 

associated with P. xylostella (Table 6-II). Most of the Ichneumonid wasps reared from P. 
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xylostella larvae were identified as Diadegma insulare. However, a few specimens were not 

identified to species as they were unusual, or the diagnostic characters were either obscure or 

body parts were missing. For instance, six specimens identified as Diadegma were unlikely to be 

insulare. 

Hyperparasitoids 

A total of four species of hyperparasitoids belonging to four genera (Conura, Cataloccus, 

Pteromalus, and Mesochorus), were recorded from primary parasitoids of P. xylostella (Table 6-

II). 

Rate of parasitism of P. xylostella by larval parasitoids 

Parasitization rates and timing varied significantly among these parasitoid species. 

Substantial differences were documented among fields of the same crop and different crops, at 

the same time of the year. This may have been due to wide variations in the application of 

pesticides in various canola/mustard fields by different farmers, which interrupted both P. 

xylostella and parasitoid communities (Bahar et al. 2013). 

In general, more P. xylostella larvae were collected and reared in August and few or no 

larvae collected in July 2010-2012. Parasitism rates also were higher in August in 2010 (30.4%), 

2011 (23.7%), and 2012 (45%). However, more larval samples were collected in July than 

August during 2013, and percentage parasitism was also higher in July (37.2%) than August 

(32.9%). Comparison between crops indicated that parasitization rates by all larval parasitoid 

species in mustard (S. alba) were higher than canola (B. napus) in 2012 and 2013, but lower than 

canola in 2011. Moreover, the parasitism rates were higher in all three crops surveyed in 2012 as 

compared with 2010, 2011 and 2013 (Table 6-III). Compared to Cotesia spp., parasitism by D. 

insulare was highest in B. napus from 2010 to 2012. Parasitism by M. plutellae was lowest in all 
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crops in all four years (Table 6-III). In 2010, data was obtained from 11 locations in southern 

Alberta, and two parasitoid species, D. insulare and Cotesia spp., were the dominant species. 

Collectively, parasitism by these two species was 0.4% (Table 6-IV). In 2011, a survey of P. 

xylostella parasitism was conducted at 14 locations in southern Alberta.  Collective parasitism by 

the three larval parasitoid species D. insulare, Cotesia sp., and M. plutellae was 23.2%. The 

highest parasitism was recorded from the fields near Oyen (80%) and Medicine Hat (58%). The 

dominant parasitoid species were D. insulare and Cotesia sp. (Table 6-IV).  

Data were obtained from 19 locations in 2012 and 15 in 2013 from southern Alberta 

(Table 6-I). The collective parasitism by all larval species was recorded as 44.6% and 35.4%, 

respectively. The dominant larval parasitoid species was D. insulare in 2012 and Cotesia spp. in 

2013. These were responsible for 20.6 and 29.1% parasitism of P. xylostella larvae, respectively 

(Table 6-IV). In 2012, highest parasitism by D. insulare was recorded from the fields near Grassy 

Lake (100%) and Hilda (57.8%). However, in 2013, highest parasitism was recorded from the 

fields near Oyen (66%) and Seven Persons (55.5%), and the dominant parasitoid species was 

Cotesia sp. In general, D. insulare was recorded as the dominant larval parasitoid species in 

2010-2012, followed by Cotesia sp. and M. plutellae. Cotesia sp. was dominant in 2013, 

followed by D. insulare and M. plutellae.  

Diadegma insulare is native to Central America (Lee et al. 2004). Diadegma insulare’s 

origin in western Canada is unknown, but it likely migrates northward in spring along with its 

host rather than overwintering (Monnerat et al. 2002). It can parasitize all four larval instars of P. 

xylostella (Monnerat et al. 2002). In the absence of insecticide application, D. insulare is one of 

the most abundant species in brassicaceous crops in North America (Biever et al. 1992). In 

various regions of North America, parasitism has been reported sometimes to surpass 50–80% for 
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3rd and 4th instar larvae, respectively (Lee et al. 2003; Hutchison et al. 2004).  Diadegma insulare 

was recorded as the principal parasitoid in Alberta and Saskatchewan in 1992-1993, accounting 

for 45% and 30% mortality of its host, respectively (Braun et al. 2004).  A survey conducted in 

2012 in Saskatchewan reported significantly higher parasitism by D. insulare (61.87%) than M. 

plutellae (38.13%) in canola (Bahar et al. 2013). 

In this study, another larval parasitoid species of braconid, believed to be Cotesia 

vestalis (Haliday) [= C. plutellae (Kurdjumov)] (Hymenoptera: Braconidae), was responsible for 

a very substantial level of the total parasitism of P. xylostella. In the most recent checklist of 

Cotesia species in North America, Fernández-Triana (2010) reported 55 species with the 

expectation that many more species in this genus are unreported. Cotesia plutellae is a primary 

solitary larval endoparasitoid responsible up to 90% parasitism of P. xylostella in brassica crops 

when released in large numbers (Moralla-Rejesus & Sayavoc 1991; Shi et al. 2002; CABI 2005). 

It can parasitize all four larval instars of P. xylostella but prefers 2nd and 3rd instars for 

development (Shi et al. 2002). 

Microplitis plutellae is a primary larval endoparasitoid with a transcontinental distribution 

in North America (Harcourt 1960; Braun et al. 2004; Sarfraz et al. 2005a). Females can parasitize 

all four larval instars of P. xylostella (Sarfraz et al. 2005a).  Microplitis plutellae can overwinter 

in western Canada and is present early in the season to parasitize P. xylostella (Putnam 1978). 

Microplitis plutellae was found to perform best at low pest densities and considered a better 

parasitoid for small-scale pest infestations (Young 2013). 

The study results have shown the presence and effective parasitism by the larval 

parasitoid complex of P. xylostella. Parasitism was one of the main factors regulating P. 

xylostella populations; revealing the significance of the occurrence and action of natural enemies. 
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The diversity of the larval parasitoids found in different locations in southern Alberta is quite 

similar. However, variations in the level of parasitism in fields of the same crop at different 

locations or of different crops at the same location, at the same time of the year were noticed. 

This may have been due to many reasons. Sarfraz et al. (2010a) reported that D. insulare 

distribution is generally associated with its host abundance and showed an aggregated 

distribution with P. xylostella within canola fields. Moreover, parasitism was also favored by host 

plant nutrient content and number of host population available (Bolter & Laing 1984; Sarfraz et 

al. 2009b). For instance, parasitism of D. insulare was highest when P. xylostella larvae were 

reared on the plant grown with 3.0 g fertilizer as compared to unfertilized plants (Sarfraz et al. 

2009b). Similarly, a higher rate of parasitism by D. insulare was recorded on high-nitrogen 

Brassica oleracea L. var. acephala than on low-nitrogen plants (Fox et al. 1990). Overall, low 

parasitism rates by M. plutellae may reflect less abundance of this species in canola fields 

compared to D. insulare or relatively less parasitism later in the season due to the high proportion 

of host available since this species reported to perform best at low host densities (Young 2013). 

Microplitis plutellae overwinters in western Canada and is available early in the season to 

parasitize its hosts (Putnam 1978). Bahar et al. 2013 reported higher parasitism by M. plutellae 

when hosts were present at low densities early in the season. In this study, the samples were 

collected during the mid-and late season, when D. insulare is more active.  

The data collected in this study indicated that D. insulare and C. plutellae were active and 

prominent in the fields during all four years in most of the locations surveyed. This also suggests 

that these species have stable populations in southern Alberta in most years. However, early 

season crop data should be collected to know more about M. plutellae distribution and natural 

parasitism. In 2011 and 2013 rates of parasitism by C. plutellae were higher in almost all of the 
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crops surveyed. This may be attributed to temperature variation during sample collecting time in 

these years. Field and laboratory observation of C. plutellae showed that this parasitoid is more 

active at higher temperatures (Talekar & Yang 1991) while cooler temperatures of 22OC and 

lower are favorable for the survival and parasitism of D. insulare (Bahar et al. 2012). Secondly, 

unlike D. insulare, C. plutellae has poor interspecific discrimination, so multiparasitism is 

common in this species. It oviposits in hosts containing larvae of other parasitoids such 

as Diadegma species when unparasitized P. xylostella larvae are not available (Lloyd 1940). 

 

Rate of parasitism of P. xylostella pupae 

Diadromus subtilicornis is a prepupal and pupal solitary parasitoid (Harcourt 1960; 

Anonymous 1996; Braun et al. 2004), but little is known about its biology in western Canada 

(Dosdall et al. 2011).  In the early 1990's in western Canada, parasitism by D. subtilicornis 

accounted for 15% of the total (Braun et al. 2004). A total of 370 host pupae were collected 

during 2011to 2013 from 12 locations of southern Alberta. The only pupal parasitoid species 

observed was D. subtilicornus. The highest number of host pupae was collected in 2011 followed 

by 2012 (Table 6-V). Parasitism was highest in 2011(40.84%), while no parasitism was recorded 

in 2013. In 2011, D. subtilicornus accounted for 65, 40, 13.2, and 3.7% parasitism in fields near 

Medicine Hat, Orion, Etzikom and Seven Persons, respectively. However, a total of 30.3% 

parasitism of P. xylostella pupae was observed in 2012 with a highest parasitism in fields near 

Skiff (66.6%) and Bow Island (60%). The parasitism was higher in canola (44.4 & 50 %) than in 

mustard (13.2 & 15.7%) in 2011 and 2012, respectively. 

Hyperparasitoids 

 Some species of Chalcidoidea have been associated with P. xylostella in western 

Canada, but it is unclear whether these are primary parasitoids or hyperparasitoids.  Conura 
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albifrons (Walsh) and Conura torvina (Cresson) (Hymenoptera: Chalcididae) were recorded from 

P. xylostella in Saskatchewan and Alberta, respectively (Braun et al. 2004). Some other studies 

like Okine et al. (1996); Gaines (1997) and Pitkin (2004) reported a few species of Conura, 

including C. torvina (Cresson) and C. side (Walter) as hyperparasitoids of Diadegma and Cotesia 

species, that are common parasitoids in brassicaceous crops. A Conura sp. was also obtained in 

this study in 2011 from P. xylostella pupae responsible for a low level of parasitism (2%) from 

southern Alberta, but it is not clear whether it actually emerged from the P. xylostella or from the 

primary parasitoid D. insulare since it was not determined initially whether the pupae were 

parasitized by D. insulare. It is difficult to differentiate larvae or pre-pupae that are parasitized 

from a primary parasitoid than from those that are not (Lee et al. 2004).  

 In 2011 in Alberta, a Pteromalus sp. (Hymenoptera: Pteromalidae) and a hyperparasitoid 

of D. insulare, Catolaccus aeneoviridis (Girault) (Hymenoptera: Pteromalidae) also were 

recorded. Previously, Pteromalus semotus Walker was obtained from Alberta in 2001 (Braun et 

al. 2004). Two hyperparasitoids of D. insulare, Catolaccus cyanoideus Burks and Catolaccus 

aeneoviridis (Girault) (Hymenoptera: Pteromalidae), were also identified in 2003 from canola in 

Alberta (Ulmer et al. 2005). 

A facultative hyperparasitoid of ichneumonids and tachinids, Mesochorus bilineatus 

Thomson (Hymenoptera: Ichneumonidae), was also identified in 2011. There are over 100 

species described in North America. The Mesochorus sp. has been reared previously from a 

primary larval parasitoid C. plutellae of P. xylostella. Mesochorus sp. started to feed after the 

primary parasitoids completed their development and formed cocoons. It pupated inside the 

cocoon of its host and later emerged from it (Kfir 1997). Hyperparasitoids could play an 

important role in reducing the primary parasitoid population and ultimately their impact on P. 
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xylostella densities. 
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Figure 6-I. Map showing localities surveyed for Plutella xylostella and parasitoids in southern 

Alberta, Canada from 2010 to 2013.



 

106 
 

Table 6-I. Numbers of localities in southern Alberta, Canada, surveyed in 2010-2013 and total 

numbers of pest (host) and parasitoids sampled. 

 
2010 2011 2012 2013 

Total number of locations surveyed 11 14 19 15 

Total fields surveyed 29 32 44 33 

Number of locations with P. xylostella present 10 12 14 13 

Total P. xylostella larvae collected 1284 1527 261 216 

Number of locations with P. xylostella larvae 10 11 11 13 

Number of locations with larval parasitoids present 10 11 11 10 

Total P. xylostella pupae collected 0 333 33 4 

Number of locations with P. xylostella pupae 0 4 5 3 

Number of locations with pupal parasitoids present 0 4 4 0 
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Table 6-II. Hymenopterous parasitoids of P. xylostella recorded from southern Alberta, Canada  

Species      Plutella xylostella       

stage(s) attacked 

Parasitoid status Host 

Ichneumonidae: Campopleginae 

Diadegma spp. 

Diadegma insulare (Cresson)  

 

Larva 

Larva 

 

Primary parasitoid 

Primary parasitoid 

 

P. xylostella 

Ichneumonidae: Ichneumoninae 

Diadromus subtilicornis (Gravenhorst) 

 

Prepupa/Pupa 

 

Primary parasitoid 

 

P. xylostella 

Braconidae: Microgastrinae 

Cotesia plutellae 

Microplitis plutellae (Muesbeck) 

 

Larva 

Larva 

 

Primary parasitoid 

Primary parasitoid 

 

P. xylostella 

P. xylostella 

Chalcididae: Chalcidinae 

Conura sp. 

 

 

                                 

 

Primary parasitoid 

hyperparasitoid 

 

P. xylostella 

Ichneumonoids 

Pteromalidae: Asaphinae 

Pteromalus sp. 

Cataloccus aeneoviridis (Girault) 

 

              

 

Hyperparasitoid 

Hyperparasitoid      

 

Ichneumonoids 

Ichneumonidae: Mesochorinae 

Mesochorus bilineatus Thomson 

  

Hyperparasitoid 

 

Ichneumonoids & 

Techinids 
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Table 6-III. Rates of parasitization of P. xylostella larvae in canola and mustard in southern Alberta, Canada 

Date (month/year) Crop Total no. of 

larvae 

sampled 

% parasitism 

by all species 

% parasitism by major species No. of 

larval 

parasitoid 

species 

    Diadegma 

insulare 

Cotesia 

sp. 

Microplitis 

plutellae 

 

July/August 2013 

  

Brassica napus 136 34.5 6.61 25.7 2.2 3 

Brassica juncea 7 28.57 0 28.57 0 1 

Sinapis alba 73 38.35 2.7 35.6 0 2 

July/August 2012 Brassica napus 228 46 21.49 17.1 7.4 3 

Brassica juncea 20 30 5 10 15 3 

Sinapis alba 13 46.15 30.76 15.38 0 2 

July/August 2011 Brassica napus 962 24.5 15.9 8.0 0.62 4 

Brassica juncea 215 27.9 8.83 18.1 0.93 3 

  Sinapis alba 330 15.15 2.7 11.5 0.9 3 

August 2010 Brassica napus 1284 30.46 16.40 14.06 0 2 

Brassica juncea 0 0 0 0 0 0 

Sinapis alba 0 0 0 0 0 0 
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Table 6-IV. Total parasitism by major larval parasitoid species 

 % parasitism during the years of 

 2010 2011 2012 2013 

Diadegma insulare 16.40 12 20.6 5 

Cotesia sp. 14 10.8 16.4 29.1 

Microplitis plutellae 0 0.7 7.6 1.3 

Total % parasitism 30.4 23.5 44.8 35.6 
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Table 6-V. Number of host pupae and pupal parasitoid collected in canola and mustard in 

southern Alberta, Canada 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year Crop 
P. xylostella pupae 

collected 

Pupal parasitoid 

emerged 

2011 Brassica juncea 38 5 

Brassica napus 295 131 

Sinapis alba 0 0 

   

2012 Brassica juncea 0 0 

Brassica napus 14 7 

Sinapis alba 19 3 

   

2013 Brassica juncea 0 0 

Brassica napus 4 0 

Sinapis alba 0 0 
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Chapter 7: General Discussion/ Summary 

This thesis elaborates on investigations of various bioecological aspects of P. xylostella 

and its major larval parasitoid D. insulare in western Canada. Through this research, I have 

attempted to explore understudied or unstudied fundamental aspects of the biology and ecology 

of both pest and parasitoid. Overall, this thesis establishes baseline ecological parameters 

(development under climatic change, bitrophic and tritrophic interactions, parasitism rate, fitness 

traits, floral nectar diet, etc.) for D. insulare and compares them with other previously published 

studies. 

Plutella xylostella is seasonal in western Canada, and its population varies considerably 

from year to year, primarily depending on the arrival time and number of migrants from the 

southern or western United States in the spring (Dosdall et al. 2004b, 2011; Bahar et al. 2013). 

Natural enemies are known to keep most P. xylostella infestations below economically damaging 

levels. For instance, the outbreak of P. xylostella in brassica crops in western Canada in 2001 was 

terminated by its natural enemies (Dosdall et al. 2004b).  However, to design a sustainable 

management framework applicable to western Canada, and to facilitate effective implementation 

of biocontrol and other pest management practices, an understanding of the life histories and 

host-parasitoid interactions with ecological factors is critical. Thus, I focused on investigating 

unknown significant life history traits of P. xylostella and D. insulare in relation to climatic 

factors. Thorough studies on the developmental biology of both pest and parasitoid with reference 

to host plant water stress and temperature were conducted thereby facilitating  a better 

understanding of tritrophic interactions under climatic changes scenarios (Chapter 2-4).  

 I further extended my study on more bioecological traits and attempted to investigate the 

selective effect of various floral nectar diets on the host-parasitoid system (Chapter 5). 
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Furthermore, surveys in southern Alberta were conducted to explore the distribution and 

abundance of P. xylostella, and its associated parasitoid fauna over time (Chapter 6). 

A substantial volume of research literature has been published on the biology and 

development of P. xylostella in different regions of the world. However, studies on tritrophic 

interactions involving host plants, pests, and their natural enemies are lacking. Moreover, very 

little research has been done on the effects of climate change on pests, and particularly their 

biocontrol agents, despite their tremendous economic importance in agroecosystems. Biological 

control programs can be improved substantially and implemented successfully through an in-

depth understanding of the bioecology of both natural enemies and their hosts (Mommott et al. 

1998; Martínez- Castillo et al. 2002). In this regard, P. xylostella and D. insulare are 

understudied. This formed the basis of my investigation on oviposition preferences of P. 

xylostella, and on the development and life history traits of P. xylostella and D. insulare under 

water deficit stressed host plants. The importance of host plants (first trophic level) in mediating 

ecological interactions between host-parasitoid systems is well documented (Takabayashi et al. 

1998; Verkerk et al. 1998). To the best of my knowledge, there is no study that has reported the 

development of D. insulare and its host under climatic stress. My study reports for the first time 

tritrophic interactions and development of host and parasitoid under water deficit conditions 

(Chapter 3). 

Ovipositional preferences of P. xylostella indicated that oviposition was significantly 

affected by water deficit stress and host plant (B. napus) age (Chapter 2). These findings support 

the preference-performance hypothesis stating that oviposition preference should correspond with 

host suitability. Thus, female phytophagous insects select to oviposit on host plants that optimize 

the fitness of their off springs (Jaenike 1978). The present study results confirmed that P. 
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xylostella females preferred to deposit eggs on vigorous plants not under water stress to ensure 

the successful development and survival of their offspring (Chapter 2). However, my 

investigation indicated a complex set of bitrophic and tritrophic interactions, and also revealed 

variable effects of stressed hosts on different trophic levels (Chapter 3). My research findings 

support neither the host plant stress nor plant vigor hypothesis as P. xylostella appeared to 

maintain the same rate of development on both stressed and non-stressed host plants. It may have 

been due to the genotypic plasticity of this species, which enables it to be among the most 

successful insect pest species worldwide (Talekar & Shelton 1993; Furlong et al. 2013). This trait 

allows P. xylostella to develop at the same rate on both stressed and non-stressed plants, as 

previously reported for some other lepidopteran pests (e.g. Pieris rapae L.) (Miles et al. 1982).  

Investigation of tritrophic interactions confirmed that herbivores and their natural enemies 

respond to plants under stress in diverse and variable ways. These responses depend on the 

particular plant-herbivore and its natural enemies system, and also the nature, magnitude and 

duration of host plant stress (Waring & Cobb 1992; Koricheva et al. 1998; Calatayud et al. 2002; 

Haile 2002). For instance, unlike P. xylostella, the development and fitness of D. insulare were 

influenced by both water stress and host plant genotype, independently (Chapter 3). Several 

parameters (development, adults, and pupal weight, etc.) indicated lower fitness of D. insulare 

when it was reared on P. xylostella larvae that fed on water stressed host plants, suggesting water 

stressed hosts were less suitable for the parasitoid. Similarly, development varied considerably on 

different plant genotype regardless of water treatment. For instance, the fastest development of D. 

insulare was noticed on B. napus and the slowest on S. alba, a developmental pattern opposite to 

its host. These deviations under climatic stress may lead to disruption of synchronization, thereby 

increasing the chances of pest outbreak (Hence et al. 2007). The results provide a basic 
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understanding of tritrophic interactions and responses of trophic levels to abiotic stress. However, 

additional field and laboratory trials with different plant genotypes, magnitudes, and durations of 

water stress are warranted to investigate and validate their impact on a host-parasitoid system. 

Biological control is facilitated when the responses of biocontrol agents to temperature 

and other climatic factors are known (Roy et al. 2002). Complementary studies on developmental 

rates of natural enemies and their hosts at different temperatures and the estimation of thermal 

requirements are helpful for improving the efficiencies of biocontrol strategies (Dosdall et al. 

2012). This formed the basis of my investigation on development and fitness traits of D insulare 

at various temperatures (Chapter 4). My study reports that most of the parameters studied were 

proportional to temperature. Overall, parasitism increased with decreasing temperature and the 

developmental time decreased significantly with increasing temperature. The shortest 

developmental time was observed at 20 and 25°C while the longest was at 10°C. Short 

developmental time of biological control agents is critical to pest management plans as this can 

regulate how quickly and efficiently a natural enemy can track an increase in pest populations 

(Tran et al. 2012). The Results suggested that D. insulare is less tolerant to higher temperatures. 

Bahar et al. (2012) reported that the wasp is most likely suitable and efficient biocontrol agent at 

lower temperatures. This Information would be useful in extrapolating the potential effects of 

constant temperature on some aspects of D. insulare biology under laboratory conditions. 

Combined results reported in Chapters 2 and 3 (e.g., developmental times, pupal and adult 

weights, adult body size, longevities in the absence of food, and the plant on which herbivore host 

was reared) linked with several fitness correlates of the parasitoid D. insulare under water deficit 

stress and various temperatures. These results have facilitated a better understanding of bi and 

tritrophic interactions with different climatic conditions. These findings are only a step toward 
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growing our understanding of how changes in moisture and temperature affect host-parasitoid 

responses and interactions. 

These comprehensive analyses of tritrophic relationships are rarely integrated into pest 

management schemes. However, the study data (Chapter 2-4) indicated that without an 

understanding of the complexities and interactions that occur in these systems, significant 

management aspects can be ignored or miscalculated (Sarfraz et al. 2008). For instance, the 

development of P. xylostella was unaffected when reared on the water-stressed host. However, D. 

insulare development was slow while the longevity was high on the stressed host. Because of the 

diverse influence of changes in climatic factors on species interactions across trophic levels, a 

more comprehensive research into these relationships holds promise for a better understanding of 

multitrophic interactions. This will also provide a realistic view and further insights into 

interconnected climatic stressors like temperature and moisture, and their impact on the 

community and ecosystem-level processes, and also on biological control programes. (Thomson 

et al. 2010; Jamieson et al. 2012).  

Numerous studies have shown the importance of floral nectar/sugar feeding for insects to 

increase their survival and fitness (Jervis & Kidd 1996; Wäckers et al. 2007). Improving the 

effectiveness of natural enemies by providing suitable nectar sources is an important tool in the 

conservation of biocontrol agents within sustainable agroecosystem management (Gurr et al. 

1998; Landis et al. 2000). However, basic knowledge of the selective effects of nectar feeding on 

both pest and parasitoid’s longevity is scarce. This formed the basis of my investigation on the 

differential effects of floral and non-floral feeding on D. insulare and its host P. xylostella 

(Chapter 5). My study reports for the first time the selective effects of nectar/sugar feeding on the 

longevity, body weight and size of P. xylostella and D. insulare. Results confirmed that 
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carbohydrate sources prolonged the lifespan of D. insulare and P. xylostella. Floral nectars of all 

the plant species tested were accessible to both the pest and its parasitoid. None of the nectar-

producing plants was selective towards D. insulare relative to its host P. xylostella. However, 

selectivity in terms of floral nectar suitability and their impact on longevity were obvious in the 

case of L. maritima and S. arvensis for both the parasitoid and its host. Results showed that 

different diet (floral and non-floral) could selectively impact fitness and other life history traits of 

a pest -parasitoid system. For instance, D. insulare gained considerably more weight while 

feeding on floral nectar as compared to water alone. Furthermore, hind tibia length was 

significantly increased when D. insulare was fed on B. napus and S. arvensis. On the contrary, P. 

xylostella individuals gained more weight when fed on 10% honey compared to any of the floral 

nectars or water. However, floral and non-floral food sources did not have any impact on hind 

tibia length of P. xylostella. The food sources may only support one trophic level over the other 

depending on insect behavior, mouthpart morphology, nectar availability, accessibility, 

suitability, composition and concentration, and flower architecture and attractiveness (Idris & 

Grafius 1995; Wäckers 2001; Winkler et al. 2005; Carrillo et al. 2006; Kehrli & Bacher 2008; 

Lee & Heimpel 2008; Tunçbilek et al. 2012). The results obtained in this study underline the 

importance and potential for application of selective floral plant species in terms of their 

suitability and impact on the life history traits of pests and their parasitoids to improve biological 

control. From a conservation point of view, the needs of natural enemies as well as pest species 

must be taken into account. However, careful choice of floral resources that promotes natural 

enemies’ performance without supporting pest species is critical (Winkler 2005).  Field and 

laboratory research on floral nectar species that are common in canola fields of western Canada 

should continue to explore selective suitable, attractive, and nutritional floral species with 
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accessible nectar, and their role in mediating herbivore-natural enemy ecological interactions.  

Surveys of commercial fields of canola and mustard from 2010 to 2013 in southern 

Alberta, showed the association of almost six species of primary hymenopteran parasitoids 

belonging to four genera (Diadegma, Cotesia, Microplitis, and Diadromus) with P. xylostella. 

Moreover, four species of hyperparasitoids belonging to four genera (Conura, Cataloccus, 

Pteromalus, and Mesochorus) were also recorded from primary parasitoids of P. xylostella. The 

data collected in this study indicated that larval parasitoids were present and active in the fields 

during all four years of the survey. However, rates of parasitization varied greatly among species, 

fields of same crop, and fields of different crops in the same or different years. In general, D. 

insulare was recorded as the most abundant species in 2010-2012, followed by Cotesia sp. and 

M. plutellae. Cotesia sp. was dominant in 2013, followed by D. insulare and M. plutellae. The 

existing larval parasitoid species appeared to provide considerable collective parasitism (e.g., 

44.6% in 2012 & 35.4% in 2013), Similarly, a total of 30.3% parasitism in 2012 by the pupal 

parasitoid D. subtilicornis was observed, suggesting the importance of parasitoids in 

regulating the P. xylostella population. Hence, this study provides a valuable contribution to the 

knowledge about the parasitism levels and parasitoid communities associated with P. xylostella in 

southern Alberta. 

  However, regular annual and seasonal monitoring of different host crops in different 

geographical areas should be done to determine changes in parasitoid species composition, 

parasitism, and population densities over time and space. It is also critical to get in-depth 

knowledge and understanding of the biology of primary and hyperparasitoids of P. xylostella in 

western Canada. Conducting a regular survey of insect pests to detect any potential risk to the 
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cultivated crops early in the growing season is important because implementing control measures 

without considering the pest density may not be economically feasible.  

Despite the limitations to the present study from drawing broader conclusions regarding 

the effect of climatic change and floral nectar diet on pest-parasitoid system, the study will help 

to understand bioecological foundation of host plant, and pest-parasitoid relationships. The study 

findings add to the growing literature highlighting the importance of incorporating climatic 

factors, floral nectar resouces, and natural enemies to develop an integrated P. xylostella 

management model of continual improvement (Fig. 7-I). Future research should consider long-

term monitoring of the demographics of P. xylostella and its parasitoids. Thorough studies that 

include a wider range of host-parasitoid fitness traits and the potential effects of multiple biotic 

and abiotic stress factors on these traits and multitrophic relationships are warranted. Careful 

evaluation of the responses of a pest-parasitoid system to multiple climatic stressors are critical. 

This will eventually improve our understanding to enhance sustainable management of P. 

xylostella. 
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